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a b s t r a c t 

Physical layer security has attracted lots of attention with the expansion of wireless devices to the edge networks 

in recent years. Due to limited authentication mechanisms, MAC spoofing attack, also known as the identity at- 

tack, threatens wireless systems. In this paper, we study a new type of MAC spoofing attack, the virtual MAC 

spoofing attack, in a tight environment with strong spatial similarities, which can create multiple counterfeits en- 

tities powered by the virtualization technologies to interrupt regular services. We develop a system to effectively 

detect such virtual MAC spoofing attacks via the deep learning method as a countermeasure. A deep convolu- 

tional neural network is constructed to analyze signal level information extracted from Channel State Information 

(CSI) between the communication peers to provide additional authentication protection at the physical layer. A 

significant merit of the proposed detection system is that this system can distinguish two different devices even at 

the same location, which was not well addressed by the existing approaches. Our extensive experimental results 

demonstrate the effectiveness of the system with an average detection accuracy of 95%, even when devices are 

co-located. 

1. Introduction 

In the past decade, the ubiquitous expansion of smart home applica- 

tions allow a mass of IoT devices to be connected to the Internet. The 

majority of devices use WiFi as the primary way for communications. 

Most WiFi networks nowadays use WiFi Protected Access 2 (WPA2) or 

IEEE 802.11i to protect users’ security. Nevertheless, such prior authen- 

tication is vulnerable to physical layer spoofing attacks in which an in- 

side spoofer can claim to be another node by using the Media Access 

Control (MAC) address of the latter. Attackers can easily obtain other 

users physical layer information by using the pervasive public tools on 

the 802.11 commodity hardware [1] or simply sniffing the ARP pack- 

ets in the network, which makes it feasible for ordinary users to alter 

the device’s hardware-level parameters in wireless networks, as well as 

launching various identity theft attacks. 

Launching identity attacks allows the attacker to obtain an illegal ad- 

vantage in the Man-in-the-Middle (MITM) attacks or Denial of Service 

(DoS) attacks while the system admin cannot identify the real owner of 

the corresponding MAC address. When multiple devices in the local net- 

work use the same MAC address, the collision of the MAC address will 

cause all devices sharing the same MAC address to be denied from the 

regular services. Fig. 1 illustrates the traditional MAC spoofing attack in 

a local wireless network, in which an attacker, Eve, forges its MAC ad- 

dress to masquerade as another benign node, Bob. Then Eve can deceive 

☆ A preliminary version of this work was published in IEEE ICC 2018. 
∗ Corresponding author. 

E-mail address: cxin@odu.edu (C. Xin) . 

the Access Point (AP), disrupt the regular network connections of Bob, 

or advertise false services to nearby mobile stations. However, due to 

the collision of the MAC address with Bob, Eve cannot maintain a good 

connection with AP, either. 

There are several physical layer proprieties that can be utilized for 

fingerprinting devices, which can be further used to detect MAC spoof- 

ing attacks, i.e., traditional power features and finer-grained channel 

response. Traditional power features include Received Signal Strengths 

(RSS) and Received Signal Strength Indicators (RSSI), and finer-grained 

channel response include Channel State Information (CSI). RSSI was 

considered in many works in physical layer authentication [2–4] as it 

reveals the attenuation of radio signal during the propagation. How- 

ever, RSS and RSSI are incapable of providing robust and stable signal 

features in complex indoor environments due to multipath fading [5] . 

Benefiting from the adoption of Orthogonal Frequency Division Multi- 

plexing (OFDM) technology since IEEE 802.11n, channel response can 

be extracted from the off-the-shelf WiFi receivers to indicate the ampli- 

tudes and phases of every subcarrier between the communication peers. 

Therefore, CSI leverages the finer-grained power feature to discriminate 

multipath characteristics. 

