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ABSTRACT

IMPLEMENTATION OF AN EXTENDED KALMAN FILTER USING
INERTIAL SENSOR DATA FOR UAVS DURING GPS DENIED

APPLICATIONS

Sky Seliquini
Old Dominion University, 2022
Director: Dr. Thomas Alberts

Unmanned Aerial Vehicles (UAVs) are widely used across the industry and have a strong

military application for defense. As UAVs become more accessible so does the increase of

their applications, now being more limited by one’s imagination as opposed to the past

where micro electric components were the limiting factor. Almost all of the applications

require GPS or radio guidance. For more covert and longer range missions relying solely

on GPS and radio is insufficient as the Unmanned Aerial System is vulnerable to malicious

encounters like GPS Jamming and GPS Spoofing. For long range mission GPS denied envi-

ronments are common where loss of signal is experienced. For autonomous flight GPS is a

fundamental requirement. In this work an advanced inertial navigation system is proposed

along with a programmable Pixhawk flight controller and Cube Black autopilot. A Rasp-

berry Pi serves as a companion computer running autonomous flight missions and providing

data acquisition. The advancement in inertial navigation comes from the implementation of

a high end Analog Devices’ IMU providing input to an Extended Kalman Filter (EKF) to

reduce error associated with measurement noise. The EKF is a efficient recursive computa-

tion applying the least-squares method. UAS flight controller simulations and calibrations

were conducted to ensure the expected flight capabilities were achieved. The developed soft-

ware and hardware was implemented in a Quadcopter build to perform flight test. Flight

test data were used to analyze the performance post flight. Later, simulated feedback of

the inertial navigation based state estimates (from flight test data) is performed to ensure

reliable position data during GPS denied flight. The EKF applied to perform strapdown

navigation was a limited success at estimating the vehicles’ inertial states but only when

tuned for the specific flight trajectory. The predicted position was succesfully converted to

GPS data and passed to the autopilot in a LINUX based simulations ensuring autonmous

mission capability is maintainable in GPS denied enviornments. The results from this re-

search can be applied with ease to any vehicle operating with a Pixhawk controller and a

companion computer of the appropriate processing capability.
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CHAPTER 1

INTRODUCTION

Over the last few decades UAVs have become more readily available and are no longer

just military based tools but, can be used across all platforms ranging from civil applications

to novice hobbyist. Smaller UAVs have especially increased in popularity with brands such

as 3D Robotics, DJI, and PARROT, to name a few, saturating the market with easy to

use drones. We have seen new economic titans such as Amazon and Verizon begin to

dabble in the drone industry attempting to implement and exploit drone capabilities to

streamline package deliveries or cell reception connectivity respectively. Flight controllers

are a critical component of UAV hardware integration as they provide the autonomous

operation capability. Flight controllers rely on stabilization and trajectory support systems

made up of a suite of different sensors. This ensures reliable stabilization and robustness to

sudden changes in the environment that may be unpredictable. However, stabilization is not

a trivial task and the effort is exacerbated for small scale implementations, such as those

used in small UAVs as the Micro Electro Mechanical Systems sensor are more compact,

cheaper, and a consequence, much noisier. With the increase in drone based applications

and complexity, an increase in system requirements is necessary to ensure safe autonomous

flight.

Autonomous flight is based on the principles of guidance navigation and control. For

UAVs’ guidance or trajectory generation a path is determined based on the vehicle state,

waypoints, mission objectives, avoidance maneuvers, target tracking, etc. [7]. Navigation

is a skill going back to ancient times describing travel and finding the way from one place

to another [8]. In modern day, it is a way to keep track of the system’s state especially as

it relates to an inertial frame i.e. position, speed, and attitude. Common sensors used for

navigation are accelerometers and gyroscopes. Integrating the output from an accelerometer

yields speed, and from integrating speed one can determine distance traveled. The gyroscope

is necessary as it provides the direction of the accelerations and therefore a combination of

the two yields heading and distance. A basic example of one dimensional navigation is

illustrated in Figure 1. Control methodologies are used in ensuring the UAV remains on

track and stays safe based on information from guidance and navigation. Historically, linear

control has been applied linearizing the vehicles dynamics around a desired operation point
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with Proportional-integral-derivative (PID) and linear quadratic regulator (LQR) control

methods. For example a simple hover and altitude control.[9] More complicated flight op-

erations and improved performance are achieved using nonlinear control for the generalized

form of the UAV’s dynamics throughout the entire flight envelope. Some effective nonlin-

ear control methods that are common among Quadrotor control are backstepping [10] and

sliding mode [9].

Fig. 1: One Dimensional Navigation of a Train

In some cases, a control system may have sufficient performance by relying solely on the

state variables available for measurement. However, as to not limit design robustness, it is

apparent this cannot be the only case, as if a system is observable, it is possible to estimate

other states that may not be directly measured. An unforced system is said to be observable

if and only if it is possible to determine any (arbitrary initial) state x(t) = xt by using only

finite record, y(τ) for t ≤ τ ≤ T , of the output[11]. Observers were first introduced by
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Luenberger in 1963, applying them to linear systems for state estimation[12]. He showed

that state estimation error could be minimized by various pole placements. R.E. Kalman

with collaboration from R. Bucy developed an optimum state estimator with respect to

process and observation noise[11]. The two key ingredients for the optimal state observer

was that the system must be linear and the distributions must be Gaussian. The proposed

method was known as the Kalman Filter. State estimators are invaluable when it comes to

UAV auto pilots as they make it possible to obtain information of an otherwise unmeasured

state. This work focuses primarily on the application of the Extended Kalman Filter state

estimator but, works [13] and [14] may be referred to for more information.

There are several state of the art controllers and autopilots varying in design appli-

cations and quality. Flight controller hardware is readily available, designed to serve the

novice drone hobbyist as well as the department of defense. It goes without saying that

the capability and objectives are significantly different when it comes to military appli-

cations. For Quadcopter design, a popular flight controller/autopilot combination is the

Pixhawk Cube autopilot. The Pixhawk series is an open source hardware flight controller

that runs the autopilot firmware. APM(ArduPilot) firmware is capable of maintaining the

baseline controllability of a UAV, in this case a Quadcopter. It offers various flight modes

corresponding to different levels of UAV stability, for example it can enable altitude hold

mode (ALT HOLD) or stabilize mode (STABILIZE). In STABILIZE mode the Quadcopter

remains level and ALT HOLD mode the throttle is automatically maintained. The Cube

Black is a Pixhawk autopilot that further evolves the Pixhawk flight controller offering an

additional suite of on-board sensors and offers a more robust design running Ardupilot.

The Cube Black is designed to work with commercial systems and other manufacturers who

wish to integrate a more complex autopilot into their system. It offers redundant IMUs

and more advanced CPUs. The Cube is a great option for UAV flight control research and

development. More details of the Cube autopilot and its applications for this research can

be found in Section 4 of this document.

Unfortunately, with the rapid advancement in UAV subsystems and accessibility, there

has also been an increased requirement for UAV security. Unmanned aerial systems (UASs)

can to easily be hacked and compromised. While this may not be a problem for UAVs used

in manual mode, it is critical for autonomous operations. Any transmission being sent to or

received by a UAS, if compromised, can pose as a substantial threat to the UAV’s safety and

successful operation. Not only must GPS jamming and spoofing be considered but, the more

commonly occurring, GPS blackout. The ability to still maintain autonomous flight in GPS
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denied environments is constantly being studied. Today there are many new sensors that are

being implemented in the loop to better estimate localization and assist in position control.

To mention a few, some new technologies being implemented are LIDAR sensors, optical

flow sensors, Sonar sensors, and higher quality cameras attached to motorized gimbals.

Nonetheless, being able to successfully maintain flight in a GPS-denied environment while

using the UAS to accurately predict the orientation and position of the UAV is still one of

the greatest challenge faced today.

This research aims to develop, implement, and test a state estimator for UAVs in GPS

denied environments so that autonomous flight may be maintained. A Pixhawk Cube Black

autopilot will be used to develop a Quadcopter with external high quality IMU sensors. The

redundant IMUs included in the stock flight controller are cheaper and of much lower quality.

A key issue with relying on an IMU for inertial position estimation is the inherent noise

and biases experienced by the sensors. The drift compounds overtime making it not ideal

for continuous flight. The proposed solution being researched is the implementation of an

Extended Kalman Filter to reduce the error associated within the IMU based dead reckoning

navigation. Software in the loop (SITL) ArduPilot is utilized to develop autonomous flight

missions and data taking routines relying on Mavlink based messaging.

After achieving the desired performance in the SITL simulations a Quadcopter was built,

designed with the processing capabilities required for the EKF implementation, external

high end IMU hardware integration, and data acquisition. Arduino’s IDE was utilized to

develop a data routine to export data from the internal sensors of the Analog Devices IMU

in a serial fashion through hardware in the loop simulations. After fully integrating the

necessary hardware and software, autonomous flight tests were performed. Conclusions are

drawn analyzing the EKF’s performance based on the flight test data. As a proof of concept

inertial based position estimates are relayed as Mavlink messages to the Quadcopter in an

SITL simulation. The messages act as substitute for an on board GPS sensor, effectively

taking it out of the loop. Finally, future works are discussed to improve upon the design

implementation as well as the potential for a machine learning algorithm based intrusion

detection system to monitor and classify GPS.
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CHAPTER 2

LITERATURE REVIEW

2.1 QUADCOPTERS

A Quadcopter is a rotorcraft with 4 rotors and propellers capable of vertical take off.

The first attempts at vertical take off were performed in the early 1900s with multirotor, a

term used to describe any configuration with more than one rotor (tricopters, hexcopters,

octocopters etc.), rotorcraft. In 1920, Etienne Oehmichen designed a rotorcraft with a

steel tube frame design, four rotors, and 8 propellers (four arms with two bladed rotors

at their ends). After thousands of test flights in 1924 the French engineer completed the

first 1km range flight. Original Quadcopter designs had the engine placed centrally in the

fuselage providing power to the rotors with belts or shafts [15]. Some main disadvantages

of the design, however, were that belts and shafts are heavy and prone to breaking. More

importantly, a Quadcopter is naturally unstable as simply spinning all the propellers at

the same rate does not produce stable flight. As a result, eventually Quadcopter designs

were scrapped and designers went with the more inefficient single main rotor design, known

today as helicopters. A helicopter’s tail rotor consumes 10 to 15 percent of the engines

power while providing zero lift or forward thrust. It was not until the arrival of modern

electric motors and Micro-Electro-Mechanical System (MEMS) that practical, efficient, and

reliable Quadcopter builds became possible.

A Quadcopter has four rotary wings along with four electric motors, usually placed

directly underneath the rotors. Typically each propeller spins at a different speed depending

on the flight mode (hover, forward motion, vertical take off, etc.). The quad rotor setup

is a 6 degrees of freedom (DOF) system with four control inputs and six outputs. The

six outputs are roll, pitch, and yaw making up the vehicles attitude while the position is

defined as the direction along the x, y, and z axes [16]. The only control inputs are the

individual angular velocities of the four rotors. Given that the number of inputs is less than

then number of outputs, the Quadcopter can be categorized as an under actuated nonlinear

system. This makes it a great candidate for research into highly nonlinear under actuated

systems and automatic control [9].
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2.2 INERTIAL NAVIGATION SYSTEMS

An Inertial Navigation System (INS) is a critical component of any UAV’s autopilot.

An INS uses an onboard computer with a precision clock for integration and time step

operations, an assembly of accelerometers measuring multidirectional acceleration force, and

a suite of softwares that model the gravitational acceleration as a function of the calculated

position. It also includes a reference of the vehicles attitude that is essential in describing the

angular orientation of the orthogonally configured accelerometers that make up a part of the

velocity calculations. In a modern-day INS, the physical attitude reference is replaced with

a reference embedded in the modeling software in the onboard computer. It completes the

integration from a set of three-axis inertial sensors measuring angular-rate. The gyroscope

sensors along with the triad of accelerometers are mounted on a shared rigid structure

within the chassis of the INS placed to ensure a precise alignment between the two is well

maintained. This configuration denoted by the rigid attachment to the vehicle is known as

a strapdown INS [17].

The primary functions executed in the INS computer are the angular rate into attitude

integration function (denoted as attitude integration), use of the attitude data to transform

measured acceleration into a suitable navigation coordinate frame where it is integrated

into velocity (denoted as velocity integration), and integration of the navigation frame ve-

locity into position (denoted as position integration). Thus, three integration functions are

involved, attitude, velocity, and position, each of which requires high accuracy to assure

negligible error compared to inertial sensor accuracy requirements. Savage discussed a rig-

orous comprehensive approach to the design of the principal software algorithms utilized in

modern-day strapdown inertial navigation systems [18] [17].

As unmanned aircraft systems (UAS) operations across the globe continue to grow at

an accelerated rate so do the posed new technological and regulatory challenges arise. INS

are evolving into more robust navigation and guidance systems (NGS) encompassing more

than just inertial measurement hardware. State of the art cameras and LIDAR are being

integrated for localization, obstacle detection, and avoidance. [19] presents a comprehensive

review of conventional UAS navigation systems, including aspects such as system architec-

ture, sensing modalities, and data-fusion algorithms. The primary focus is on the identifica-

tion of key gaps in the literature where the use of AI-based methods can potentially enhance

navigation performance. A detailed review of Unmanned Aircraft System (UAS) intelligent

navigation systems was presented, including identification and detailed explanations and

analyses of conventional equipment and algorithms. It was noted that there are two types
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of integrity monitoring systems on which Global Navigation Satellite System’s (GNSS) rely.

The first of which is satellite redundancy that is less reliable in a more urban environment as

it is intermittent. The second is a differential technique characterized as having the ability

to detect and isolate ranging faults, however it is not optimal for multi-path trajectories.

