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ABSTRACT

MACHINE LEARNING CLASSIFICATION OF DIGITALLY
MODULATED SIGNALS

James A. Latshaw
Old Dominion University, 2022

Director: Dr. Dimitrie C. Popescu

Automatic classification of digitally modulated signals is a challenging problem that has

traditionally been approached using signal processing tools such as log-likelihood algorithms

for signal classification or cyclostationary signal analysis. These approaches are computa-

tionally intensive and cumbersome in general, and in recent years alternative approaches

that use machine learning have been presented in the literature for automatic classification

of digitally modulated signals. This thesis studies deep learning approaches for classifying

digitally modulated signals that use deep artificial neural networks in conjunction with the

canonical representation of digitally modulated signals in terms of in-phase and quadrature

components. Specifically, capsule networks are trained to recognize common types of PSK

and QAM digital modulation schemes, and their classification performance is tested on two

distinct datasets that are publicly available. Results show that capsule networks outperform

convolutional neural networks and residual networks, which have been used previously to

classify signals in the same datasets, and indicate that they are a meaningful alternative

for machine learning approaches to digitally modulated signal classification. The thesis in-

cludes also a discussion of practical implementations of the proposed capsule networks in an

FPGA-powered embedded system.
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CHAPTER 1

INTRODUCTION

Information transmission bestows an intrinsic value on the ability to accurately determine

a given transmitted message based on what has been received. In modern times, data is in a

digital form; thus, modern communication systems focus on digital information transmission.

Data is chosen by the transmitting user and is entirely unknown to the receiving user. The

received data may be corrupted by noise or carry with it unwanted distortions all of which

can adversely impact the receiver’s ability to accurately determine what was transmitted

based on the noisy received message. This ability to take an unknown and determine what

was intended in spite of the presence of noise is of utmost importance; without it, there

would be minimal confidence in that communication channel.

Similarly, there is great value in being able to correctly determine by which digital modu-

lation scheme a given message is being transmitted. A digital modulation scheme takes this

incoming digital information and encodes it as symbols which represent one or more binary

bits. This stream of incoming symbols is then mapped to physical analog pulses which are

transmitted over the channel of choice. The receiver is expected to detect the noisy and

possibly distorted pulses and map each one back to a symbol which represents the digital

information. There are a variety of digital modulation schemes which a transmitter may

employ. If the digital modulation scheme is unknown then the receiver must determine the

modulation scheme based on the noisy and distorted received pulses. Due to the variety

of digital modulation schemes, and the possibility of noise, there is a need to be able to

accurately determine the modulation scheme based on the received analog pulses.

There are many instances where a given digital modulation scheme may be unknown such

as in electronic warfare applications, military or espionage applications where the receiver

wishes to remain anonymous, or in bandwidth interference recognition, etc.

This ability to determine the unknown modulation type based solely on the received

message poses an interesting problem. The message data being transmitted is unknown, and

the modulation scheme being used is also unknown. If a receiver monitors a channel for a

period of time, they may be able to accurately determine the parameters of the modulation

scheme by means of signal processing techniques such as Cyclostationary Signal Processing

(CSP). CSP approaches attempt to discover statistical properties that repeat on regular
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intervals in time and frequency. This signal processing is applied to the received analog

pulses and results in a set of estimates of various features in the received data. These

received features can be used for bandwidth estimation, in-band signal to noise estimation

or even digital modulation scheme estimation.

This work applies machine learning to the problem of modulation classification in at-

tempts to achieve high accuracy in modulation classification despite the message data being

unknown and despite the presence of noise in the message data. The hope will be that

machine learning techniques may be used to perform the same type of digital modulation

recognition as CSP. Machine learning excels at recognizing patterns that are provided in the

training data. By using sequences of received labeled data, an artificial neural network may

be used to achieve excellent classification accuracy which will be the primary topic of this

paper.

1.1 MODULATION CLASSIFICATION

A digital communication system has the goal of efficiently conveying a message signal

from the transmitter to the receiver. The transmitter will employ a modulation scheme that

is suited for its data. This data or message signal is deconstructed into symbols which can

be thought of as groups of binary values. Simpler modulation schemes may have as few as

two symbols, encoding a binary one or a binary zero. More complex modulation schemes

may have 256 symbols (or more) with each symbol encoding a unique 8 bit value (or larger).

More discussion of specific modulation schemes will be presented in Chapter 2, but for now it

is sufficient to note that there are many modulation schemes. Once the transmitter decides

on its modulation scheme it will begin to send its data over a channel that will reach the

receiver. If the receiver knows the modulation scheme, then the receiver will detect the

symbols and discover the data the transmitter has sent. If, however, the modulation scheme

is unknown to the receiver then it will be unable to detect the symbols. In such a case, it is

necessary for a receiver to be first capable of determining the modulation scheme.

The goal of modulation recognition is to accurately determine what specific modulation

scheme is being used to transmit an arbitrary sequence of data. For this, the received signal

is converted into its in-phase and quadrature signal components, which are orthogonal and

can be used to completely reconstruct the received signal. These signal components form

basis functions which can be used to recognize the time varying signal characteristics. For

this Cartesian coordinates are used with the horizontal axis corresponding to the in-phase

basis function and the vertical axis corresponding to the quadrature signal basis function.
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FIG. 1: (a) An example of a modulation scheme with 4 symbols, each symbol having 2 bits.
(b) An example of received data over a period of time (excursions are omitted for clarity).

Of the various modulation schemes, many symbols reside in similar locations. For this,

additive white Gaussian noise (AWGN) will corrupt the received signal. With the corruption

caused by the AWGN, the differences in these symbols becomes difficult to distinguish.

Furthermore, the in-phase and quadrature signal components are time varying and capture

the transition from one symbol to another which is called the excursion. Ideally these

excursions will be a straight line moving directly from one symbol to another; however, they

often are indirect wavy lines which only adds to the complexity. Regardless, these excursions

may cross over coordinates that are a valid symbol for a given modulation scheme but not

necessarily for the employed modulation scheme.

The receiver has no inclination as to what data the transmitter might be sending; if it

did, there would be no point in transmitting it. Thus, the specific sequence of symbols is

in no particular order and may transition from one symbol to another in a pseudo random

fashion. However, if the receiver monitors the channel for a sufficient period of time, the

majority of symbols may have been observed in this window of time. In Fig. 1b, an example

of received data is shown with the excursions being omitted for clarity. In this case, the

constellation can be clearly seen and the modulation scheme may be classified (there will be

more discussion of specific modulation schemes in a later chapter).

There are various means of modulation classification in existence. One such approach
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is based on cyclostationary signal processing (CSP) [1] and involves using complicated al-

gorithms that leverage statistical properties of the message signals power spectrum over an

observed window of time in order to discover cyclic trends which may be used to classify

the modulation type. Another method is the maximum likelihood (ML) or log likelihood

options which use conditional statistical properties of the message signal and Bayes theorem

to determine what the most likely modulation scheme is given the observed message data

[2], [3], [4]. Currently, machine learning techniques involving artificial neural networks are

considered to address this problem.

1.2 MACHINE LEARNING

Machine learning is a very broad topic encompassing many fields. In general machine

learning is any algorithm or automated process wherein a computer sorts through data,

acquires information from said data and then uses this information to make an informed

decision. In many applications the objective is classification of data. For these models a set

of predetermined classes are established, and the objective is to take an input value and map

it to one of these classes. A simple two class example of this would be to take an unknown

value and decide which class it belongs to. In Fig. 2, we have a two class example. The

red dots belong to one class, and the blue dots belong to the other class. A certain number

of examples of both classes would need to be available beforehand. When a new unknown

dot is given, the coordinates of this dot will be compared against the coordinates of the

other dots with respect to their class. Bayes Theorem will be applied and the conditional

probabilities will be assessed to classify this new dot.

Such models work well when the data is linearly separable and each class is distinct.

Linearly separable means that a line can be clearly drawn between the two classes. This

requirement can be harder to maintain when there are many classes and for high dimensional

inputs. An additional problem with the model described above is when the classes are not

distinct, or when there is an overlap between classes. The data points along the border

between the two classes will be more likely to be miss-classified. In both cases, these are

nonlinearities introduced in the observed sample data.

In recent years a sub field of machine learning known as deep learning (DL) has gained

great popularity due to its ability to overcome such nonlinearities in sample data. These

models leverage multiple layers of neural networks with nonlinear activation functions to

overcome nonlinearities present in the available data. A single example neuron is shown in

Fig. 3. These networks will be discussed further in a later chapter, but as an introduction,
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FIG. 2: An example of two class data for traditional machine learning.

these neural networks consist of weights and bias parameters which can be changed. These

networks require a training process where the example data is referred to as the training

data. This training data is used multiple times, and with each iteration the network will

update its parameters to maximize the classification accuracy.

Though powerful and able to overcome nonlinear features in training data, these networks

require a large amount of training data that sufficiently and completely represent all under-

lying characteristics of the respective classes. Furthermore, these networks are sensitive to

even small perturbations of the input data, such as rotation, scaling and inversion. They

are also sensitive to being over trained, a situation which can occur when the network is

able to memorize the training data. An over-trained network may achieve high classification

accuracy during training data, but when new data is provided it will perform poorly. These

topics and others will be discussed further in a later chapter.

Well trained neural networks are also able to filter out or ignore noisy features in training

data. Here, noise can be thought of as minor perturbations in the sample data that do not

represent any interesting feature. Due to their ability to excel at classification of nonlinear

training data, neural networks appear to be an excellent candidate for the topic of digital
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FIG. 3: An example of a single fully connected neuron without an activation function.

modulation classification. Specifically, their ability to recognize class features while ignoring

noise in the digital signal will be very valuable.

1.3 PROBLEM STATEMENT

Ideally, a transmitter and receiver pair will always be cognizant of what digital modu-

lation scheme is being used to transmit data. In reality, there are various situations where

the receiver may not know which digital modulation scheme is being implemented. One

prominent example of this is spectrum interference detection. In this case, the transmitter

may unknowingly encroach on a neighboring spectrum. Identifying the digital modulation

scheme would be helpful in determining where the interference originates. Thus, there is

a need to identify the digital modulation scheme by means of the in-phase and quadrature

components of the received digitized signal.
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The main contribution of this thesis is the application of capsule networks for classifi-

cation of digitally modulated signals and to compare the capsule network’s performance to

convolutional and residual networks for digital modulation classification. Other works em-

ploying CNN and residual network topologies can be found in [5, 6, 7, 8]. The work in this

thesis has been submitted for presentation at IEEE Communication Conference COMM2022

[9].

1.4 THESIS OUTLINE

This section will provide an overall outline of the remainder of the text. The goal of

these first few chapters will be to provide a reasonable background to pertinent information

needed in order to properly understand the subject matter, and later chapters will present

and assess performance.

• Digital Modulation:

Chapter 2 will present the concept of a band-pass signal and what the quadrature

and in-phase signal components are and how they may be obtained from a band-pass

signal. This will be instrumental in understanding how the modulation schemes are

represented as well as what the inputs to the neural network will look like. Additional

topics such as signal to noise ratio (SNR) will also be discussed as these will be useful

in evaluating the performance of the network.

• Machine Learning for Feature Activation and Detection: Chapter 3 will present

neural networks in more detail, describe what their inputs look like, how they are

trained and how classifications are performed. Then these concepts will be expanded to

several prominent network topologies which are used for a wide variety of applications.

• Deep Learning for Digital Modulation Classification: Chapter 4 will discuss

several network topologies for the purpose of digital modulation classification. Details

on these network architectures will be provided.

• Supervised Training: Chapter 5 will present two training datasets which will be

used for training and evaluating this network’s performance. Details on the datasets

as well as an assessment of the training data will be provided in this section. This

section will also discuss the software tools and training setup that will be used to train

the network and assess the results of the trained network.
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• Simulation Results and Analysis: Chapter 6 will focus on the results for the

trained network for each respective dataset. These results will be compared to each

other and an analysis will be provided.

• FPGA Implementation: Chapter 7 will discuss considerations needed to implement

the proposed network onto an embedded system.

• Conclusions and Future Directions: Chapter 8 will summarize and conclude the

work of this thesis and provide thoughts for future work.
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CHAPTER 2

DIGITAL MODULATION

The goal of this chapter will be to discuss digital modulation schemes and how these

schemes are represented by in-phase and quadrature signal components. Furthermore, a

description of the canonical bandpass signal representation will be provided as well as an

explanation of how the in-phase and quadrature signal components may be extracted from

a received bandpass signal. The focus will be on the digital modulation schemes that are

commonly used in practical systems. The signal to noise ratio will also be discussed as this

is an important metric in determining the performance of a digital modulation classifier. It

is important to note that [10] and [11] were instrumental in the author’s education on this

topic.

2.1 CANONICAL BANDPASS SIGNALS

Modulation can be used to move a low frequency content message signal to a higher

frequency where it can be broadcast via radio frequency (RF) electromagnetic waves using

electric circuitry. This message signal can take many forms such as a high or low pulse, an

audio waveform, etc. The simplest type of message signal would be a single frequency. This

single frequency can be referred to as a tone and is represented in the time domain as a

sinusoidal waveform. This message signal is a low frequency signal with a bandwidth equal

to its highest frequency content. In the case of a tone, ftone = w, where ftone is the tone,

a single frequency message signal, and w is the bandwidth. This bandwidth is the range of

frequency occupied by the message signal which is also referred to as the spectrum of the

signal. This is a lowpass/baseband signal because its spectrum is located around the zero

frequency. An example of this is shown in Fig. 4. Note that this illustration includes an

example of a tone message signal as well as a generalized arbitrary waveform.

Regardless of whether the message signal is a tone or an arbitrary waveform, the band-

width is still represented as w. The carrier frequency, fc is typically much larger than ftone.

Once the message signal is modulated with the carrier frequency, the signal is now considered

a bandpass signal. Assessing this process from the frequency domain, the bandwidth of the

message signal is shifted up so that the center of the bandwidth w resides at the center of

the carrier frequency fc. This is illustrated in Fig. 5.
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FIG. 4: (a) An example of the spectrum of a tone message signal. (b) An example of
the spectrum of a lowpass/baseband signal with some arbitrary waveform. Note that its
spectrum is centered around the zero frequency.

ffc-fc

w
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FIG. 5: An example of the spectrum of a bandpass signal with some arbitrary waveform.
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The spectrum of the bandpass signal shown in Fig. 5 is a good representation of an ideal

spectrum as it leaves the transmitter. This spectrum is represented as X(f) and the inverse

Fourier transform of this gives us x(t) = F−1{X(f)}. This is the time domain representation

of the bandpass signal. If the message signal is some slowly varying signal, whose variations

coincide with the information being transmitted, then this signal can be represented as A(t).

Due to the modulation with the carrier fc, and assuming −π ≤ θ(t) ≤ π the bandpass signal

may be represented as shown in equation (1).

x(t) = A(t) cos(2πfct+ θ(t)) (1)

Which, noting that a cosx = aejx, can be represented in phasor form as shown in equation

(2).

x(t) = A(t)ej2πfctθ(t) (2)

The equation shown in (2) has real and imaginary components. To look at only the real

components, equation (2) may be rewritten as shown in equation (3).

x(t) = Re[A(t)ej2πfctθ(t)]

= A(t) cos(θ(t)) cos(2πfct)− A(t) sin(θ(t)) sin(2πfct)

= xc(t) cos(2πfct)− xs(t) sin(2πfct)

(3)

In the above equation (3), the xc(t) term corresponds to the in-phase signal component

and the xs(t) term corresponds to the quadrature signal component. Another method for

achieving the results of (3) is by taking the time domain representation of the bandpass

signal and summing it with the Hilbert transform of jx(t). This is known as the analytic or

pre-envelope signal. This pre-envelope signal is represented as x+ and is given as shown in

equation (4).

x+(t) = x(t) +H{jx(t)}

= x(t) + jx̂(t)
(4)

It is clear from the above equation that x(t) = Re[x+(t)]. The end goal is to have

a convenient signal for describing the in-phase and quadrature components of a baseband

signal. This can be achieved by the complex lowpass equivalent of the base band signal

which is denoted as x̃(t) and is given in equation (5).
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FIG. 6: Illustrations of the bandpass spectrum of x(t), Pre-envelope spectrum of x+(t), and
complex lowpass equivalent spectrum of x̃(t)

x̃(t) = xc(t) + jxs(t) (5)

Now that (5) has been described, the pre-envelope signal may be rewritten in terms of

the complex lowpass equivalent as shown in equation (6).

x+(t) = x̃(t)e2πfct (6)

As established in (3), the baseband signal x(t) may be written as the real part of the

pre-envelope signal. Using equation (6), the baseband signal may be rewritten as shown in

equation (7).

x(t) = Re[x+(t)]

= Re[x̃(t)ej2πfct]

= xc(t) cos(2πfct)− xs(t) sin(2πfct)

(7)

An important note about equation (7) is that it enables the bandpass signal to be rep-

resented in terms of the in-phase and quadrature components which are xc(t) and xs(t)

respectively. Sometimes the in-phase component is also denoted as xI(t) and the quadrature



13

x(t)

osc90° phase 
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cos(2πfct)
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FIG. 7: A bandpass signal analyzer circuit. This is used to extract xI(t) and xQ(t) from
x(t).

component as xQ(t). Fig. 6 illustrates what the spectrum of X(f), x+(t), and x̃(t) are and

how x̃(t) represents a scaled version of desired message signal at baseband.

Inspired by equations (3) and (7), a signal analyzer circuit can be constructed in order

to extract the in-phase and quadrature signal components from the bandpass signal. This

circuit would appear at the receiver and would require that a local oscillator generate a

sinusoidal signal. The baseband signal x(t) will branch into two parts. The upper branch

will be directly multiplied with the local oscillator. The lower branch will be multiplied by

a −90◦ phase shifted version of the oscillator. It can be noted that the Hilbert transform

introduces a −90◦ phase shift to sinusoidal signals. This illustration of the signal analyzer

is shown in Fig. 7.

Working this out in equations (8) and (9), the result has the desired in-phase and quadra-

ture components with some high frequency signal components. By using a low pass filter

(LPF) at the output of the upper and lower branch, these high frequency components will

be suppressed leaving only the desired in-phase and quadrature signal components. It is

important to note that perfect synchronization between the transmitter and receiver is as-

sumed in this ideal case. If perfect synchronization is not achieved, then this may introduce

message signal attenuation or other undesirable effects.
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UpperBranch = LPF [x(t) cos(2πfct)]

= LPF [(xc(t) cos(2πfct)− xs(t) sin(2πfct)) cos(2πfct)]

= LPF [
1

2
xc(t) +

1

2
xc(t) cos(4πfct)−

1

2
xs(t) sin(4πfct)]

=
1

2
xc(t)

=
1

2
xI(t)

(8)

Similarly for the lower branch, it can be shown that it results in the quadrature signal

component.

LowerBranch = LPF [x(t) sin(2πfct)]

= LPF [(xc(t) cos(2πfct)− xs(t) sin(2πfct)) sin(2πfct)]

= LPF [
1

2
xs(t)−

1

2
xs(t) cos(4πfct)−

1

2
xs(t) sin(4πfct)]

= −1

2
xs(t)

= −1

2
xQ(t)

(9)

Now that the steps in equations (8) and (9) have been worked out, it is clear that

the signal analyzer in Fig. 7 does produce scaled versions of the in-phase and quadrature

components.

2.2 IN-PHASE AND QUADRATURE REPRESENTATION

Now that background has been provided as to how the in-phase and quadrature signal

components can be extracted from a bandpass signal using a signal analyzer, specific focus

can be given to these signal components and how they can be used to reconstruct the original

message signal.

Equation (5) may be rewritten in polar coordinates. To do this, the envelope and argu-

ment must be determined. The envelope, or magnitude, is as shown in equation (10).

|x̃(t)| =
√
xI(t)2 + xQ(t)2 (10)

Furthermore, the argument or phase can be given as shown in equation (11).

6 x̃(t) = θ(t) = arctan(
xQ(t)

xI(t)
) (11)
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FIG. 8: An example of in-phase and quadrature coordinate system.

Combining the above, equation (5) is rewritten in polar coordinates as shown in equation

(12).

x̃(t) = |x̃(t)|6 x̃(t) (12)

These components can be used to completely reconstruct the amplitude and phase of

the original message signal at the receiver. The in-phase and quadrature components are

orthogonal to each other and may be plotted using Cartesian coordinates. Conventionally,

the in-phase component is denoted as the horizontal axis, and the quadrature component is

denoted as the vertical axis. This is illustrated in Fig. 8.

Until now, the message signal has been arbitrarily described as some desirable, informa-

tion carrying waveform. With regards to digital information transmission, a digital modu-

lation scheme will be employed. These modulation schemes will focus on the transmission

of symbols which correspond to specific binary value(s). These symbols will be represented

on a two dimensional Cartesian coordinate plot in terms of basis functions chosen specifi-

cally for that modulation scheme. A subtle but important distinction is that the in-phase

and quadrature components are reconstructing the instantaneous message signal waveform
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FIG. 9: (a) Illustration of a synthesizer for generating energy signals. (b) Illustration of an
analyzer used for constructing a signal vector, si.

whereas analysis with basis functions focus on symbol detection by assessing the signal en-

ergy of quadrature carriers. This distinction is provided as the machine learning networks

will be utilizing the in-phase and quadrature signal components as inputs into the networks.

These differences, as well as a description of the digital modulations schemes used in the

datasets, will be elaborated upon in the next section.

2.3 SIGNAL CONSTRUCTION FOR DIGITAL MODULATION

SCHEMES

Digital modulation uses symbols to represent strings of binary data that the transmitter

desires to send to a receiver. It is said that M energy signals are defined for any given

digital modulation scheme with each energy signal being denoted as si(t). There are also N

orthonormal basis functions represented as φi(t)

N ≤M . Any symbol can be described as a linear combination of these basis functions. This

can be viewed as a signal vector si. To do this, the transmitter employs a signal synthesizer

as shown in Fig. 9. Any transmitted symbol will be some linear combination of the basis

functions.

At the receiver, a signal analyzer as illustrated in Fig. 9 may be used to reconstruct

the signal vector si. The signal analyzer will apply a correlation with each respective basis

function which will result in an energy value for each signal component in the signal vector
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FIG. 10: Root-raise cosine pulse with various β rolloff factors and for T = 1.

si. The coordinates of si will be the symbol estimate. This symbol estimate can be plotted

on a Cartesian coordinate system using the basis functions as horizontal and vertical axis.

These energy signals have a duration of T seconds. Ideally, these signals could be a

simple on/off square wave in the time domain. In the frequency domain, this would result

in poor bandwidth utilization as a time domain rectangular pulse in a sinc function in the

frequency domain, which occupies a wide spectrum. In attempts to have better utilization

of the spectrum a root-raised cosine pulse is used. An example of this is illustrated in Fig.

10.

Due to the fact that noise is random and is uncorrelated with every other signal, the

noise will be suppressed by the correlators shown in Fig. 9. The result of the correlation for

a time bound pulse is given by equation (13).

sj(t) =

∫ T

0

si(t)φj(t)dτ (13)

If a similar correlation occurs with some arbitrary impulse function as shown in equation

(14), then a simplification can occur for a carefully chosen hj(t).

xj(t) =

∫ T

0

si(t)hj(T − t)dτ (14)
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FIG. 11: Matched filter receiver.

The equation shown in (13) will be equivalent to (14) when the impulse response of hj(t)

satisfies hj(t) = φj(T − t). Thus, the matched filters may be used in place of banks of

correlators. This is illustrated in Fig.11 and is referred to as a matched filter receiver.

Now that a sufficient background to the signal synthesizer and analyzers has been de-

scribed, digital modulation constellations can be discussed. The first set of digital modula-

tion constellations will be Phase-Shift Keying (PSK), the simplest of which is Binary PSK

(BPSK). This uses M = 2 energy symbols with one basis function N = 1. This constellation

is illustrated in Fig. 12. Here the pair of energy signals are described as shown in equation

(15).

s1(t) =

√
2Eb
Tb

cos(2πfct)

s2(t) =

√
2Eb
Tb

cos(2πfct+ π) = −
√

2Eb
Tb

cos(2πfct)

(15)

Here the basis function is given as shown in equation (16).

φ1(t) =

√
2

Tb
cos(2πfct) (16)

The coefficients of the signal vector will ideally be as shown in equation (17).
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FIG. 12: A simple signal-space diagram of BPSK.

s11(t) =

∫ Tb

0

s1tφ1(t)dt =
√
Eb

s21(t) =

∫ Tb

0

s2tφ1(t)dt = −
√
Eb

(17)

Here, there are two symbol options with the decision boundary being the origin, where

φ1 = 0. If the received energy is greater than 0, the received bit is assumed to correspond

with symbol 1, otherwise symbol 2. Symbol 1 could correspond to a binary zero or low, and

symbol 2 could correspond to a binary high or 1. For symbol 1, the received signal vector

would be s = [
√
Eb, 0]T and for symbol 2 it would be s = [−

√
Eb, 0]T .

By increasing N and M , additional constellations can be represented. For N = 2 ,

M = 4, there is quadriphase PSK (QPSK) and for (N = 2, M = 8 there is octaphase PSK

(8-PSK) constellations. These are as shown in Fig. 13.

For QPSK the transmitted signal energies are given by equation (18).
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FIG. 13: (a) Signal space representation of QPSK. (b) Signal space representation of 8-PSK.

si(t) =


√

2Eb

Tb
cos(2πfct+ (2i− 1)π

4
), if i = 1, 2, 3, 4

0, otherwise
(18)

Unlike BPSK where only one carrier was used, for QPSK, quadrature carriers will be

used which are given in equation (19).

φ1(t) =

√
2

Tb
cos(2πfct)

φ2(t) =

√
2

Tb
sin(2πfct)

(19)

When the received message signal is passed through the signal analyzer it will ideally

result in one of four possible message points. These message points can be defined by the

two dimensional signal vector as shown in (20).

si =

[ √
Eb cos((2i− 1)π

4
)

−
√
Eb cos((2i− 1)π

4
)

]
, i = 1, 2, 3, 4 (20)

This concept may be expanded for M-ary PSK (which encompasses 8-PSK. In this case,

the same basis functions described in equation (19) are used; however, the M signal energies

are described as shown in equation (21).

si(t) =


√

2Eb

Tb
cos(2πfct+ (2i− 1)2π

M
), if i = 1, 2, ...,M

0, otherwise
(21)
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In addition to the PSK constellation shown above, there are also differential (DBPSK,

DQPSK). For the differential PSK constellations, the same basis functions are used as shown

for BPSK and QPSK respectively. However the way in which symbols are transmitted follows

a different set of rules. For these differential schemes, the last bit and the phase of the current

bit are used to inform what the intended transmit bit will be. Specifically for DBPSK, if the

next bit to be transmitted is a 1, the symbol stays the same as what the last transmitted

bit was, and if the new transmit bit is a 0, then the symbol bit changes. Furthermore, if the

new symbol to be transmitted is a 1, the phase of the DPSK is unchanged and if the symbol

to be transmitted is a 0, the phase is shifted 180o from what it currently is. A similar set of

rules is used for DQPSK except that the phase shift values are 0o, 90o, 180o, or −90o. What

is convenient about differential PSK is that synchronization between the receiver and the

transmitter is not as important because the change in phase informs what the transmitted

symbol is.