In [6] , the authors proposed a CSI-based approach called Profile 

Matching Authenticator (ProMA), to detect traditional MAC spoofing 

attacks. It utilizes the CSI amplitude information to build a profile for 

each legitimate device in the network and then detect MAC spoofing by 

looking at these profiles. This method relies on the fact that the ampli- 
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Fig. 1. Illustration of the traditional MAC spoofing attack. 

tudes of CSI from devices at different positions are different. Hence, the 

attackers who forge another node’s MAC at a different location can be 

detected since the CSI amplitude does not match the profile constructed 

for any legitimate user. Nevertheless, the CSI amplitudes of two devices 

at the same location are generally similar. Hence this approach has dif- 

ficulty distinguishing two legitimate devices at the same location, i.e., 

one of them would be falsely alarmed as a MAC spoofing attacker and 

vice versa. Moreover, the CSI amplitude from the same location may 

vary significantly over time. 

In addition to the issues discussed above, those existing methods for 

MAC spoofing detection face even more challenges for a new type of 

MAC spoofing attack termed virtual MAC spoofing attack in this paper. 

Recently, the development of network virtualization techniques [7–9] , 

especially the MAC layer virtualization [10] , enables the virtual MAC 

spoofing attack. With this attack, an attacker can launch massive MAC 

flooding attacks [8] to disrupt a large-scale network to cause a severe 

denial of service while the attacker can still maintain the connection to 

the access point. For example, as shown in Fig. 2 , Eve is the attacker 

who creates two virtualized interfaces to forge the MAC addresses of 

Alice and Bob simultaneously. Although Alice and Bob are suffering 

from the potential packet loss due to the MAC collision, Eve can still 

use its unique MAC address to maintain the regular connection. Vir- 

tual MAC technology also enables malicious users to demultiplex the 

network traffic by dynamically scheduling packets to be transmitted on 

different virtualized interfaces to reshape the original traffic, which can 

conceal malicious network activities and evade the intrusion detection 

system [10,11] . Therefore, it is rather challenging to detect virtual MAC 

spoofing using the existing methods. 

In this paper, we propose a virtual MAC spoofing detection scheme 

termed Virtual MAC Spoofing deteCtor (VMASC), utilizing the Channel 

State Information (CSI) and the deep learning technique. VMASC can 

effectively detect both MAC and virtual MAC spoofing attacks. Specif- 

ically, based on the amplitude and phase information extracted from 

CSI, VMASC automatically extracts features to classify devices through 

a trained Convolutional Neural Networks (CNN). VMASC has several mer- 

its. First, it can distinguish the devices even at the same location through 

using both the amplitude and the phase information of CSI. Second, 

VMASC is very robust and works well even under severe communica- 

tion environments. It also does not need any a priori information of 

devices, such as collecting the profiles of devices in previous studies. Fi- 

nally, VMASC does not need to use an expensive and high-resolution sig- 

nal processing analyzer. It only uses off-the-shelf devices. The proposed 

VMASC achieves an average of 95% accuracy in various environments. 

It can be used for practical applications such as being added into the 

administrator’s toolbox of a wireless network to effectively detect MAC 

spoofers. 

The rest of the paper is organized as follows. Section 2 introduces our 

approach to distinguish co-locating devices, a key challenge in detect of 

MAC spoofers. Section 3 describes the system architecture of VMASC. 

Section 4 presents performance evaluations and Section 5 concludes the 

paper. 

2. Distinguish co-locating devices 

The biggest challenge in MAC spoofing detection is how to distin- 

guish devices that are at the same location. VMASC exploits two mea- 

surements of CSI to achieve this objective: 1) both the amplitude and 

the phase information in CSI, and 2) the CSI error or variance of NICs. 

Next we briefly introduce these two measurements. 

The CSI is a fine-grained channel information that can be often pro- 

vided by NICs. In the rest of the paper, for the ease of description, we 

assume the wireless network is a WiFi network using the OFDM modu- 

lation. However, our approach is applicable to other wireless networks 

where the CSI can be obtained. 

With the OFDM modulation, the data stream is encoded on multiple 

orthogonal subcarriers over the entire spectrum band. For example, in 

802.11n 20Mhz non-High Throughput mode, each WiFi channel con- 

tains 56 subcarriers, and in 802.11n 40Mhz High Throughput mode, 

each WiFi channel contains 114 subcarriers. The quantified channel fre- 

quency response for each subcarrier between each transmitter antenna 

and each received antenna can be obtained by the off-the-shelf NICs such 

as Atheros 9462 [12] . The frequency domain response in the OFDM sys- 

tem can be described as follows. 