Typically, the inertial sensors used as inputs for integration in low SWAP-C navigation sys-

tems are low-cost Micro Electro-Mechanical System(MEMS)-IMUs. These low-cost sensors

are known to be relatively noisy and rapidly diverge in their measurements within 20 – 30

seconds. In most cases they alone cannot produce reliable position updates or compensate

for their internal bias. Multi-sensor integrity monitoring algorithms have little application

when dealing with these types of sensors as the noise levels lead to small measurement er-

rors. The widespread presence of GNSS ranging errors in congested metropolitan like areas

render missions in such areas unfeasible without major changes to the execution of the as-

sociated procedures. One example of a new technology that may alleviate such limitations

is Vision-Based Navigation (VBN) which is now a mature field of research that supports

accurate position predictions suitable for GNSS denied/degraded conditions. However the

system integrity and robustness is not as well known given that decades of research and

application development has gone into the traditional GNSS/INS integrated systems.

2.2.1 MEMS

It wasn’t until the 1990s, with the development of Micro-Electro-Mechanical System

(MEMS), that Inertial Measurement Units(IMUs) weighing several grams emerged. Al-

though MEMS sensors have been designed, the low-cost MEMS IMUs produce large amounts

of noise. Therefore the measurements they produce cannot be used directly. The research

started to receive more and more attention on how to address the noise in the attitude mea-

surement of MEMS IMUs. The design of a small multicopter requires not only algorithms

but also microcomputers on which these algorithms can run. IMUs include: three-axis ac-

celerometer, three-axis gyroscope, and an electronic compass (or three-axis magnetometer).

It is used to obtain attitude information of a multicopter. In general, a six-axis IMU is

the combination of a three-axis accelerometer and a three-axis gyroscope; a nine-axis IMU

is the combination of a three-axis accelerometer, a three axis gyroscope and a three-axis

magnetometer; and a ten-axis is the combination of a nine-axis IMU and a barometer [18].
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2.2.2 IMU CALIBRATION

Today many low cost Micro Electro Mechanical Systems (MEMS) based IMU are avail-

able off the shelf, while smart phones and similar devices are almost always equipped with

low-cost embedded IMU sensors. Nevertheless, low cost IMUs are affected by systematic

error given by imprecise scaling factors and axes misalignment that decrease accuracy in

the position and attitudes estimation. In [20], a robust and easy to implement method to

calibrate an IMU without any external equipment is proposed. The procedure is based on a

multi-position scheme, providing scale and misalignment factors for both the accelerometer

and gyroscope triads, while estimating the sensor biases. The method only requires the sen-

sor to be moved by hand and placed in a set of different, static positions (attitudes). The

process can be described as a robust and quick calibration protocol that exploits an effective

parameterless static Filter to reliably detect the static intervals in the sensor measurements,

where local stability of the gravity’s magnitude and temperature are assumed [20].

2.2.3 GPS

The Global Positioning System (GPS), shown as in Figure 2, is a GNSS that uses satel-

lites to provide locations and time. The satellites use atomic clocks which are synchronized

to each other, and the time of clocks is corrected by the true time of the ground clocks.

GPS satellites’ locations are monitored precisely. GPS receivers have clocks that are syn-

chronized to satellite time. While GPS satellites broadcast their position and time, GPS

receivers can get signals of multiple satellites. Thus, GPS receivers can calculate the exact

position by solving equations, and the deviation can be eliminated as well. The accuracy

of GPS is generally in meters. The GPS observations are affected by different factors: (1)

satellite related, including orbital errors and satellite clock errors; (2) propagation errors,

including the ionospheric delay error, tropospheric refraction error, and multipath errors;

(3) the receiver error, including the receiver clock error and observation errors [18].
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Fig. 2: Global Positioning System Representation

2.3 EXTENDED KALMAN FILTER

Before diving into the Extended Kalman Filter it it necessary to introduce its foundation,

the Kalman Filter. In 1960, R.E. Kalman published his famous paper describing a recursive

solution to the discrete data linear filtering problem. Since that time, due in large part to

advances in digital computing, the Kalman Filter has been the subject of extensive research

and application, particularly in the area of autonomous or assisted navigation. The Kalman

Filter is a set of mathematical equations that provides an efficient computational (recursive)

solution of the least-squares method. It supports estimations of past, present, and even

future states, and it can do so even when the precise nature of the modeled system is

unknown [1].

The Kalman Filter addresses the problem of trying to estimate the state x ∈ <n of a

discrete time system that is governed by the linear stochastic difference equation

xk+1 = Akxk +Buk + wk, (1)

in which a measurement z ∈ <m is
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zk = Hkxk + vk. (2)

The variables wk and vk represent process noise and measurement noise respectively. They

are assumed to be independent of each other and characterized as white noise with a normal

probability distribution. Equation (1) relates the n×n matrix A at time step k to the state

at time step k + 1. Matrix B is size n× l and related the control input u ∈ < to the state

x. The m× n matrix H in Equation (2) relates the state to the measurement, zk.

Priori and posteriori estimate errors are defined as the difference between the state (xk)

and the priori state estimate (x̂−k ) and the difference between the state and the posteriori

state estimate (x̂k) at the time step of the given measurement respectively. Therefore the

priori estimate error covariance is

P−k = E[e−ke
−T
k ], (3)

and the posteriori estimate error covariance is

Pk = E[eke
T
k ]. (4)

In seeking the derived equations for the Kalman Filter, one can begin with the goal of

finding an equation that computes the posteriori state estimate as a linear combination of

the the priori estimate and the weighted difference between the measurement being observed

and the measurement prediction. This relationship is described below in Equation (5)

x̂k = x̂−k +K(zk −Hkx̂
−
k ). (5)

The difference K(zk −Hkx̂
−
k ) in Equation (5) is referred to as the measurement innovation

or residual and reflects the deviation between the measurement and the predicted state.

The n × m matrix K in Equation (5) is the Kalman gain which is a balancing factor

that minimizes the posteriori error covariance, Equation (3). The minimization can be

accomplished by substituting Equation (5) into the definition of ek and then substituting

that into Equation (4) and performing the operation, taking the derivation with respect to

K, setting the result equal to zero and solving for K. The final solution reduces to

Kk =
P−k H

T
k

HkP
−
k H

T
k +Rk

. (6)

It is important to note that as KK approaches zero the measurement is trusted less and less

and ultimately the operation becomes solely based on the predicted state.
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The Kalman Filter estimates a process by using a form of feedback control: the filter

estimates the process state at some time and then obtains feedback in the form of (noisy)

measurements. As such, the equations for the Kalman Filter fall into two groups: time up-

date equations and measurement update equations. The first task during the measurement

update is to compute the Kalman gain, Kk. Next, measure the process to obtain zk and

then generate a posteriori state estimate by incorporating the measurement as in Equation

(5). The final step is to obtain a posteriori error covariance estimate, Pk defined as

Pk = (I −KkHk)P−k . (7)

After each time and measurement update pair, the process is repeated with the previous

posteriori estimates used to project or predict the new priori estimates. This recursive

nature is one of the very appealing features of the Kalman Filter—it makes practical im-

plementations practicable[1]. When implementing the Filter, the process and measurement

noise have error covariance matrices, E(w) Qk and E(v) Rk. These parameters can often be

tuned to impact performance. A complete overview of the Kalman Filter process is given

below in Figure 3.

Fig. 3: An Overview of Kalman Filter [1]
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To conclude, the Kalman Filter tackles the general problem of trying to estimate the

state, x ∈ <n, of a discrete time controlled process via a linear stochastic difference equation

(1). However, if the process to be estimated or the measurement relationship to the process is

nonlinear this will not suffice. Que, the Extended Kalman Filter (EKF). An EKF linearizes

about the current mean and covariance to estimate a process with nonlinear difference and

measurement relationships. The process is now governed by a nonlinear stochastic difference

equation

xk+1 = f(xk, uk, wk), (8)

where measurement z ∈ <m is

zk = h(xk, vk). (9)

The variables wk and vk represent process and noise again as in Equations (1) and (2). The

nonlinear function f(•) within the nonlinear stochastic difference equation relates the state

at time step k to the state at time step k+ 1. It includes the input function uk and the zero

mean process noise. The nonlinear function h(•) relates the state to the measurement. As

the individual values for noise are unknown, the state and measurement can be approximated

without them as described below. x̂k is a posteriori estimate of the state from a previous

time step.

x̃k+1 = f(x̂k, uk, 0), (10)

z̃k = h(x̃k, 0). (11)

Now that the nonlinear stochastic difference relationship has been presented, the EKF

can be further explained starting with new governing equations that linearize an estimate

about equations (10) and (11).

xk+1 ≈ x̃k+1 + A(xk − x̂k) +Wwk, (12)

zk ≈ z̃k +H(xk − x̃k) + V vk, (13)

where,

• xk+1 and zk are the state and measurement vectors.
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• x̃k+1 and z̃k are the approximate state and measurement vectors seen in Equations

(12) and (13).

• x̂k is a posteriori estimate of the state at time step k.

• wk and vk are process and measurement noise as previously stated.

• A is a Jacobian matrix of partial derivatives of f(•) with respect to the state x,

A[i,j] =
∂f[i]

∂x[j]

(x̂k, uk, 0). (14)

• W is a Jacobian matrix of partial derivatives of f(•) with respect to the process noise

w,

W[i,j] =
∂f[i]

∂w[j]

(x̂k, uk, 0). (15)

• H is a Jacobian matrix of partial derivatives of h(•) with respect to the measurement

z,

H[i,j] =
∂h[i]

∂x[j]

(x̃k, 0). (16)

• V is a Jacobian matrix of partial derivatives of h(•) with respect to the measurement

noise v,

V[i,j] =
∂h[i]

∂v[j]

(x̃k, 0). (17)

Note, that the time step subscript, k, was not included in the Jacobian equations for sim-

plicity as they are present in reality and change at each time step. A new notation for the

prediction error and measurement residual are as follows:

ẽxk
≡ xk − x̃k (18)

ẽzk ≡ zk − z̃k (19)

Being that the physical state is not accessible, Equations (18) and (19) can be used to develop

new governing equations for process error given that the measurement zk is available. εk

and ηk are new independent process and measurement noise variables having a mean of zero.

The covariance matrices are respectively WQW T and V RV T

ẽxk+1
≈ A(xk − x̂k) + εk (20)
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ẽzk ≈ Hẽxk
+ ηk (21)

It becomes apparent that the linear Equations (20) and (21) share a resemblance to

those originally introduced with the Kalman Filter, Equations (1) and (2). Therefore the

measurement residual, ẽzk along with a second Kalman Filter may be used to estimate the

prediction error described in Equation (20). The new estimate, êk, along with Equation

(18) are used to predict a new posteriori state estimate of the original nonlinear process

resulting in,

x̂k = x̃k + êk (22)

p(ẽxk
) ≈ N(0, E[ẽxk

ẽTxk
]) (23)

p(εk ≈ N(0,WQW T ) (24)

p(ηk ≈ N(0, V RV T ) (25)

The random variables of the new governing equations for the error in the process all have

the following probability distributions. It is worth mentioning that this is the fundamental

flaw of the EKF. The probability distribution of the random variables are no longer normal

after undergoing the nonlinear transformation. After applying the approximations above

and setting the predicted value of x̂ to 0, the Kalman Filter used to estimate ẽk is equal to

Kkẽzk . Substituting it back into Equation (22) and applying Equation (19) it is determined

that a second Kalman Filter is not required as,

x̂k = x̃k +Kkẽzk = x̃k +Kk(zk − z̃k). (26)

Now Equation (26) may be used as the measurement update in the EKF where x̃ and z̃k are

represented by the nonlinear stochastic difference equations in (12) and (13). The Kalman

gain is Kk as defined in our linear approach, Equation (6), with substitutions for the newly

linearized measurement error covariance. The complete list of EKF equations as derived

above are presented in a process overview diagram given in Figure 4. A feature of the EKF

that is of great consequence is that of the Jacobian matrix, Hk, used in the equation for the

Kalman gain. It serves to correctly propagate or magnify only the relevant component of
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Fig. 4: An Overview of Extended Kalman Filter [1]

the measurement information. If the system is not observable, i.e., there is not a one-

to-one mapping of the measurement zk and the state via h(•) then the EKF will quickly

diverge and prove ineffective [1].

2.3.1 EKF FOR UAVS

[21] discusses the use of an EKF for UAV localization. Many smaller UAVs rely solely on

GPS for navigation and unfortunately, it is not uncommon for GPS outages to occur even in

benign environments. [21] proposes an EKF to estimate location during GPS connection loss

using inter-UAV distance measurements. This application is geared towards operations with

groups of UAVs cooperating together to complete missions. To simplify their approach a 2D

problem was considered. The discrete time domain dynamic model of the UAV used is shown

in the Equations below in which the state variables x and y represent the UAV coordinates

in the horizontal plane, η and ω represent the heading and angular speed accordingly, and

v represents the ground speed.
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xk+1 = xk + vk∆tkcosηk

yk+1 = yk + vk∆tksinηk

ηk+1 = ηk + ωk∆tk

ωk+1 = ωk + εk

vk+1 = vk + εv,k

As the UAVs were not equipped to measure their inter-distances, real flight data that main-

tained GPS connectivity were used in a simulation in which a time series of synthetic GPS

outages were applied. Ten simulations were completed where 9,718 location estimates were

calculated.

Results were interpreted based off the mean error of the state estimates x and y, E(x̂−x)

and E(ŷ − y), the standard deviations (σ) of the error, and the mean value between the

estimated location and the true GPS position. A summary of the results discussed in

[21] are given in Figure 5. [21] verified that a range measurement to other UAVs can be

used with an EKF in GPS-denied environments to perform location estimates accurate to

within 40 meters of its true positions. The UAV separation applied in the experiment was

approximately 5km, resulting in a range measurement error or 10 meters.

An extensive performance comparison of combinations of fusing accelerometer and gyro-

scope data as control or measurement inputs in an EKF is discussed in [22]. It is determined

with simulated and real data that optimal performance is achieved when fusing both sensors

in the measurement stage. The results definitively illustrate that accelerometer measure-

ments are better for 3D position tracking accuracy and gyroscope measurements are ideal

for 3D orientation accuracy. The major findings of the research was that both inertial sen-

sors greatly improved 3D accuracy more when used as measurement inputs (MMM) when

compared to all other combinations. Also, the improvement provided by gyroscope in po-

sition is more pronounced than the improvement provided by accelerometer in orientation,

hence if only one inertial sensor is to be used, it should be gyroscope used as measurement.

The result comparisons are displayed in Figure 6. More detail describing the mathematics

of the optimal combination is presented in the Methodology section of this paper.
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Fig. 5: EKF UAV Localization Simulation Results

Massachusetts Institute of Technology teamed up with NASA Langley Research Center

to develop a multi-UAV system, aimed at search and rescue missions within a forest under-

neath the tree top canopies in a GPS denied environment. Several technical challenges were

involved in their research. The first of which being that GPS is not available in most cases

as it cannot penetrate the think forest canopies, thus as substitute, on board sensor estima-

tion was required. Another obstacle was utilizing a collaborative mapping application that

would incorporate map fusion to assist in UAV localization. Severe aliasing is common as

there exist several similarities between groupings of trees. The multi-UAV search and rescue

system’s success was validated with both simulations and real-world exploration missions,

relying on a ground station performing collaborative simultaneous localization and mapping

(CSLAM) with support from an EKF based vehicle position state estimate. LIDAR based

laser scans with a field of view of 270◦ locally create a compressed lightweight submap of

the trees and obstacles within it close range environment. Later when communication is

available the submaps are transmitted to the ground stations for CSLAM to be performed

in two steps. The first step resolves the individual submaps from all the UAVs making up

the system and the second step jointly optimizes the submaps together resulting in a global

map. The EKF used to estimate six-degree-of-freedom pose was laser based and combined

with measurements from a LIDAR sensor measuring outboard depth, a laser altimeter, and

an IMU.
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From the real-time EKF state estimates, a map of explored regions was created [23].

Fig. 6: Results from Real Data Comparisons for (a) Positions, (b) Orientation, and (c)

RMSE

The framework of sensor fusion for tracking applications is further discussed in the con-

ference paper, Fusion of Inertial and Vision Data for Accurate Tracking. Two approaches are

investigated, a gyroscope only model for vision based tracking and an accelerometer (IMU)

based model where both measurements from the accelerometer and the gyroscope along

with vision data are used for estimating the camera’s state (position, velocity, acceleration,

and biases). Camera based tracking is only suitable for low frequency frequency state vari-

ations, whereas inertial sensors are ideal for high frequency motion tracking. Unfortunately

IMU based measurements accumulate more and more noise through integration over time.

The results concluded that the acceleration fusion model (Model 2) out performed Model 1.

The acceleration fusion model used an EKF to integrate the different sensor measurements

(gyroscope, accelerations, and visual sensors) in which the camera was assumed to maintain

a constant angular velocity and acceleration. The model for the time update is given in

Equation 27 in which qt is the quaternion for the camera’s attitude.
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xt+∆t =



pt + vt∆T + 0.5at∆T
2

vt + at∆T

at

ba[
cos(0.5ωt∆T )

sin(0.5ωt∆T ) ω
‖ωt‖

]
× qt

ωt

bω


(27)

Simultaneous localization and mapping (SLAM) is again applied in a paper published in

the Journal of Field Robotics to enable autonomous navigation in GPS denied environments.

In this case the measurement sensors are an IMU as before and a 2D laser scanner. The

2D laser scanner is the input to a scan-matcher algorithm in which multiple scans are

used to determine the likelihood of the Micro Air Vehicle (MAV) being on a know map

representation and the state transformations between different points on the map making

it possible to ultimate determine the distance between scans. When implementing a scan-

matcher algorithm resolution is directly proportional to accuracy. For some autonomous

ground robots a lower resolution is required as compared to a hovering autonomous vehicle.

For a map resolution of 10cm, the noise associated is an RMS of about 0.5m/s, which can be

removed with some basic low pass filtering, however this would induce a counter productive

amount of lag. This is just one example of why sensor fusion is necessary. To control

the MAV the position and velocity state estimates were achieved by fusing the scan-match

change in position estimates with those of the IMU. The implementation had a maximum

deviation from a straight path trajectory of 8cm. The state estimate were accurate enough

to enable the MAV to fly and hover under the constrained GPS denied indoor environments

[24].

2.4 GPS INTRUSION DETECTION SYSTEMS

As UAVs become more common across industries reaching from civil to defense appli-

cations so does the necessity for a stronger cyber defense. Some vulnerabilities include

GPS Spoofing and Jamming. Jamming is typically the first step in a GPS Spoofing at-

tack. GPS Jamming is the phrase used to describe an instance in which an outside source

blocks/overwrites (Jams) the GPS signal being provided to the UAV. Once a GPS signal
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is Jammed, the flight controller is triggered and switches into auto mode, in which the au-

topilot takes over. This is proceeded by GPS Spoofing. During a GPS Spoofing misleading

inputs are fed from the outside intruder to the flight controller which change a trajectory,

modify the target location, or create a counterfeit home location (for return landing) [25]

[26]. This obviously can play a devastating role in compromising missions and potentially

even lead to casualties.

To combat such intrusions supervised machine learning algorithms can be implementing

to develop a classification based intrusion detection system. Two prominent machine learn-

ing algorithms used in the literature are the Neural Network and Support Vector Machine.

An in depth description of these algorithms is outside the scope of this paper therefore they

will briefly be touched on as the application with regards to the subject of IDS is the main

focus. In laymen terms a neural network consist of layers in which inputs are mapped to

outputs. A multi-layer neural network consist of several hidden layers between the input

and output in which several computations are performed. The single layer neural net only

performs the computation during the output layer and is typically a binary process. The

final stage of the neural network is the loss function at the output stage that is optimized

with a softmax function for multi class (see Equation 28) or sigmoid function for a binary

class (see Equation 29). This neural network is a supervised machine learning algorithm

which requires training data with a known output. The weights for each input are optimized

in the training potion of the classifier [27].

Φ(v1...vk) =

[
ev1 ... evk

]
∑k

i=1 e
vi

(28)

Φ(v) =
1

(1 + e−v)
(29)

Support Vector Machine (SVM), also known as the Margin Classifier, is a supervised

learning classification algorithm. It can operate with an infinite dimensional data set. SVM

defines margins or boundaries between the data points in multidimensional space. The main

goal of this algorithm is to find a flat boundary referred to as a hyper plane that leads to a

homogeneous partition of the data. A good separation is achieved by the hyper plane that

has the largest distance to the nearest training point. That hyper plane’s distance or width

is associated with the maximum margin. The data points from each class have at least one

support vector. Figure 7 portrays a hyperplane discretely partitioning data.
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Fig. 7: Two Class Classification in SVM Linear Separable Case

If the data points are linearly separable then the hyperplane performs separation using

convex hulls. The hyperplane is a perpendicular bisector of the shortest line between the

two hulls. The equation of a hyperplane in n dimensions is given by,

~w ∗ ~x+ b ≥ 1

where w1, w2... wn are weights and x1, x2...xn are input features. The SVM algorithm finds

the weights (Wn). Then, data points are separated accordingly.

~w ∗ ~x+ b ≥ 1

~w ∗ ~x+ b < 1

Applications of vector geometry is used to define the distance between the two planes.

In order to maximize the distance, ‖w‖2 must be minimized. A key feature of SVM is its

ability to map the problem into a higher dimensional space using the Kernel method. Here,

nonlinear space is transformed into linear space using a slack variable, aj:

1

2
||w||2 + c

∑
aj (30)

A cost parameter is added to the linear space. The objective is to try and minimize c
∑
aj,

which is the upper bound on the number of misclassified data points. The Kernel Function

is used to transform the data, x, from one space to another. It is a dot product of two

functions, φ. Optimizations depends only on these dot products. The dot products of two
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vectors, K (xi, xj), has many kernel functions such as linear, polynomial, Gaussian, and

Radial Basis Function (RBF) [2].

G. Panice et al. used Matlab’s library for Support Vector Machines (LIBSVM) to develop

a one class IDS. There was not access to data from a real GPS attack so a simulator was

used for a preconfigured mission in which false GPS data was injected for the three case

types, GPS Spoofing, GPS Jamming, and GPS Meaconing. Performance metrics for the

tested IDS were false positive rate (FPR), true positive rate (TPR), and accuracy. The goal

of the experimental IDS was to compare its implemented results in detecting a Spoofing

attack to Receiver Autonomous Integrity Monitoring (RAIM), widely used in the aviation

industry, and to evaluate the probability of failed detection. The proposed method had

a similar performance to the more common RAIM, however the quality of the classifier

degrades faster over time [7].

Another work explores the applications of a supervised neural network based INS with

five main data features, satellite vehicle number (SVN), signal to noise ration (SNR), pseudo

range (PR), Doppler shift (DO), and carrier phase shift (CP). GPS spoofing is achieved

assuming a Meaconing attack. A Meaconing attack is receiving GPS signals in a remote

location and the rebroadcasting the signal at another location at a slightly higher power [26]

used to confuse navigation. Binary training and test data were collected by collecting GPS

data at two know separate locations approximately 480 feet apart. One location was used as

legitimate while the other was used as Spoofed (rebroadcasts). A series of Neural Networks

were tested changing the computational algorithm, activation function, and the number of

neurons in two hidden layers. The research concluded that an Adam-ReLu solver-activation

pair had the greatest IDS accuracy and that the accuracy impact of adding additional

neurons steadied out at 14 [26].

The final study considered herein was a comparison between an SVM IDS and a hybrid

SVM IDS that relied on an unsupervised neural network for collecting training data (relevant

GPS features). The self taught learning algorithm used as the solver in the deep neural

network had three layers [25].
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CHAPTER 3

METHODOLOGY

The main challenge of this research was to develop a navigation system not dependent on

GPS or radio controlled communication such that it could maintain autonomous operations.

Several key methods played a vital role in developing such a system. Fundamental principles

relevant to Guidance Navigation and Control as well and the Extended Kalman Filter are

discussed herein. Mavlink and dronekit based communication to the flight controller is also

introduced.

3.1 STATE ESTIMATION

When dealing with the physical world one cannot yield an empirical description without

some form of assumed causality. As such it is acceptable to assume a random phenomena

as independent Gaussian processes. The Kalman Filter exist on the basis that a random

function of time may be thought of as the output of a dynamic system excited by an

independent Gaussian random process [13]. One of the most fundamental and well know

probability distributions used throughout academia is the or Gaussian distribution. For

continuous real variables, x, the Gaussian distribution is defined as:

N (x|µ, σ2) =
1

(2πσ2)1/2
exp{− 1

2σ2
(x− σ)2} (31)

The Gaussian distribution is dependent on two variables, the mean, µ, and the variance,

σ2. The distribution is normalized such that the area under the curve alway sums to 1,

therefore the shape of the distribution changes based on its maximum occurring at the

mean and the variance corresponding to the spread of values in the distribution. Figure 8

better portrays the influence of the mean and variance. For the application of the Kalman

Filter and later the Extended Kalman Filter, it is ideal to think in terms of a dimensional

vector of variables, like the ones coming from sensor measurements, and how they can be

described by a Gaussian distribution.
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Fig. 8: [2] Univariate Gaussian Illustrating Dependencies on Mean and Standard Deviation

(
√
σ2)

An N-dimensional vector of x continuous variables has the following Gaussian distribu-

tion [2]:

N (x|µ,Σ) =
1

(2π)D/2

1

|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)} (32)

µ represents an N-dimensional vector of means where as Σ is the N x N covariance matrix.

The diagonal of the covariance matrix is variance of the individual variables and the off

diagonal elements are the covariances between the different variables. If the variable are

independent of each other then their covariance goes to zero. A higher order Gaussian can

be computationally costly as the determinant of the covariance matrix is a variable within

the distribution (|Σ|).
The Bayes Filter lays the framework for many common recursive state estimators in-

cluding the Kalman Filter and consequently the Extended Kalman Filter. It estimates the

current state of a system given observations (measurements) and the input or control com-

mands. The recursive nature of the algorithm allows the user to predict the state at time

t + 1 given the information at time t therefore it only requires the most recent system in-

formation. The Bayes Filter can be derived by applying the following: Bayes Rule, Markov

assumption, and the law of total probability. Bayes Rule is a probabilistic theorem in which

a decision about a future event is made from the past probabilities. In other words, a poste-

rior distribution is made from evidence and a prior distribution. Bayes Rule is given below
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in Equation 33 where k = 1, 2, 3...., k.

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(33)

P (x|Ck) is a conditional distribution, P (Ck) is the prior distribution and P (x) is the normal-

izing evidence[2]. The Markov assumption is key when applying Bayes Rule in developing

the Bayes Filter. It assumes the current state of the system to be decoupled from the past

or future. Therefore, given the current state of the system, all previous control commands

do not necessarily contribute to what will be observed in the present or future. It simpli-

fies mathematical operations as it drops the past measurements and control inputs from the

likelihood function of the new observation. The final tool necessary in deriving the Bayesian

Filter is the law of total probability which allows one to partition the total probability into

several smaller probabilities of the same sample space. The full derivation of the Bayesian

Filter is given below in which the Markov assumption and application of the law of total

probability are pointed out.

• applying Bayes Rule,

bel(xt) = P (xt|z1:t, u1:t)

• applying the Markov assumption to the expression in red

bel(xt) = ηP (zt|xt, z1:t−1, u1:t)P (xt|z1:t−1, u1:t)

• by law of total probability the expression is red becomes

bel(xt) = ηP (zt|xt)P (xt|z1:t−1, u1:t)

• applying the Markov assumption to the expression in red

bel(xt) = ηP (zt|xt)
∫
P (xt|xt−1, z1:t−1, u1:t)P (xt−1|z1:t−1, u1:t)dxt−1

• applying the independence assumption to the expression in red

bel(xt) = ηP (zt|xt)
∫
P (xt|xt−1, ut)P (xt−1|z1:t−1, u1:t)dxt−1

• simplifying to

bel(xt) = ηP (zt|xt)
∫
P (xt|xt−1, ut)P (xt−1|z1:t−1, u1:t−1)dxt−1

bel(xt) = ηP (zt|xt)
∫
P (xt|xt−1, u1:t)bel(xt−1)dxt−1
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The final expression of the Bayes Filter consist of two steps: the prediction step and

the correction step. The prediction step is depends on the motion model to advance the

state based on the command. The correction step consists of an observation or measurement

model describing the likelihood of the observations, given the state is known. At each time, t,

a prediction and correction is being made. Equations 34 and 35 illustrate the prediction step

with the motion model underlined and the correction step with the observation underlined

accordingly.

b̄el(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (34)

bel(xt) = ηp(zt|xt)b̄el(xt) (35)

As the Bayes Filter only lays the frameworks for recursive state estimators, various filters can

be derived based on the application of different realizations and assumptions. The Extended

Kalman Filter introduced in the previous section is a modified Bayes Filter where probability

distributions are realized as Gaussian distributions and the Taylor series approximation is

used to linearize non-linear models.

3.2 TAYLOR SERIES EXPANSION

For linearization over a small range (x−x0) Taylor series expansion is a suitable operator.

Many mechanical systems have nonlinear components and to arrive at more manageable

transfer function linear approximations of the nonlinear system must be obtained. For

a nonlinear differential Equation linearization must occur for small-signal inputs about a

steady or equilibrium state [3]. The smaller excursions from the point about which one is

applying the linearization allows the higher order terms in a Taylor series expansion to be

neglected. The full expression for a Taylor series expansion is given in Equation 36.

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + ...+

f (n)(x0)

n!
(x− x0)n (36)

For small excursions, Equation 36 reduces to Equation 37 better portrayed in Figure 9 where

δf(x)/δx is the instantaneous slope, df
dx

.

f(x) = f(x0) +
df

dx
|x=x0(x− x0) (37)
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Fig. 9: Linearizion about Point A [3]

3.3 QUADROTOR DYNAMIC MODEL

The Quadrotor used for the EKF application is best described as a 6 degrees of freedom

(DOF) system. It is based on two different reference frames, the inertial frame and body

frame. The inertial frame or the frame with a fixed coordinate system was one in which

Newton’s laws are all considered to be true. The cardinal axis of the inertial frame are

north, east, and down (towards the center of the earth). The body frame is referenced to

the body center of the vehicle. Simply put, the inertial frame is earth centric, where as

the body frame is vehicle centric. Typical forces and moments driving the Quadrotor state

space system is composed of the thrust generated from the rotor rotation, pitching moments,

and rolling moments. The six degrees of freedom system is based on the translational and

rotational motion along/about the three body frame axis. The control of the 6 DOF system

in achieved by modifying the rotational speed of the four motors. The motion of the vehicle

can be described by a mix of reference coordinates. For example translational kinematic

equations can be derived in the inertial frame, whereas translational kinetic equations, and

rotational kinetic and kinematic equations can be derived in the body frame. When dealing

with models dependent on mixed coordinate systems, transformations from one frame of

reference (FOR) to the next are essential.
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Euler angles are angles used to describe the orientation of a rigid body in 3D Euclidean

space. For the purposes of this research the Euler rotations will be represented by rotations

about Z, Y , and X consecutively. Euler angles can be used to transform the coordinates

of a point in one FOR to another FOR, for example an inertial frame to a body frame.

Euler angles represent a sequence of three elemental rotations about an axes of a coordinate

system. Any orientation can be achieve in such an operation. The following rotations about

the Z, Y , and X axes (yaw (Ψ), pitch (Θ), roll (Φ)) describe the three Euler rotations

applied to go from an inertial FOR to a body FOR.

Rz(ψ) =

∣∣∣∣∣∣∣∣
cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

∣∣∣∣∣∣∣∣ (38)

Ry(θ) =

∣∣∣∣∣∣∣∣
cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

∣∣∣∣∣∣∣∣ (39)

Rx(φ) =

∣∣∣∣∣∣∣∣
1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

∣∣∣∣∣∣∣∣ (40)

The product of the three transformations can be used to go directly from one frame to the

other. The inverse is also true. The transformation from the inertial frame to the body

frame is given below (T = Rx(φ) · Ry(θ) · Rz(ψ)) where C represents a cosine function and

S represents a sine function.

T (ψ, θ, φ) =

∣∣∣∣∣∣∣∣
C(ψ)C(θ) S(ψ)C(θ) −S(θ)

C(ψ)S(θ)S(φ)− S(ψ)C(φ) S(ψ)S(θ)S(φ) + C(ψ)C(φ) C(θ)S(φ)

C(ψ)S(θ)C(φ) + S(ψ)S(φ) S(ψ)S(θ)C(φ)− C(ψ)S(φ) C(θ)C(φ)

∣∣∣∣∣∣∣∣ (41)

3.3.1 EKF MMM

The EKF approach MMM corresponds to a state space system used for the Quadrotor

in which there is no control input and both acceleration sensor data and gyroscope sensor

data are used as measurements of the state. The process equations used to describe the

dynamic equations of motion is given below in Equation 42 with the following state vector:
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x =



s

v

a

δ

ω


st = st−1 + Tvt−1 +

1

2
T 2at−1

vt = vt−1 + Tat−1

at = at−1

δt = Tωt−1

ωt = ωt−1

(42)

s, v, and a represent the translational motion (position, velocity, and acceleration respec-

tively) in the x, y, and z directions and δ and ω represent the rotational motion (attitude

and velocity) about the x, y, and z axis. Calculations are made at each time step, T , to

determine the state which is filtered through the application of the EKF algorithm described

in detail in Section 2.3. For each loop, a measurement update is made followed by the cal-

culation of the Kalman gain after which the state estimates are calculated along with an

update to the error covariance. The loop finishes with a new projection of the estimates in

the form of a predicted new state.

The following Jacobian matrices were used in the EKF algorithm as described in Section

2.3. The W and V Jacobian matrices consist of partial derivatives with respect to process

and measurement noise. For W the partial derivatives are of the function relating the state

at time step t to the state at time step t + 1 and for V the partials are of the function

relating the state at time t to the measurements at time t. For this case, there is not a

structured noise as part of our process or measurement equations and therefore they are

treated as identity matrices. The priori and posteriori covariances are initialized as identity

matrices as well before being updated at each time step of the computation.
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A =



1 0 0 dt(i) 0 0 dt(i)2

2
0 0 0 0 0 0 0 0

0 1 0 0 dt(i) 0 0 dt(i)2

2
0 0 0 0 0 0 0

0 0 1 0 0 dt(i) 0 0 dt(i)2

2
0 0 0 0 0 0

0 0 0 1 0 0 dt(i) 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 dt(i) 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 dt(i) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 dt(i) 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 dt(i) 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt(i)

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



H =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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3.4 NONLINEAR OPTIMIZATION

Nonlinear optimization has a role to play across the spectrum of industry and research. A

well known nonlinear optimizer is simulated annealing. The simulated annealing algorithm

is based on the process of cooling molten hot materials at a slow and steady rate such that

it yields a stable state with all the molecules aligned. The benefit of the algorithm is that

it uses a wide spread of inputs to characterize the state while reducing a cost function. A

relationship between cost and temperature is made such that as temperature goes down

the algorithm weights the cost higher and as it increases the algorithm weights the costs

less. Essentially the algorithm chooses more random inputs to solve for a global minima at

the start of execution when temperature is high. As time increases and temperature slowly

decreases the algorithm chooses inputs over a smaller range basing decisions more heavily on

the cost. Equation 43 displays the probability of acceptance used for systematically lowering

the system’s temperature and storing the best points found for a given interval (points that

reduce the cost function) [28].

1

1 + exp( ∆
max(T )

)
(43)

3.5 QUADCOPTER COMMUNICATION PROTOCOLS

Dronekit is an open source, python based, application program interface (API). It allows

for the development of additional application that run on a companion computer commu-

nicating with the ArduPilot flight controller. It increases the functional autonomous flight

capability of the drone. The Quadcopter developed for this research relied on Dronekit

to execute autonomous flight missions. The API establishes communication between the

companion computer and the flight controller over Mavlink based communication protocols.

With the help of Mavlink, access to a connected vehicles’ state and parameters is realized.

The Dronekit API provides methods to achieve the following [29]:

• Connect to a vehicle (or multiple vehicles) from a script

• Get and set vehicle state/telemetry and parameter information.

• Receive asynchronous notification of state changes.

• Guide a UAV to a specified position (GUIDED mode).
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• Send arbitrary custom messages to control UAV movement and other hardware (GUIDED

mode).

• Create and manage waypoint missions (AUTO mode).

• Override RC channel settings.

Dronekit can run on multiple operating systems, the most common being, Windows, Mac

OS X, and Linux. Dronekit is used as a central database residing on the Quadcopters

companion computer giving the drone operator access to the same data features accessible

to the flight controller. Dronekit was also used for software in the loop (SITL) simulations

prior to the Quadcopter development or test flights. This made it possible to debug the

scripts using Mavlink messages to command the Cube Black autopilot.

Mavlink is a lightweight communication protocol used for messaging data between var-

ious components on a drone. Mavlink publishes key data as messages or topics from a

drone and can be broadcast to subsystems such as other drones or ground control stations.

Their are many different code generated software libraries that work with the existing XML

Mavlink files (Python based Dronekit for example). MAVLink is an efficient and reliable

on board and off board communication protocol that can be used with many different lan-

guages (C, C++, C#, Python, Java Script, etc.). It can allow connectivity between up to

255 concurrent systems. It is a ”binary based telemetry protocol for resource constrained

systems and bandwidth constrained links” [30]. Dronekit uses Pymavlink as a framework to

process Mavlink messages being sent and received from the autopilot. In general there are

two types of Mavlink messages those being sent from the companion computer to the flight

controller and the second being the messages being received by the companion computer.

The first type of messages are used to command settings such as flight mode and the ve-

hicles airspeed, position, or altitude. The encoding structure is either ”COMMAND INT”

or ”COMMAND LONG”. ”COMMAND INT” is applicable when the coordinate refer-

ence frame is relevant such as when setting waypoints to fly to autonomously. ”COM-

MAND LONG” is embedded in Dronekit commands that set certain parameters of the ve-

hicle like airspeed or altitude. The second type of message is used to collect certain attributes

in a data stream. For this research the two most important are the ”RAW IMU” messages

and the ”GPS RAW INT”. These message descriptions are illustrated in Figures 10 and

11. These output the raw measurements recorded by the onboard GPS sensor and the IMU

internal to the Cube Black autopilot. A full listing of the available MAVLink messages can be

found in the online documentation available at: https://mavlink.io/en/messages/common.html.
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Fig. 10: The RAW IMU Readings For a 9DOF Sensor, Which Is Identified by The ID

(Default IMU1) [4].

Fig. 11: The Global Position, as Returned by The Global Positioning System (GPS) [4].
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CHAPTER 4

EXPERIMENTAL SETUP

The experimental development of the Quadcopter proceeded in accordance with the re-

search objectives. It was broken into two parts. The first part consisted of generating

Dronekit based Python scripts supporting autonomous flight and verifying their perfor-

mance. This step was critical as it served as a proof of concept to whether or not autonomous

mission were obtainable. Not only was code required for programmable autonomous mis-

sions but, it was also required to record relevant onboard sensor data (achievable via Mavlink

messaging). The entirety of the preliminary design stage (Part I) would not have been pos-

sible without the application of software in the loop (SITL) simulations. Part II of the

Quadcopter design focused on hardware and assembly. This includes every component used

for a baseline functioning drone and all of the additional high end sensors and companion

machines required for the EKF measurements. The following sections will dive deeper into

the intricacies of the experimental setup obligatory for Part I and Part II.

4.1 SOFTWARE

A suite of software packages was required to complete a thorough simulation to checkout

the developed autonomous flight programs. For simplicity everything was performed on a

Linux based virtual machine (VM), Ubuntu 20.04. The following subsections note the key

software packages and developed python scripts to support the software in the the loop

simulations along with a brief description of each.

4.1.1 ARDUPILOT

ArduPilot is an open source autopilot firmware that is used across several platforms to

include multi-copters, helicopters, fixed wing aircraft, submarines, and rovers. The main

flight code is written in C++. Several flight controllers are supported with ArduPilot

firmware such as, Pixhawk, The Cube, Pixracer, NAVIO2, and Bebop2. More information

regarding ArduPilot can be found using Reference [31].
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4.1.2 SITL

SITL is a software in the loop simulator that allows the user to simulate various ArduPilot

vehicle platforms including, ArduPlane, ArduCopter, ArduSub, and ArduRover. As the

developed UAV was a Quadcopter, the ArduCopter simulation package was used. The

platform is a copy of the autopilot code using an common C++ compiler. The platform

allows to execute and test user defined scripts without requiring any hardware in the loop.

When executing a simulation using SITL, the sensor data from the drone are artificially fed

from the flight dynamics model associated with the user specified platform (ArduCopter in

this case). SITL is advantageous as it gives developers access to a wide range of coding

tools to assist in static and dynamic analyzers, debugging tools, and the ability to easily

implement code changes to test rapidly. Figure 12 illustrates the main architecture of the

simulated operation. References [32] & [33] were used to set up and get started with SITL

on the Ubuntu virtual machine.

Fig. 12: Overview of SITL Simulation Architecture [5]
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4.1.3 QGROUNDCONTROL

QGroundControl is a software based Graphical User Interface (GUI) supported across

multiple operating systems such as Linux, Max iOS X, Android, and windows. It is typically

run as the ground control station for PX4 or ArduPilot supported vehicles. For SITL

simulations it was run on the Ubuntu virtual machine. For the purposes of this research

is was used during simulations as a setup and configuration interface of the ArduCopter

vehicle. From QGroundControl some nominal autonomous missions may be set by the

operator but, more importantly a flight map is displayed along with vehicle position/flight

tracking, waypoints, and instrumentation outputs. The software is supported by Mavlink

communication protocol between the ground control station and the flight controller [34].

Figure 13 portrays an instance QGroundControl was used during the SITL simulations run

on the VM.

Fig. 13: Basic QGroundControl Interface for SITL
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4.1.4 AUTONOMOUS MISSION SCRIPTS

The codes intended to be run supporting autonomous missions during the flight test

stage of this research were vetted in SITL ArduCopter simulations. To gain familiarity with

the Mavlink supported Python libraries, several examples were run and are available for

reference. Three main codes were developed in support of the EKF development broken

down as follows: An autonomous mission script aimed at flying to various waypoints at a

given altitude and velocity, a take data script recording the nominal readings from onboard

sensors used in the autopilot controls, and a Spoof GPS script sending Mavlink messages

to the autopilot feeding the autopilot artificial user defined GPS data.

• Fly Mission.py: The autonomous flight mission connects to the flight computer via a

connection string. Once the connection is verified the motors become armed and the

vehicle mode transitions to ”GUIDED” and takes off to a desired altitude of 40 meters

and the vehicle airspeed is set to 3 meters per second. The mission then begins flying

to four separate waypoints defined by their GPS coordinates. For more details, see

Appendix A.

• Take Data.py: The python script that runs during the flight test to record sensor

outputs relies on several native python libraries like numpy and pandas for matrix

operations. The routine first creates Mavlink attributes so that the sensor outputs

may be called throughout the code. The GPS and IMU sensor outputs are arranged

in a labeled table and exported as a .csv file compatible with Microsoft excel and

Matlab. For more details, see Appendix A.

• GPS Spoof.py: The GPS position predicted from the EKF utilizing the external IMU

measurements was relayed to the onboard flight controller with Pymavlink functions.

The Mavlink functions created raw packages of messages to be sent and abstracted.

The command associated with sending GPS information to be used with the autopilot

is ”mav.gps input send(...)”. For more details, see Appendix A.

4.1.5 MISSION PLANNER

For flight tests the ground control station operated the most recent version of Mission

Planner. Mission planner shares similar features with QGroundControl (used during the

simulation stage of this research). The configuration of the Quadcopter was set in mission
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planner. It was also used to complete the required calibration necessary to to arm the

Quadcopter’s four motors. In order to interface the UAV with the ground control station a

telemetry radio is connected to the machine hosting Mission Planner (via USB) and a baud

rate of 57600 on COM port 7 is set.

4.2 HARDWARE

The Quadcoptor used for the purposes of this research was originally constructed from

a HEXSOON EDU450 kit. This kit included the UAV’s frame, four T-MOTOR KV880

brushless motors, a power distributor, and four propellers. The remaining components

of the build were additional sensors, a flight controller, a battery, a telemetry radio, a

transmitter, a serial to USB converter, a companion computer, a Teensy board, and an

external IMU. An itemized list of the flight hardware is given in Table 1 including a brief

description of critical components of the Quadcopter. Once the fundamental construction of

the drone was complete the additional hardware was incorporated. The onboard telemetry

radio was required to communicate with the ground control station software passing along

the necessary telemetry data to ensure proper tracking. Figure 14 illustrates the UAV build

described above that executed the autonomous mission scripts to perform the flight test

missions. The figure identifies some of the key hardware called out in Table 1. Another

drone was also used to execute some of the flight test missions via Mission planner. This

was for simplicity once autonomous flight capability was achieved with the designed UAV

for this research. The Teensy board responsible for data acquisition of the ADIS 16475 is

shown mounted to the rigid body in Figure 15.

To run the autonomous flight scripts to perform the flight test missions and record data a

raspberry pi was used as a companion computer. The use of a companion computer ensured

the processing requirements of the Mavlink based codes did not hinder the performance of

processor built into the Cube Black autopilot. As a work-around to communication issues

via the serial port on the Pixhawk flight controller preventing a reliable connection with the

raspberry pi (RPI), a serial to USB converter was implemented. This provided an interface

between a serial port and a USB 2.0 port on the RPI. The Teensy board providing the

data acquisition from the external IMU was powered via the Pixhawk and mounted to the

Quadcopter’s frame. The Teensy was loaded with C++ code establishing the capability of

reading from the sensor’s data registers and writing them to a micro SD card built into the

board, thus allowing for real time acquisition. The pinouts of the IMU, Teensy 3.6 board,

and RPI can be found in Appendix D.
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TABLE 1: Breakdown of Quadcopter Hardware

Item Part Number Manufacturer Description

1 HX4-06005 Hex Technology ArduPilot Flight controller

autopilot

2 RASPBERRY PI 3 MODEL B+ Raspberry Pi Computer featuring Broad-

com BCM2837B0, 64-bit

SoC @ 1.4 GHz, 1 GB

LPDDR2 SSDRAM, and 4

USB 2.0 ports

3 AIR2216 KV880 T-MOTOR BLDC outrunner motor

(brushless)

4 14057 Hex Technology High precision GNNS GPS

module supporting RTK

mode and supports CAN

BUS protocol

5 GEA50004S45D Gens ACE Four cell LiPo battery,

14.8V-74Wh, 5000mAh

6 M10013-RK mRobotics.io mRo Sik Telemetry Radio

V2 915Mhz

7 SPM9645 SPEKTRUM DSMX remote receiver op-

erating on a 2.4GHz band

8 DEV-09873 SparkFun Serial to USB converter,

FTDI basic breakout - 3.3V

9 Teensy 3.6 PJRC 32 Bit Arduino-Compatible

Microcontroller used to in-

terface with the Analog de-

vices IMU allowing for real

time data sampling

10 ADIS 16475 Analog Devices 6DOF 12 output channel in-

ertial measurement unit and

breakout board
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Fig. 14: Identified Quadcopter Hardware Components
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Fig. 15: Additional Quadcopter with Teesny IMU Interface Blown Up

Some of the components of the drone that were more essential for fundamental flight

capability are the motors, battery, and receiver. The four electric motors used to provided

the thrust necessary for flight were three phase motors associated with an RPM of 880 per

1 volt applied (under no load). There are twelve wound poles in the stator and fourteen

magnets on the rotor (Figure 17). The thrust is generated from the induced torque resulting

from the interaction of magnetic fields between the rotor and stator. The three phase design

maximizes the intensity of the combined magnetic field associated with the alternating

current (AC). The three sets of coils are offset by 120 degrees (Figure 16), keeping the power

provided optimized. The motor’s electronic speed controller (ESC) has a signal refresh rate

of up to 600Hz and a range of 1ms to 2ms corresponding to 0% and 100% throttle.

The battery has four cells in series and one in parallel in which each cell has a nominal

voltage of 3.7V. The battery cells cannot go below a 3.0V discharge as it damages the cell’s

chemistry and it is safest to maintain a full discharge threshold of 3.2V. A voltage of 16.8V

was considered a full charge for Quadcopter flight test operations and 13V was considered a

drained battery no longer capable of maintaining safe operation. The maximum continuous

current draw of the LiPo battery was 225 Amps. The last component to mention is the
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Fig. 16: Idealized Phase Diagram for a Three Phase Induction Motor

Fig. 17: Electric Motor Stator Configuration
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receiver located on one of the arms of the UAV. It was essential for manual operation of the

Quadcopter during flight ensuring that the hand held controller inputs were communicated

with the flight controller.

4.2.1 ADIS 16475

Analog Devices’ ADIS 16475 is a precise micro-electromechanical system (MEMS) IMU

consisting of 6 DOF sensors, being a triaxial accelerometer and a triaxial gyroscope. The

manufacturers fused each sensor with signal conditioning to optimize the transducers dy-

namic performance. To ensure the most accurate measurement is provided, an extensive

factory calibration is applied encompassing the characterization of each sensor’s bias, align-

ment, sensitivity, and point of percussion. The IMU serves as a cost effective method for

providing multiaxis inertial sensing for the industry with an easy to use serial peripheral

interface (SPI) register structure for collecting data. The sensor is approximately 11mm x

15mm x 11mm on a break out board supplying the pins required for sampling connectivity.

Figure 18 illustrates the functional block diagram of the ADIS 16475.

Fig. 18: Analog Devices ADIS 16475 Data Sheet Block Diagram
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CHAPTER 5

FLIGHT TEST

After all the preliminary development of the autonomous mission was completed using SITL,

and the Quadcopter build was finished successfully with the necessary hardware integrated

into the system, a series of flight tests were required. The flight tests were critical in

collecting IMU data during an autonomous mission to test the hypothesis of whether or not

strapdown navigation relying on the Analog devices IMU alone would be a reliable solution

for instances of flight in a GPS denied environment. Such environments could be associated

with a GPS blackout, GPS jamming, or GPS spoofing. The flight tests consisted of many

steps. The most significant aspects of which will be explained within this Chapter.

5.1 CONNECTING TO THE DRONE

Two different connection methods were used for the series of flight tests. If performing the

dronekit based autonomous missions developed using SITL, a connection string via Mavlink

was required to initialize the mission. First, an SSH connection had to be made between

the ground control station and the onboard companion computer (RPI). Next, a serial to

USB converter was used to provide this connection as mentioned in Section 4.2. The script

was executed on the companion computer (RPI), passed to the USB to serial converter, and

then to the serial port on the Pixhawk. ”Connect(’–connect’, default=“/dev/ttyUSB0”,

wait ready = True, baud=115200)” is the physical code initializing the connection between

the drones’ flight controller and the user defined mission on the RPI at a baud rate of

115200.

The second method of running the autonomous mission was done relying on an external

software, Mission planner. The connection between the Quadcopter and the ground control

station was made via a telemetry radio. Within Mission Planner a baud rate of 57600 had

to be selected and set for the connection via the telemetry radio to be established. For both

methods of connection certain settings of the flight controller must be enabled to ensure a

successful and safe flight.
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5.2 SENSOR INTERFERENCE AND FLIGHT SAFETY

Various parameters can be configured within Mission Planner or QGroundControl to

ensure an autonomous mission cannot be completed without meeting certain thresholds of

paramount importance ensuring a safe flight. Some of the safety related parameters to

mention are that of battery level, GPS HDOP reading, and the number of GPS satellites

available. A battery monitor exists within Mission Planner constantly checking the voltage

and current of the battery. A return to launch (RTL) is set to be enabled at a user specified

voltage level to avoid the possibility of an end of flight scenario due to the battery dying mid

flight. The HDOP reading is a check of the GPS measured position accuracy. An HDOP

value of under 2.0 is acceptable for a safe flight. The user cannot arm the drone (unless it

is in a flight mode that doesn’t require GPS) without meeting the appropriate HDOP level.

As the autonomous mission requires flying the Quadcopter with the GPS sensor in the loop

for navigation (in GUIDED mode) a 3D lock confirmation is required. A minimum of 6

GPS satellites are necessary to enable GUIDED flight mode, ensuring a safe flight.

During the initial checkout of the drone build some configuration restrictions were real-

ized to avoid sensor interference. The most significant of which was the placement of the

external Analog Devices IMU with respect to the HERE3 GPS sensor. GPS sensors are

inherently sensitive to electrical noise and having the IMU placed in the vicinity of the GPS

sensor resulted in an unacceptable HDOP level. This prevented the drone from arming in

GUIDED mode. Simply moving the IMU further away from the GPS sensor remedied this

issue.

Every configurable setting is available in the configuration tab of Mission Planner under

the ”Full Parameter List”. This interface is where the baud rate is set, the telemetry port

configuration is specified (allowing for a specific COM port to be accessible to the companion

computer), ABSD-OUT settings are disabled, and the default data logging trigger is defined.

These are the most noteworthy user specific parameters essential for this research but, several

more capabilities and functions are configurable here. Figure 19 portrays the user interface

given in Mission Planner when accessing the mentioned fields.
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Fig. 19: Mission Planner Full Parameter List

5.3 MISSION PLANNER CALIBRATION

Before an autonomous mission was run, a series of general calibrations were required for

the flight controller to perform efficiently. The following three calibrations were performed,

RC handheld controller calibration, accelerometer calibration, and compass calibration all

of which are found under the SETUP tab in Mission Planner. The RC hand held calibration

was necessary to checkout the different sticks on the controller to ensure the total range of

throttle was utilized as well as setting the direction associated with change of throttle and

identifying which stick was associated with position in the x and y direction and which

was associated with the positive and negative z direction. Switches were also assigned for

different flight modes and most importantly a switch was set to command a RTL. The

compass calibration was very straight forward and involves enabling the calibration routine

in Mission planner and then rotating the vehicle about the x, y, and z axis such that
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every side of the Quadcopter faces the center of the earth for a few seconds. The final

calibration was the accelerometer calibration which calibrated the accelerometer within the

CUBE autopilot’s IMU. After being enabled and starting from a level surface, the vehicle is

placed in the following sequence of positions as instructed by Mission Planner: Level, Left

Side, Right Side, Nose Up, Nose Down, and Back Side. Figure 20 illustrates the positions

associated with the accelerometer calibration procedure. After each position is set, the user

pressed a confirmation button in Mission Planner before moving to the next position.

Fig. 20: Mission Planner Accelerometer Calibration Routine [6]
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5.4 EXTERNAL IMU CALIBRATION AND DATA COLLECTION

A set of calibration coefficients were provided at the beginning of this research from a

team that followed the simple calibration process mentioned in Section 2.2.2 in accordance

with the process laid out in [20]. This provided additional calibration to the Analog Devices

IMU’s triaxial accelerometer. The ADIS 16475 manufacturers designed the IMU to output

the sensor data registers applying unique formulas to correct the outputs for things like bias,

sensitivity, misalignment, drift, and temperature independence. Reading the data registers

was not an easy feature as the manufacturers only supplied data acquisition for when the

IMU was physically connected to a computer with a Windows based operating system. As

the RPI companion computer running the autonomous mission was of ARM architecture

an alternative solution was necessary. C++ code found in Appendix C was written to read

the data registers off the ADIS 16475 and apply the analog to digital conversion before

writing them to a micro SD card on a Teensy board. This led to a relatively limited average

sample rate of 300 hz. Data collection began just before the drone was armed to begin the

autonomous mission and was completed after the mission was finished, at which point the

drone was disarmed with the motors switched off.

5.5 PIXHAWK FLIGHT CONTROLLER LOGS

Data logs containing all of the different outputs available from the flight controller are

stored on the autopilot and are made downloadable post flight. The data logs can be

configured under the full parameter list found in the configuration tab of Mission Planner.

For the purposes of this research, logs were written for each sequence of the drone being

armed to being disarmed. The logs were critical in comparing the Analog devices IMU to

the CUBE’s IMU as all the various sensor outputs were recorded in the logs. The logs not

only contained the IMU and GPS outputs but also the fused navigational readings produced

from various optimization routines and on board EKFs. Figure 21 portrays a loaded flight

log in mission planner with the IMU’s acceleration data for the x, y, and z directions loaded.
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Fig. 21: Mission Planner Flight Log

5.6 FLIGHT MISSION

The flight mission was developed using ArduCopter in the simulation in the loop (SITL)

environment as mentioned in section 4.1.2. A generic fight mission trajectory was defined

loosely following that of a rectangle with the vertices represented by a GPS waypoint coordi-

nates. A highly nonlinear trajectory was not used to test the hypothesis as it was outside the

scope of this research. Each waypoint was approximately 15 meters apart and at an altitude

of 15 meters. The commanded velocity for the mission was 5 m/s and the drone performed

a position hold command at each waypoint for ten seconds before moving onto the next

GPS coordinate. The trajectory was flown several times in support of various flight tests.

In addition to the Python-based autonomous mission (Fly mission.py), the same trajectory

was run via the autonomous mission interface built into Mission Planner. This allowed

the trajectory to be run on more than one drone in which a companion computer was not

required. Figure 22 portrays the generic trajectory commanded in the autonomous missions

developed in SITL.

Before initiating a flight mission, it was important to collect some ground data from
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Fig. 22: Generic Flight Trajectory Developed in SILT Simulations (not to scale)
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the external IMU to capture its performance with and without the vibrations from the

Quadcopter’s motors running. A comparison between the sets of data characterized the

sensor measurement offsets. Different types of foam were also used to help dampen out

the vibrations imposed by the motors through the frame and its interface with the external

IMU. After several iterations of ground test runs were completed, the flight mission could

be run with more confidence in the postflight analysis.
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CHAPTER 6

RESULTS

6.1 1D RECTILINEAR MOTION

Figure 23 illustrates the artificial 1D acceleration data produced in Matlab that was cor-

rupted with Gaussian white noise, used to verify the EKF algorithm.
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Figure 24 portrays the integrated velocity of artificial 1D acceleration data produced (cor-

rupted with Gaussian white noise) in Matlab and the EKF estimated velocity used for

algorithm performance verification.
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The figure above illustrates the integrated position of artificial 1D acceleration data produced

(corrupted with Gaussian white noise) in Matlab and the EKF estimated velocity used for

algorithm performance verification.
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6.2 AUTOPILOT NAVIGATION DATA

Figure 26 is the autopilot’s filtered x position converted from the Mission Planner GPS data

(longitude).
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Figure 27 is the autopilot’s filtered y position converted from the Mission Planner GPS data

(latitude).
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Figure 28 is the autopilot’s filtered z position converted from the Mission Planner GPS data

(altitude).
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Figure 29 is the autopilot’s filtered trajectory (x vs. y) converted from the Mission Planner

GPS data.
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6.3 ANALOG DEVICES IMU

Figure 30 is the sensed angular rates about the x, y, and z axis from the Analog devices

ADIS 16475 overlayed with the untuned EKF estimated values.
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Figure 31 is the sensed orientation about the x, y, and z axis from the Analog devices ADIS

16475 overlayed with the untuned EKF estimated values.
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Figure 32 is the sensed acceleration in the x direction from the Analog devices ADIS 16475

overlayed with the untuned EKF estimated values.
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Figure 33 is the sensed acceleration in the y direction from the Analog devices ADIS 16475

overlayed with the untuned EKF estimated values.
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Figure 34 is the sensed acceleration in the z direction from the Analog devices ADIS 16475

overlayed with the untuned EKF estimated values.
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Fig. 34: Analog Devices IMU Acceleration in Z Direction
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Figure 35 is the integrated velocities in the x, y, and z directions from the sensed Analog

devices ADIS 16475 accelerations overlayed with the untuned EKF estimated values.
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Fig. 35: Analog Devices IMU Integrated Velocities
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Figure 36 is the integrated position in the x, y, and z directions from the sensed Analog

devices ADIS 16475 accelerations overlayed with the untuned EKF estimated values.
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Fig. 36: Analog Devices IMU Integrated Positions
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6.4 EKF INERTIAL NAVIGATION ESTIMATES

Figure 37 is the sensed angular rates about the x, y, and z axis from the Analog devices

ADIS 16475 overlayed with the tuned EKF estimated values.
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Fig. 37: Analog Devices Tuned IMU Angular Velocities
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Figure 38 is the sensed orientation about the x, y, and z axis from the Analog devices ADIS

16475 overlayed with the tuned EKF estimated values.

0 20 40 60 80 100 120

Time (s)

-30

-20

-10

0

10

q
x
 (

d
e
g
)

Vehicle Orientation

ekf

0 20 40 60 80 100 120

Time (s)

-20

0

20

40

q
y
 (

d
e
g
)

ekf

0 20 40 60 80 100 120

Time (s)

-200

-100

0

100

q
z
 (

d
e
g
)

ekf

Fig. 38: Analog Devices Tuned IMU Angular Positions
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Figure 39 is the sensed acceleration in the x direction from the Analog devices ADIS 16475

overlayed with the tuned EKF estimated values.
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Fig. 39: Analog Devices Tuned IMU Acceleration in X Direction
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Figure 40 is the sensed acceleration in the y direction from the Analog devices ADIS 16475

overlayed with the tuned EKF estimated values.
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Figure 41 above is the sensed acceleration in the z direction from the Analog devices ADIS

16475 overlayed with the tuned EKF estimated values.

0 20 40 60 80 100 120

Time (s)

-25

-20

-15

-10

-5

0

5

10

15

A
z
 (

m
/s

2
)

Z-Acceleration

Az
IMU

Az
ekf

Fig. 41: Analog Devices Tuned IMU Acceleration in Z Direction
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Figure 42 is the tuned velocity estimates in the x, y, and z directions from the EKF filtered

Analog devices ADIS 16475.
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Fig. 42: Analog Devices Tuned IMU Integrated Velocities
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Figure 43 is the tuned position estimates in the x, y, and z directions from the EKF filtered

Analog devices ADIS 16475.
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Fig. 43: Analog Devices Tuned IMU Integrated Positions
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Figure 44 overlays the final tuned trajectory estimate with a partially tuned trajectory

estimate illustrating the impact of the optimized covariance matrices.
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Figure 45 is the tuned flight trajectory estimate based on the measurements of the Analog

devices ADIS 16475 IMU versus that of the autopilot.
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6.5 QGROUNDCONTROL GPS SPOOFING

Figure 46 is QGroundControl running in SITL demonstrating the spoofed GPS values being

read by the Quadcopter’s Autopilot

Fig. 46: QGroundControl Spoofed GPS Data
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Figure 47 illustrates a command window print out associated with the execution of the

GPS Spoof.py script in the companion computer’s environment

Fig. 47: GPS Spoof.py Running in SITL Environment
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CHAPTER 7

DISCUSSION

Throughout the course of this research, the intention was to apply an Extended Kalman

Filter introduced in Section 2.3 and test the effectiveness of the MMM method on inertial

measurements collected with a higher quality, ADIS 16475, IMU. The Quadcopter built for

flight test and development runs with a Cube black Ardupilot based autopilot that relies

on its suite of sensors to perform autonomous missions. In order to ensure autonomous

capability the GPS measurement must be available. The measurements from the external

IMU were passed through an EKF to predict the inertial position of the Quadcopter. The

predicted position values can then be passed to the autopilot as GPS coordinates to ensure

autonomous mission capability can be maintained in situations when the physical GPS

measurements may not be authentic or available. The findings discussed within this section

are broken into four parts, EKF MMM algorithm verification, a review of the initial flight

test data, improvements to the navigation estimates, and spoofing the GPS via MAVLink

messaging.

7.1 EKF INERTIAL NAVIGATION VERIFICATION

A Kalman Filter is a state estimator that operates on the basis that a random function

of time may be thought of as an output of a dynamic system excited by an independent

Gaussian random process. The Extended Kalman Filter is ideal for a non-linear process or

non-linear measurement relationship. The EKF for the state-space system associated with

the MMM algorithm for this research needed to be verified before attempting to estimate

state information from the ADIS IMU measurements. To ensure the EKF worked artificial

one dimensional accelerometer data was produced with Matlab. As this was an idealized

scenario, the fake measurements were corrupted with Gaussian white noise, satisfying the

underlining assumption of the state estimator. The corrupted one dimensional accelerometer

data had a signal to noise ration of 10 decibels.

The data used to verify the EKF routine were characteristic of a one dimensional rec-

tilinear motion. The artificial accelerations were intended to reflect the motion of a point

mass speeding up from rest, then translating at a constant velocity, and finally slowing down
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to a velocity of 0 ft/s. Fundamental first principals were used to calculate the position and

velocity as illustrated in Equations 44 and 45.

d = vit+
1

2
at2 (44)

vf = vi + at (45)

Figure 23, presented in the previous section shows the unfiltered acceleration corrupted

with white noise overlayed with the filtered acceleration. Clearly the Extended Kalman

Filter is estimating a less noisy signal. To verify the state estimator the results produced from

the Matlab routine were compared against the theoretical position and velocity described

in Equations 44 and 45. The navigation data presented in Figures 24 and 25 illustrate the

predicted position and velocity from the EKF routine matching those calculated using the

equations mentioned previously. These results gave confidence in the algorithm’s accuracy

and performance.

7.2 INITIAL FLIGHT TEST

As mentioned in Section 5.6, several flight test were required for this research. As

one could expect the first round flight test produced poor data. The ADIS 16475, while

extremely more sensitive than the INS provided in the CUBE autopilot, was still highly sus-

ceptible to noise and bias. The factory calibration provided as well as initial bias correction

maintained from previous works was not sufficient enough to eliminate the fundamental drift

attributed to DC offset or due to the vibrations imposed on the rigid body of the vehicle.

Figures 32 through 34 illustrate the sensed accelerations overlayed with the filtered esti-

mates produced with by the EKF. As conveyed in Figures 35 and 36 velocity and position

measurement were unreliable in reflecting the true position of the vehicle due to the error

and bias creeping into the integration process. Various attempts were made to adjust for

such interference and implemented with additional flight test and analysis.

The first attempts at reducing noise from the ADIS 16475 measurements were to reduce

the impact of vibration and to account for the bias or offset in measurements. Different

locations of the sensor were considered as well as different mounting techniques. Ultimately

a 3M foam was used to interface the IMU to the frame as suggested by the autopilot

manufacturers at the center of gravity (CG) location approximately equidistant from the

rotors. Assumptions were made regarding the bias in that it was a constant without any
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drift. Further flight tests led to the conclusion that the bias did suffer from a form of

drift. It is not uncommon for strapdown inertial navigation systems to struggle from such

errors. In fact very few system are actually capable of provided accurate and reliable inertial

navigation estimates.

The main errors associated with the IMU stemmed from scale factor, bias, misalignment,

and nonlinearities in the sensed values. A reliable approach in accounting for these errors is

an all encompassing calibration routine and modeling the errors in the state space model.

For this research, the MMM EKF method does not include such states and therefore the

validity of its performance objectively had to be tested. State estimation is also hindered

by the inherent errors associated with numerical integration. While, in principle, numer-

ical integration is not complicated, the difference between actual position and orientation

increase overtime. The phenomenon is known as integration drift and it is unavoidable.

Integration drift and the presence of noise in the IMU measurements exacerbate the effects

and the deviation occurs more rapidly and on a larger scale. For this matter, fusing a GPS

measurement with an IMU measurement as an a priori navigational estimate is suitable for

eliminating the error. In such systems the GPS navigational readings are subtracted from

the integrated INS navigational readings whenever GPS is available.

7.3 EKF NAVIGATION ESTIMATION

After all of the improvements were made to the experimental set up to aid the quality in

measurement of the external IMU navigational estimates were still unacceptable. The final

attempts at salvaging near successful results with the MMM EKF were made in tuning the

process and measurement noise covariance matrices. For this tuning non-linear optimiza-

tion routines know industry wide were applied. The two used for this research were the

FMINCON and Simulated Annealing algorithms. Treating the navigation data from the

autopilot as truth data, the covariance matrices were tuned in hopes of producing improved

estimates for similar flight trajectories.

FMINCON and Simulated Annealing are non-linear optimizer algorithms that find the

minimum of a given function. FMINCON was found to not be ideal for this research as

it is prone to stopping after reaching a local minima. Rather, the simulated annealing

algorithm was chosen. This algorithm is more computationally expensive and has several

more iterations but, it is proficient at finding the global minima. The cost function used

for the simulated annealing algorithm was based on the differences between the filtered

navigational position produced with the MMM EKF and the navigation data of the on
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board autopilot (predictions from the suit of sensors, including GPS, and its own set of

EKF filtering). The cost function to be minimized is given in Equation 46

∑
((xpredicted − xtruth)2 + (ypredicted − ytruth)2 + (zpredicted − ztruth)2) (46)

The simulated annealing algorithm was executed four time via a Matlab script, each time for

30,000 iterations holding onto the best performing inputs which minimized the cost function

every 100 iterations. The elements of the covariance matrices served as inputs to the MMM

EKF which produced the tuned state estimates (predictions for Equation 46). An initial

guess of .001 ∗ I(15) was used for measurement and process noise covariance matrices. The

MMM EKF method was applied for each iteration. Then the state estimates were compared

against the states recorded by the autopilot via a root sum square. The simulated annealing

algorithm would next vary the inputs to the covariance matrices and repeat the iteration.

Through the applications of the simulated annealing algorithm the following matrices were

determined:
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More iteration of the algorithm could be run to further improve the results herein however

it was deemed that the effectiveness of the MMM EKF was satisfactorily achieved with the

current tuning.

After tuning the external IMU the noise and bias unaccounted for in the MMM state

equations and calibration routine was significantly reduced. Figures 39 through 41 illustrate

the contrast between the accelerations estimated with the EKF and the raw untuned, IMU.

Considering how much the signals were washed out previously due to integration drift and

the plethora of other conflicts mentioned in Section 7.2 (made apparent in Figures 35- 36) the

non-linear optimization approach was successful as Figures 42 and 43 resolve navigational

data representative of the true flight trajectory. While the implementation of the tuned

process and measurement covariance matrices lead to a more accurate estimate there are

still discrepancies with respect ot the predicted trajectory produced by the CUBE autopilot.

This observation is made via Figure 45 which represents how well the MMM EKF matches

the autopilot. The key factor responsible for the discrepancy is the inconsistent sample rate

associated with the external IMU. Significant Integration drift is to be expected with an

average sample rate was only 300 Hz. Nonetheless the effectiveness of the MMM EKF is

made blatantly obvious in Figure 44 which shows how over estimated the unfiltered tuned

IMU navigational estimates are.

7.4 GPS SPOOFING VIA MAVLINK MESSAGING

The motivation for this research was to determine if an external IMU could be used in

place of the navigation prediction coming from a CUBE autopilot. The estimated states

from the MMM EKF are to be passed to the autopilot as artificial GPS measurements in

place of the actual GPS measurements. This implementation can then be utilized in future

works during GPS denied environments. To develop such a method by which spoofing the

autopilot’s GPS with artificial data was possible, SITL simulations were conducted. With

the use of MAVLink based messaging the GPS data going to the autopilot was successfully

implemented. Appendix A lists the Python script used for passing estimated navigational

states to the autopilot as GPS data. This functionality allows the Quadcopter’s autopilot to

maintain autonomous flight capability without a reliable GPS signal. Figure 6.5, in Section

6, illustrates a ground control station in the simulated environment reading the spoofed

GPS data as it is being passed via MAVLink messaging to the vehicles autopilot.

The real implementation of the developed GPS messaging can be run on any Quadcopter

build using an aurdupilot base autopilot (i.e., Cube Black) and a companion computer. For
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the purposes of this research, physical implementation of this script was not possible as the

external IMU measurements were post-processed into state estimates. If the state estimates

were made available in real time then they could be passed with the GPS Spoof.py script

running on the Raspberry Pi companion computer. This was however functionally verified

as discussed above in the SITL simulation



85

CHAPTER 8

CONCLUSION AND FUTURE WORK

Throughout the course of this research every detail discussed was intended to highlight

the renowned empirical steps of the scientific method leading up to a drawn conclusion.

After a thorough review of the fundamental components of an inertial navigation system,

a deep dive into the state of the art EKF applications for UAVs was made with a slight

emphasis on GPS intrusion detection systems. The underlining objective of this research

was to determine if strapdown navigation with an external higher quality IMU utilizing the

MMM EKF algorithm is effective enough at estimating inertial state information to serve

as a suitable replacement for GPS ensuring autonomous flight capability in GPS denied

environments. The state estimates are converted into latitude, longitude, and altitude

values and passed artificially via GPS Mavlink messages run from the drones’ companion

computer. To test the hypothesis of whether or not the MMM EKF algorithm along with

the external IMU is an effective state estimator the general experimental process was as

follows:

• Develop autonomous flight scripts and verify their performance in a virtual environ-

ment running SITL simulations.

• Build a Quadcopter with the necessary suite of sensors essential for mission readiness

to collect flight test data.

• Validate the EKF MMM algorithm with 1D rectilinear motion first principles.

• Apply non linear optimization to tune EKF algorithm to flight test data.

• Verify CUBE autopilot GPS can be overwritten via Mavlink messaging in SITL sim-

ulations.

• Analyze and draw conclusions from state estimator results.

After the flight test were was reduced and the nonlinear optimizer was applied to tune

measurement and process noise covariance matrices the inertial state estimation improved

drastically. While the tuned filter proved to be effective it was specific to the flight trajectory
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and was ineffective for additional flights. Despite these limitation artificial GPS data were

successfully transmitted to the autopilot via Mavlink messages, as demonstrated in SITL

simulations. The error in the predicted states stemmed from several root causes such as bias,

scale factor, misalignment, nonlinearities, and integration drift. There are many alternatives

that can lead to improvements in future works.

There are three ways to reduce the state estimation error that have the largest impact.

From most to least significant: adding additional sensors for measurement data to incorpo-

rate into the EKF estimator, increase the sample rate of measurement data acquisition, and

to implement a more robust/all encompassing calibration routine. While the purpose of this

research was to test if the MMM EKF algorithm (which only relies on the measurements

from an IMU) will suffice in adequate navigation predictions, the CUBE autopilot maintains

acceptable levels of state estimation with its internal EKFs relying on additional measure-

ments from a GPS and Compass. The most heavily weighted measurement contributing to

the CUBE autopilots navigated state is that of the compass. The more accurate heading

measurement can be used to filter out the motion in the other unrealistic directions. Other

high tech sensors that are newer to the industry have recently been used in other develop-

ments as substitute for GPS measurements. This was mentioned in Section 2 in the works

of [21] and [23] that introduced the integration of LIDAR based laser scans with a field

of view of 270◦ and proximity sensors capable of measuring the relative distance between

neighboring drones.

The Teensy board used to record measurement data from the Analog devices ADIS 16475

was far from perfect, and did not output at a consistent rate or near the max data through-

put for which it is capable. Improvements to be made are to implement the data acquisition

executable onto the companion machine running autonomous flight mission (RPI) and en-

sure the max capabilities are being achieved. Establishing a data buffer may be required

to output a batch of data registers at 1MHz as per manufacturer’s recommendations. The

IMU manufacturers included a factory calibration of the internal sensors and built them

into the physical outputs of the analog signals.

The only additional calibration routine applied throughout this research was that of a

legacy calibration correction provide by previous works. A more intricate calibration process

specific to the flight trajectory and application of the IMU would likely improve the error

of the state estimator. Using another system of equations to represent the dynamics of

the vehicle for which the inertial states are defined by not only the sensor measurements

but also sensor bias and scale factor would lead to a more accurate model of the navigated
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states. Additional error terms are obtainable with a more robust calibration routine which

can then be incorporated into the state estimation.

The implementation of spoofing the autopilot GPS in SITL simulations was a proof of

concept that can be expanded on in future works. The idea was to inspire future research

in machine learning and artificial intelligence with regard to intrusion detection of (GNSS)

systems. Applying principles from [25] and [26] a supervised neural network could be trained

with known classified GPS data. Eventually the classifier algorithm could run on the Quad-

copter’s companion computer in real time utilizing the onboard GPS measurements (passed

via Mavlink messges to the compaion computer) as inputs and determine if GPS signal

is lost, secure, or compromised. In the case of compromised or lost GPS the EKF state

estimators based off the external analog devices IMU would take affect and over ride the

Autopilots sensed GPS measurements.

To conclude, this research developed and implemented an EKF performing strapdown

navigation relying solely on measurements from an external IMU. Autonomous flight scripts

were verified via SITL simulations in a LINUX environment and the EKF MMM algorithm

was validated against basic first principals. Ultimately experimental results were gathered

with flight test of a Quadcopter build that incorporated all the necessary sensors. The state

estimator was a limited success but only when tuned for the specific flight trajectory. A

more reliable solution for autonomous flight capability in a GPS denied environment must

incorporate more sensed measurements and include a better representation of error states.

Passing of the state estimates as GPS data has been proven possible.
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A. Pescapè, “A svm-based detection approach for gps spoofing attacks to uav,” in 2017

23rd International Conference on Automation and Computing (ICAC), IEEE, pp. 1 –

11, 2017.

[8] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology - 2nd Edi-

tion. 1801 Alexander Bell Drive Suite 500 Reston VA 20191-4344 USA: The Institution

of Electrical Engineers and The American Institute of Aeronautics and Astronautics,

2004.

[9] N. Ahmed and M. Chen, “Sliding mode control for quadrotor with disturbance ob-

server,” Advances in Mechanical Engineering, vol. 10, no. 7, pp. 1 – 16, 2018.

[10] T. Madani and A. Benallegue, “Backstepping control for a quadrotor helicopter,” in

International Conference on Intelligent Robots and Systems (IRS), IEEE, pp. 1 – 7,

2006.

https://mavlink.io/en/messages/common.html
https://mavlink.io/en/messages/common.html
https://ardupilot.org/dev/docs/using-sitl-for-ardupilot-testing.html
https://ardupilot.org/dev/docs/using-sitl-for-ardupilot-testing.html
https://ardupilot.org/copter/docs/configuring-hardware.html
https://ardupilot.org/copter/docs/configuring-hardware.html


89

[11] B. Friedland, Control System Design: An Introduction to State-Space Methods. Dover

Publications, Inc., 31 East 2nd Street, Mineola, N.Y 11501: Dover, 2005.

[12] D. G. LUENBERGER, “Observing the state of a linear system,” IEEE Trans. on

Military Electronics, vol. MIL-8, pp. 74 – 80, April 1964.

[13] R. Kalman, “A new approach to linear filtering and prediction problems,” Trans.

ASME(J. Basic Engineering), vol. 82D, no. 1, March 1960.

[14] R. Kalman and R. Bucy, “New results in linear filtering and prediction theory,” Trans.

ASME(J. Basic Engineering), vol. 83D, no. 1, March 1961.

[15] KROSSBLADE AEROSPACE, “History of quadcopters and other multirotors.” https:

//www.krossblade.com/history-of-quadcopters-and-multirotors/, 2021. Ac-

cessed: 2021-4-20.

[16] T. Luukkonen, “Modeling and control of quadcopter,” Master’s thesis, Aalto University

School of Science, Espoo, Finland, Aug. 2011.

[17] P. G. Savage, “Strapdown inertial navigation integration algorithm design part 1:

Attitude algorithms,” JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS,

vol. 21, no. 1, pp. 19 – 28, 1998.

[18] Q. Quan, Introduction to Multicopter Design and Control. 152 Beach Road, 21-01/04

Gateway East, Singapore 189721, Singapore: Springer Nature, 2017.

[19] S. Bijjahalli, R. Sabatini, and A. Gardi, “Advances in intelligent and autonomous

navigation systems for small uas,” Progress in Aerospace Sciences, vol. 115, p. 100617,

2020.

[20] D. Tedaldi, A. Pretto, and E. Menegatti, “A robust and easy to implement method for

imu calibration without external equipments,” in International Conference on Robotics

and Automation (ICRA), IEEE, (Hong Kong), pp. 3042 – 3049, 2014.

[21] G. Mao, S. Drake, and B. D. O. Anderson, “Design of an extended kalman filter for uav

localization,” in Information, Decision and Control, IEEE, (Adelaide, SA, Australia),

pp. 224 – 229, 2007.

https://www.krossblade.com/history-of-quadcopters-and-multirotors/
https://www.krossblade.com/history-of-quadcopters-and-multirotors/


90

[22] A. T. Erdem and A. O. Ercan, “Fusing inertial sensor data in an extended kalman filter

for 3d camera tracking,” IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 24,

no. 2, pp. 535–548, 2015.

[23] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How, “Search and rescue

under the forest canopy using multiple uavs,” The International Journal of Robotics

Research, vol. 39, no. 10-11, pp. 1201 – 1221, 2020.

[24] A. Bachrach, S. Prentice, R. He, and N. Roy, “Range - robust autonomous navigation

in gps-denied environments,” Proceedings for 2010 IEEE International Conference on

Robotics and Automation (ICRA), pp. 1096–1097, 2010.

[25] M. P. Arthur, “Detecting signal spoofing and jamming attacks in uav networks using

a lightweight ids,” in 2019 International Conference on Computer, Information and

Telecommunication Systems (CITS), IEEE, pp. 1 – 5, 2019.

[26] M. R. Manesh, J. Kenney, W. C. Hu, V. K. Devabhaktuni, and N. Kaabouch, “Detec-

tion of gps spoofing attacks on unmanned aerial systems,” in 2019 16th IEEE Annual

Consumer Communications and Networking Conference (CCNC), IEEE, pp. 1 – 6,

2019.

[27] C. C. Aggarwal, Neural Networks and Deep Learning. IBM T. J. Watson Research

Center International Business Machines, Yorktown Heights, NY, USA: Springer, 2018.

[28] MathWorks, “How simulated annealing works.” https://www.mathworks.com/help/

gads/how-simulated-annealing-works.html/, 2022. Accessed: 01-10-2022.

[29] 3D Robotics, “About dronekit.” https://dronekit-python.readthedocs.io/en/

latest/about/overview.html, 2015. Accessed: 06-13-2021.

[30] Dronecode & The Linux Foundation, “Protocol overview.” https://mavlink.io/en/

about/overview.html, 2021. Accessed: 06-13-2021.

[31] AruduPilot Dev Team, “Mandatory hardware configuration.” https://ardupilot.

org/ardupilot/index.html, 2021. Accessed: 06-14-2021.

[32] AruduPilot Dev Team, “Setting up sitl on linux.” https://ardupilot.org/dev/docs/

setting-up-sitl-on-linux.html, 2021. Accessed: 06-14-2021.

https://www.mathworks.com/help/gads/how-simulated-annealing-works.html/
https://www.mathworks.com/help/gads/how-simulated-annealing-works.html/
https://dronekit-python.readthedocs.io/en/latest/about/overview.html
https://dronekit-python.readthedocs.io/en/latest/about/overview.html
https://mavlink.io/en/about/overview.html
https://mavlink.io/en/about/overview.html
https://ardupilot.org/ardupilot/index.html
https://ardupilot.org/ardupilot/index.html
https://ardupilot.org/dev/docs/setting-up-sitl-on-linux.html
https://ardupilot.org/dev/docs/setting-up-sitl-on-linux.html


91

[33] AruduPilot Dev Team, “Using sitl.” https://ardupilot.org/dev/docs/

using-sitl-for-ardupilot-testing.html, 2021. Accessed: 06-14-2021.

[34] Dronecode & The Linux Foundation, “Qgroundcontrol user guide.” https://docs.

qgroundcontrol.com/master/en/index.html, 2021. Accessed: 06-14-2021.

https://ardupilot.org/dev/docs/using-sitl-for-ardupilot-testing.html
https://ardupilot.org/dev/docs/using-sitl-for-ardupilot-testing.html
https://docs.qgroundcontrol.com/master/en/index.html
https://docs.qgroundcontrol.com/master/en/index.html


92

APPENDIX A

PYTHON SCRIPTS



# Sky Seliquini 
# MAE 699 
 
""" 
This script is intended to utilize dronekit packages and mavlink commands 
when necessary 
to execute the following 
 
    - connect to AdruCopter 
    - take off to a set altitude of 20m 
    - go to way point relative to local starting GPS 
    - call specific attributes from my_vehicle.py 
    - turn off on board GPS after 2 minutes of flight 
 
Then execute simple commands such as printing out attributes and implement 
logic to 
calculate various parameters. 
 
Maybe use Brian's Data.py as a guid to produce some data files. 
""" 
 
# Import relevant libraries 
from __future__ import print_function 
import time 
import math 
from dronekit import connect, VehicleMode, LocationGlobalRelative, 
LocationGlobal, Command 
from my_vehicle import MyVehicle # Custom Vehicle class with the attributes 
defined 
 
import argparse 
parser = argparse.ArgumentParser(description='Connects to SITL on local PC or 
to the telemetry of SOLO Drone.') 
parser.add_argument('--connect', default="127.0.0.1:14550", 
                    help="Vehicle connection target string.") 
args = parser.parse_args() 
 
connection_string = args.connect 
 
# Connect to the Vehicle 
print('Connecting to vehicle on: %s' % connection_string) 
vehicle = connect(connection_string, wait_ready=True, 
vehicle_class=MyVehicle) 
 
#################################DEFINE FUNCTIONS REQUIRED TO EXECUTE THE 
SCRIPT GOALS################################## 
def get_location_metres(original_location, dNorth, dEast): 
 
    """ 
    Modified original code from Brian Duval to set alt 
    Returns a LocationGlobal object containing the latitude/longitude 
`dNorth` and `dEast` metres from the 
    specified `original_location`. The returned Location has the same `alt` 
value 
    as `original_location`. 
 
    The function is useful when you want to move the vehicle around 



specifying locations relative to 
    the current vehicle position. 
    The algorithm is relatively accurate over small distances (10m within 
1km) except close to the poles. 
    For more information see: 
    http://gis.stackexchange.com/questions/2951/algorithm-for-offsetting-a-
latitude-longitude-by-some-amount-of-meters 
    """ 
    earth_radius=6378137.0 #Radius of "spherical" earth 
 
    #Coordinate offsets in radians 
    dLat = dNorth/earth_radius 
    dLon = dEast/(earth_radius*math.cos(math.pi*original_location.lat/180)) 
 
    #New position in decimal degrees 
    newlat = original_location.lat + (dLat * 180/math.pi) 
    newlon = original_location.lon + (dLon * 180/math.pi) 
    return LocationGlobal(newlat, newlon, vehicle.location.global_frame.alt) 
 
#############################################################################
########################################### 
 
def download_mission(): 
    """ 
    Download the current mission from the vehicle. 
    """ 
    cmds = vehicle.commands 
    cmds.download() 
    cmds.wait_ready() # wait until download is complete. 
 
#############################################################################
########################################### 
 
def Home_Location_Check(): 
    while not vehicle.home_location: 
        cmds= vehicle.commands 
        cmds.download() 
        cmds.wait_ready() 
    print ("Got Home Location") 
 
#############################################################################
########################################### 
 
def arm_and_takeoff(aTargetAltitude): 
    """ 
    Arms vehicle and fly to aTargetAltitude. 
    """ 
 
    print("Basic pre-arm checks") 
    # Don't try to arm until autopilot is ready 
    while not vehicle.is_armable: 
        print(" Waiting for vehicle to initialise...") 
        time.sleep(1) 
 
    print("Arming motors") 
    # Copter should arm in GUIDED mode 
    vehicle.mode = VehicleMode("GUIDED") 



    vehicle.armed = True 
 
    # Confirm vehicle armed before attempting to take off 
    while not vehicle.armed: 
        print(" Waiting for arming...") 
        time.sleep(1) 
 
    print("Taking off!") 
    vehicle.simple_takeoff(aTargetAltitude)  # Take off to target altitude 
 
    # Wait until the vehicle reaches a safe height before processing the goto 
    #  (otherwise the command after Vehicle.simple_takeoff will execute 
    #   immediately). 
    while True: 
        print(" Altitude: ", vehicle.location.global_relative_frame.alt) 
        # Break and return from function just below target altitude. 
        if vehicle.location.global_relative_frame.alt >= aTargetAltitude * 
0.95: 
            print("Reached target altitude") 
            break 
        time.sleep(1) 
 
###########################################EXECUTE 
SCRIPT############################################################# 
 
if connection_string == "127.0.0.1:14550": 
 
    arm_and_takeoff(40) 
 
    print("Set default/target airspeed to 3") 
    vehicle.airspeed = 3 
 
    print("Going towards waypoint 1...") 
    point1 = get_location_metres(vehicle.home_location,21.1663,-56.7703) 
    vehicle.simple_goto(point1) 
 
    # sleep so we can see the change in map 
    time.sleep(20) 
 
    print("Going towards waypoint 2...") 
    point2 = get_location_metres(point1, 132.1986, 53.2401) 
    vehicle.simple_goto(point2) 
 
    # sleep so we can see the change in map 
    time.sleep(45) 
 
    print("Going towards waypoint 1...") 
    vehicle.simple_goto(point1) 
 
    # sleep so we can see the change in map 
    time.sleep(45) 
 
    print("Returning to Launch") 
    vehicle.mode = VehicleMode("RTL") 
 
    # sleep so we can see the change in map 
    time.sleep(40) 



 
    # Close vehicle object before exiting script 
    print("Close vehicle object") 
    vehicle.close() 
 
 
 
 
 
 
 
 
 
 
 

 



# Sky Seliquini 
# MAE 699 
 
# Import relevant libraries 
from __future__ import print_function 
import time 
import pandas 
import numpy as np 
from datetime import datetime 
from dronekit import connect, VehicleMode, Vehicle 
from my_vehicle import MyVehicle # Custom Vehicle class with the attributes 
defined 
 
import argparse 
parser = argparse.ArgumentParser(description='Create attributes from MAVLink 
messages') 
parser.add_argument('--connect', default='127.0.0.1:14551', # this defines 
the connection string as the drones address in the simulation 
                    help="Vehicle connection target string. If not specified, 
SITL automatically started and used") 
args = parser.parse_args() 
connection_string = args.connect # Connect to a different port so that two 
scripts may run simultaneously 
 
# Connect to the Vehicle 
print('Connecting to vehicle on: %s' % connection_string) 
vehicle = connect(connection_string, wait_ready = True, vehicle_class = 
MyVehicle) 
 
while vehicle.armed: 
    # define data channel names 
    data_labels = np.array(["time_boot_us", "xacc", "yacc", "zacc", "xgyro", 
"ygyro", "zgyro", "xmag", "ymag", "zmag", "time_usec", "lat", "lon", "alt"], 
dtype=object) 
    data = np.empty([1000, 14]) 
 
    for i in range(0,999,1): 
        if vehicle.location.global_relative_frame.alt > 1: 
 
            # RAW_IMU data 
            time_boot_us = vehicle.raw_imu.time_boot_us 
            xacc         = vehicle.raw_imu.xacc 
            yacc         = vehicle.raw_imu.yacc 
            zacc         = vehicle.raw_imu.zacc 
            xgyro        = vehicle.raw_imu.xgyro 
            ygyro        = vehicle.raw_imu.ygyro 
            zgyro        = vehicle.raw_imu.zgyro 
            xmag         = vehicle.raw_imu.xmag 
            ymag         = vehicle.raw_imu.ymag 
            zmag          = vehicle.raw_imu.zmag 
            time_usec = vehicle.gps_raw_int.time_usec 
 
            # GPS_RAW_INT data 
            lat = vehicle.gps_raw_int.lat 
            lon = vehicle.gps_raw_int.lon 
            alt = vehicle.gps_raw_int.alt 
 



            # collect data every 5 seconds 
            time.sleep(5) 
 
            # populate data array 
            data[i] = [time_boot_us, xacc, yacc, zacc, xgyro, ygyro,zgyro, 
xmag, ymag, zmag, time_usec, lat, lon, alt] 
 
            # save final i value for if loop 
            a = i 
 
        elif vehicle.location.global_relative_frame.alt < 1: 
            # deleted the extra rows in the data array, need help from Brian 
getting rid of the last row if its possible, 
            # would have used "append" if can add as row instead of a column 
            data = np.delete(data, a+1, 0) 
 
    # combine data label array with matrix of data 
    Data = np.vstack((data_labels, np.asarray(data, object))) 
 
    # write labeled data to excel file 
    File_Save_Time = datetime.now() 
    File_Name = File_Save_Time.strftime("%m_%d_%Y__%H:%M:%S") 
    pandas.DataFrame(Data).to_csv("SITL/flight_test_Data_" + str(File_Name) + 
".csv") 
 
    # notify user data acquisition is complete 
    print("date record complete") 
 



# Sky Seliquini 
# MAE 699 
 
""" 
Example of how to send GPS_INPUT messages to autopilot 
""" 
 
# Import relevant libraries 
from __future__ import print_function 
import time 
import math 
from pymavlink import mavutil 
from dronekit import connect, VehicleMode, LocationGlobalRelative, 
LocationGlobal, Command 
from my_vehicle import MyVehicle # Custom Vehicle class with the attributes 
defined 
 
import argparse 
parser = argparse.ArgumentParser(description='Connects to SITL on local PC or 
to the telemetry of SOLO Drone.') 
parser.add_argument('--connect', default="127.0.0.1:14551", 
                    help="Vehicle connection target string.") 
args = parser.parse_args() 
 
connection_string = args.connect 
 
# Connect to the Vehicle 
print('Connecting to vehicle on: %s' % connection_string) 
#master = connect(connection_string, wait_ready=True, 
vehicle_class=MyVehicle) 
 
# Create the connection 
master = mavutil.mavlink_connection(connection_string) 
 
# Wait a heartbeat before sending commands 
# master.wait_heartbeat() 
 
# GPS_TYPE need to be MAV 
while True: 
    time.sleep(0.2) 
    master.mav.gps_input_send( 
        1398,  # Timestamp (micros since boot or Unix epoch) 
        0,  # ID of the GPS for multiple GPS inputs 
        # Flags indicating which fields to ignore (see GPS_INPUT_IGNORE_FLAGS 
enum). 
        # All other fields must be provided. 
        8 | 16 | 32, 
        791394000,  # GPS time (milliseconds from start of GPS week) 
        0,  # GPS week number 
        6,  # 0-1: no fix, 2: 2D fix, 3: 3D fix. 4: 3D with DGPS. 5: 3D with 
RTK 
        370452380,  # Latitude (WGS84), in degrees * 1E7 
        -762978200,  # Longitude (WGS84), in degrees * 1E7 
        30100,  # Altitude (AMSL, not WGS84), in m (positive for up) 
        0,  # GPS HDOP horizontal dilution of position in m 
        0,  # GPS VDOP vertical dilution of position in m 
        0,  # GPS velocity in m/s in NORTH direction in earth-fixed NED frame 



        0,  # GPS velocity in m/s in EAST direction in earth-fixed NED frame 
        0,  # GPS velocity in m/s in DOWN direction in earth-fixed NED frame 
        40,  # GPS speed accuracy in m/s 
        200,  # GPS horizontal accuracy in m 
        200,  # GPS vertical accuracy in m 
        10   # Number of satellites visible. 
    ) 
 
    print("spoofing GPS...\n") 
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APPENDIX B

MATLAB SCRIPTS



clear  
close all 
clc 
% Sky Seliquini 
% Strapdown Navigation 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initial Conditions  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COORDINATE SYSTEM 
% