Old Dominion University

ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 5-2022

TransParsCit; A Transformer-Based Citation Parser Trained on
Large-Scale Synthesized Data

MD Sami Uddin
Old Dominion University, rayan_sami@outlook.com

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

6‘ Part of the Computer Sciences Commons

Recommended Citation

Uddin, MD S.. "TransParsCit: A Transformer-Based Citation Parser Trained on Large-Scale Synthesized
Data" (2022). Master of Science (MS), Thesis, Computer Science, Old Dominion University, DOI: 10.25777/
qrv9-m891

https://digitalcommons.odu.edu/computerscience_etds/133

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has
been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/133?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

TRANSPARSCIT: A TRANSFORMER-BASED CITATION PARSER
TRAINED ON LARGE-SCALE SYNTHESIZED DATA

by

MD Sami Uddin
B.S. February 2017, Military Institute of Science and Technology, Dhaka, Bangladesh

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2022

Approved by:
Jian Wu (Director)
Vikas Ashok (Member)

Faryaneh Poursardar (Member)

ABSTRACT

TRANSPARSCIT: A TRANSFORMER-BASED CITATION PARSER TRAINED ON
LARGE-SCALE SYNTHESIZED DATA

MD Sami Uddin
Old Dominion University, 2022
Director: Dr. Jian Wu

Accurately parsing citation strings is key to automatically building large-scale citation
graphs, so a robust citation parser is an essential module in academic search engines. One
limitation of the state-of-the-art models (such as ParsCit and Neural-ParsCit) is the lack of a
large-scale training corpus. Manually annotating hundreds of thousands of citation strings is
laborious and time-consuming. This thesis presents a novel transformer-based citation parser
by leveraging the GIANT dataset, consisting of 1 billion synthesized citation strings covering
over 1500 citation styles. As opposed to handcrafted features, our model benefits from word
embeddings and character-based embeddings by combining the bidirectional long short-
term memory (BiLSTM) with the Transformer and Conditional Random Forest (CRF). We
varied the training data size from 500 to 1M and investigated the impact of training size on
the performance. We evaluated our models on standard CORA benchmark and observed
an increase in Fl-score as the training size increased. The best performance happened
when the training size was around 220K, achieving an Fl-score of up to 100% on key
citation fields. To our best knowledge, this is the first citation parser trained on a large-
scale synthesized dataset. Project codes and documentation can be found on this GitHub

repository: https://github.com/lamps-lab/Citation-Parser.

https://github.com/lamps-lab/Citation-Parser

Copyright, 2022, by MD Sami Uddin, All Rights Reserved.

111

Dedicated to my parents!

v

TABLE OF CONTENTS

Page
LIST OF TABLES .. e vii
LIST OF FIGURES . ..o e ix
Chapter
L. INTRODUCTTION. .. e e 1
1.1 BACKGROUND ... 1
1.2 PROBLEM DESCRIPTION. e 2
1.3 RESEARCH QUESTIONS.. ... 3
1.4 RESEARCH GOALS. 3
2. BACKGROUND AND RELATED WORKS i 5
2.1 REGULAR EXPRESSION AND KNOWLEDGE BASES 5
2.2 TEMPLATE MATCHING. e 6
2.3 MACHINE LEARNING. e 7
3. FORMULATION ..o e 11
3.1 HIDDEN MARKOV MODELS AND CONDITIONAL RANDOM
FIE LD, . oo e e 11
3.2 DEEP LEARNING APPROACH FOR SEQUENCE
MODELING . . e e 12
4. METHODOLOGY .. e 15
4.1 TRANSFORMER COMPONENTS 15
4.2 FEATURES. ... 22
D D A A 25
5.1 SYNTHESIZED DATASET e 25
5.2 DATA PREPROCESSING. 26
5.3 TRAINING SAMPLES e 29
6. EXPERIMEN TS . 32
6.1 SETUPS .. 32
6.2 MODEL SELECTION AND EVALUATION ON CORA. 32
6.3 EFFECT OF INCREASING TRAINING SET........................ .34
6.4 COMPARISON WITH CORA i e 34
6.5 ERROR ANAYLSIS. 34
7. DISCUSSION. L 53
7.1 LIMITATIONS OF THIS WORK e 53

7.2 TRANSPARSCIT FOR MULTILINGUAL REFERENCE
S RIN G . e

vi

Page
8. CONCLUSIONS AND FUTURE WORKSo 54
REFERENCE S . . 55
VA 60

vii

LIST OF TABLES

Table Page
1. Example reference strings from Computer Science and Biology domains. 2
2. Separated texts and their respective labels extracted by a citation parser. 3
3. A sample knowledge base [20].. 6
4. A sample database of citation templates. 6
5. A snapshot of the GIANT dataset structure. 27
6. A citation string split into its respective tokens an assigned label. 28
7. Schema matching between CORA and datasets that trains TransParsCit.......... 29
8. A reference string from CORA dataset after preprocessing. 30
9. Samples of training data for the models from GIANT. 31
10. Overall token level performance metrices of the model which was trained on 514

reference Strings. 34
11. Entity level performance of the model that trained on 514 reference strings........35

12. Overall token level performance metrices of the model which was trained on 1095
reference Strings. 35

13. Entity level performance of the model that trained on 1095 reference strings. 36

14. Overall token level performance metrices of model trained on 10,074 reference
SETIIIES. . o et e 36

15. Entity level performance of the model that trained on 10,074 reference strings. 37

16. Overall token level performance metrices of model trained on 21,900 reference
SE I S, « o et 37

17. Entity level performance of the model that trained on 21,900 reference strings. 38

18. Overall token level performance metrices of model trained on 100,740 reference
SE IS, « .t 38

Viil

Table Page

19. Entity level performance of the model which was trained on 100,740 reference

SETIIL S, .« o et 39
20. Overall token level performance metrices of model trained on 219,000 reference
SE I g S. . ot 39
21. Entity level performance of the model which was trained on 219,000 reference
SETIIL S, .« o ot e 40
22, Overall token level performance metrices of model trained on 342,516 reference
S T IS, . . o 40
23. Entity level performance of the model which was trained on 342,516 reference
SETII S, .« o oot 41
24. Overall token level performance metrices of model trained on 1,027,548 reference
SETIILES. « o o ot 41
25. Entity level performance of the model which was trained on 1,027,548 reference
SETIIL S, .« o o et e 42
26. Performance comparison between Neural ParsCit and our model over CORA. 42
27. Model prediction for a CORA sample showing volume mispredicted as Issue..... .. 46
28. Model prediction for a CORA sample showing CT predicted as other (O)......... 47
29. Another example of showing CT predicted as other (O). 48
30. Model prediction for a CORA sample showing CT mispredicted as VOL.......... 50
31. Model prediction for a CORA sample showing Title predicted as CT............. 51

32. Model prediction for a CORA sample showing CT mispredicted as Page.......... 52

LIST OF FIGURES

Figure

1. Transformer encoder layer consists of the sublayers for self-attention and feed-

forward network [44].. ...

2. Scaled Dot-Product Attention in the Encoder sublayer.

3. Multi-Head Attention consists of several attention layers running in parallel. The
picture depicts only one layer of several parallel layers...........................

4. CBOW and SG configurations in word2vec models.

5. A representation of Bi-LSTM that trains the character embeddings and concate-

nates the outputs with the word embedding obtained from word2vec.

6. An unfolded representation of our final model comprising of Transformer-CRF
using world level followed by a feed-forward layer and CRF showing how it would

work with a reference string (see [8])..

7. Performance of each class over the different dataset sizes shows the upward F1-

score with an increment of the dataset.

1X

AT

.43

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

References are vital to acknowledge a previous scholarly contribution, such as scientific
papers. This helps to understand the already developed scientific hypothesis, discoveries,
and experiments about a research topic and assists in finding the key ideas and areas for
incremental improvements. Correctly parsing and extracting citation strings and identifying
tags such as Author, Title, Date, and others is needed for many downstream tasks that match
paper records accurately. One example is developing a citation graph that benefits scholarly
search engines or calculating the impact factor for a journal. The quality and quantity of
citations are commonly accepted as a metric to evaluate a scholar |1, 2, 3.

A typical sequence-labeling model follows the procedures below. The preprocessing step
includes obtaining reference strings from portable document format (PDF). The biblio-
graphic section is first extracted to obtain the reference strings. The reference strings are
then tokenized. After that, a list of hand-crafted features are extracted for each token, and
a sequence labeling model can be trained to procure the labels for each token.

In research works, different academic disciplines have adopted different styles for refer-
ence strings. For example, APA and CSE are the commonly used style in biology, whereas
MLA style is the primary format for humanities. Besides, different disciplines have differ-
ent terminology sets and inconsistent entities, which increases error for dictionary-based
lookups. For example, as shown in Table 1, a citation string from the Computer Science
domain may contain very little similarity in vocabulary compared to a citation string from
the Biology or Humanities discipline. Moreover, it is worth noting that documents converted
to electronic copies from images using OCR are prone to have errors like missed spelling
or character-breaking, which also poses difficulty to accurate citation parsing. Apart from
OCR errors, human errors may occur while manually formatting reference strings that in-
clude extra spaces, missing punctuations, or style-related errors [4, 5|. These all make the
task of citation parsing very challenging.

Although reference strings follow conventions that facilitate the parsing task, such as
using delimiters to separate the fields, parsing approaches solely based on delimiting occur-

rences may fail since delimiters themselves are used inside the areas. Therefore, to build a

TABLE 1: Example reference strings from Computer Science and Biology domains.

Domain Reference String

Biology Hodgman, C. E., & Jewett, M. C. (2012). Cell-free synthetic
biology: thinking outside the cell. Metabolic engineering,
14(3), 261-269.

Computer Science Ojokoh, Bolanle, Ming Zhang, and Jian Tang. "A trigram

hidden Markov model for metadata extraction from hetero-
geneous references." Information Sciences 181.9 (2011): 1538-
1551.

robust model, it is essential to encode long-range dependencies that include the position of
the current word relative to the previous and future sequence of entities. Thus the parsing
task can be considered as a sequence problem where each token of the reference string (a
sequence) is labeled with one of the possible labels. In natural language processing, models
such as the hidden Markov model (HMM) [6] and conditional random field (CRF) [7] have
been used for such sequential modeling tasks. HMM, and CRF is typically used to model
long-range dependencies under a Markovian assumption, assuming that only a limited local
context is enough to make good decisions. There are methods proposed and implemented
for reference string labeling that use graphical models in both academic and commercial
spaces, such as ParsCit [8], Neural ParsCit[9], CiteSeerX[10], and Mendeley[11].

1.2 PROBLEM DESCRIPTION

A citation parser is expected to extract the metadata fields accurately, given a reference

string as input. For example, here is a reference string -
D. Foo, Abbreviations from Bar to Baz, Phys. Rev. 9, 34(2019)

When the citation parser gets an input, the string goes over some processing, the entire
string is tokenized, and each token is labeled accordingly. In the end, the citation parser
provides an output that shows the different pieces of reference string with designated labels.