The next set of constellations to discuss are M-ary Quadrature Amplitude Modulation

(QAM). These constellations use N = 2 quadrature carriers given as shown in equation (22)

which are identical to those given in equation (19).

φ1(t) =

√
2

Tb
cos(2πfct)

φ2(t) =

√
2

Tb
sin(2πfct)

(22)

QAM constellations are square constellations as shown in Fig. 14. QAM constellations

experience both amplitude and phase modulation. The separation between any two adjacent

QAM points is proportional to the square root of energy as shown in equation (23) with E

being the message signal energy.

dmin
2

=
√
E (23)

From this, the M-ary message signal is as shown in equation (24). Here ak and bk are

used to space adjacent points by a minimum of dmin.

sk(t) =

√
2E

T
ak cos(2πfct)−

√
2E

T
bk sin(2πfct), k = 0,±1,±2, ... (24)

For an M-ary constellation with an even number of bits per symbol, there will be L =
√
M . The value {ai, bi}, which is used to space the constellation points, is given as shown

in equation (25).
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Φ₁(t)

Φ₂(t)

FIG. 14: Example of M-ary QAM, for M=64 constellation.

{ai, bi} =


(−L+ 1, L− 1) (−L+ 3, L− 1) . . . (−L− 1, L− 1)

(−L+ 1, L− 3) (−L+ 3, L− 3) . . . (L− 1, L− 3)
...

...
...

...

(−L+ 1,−L+ 1) (−L+ 3,−L+ 1) . . . (L− 1,−L+ 1)

 (25)

These M-ary QAM constellations are easily extended to 16-QAM, 64-QAM, and 256-

QAM which are used in the training data sets. These are very dense constellations, and it

is expected that digital modulation classifiers may have difficulty distinguishing these three

constellations.

The final constellation that will be considered is Minimum Shift Keying (MSK). MSK

is a type of frequency shift keying. Unlike the previously discussed constellations which

modulate amplitude and phase to represent different symbols, MSK uses energy signals that

are given by equation (26).

s(t) =

√
2Eb
Tb

θ(t) cos(2πfct)−
√

2Eb
Tb

θ(t) sin(2πfct) (26)

The basis functions are given as shown in equation (27).
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φ1(t) =

√
2

Tb
cos(

π

2Tb
t) cos(2πfct)

φ2(t) =

√
2

Tb
sin(

π

2Tb
t) sin(2πfct)

(27)

To evaluate the signal vector coefficients, different time intervals are used for MSK. For

s1(t) the interval range is over twice Tb. To find s1(t), the correlation between the energy

signal and the basis function are taken as shown in equation (28).

s1(t) =

∫ Tb

−Tb
s(t)φ1(t)dt =

√
Eb cos(θ(0)),−Tb ≤ t ≤ Tb (28)

In a similar fashion, to find s2(t) the correlation between the energy signal and the

respective basis function is taken; however, the interval of integration is changed as shown

in equation (29).

s2(t) =

∫ 2Tb

0

s(t)φ2(t)dt =
√
Eb sin(θ(Tb)), 0 ≤ t ≤ Tb (29)

These results can be represented in a signal space constellation which appears identical to

QPSK. As is clear from the above basis functions and signal energy definitions, the MSK is

quite different form QPSK in that MSK works by sending binary symbols with a phase-pair

(by changing θ(t)).

Ultimately, the goal of presenting these constellations is to show the similarities and

differences of the various constellations. This will help in interpreting the results of the

digital modulation classifier. Though emphasis for detecting the various symbols was given,

the classifier is not interested in the actual data being transmitted; rather, it is interested in

recognizing the constellation and classifying it.

2.4 SIGNAL TRANSMISSION

Transmitted signals are distorted by the transmission channel and are corrupted by noise.

In all real world applications there is some amount of noise accompanying the message signal.

This noise is random and as such is not correlated with any message signal. Noise is modeled

as a Additive White Gaussian Noise (AWGN) channel and is represented mathematically as

shown in equation (30). The AWGN assumption is valid in most practical settings [1].

r(t) = si(t) + w(t) (30)
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In equation (30), r(t) is the received signal, si(t) is the estimate of the ith symbol and w(t)

is the channel noise. As long as the power contained within the desired signal is significantly

larger than the power of the AWGN channel noise, the transmitted symbol can be accurately

detected.

AWGN is broadband, meaning it encompasses the entire spectrum −∞ ≤ f ≤ ∞ and has

infinite average power. The ratio of the desired signal power to the noise power is referred

to as the Signal to Noise Ratio (SNR) as shown in equation (31) and considers noise power

only in the measured band.

SNR =
Signal Power

Noise Power
(31)

However, the message signal only occupies a limited amount of bandwidth, usually smaller

than the measured band. Only the noise corrupting the band of interest will impact the

message signal. The band of interest, as defined by [12], is an interval in the spectrum with

an elevated power spectral density (PSD) and with either side of this interval being flat. The

power spectrum density is the average signal power at various frequencies. Fig. 5 contains

an example of the spectrum of an arbitrary waveform. The noise that exists within the band

of interest is used to define the in-band SNR. Only the in-band noise impacts the message

signal; thus, equation (31) can be further refined to be as shown in equation (32) where N0

is the noise density (often attributed to thermal noise), w is the band of interest and PR is

the received power. The N0w term is achieved by filtering the noise PSD with a bandpass

filter (BPF). An illustration in Fig. 15 is provided to help show what the noise equivalent

bandwidth looks like graphically.

In-band SNR =
PR
N0w

(32)

It can be expected that lower SNR values will result in inefficient data transmission due

to errors in detection. As such, even the best digital modulation scheme will perform poorly

for extreme in-band SNR values. This is due to the fact that, for low in-band SNR values,

the actual energy symbol is indistinguishable from the noise. It is expected that digital

modulation classifiers will have decreased performance for low in-band SNR values.

Some researchers pursuing the topic of digital modulation classification by means of deep

learning methods such as [5, 6] use training datasets that characterize performance by the

total SNR which corresponds to the average noise power in the observed bandwidth rather

than the actual signal bandwidth. Only the in-band noise will impact symbol detection and

as such the in-band SNR is considered a more accurate representation of the noise corrupting
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FIG. 15: An example of a bandpass filter with bandwidth w centered at fc, the broadband
noise power spectral density (PSD), and the noise equivalent bandwidth.

the message signal. The datasets presented in chapter 5 characterize performance based on

the in-band SNR.
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CHAPTER 3

MACHINE LEARNING FOR FEATURE ACTIVATION AND

DETECTION

Often learning by example is one of the more effective ways of knowledge transfer. Eval-

uating the differences between items can be the best way to learn how to distinguish two

distinct items from one another. Subtle indicators, that are unconsciously developed, inform

a human’s ability to mature their classification process. This classification development oc-

curs over a long period of time after seeing many examples. Within the field of machine

learning, there is a topic known as Deep Learning (DL) which uses Artificial Neural Net-

works (ANN) in various configurations to mimic a human’s learning process. Deep learning

is a subset of machine learning.

ANNs are very powerful and can be applied to complex classification problems. These

types of networks are especially effective at adapting to nonlinear features in data as well

as for working with noisy data. This chapter will focus on machine learning approaches in

general as well as some helpful network typologies that may be applied to far more than just

digital modulation classification problems. It is important to note that [13] and [14] were

instrumental in the author’s education with regards to this topic.

At its simplest component, an artificial neural network has a single neuron. This neuron

is modeled as a summation of inputs multiplied by weights corresponding to each input,

which are then summed together with some biasing term. This is shown in equation (33)

with the aj being the activation of the jth neuron. In this configuration wji corresponds to

the jth weight for the ith input and wj0 is the bias term.

aj =
n∑
i=1

wjixi + wj0 (33)

These activations are transformed by a non-linear, differentiable activation function.

Many activation functions exist with new ones constantly being developed within the ma-

chine learning community. For now, this activation function will be denoted as h(·) and the

activation equation for a single jth neuron with n inputs is given by (34). These are referred

to as the hidden units.
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FIG. 16: An example of a single neuron with an activation function.

zj = h(aj) (34)

For the sake of notation, it is often convenient to absorb the bias term into the weights

by adding an additional constant driver (say 1) to each input layer and adding an additional

weight which corresponds to this constant input. Mathematically, this is equivalent to having

the bias term as shown in equation (33). This simplified notation is shown in equation (35).

aj =
n∑
i=0

wjixi (35)

An illustration of a single neuron described above is given in Fig 16. The weights and bias

are both values referred to as ’learnable parameters’ or ’adaptive parameters.’ These values

can be updated so that for specific inputs a large activation will be returned. This is typically

referred to as the neuron firing. This result is passed through the non-linear activation

function which typically clips the output so that it is within a fixed range depending on the

activation function used. Normally this is a value between 0 and 1.

Multiple neurons are grouped together in layers. Typically a fully connected topology is

used, where all of the inputs of every neuron are connected to every input in the previous

layer. These fully connected layers are very dense and require many weights.

Multiple layers of neurons can be cascaded together. Artificial neural networks are highly
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customizable, but usually at least two layers are needed in order to be considered deep

learning. There is no limit to how many layers may exist within an ANN; however, large

networks can be hard to implement as they require many weights and encounter training

difficulties.

A major use of ANN is for classification problems. A classification problem involves

taking an input value and grouping it into a predefined class. An example would be having

a group of images of cats, dogs, cows and horses. The goal of the ANN would be to take a

new picture of one of these creatures and group it with the class it most likely belongs to.

The output of the network will inform which class the input most likely corresponds to.

3.1 ARTIFICIAL NEURAL NETWORK

The output layer for classification topologies is referred to as the classification layer.

There are several classification layers available, but the most common is the softmax shown

in equation (36), [15]. The goal of the classification layer is to help the user clearly see

which class the input most likely corresponds to. The last layer in the ANN must have the

same number of neurons as there are classes. For the previous example this would be four.

The outputs of the last layer of neurons in the ANN can be represented as a vector z. The

output of the softmax will also be a vector represented as σ. The softmax vector will have

values between 0 and 1 that correspond to the probability that the input image matches the

respective class. For example, if an input image of a cat was provided to a trained ANN, the

element of σ that corresponds with cat would be the highest (ideally in the .99 to 1 range),

and the elements that correspond to other animals would be low. The actual output of the

network is typically denoted as a vector y.

y = σ(z) =
ezk∑
j e

zj
(36)

The inputs to the ANN can be anything, an image, a sequence of data, etc. They can be

in any shape/format, but they are normally flattened to match the shape of the first layer

in the ANN. Fig. 17 illustrates what a simple ANN might look like. Now that an overall

description of the ANN has been provided, the process by which they are trained can be

introduced.

When an input is fed into the network, the raw pixel or data values will be multiplied

by the weights and passed through the activation function. This is known as forward prop-

agation. This process will repeat for each layer. For the last layer, the neurons output into

the classification layer where classification occurs. The weights of the network are typically
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FIG. 17: Illustration of a simple ANN with D inputs, M hidden units and K outputs.

randomly initialized when the network is first simulated. The classification accuracy will

be very poor for randomly initialized weights. In order to improve accuracy, the network is

trained using labeled data.

Labeled data is when specific data inputs are associated with a known label. This typi-

cally involves a human manually classifying the image/data. These labeled images are passed

through the network and the result of the classification layer is compared with the label. The

difference between these can be thought of as the error of the network which can be used to

adjust the weights to improve performance.

Using the previous example, if the input image was labeled a cat which is represented as

vector [1, 0, 0, 0] and the output of the softmax was [0.26, 0.25, 0.24, 0.25] then the difference

between the labeled data and the estimate of the ANN is the error of the network. A cost

function can be established to quantify this error. A simple error function is the sum-of-

squares error given by equation (37). Here xn is the nth training input and yn is the output

which is the feed-forward result of the the nth input for a given set of weights. Since this is

labeled data, the target will be denoted as tn as shown below.

E(w) =
1

2

N∑
n=1

(yn(Xn, w)− tn)2 (37)

The goal is to minimize this error function by changing the weight values as scaled by
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some learning rate η. The weights are updated as shown in equation (38). Here, η > 0 and

τ corresponds to the current weight values and τ + 1 corresponds to the updated weights by

some small step.

wτ+1 = wτ − η∇E(wτ ) (38)

Each small step is chosen to help minimize the error gradient. This process is referred to

as gradient decent. Stochastic gradient decent is a very similar process except that updates

to the weight vector are based on one data point per update, as shown in equation (39).

wτ+1 = wτ − η∇En(wτ ) (39)

To evaluate the gradient of the error function, the errors of the feed forward network are

used in a process referred to as error backpropagation. Specifically, the gradient of the error

function is evaluated with respect to each weight in the network. The error seen by a specific

weight is represented as δj and is given by equation (40) where δk are errors in later nodes

in the network.

δj = h′(aj)
∑
k

wkjδk (40)

These equations allow the error to pass back to earlier layers, and then have that error,

coupled with the learning rate, influence by what amount that specific weight is updated.

This allows the weights to adapt to the training data to minimize error.

Fully connected ANNs perform well as universal approximation functions. However, the

inputs and, thus, their associated weights are fixed to specific locations. An FC-ANN, can

learn to classify images if the object of the image always appears in the same location in the

image. As the network is trained, the weights associated with the center of the image will

learn features in the input data to help it classify the image. However, if the object of focus

shifts from the center, then the accuracy of the ANN is compromised because the weights

on the edge of the network will not have been exposed to these image features and thus will

not have learned to recognize these features. To counter this problem, there is a different

topology of ANN known as convolutions neural networks (CNN).

3.2 CONVOLUTIONAL NEURAL NETWORK

The previous section described fully connected layers and how these may be cascaded

to form a multi layer ANN. A convolutional layer uses a different paradigm to map inputs
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FIG. 18: Illustration of the CNN operation.

to their corresponding neurons. Unlike the fully connected layer equation in (35) where all

inputs are passed to each neuron, the CNN restricts the observed input values to a subset of

the entire input image using kernels of a fixed size. An example would be a 3x3 pixel kernel.

Each element in this kernel can be thought of as a weight and is an adaptive parameter.

This kernel starts at an edge of the image (normally the top left hand corner) and is placed

over top of the input image. The value of each pixel will be multiplied by the corresponding

weight in the corner in a one to one fashion. Then all of these values will be summed and

will be the activation for this kernel location. An illustration of this is shown in Fig. 18.

The activation of a CNN is as shown in equation (41). It is important to note that the

activation output can be a three dimensional matrix. It is also important to note that, despite

the name, the sliding operation is better described as a correlation function as opposed to

a convolution (note, there is no rotation). The below symbol, ∗, is representative of this

correlation operation.

aji = wji ∗ x+ wji (41)

The kernel will then move to its next location, and the process will be repeated until the

entire image has been passed over by this kernel. The activations that result from this will

form a matrix. If there is one kernel, this will be a two dimensional matrix with aji being

the activation that results from the {j, i} operation. If there are K kernels, this will be a K
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dimensional matrix. This matrix will be smaller than the original image depending on the

kernel size and the stride used. After the activation matrix is complete, it will be passed

through a non-linear, differentiable, transformation function. This will be the output of the

CNN layer.

These kernels will learn to recognize features such as edges or shapes and the weights

will be updated to achieve a high activation value once these features are observed. The fact

that these kernels move across the image helps the ANN learn spatial invariance. Unlike

the fully connected layers that require the object of focus to always appear in the center of

the image, CNN can learn to recognize objects that are not in the center. CNN are trained

with the same concept of backpropogation. Multiple CNN layers can be cascaded, or a

mix of CNN with fully connected layers can be used. CNN are a powerful tool to apply to

classification problems due to their ability to parse through an image and activate on the

features of interest. CNNs are typically used in image processing and image classification

problems. CNN are a powerful tool for classification and will be used for the application of

digital modulation classification in Chapter 6.

One common problem for both fully connected layers and CNN layers is that for very

deep networks, with many layers, the error that is backpropogated to earlier neurons will be

very small. In such a case, the weights in earlier layers will not adapt; thus, the network will

be unable to learn further, regardless of training time. This is due to the problem known

as vanishing gradient. To counter the problem of vanishing gradient, residual networks are

used.

3.3 RESIDUAL NEURAL NETWORK

Residual neural networks (RESNET) are very similar to convolutional neural networks

with the primary difference being that these networks employ skip connections. During

training, error is used to modify adaptive parameters to improve accuracy as discussed in

previous sections. This error is used to update all weights in the network. Equation (40)

shows that the error of a current layer is dependent on the error observed in later layers. As

error is passed to previous layers, the weights in that layer will absorb some of this error as

they adapt their values. As this process repeats, the error values that are backpropogated

to earlier layers become small if not zero. This is known as vanishing gradient, due to the

fact that the error gradient approaches zero for very deep networks. The motivating effort

behind residual networks is to create an additional path which allows error to pass back to

earlier layers. To do this skip connections are introduced.
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FIG. 19: Illustration of a skip connection in a Residual Network.

Residual networks will have skip connections which connect an earlier layer to a later

layer. An example of a skip connection is shown in Fig. 19. Here, several layers are skipped,

thus allowing the error to have an additional path so that it may backpropogate through the

skip connection.

Many such skip connection blocks are connected in series allowing for a large number

of CNN to be used. In [16], Residual networks containing 50 and 101 layers have been

implemented and shown to have great benchmark testing. The increased number of layers

allows the networks to learn complex features in input data.

In simulation, residual networks work very well in that they are excellent at classifying

complex datasets. One drawback to such networks is their increased complexity. Because

these networks are so large and the adaptive parameters are so great, physical implementation

in real time devices may suffer. However, for offline or post processing applications, residual

networks are very desirable.

3.4 CAPSULE NETWORK

ANN are very customizable and include many more types of layers than the ones men-

tioned above. Another common type of layer is pooling layers which can be a linear operation

that sum or average the outputs of the previous layer. These can be useful for reducing the

feature input size to the following layer. This reduces the number of adaptive weights and

can reduce training time with no loss in accuracy.

One particular caveat to pooling layers was presented by [17]. The claim is that pooling
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FIG. 20: High level diagram of a capsule network.

layers cause CNN layers to learn features based on proximity to other features. An example

of this would be for facial recognition. A human’s eyes are located near the nose, and the

nose is located near the mouth, etc. If a CNN, with pooling layers, is trained with normal

facial composition it can learn to recognize a human face. However, if the image has the

location of the nose and eyes swapped and the mouth and ears swapped, the CNN will not

be able to recognize the image as a face. This is known as the Picasso problem and is often

attributed to pooling layers.

A different type of architecture referred to as capsule networks has been presented in

[17]. These networks come in various forms and can have special classification layers, but the

primary goal of the network is to model hierarchical relations between input features based

on the way neurons are organized in nature. These networks will be described in detail in

the next chapter, but as an introduction, these networks are comprised of CNN layers whose

feature output is passed to several identical branches, each consisting of additional CNN

layers and possibly fully connected layers. For multi-class classification problems, there can

be one capsule per class. A high level figure of a capsule network is provided in Fig. 21.

These networks typically avoid pooling operations in the capsules and have outputs as

vectors. For an M class problem, there will be M output capsule vectors. As originally

presented by [17] the capsule networks employ a squashing layer and a specific routing

algorithm referred to as routing by agreement which updates the weights between the output

vector and the squashed layer by evaluating the conditional probability that the input image
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belongs to class M given the values in the last layer.

The magnitude of this output vector is used to determine how likely the input image

corresponds to its respective class. As mentioned in [17], there could be many different

approaches to routing the last layer to the outputs. Furthermore, there are other recent

papers exploring different routing algorithms or modifications to the capsule network such

as in [18].

This chapter provided a background on deep learning, what the various layers of the

networks look like, how they function and how these networks learn. Now the focus will be

on how to use ANN for digital modulation classification.
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CHAPTER 4

DEEP LEARNING FOR DIGITAL MODULATION

CLASSIFICATION

The previous chapter discussed various machine learning layers and concepts that are used

in image and data classification. Most of the examples provided were of image classification;

however, these machine learning tools are well suited for classification of various forms of

data including digital modulation schemes.

Blind modulation classification has historically been achieved by means of signal pro-

cessing techniques such as likelihood based approaches [2, 3] or CSP approaches [19] which

focus on extracting features and performing classifications based on these features whereas

machine learning techniques, like those mentioned in the previous chapter, rely on extensive

training to automatically learn these features and perform classifications. There have been

a wide range of recent approaches that use convolutional or residual neural networks to per-

form digital modulation classification based on the raw in-phase and quadrature (I and Q)

components [6, 5, 8]. Other networks use signal amplitude, phase or spectrum representation

as inputs into the network with goal of digital modulation classification [20, 21, 22, 23, 24].

The benefit of using in-phase and quadrature data is that these require minimal prepro-

cessing and can be directly fed into a ANN for classification. Typically a window of time

must be observed; the longer this window, the more excursions should be observed and thus

the network should be better able to classify the modulation scheme.

This chapter will begin by reviewing some topologies using CNN and RESNET for digital

modulation classification and provide some commentary on these approaches. Then, this

chapter will focus on a very specific digital modulation classification method by means of

capsule like networks. Others have had success in doing this in [25, 19]. Capsule networks

initially presented by [17] promise to learn hierarchical relationships in the underlying data.

This can be especially useful for digital modulation schemes which may have excursions (or

features) that are independent from other excursions. In this way, the individual excursions

may be learned as opposed to the correlation of multiple excursions appearing in the same

sample window. To use the Picasso face analogy, the excursion from one symbol to another

symbol may occur in various sequences, just like the Picasso picture may have the facial
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components appear in various sequences. In both cases, if the hierarchical components can

be isolated (i.e. the facial features and symbol excursions) then accurate classification can

occur. This chapter will discuss several deep learning approaches with a focus on the specific

application of capsule like networks for digital modulation classification.

4.1 CNN FOR DIGITAL MODULATION CLASSIFICATION

As established in Chapter 3, CNNs can be used for classification problems. One of the

primary strengths of a CNN is that their kernels will learn to recognize features in the input

data and activate on these features. Because the kernels slide over the input data, they

will be well suited for learning features while maintaining spatial invariance in the signal

data and will be capable of detecting features throughout the entire signal duration. This

aspect makes the CNN desirable for digital modulation classification problems. The authors

in [8, 6, 5, 7] employed CNN based machine learning approaches for digital modulation

classification. The network in [8] was of particular interest and the architecture of this

network was replicated with similar results. This network has an architecture as described

in Table 1. This architecture consists of six CNN layers with nonlinear ReLU activations.

The multiple CNN layers allow for highly nonlinear features to be extracted by the following

layer. This furnishes the network with sufficient complexity to learn to classify the various

excursions and features present in the various digital modulation schemes. Followed by each

activation function is either a max pooling or an average pooling layer. These pooling layers

allow only the strongest activations from the previous layer to survive to the next layer.

Notionally, this helps the network learn only the most prominent features but some authors

suggest that this creates dependence on specific features occurring over a given duration

[17]. In either case, the replicated CNN produces reasonable results which will be assessed

in Chapter 6.

Due to the few layers in this network, the problem of vanishing gradient is not manifested.

If many more layers were added, the problem of vanishing gradient would begin to arise.

Additional layers may increase performance, but to avoid the problem of vanishing gradient,

a residual network topology must be employed which will be elaborated upon in the next

section.

4.2 RESNET FOR DIGITAL MODULATION CLASSIFICATION

The authors in [16] designed a RESNET for digital modulation classification which avoids

the problem of vanishing gradient by means of skip connections. These skip connections
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TABLE 1: CNN Network Layout

Layer Filter Stride Size/Weights
Input 2× 32, 768
Conv [1,23] [1,2] 23× 2× 16

Batch Normalization
ReLU

Max Pool [1,2] [1,2]
Conv [1,23] [1,2] 23× 16× 24

Batch Normalization
ReLU

Max Pool [1,2] [1,2]
Conv [1,23] [1,2] 24× 23× 22

Batch Normalization
ReLU

Max Pool [1,2] [1,2]
Conv [1,23] [1,2] 23× 32× 48

Batch Normalization
ReLU

Max Pool [1,2] [1,2]
Conv [1,23] [1,2] 23× 48× 64

Batch Normalization
ReLU

Max Pool [1,2] [1,2]
Conv [1,23] [1,2] 23× 64× 96

Batch Normalization
ReLU

Average Pool [1,32] [1,1]
Fully Connected 8

SoftMax
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allow the error from later layers to propagate to earlier layers which enables all adaptive

parameters in the network to be updated during training. The additional convolutional

layers will theoretically assist the network in learning complex features and characteristics.

An RESNET was designed with parameters as described in Table 2 and its results will be

displayed in Chapter 6. This network has more convolutional layers than the CNN described

in the previous section. Additional skip connections can be included, but they increase

training time without any noticeable improvement in performance. Furthermore, it was

found that using strides to reduce the feature map had better performance than pooling

layers which is why they were avoided in this topology.

In Table 2, the skip connections are a direct connection from one part of the network to

another. For example, the Tanh with the note, ’branch to ADD-1’, has a direct connection

from that activation function to the ADD-1 layer. The ADD-1 layer sums the outputs of

the prior activation function and the branched activation functions skip connection. The

skipped portion of the network is called a residual block. The branch that is connecting the

activation function to the ADD layer at the end of the residual block is the skip connection.

In this network there are three of these residual blocks with a skip connection on each block.

Many variations of the CNN and RESNET were attempted, but the networks described

in Table 1 and 2 had the best performance for their respective topology. Other variations

using multiple branches were also pursued which eventually lead to research into capsule

networks. These capsule networks will be discussed in the following section.
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TABLE 2: RESNET Network Layout

Layer Filter Stride Size/Weights
Input 2× 32, 768
Conv [1,22] [1,9] 22× 2× 64

Batch Normalization
Tanh
Conv [1,23] [1,8] 23× 64× 48

Batch Normalization
Tanh (branch to ADD-1)

Conv [1,24] [1,1] 22× 48× 64
Batch Normalization

Tanh
Conv [1,24] [1,1] 22× 64× 48

Batch Normalization
Tanh

Add-1 (branch to ADD-2)
Conv [1,24] [1,1] 22× 48× 64

Batch Normalization
Tanh
Conv [1,24] [1,1] 22× 64× 48

Batch Normalization
Tanh

Add-2 (branch to ADD-3)
Conv [1,24] [1,1] 22× 48× 64

Batch Normalization
Tanh
Conv [1,24] [1,1] 22× 64× 48

Batch Normalization
Tanh
Add-3

Fully Connected 8
SoftMax
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4.3 PROPOSED CAPSULE NETWORK FOR DIGITAL

MODULATION CLASSIFICATION

The aim of capsule networks is to better emulate how humans learn to recognize desirable

characteristics in their vision. As elaborated upon in [17], when the human eye receives

an input image, the eye does not focus on the entire image. Instead, points of fixation

are established which are used to reconstruct a mental image in the person’s mind. In

other words, when a human looks at an object, they aren’t actually looking at the entire

object; rather, their eyes are picking out the important characteristics of the object. These

important characteristics inform how the person classifies the object. With respect to digital

modulation classification, the capsule network will discover characteristics that are intrinsic

to that modulation scheme which will be used to classify it.

To emulate the points of fixation, several capsules will be established. These individual

capsules are expected to learn the characteristics unique to each modulation scheme so that

it may be accurately classified. The inputs to the proposed capsule network will be raw

in-phase and quadrature data.

A capsule network is a CNN style network comprised of several layers (or sections). The

first section is a feature extraction layer. This is a standard CNN layer with an activation

function. The following layer is referred to as the primary caps section which consists of

several CNN layers. The output of each primary caps layer is referred to as the capsule

vector or digit caps and has dimensions 1xN with N being the number of neurons in that

vector which correspond to the number of class specific attributes that the capsule network

will learn during training. There is one digit caps per class. It is important to note that this

is different from standard CNN approaches which rely on a single output neuron per class.

Ideally, the magnitude of this capsule vector will correspond with the probability that the

input data matches this class. The neurons in the digit caps section have connections with

the neurons in the primary caps layer. The weights for these connections are determined

iteratively using the dynamic routing by agreement algorithm [17].

However, in this text an alternative to the dynamic routing by agreement algorithm will

be applied. Instead of using the method in [17] to update the weights between a given cap-

sule vector and higher layer neurons, all higher layer neurons will be fully connected to each

neuron in a 1 × N neuron vector. These neurons are expected to discover class specific at-

tributes and activate on these recognized characteristics. This topology is a simpler approach

to [17] and allows for an easier real world implementation and efficient training as matrix

operations are very efficiently computed with a graphical processing unit (GPU) whereas
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FIG. 21: The simplified topology of the capsule network considered for digital modulation
classification.

iterative learning by means of dynamic routing by agreement is not. The remainder of this

chapter will focus on the specifics of this capsule-like network. Other recent modifications

to capsule networks can be found in [18].

4.3.1 NETWORK TOPOLOGY

The proposed capsule network is shown in Fig. 21. This network is designed to classify

the following eight digital modulation schemes: BPSK, QPSK, 8-PSK, DQPSK, MSK, 16-

QAM, 64-QAM, and 256-QAM. As such, there are eight branches/capsules in this topology.

Each of the highlighted sections in Fig. 21 are elaborated upon in the below subsections.

The specific parameters of each layer are captured in Table 3.
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TABLE 3: Capsule Neural Network Layout

Layer Filter Stride Size/Weights
Input 2× 32, 768
Conv [1,22] [1,9] 22× 2× 64

Batch Normalization
Tanh

Conv-1-(i) [1 23] [1,7] 23× 64× 48
Batch Normalization-1-(i)

Tanh-1-(i)
Conv-2-(i) [1 22] [1,8] 22× 48× 64

Batch Normalization-2-(i)
Tanh-2-(i)

Average Pool (i) [1,8] [1,1]
FC-(i) 32

Batch Normalization-3-(i)
ReLu-1-(i)

Point FC-(i) 1
Depth Concatenation(i=1:8) 8

SoftMax

Feature Extraction Layer

The very first layer of this network is the feature extraction layer. Its purpose is to

use a CNN layer to perform general feature mapping of the input in-phase and quadrature

signal data. Specific kernel seizes, strides and CNN parameters were inspired specifically by

[6, 7, 8]. This input is passed to each of the primary capsules (primary caps) found in the

following layer. It is important to note that these layers branch out, like a parse tree, with a

number of branches equaling the desired number of classes. All of the primary caps receive

the same input.

Primary Caps

There are eight primary caps layers, one for each modulation class. All primary caps

layers have an identical structure and all receive the same output from the previous feature

extraction layer. This layer consists of two CNN layers with similar filter and stride param-

eters as the previous layer, and an activation function. The primary caps layers is then fed
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into a fully connected layer.

Fully Connected Layer

The fully connected layer is comprised of 1 × N neurons, which can be thought of as a

neuron vector, with the weights being fully connect to each neuron in the last layer of the

primary caps section. Ideally, the neurons in this layer will discover characteristics specific

to the digital modulation scheme associated with this layer. This approach is chosen in lieu

of the dynamic routing by agreement algorithm. To make the output of this layer compatible

with a softmax classification layer, each of the neurons within this layer is fully connected

to a single neuron, or point neuron. Thus, the final output of the capsule branch is a single

neuron. Because there are eight branches there will be eight neurons. All eight of these

output neurons will be combined depth wise to produce an 8-dimensional vector a, which is

passed to the classification layer. The elements in a are representative of the likelihood that

the characteristics corresponding to a specific digital modulation scheme were present in the

input in-phase and quadrature signal data.

Classification Layer

The classification layer is a standard softmax layer. The equation for the softmax was

shown in equation (36). This output vector from the previous layers, a, is fed into the

softmax layer which will result in an eight dimensional vector σ. The element with the

highest value corresponds to the modulation scheme that is most likely represented by the

input in-phase and quadrature data.

4.3.2 BENEFITS OF NETWORK TOPOLOGY

As shown in Fig. 21, the capsule network consists of only a few layers in depth. These

types of networks are often referred to as shallow CNNs because of their small layer depth.

As such, capsule networks are not as susceptible as deeper neural networks to the problem

of vanishing gradient and thus do not encounter this type of training difficulty.

Due to the fact that the capsule network emulates a parse tree structure, each branch

can focus on learning characteristics of a specific class. All of the kernels in the primary

caps will focus on learning to activate on features which correspond to that branch’s class.

In other networks, such as CNN and RESNET, the kernels in each layer could correspond

to features of any class. This distinct difference allows the branches to excel at activating

on class specific features.
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FIG. 22: Illustration of parameter space for the proposed capsule network.

Another advantage to this specific capsule like network is the simplicity of its architecture.

The shallow layers coupled with the similarity between branches make it well suited for

implementation into a field programmable gate array (FPGA). The illustration in Fig. 22

help shows the learnable parameter space needed for the proposed network. There are

2, 076, 872 overall parameters needed for the proposed capsule network which is reasonable

for real world implementation.
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CHAPTER 5

SUPERVISED TRAINING

As mentioned in Chapter 3, artificial neural networks are comprised of many adaptive

parameters which can be tuned arbitrarily. The process by which these adaptive parameters

are tuned is referred to as training. The goal of training is to adjust the adaptive parameters

such that they activate upon features present in the input data which are then used to

predict the classification. Of the various training approaches available, the most common is

supervised learning. Supervised learning uses input data which belongs to a known class.

When a given input is associated with a known class, this data is considered to be labeled.

The data itself can be anything from pixel intensities of an image, a list of statistical values,

or a sequence of a digital signal, etc. The label is a finite category that the input data

belongs to. Labels are often generated by humans manually assigning the data to one of

several categories. Once an arbitrarily sufficient amount of labeled data is achieved, and a

ANN topology is chosen, the process of supervised training may commence.

The goal of supervised training is to adapt the weights of the ANN so that the ANN may

successfully map any given input data to one of the known categories. In other words, the goal

is for the ANN to perform accurate classification of the input data. Typically, for supervised

learning, the entire labeled dataset is separated into several disjoint subsets. These subsets

are referred to as the training, validation and testing subsets. All of these subsets should

have similar distributions of classes and similar class variations. The training dataset is

exclusively used to tune the adaptive parameters of the ANN by means of backpropagation

which was introduced in Chapter 3.

The input data is supplied to the ANN which returns a prediction. The prediction of

the ANN is compared with the labeled value (often referred to as the truth). The error

between the prediction and the truth is used to adapt the weights to improve performance.

Once the entire training dataset has been used to tune the adaptive parameters, it is then

shuffled and used again to continue training the network. The number of times the training

dataset is used is referred to as the number of Epochs. Often many epochs are used to train

the network. If too many epochs are used, the ANN may memorize or over-fit the training

dataset. When a network over-fits it will have excellent performance for the training data but
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poor performance for any other input data. To prevent over-fitting, the ANN is evaluated

at scheduled intervals with the validation dataset.

The validation dataset is separate from the training dataset and is no way used for

adjusting the weights of the ANN. Instead, the validation dataset is used to evaluate the

performance of the ANN with data that was not used for training. It is impossible for the

ANN to over-fit the validation dataset thus making its predictions a useful tool for evaluating

over-fitting. At scheduled intervals, normally at the end of each epoch, training is paused

and the entire validation dataset is input into the ANN. The predictions of the ANN are

compared to the truth values. If the performance of the ANN is similar to the performance

of the training data, then the ANN is likely not over-fitting. The validation dataset is often

the smallest of the three subsets but it is an important tool for evaluating the unbiased

performance of the ANN during training. Because it is a small subset it may not carry with

it sufficient statistical diversity to truly evaluate the network’s performance. Thus, the third

subset, the testing dataset, is used to evaluate performance.

After training has concluded, the testing dataset is input into the ANN which makes

predictions. The predictions of the ANN are compared to the truth values resulting in the

overall network performance. The training dataset is in no way used to adjust the weights of

the network and is only used for performance evaluation. It is important that all three subsets

have a similar distribution of labeled data with similar characteristics. Specific examples of

this will be highlighted for the datasets used for training. However, the overall goal is that

there should not be any appreciable differences in the training data and the testing data

which give the testing data an advantage.

The training, validation and testing subsets of the labeled dataset are often described

in terms of a percentage of the overall dataset. A common ratio is 75%/5%/20% which

means that 75% of the dataset is used for training, 5% is used for validation and 20% is

used for testing. This ratio is arbitrary and often requires a delicate balance between having

a sufficient amount of training data to train the network while maintaining enough testing

samples to accurately evaluate the network’s performance.

This chapter will now explore two datasets which will be used for training the proposed

network. These datasets contain signal samples for the following digital modulation schemes:

BPSK, QPSK, 8-PSK, DQPSK, MSK, 16-QAM, 64-QAM, and 256-QAM. All of these digital

modulation schemes and their symbol representation have been introduced in a previous

chapter. There are two datasets that will be described, both containing the same digital

modulation schemes but with some specific parameter variations which will be discussed in
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detail.

This chapter will also introduce the simulation setup, specifically the tools used and

the process by which the networks are trained. Analysis of the pros and cons of certain

simulation approaches will be provided.

5.1 DATASETS

The labeled datasets used for simulations are of the in-phase and quadrature signal com-

ponents representing various digital modulation schemes. The signal sequence is the input

data of the dataset. Each input data is labeled with its corresponding digital modulation

schemes which are the labeled categories for the dataset. Each dataset contains an equal

distribution of labeled data among the various digital modulation schemes. For any digital

modulation scheme there are several varying characteristics that may be present.

As discussed in Chapter 2, the various roll off factors may be used for the root raised

pulse shaping functions. The pulse shaping function will vary over a specified interval.

The various pulse shaping functions are not expected to impact classification but they are a

characteristic that varies and thus are listed. Another characteristic that varies is the number

of in-phase and quadrature signal samples per symbol. This will influence the duration of the

symbol pulses which may cause a stretching effect from the perspective of the ANN. Another

characteristic that varies is the carrier frequency offset. Variations to the carrier frequency

offset may introduce inter-carrier interface and cause difficulty in symbol detection. Finally,

the range of in-band SNR values will determine the ratio of AWGN power to signal power

that is present. The AWGN corrupts the symbol and makes its detection difficult. The

specifics for the various datasets used are provided below.
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5.1.1 DATASET1

The first dataset that will be presented is publicly available on [26]. This dataset is

comprised of BPSK, QPSK, 8-PSK, DQPSK, MSK, 16-QAM, 64-QAM, and 256-QAM with

there being 14, 000 of each digital modulation scheme for a total of 112, 000 available signals.

Each signal is 32, 768 samples in length and contains the unfiltered in-phase and quadrature

signal components. Prior to training, these signal components are normalized. This dataset

will be referred to as DataSet1.

DataSet1 employs square-root raised-cosine pulse shaping that has a roll off factor within

the interval of [0.1, 1.0]. The symbol rates for the DataSet1 vary between 2 samples
symbol

and

50 samples
symbol

. The carrier frequency offsets (CFO), represented as ∆fc, are uniformly distributed

within the interval of [−0.001, 0.001]. For the DataSet1 the in-band signal to noise ratio

(SNR) varies between the values of −2 dB and +12 dB, where the SNR is represented in

decibels. The specific in-band SNR range for the entire dataset is represented in Fig. 23.

The in-phase and quadrature signal sample data has an assumed sample rate of fs = 1.

If the time domain or frequency domain spectrum of these signals is plotted, an arbitrary

sample rate may be used. This is a common convention especially in plotting the spectrum

of Fast Fourier Transforms (FFT).

The similarities in the Cartesian symbol plots between some of these modulation schemes

can make it difficult to distinguish one from another. DataSet1 is designed to be challenging

to perform digital modulation classification.

5.1.2 DATASET2

Especially in the field of machine learning, sometimes a minor variance in some of the

parameters can result in undesirable classification accuracy. As a simple example, imagine

if a facial recognition ANN only were given upright faces as the training images. Naturally,

it would learn to recognize upright faces accurately. If this same network were tested on

images that were flipped or rotated by 90o then the network would likely have less than

desirable classification accuracy. This is the motivating reason behind use a second dataset.

The second dataset will be referred to as DataSet2 and is available upon request from [26].

DataSet2 consists of the same digital modulation schemes with the same number of signals

as DataSet1. The signal characteristics of DataSet2 are comparable with the exception of

the symbols rates and the CFOs ∆fc interval.

The symbol ranges for this dataset vary between 1 samples
symbol

and 30 samples
symbol

. This interval
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FIG. 23: DataSet1 In-band SNR range for all signals.

FIG. 24: DataSet2 In-band SNR range for all signals.
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largely overlaps with the DataSet1 symbol rate characteristic. However, the CFOs ∆fc

interval is disjoint between these two datasets. If a network is trained using one dataset

and tested using the other, it is supposed that this will be a good test by which to gauge

how well the trained network will be able to generalize. This experiment will be conducted

and results displayed in a later chapter. Furthermore, the in-band SNR ranges vary slightly

between the two datasets. The in-band SNR range for DataSet2 is as shown in Fig. 24.

Using multiple separate datasets to test the proposed network will be useful in evaluating

the overall performance of the proposed network. Also, by using different networks with

varying characteristics, the problem of dataset shift [27] may be assessed.

5.2 DATA AUGMENTATION

It is expected that the trained digital modulation classifier will perform well at classifying

high in-band SNR signals and perform less desirably as the SNR decreases. This is visible in

similar digital modulation classification approaches [8, 5, 6, 7]. A close inspection of Fig. 23

will show that there are few samples for lower in-band SNR values. This small sample size for

the lower in-band SNR values will not be very useful in evaluating the network performance

for this SNR interval. To remedy this dilemma, data augmentation is used.

Let’s go back to the example of facial recognition ANN that is trained only using upright

images. If instead the dataset used to train the ANN is augmented by randomly flipping,

rotating and inverting then the network will be exposed to such characteristics. Networks

trained by augmenting the data can achieve better generalization. In this case, random

noise will be added to higher SNR signals which will reduce their overall SNR. This noise

will increase the difficulty in symbol excursion recognition. In no way will adding noise make

the modulation scheme easier to classify.

For the entire dataset, the in-band SNR values are known for each signal, represented as

Psignal. The signals will be augmented by adding a specific amount of noise to reduce the

in-band SNR to a lower value. This value will be referred to as Padd. Because not all in-band

SNR values are initially the same and because it is desirable to add a random amount of

noise, the term Prand is presented. Prand is a pseudo random amount of noise that will be

added to make the Padd fall in a desirable range. It is important that all classes be augmented

by similar amounts of noise.

To begin, Padd must be determined which is simply the sum of the current in-band SNR

value with the pseudo random amount of noise and the noise power. This is shown in

equation (42). Note, some of these power values are in dB and some are in watts and Pn
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FIG. 25: DataSet1 In-band SNR range for all signals after augmentation.

denotes the noise power which is known.

Padd = 10(Psignal−Prand)/10 − Pn (42)

Next, two random lists of in-phase and quadrature data must be generated. The size

of these arrays must match the dataset size which is 32, 768 samples for both in-phase

and quadrature components. This can be represented as shown in equation (43) for i =

1, . . . , 32768 and r and q are random values.

n(i) = r + jq. (43)

Next, this n(·) must be scaled by the power factor. This new scaled value is represented

in equation (44) where ns(·) is the scaled value of the added noise; V AR is the statistical

variance operator.

ns(i) = n(i)

√
Padd

V AR(n(i))
(44)

This new ns(i) is then separated into its real and imaginary components (in-phase and

quadrature components) and appropriately added back into the dataset. This results in a

new histogram of the in-band SNR which is shown in Fig. 25. This histogram shows a
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better distribution of SNR values for the lower interval when compared to Fig. 23. These

new SNR values were cross checked using a band of interest estimator [12]. This will be

useful in determining the accuracy of the network for a wider range of SNR values. As can

be seen in Fig. 24, DataSet2 also does not have many values for the lower in-band SNR

ranges. This dataset could also be augmented with noise to increase the samples for the

lower in-band SNR range. However, the goal of introducing DataSet2 is to see how well

the network behaves for different characteristics and not necessarily for lower in-band SNR

values.

5.3 SIMULATION SETUP

Supervised training is computationally intensive and is best performed on a high per-

formed cluster (HPC). Training occurred on the WAHAB high performance cluster. Cur-

rently, WAHAB has available 10 NVidia Tesla V100 graphical processing unit (GPU) nodes

available with each node having 128 GB of memory. For these nodes, the CPU is an Intel(R)

Xeon(R) Gold 6130 @ 2.1GHz, with 32 slots available (that is, 32 threads can occur simul-

taneously). The proposed network has been implemented in MATLAB and is trained using

the stochastic gradient descent with momentum (SGDM) algorithm [28]. The actual train-

ing of the network is computationally intensive; however, the HPC resources allow for the

entire dataset to be loaded into RAM which greatly deceases training time. When working

with large datasets, the slowest aspect of training is in loading a batch of training data into

memory. By initially loading all data into RAM, a great deal of time is saved.

Now that the datasets have been properly introduced, the actual simulation environment

can be established. For each dataset, the entire dataset is broken up into training, validation

and testing subsets each with 70%, 5%, 25% respectively. All subsets have similar SNR

ranges and contain the same class distribution. The training data is exclusively used for

training the proposed network. During training, the actual training process will be paused

and the validation data will be passed through the partially trained network. The validation

data is not used to update weights; rather, it is used to evaluate the current performance of

the network. Because the network was never trained with the validation data, it should be

a good predictor of how the network is performing.

Because the network attempts to best fit the training data, it is possible for the network

to memorize the training dataset thus producing artificially good results. To avoid this,

separate testing data is used. Once all training has been concluded, the network may be

tested with the testing data. This testing data has not been used in any way to update the
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weights of the network; thus, the classification accuracy of this network will be a good metric

for evaluating the network’s performance.

After training has been completed and the network has been evaluated with the testing

data, the results will need to be displayed in a useful way. The three main ways that perfor-

mance will be evaluated are overall accuracy, confusion matrix, and classification accuracy

over in-band SNR range. The overall accuracy is a convenient way to quickly see how well

the network performed overall. The confusion matrix is a very helpful graphic because it

captures the overall classification accuracy per class as well as provides a metric for when

incorrect classifications occur. This can be thought of as measuring the confusion of the

network. Finally, a plot that shows the performance of the network for varying in-band

SNR values will be helpful as lower in-band SNR values are not expected to perform as well.

These three metrics will be useful in quantifying the proposed network’s performance.
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CHAPTER 6

SIMULATION RESULTS AND ANALYSIS

All previous chapters have been presented in order to provide useful information which

will now be culminated in this chapter. A background to the various digital modulation

schemes has been provided. The signal space and symbol representations were shown in

attempts to describe what kind of differences the classification network will be expected to

learn. A background on machine learning as well as common layers were provided. This was

in an attempt to provide a high level overview of the topic as it pertains to a classification

ANN. Specific discussion of the various network topologies as well as detailed parameters

for those networks were provided. The datasets and their similarities and dissimilarities

were discussed. A description of the simulation environment and how performance will be

measured was provided in detail. All of the above was given with the goal of providing

the background information necessary to understand the goals of the simulations and the

analysis of their results.

This chapter will begin by discussing the results obtained by training and testing with

the DataSet1. This will demonstrate the network’s ability to learn how to classify digital

modulation schemes. In the same section, training with DataSet1 and testing with DataSet2

will be simulated. The goal of this second simulation is to see how well the network is able

to generalize to out of distribution characteristics. These simulations will be repeated the

other way around by evaluating the performance when the networks are trained and tested

using DataSet2 and also for when they are trained with DataSet2 and tested with DataSet1.

6.1 DATASET1 RESULTS

The networks with the parameters specified in Tables 1, 2 and 3 were each trained using

DataSet1. All networks were trained using 78, 400 training signals. The capsule network was

trained for 8 epochs, the RESNET was trained for 14 epochs and the CNN was trained for

12 epochs. Once trained, the networks were tested using 28, 000 testing signals which were

not used during training in any way. The network performance can be assessed by viewing a

probability of correct classification (PCC) vs in-band SNR plot. These results are displayed

in Fig. 26a. These same trained networks were then tested with all 112, 000 testing signals

from DataSet2 with results shown in Fig. 26b.
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(a) Networks tested using DataSet1.
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(b) Networks tested using DataSet2.

FIG. 26: Probability of correct classification vs in-band SNR for networks trained using
DataSet1.
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The network performance for an individual class can be better assessed with a confusion

matrix. The confusion matrix will show the percentage of correct classifications for each

particular class as well as the percentage of incorrect classification with respect to the labeled

class. This is very useful as it shows the accuracy of network predictions while capturing

which classes the network is likely to incorrectly classify. The confusion matrices for each of

the trained networks will be discussed in subsequent sections.

CNN Performance:

The CNN performance as shown in Fig. 26a is reasonable. Moderately high classification

accuracy is seen for higher in-band SNR values. As the in-band SNR is decreased, the

classification accuracy is reduced. The network performance never drops below 1
8

= 12.5%

which is a good indicator that, even for undesirable in-band SNR values, the network is able

to activate on key features in the input signal which allow the network to make predictions

at an accuracy level that is greater than a random guess. Similarly, the performance for

PCC vs in-band SNR for the network tested with DataSet2 can be evaluated by viewing

Fig. 26b. The CNN trend line shows decreased performance for the entire in-band SNR

range which suggests that this trained CNN network is not as readily able to activate on

the features in DataSet2 with characteristics it was not trained with. The PCC vs in-band

SNR is a valuable plot, but it does not provide individual class performance. To view the

individual class performance, a confusion matrix is used.

The confusion matrix for the CNN that was trained and tested using DataSet1 is provided

in Fig 27a. This confusion matrix shows that the two classes that perform best are BPSK

and MSK. It is interesting to note that the PSK type signals are most likely to be confused

with each other. There are similarities between the different PSK type signals. This suggests

that the CNN is learning key features and characteristics present in the PSK type classes

and is making predictions based on these features. Similarly, the QAM type signals also are

heavily confused with each other. The QAM constellations are very similar to each other

which explains why there is so much confusion among the QAM type signals. Overall, this

confusion matrix provides valuable insight into the CNN performance and suggests that the

network is truly learning features present in the respective classes. The confusion matrix

for the CNN that was trained with DataSet1 and tested using DataSet2 is shown in Fig.

27b. Here, the results are not very desirable with large confusions happening among the

PSK type and QAM type signals. Furthermore, BPSK signals now have the lowest overall

performance. It is apparent that the features learned by training with DataSet1 did not
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generalize well to the features with different characteristics present in DataSet2.

RESNET Performance:

The RESNET has a slightly more complicated architecture than the CNN. As seen in

Fig. 26a, the RESNET either matched or outperformed the CNN across the entire in-band

SNR range. The RESNET has excellent PCC at high in-band SNR values which is reduced

as the in-band SNR is decreased. It is interesting to note that the CNN and RESNET are

very similar for in-band SNR values at or below 2dB. The results for RESNET, which is

tested using DataSet2, are shown in Fig. 26b. These results are very poor and appear to

hover around 12.5% which suggests that the network is unable to detect any features in

DataSet2 and is simply guessing. A confusion matrix can be used to assess each individual

class performance.

The confusion matrix in Fig. 28a displays the RESNET class performance. It is very

interesting to note that all classes in the RESNET perform around 84% with MSK having

the best performance. The confusion of this network shows that confusion for any class

is spread among all classes. Upon close inspection, there is still a slightly higher chance

of PSK type signals being confused with PSK type signals and QAM type signals being

confused with other QAM type signals. This signature was more noticeable in the CNN

confusion matrix. Overall, these are good results which suggest that the RESNET is learning

to recognize features in the input signals and activate upon them. The confusion matrix

capturing the results of the trained RESNET being tested with DataSet2 are shown in 28b.

These results show poor performance and suggest that the network is simply guessing with a

slight preference for the MSK class. The RESNET is very sensitive to the out of distribution

characteristics present in DataSet2 and thus did not generalize well.

Capsule Network Performance:

The capsule network has the best overall performance as illustrated in Fig. 28a. Here, the

capsule network is higher than both the CNN and RESNET for the entire in-band SNR range.

This network has excellent performance at high in-band SNR values. This performance is

reduced when the in-band SNR is lowered which is to be expected. Performance is severely

decreased when this trained network is tested using DataSet2 as shown in Fig. 26b. The

PCC is greater than 12.5% suggesting that the network is not guessing and is still able to

activate on features in the input signals but with severely reduced accuracy. A confusion

matrix can be used to assess individual class performance.
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FIG. 27: Confusion Matrix of CNN trained using DataSet1.
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FIG. 28: Confusion Matrix of RESNET trained using DataSet1.
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FIG. 29: Confusion Matrix of the capsule network trained using DataSet1.
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The confusion matrix shown in Fig. 29a shows overall good performance with all av-

erage performances being at or greater than 91%. BPSK and MSK have the best overall

classification accuracy. As observed for the CNN and RESNET confusion matrices, there is

a tendency for PSK type signals to be confused with other PSK type signals and likewise

for QAM type signals to be confused with other QAM type signals. The greatest confusions

are occurring among the QAM type signals which is reasonable considering their similarities.

Overall, this is excellent performance which is noticeably superior to the CNN and RESNET.

The confusion matrix in Fig. 29b shows the results for when the network is tested using

DataSet2. These results show similar confusions occurring for the respective PSK type and

QAM type signals with MSK performing the best overall. As seen for the CNN network, the

capsule network is also able to activate on the features with different characteristics present

in DataSet2 but with reduced accuracy.
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6.2 DATASET2 RESULTS

As introduced in Chapter 5, there is a second dataset that will be used to assess the

performance of all networks. The exact same parameters specified in Tables 1, 2 and 3 were

used for training with DataSet2. All networks were trained using 78, 400 training signals.

The capsule network was trained for 5 epochs, the RESNET was trained for 14 epochs and

the CNN was trained for 12 epochs. As before, once each respective network was trained

it was then tested using 28, 000 testing signals. The PCC vs in-band SNR can be assessed

using Fig. 30a. These same networks that were trained with DataSet2 were then tested

using 112, 000 signals from DataSet1. These PCC vs in-band SNR results are displayed in

Fig. 30b

The main intention of the DataSet2 is to assess how well the various networks generalize

to out of distribution characteristics present in the testing data which were not present

in the training data. However, viewing the performance of the various networks that are

trained with DataSet2 will determine if the network is able to learn these features and thus

establishes baseline performance. This baseline performance is important as it will determine

if the networks are able to learn these different feature characteristics. The performance of

each network will be addressed in subsequent sections by looking at the confusion matrices.

CNN Performance:

As seen in Fig. 30a, the CNN consistently has lower PCC across the entire in-band

SNR range when compared to RESNET and capsule network. Nevertheless, these are still

good results especially for the higher in-band SNR range. The confusion matrix in Fig. 31a

suggests that similar class confusions among the PSK type and QAM type classes is present.

For the CNN, the QAM type signals experience the worst confusion with the 64-QAM and

256-QAM being the worst offenders. What is unusual is that 16-QAM has 90% classification

accuracy and 256-QAM has 33.7% classification accuracy. This is a substantial variance

within the QAM type classes. At any rate, these results suggest that the CNN is able to

activate on features and characteristics present in DataSet2. This same network trained with

DataSet2 was also tested with DataSet1 with the confusion matrix results of this simulation

being presented in Fig. 31b. This confusion matrix shows that the CNN is not able to

activate on the features in DataSet1 when only trained with DataSet2.
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FIG. 30: Probability of correct classification vs in-band SNR for networks trained using
DataSet2.
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FIG. 31: Confusion Matrix of CNN trained using DataSet2.
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RESNET Performance:

The performance of the RESNET is excellent across the entire in-band SNR range as

shown in Fig. 30a. It can also be observed that the performance is not severely impacted

for the lower end of in-band SNR values. However, when this trained network is then tested

with signals from DataSet1 it has lower PCC results as shown in Fig. 30b. In fact, these

results hover around 12.5% suggesting that the RESNET is simply guessing and is not able

to activate on features with varied characteristics in DataSet1. These results can be assessed

further by viewing the confusion matrix corresponding to this plot.

The confusion matrix for the RESNET trained and tested using DataSet2 is illustrated

in 32a. This confusion matrix shows little confusion for the various classes with all classes

scoring in the mid 90′s%. Because of the high classification accuracy values, there does

not seem to be the same PSK type and QAM type confusion signatures that were apparent

in previous confusion matrices. Overall, this is excellent performance and suggests that

the RESNET has learned to distinguish the various digital modulation schemes with great

accuracy. However, the confusion matrix for the RESNET that is tested with signals from

DataSet1 reveals that the network is simply guessing with a slight preference for the QAM

type classes. This confusion matrix is found in Fig. 32b. Ultimately, this is undesirable

performance which suggests that the RESNET is very sensitive to characteristic changes

present in the features.

Capsule Network Performance:

Finally, the results of the capsule network when trained and tested with DataSet2 will

be assessed. As is clear in Fig. 30a, the capsule network has excellent PCC over the entire

in-band SNR range. Even for the lower in-band SNR values, the performance is still very

desirable. When this trained network is then tested using signals from DataSet1 it has

decreased PCC performance over the entire in-band SNR range as shown in Fig. 30b.

By looking at a confusion matrix, the class performance may be assessed. This confusion

matrix for the capsule network trained and tested using DataSet2 is provided in Fig. 33a.

This shows excellent performance with all classes scoring in the mid to high 90′s%. The

respective PSK type and QAM type confusion signatures are present in this network. This

suggests that the capsule network is learning to recognize PSK type and QAM type signatures

with more consistency than the RESNET was able to. Overall, these are excellent results and

suggest that the capsule network is able to activate on the features present in DataSet2. The

confusion matrix in Fig. 33b shows the results for when this trained network is tested with
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FIG. 32: Confusion Matrix of RESNET trained using DataSet2.
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signals from DataSet1. In this case the MSK has excellent class performance, but all other

classes have severely decreased performance. The PSK type and QAM type are confused

with each other respectively.

The goal of these networks is to successfully classify digital modulation schemes in

DataSet1 and DataSet2. It was understood that the similarities between classes may cause

inter-class confusion, and this was visible in the confusion matrix plots. Specifically, PSK

type classes and QAM type classes were more readily incorrectly classified as a class of the

same type. It was also expected that the networks would learn to recognize excursions and

characteristics that belong to that respective class. It seems reasonable that some of these

excursions or characteristics may be similar between the PSK types and QAM types. This

suggests that the networks are truly learning PSK type and QAM type features and are

activating on these features.

Furthermore, it was expected that the networks would be better able to classify higher in-

band SNR signals because the signal power was much greater than the noise power. However,

as the in-band SNR was decreased the performance was impacted. This also suggests that

the characteristics that are learned are harder to distinguish when saturated with noise.

This is more evidence suggesting that the networks are truly learning class specific features

and characteristics. Thus far, the experiments involving training and testing with the same

dataset are very desirable and seem to suggest that the networks are able to correctly classify

signals when trained with data that represents all underlying feature characteristics in the

testing data.
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FIG. 33: Confusion Matrix of the capsule network trained using DataSet2.
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6.3 GENERALIZATION DISCUSSION

The above results show that excellent classification accuracy can be achieved with the

respective datasets. As noted in the chapter introducing the datasets, these datasets have

certain characteristics not present in the other, namely their CFO values, ∆fc, are on disjoint

intervals. When a network is not exposed to specific feature characteristics during training, it

is not clear how the network will perform when exposed to new characteristics during testing.

This is why the simulations trained with one dataset were then independently tested with

both datasets. The goal was to determine if the respective networks would still be capable

of activating on features with different CFO characteristics.

It is apparent from the simulation results that variations in the CFO that were not present

during training have adverse impacts on performance. As pointed out in the background

chapter on digital modulation schemes, different values for the CFO may cause inter carrier

interference or attenuate the overall received signal. However, when the proposed network

was trained and tested with DataSet1, it performed well and also when it was trained and

tested with DataSet2 it performed well. Thus, all networks are capable of learning to activate

on any range of CFO characteristics when these characteristics are present in the training

data.

Ultimately, these simulations show that whatever characteristics were learned by the

respective networks are very sensitive to changes in the CFO. This is clearly demonstrated

in the above simulations as the primary difference between DataSet1 and DataSet2 are the

CFO intervals. One argument might be that, because the networks were not exposed to the

respective CFO characteristics during training, they cannot be expected to recognize the

different characteristics. To assess this idea, the datasets can be combined and then trained

and tested using a combined dataset.

6.4 COMBINED DATASET RESULTS

By combining the datasets, a wider range of CFO characteristics will be present during

training. This will theoretically enable the network to activate on features with a broader

range of CFO characteristics. To do this 80, 000 signals from DataSet1 and 80, 000 signals

from DataSet2 were combined together and used for training. Careful attention was given

to have even distributions of class labels from each dataset. Of the 160, 000 signals, 112, 000

were used for training. The capsule network was trained for 10 epochs, the RESNET was

trained for 14 epochs and the CNN was trained for 12 epochs. Once training was concluded,
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FIG. 34: Probability of correct classification vs in-band SNR for networks trained and tested
using a combined dataset.

40, 000 signals were used for testing each network. The PCC vs in-band SNR for the various

networks is shown in Fig. 34. This shows good performance for high in-band SNR values

with performance being reduced as the in-band SNR is decreased.

The results of using a combined dataset are desirable and show that the networks are able

to achieve high accuracy for a wide range of CFO values only if those CFO characteristics

are present during training. At a high level, the network learns by observing a difference

between what was predicted and the labeled data. When an incorrect classification occurs,

error is propagated to the weights. This error tunes individual weights to have a higher

activation on features present in the input signal. If the network is only exposed to inputs

with specific feature characteristics, then only these feature characteristics will be correlated

with the respective class. At any rate, the networks are proficient at learning to classify

digital modulation schemes. The confusion matrices for these various networks can be found

in Fig. 35. These matrices show very similar results as described for the other simulations
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TABLE 4: Ranked Network Performance

Rank Network Overall Accuracy Training Dataset Testing Dataset
1 Capsule 97.5% DataSet2 DataSet2
2 RESNET 95.1% DataSet2 DataSet2
3 Capsule 94.5% Mix Mix
4 Capsule 93.7% DataSet1 DataSet1
5 RESNET 91.1% Mix Mix
6 CNN 87.7% DataSet2 DataSet2
7 RESNET 84.3% DataSet1 DataSet1
8 CNN 81.6% Mix Mix
9 CNN 78.4% DataSet1 DataSet1
10 CNN 39.4% DataSet1 DataSet2
11 CNN 34.9% DataSet2 DataSet1
12 Capsule 27.9% DataSet2 DataSet1
13 Capsule 26.2% DataSet1 DataSet2
14 RESNET 14.0% DataSet1 DataSet2
15 RESNET 13.4% DataSet2 DataSet1

with confusions occurring most often among PSK type signals and QAM type signals re-

spectively. The capsule network has the best overall performance but is closely followed by

the RESNET. Table 4 ranks the performances of the above simulations with regards to their

overall accuracy. This is provided to help summarize the performance of all simulations.

This comparison of performance for various artificial neural network topologies for digital

modulation classification have been submitted for presentation to IEEE Communication

Conference COMM2022.
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FIG. 35: Confusion Matrix for each network that is trained and tested using the combined
dataset.
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CHAPTER 7

FPGA IMPLEMENTATION

Field Programmable Gate Arrays (FPGAs) excel at the implementation of real time,

complex architectures into hardware. The internal architecture of an FPGA is defined by

a hardware descriptive language (HDL) such as VHDL or Verilog. Though it has the ap-

pearance of software, this HDL code is often referred to as firmware because it is using

verbose language to describe the implementation of synthesized hardware circuitry. FPGAs

are highly customizable and lend well to applications with redundancy in the system archi-

tecture. These factors make FPGAs an ideal candidate for implementing feed-forward ANN

for real world applications.

There are a number of inputs that must be considered when attempting to implement an

architecture onto an FPGA such as the inputs/outputs needed, overall throughput of data,

memory required for processing and the type of mathematical operations that are needed.

There is often a balancing act that goes on between these areas which will be addressed in

the following sections.

7.1 INPUT DATA AND REPRESENTATION

Most hardware designs begin with a black box diagram that specifies the inputs entering

the box and the desired output leaving the box. In order for a feed-forward ANN to perform

digital modulation classification, the raw in-phase and quadrature components would need to

be extracted and digitized so that they may be processed by an FPGA. This could be achieved

by a signal analyzer such as the one already introduced in Fig. 7. This signal analyzer would

require additional analog to digital converters (ADC) on the in-phase and quadrature signal

components respectively. The FPGA can only work with digitized signals; thus, the ADCs

are necessary. The ADCs will need to be carefully chosen to have sufficient sample rates and

bit precision. The ADCs will likely communicate using a serial peripheral interface (SPI).

The SPI lines are what will effectively communicate the digitized in-phase and quadrature

data to the FPGA. The goal would be to quickly perform live classifications; thus, there needs

to be a trigger output indicating which digital modulation scheme is present. This could be

as simple as having eight dedicated output wires (one for each digital modulation scheme).
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These detection wires would go high (turn on) if the corresponding digital modulation scheme

is detected and stay low (stay off) otherwise. This black box diagram of the notional design

can be found in Fig. 36. This diagram is very similar to a Software Defined Radio (SDR)

RF front end. Now that the digital representation of the in-phase and quadrature data has

been discussed, the data representation of the weights and bias values can be examined.

Weight values are often fractional values which are easily stored on an FGPA if fixed

point notation is used. Fixed point notation can represent any signed value within a certain

amount of precision based on the number of bits used. Normally, binary values represent

a decimal value as a power of two. Thus, the nth binary bit represents 2n in decimal for

n = 0, . . . , N with N being the bit length. Fixed point notation assumes that the decimal

point is placed in the string of binary bits. Bits that are on the right hand side of the decimal

point are treated as 2−m. Here m represents the mth bit from the decimal point. Thus, a

four bit binary value 1001, with the decimal point assumed to be as shown here, 1.001, would

represent the value 1 × 20 + 0 × 2−1 + 0 × 2−2 + 1 × 2−2 = 1 + 1
8

= 1.125. The values to

the right of the decimal are referred to as fractional bits. With fixed point precision a 16 bit

binary value (with 1 bit being the sign bit and 15 fractional bits) precision to within 1
215

can

be achieved.

By representing weights as fixed point bit arrays, the hardware within the FPGA can be

greatly simplified with a modest cost in precision. The weights can be stored either on the



76

FPGA as on chip memory or on a memory device external to the FPGA. For implementation

of the capsule network on a mid grade FPGA such as a Cyclone 10, up to 11, 740 M20k on

chip memory blocks are available which can be used to store the adaptive parameters internal

to the FPGA (depending on parity bits used and ADC bit precision). Other FPGA such as

Kintex-7 have available 34,380 k bit block RAM available. The proposed capsule network

has 2, 076, 872 adaptive parameters and will fit on Cyclone 10 or on the Kintex-7. Many

embedded SDR platforms, such as USRP embedded options include external memory in

the gigabyte range which will also fit this network. It may be preferable to utilize off chip

memory to simplify the internal architecture of the FPGA.

Furthermore, the digitized in-phase and quadrature data may also be represented in fixed

point notation. The available bit precision will be dependent on the chosen ADC, but 16 to

18 bits are commonly available. The proposed network requires inputs of 32, 768 samples of

both in-phase and quadrature data. This means that a buffer size of 2 × 32, 768 would be

needed and thus an additional 66 M20k memory blocks may be needed.

The above discussion describes the type of memory constraints that are required for

implementing the proposed network and what type of data representation could be used.

Now that the data types are described, the conceptual architecture can be examined.

7.2 CONCEPTUAL ARCHITECTURE

To begin with, the received input will need to be conveniently stored in an accessible

manner. The ADCs would be constantly sampling the receiving signal with the digitized

value being stored in its respective buffer. Various options exist such as a first in first out

(FIFO) buffer or a circular buffer. Circular buffers are easily implemented in firmware and

can account for deterministic latency if needed. The ADC would write its value to the

memory from a zero indexed first register to the maximum address value. A simple counter

can be used to keep track of which address is written. When a new sample is ready, it will be

written to the buffer and the counter will be incremented. When the max address is reached,

the counter will reset. This process will overwrite old values with new values. The benefit

of a circular buffer is that it is easy to implement and one does not need to worry about

overfilling it, like with a FIFO buffer. A trigger event will be required to arrest the sampling

process. This will freeze the buffer or cause it to pause temporarily so that its contents may

be read by following modules.

Once the circular buffer containing the input data to the network is ready, this data will

need to be normalized and passed to the feature extraction layer. Normalization of the input
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data requires that the maximum value in the buffer be divided by every element in the buffer.

Finding the maximum value in the buffer may easily be obtained by reading each element in

the buffer to find the greatest value. Alternatively, while the ADC values are being sampled,

a watch process could be employed which watches for the maximum value. If the latest

ADC sample is greater than the previous max value, then this becomes the new assumed

maximum. Whenever the counter that controls the address is reset, this watchdog can be

reset. This would allow the maximum value to be known before the trigger event. Division

on an FPGA is possible but undesirable as it can take multiple clock cycles to process.

Instead of dividing every memory element by the maximum sampled value, the inverse of

the maximum value can be found once, and then this value may be used for multiplication

of each element in the input circular buffer. The new normalized value may be rewritten to

the circular buffer or it may be written to another circular buffer. These simple steps will

result in normalization of the input data.

The normalized input data is now ready to be transferred to the feature extraction section

which is a convolution layer. For the proposed network, all CNN kernel values are 1×X in

length and the mathematical operation of the CNN is similar to a Finite Impulse Response

(FIR) filter whose equation is given by equation (45) where y(n) is the output of the filter

which uses the impulse response coefficients bi multiplied by the N previous values.

y(n) =
N∑
i=0

bix(n− i) (45)

FIR filters are widely implemented on FPGAs for digital processing application and thus

the mathematical operations of the CNN layers could be modeled after well established FIR

designs. These would involve loading the weights from memory into a multiplier and then

performing the multiplication with the weight values and the previous layer inputs. The

results of these multiplications can be stored in flip-flops and do not need to be loaded into

the on-chip memory. Modifications to FIR modules to include strides must be considered.

As suggested in [29] and shown in Fig. 37, the convolutional operation of a 1×N filter can

be achieved with cascaded multiply and accumulate modules. For CNN layers with multiple

filters, this operation would have to be repeated multiple times for each layer, and those

resulting values should also be stored in flip flops or in on chip memory. This process would

be as shown in equation (46) with K kernels and s stride. As specified in [29] a controller

would be necessary to ensure that the correct portions of the feature map and the correct

corresponding weights are loaded into the convolutional module. It is worth noting that

strides are implemented by an increment in address memory of s. Furthermore, padding is
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implemented by adding zero values to the edges of the feature map. The controller is the

key to successful implementation of the convolutional module. Furthermore, [29] also asserts

that the cascaded MAC elements may require additional clock cycles for the output to be

ready. To meet FPGA timing, delay registers or multi-cycle timing may be used.

aji(n) =
N∑
i=0

wjix((1 + s)n− i), for j=1,. . . ,K (46)

The last step of the CNN layer is to be passed through the non-linear activation function.

The hyperbolic tangent function, tanh, has many smooth components to it. This can be

approximated to a specified precision by means of a CORDIC or look-up-table. As suggested

in [29], the activation function may be included inside the convolutional block. This option

may increase the throughput necessary for the convolutional module. Keeping the activation

functions as a selectable, separate module allows the modules to be multipurpose and enables

the controller to easily adapt to various activation functions. This chosen option will result

in firmware that is easily converted to various network topologies. It is also worth noting

that the batch normalization layers are readily used to normalize input data during training.

For deployment these layers can be ignored.

The feature extraction layer would need to run the CNN over the entire input data
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sequence length. With an increase in complexity, multiple modules could process the initial

input data sequence starting and stopping at specified points. This increase in complexity

would require more multipliers, but it would result in faster data throughput. Depending

on the input data rate, this might not be necessary.

Similarly, the primary caps layer is a series of CNN layers and activation functions as

described above. The weights for each specific CNN would need to be loaded from memory

and multiplied with the value stored in flip flops from the previous layer. Depending on the

desired data throughput rate, all branches could be processed in parallel or they could be

processed sequentially and their values stored in flip flops. By processing in parallel, more

resources will be needed. By processing them sequentially, fewer resources would be needed,

but the overall throughput rate would be less. It is also worth noting that, as shown in Fig.

22, fewer operations are needed for following layers; thus, the operations can be performed

faster and with fewer resources.

The fully connected layers will need to implement equation (35). Here, a multiple and

accumulate (MAC) circuit could be synthesized to perform the multiplications and summa-

tion to find the activation. The output of this network would also need to be passed through

a ReLU activation function using either a CORDIC or look-up-table to approximate the

ReLU. The result of the branch will be one value stored in a flip flop array. All of these val-

ues can then be combined depth wise and passed through the softmax as shown in equation

(36).

To model the softmax in hardware, a CORDIC or look-up-table can also be used. Other

approximations of the exponential terms may be pursued by means of an exponential series

expansion. Multiple options exist depending on the desired complexity and throughput of

data. This section was presented at a high level in order to describe the general process

by which the proposed network could be implemented onto an FPGA. Depending on the

required throughput and the available resources, various firmware architectures could be

implemented. Perhaps one of the simplest would be as shown in Fig 38 where a sequential

design is pursued.

Fig 38 is a high level diagram which shows the various blocks needed and the flow of

data between them. This model assumes an SDR front end which samples and digitizes

the in-phase and quadrature signal components which are then passed to a circular buffer.

The controller can be a simple state machine running continuously on the FPGA. When the

controller desires to detect a digital modulation scheme, it will freeze the circular buffer and
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FIG. 38: High level block diagram of the proposed network being implemented onto an
embedded SDR.

then manipulate the multiplexers so that data flows from the circular buffer to the normal-

ization module which can then be re-written into the circular buffer. Then, the controller will

load the appropriate weights from the weight array and select the corresponding normalized

input values. These will then flow into the CONV module which acts as a convolutional

layer with the results being stored in the layer buffer. This CONV module could actually

be 64 parallel FIR modules to greatly reduce the throughput time. After this, the filtered

data would need to be passed to the non-linear activation function which is the hyperbolic

tangent module. Once the circular buffer has had all of its data processed, it can continue

to sample live values from the ADCs for the next classification. The normalization module

could be multi-purposed and also act as the pooling layer.

This process would then repeat for the various branches of the capsule network with the

controller being in charge of loading the correct weights at the correct time. At the end of

the convolutional layers, a similar process would occur for the fully connected layers. In this

case, the data would be passed from the layer buffer and into the MAC module and then
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eventually into the ReLU module. At this point, the outputs of the ReLU may be shifted

into a shift register. The shift register will contain a list of fixed point values, each being

the output of one branch. These values would then be passed into the softmax layer which

would perform the classification. The controller could have a threshold detector that reports

a fault if the results are close to random. Ultimately, this is a very simple design which could

be implemented onto an FPGA. Furthermore, this design could be used to implement any

CNN architecture. If very short through-puts are desired, this design could be pipe-lined to

improve performance at the cost of complexity.

7.3 OBSTACLES AND CONSIDERATIONS

The largest obstacles to implementing a complex architecture on an FPGA are access

to memory and the number of multipliers needed. Either FPGA suggested earlier has suf-

ficient memory to implement the proposed network. The Cyclone 10 has 384 multipliers

available and the Kintex 7 has 1,920 multipliers. Either selection will support a sequential

implementation. Depending on the desired throughput, it is very likely that either FPGA

could be used to implement this design. However, prototyping and experimentation would

be required.

In Table 5 is an estimate of the required resources for implementing the proposed network.

This implementation assumes that the operations occur sequentially with fixed resources.

Additionally, this estimate assumes that the branches of the network are processed one at a

time. The output branch of each network is the output of the point neuron which is a single

value. This value will be retained and the next branch will be processed and so on until all

eight point neurons are computed. This vector will then be sent to the softmax which will

perform the classification.
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TABLE 5: Estimated FPGA Resources

Layer M20k Multipliers
Input Circular Buffer Bank 66

Layer Buffer Bank 258
Weight Bank 2077

Tanh look up table 1
Normalization Module 8

FIR Module bank 23
MAC 1

ReLU look up table 1
Softmax look up table 1

Total 2,404 32
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis studied application of modern machine learning techniques to the complex

task of digital modulation classification. A modified version of a cutting edge deep learn-

ing architecture was used to achieve high classification accuracy on a very rigorous dataset.

This application of the capsule network to perform digital modulation classification was the

primary contribution of this thesis. Detailed background information was provided that de-

scribed the needed information to understand the various digital modulation classifications

and to deduce the difficulties associated with their accurate classification. Further back-

ground information regarding machine learning and the subset known as deep learning was

provided in order to facilitate discussion of ANNs and how they may be leveraged for clas-

sification problems. The datasets and all pertinent details were provided, and simulations

were conducted with all key configurations being listed. The classification accuracies listed

in Table 4 demonstrate the success of the proposed network is achievable when a compre-

hensive dataset is employed. Ultimately, the proposed network has been successfully applied

to the problem of digital modulation classification with high accuracy.

In researching this topic many additional lines of inquiry were established that were

beyond the scope of this thesis. Some were mentioned in various sections throughout this

document. Now, a short description of future possible work in these areas will be discussed.

This section is specifically geared towards the topic of digital modulation classification, but

the concepts are applicable to any classification problem.

• Alternative Training Methods:

As noted in earlier chapters, the way in which an ANN learns is by backpropagation.

Specifically, the error is the ultimate driver for updating weights. With the proposed

network, there are eight branches, one per class, with each branch focused on learning

characteristics of its class. When a BPSK signal is provided, then all of the other

seven branches will have an error gradient that is adapting the other seven branches

not to recognize BPSK. The concern is that individual branches are exposed to more

examples of what their class is not rather than what their class is. One solution to

this would be to incorporate special drop out layers that normally have that branch
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turned off during training. Then when either that branch’s class is present in the input

data or randomly with a 1
7

chance, the branch will be turned on. This of course would

require experimentation, but it might result in greater overall accuracy.

• Modification of Topology:

As noted in earlier sections, matched filters are used in signal analyzers for symbol

detection. It might be possible to implement some process inspired by matched filters

in the routing stage of a capsule network. In [18], Gabor filters were used in the

routing stage to help extract image characteristics. Similarly, there may be a type

of filtering, likely specific for each digital modulation scheme, that could be applied.

Experimentation would be required to explore this topic.

• Iterative Augmentation of Training Data:

In addition to the in-band SNR ranges and varying CFO values, there are countless

other characteristics that the training datasets might be augmented by. It would be

very interesting to design augmentation functions that iteratively apply augmentations

to each batch of training data for a wide range of characteristics. The goal here would

be to expose the network to all possible characteristics in hopes of reaching a generalized

network.
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