Y 𝑠 =  𝑠 X 𝑠 + N 𝑠 , (1) 

where Y 𝑠 and X 𝑠 represent the received and the transmitted signal vec- 

tors on subcarrier 𝑠 , respectively,  𝑠 is the CSI on subcarrier 𝑠 , and N 𝑠 

is the noise vector on subcarrier 𝑠 . When MIMO communication ( 𝑁 𝑇 

number of transmit antenna and 𝑁 𝑅 number of receive antenna) is en- 

gaged,  𝑠 is an 𝑁 𝑇 ×𝑁 𝑅 matrix representing the channel frequency 

information on a subcarrier. For example, the Atheros NIC supports 

Fig. 2. Illustration of the virtual MAC spoofing attack. 
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Fig. 3. CSI of 20 packet transmissions from two devices at the same location, a) amplitude, b) amplitude and phase. 

802.11n with 20Mhz/40Mhz bands at the 2.4Ghz/5Ghz frequency and 

is equipped with two antennas on each NIC to collect CSI for each trans- 

mitted packet. Let 𝑁 𝑆 represent the number of subcarriers in OFDM. It 

is dynamically adjusted by the NIC between 56 and 114 based on the 

condition of the wireless environment. The CSI on each subcarrier is a 

complex number and it refers to the channel properties such as the chan- 

nel frequency response of a communication frequency band. Moreover, 

each CSI value consists of both the amplitude response and the phase 

response on each subcarrier. Thus, it can be defined as 

̇ ( 𝑛 𝑟 ,𝑛 𝑡 ,𝑛 𝑠 ) = 

||| ( 𝑛 𝑟 ,𝑛 𝑡 ,𝑛 𝑠 ) ||| exp 
{ 

𝑗∠ ( 𝑛 𝑟 ,𝑛 𝑡 ,𝑛 𝑠 
)} 

, (2) 

where 𝑛 𝑟 indicates the 𝑟 -th receive antenna, 𝑛 𝑡 indicates the 𝑡 -th transmit 

antenna, and 𝑛 𝑠 indicates the 𝑠 -th subcarrier. 
||| ( 𝑛 𝑟 ,𝑛 𝑡 ,𝑛 𝑠 ) ||| is the amplitude 

response and ∠ ( 𝑛 𝑟 ,𝑛 𝑡 ,𝑛 𝑠 ) is the phase response of a subcarrier, respec- 

tively. 

To illustrate our motivation to use both the amplitude and the phase 

of CSI to distinguish co-locating devices, instead of simply using the am- 

plitude of CSI, we plot the CSI amplitude and the full CSI on 56 subcarri- 

ers in Fig. 3 for 20 packets transmissions from two co-locating devices. 

Fig. 3 (a) shows that the amplitude of CSI samples from two devices, 

Dev1 and Dev2, at the same location. We can clearly see that with both 

the amplitude and the phase, it is easier to distinguish the two devices, 

e.g., the CSI samples of Dev 2 (blue dots) are predominantly in the lower 

half of the complex plane in Fig. 3 (b), while the CSI samples of Dev1 

(red dots) are more evenly distributed in both the lower and the upper 

half of the complex plane. Relying solely on the amplitude can have 

difficulty to distinguish the two devices as the CSI amplitudes of the 

two devices are similar in most subcarriers. Furthermore, the benefit 

of using both the amplitude and the phase is that the phase informa- 

tion extracted from the CSI is more sensitive to reveal the variations of 

hardware imperfections, due to the non-linear errors introduced [13] . 

During the manufacturing process of the NICs, there are always im- 

perfections introduced such that two NICs are not exactly the same in 

terms of signal transmission [13] . In other words, even the CSIs of the 

packet transmissions of two NICs of the same type at the same loca- 

tion, same time, and same frequency exhibit some variance. Similarly, 

in [13] , the authors conduct an extensive analysis on the characteris- 

tics of the nonlinear errors on the channel frequency response intro- 

duced by the hardware imperfections. Such variance is caused by imper- 

fections of the power amplifier, carrier frequency alignment, sampling 

frequency alignment, undesirable packet detection offset, and phase- 

locked loop offset [13] . Denote 𝛿𝑠,𝑙 as the error introduced by device 𝑙 on 

Fig. 4. VMASC architecture. 

subcarrier 𝑠 . Then, the actual CSI on subcarrier 𝑠 is, 

̂ 𝑠,𝑝 =  𝑠,𝑝 + 𝛿𝑠,𝑙 . (3) 

where  𝑠,𝑝 is the theoretical CSI for the 𝑝 -th packet of device 𝑙 on 𝑠 -th 

subcarrier. We can rewrite (3) as follows: 

̂ 𝑠,𝑝 = 

||| 𝑠,𝑝 + 𝛿𝑠,𝑙 
|||𝑒𝑥𝑝 

{
𝑗∠(  𝑠,𝑝 + 𝛿𝑠,𝑙 ) 

}
(4) 

Such device-related CSI errors or variance due to imperfections of NICs 

is utilized by VMASC to identify the uniqueness of hardware and further 

differentiate hardware. 

In the next section, we present a deep convolutional neural network 

that exploits the CSI errors caused by hardware imperfections, and the 

full CSI information extracted from the packet transmissions, to detect 

the virtual MAC spoofing attack. 

3. Deep virtual MAC spoofing detector (VMASC) 

The architecture of VMASC is shown in Fig. 4 . We assume all devices 

are equipped with an off-the-shelf Atheros NIC, which can read CSI data. 

3 
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Fig. 5. The CNN structure used in VMASC. 

The main idea of this design is to examine the CSI from two packets 

and use a deep learning classifier as the detector to identify whether 

the MAC addresses associated with the two packets originated from the 

same physical device. 

3.1. Training data gathering process 

To collect training data, CSI samples from all incoming packets 

are recorded at the AP (admin). However, the CSI extracted for each 

packet does not contain any upper layer information such as the 

source/destination MAC or IP address associated with its originated de- 

vice, thus we need to align all the collected CSI with the traffic log and 

label each CSI with a right device label before compiling the training 

data. 

Once we have collected the aligned CSI information, we compile the 

training data as follows. We first subtract the CSI from any two consec- 

utive data packets (e.g., packet 𝑗 and 𝑗 + 1 ), and record this CSI sub- 

traction result and a corresponding label as one training data sample. 

The label value is assigned as follows. If the two consecutive packets are 

actually sent from the same device, the label is 0; otherwise, the label is 

1. Let ̂ 𝑠,𝑗 denote the CSI subtraction result on the 𝑠 th subcarrier of the 

𝑗th data in the training dataset, which can be expressed as 

̂ 𝑠,𝑗 = ̂ 𝑠,𝑗 − ̂ 𝑠,𝑗+1 = (  𝑠,𝑗 −  𝑠,𝑗+1 ) + ( 𝛿𝑠,𝑙 𝑗 − 𝛿𝑠,𝑙 𝑗+1 
) (5) 

where 𝑗 ∈ [1 , 𝑁 − 1] , 𝑁 is the total number of packets collected for train- 

ing, 𝑙 𝑗 denotes the device that sends packet 𝑗, and 𝑙 𝑗+1 denotes the device 

that sends packet 𝑗 + 1 , respectively. 

Based on the spatial property and hardware difference, we have three 

scenarios as follows. 

1. If packets 𝑗 and 𝑗 + 1 are sent from the same device, the spatial prop- 

erty and hardware characteristic should be stationary within the pe- 

riod of the short inter-packet interval. Thus we have  𝑠,𝑗 ≊  𝑠,𝑗+1 and 

𝛿𝑠,𝑙 𝑗 
≊ 𝛿𝑠,𝑙 𝑗+1 

based on the uniqueness and imperfection features men- 

tioned in the preceding section. 

2. If packets 𝑗 and 𝑗 + 1 are sent from two devices at two different lo- 

cations, the spatial property and hardware characteristics should be 

different. Thus we should have  𝑠,𝑗 ≠  𝑠,𝑗+1 and 𝛿𝑠,𝑙 𝑗 ≠ 𝛿𝑠,𝑙 𝑗+1 
. 

3. If packets 𝑗 and 𝑗 + 1 are sent from two devices at the same location 

or at very close locations, the spatial property between two packets 

should be similar but the hardware imperfections are still different. 

We should have  𝑠,𝑗 ≊  𝑠,𝑗+1 and 𝛿𝑠,𝑙 𝑗 ≠ 𝛿𝑠,𝑙 𝑗+1 
. 

These scenarios indicate that, 

 𝑠,𝑗 ( Scenario 1 ) ≪  𝑠,𝑗 ( Scenario 3 ) <  𝑠,𝑗 ( Scenario 2 ) (6) 

Noted that Eq. (6) shows that even in the extreme scenario where the 

attacker is co-located with a benign user in the network, VMASC can 

still detect it. 

3.2. Attack detection 

VMASC uses the convolutional neural network (CNN) to classify if a 

data sample (the CSI difference of two packets) is from two devices 

Fig. 6. Comparison of detection accuracy, a) MAC spoofing b) virtual MAC 

spoofing. 

or the same device. CNNs have been proven to be very successful in 

computer vision [14–16] . By concatenating several convolutional lay- 

ers, CNNs can extract complex features from data. In contrast to statisti- 

cal learning which requires hand-crafted features, convolutional layers 

are automatic feature extractors so the neural network can learn a high- 

level abstraction from data. 

Here, packets from a unique device are identified by the CSI subcar- 

rier information. Due to the dynamics of the wireless channel, these 

signatures also exhibit high temporal volatility that makes any pre- 

determined feature futile. To extract subtle features from CSI on the 

packets, CNN is an ideal candidate. The original designs for image clas- 

sification adopt 2D filters on the image to extract spatial features such 

as edges, contour, and angle. Here, the CSI input data has a size of 

4 × 2 × 56 , where 56 is the number of OFDM subcarriers adopted dur- 

ing the transmission, 4 is the four pairs of transmitting and receiving 

antennas, and 2 indicates the two components of the CSI, i.e., the am- 

plitude and the phase values, as illustrated in Fig. 5 . To extend CNN for 

our purpose, 1D filters are used. For example, 3 × 1 filter will convolve 

on three data points each time along with the frequency domain (sub- 

carrier) of each transmit and receive antenna pair to explore the unique 

hardware imperfection. We also verify that using 2D filters would lead 

to the performance degradation to be explained in Section 4.3 . 

Moreover, VMASC needs to use 1D filter to convolve on both the 

amplitude and phase information. The amplitude and phase extracted 

from each CSI sample depict the attenuation and the propagation delay 

of the signal that travels through a multipath environment. Since each of 

them only reveals partial traits of hardware difference introduced in the 

channel frequency response, we have to construct the training dataset 

based on both the amplitude and the phase to avoid the performance 

degradation. We have conducted extensive experiments to evaluate the 

performance when only the amplitude or the phase is used, as described 

in Section 4.3 . 

VMASC also uses a max pooling layer after some convolutional lay- 

ers to reduce the dimensions to facilitate the learning process. Note that 

convolutions over CSI received from multiple packets in the time do- 

main are not feasible as the packets could come from different devices 

in a mixed pattern. Convolution over such information from different 

devices does not contribute to the learning process. 

4 



P. Jiang, H. Wu and C. Xin High-Confidence Computing 2 (2022) 100067 

Fig. 7. a) Comparison of detection accuracy between ProMA and VMASC, b) comparison of detection accuracy between different input features, “Amp ” means CSI 

amplitude, “Phz ” means CSI phase, c) CNN performance with different filter sizes to detect virtual MAC spoofing. 

We propose several CNN architectures. For brevity, a 4-layer CNN 

is denoted as Conv(32)-MaxPooling-Conv(64)-MaxPooling-Conv(256)- 

Dense(64)-Softmax, in which there are three Conv layers with 32, 64, 

and 256 filters respectively and one densely connected layer with 64 

activations. We choose 3 Conv layers because it can achieve a higher 

accuracy than the network with 2 Conv layers and consume less com- 

putation resources than 4 Conv network ( Table 1 in Section 4.3.2 ), thus 

balance between the detection accuracy and resource consumption. The 

final softmax function projects the multi-dimensional output with arbi- 

trary values into probabilities. If the final output is 0, two packets are 

sent from the same physical device, and vice versa. From the results, the 

attacker will be detected if any two packets with different hardware sig- 

natures claim the same MAC address (traditional MAC spoofing attack) 

or multiple packets with different MAC addresses are identified from the 

same device (virtual MAC spoofing attack). 

4. Performance evaluation 

In this section, we present the performance evaluation in different 

experiment environments. 

4.1. Experimental setup 

Our system has 3 major components, AP, hosted by a Dell Worksta- 

tion; two Dell Laptops, with one as the benign node and the other as 

the attacker (already infiltrated and authenticated). All three devices 

are equipped with Atheros NICs with a modified driver to catalog CSI 

values. The transmitter and receiver both have two antennas. The AP 

will report the CSI value for each incoming packet associated with a 

MAC address. To implement the virtual MAC address spoofing attack, 

the attacker’s device will create multiple virtual MAC addresses. 

We have conducted experiments in various scenarios. The first sce- 

nario is a strong Line-of-Sight (LoS) environment and another scenario 

is a complex environment with obstacles between devices. In LoS, all 

mobile devices and the attacker reside in an empty room and send data 

to an access point at their own speeds. The distance between the access 

point and the devices are within 1 m. The purpose of this setting is to 

mitigate the noise due to the multi-paths of the signal transmission and 

CSI variation caused by the spatial diversity from different locations. We 

arbitrarily selected 20 positions in the room for testing. To make the ex- 

periments more practical, we also deployed the system in a complex lab 

with obstacles, where devices are randomly distributed in a 10 × 5 𝑚 

2 

area. The obstacles would block most of LoS paths and form a complex 

radio propagation environment. One position is selected for training and 

30 positions are randomly selected for testing. The training data consists 

of 20,000 CSI samples and the testing data has 10,000 samples. The deep 

learning framework is implemented on Tensorflow [17] . We develop a 

4-layer CNN structure of Conv(32)-MaxPooling-Conv(64)-MaxPooling- 

Conv(256)-MaxPooling-Dense(64)-Softmax, where the number of filters 

increases as the neural network gets deeper. The evaluation is based on 

this structure and we leave the development of an optimal structure to 

the future work. 

4.2. Data collection 

We collect the training and testing data from arbitrary locations in 

each experiment scenario for 10 minutes. When the system is under the 

traditional MAC spoofing attack, we assume that the network admin- 

istrator does not have the knowledge of the attackers’ physical layer 

information since the attackers are not present during the training pro- 

cess (administrators can always conduct training in a controllable set- 

ting). Thus, the training dataset is composed of any two consecutive 

data packets from the benign users (exclude attackers). For virtual MAC 

spoofing, an attacker can either create virtual network interfaces for 

“benign ” purposes as camouflage or spoof other users’ MAC to conduct 

malicious activities. Thus, the training data for virtual MAC spoofing 

is composed of any two consecutive data packets from all the devices 

(including the attacker). 

4.3. Experimental results 

4.3.1. Detection performance 

We first evaluate the performance under two scenarios in terms of the 

detection rate, which is defined as the total number of correctly labeled 

two-packet tuples divided by the total number of two-packet tuples. The 

detection ratio of our proposed system is over 90% against both tradi- 

tional and virtual MAC address spoofing attacks. We first compare the 

performance of VMASC using CNN versus the one using the traditional 

learning technique, Support Vector Machine (SVM). We also compare 

the performance of VMASC with the ProMA approach in [6] . 

Comparison with SVM: Fig. 7 shows the overall performance of the 

detection accuracy when using SVM and CNN, respectively, for VMASC, 

in two different attacking scenarios and different environments (i.e., an 

empty room, and a complex lab, respectively). In Fig. 7 , we can eas- 

ily observe that the average testing accuracy using the SVM classifier 

is low (about 50%) and the CNN reaches very high classification ac- 

curacy (around 95%). It demonstrates the power of CNN as an effec- 

tive feature extractor compared to SVM even on CSI. Further, under the 

same attacking scenario, the accuracy of CNN in the LoS environment 

is slightly higher than the accuracy obtained under the complex envi- 

ronment. Such performance degradation is caused by the rapid change 

of spatial diversity on each subcarrier with the deflection and multiple 

paths of the transmitted signal. Moreover, when we compare the CNN 

result between different attacking scenarios, it is obvious that the over- 

all detection accuracy for a system with more information is relatively 

higher compared to the one for a system with limited information. 

Comparison with ProMA: We compare the performance of VMASC 

with the one of ProMA in [6] in Fig.. Under the co-located environment, 
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Table 1 

Detection accuracy vs. time cost with different number 

of CNN layers. 

Core Layer Average Accuracy Time for 10 epochs 

1 ×Cov 0.83 26.63s 

2 ×Cov 0.87 53.14s 

3 ×Cov 0.94 113.14s 

4 ×Cov 0.96 240.964s 

ProMA results in a lower accuracy due to the spatial similarity between 

the attacker and benign users. When testing from randomly selected lo- 

cations, both methods have good performance but VMASC beats ProMA 

in all the scenarios. 

Comparison with Different Features: We also compare the aver- 

age accuracy with different feature inputs in Fig. based on the same 

randomly selected data sets which cover all possible locations of the at- 

tacker. In the figure, “Amp ” denotes amplitude and “Phz ” denotes phase. 

We evaluate the performance when the CSI amplitude, phase, or both 

are used as CNN input. From the results we can tell that the performance 

of the CSI amplitude based detector can reach a higher accuracy than the 

purely phase based detector. This performance degradation is caused by 

the limited range of features when only the phase is involved. The range 

of each phase is within [− 𝜋, 𝜋] which is not as wide as the range of am- 

plitude on each subcarrier. However, once both features are combined 

together, the phase information can better help to identify the variance 

belonging to each device’s hardware. 

4.3.2. Fine-tuning the CNN structure 

We further examine the system performance by varying the CNN 

structure with a different filter size and number of CNN layers. Fig. 

shows the results of detection accuracy over all the testing samples. We 

observe that the best accuracy is achieved with filter sizes of 5 × 1 and 

7 × 1 . The choice of filter size is important. A small filter size ( 3 × 1) can- 

not capture features across more CSI subcarriers whereas a large filter 

size would unwittingly introduce more fluctuations/noise into a single 

convolution. Here, the results show that both 1D filters of sizes 5, or 7 

achieve comparable performance. Fig. also illustrates the performance 

when 2D filters are used (filters 5 × 3 and 7 × 3 ). We can see that those 

results are severely degraded compared to the accuracy using 1D fil- 

ters. Unlike image classification, where pixels have spatial correlations 

in a 2D plane, the secondary dimension in CSI data would bring irrel- 

evant information into the feature extraction process and cause signifi- 

cant reeducation of accuracy for over 10%. Moreover, Table 1 compares 

the detection accuracy vs. time cost with a different number of convolu- 

tion layers. From the table we can tell that with the increase of convo- 

lution layers in the neural network, the performance will be increased. 

However, the trade-off is obvious, resource consumption. With the same 

computation capability, the system with 4 convolution layers takes 240s 

to process 1 sample data whereas the system with 3 convolution layer 

just needs half of the time while achieving a comparable accuracy. Thus, 

to balance resource consumption and overall performance, we adopt the 

neural network with 3 convolution layers and 5 ×1 filter in the experi- 

ments. 

5. Conclusion 

In this paper, we have proposed a Channel State Information (CSI) 

based virtual MAC spoofing detector using the deep learning technology. 

Compared with existing approaches, VMASC can effectively distinguish 

two devices at the same location, using both the amplitude and phase 

information of CSI, and the CSI errors or variations caused by imperfec- 

tions of the hardware. Extensive experiments have been conducted in 

various environments and the results demonstrate the effectiveness and 

robustness of VMASC compared with a previous approach. 
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