The outcome can be in XML, JSON, or CSV formats. For the example reference string

TABLE 2: Separated texts and their respective labels extracted by a citation parser.

Label Text

Author D. Foo

Title Abbreviations from Bar to Baz
Journal Phys. Rev.

Volume 9

I[ssue 34

Date 2019

above, the output would be like Table 2.

1.3 RESEARCH QUESTIONS
The goal of our project is to address these questions —

e How would training a deep learning citation parsing model on a large, synthesized

dataset affect the accuracy of a citation parser?
e How does the training data size affect the performance of a citation parser?

e How is the performance compared with existing deep learning-based citation parsing

tools like Neural ParsCit?

1.4 RESEARCH GOALS

Training TransParsCit requires a large and diverse dataset. To suit the requirement
of being a capable training dataset for our citation parser, it should have the following

properties-
e Incorporate a diverse range of citation styles
e Covers different citation types

e Contains a broad range of disciplines

e Hold some standard formatting error

e Large enough to cover all types of examples

We use the GIANT [12], containing 1 billion labeled synthetic reference strings with
varying citation styles and types and bibliographic references from different disciplines.
Citations can come from a journal, conference paper, blog, website, etc. Citation types
represent what type of article a reference string is from. Citation style denotes how a citation
string is arranged. There are different citation styles from IEEE, ACM, Harvard, MLA, etc.
GIANT contains 1564 different citation styles and 53 distinct types. This dataset helps to
tackle the common problem of the relatively domain-specific and small training dataset.

In this project, we propose a novel approach to develop a citation parsing tool using
Transformer-CRF-based architecture, called TransParsCit, to extract the fields of a citation
string in any given format. It utilizes GIANT to train models using latent features instead
of hand-crafted ones. Our tool employs the transformer structure, and using the parallel
processing attribute of the transformer; it can capture the state of a whole sequence into
consideration while scoring a token without using convolution or a recurrent network. On
top of that, it engages CRF that provides the prediction of a particular token considering
the features and labels of neighboring tokens. In this work, we use the term label and tag
interchangeably.

We prepare eight subsets of training data from the GIANT dataset to observe how
performance changes based on training size on real-world data.

To evaluate the performance of our approach, we experimented with a benchmark dataset
named CORA. The CORA data set [13] is widely used as a benchmark for citation parsing.
The best performing model using TransParsCit achieved over 84 percent Fl-score (micro)

on average in key fields.

CHAPTER 2

BACKGROUND AND RELATED WORKS

CiteSeer [14] was one of the first attempts to develop a citation parser for a digital library
search engine. It was developed in an effort to establish an automatic citation indexing
system. Since then, it has been developed as an established research problem, and many
approaches have been developed. These include regular expressions, template matching,

knowledge bases, and machine learning approaches.
2.1 REGULAR EXPRESSION AND KNOWLEDGE BASES

In early works, regular expressions were used to tackle citation parsing problems, such
as the work by Kunnas [15|. However, Tkaczyk et al. [4], and Zhang et al. [16] found
that regular expression worked well for the small and clean dataset with predefined citation
styles. The regular expression usually does not scale well for real-world data and lacks proper
adaptability for new styles, and is non-trivial to maintain due to high complexity[16].

Researchers took several approaches [17, 18, 19| to combine regular expressions with
knowledge bases to overcome these limitations. In this approach, a system is developed
first with knowledge gathered using available and relevant data sources. This knowledge
may include journal titles and authors’ names. Citation parsing involves identifying a field
extracted from the citation string to be matched against a known knowledge base. Cortez
[20] defined the knowledge base as a set of pairs KB = {(my,Oy), ..., (my,,O,)} in which
each m; is a distinct bibliographic metadata field, and O; is a set of strings {0;1, ..., 0in, }
called occurrences. The table 3 shows that Oi is set of typical values for field m; as shown
in table.

The approach used by Heckmann et al. [17]| is a knowledge-based method that uses
Markov logic networks (MLN) [21]. It is evaluated on a new data set including sparse and
noisy data, and a 24.8% improvement is reported in the F1 score (0.88) over the popular
CRF ML approach. Another knowledge-based system was used by Cortez et al. to design
Flux-CiM [18]. Experiments were conducted across three domains: social science, computer
science, and health science, matching seven fields: author, title, date, journal, volume, issue,
and they found that FLUX-CiM has high precision and recall of over 94%.

TABLE 3: A sample knowledge base [20].

KB (Author, Oauinor), (Title, Oriye)
O Author “Robert Kiyosaki”, “Napoleon Hill”, “J.K. Rowling”
Oritle "Rich Dad Poor Dad”, “Think and Grow Rich”, “Harry Potter and the

Sorcerer’s Stone”

TABLE 4: A sample database of citation templates.

Journal Ref- Reference style example

erence styles

APA style Mounier-Kuhn, P. (2012). Computer science in French universities:
Early entrants and latecomers. Information & Culture: A Journal
of History, 47(4), 414-456. https://doi.org/10.7560,/1C47402

[EEE style G. P. Luth, “Chronology and context of the Hyatt Regency Col-
lapse,” Journal of Performance of Constructed Facilities, vol. 14,
no. 2, pp. 51-61, 2013.

ACM style HIRSH, H., COEN, M.H., MOZER, M.C., HASHA, R. and
FLANAGAN, J.L. 2004. Room service, Al-style. IEEE intelligent
systems, 14 (2), 8-19.

2.2 TEMPLATE MATCHING

Another approach to the problem of citation parsing is template matching. In this
approach, citation strings are matched against a list of predefined templates. Regular ex-
pressions were usually used to represent these rules.

When citation styles are limited, template-based approaches perform well. Researchers

have observed accuracy levels above 90% when experimenting with fewer than 22 citation

styles [22, 5]. However, Chen et al. comment that query processing is more efficient if the
template database matches the test data [5]. A study that evaluated the citation parser
BibPro using BLAST (Basic Local Alignment Search Tool) reported the highest average
field-level accuracy based on a dataset that had only six different citation styles [5].
Scalability is a challenge for template-based approaches that need to handle thousands
of citation styles [9, 8|. ParaTools 23] offers 400 templates to match citation strings, but
adding new templates or maintaining existing ones is non-trivial. In addition to this po-
tential challenge, a template-based approach may produce citation strings containing errors
resulting from human error or OCR. Council et al. state that this approach is unsuitable

for high-volume data processing because of its lack of portability [8].

2.3 MACHINE LEARNING

2.3.1 OVERVIEW

Machine learning-based citation parsing approaches significantly outperform rule-based
approaches . Support Vector Machines (SVMs) [16], Hidden Markov Models (HMMs) |24,
25, 26|, Conditional Random Fields (CRFs) |27, 28, 29] and deep learning [9, 30] are common
ML approaches for this task. HMM was applied on this task before 2010 after which CRF
became more popular. And deep learning has only been explored in the last four years.

An ML approach does not require expert knowledge to maintain the citation parser, as
opposed to template matching or regular expressions. According to Tkaczyk et al. [4], re-
training ML models with task-specific data can improve their performance. When retrained
on task-specific data, the top three performing citation parsers improved their F1 scores
by an average of 10%. Therefore, an ML model should only be retrained on more recent
data to improve its performance on a particular citation style or domain-specific language.
Therefore, a robust ML model does not need to create any new rules or adapt an existing

knowledge base.
2.3.2 SUPPORT VECTOR MACHINES AND HIDDEN MARKOV MODELS

SVM is a supervised ML classifier that can be used in classifying tokens parsed in citation
strings. Okada et al. [31] combined SVM and HMM and trained a model using 5-fold cross-
validation with 4,651 citations. Their method had recall 14% higher than an SVM approach
(0.988 vs. 0.974). A study by Zhang et al. [20] compared structural SVMs with conventional

SVMs.

SVMs based on structural properties use the contextual information contained in neigh-
boring features. On field-level accuracy, structural SVM outperformed SVM (96.95% vs
95.59%). It was trained using 600 references and tested using 1800 reference strings from
PubMed [32]. Zhang found that despite the promising results of Okada and Zhang, SVM
performed worse compared to the CRF model [16].

Hidden Markov models (HMMSs) are another machine-learning approach to citation pars-
ing. An HMM is a probabilistic model in which the system to be modeled is conceived as a
Markov process with hidden states. Hetzner [25] introduces a simple HMM-based model with
the Viterbi algorithm. The model is trained and evaluated on the popular CORA dataset,
demonstrating comparable performance to another benchmark HMM model. However, the
results underperformed the results of the CRF model proposed by Peng and McCallum [33].
In a variation of the HMM model, Yin et al. [34] looked at the bigram’s sequential relation-
ship and position. Using 4-fold cross-validation on 736 labeled citations, they observed a
3.6% improvement in Bigram HMM performance compared with a regular HMM (F1=0.991
vs. F1=0.868). Using a trigram HMM, Ojokoh et al. [35] made further improvements. A
4-fold cross-validation was performed with three different training datasets ranging from 300
to 712, and the recall, precision, and F1 scores were all above 95%. However, they reported
that increasing the training dataset size from 275 citations to 537 citations only resulted in

a 0.07% increase in terms of accuracy.
2.3.3 CONDITIONAL RANDOM FIELDS

An analysis of ten existing citation parsing tools was carried out by Tkaczyk et al. [4]
in 2018. In their report, they found that three of the most successful tools used a CRF
algorithm: GROBID (F1=0.89), CERMINE (F1=0.83), and Parscit (F1=0.75).

The CRF-based tool such as GROBID [36] allows users to parse individual citation
strings and offer a wide range of functionality throughout the document processing process.
It is trained on 7,800 labeled citations, and Lopez reported a field-level accuracy of 95.7%
on the CORA dataset.

Another CRF-based citation parser CERMINE [28], is a part of a larger document
processing tool. It can extract citation strings and metadata directly from a PDF.

The open-source CRF-based tool Parscit 8] can locate, parse and retrieve the context of

citation strings. It is deployed as part of CiteSeerX, a digital library for computer science.

The performance of Parscit on the CORA dataset was 4.4% higher than Peng and McCal-
lum’s [33] earlier work (micro-average F1=0.95 vs. macro-average F1= 0.91). Parscit uses

10-fold cross-validation on the CORA dataset.

2.3.4 DEEP LEARNING

A variety of NLP tasks, such as sequence labeling, have benefited from advances in deep
learning techniques in recent years. A CRF prediction layer [37], word embeddings, and
character-level embeddings are among the state-of-the-art methods for sequence labeling.
Either Recurrent Neural Networks [35] or Convolutional Neural Networks (CNNs) [38] are
used to train them. However, CNN is less popular for sequence modeling tasks than RNN.
CNN understands a word by gathering the local information from nearby words and treats
the terms one after another. Unlike RNN, CNN is independent of the computation of the
previous state.

Rodrigues et al. [30] apply both CNN and RNN and compare the architectures for
reference mining. Their training and evaluation data was from a corpus of literature on
the history of Venice. They used pre-trained word embedding, which was trained using
Word2Vec on the entire publications from which they extracted citations. Forty thousand
reference strings were used to train the model. Their final model outperformed the CRF
baseline by 7.03%, achieving an F1 of 0.896.

Prasad et al. |9] also developed deep-learning systems to parse citations. Using both
word-based and character-based embeddings, they conducted extensive model experimen-
tation and tuning. Their model includes a bidirectional Long Short-Term Memory (LSTM)
architecture with a CRF layer to tag each token. The authors found a significant (p < 0.01)
performance improvement compared to the CRF-only citation parser Parscit [8].

Prasad and Rodrigues’ results are difficult to compare. The models were trained and
evaluated on different datasets. Even though their available training data is relatively small

[30], their results demonstrate the potential of a deep-learning approach.
2.3.5 META-LEARNING

Since different citation parsing tools can perform better or worse depending on the
citation string given and the fields to be extracted, Tkaczyk et al. investigated a meta-
learning approach to citation parsing [39]. ParsRec is a recommender system that suggests
the best citation parser based on a citation string. They investigated two approaches to

meta-learning recommendations. The first learns the best citation parsing tool for a given

10

string of citations, whereas the second learns the best tool for a particular field. As per their
evaluation of 100,001 Chemistry references, the second approach achieved a 2.6% increase
in F1 (0.90 vs. 0.886, p < 0.001) compared to GROBID, the best individual parsing tool.

11

CHAPTER 3

FORMULATION

The parsing of a citation string concludes with converting it into machine-readable forms,
such as BibTeX. A citation string is a sequence of tokens, and citation parsing tools can
apply sequence labeling solutions to the task. This chapter reviews the background of
sequence labeling methods and goes over the fundamental statistical models - HMM and
CREF. We also analyze the deep learning approaches that are associated with them.
Problem definition: Let us consider an input sequence X = (1, %9, , &, -+ ,Ty)
And possible output (label) sequence Y = (y1, Y2, ,¥i, ", Yn)
The task is to predict an optimal output sequence Y = (U1, Y2, 5 Uir 5 Un)
x; represents the input, a token in the input sequence X. And y; represents an output
label of x;. Statistical models can be used during training to obtain a nifty output sequence.

These methods and corresponding models are discussed in more detail below.

3.1 HIDDEN MARKOV MODELS AND CONDITIONAL RANDOM
FIELD

Hidden Markov models can be used to predict sequential data. HMM can be used for
obtaining the output sequence tag by training to maximize the joint log probability of a
pair of consecutive token tag positions as:

~

Y= argmaxlog P(X | Y) (1)

An HMM is used to model a joint probability, when Viterbi decoding is applied to
determine the conditional likelihood and thus find the sequence tags during the inference
phase. This disparity in testing and training objectives and the possibility of label bias
[7] that results from the use of such maximum likelihood models have caused them to be
adopted by CRFs in many practical applications. Label bias can cause a model to completely
ignore the current observation when predicting the next label. And CRF overcomes it by
computing conditional probabilities of global optimal output nodes.

Conditional Random Fields are a class of discriminative models used for predicting se-
quences. They use contextual information from previous labels, thus increasing the model’s
amount of information to make a good prediction. Given a set of observed data, the condi-

tional probability of the output labels:

12

~

Y= argmaxlog P(Y | X) (2)

Here, the conditional probability, p(Y|X) for the sequence is determined by calculating

the product of potential function(y) at each time step as:

N
Hi:l G(yi—la Yi,s X)
N
> veys 1imi Wiy, yis X)
Hidden Markov Models are generative in the sense that they provide results by mod-

PY | X) = (3)

eling the joint probability distribution. Conditional Random Fields, on the other hand, is
discriminative in that they model the distribution of probability conditions. CRFs do not
assume that the labels are independent of one another. An alternative interpretation of the
Hidden Markov Models is that they are a special case of Conditional Random Fields, where
instead of using continuous transition probabilities, they use constant probabilities.

CRF models are better compared with HMMs for tasks that require less supervision and
have a high degree of class imbalance since CRFs use all their modeling power to discriminate
between classes, whereas HMMs divide their modeling power between class discrimination

and generation.
3.2 DEEP LEARNING APPROACH FOR SEQUENCE MODELING

When input features are fed to a feed-forward neural network, they go over a sequence
of operations in the layers ¢ = 1 to L and result in nonlinear transformations of the input

feature. Let’s say if an input feature is z, then the operation in i-th layer is:

W= FWR () + (4)
where,

ﬂi(x):{ x, ifi=1 5

hi=Y(z), otherwise

e it Q=1L
f(z) = Y=o exp(zj) - (6)
tanh(x) = 20(2z) — 1 = %, otherwise

In the hidden layer, nonlinearity is introduced by the tanh function. Softmax enables
the nonlinear operation on the output layer (i = L) and facilitates multiclass classification.
As a result, the output of a simple feed-forward network can be treated as a probability

distribution over all classes (i.e., the normalized class prediction for classes n = 1 to N can

13

be treated as the conditional probability p(y(n)|z). L is the final layer that implements
the multiclass classification using a softmax function. The other layers allow the modeling
process to bypass their input through nonlinear functions (feed-forward layers).

Standard feed-forward models have one notable drawback: they cannot capture temporal
dependencies effectively when generating probability distributions. Thus, the conditional
probabilities generated by the model are independent of the samples seen previously and
the samples seen in the future. Due to this weakness, the standard model is impractical
for tasks such as citation parsing, which observe a sequence of tokens. Hybrid techniques
have been introduced to overcome this problem by running the output of the neural model
through a CRF or an HMM layer in a stacked fashion [9]. A CRF or an HMM layer is then
used to accomplish the actual classification based on its own objective function, using the
output probability of the neural models as an abstract feature.

However, the neural modeling paradigm also offers native solutions to these problems.
The architectures of neural networks, such as recurrent neural networks (RNNs), account
for the predictions of the past and/or future (time steps). The strength of RNNs lies in
their ability to remember output history through connections to previous time steps and to

use such historical evidence to make decisions about the current time step as follows:

h(zy) = tanh (Wyxy + Wyh(ziq) +) (7)

Cross-entropy (CE) is usually used as a loss function for such models:

1 N
CE = T Z Z Gun) 108 (Ye(m)) ®
t n

By classifying each of the tags correctly, the model reduces CE instead of trying to learn
the distribution of tags over the sequence, as is done through HMMs or CRFs.

These models can extend beyond the Markov assumption and predict labels individually
without joint decoding. Virtually RNN can pick up historical evidence to the start of
a sequence. However, vanilla RNN is not effective at capturing long-term dependencies
due to the problem of vanishing gradients [40]. In addition, vanilla RNN captures the
dependence in a single direction. This is not always the case. Therefore, it is desirable to
run RNN in the opposite direction and concatenate a token’s representation generated in
either direction. An RNN can be modified to prevent vanishing gradients and exploding
gradients if it incorporates memory cells (such as a temporary; [41]). One example is the

long short-term memory (LSTM) architecture. A basic memory cell can be trained to retain

14

relevant information from the input [42]. Both vanilla RNN and LSTM process a sequence
of tokens. As a result, they cannot be trained in parallel. To compute the hidden state
of a token, we need to calculate the previous token first. A token’s representation strongly
depends on the representation of the token immediately before it but is less dependent on
tokens far from it.

The transformer model was designed to overcome the limitations of sequence processing
[43] since it allows parallel computation by avoiding recursion and decreasing performance
drop on more extensive sequences where long dependencies are involved. In summary, we

utilize the Transformer Encoder, followed by a CRF layer to parse citation strings.

15

CHAPTER 4

METHODOLOGY

In the following sections, we will describe each component of the deep learning architecture

we adopted.
4.1 TRANSFORMER COMPONENTS

A Transformer contains an encoder-decoder structure similar to many neural network
models. For our purpose, we only used the encoder layer of the transformer. We use the
CRF model as the decoder layer.

The encoder converts a sequence of token representations (z1, -+ ,x,) to a new sequence

of representation, typically in a different feature space z = (21, , 2,).
4.1.1 ENCODER LAYER

As shown in Fig. 1, the encoding layer can be a stack of encoders, each containing a
multi-head self-attention module and a fully connected feed-forward neural network. The
input first goes through the encoder’s self-attention layer. The outputs of the attention
layer are fed to a feed-forward neural network which is applied individually to each position.

Each of the two sublayers has a residual connection with a layer normalization.
4.1.2 SELF ATTENTION

When the embeddings are fed to the encoder as input, three different vectors are created
to calculate the self-attention. For each input vector, there are Query (Q) vector, a Key
(K) vector, and a Value (V) vector. The goal is to get a score for each target word against
other words of the input sequence. This score determines the amount of focus needed on
other parts of a sequence while encoding a particular word at a certain position. This score
is calculated by having a dot product between the Query vector (Q) and Key vector (K) of
a target word.

If the position of a particular word is #1, we get the score by a dot product of ql and
k1; if the position is #2, we get the score by the dot product of q2 and k2. The dimension

of query and key vectors are dj, and the dimension of value vectors is d,. Each score we

16

In

Proceeding

X1 [ITTT] WordEmbedding [TTT] X2

@

Positional Encoding
X1 X2

Self Attention
Z1 l l 72
_ > Add & Normalize (X + Z)
v \J
Feed Forward Feed Forward
Add & Normalize
>

l

Z1

l

Z2

Fig. 1. Transformer encoder layer consists of the sublayers for self-attention and
feed-forward network [44].

Le]
-
<

MatMul

Scale

Mask(opt.)

SoftMax

MatMul -

l

Fig. 2. Scaled Dot-Product Attention in the Encoder sublayer.

17

18

obtained after the dot product was normalized by dividing by v/d; and passed through a
softmax function that calculated a score, which determined how much each word would
contribute to the target word. By definition, the word at the current position will have the
highest softmax score, but this score helps to determine the relevance of the other words in
the sequence with the present word. Next, each value vector was weighted by the softmax
score, which pays more attention to the words that should be focused on and less attention
to less relevant words. The weighted summation vector finally produces the self-attention
layer output for the target word. The resulting vector goes over the feed-forward neural
network.

In practice, the computation of the attention function was imposed simultaneously on a
set of queries, which can be denoted as a matrix () after being grouped together. The keys
and values are also grouped together into matrices K and V.

Here’s the equation to calculate the output. Let’s call it the Z matrix:

T

Attention(Q, K, V') = softmaz(
Vi

W (9)

4.1.3 MULTI-HEAD ATTENTION

In multi-head attention mechanism queries, keys and values get linearly projected for h
times with separate learned projections. Each version of these h projections goes over the
single attention function parallelly and produces h outputs. These outputs get concatenated
and projected to construct the final outcome like Fig. 3.

With the multi-head attention layer, there are multiple sets of Query/Key/Value matri-
ces instead of only one. Each set gets randomly initialized at the beginning and projects
the input embeddings into different feature subspaces. These presentation sets are concate-
nated, resulting in one final value and multiplied with an additional weight matrix, W,

then fed into the feed-forward layer.

MultiHead(Q, K, V) = Concat(heady, heads,, heady,)W* (10)

Where head; = Attention(QW:%, QW QW;") (11)

Here the parameters are W2, WK € Rtmoaerxdk and W) ¢ Rimoderxdv and W0 ¢ Rébmoderxhd
For our purpose, we used h = 16 parallel layers or attention heads while d,,oqe; Was 400

on each encoder layer.

19

v K Q
_ .. Linear Linear Linear
Linc¢' |1 Lineaf | | Lincai '
. - J

\'."%,")Scalcd Dot-Product Attention

Caivw crve 3 tvuuet s ativssievn

y

Concat

v

Linear

v

Multi-Head Attention

Fig. 3. Multi-Head Attention consists of several attention layers running in parallel. The

picture depicts only one layer of several parallel layers.

20

4.1.4 POINT-WISE FEED FORWARD NETWORK

Each encoder contains a self-attention sublayer, a feed-forward network, and a residual
connection.

The output of the multi-head attention sublayer adds up with the positional input em-
beddings, which is called a residual connection. The layer normalization reduces training
time by normalizing the activities of the neurons. The normalized residual output was
projected through a point-wise feed-forward network consisting of a couple of linear layers
with a ReLLU activation in between. The residual output was the input of the point-wise
feed-forward network, which was further normalized in the next step.

The normalized residual output was projected through a point-wise feed-forward net-
work. The point-wise feed-forward network consists of a couple of linear layers with a ReLLU
activation in between. The residual output was the input of the point-wise feed-forward
network, which was further normalized in the next step.

By allowing gradients to flow directly through the networks, residual connections help
the networks train faster. The layer normalization stabilized the network and significantly
reduced the training time. The attention outputs can be converted to a richer representation

using the point-wise feed-forward layer.
4.1.5 POSITIONAL ENCODING

Traditional word embeddings, such as word2vec, lack positional information. Softmax
obscures any positional information that may exist in self-attention.

The transformer model preserves the positional information by injecting a vector into
each embedding. Using positional embedding, the model can predict the location of individ-
ual words with respect to each other based on the periodic function (e.g., the combination
of sines and cosines with different frequencies).

These vectors follow a specific pattern that the model learns, which helps determine the
position of each word or the distance between different words in the sequence. The intuition
here is that adding these values to the embeddings provides meaningful distances between
the embedding vectors once they’re projected into Q/K/V vectors and during dot-product
attention.

As the paper describes, we use sine and cosine functions of different frequencies:

21

PE (pos,2i) = sin(pos /10000 “model) (12)

PE (pos2i11) = cos(pos/10000%/ model (13)

Here, pos stands for a position, and i stands for dimension. That is, positional encoding
is represented as a sinusoid at each dimension. In terms of wavelengths, the geometric

progression is from 27 to 10000 - 27.
4.1.6 CRF LAYER

We use CRF as the top last layer of our architecture. This layer takes the concatenated
hidden states from the underlying networks as input and models the joint probability of all

the labels in a sequence. The probability of the label sequence is calculated as [7]:

P(L|S) = eXP(Z (WCRFh + bclz#_ll)l)
Yo exp(d; (WCRFh + bc1))

Here label sequence L = ly,1ls,15....,1, and L' represents an arbitrary label sequence.
)

(14)

Also Wipp is the model parameter for I; and bCZR;;-,’ " is a bias specific to ;-1 & ;.

For decoding, a first-order Viterbi algorithm is used to find the most probable label
sequence over the input sequence.

In order to get the most probable sequence labels over the input sequence, a first-order
Viterbi algorithm is used. For this decoding purpose, the sentence-level log-likelihood loss

with Ls regularization is used to train the model:

N

A
L= Zlog Py | s) + 5 19]1* (15)

i=1

Here © is the parameter set, A is the Lo regularization parameter and (s;, li)fil is the
set of manually labeled data.

Here O stands foris the parameter set, A is the L, regularization parameter and (s;, li)ij\il
stands for manually labeled data.

CRF maximizes the likelihood of the whole sequence of decisions, so it can better model
cases in which neighboring decisions have to have some kind of interface, allowing them to

function together. This is accomplished by using the output of the transformer as an input
to the CRF.

22

Input QOutput Input QOutput
Wt-c Wi-c
‘.
Wi-1 — Wi-1
P —» Wi Wt H—
W oa W

Wi+l /

/ W+l
Wtsc Wttc

CBOW SG

Fig. 4. CBOW and SG configurations in word2vec models.

4.2 FEATURES

1. Word Embeddings are word representation that allows words with similar meanings to
reside in the proximity of each other in the feature space. Each word is represented by a real-
valued distributed vector with relatively low dimensions, 300 in our case. In contrast, sparse
word representations such as one-hot encoding require thousands to millions of dimensions.
Distributed representations are learned by capturing the patterns in large-scale text corpora.
As a result, words used in similar ways will naturally have similar representations. We use
“pre-trained” word embedding provided by Google called word2vec, trained on google news
[45].

Two approaches were proposed to train word2vec: namely, the Continuous Bag-of-Words
(CBOW) and the Skip-gram (SG) models. CBOW and SG configurations are shown in Fig.
4 [46]. In CBOW, based on an input context, the model predicts the word. In SG, a context
is predicted over a fixed vocabulary V based on an input word.

The pre-trained embeddings that we are using were obtained using Skip-gram [47].

23

2. Character-based Word Embeddings Characters contain unique information about word
arrangement and morphology. In a sequence like a reference string, punctuation marks-
such as commas, hyphens, parenthesis, or numbers can have evident effects on the token
classification. For example, a four-letter number is likely to be a Date, and a numeric field
with a hyphen is likely to be a Page Range. To catch the character-level information, we
use character-based word embedding. Each character of a word is represented as a numeric
vector and further encoded by a Bi-LSTM. The vectors were randomly initialized.

Word embedding can only be used on the word that has been already seen during train-
ing. With the character embedding, every word can be formed even when that belongs
to out-of-vocabulary words (previously unseen). It handles infrequent words better than
word2vec embeddings since the latter may lack training on the uncommon words. These
embeddings are small and reduce model complexity while improving performance (speed).

To create a character-based representation of a word, we use Bi-LSTM. Let’s say
w = ¢1,C...C...C. where w denotes a word and ¢; denotes a character on that word.
The vector representation of each character z., is passed sequentially through the LSTM
cell, which provides the output vector [E%l, , x] after performing a series of vector and
matrix operations. The output vector represents all the characters of the word w sub-
sequently. Comparably the character vectors are also fed to another independent LSTM
network in reverse order, which produces the output vector [Ex xl] The resultant vec-
tors from both networks are concatenated to construct a character-based word embedding
[Exq. ze, P, . %1]. The final character-based embedding for w is then concatenated with
the respective word embedding W that is obtained from the pretrained word2vec dictionary.

The architecture used for generating character embedding is shown in Fig. 5. Character
embeddings are trained in a part of a network among other parts using a common error
function. The figure shows how the representation of the token “Proc”, a short form for

“Proceedings", was generated. The output from the BiLSTM (denoted as C'Ep,,.) is then

concatenated with the respective word embedding W (denoted as Wp,.o.).

Xproc=[CEproc, WEproc]

!

A

E’corP

vl

24

%

CEproc WEproc
L
Eproc E’croP
A
— > E’cor < > E'co) > Ec
- Epr - Epro - Eproc —

Fig. 5. A representation of Bi-LSTM that trains the character embeddings and

concatenates the outputs with the word embedding obtained from word2vec.

25

CHAPTER 5

DATA

We acquire two types of datasets — synthesized data for training and validation and manually
annotated data for evaluation. Due to the enormous size of our synthesized data, we sample
the synthesized data randomly to develop the training datasets. And we use a widely used
citation parsing evaluation dataset, CORA, to evaluate our model. This human-annotated

dataset contains 500 citation strings; 90% are from computer science papers.
5.1 SYNTHESIZED DATASET

The synthesized dataset is generated by parsing citation styles described by the Citation
Style Language (CSL) with the bibliographic records in the digital library metadata and
then combining them into a processed dataset. These metadata are relatively accurate
because, unlike automating the extraction of the metadata, they were initially input by the
authors and so can be used as the ground truth. Each citation style specifies how each
metadata field in a citation string should be arranged within the citation string. As part of
this process, the CSL processor is used, which accepts a bibliographic record (in the format
of a .bib or .ris file) and a citation style (i.e., CSS) as inputs, and outputs a reference string.

An existing synthesized dataset is GIANT, consisting of 1 billion reference strings [12].
The author took advantage of Crossref [48] to create this dataset, which has freely available
scholarly metadata from various academic fields. There were 677,000 unique records ob-
tained from Crossref using their public API. Each record was then converted into a labeled
citation string with 1,564 different citation styles. For every citation record, a total of 1,564
citation strings were generated in GIANT. Citation styles were obtained from the official
CSL repository on GitHub [49]. To generate the desired citation string, the author used an
open-source CSL processor such as citeproc-js [50].

The GIANT dataset contains 219 CSV files. Each file has around 3000 unique citation
strings on 1564 citation styles. Each file has three pieces of metadata, with each labeled

citation. These are:
1. The DOI of the citation

2. The citation type (book, journal article, etc.)

26

3. The citation style (Harvard, MLA, etc.)
Here is a sample citation string:

<author><family >Nakamura< /family >, <given>R.</given>. & <given>T.</
given> <family> Kenzaka< /family>.< /author>

<issued><year>2015< /year>< /issued>. <title >Magnetic resonance imaging of
cardiac amyloidosis< /title> <container-title>QJM</co ntainer-title> <vol-
ume>109< /volum e>. <publisher>Oxford University Press (OUP)</ publish
-er>: <page>63-63</page>. <URL>htt p://dx.doi.org/10.1093/qjmed/hcv155</URL>

Each labeled reference string has up to ten different entities, depending on the citation
style. Author, title, container-title, publisher, volume, issue,issued-year,issued-month, page,
and URL/DOI. Moreover, each name inside the author label is further divided into
family names and given names. The <title> tag labels the article or chapter title of a
reference. <container-title> is used for labeling journals, books, and non-bibliographic

titles.
5.2 DATA PREPROCESSING

In an existing citation parser Neural-Parscit, the tokenizer used spaces as the delimiter.
Although this delimiter was applicable for most fields, certain tokens resulting from this

7

tokenizer may contain more than one field, such as “1(1)”, which combines volume and
issue numbers. In addition, the above tokenizer ignored punctuation marks, which could
be helpful for classifying tokens. Therefore, we developed a new tokenizer to process a
reference string before it is passed to the transformer-based parser. This tokenizer allowed
us to consider both alphanumeric and punctuation. For example, the following citation

string:

<author><family >Gabbay < /family> <given>Dov M.< /given>< /author> <ti-
tle> Index</title>. <container-title>Vistas in Astronomy< /container-title>
<issued><year> 1975 < /year>< /issued >; <volume>18< /volume>: <page>1017-
1034 < /page>

Here the individual tokens would be: C = {Gabbay, Dov, M,., Index,., Vistas, in, As-
tronomy, 1975,;, 18,:, 1017, -, 1034}
Once the string has been tokenized, the preprocessor assigns each token the label based

on their belonging class. Our preprocessor considers everything else as “Other” which are

TABLE 5: A snapshot of the GIANT dataset structure.

Doi Article - Citation Annotated Citation String
Type Style

10.1016 3 0 <author><family>Mehrinfar< /family >,

/j.carrev <given>Ramona< /given> and <fam-

.2009.04 ily>Shah< /family >, <given>Atman

.081 Prabodh</given> < /author> (<is-
sued > <year>2009< /year>< /issued>) <ti-
tle>Bivalirudin versus heparin and eptifi-
batide in patients undergoing rescue per-
cutaneous coronary intervention.< /title>
<container-title>Cardiovascular Revascular-
ization Medicine< /container-title>, <vol-
ume>10< /volume>(<issue>4< /issue>), p.
<page>267</page>. |online] Available from:
<URL>http://dx.doi.org/10.1016/j.carrev.2009
.04.081</URL>

10.1016 3 0 <author><family>Zmojda< /family >,

/j.jlumin <given>J.</given>, <fam-

.2015.09 ily >Kochanowicz< /family >,

.036 <given>M.< /given>, <fam-
ily >Miluski< /family >, <given>P.< /given>,

<family>Dorosz< /family >,

<given>J.</given>, et al.</author> (<is-
sued > <year>2016< /year>< /issued>) <ti-
tle>Investigation of upconversion luminescence in
antimony—germanate double-clad two cores
optical fiber co-doped with Yb3+/Tm3+
and Yb3+4/Ho3+ ions</title> <container-
title>Journal of Luminescence< /container-title>,
<volume>170< /volume>, pp. <page>T795-
800< /page>. lonline] Available from:
<URL>http://dx.doi.org/10.1016/j.jlumin.2015
.09.036< /URL>

27

28

TABLE 6: A citation string split into its respective tokens an assigned label.

Token Label
Gabbay B-AUTHOR
Dov [-AUTHOR
M I-AUTHOR
. B-PUNC
Index B-TITLE
B-PUNC
Vistas B-CT
In I-CT
Astronomy I-CT
1975 B-DATE
: B-PUNC
18 B-VOL
1017 B-PAGE
- B-PUNC
1034 I-PAGE

not part of an XML tag, and consider all type of punctuation (regardless of their position
inside the XML tag or not) as a part of the “Punc” class.

We follow the CoNLL-2003 IOB convention to format the input. Each line contains a
token followed by the corresponding label. Individual citation strings are separated by an
empty line. Each starting word inside an XML tag gets a “B” prefix on its label name.
Other words in the same field were labeled with “I” followed by the field name (Table
6). We removed URL/DOI from the training samples before preprocessing because regular

expressions could easily capture them.
5.2.1 TRAINING AND VALIDATION DATA

Table 6 shows the exact citation string previously shown with tokens and their corre-

sponding labels. We do not consider spaces, so that is removed.

29

TABLE 7: Schema matching between CORA and datasets that trains TransParsCit.

CORA Entity TransParsCit
Author Author
Booktitle / journal CT
Date Date
Pages Page
Publisher Publisher
Volume Vol
Title Title
Punctuation Punc
Location <remove>
Tech <remove>
Institute <remove>
Editor <remove>>
note <remove>

5.2.2 EVALUATION DATA

We used the standard CORA dataset for evaluation. The schemas between GIANT
and CORA do not match perfectly, so we made some changes to preprocess the evaluation
data by removing a location, tech, institute, editor, and note fields from the annotations of
CORA. Besides, we combined booktitle and journals under the same entity called CT.

Here is a sample from CORA dataset:

<author> J. J. Koenderink. < /author> <title> The structure of images. < /ti-
tle> <journal> Biological Cybernetics, < /journal> <volume> 50 < /volume>
<pages> 363-396, < /pages> <date> 1984. </date>

5.3 TRAINING SAMPLES

We prepared eight subsets of GIANT data. We sampled the same number of citation

strings from each file and combined them for each subset. For example, if we want to develop

TABLE 8: A reference string from CORA dataset after preprocessing.

Token Label
J B-Author
B-PUNC
J I-Author
B-PUNC
Koenderink I-Author
The B-TITLE
Structure I-TITLE
Of I-TITLE
images I-TITLE
. B-PUNC
Biological B-CT
Cybernetics I-CT
50 B-VOL
363 B-PAGE
- B-PUNC
396 [-PAGE
, B-PUNC
1984 B-DATE

B-PUNC

30

TABLE 9: Samples of training data for the models from GIANT.

Token Label

514 2 ref strings from 200 files and 6 from 19 files
1095 5 ref strings from 219 CSV files
10,074 46 ref strings from 219 CSV files
21,900 100 ref strings from 219 CSV files
100,740 460 ref strings from 219 CSV files
219,000 1000 ref strings from 219 CSV files
342,516 1564 ref strings from 219 CSV files
1,027,548 4692 ref strings from 219 CSV files

31

a training dataset of 100,740 citation strings, we randomly choose 460 reference strings from

219 files.

32

CHAPTER 6

EXPERIMENTS

Here we describe the experimental setups. We also describe our findings and compare our
results with the Neural ParsCit. We develop our architecture using building blocks based

on the Pytorch framework [51].
6.1 SETUPS

The pre-trained word embedding we used encodes a word to a 300-dimensional vector.
Our architecture uses word embedding as the first layer, followed by the character embedding
layer. The dimension of each character vector is set to 25. The BiLLSTM layer used for
training the character embedding has 50-dimensional hidden layers.

We only use one layer of the transformer encoder layer. The multi-head attention sub-
layer inside the transformer encoder layer contains 16 attention heads. The concatenated
word features have the dimension of 400, which is set to d,,04e. The intermediate layers
inside the transformer encoder use ReLLU for activation. The feed-forward neural network
contains 2048 neurons.

Our Transformer-CRF network is shown in Fig. 6 shows the workflow for a part of the
reference string “string parsing package”.

All models are trained and tested on Tesla V100-SXM2-16GB. It takes a few minutes
to a few hours to train a model based on the dataset sizes. The model contains about 2.5
million parameters. We set the learning rate to be 0.001. The loss function was negative
log-likelihood. We used one layer of transformer encoder on the transformer components,
which got 16 attention heads and 200 hidden layers on a feed-forward neural network. We
train eight different models and examine the effects of large-scale data on performance.

We describe our experiments, starting with a small dataset and then increasing the size

of the dataset to investigate how the performance changed with the size of the training data.
6.2 MODEL SELECTION AND EVALUATION ON CORA

We used the CORA dataset to evaluate our models. We performed 10-fold cross-
validation by splitting this dataset into ten random groups, each containing 10% of the

standard dataset, and iterating through them to see the performance of each group. The

I-TITLE I-TITLE I-TITLE
CRF

bt

Feed Forward Layer

- -

A

L S ——

J“"st:rirjg xparsing xpackagc

Prediction

Fully connected
neural network

Transformer
components

Positional Encoder

Word level
Features

Tokenizer

33

Fig. 6. An unfolded representation of our final model comprising of Transformer-CRF
using world level followed by a feed-forward layer and CRF showing how it would work

with a reference string (see [8]).

34

TABLE 10: Overall token level performance metrices of the model which was trained on

514 reference strings.

Performance Metrices Scores

F1 score 84.7
Recall 83.6
Precision 83.6

table below shows the performance of our best model by averaging evaluation metrics of all
fields. The table below shows the performance of our best model for each metadata field.

Here are the performance reports for our models:
6.3 EFFECT OF INCREASING TRAINING SET

Our observation shows that, in general, the larger the training data, the better the
model’s performance. However, we also notice that model performance does not improve
after a certain point containing 220K training samples. The decreased performance with a
more extensive training set may be due to overfitting.

We notice that Author, Date, Page, Publication, Title, Punc (punctuation) achieves F1-
score over 87%. In contrast, CT (container-title) and Vol (Volume) perform poorly across
all the models. For CT, we get the Fl-score of 40.762.1%, and for Vol, it is 39.465.2%.

6.4 COMPARISON WITH CORA

We combine Journal and Booktitle into CT and take the average score. By directly
comparing the results reported in the Neural-ParsCit paper, we found that Neural ParsCit
outperformed our model in all fields.

There can be several reasons behind our model performance compared with Neural
ParsCit. Neural ParsCit has been trained using tenfold cross-validation, splitting 80% for
train and 10% for validation and test. Also, the performance results that are shown here
were evaluated over the same dataset, CORA. However, we trained our model with GI-
ANT, a synthesized dataset, while evaluating using a different CORA dataset. Therefore,
the results above indicate that TransParsCit underperforms NeuralParsCit on the CORA

dataset. However, because most of CORA samples were extracted from computer science

35

TABLE 11: Entity level performance of the model that trained on 514 reference strings.

Class Precision Recall F1 score
Author 97.2 91.3 94.2
CT 40.1 42.2 40.7
Date 64.7 39.1 48.8
Page 52.4 55.0 03.7
Publisher 34.9 85.2 48.2
Punc 100 99.1 99.6
Title 60.2 73.7 65.9
Vol 34.2 47.9 39.4
Micro avg 83.7 86.0 84.9
Macro avg 53.6 59.3 54.5

Weighted avg 86.6 86.0

85.9

TABLE 12: Overall token level performance metrices of the model which was trained on

1095 reference strings.

Performance Metrices Scores

F1 score 7.4
Recall 87.2

Precision 87.2

36

TABLE 13: Entity level performance of the model that trained on 1095 reference strings.

Class Precision Recall F1 score
Author 96.4 94.4 95.3
CT 50.7 47.5 48.7
Date 78.6 50.1 61.0
Page 61.4 63.9 62.4
Publisher 46.9 92.9 61.2
Punc 100 98.2 99
Title 69.8 75.5 72.4
Vol 44.9 49.6 46.6
Micro avg 87.3 87.5 87.5
Macro avg 61.0 63.6 60.8

Weighted avg 89.4 87.5 88.2

TABLE 14: Overall token level performance metrices of model trained on 10,074 reference

strings.

Performance Metrices Scores
F1 score 87.7
Recall 87

Precision 87

37

TABLE 15: Entity level performance of the model that trained on 10,074 reference strings.

Class Precision Recall F1 score
Author 97.2 95.5 96
CT 50.8 56.2 53
Date 90.5 33.8 48.5
Page 04.3 69.0 60.6
Publisher 44.7 93.6 29
Punc 100 100 100
Title 73.2 74.1 73.5
Vol 36.9 43.4 39.6
Micro avg 87.1 88.3 87.7
Macro avg 60.8 62.7 58.9

Weighted avg 89.7 88.3 88.1

TABLE 16: Overall token level performance metrices of model trained on 21,900 reference

strings.

Performance Metrices Scores
F1 score 92.2
Recall 92.5

Precision 92.5

38

TABLE 17: Entity level performance of the model that trained on 21,900 reference strings.

Class Precision Recall F1 score
Author 98.7 97.7 98
CT 56.2 56.3 56.1
Date 84.5 82 83.1
Page 91.6 58.6 71.1
Publisher 79.6 86 81.7
Punc 100 100 100
Title 86.1 88.8 87.5
Vol 50.1 53.8 51.5
Micro avg 92.5 91.3 92.3
Macro avg 71.8 69.3 69.9

Weighted avg 93.7 91.9 92.6

TABLE 18: Overall token level performance metrices of model trained on 100,740

reference strings.

Performance Metrices Scores
F1 score 93.5
Recall 93.6

Precision 93.6

39

TABLE 19: Entity level performance of the model which was trained on 100,740 reference

strings.

Class Precision Recall F1 score
Author 97.6 98.4 98
CcT 59.2 61.1 60.2
Date 91.8 90.7 91.2
Page 95.1 90.7 91.2
Publisher 88.2 87.5 87.3
Punc 100 100 100
Title 86.7 88.9 87.8
Vol 58.4 52.3 54.9
Micro avg 93.5 93.5 93.4
Macro avg 75.1 72.1 73.6

Weighted avg 94.6 93.5 93.9

TABLE 20: Overall token level performance metrices of model trained on 219,000

reference strings.

Performance Metrices Scores
F1 score 94.2
Recall 94.3
Precision 94.3

40

TABLE 21: Entity level performance of the model which was trained on 219,000 reference

strings.
Class Precision Recall F1 score
Author 98.9 98.8 98.8
CcT 59.6 64.7 62.1
Date 86.9 88.7 87.7
Page 94.3 76.7 84.4
Publisher 89.8 94.3 91.4
Punc 100 100 100
Title 92.0 89.6 90.7
Vol 80.5 93.9 65.2
Micro avg 94.4 93.9 94.2
Macro avg 78.1 74.2 75.6

Weighted avg 95.3 93.9 94.5

TABLE 22: Overall token level performance metrices of model trained on 342,516

reference strings.

Performance Metrices Scores
F1 score 93.6
Recall 93.9
Precision 93.9

41

TABLE 23: Entity level performance of the model which was trained on 342,516 reference

strings.
Class Precision Recall F1 score
Author 99.2 98.6 98.8
CcT 57.7 65.1 61.3
Date 84.3 85.1 84.5
Page 93.6 66.5 77.5
Publisher 92.7 93.5 92.9
Punc 100 100 100
Title 89.6 90.9 90.2
Vol 77.9 52.5 62.5
Micro avg 93.9 93.5 93.6
Macro avg 7.2 72.5 74.1

Weighted avg 94.9 93.5 93.9

TABLE 24: Overall token level performance metrices of model trained on 1,027,548

reference strings.

Performance Metrices Scores
F1 score 93.4
Recall 93.5

Precision 93.5

TABLE 25: Entity level performance of the model which was trained on 1,027,548

reference strings.

Class Precision Recall F1 score
Author 98.7 98.4 98.5
CcT 57.3 63.6 60.1
Date 86.7 85.4 86
Page 95.2 64.2 76.3
Publisher 84.9 95.6 89.6
Punc 100 100 100
Title 91.5 90.8 91.2
Vol 62.6 55.5 58.4
Micro avg 93.5 93.2 93.3
Macro avg 75.3 72.4 73.5
Weighted avg 94.7 93.2 93.7

42

TABLE 26: Performance comparison between Neural ParsCit and our model over CORA.

Model Class Neural ParsCit TransParsCit
Precision Recall F1 Precision Recall F1

Author 99.72 98.48 99.1 98.9 98.8 98.8
Date 99.37 98.5 98.93 86.9 88.7 8T.7
Title 98.15 96.76 97.45 92 89.6 90.7
cT 93.95 93.54 93.73 59.6 64.7 62.1
Publisher 91.64 94.96 93.27 89.8 94.3 914
Page 98.34 97.74 98.04 94.3 76.7 84.4
Volume 94.31 94.41 94.36 80.5 93.9 65.2
Micro Avg - - 90.45 - - 94.2
Macro Avg - - 95.68 - - 75.6

43

“jose)eP 91} JO JUSWIOUL Ue

)M 91098-T] premdn o) SMOT[S SOZIS J9Se)eP JUSIDJIP 9} IOAO SSB[D [OBd JO 90URTLIOJIO), 31

[9AST USO| —

WL

Meve

[OA— 8jL— ound— Jaysignd— obed— aleq 10— Joyiny—

0ce

az1s ejep Buurel|
MO0l Mee MOl

Al 00S

\ -

o4
0Z
o€
oF
0§
09
0L
08
06
00k

(9%) 8100s L4

44

papers, it was unclear whether the model worked equally well for citations in other domains.
The GIANT dataset contains citation strings from multiple disciplines, so the model may be
more robust when tested on citation strings in other domains. Further investigation should
also be performed to reveal performance dependency on tokenizers and hyperparameters.
The transformer architecture has superior performance in machine translation and natural
language inference tasks. However, many recent NLP tasks found that it underperforms the
BiLSTM-CRF in named entity recognition (NER) tasks. The citation parsing task has the
same paradigm as the NER task. Therefore, if TransParsCit still underperforms Neural-
ParsCit, we experiment with alternative tokenizers and hyperparameters. Our results may

indicate that the transformer model is not suitable for the citation parsing task.
6.5 ERROR ANAYLSIS

Although TransParsCit achieved relatively good performance on entities such as Author,
Publisher, Date, Title, and Page, CT and Vol are performing poorly. We investigate the
errors by inspecting the automatically parsed citation strings by TransParsCit. Our inspec-
tion indicated that many errors are not because of the wrong predictions by TransParsCit,
but of how the ground truth data was annotated. We categorize the errors into two types:
true error and false error. The true error happens when a model truly makes the wrong
prediction. The false error happens when the ground truth labels have incorrect labels or
insignificant character offsets (e.g., a space).

The reference string below in our training data shows that volume is annotated as a
numerical followed by the issue number enclosed in a pair of parentheses. The page numbers
are annotated in a similar way, without including “pp.” that may appear before the values.

Below we show that corresponding fields were annotated in the CORA dataset.

<author><family >Lomangino< /family >, <given>Kevin</given>< /author>
(<issued > <year>2008< /year>< /issued>) <title>Does Caffeine Cause Mis-
carriages? Depends on the Study.</title> in <container-title>Clinical Nutri-
tion INSIGHT < /container-title>, <volume>34< /volume> (<issue>4< /issue>),
pp. <page>6-7< /page>. |online| Available from: <URL>http://dx.doi.org/10.1097/01.nmd.000031

6.5.1 FALSE ERROR - VOL MISPREDICTED AS ISSUE

There are cases where volume has two sets of digits like <volume> 2(1) </volume>.

Both sets of digits are marked as the volume in the standard gold data. However, as shown

45

in Table 27 our model predicts 2 as volume and 1 as an issue, which is correct because, in
our training data, the issue number typically stays inside a bracket followed by a volume.

We categorize this as a false error, as shown below.
CORA annotation for Table 27:

<author> Tim Berners-Lee, Robert Cailliau, Jean-Francois Groff, and Bernd
Pollermann. < /author> <title> WorldWideWeb: the information universe.
< /title> <booktitle> Electronic Networking: Research, Applications and Pol-
icy, < /booktitle> <volume> 2(1) < /volume> <pages> 5258, < /pages> <date>
Spring 1992 < /date>

On Table 27, True Tag refers to the labels from CORA sample and True Tag refers to
the labels predicted by TransParsCit.

6.5.2 FALSE ERROR - CT PREDICTED AS O

In our training sample, the letter “In” is typically located before the CT tag and labeled
as “O” (Other). However, in the CORA dataset, the journal tag includes the token “In”. We
categorize this as a false error. The example is presented on Table 28.

CORA Sample for Table 28:

<author> Ancona, D.; and Zucca, E. </author> <title> An algebraic approach
to mixins and modularity. < /title> <booktitle> In Proc. Conference on Alge-
braic and Logic Programming < /booktitle> <location> (Berlin, < /location>
<date> 1996), </date>

This is a frequent error in our evaluation. Here is another example on Table 29:

CORA sample for 29:

<author> Y. Sagiv and M. Yannakakis. < /author> <title> Equivalence among
relational expressions with the union and difference operators. < /title> <jour-
nal> In J. ACM < /journal> <volume> 27(4) </volume> <pages> pp. 633-
655, < /pages> <date> 1981. < /date>

6.5.3 TRUE ERROR - CT PREDICTED AS VOL

The GIANT dataset annotates both journal and booktitle as CT. Sometimes, our model
mistakenly predicts numbers at the end of CT as VOL, as shown in Table 30. We notice

Word Predicted Tag True Tag
Jean [FAUTHOR [-AUTHOR
- B-PUNC B-PUNC
Francois [FAUTHOR I-AUTHOR
Groff [FAUTHOR [-AUTHOR
, B-PUNC B-PUNC
and IFAUTHOR [-AUTHOR
Bernd [FAUTHOR I-AUTHOR
Pollermann [FAUTHOR [-AUTHOR
. B-PUNC B-PUNC
WorldWideWeb B-TITLE B-TITLE
B-PUNC B-PUNC
the I-TITLE [I-TITLE
information I-TITLE I-TITLE
universe I-TITLE I-TITLE
B-PUNC B-PUNC
Electronic B-CT B-CT
Networking I-CT I-CT
B-PUNC B-PUNC
Research I-.CT I-CT
, B-PUNC B-PUNC
Applications I-.CT I-CT
and I.CT I-CT
Policy I-CT I-CT
, B-PUNC B-PUNC
2 B-VOL B-VOL
(B-PUNC B-PUNC
1 B-ISSUE [-VOL
) B-PUNC B-PUNC
52 B-PAGE B-PAGE
- B-PUNC B-PUNC
58 O [I-PAGE
Spring B-CT B-DATE
1992 B-DATE I-DATE

46

TABLE 27: Model prediction for a CORA sample showing volume mispredicted as Issue.

TABLE 28: Model prediction for a CORA sample showing CT predicted as other (O).

Word Predicted Tag True Tag
Ancona B-AUTHOR B-AUTHOR
, B-PUNC B-PUNC
D [FAUTHOR I-AUTHOR
B-PUNC B-PUNC
, B-PUNC B-PUNC
and [FAUTHOR I-AUTHOR
Zucca [FAUTHOR I-AUTHOR
, B-PUNC B-PUNC
E [FAUTHOR I-AUTHOR
. B-PUNC B-PUNC
An B-TITLE B-TITLE
algebraic I-TITLE I-TITLE
approach I-TITLE I-TITLE
to [-TITLE I-TITLE
mixins [-TITLE I-TITLE
and [-TITLE [-TITLE
modularity I-TITLE I-TITLE
B-PUNC B-PUNC
In O B-CT
Proc B-CT [-CT
B-PUNC B-PUNC
Conference I-CT I.CT
on I-CT I-CT
Algebraic I-CT I-CT
and I.CT I.CT
Logic I.CT I.CT
Programming I-CT [-CT
1996 B-DATE B-DATE
) B-PUNC B-PUNC
B-PUNC B-PUNC

Y

47

TABLE 29: Another example of showing CT predicted as other (O).

Word Predicted Tag True Tag
Y B-AUTHOR B-AUTHOR
B-PUNC B-PUNC
Sagiv [FAUTHOR I-AUTHOR
and [FAUTHOR I-AUTHOR
M [FAUTHOR I-AUTHOR
B-PUNC B-PUNC
Yannakakis [FAUTHOR IFAUTHOR
B-PUNC B-PUNC
Equivalence B-TITLE B-TITLE
among I-TITLE I-TITLE
relational [I-TITLE I-TITLE
expressions I-TITLE I-TITLE
with I-TITLE I-TITLE
the [-TITLE I-TITLE
union [-TITLE I-TITLE
and I-TITLE I-TITLE
difference I-TITLE I-TITLE
operators I-TITLE I-TITLE
B-PUNC B-PUNC
In O B-CT
J B-CT I-CT
. B-PUNC B-PUNC
ACM I-CT I-.CT
27 B-VOL B-VOL
(B-PUNC B-PUNC
4 B-ISSUE [-VOL
) B-PUNC B-PUNC
633 B-PAGE B-PAGE
- B-PUNC B-PUNC
655 [-PAGE [-PAGE
1981 B-DATE B-DATE
B-PUNC B-PUNC

48

49

that it happens because the training reference strings volumes typically come after container-
titles. We categorize this as a true error.
On following CORA sample (see Table 30) 95 comes at the end of the journal, which

presents the year. Although the dates in our training set are a 4-digit numeric values

<author> K. H. Wolf, K. Froitzheim and P. Schulthess, < /author> <date>
(1995) </date> <title> Multimedia Application Sharing in a Heterogeneous
Environment, < /title> <journal> ACM Multimedia 95, </journal> <pages>
Pages 57-64. < /pages>

6.5.4 TRUE ERROR - TITLE PREDICTED AS CT

Table 31 is an example in which the title is mistakenly predicted as CT, which is a true

error.
CORA annotation for Table 31:

<author> R. Lipsett, C. Schaefer, C. Ussery, < /author> <title> VHDL: Hard-
ware Description and Design, < /title> <publisher> Kluwer Academic Publish-
ers, </publisher> <date> 1989. </date>

6.5.5 TRUE ERROR - CT MISPREDICTED AS PAGE

In the example in Table 32, “CT” is predicted as “PAGE” by TransParsCit. However,
the booktitlein the CORA sample has a digit at the end. This is a true error.
CORA sample for Table 32:

<author> Thrun, T., Schwartz, A. < /author> <date> (1995) < /date> <title>
Finding Structure in Reinforcement Learning, < /title> <booktitle> in Advances
in Neural Information Processing Systems, 7. < /booktitle> <location> San

Mateo: < /location> <publisher> Morgan Kaufmann < /publisher>

TABLE 30: Model prediction for a CORA sample showing CT mispredicted as VOL.

Word Predicted Tag True Tag
K B-AUTHOR B-AUTHOR
: B-PUNC B-PUNC
H LI AUTHOR [FAUTHOR
: B-PUNC B-PUNC
Wolf L AUTHOR I-AUTHOR
, B-PUNC B-PUNC
K LI AUTHOR [FAUTHOR
B-PUNC B-PUNC
Froitzheim L AUTHOR [-AUTHOR
and [FAUTHOR [FAUTHOR
P [FAUTHOR [FAUTHOR
: B-PUNC B-PUNC
Schulthess L AUTHOR I-AUTHOR
, B-PUNC B-PUNC
(B-PUNC B-PUNC
1995 B-DATE B-DATE
) B-PUNC B-PUNC
Multimedia B-TITLE B-TITLE
Application [-TITLE I-TITLE
Sharing [-TITLE [-TITLE
in [-TITLE [-TITLE
a [-TITLE [-TITLE
Heterogeneous I-TITLE I-TITLE
Environment I-TITLE [-TITLE
, B-PUNC B-PUNC
ACM B-CT B-CT
Multimedia I-CT I-CT
95 B-VOL I-CT
, B-PUNC B-PUNC
57 B-PAGE B-PAGE
- B-PUNC B-PUNC
64 [-PAGE [-PAGE

20

TABLE 31: Model prediction for a CORA sample showing Title predicted as CT.

ol

Word Predicted Tag True Tag
R B-AUTHOR B-AUTHOR
) B-PUNC B-PUNC
Lipsett [FAUTHOR [-AUTHOR
, B-PUNC B-PUNC
C [-AUTHOR [-AUTHOR
B-PUNC B-PUNC
Schaefer [FAUTHOR [-AUTHOR
, B-PUNC B-PUNC
C [-AUTHOR [-AUTHOR
B-PUNC B-PUNC
Ussery ILAUTHOR IFAUTHOR
, B-PUNC B-PUNC
VHDL B-CT B-TITLE
B-PUNC B-PUNC
Hardware I-CT I-TITLE
Hardware I-CT [-TITLE
Description I-CT [-TITLE
and I-CT [-TITLE
Design [-CT [-TITLE
, B-PUNC B-PUNC
Kluwer B-PUBLISHER B-PUBLISHER

Academic [-PUBLISHER [-PUBLISHER
Publishers I-PUBLISHER I-PUBLISHER

) B-PUNC B-PUNC
1989 B-DATE B-DATE
B-PUNC B-PUNC

TABLE 32: Model prediction for a CORA sample showing CT mispredicted as Page.

Word Predicted Tag True Tag
Thrun B-AUTHOR B-AUTHOR
, B-PUNC B-PUNC
T [-AUTHOR [FAUTHOR
B-PUNC B-PUNC
, B-PUNC B-PUNC
Schwartz [-AUTHOR [FAUTHOR
, B-PUNC B-PUNC
A [-AUTHOR [FAUTHOR
. B-PUNC B-PUNC
(B-PUNC B-PUNC
1995 B-DATE B-DATE
) B-PUNC B-PUNC
" B-PUNC B-PUNC
Finding B-TITLE B-TITLE
Structure [I-TITLE I-TITLE
in [I-TITLE I-TITLE
Reinforcement I-TITLE I-TITLE
Learning I-TITLE I-TITLE
, B-PUNC B-PUNC
" B-PUNC B-PUNC
in O B-CT
Advances B-CT I.CT
in I-CT I-CT
Neural I-CT I-CT
Information I-CT I-CT
Processing I-CT I.CT
Systems I-CT I-CT
) B-PUNC B-PUNC
7 B-PAGE I.CT
B-PUNC B-PUNC
Morgan B-PUBLISHER B-PUBLISHER
Kaufmann [-PUBLISHER [-PUBLISHER

92

93

CHAPTER 7

DISCUSSION

Here we discuss some issues that are related to our work.
7.1 LIMITATIONS OF THIS WORK

TransParsCit can not work with converted texts from OCR images. It can not deal with
misspelled or character-breaking reference strings.

We only evaluated our model using the CORA dataset, which is dominated by refer-
ence strings from the Computer Science domain. However, in order to get the full picture
of the generic performance, we need to evaluate TransParsCit with FLUX-CiM, ICONIP,
GROBID, etc.

TransParsCit was trained only on ten different classes. It can not determine some classes

like Editor, Location, Institute which were present in CORA dataset.

7.2 TRANSPARSCIT FOR MULTILINGUAL REFERENCE
STRINGS

We have not tested, but we can assume that the current model can not work with a
different language out of the box since it was trained on word-level features in English.
For parsing a reference string, not in English, we may need to use translation first to get
the strings into English. This may require integrating a third-party software or calling an
API during the reference parsing stage. However, if embeddings for other languages and

reference strings are available, TransParsCit can also be useful for multilingual tasks.

54

CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

Our approach to parsing reference strings uses deep learning. The most significant benefit of
deep learning is that it can induce features on its own, which is fitting for parsing reference
strings. For TransParsCit, we used core components from Transformer Encoder, which helps
to understand better the words in the reference strings with CRF for prediction. We also
developed a custom tokenizer that retains the word orders and punctuations to comprehend
a reference string better while training.

We trained our models on the GIANT dataset and evaluated our models over CORA,
and achieved up to 94.2% F1 score on our best model. We also performed a detailed error
analysis and found that the actual performance by taking account of false errors could be
better than reported. We believe the performance can be further improved following some
steps -

In-domain WE training: Currently, we only use pre-trained embeddings provided by
Google. Authors on Neural ParsCit trained in-domain word embeddings using the word2vec
toolkit on 4.3M reference strings from the Association of Computing Machinery (ACM) and
observed performance gain over the augmented word embeddings.

Parallel Training: We use a single GPU to train our models. If the dataset is too large
(IM), it takes a couple of hours to more than a day for the training. Utilizing multiple
GPUs, our model may get the advantage of the whole GIANT dataset.

Features: We train our models by lowering the words and only considering the embed-
dings as features. Considering casing information like what Neural ParsCit did may provide
better performance.

Transformer components: We use only one layer of transformer encoder in our architec-
ture. Performance can be improved by stacking multiple transformer layers.

GitHub repository for the project: https://github.com/lamps-lab/Citation-Parser.

https://github.com/lamps-lab/Citation-Parser

95

REFERENCES

[1] E. Garfield and R. K. Merton, Citation indexing: Its theory and application in science,
technology, and humanities, vol. 8. Wiley New York, 1979.

[2] F. Radicchi, S. Fortunato, B. Markines, and A. Vespignani, “Diffusion of scientific
credits and the ranking of scientists,” Physical Review FE, vol. 80, no. 5, p. 056103,
2009.

[3] F. Radicchi, S. Fortunato, and C. Castellano, “Universality of citation distributions:
Toward an objective measure of scientific impact,” Proceedings of the National Academy
of Sciences, vol. 105, no. 45, pp. 17268-17272, 2008.

[4] D. Tkaczyk, A. Collins, P. Sheridan, and J. Beel, “Machine learning vs. rules and out-of-
the-box vs. retrained: An evaluation of open-source bibliographic reference and citation

parsers,” in Proceedings of the 18th ACM/IEEE on joint conference on digital libraries,
pp. 99-108, 2018.

[5] C.-C. Chen, K.-H. Yang, C.-L. Chen, and J.-M. Ho, “Bibpro: A citation parser based on
sequence alignment,” IEFEE Transactions on Knowledge and Data Engineering, vol. 24,
no. 2, pp. 236-250, 2010.

[6] L. Rabiner and B. Juang, “An introduction to hidden markov models,” IEEE ASSP
magazine, vol. 3, no. 1, pp. 4-16, 1986.

[7] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilistic

models for segmenting and labeling sequence data,” 2001.

[8] I. G. Councill, C. L. Giles, and M.-Y. Kan, “Parscit: an open-source crf reference string
parsing package.,” in LREC, vol. 8, pp. 661-667, 2008.

[9] A. Prasad, M. Kaur, and M.-Y. Kan, “Neural parscit: a deep learning-based reference
string parser,” International journal on digital libraries, vol. 19, no. 4, pp. 323-337,
2018.

[10] “Citeseerx.” https://citeseerx.ist.psu.edu/. (Accessed on 04/07/2022).

[11] A. Medaille, “Mendeley: www. mendeley. com,” Public Services Quarterly, vol. 6, no. 4,
pp. 360-362, 2010.

https://citeseerx.ist.psu.edu/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

o6

M. Grennan, M. Schibel, A. Collins, and J. Beel, “Giant: The 1-billion annotated
synthetic bibliographic-reference-string dataset for deep citation parsing.,” in AICS,
pp. 260271, 2019.

A. McCallum. https://people.cs.umass.edu/ " mccallum/data.html. (Accessed on
04/07/2022).

C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: An automatic citation indexing
system,” in Proceedings of the third ACM conference on Digital libraries, pp. 89-98,
1998.

E. Kunnas, “Pdf structure and syntactic analysis for meta-data extraction and tagging:
https://code.google.com /p/pdfssadmet /-eliask /pdfssadmet,” in Proceedings of the third
ACM conference on Digital libraries, pp. 89-98, 2018.

X. Zhang, J. Zou, D. X. Le, and G. R. Thoma, “A structural svm approach for reference
parsing,” in 2010 Ninth International Conference on Machine Learning and Applica-
tions, pp. 479-484, IEEE, 2010.

D. Heckmann, A. Frank, M. Arnold, P. Gietz, and C. Roth, “Citation segmentation
from sparse & noisy data: A joint inference approach with markov logic networks,”
Digital Scholarship in the Humanities, vol. 31, no. 2, pp. 333-356, 2016.

E. Cortez, A. S. da Silva, M. A. Gongcalves, F. Mesquita, and E. S. de Moura, “A
flexible approach for extracting metadata from bibliographic citations,” Journal of the
American Society for Information Science and Technology, vol. 60, no. 6, pp. 1144-1158,
2009.

A. Constantin, S. Pettifer, and A. Voronkov, “Pdfx: fully-automated pdf-to-xml conver-
sion of scientific literature,” in Proceedings of the 2013 ACM symposium on Document

engineering, pp. 177-180, 2013.

E. Cortez, A. S. da Silva, M. A. Gongalves, F. Mesquita, and E. S. de Moura, “Flux-
cim: flexible unsupervised extraction of citation metadata,” in Proceedings of the 7th
ACM/IEEE-CS joint conference on Digital libraries, pp. 215-224, 2007.

M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62,
no. 1, pp. 107-136, 2006.

https://people.cs.umass.edu/~mccallum/data.html

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

130]

57

M.-Y. Day, R. T.-H. Tsai, C.-L. Sung, C.-C. Hsieh, C.-W. Lee, S.-H. Wu, K.-P. Wu, C.-
S. Ong, and W.-L. Hsu, “Reference metadata extraction using a hierarchical knowledge

representation framework,” Decision Support Systems, vol. 43, no. 1, pp. 152-167, 2007.

M. Jewell, “Paratools reference parsing toolkit - version 1.0 released.” http:
//www.dlib.org/dlib/february03/02inbrief .html#JEWELL, 2003. (Accessed on
04/08/2022).

K. Seymore, A. McCallum, R. Rosenfeld, et al., “Learning hidden markov model struc-
ture for information extraction,” in AAAI-99 workshop on machine learning for infor-

mation extraction, pp. 37-42, 1999.

E. Hetzner, “A simple method for citation metadata extraction using hidden markov
models,” in Proceedings of the 8th ACM/IEEE-CS joint conference on Digital libraries,
pp- 280284, 2008.

V. Borkar, K. Deshmukh, and S. Sarawagi, “Automatic segmentation of text into struc-
tured records,” in Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, pp. 175-186, 2001.

Q. Zhang, Y.-G. Cao, and H. Yu, “Parsing citations in biomedical articles using condi-
tional random fields,” Computers in biology and medicine, vol. 41, no. 4, pp. 190-194,
2011.

D. Tkaczyk, P. Szostek, P. J. Dendek, M. Fedoryszak, and L. Bolikowski, “Cermine—
automatic extraction of metadata and references from scientific literature,” in 2014 11th
IAPR International Workshop on Document Analysis Systems, pp. 217-221, IEEE,
2014.

M. Romanello, F. Boschetti, and G. Crane, “Citations in the digital library of clas-
sics: extracting canonical references by using conditional random fields,” in Proceedings
of the 2009 Workshop on Text and Citation Analysis for Scholarly Digital Libraries
(NLPIR4DL), pp. 80-87, 2009.

D. Rodrigues Alves, G. Colavizza, and F. Kaplan, “Deep reference mining from scholarly
literature in the arts and humanities,” Frontiers in Research Metrics and Analytics,
p. 21, 2018.

http://www.dlib.org/dlib/february03/02inbrief.html#JEWELL
http://www.dlib.org/dlib/february03/02inbrief.html#JEWELL

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

o8

T. Okada, A. Takasu, and J. Adachi, “Bibliographic component extraction using support
vector machines and hidden markov models,” in International Conference on Theory

and Practice of Digital Libraries, pp. 501-512, Springer, 2004.

“Medline/pubmed data documentation.” https://www.nlm.nih.gov/databases/
download/pubmed_medline_documentation.html. (Accessed on 04/07/2022).

F. Peng and A. McCallum, “Information extraction from research papers using condi-
tional random fields,” Information processing & management, vol. 42, no. 4, pp. 963~
979, 2006.

P. Yin, M. Zhang, Z. Deng, and D. Yang, “Metadata extraction from bibliographies
using bigram hmm,” in International Conference on Asian Digital Libraries, pp. 310—
319, Springer, 2004.

B. Ojokoh, M. Zhang, and J. Tang, “A trigram hidden markov model for metadata ex-
traction from heterogeneous references,” Information Sciences, vol. 181, no. 9, pp. 1538—
1551, 2011.

P. Lopez, “Grobid: Combining automatic bibliographic data recognition and term ex-
traction for scholarship publications,” in International conference on theory and practice
of digital libraries, pp. 473-474, Springer, 2009.

Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,”
arXiv preprint arXiw:1508.01991, 2015.

X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-crf,”
arXiv preprint arXiw:1603.01354, 2016.

D. Tkaczyk, P. Sheridan, and J. Beel, “Parsrec: Meta-learning recommendations for

bibliographic reference parsing,” arXiv preprint arXiv:1808.09056, 2018.

Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEFE transactions on neural networks, vol. 5, no. 2, pp. 157-166,
1994.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 17351780, 1997.

https://www.nlm.nih.gov/databases/download/pubmed_medline_documentation.html
https://www.nlm.nih.gov/databases/download/pubmed_medline_documentation.html

99

[42] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction
with Istm,” Neural computation, vol. 12, no. 10, pp. 2451-2471, 2000.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[44] J. Alammar, “The illustrated transformer.” https://jalammar.github.io/
illustrated-transformer/, 06 2018. (Accessed on 04/17/2022).

[45] “word2vec.” https://code.google.com/archive/p/word2vec/. (Accessed on
04/07/2022).

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-
tations in vector space,” arXww preprint arXiv:1301.3781, 2013.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” Advances in neural information

processing systems, vol. 26, 2013.
[48] “Crossref.” https://www.crossref.org/about/. (Accessed on 04/07/2022).

[49] “Official repository for citation style language (csl) citation styles.” https://github.
com/citation-style-language/styles. (Accessed on 04/10/2022).

[50] F. Bennett, “A javascript implementation of the citation style language (csl).” https:
//citeproc-js.readthedocs.io/en/latest/, 2016. (Accessed on 04/07/2022).

[51] “Pytorch.” https://pytorch.org/. (Accessed on 04/07/2022).

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://code.google.com/archive/p/word2vec/
https://www.crossref.org/about/
https://github.com/citation-style-language/styles
https://github.com/citation-style-language/styles
https://citeproc-js.readthedocs.io/en/latest/
https://citeproc-js.readthedocs.io/en/latest/
https://pytorch.org/

60

VITA

MD Sami Uddin

Department of Computer Science
Old Dominion University
Norfolk, VA 23529

e-mail: rayan_sami@outlook.com

Education
Bachelor of Science in Computer Science (16 February, 2017)
Military Institute of Science and Technology, Dhaka, Bangladesh

Employment
2021 - 2022 — Graduate Research Assistant
Old Dominion University Web Science and Digital Libraries Research Group

2020 - 2021 — Graduate Teaching Assistant

Old Dominion University Computer Science Department

2017 - 2019 — Systems Developer
Bluebne, Dhaka, Bangladesh

Selected Publications

S. Uddin, B. Banerjee, J. Wu, W. A. Ingram, E. A. Fox, “Building A large collection of
multi-domain electronic theses and dissertations”, 2021 IEEE International Conference on
Big Data (Big Data), Orlando, FL, USA, 2021.

H.-N. Lee, S. Uddin, V. Ashok, “TableView: Enabling Efficient Access to Web Data
Records for Screen-Magnifier Users”, in The 22nd International ACM SIGACCESS Confer-
ence on Computers and Accessibility, 2020, pp. 1-12.

An updated list of publications is available at https://scholar.google.com/citations?
user=9GJoF4AAAAAJ&h]l=en

Typeset using TEX.

rayan_sami@outlook.com
https://scholar.google.com/citations?user=9GJoF4AAAAAJ&hl=en
https://scholar.google.com/citations?user=9GJoF4AAAAAJ&hl=en

	TransParsCit: A Transformer-Based Citation Parser Trained on Large-Scale Synthesized Data
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Background
	Problem Description
	Research Questions
	Research Goals

	Background and related works
	Regular Expression and Knowledge Bases
	Template matching
	Machine Learning

	Formulation
	Hidden Markov Models and Conditional Random Field
	Deep learning approach for Sequence modeling

	Methodology
	Transformer Components
	Features

	Data
	Synthesized Dataset
	Data Preprocessing
	Training samples

	experiments
	Setups
	Model Selection and Evaluation on Cora
	Effect of increasing training set
	Comparison with CORA
	Error Anaylsis

	Discussion
	limitations of this work
	transparscit for multilingual reference strings

	Conclusions and future works
	REFERENCES
	VITA

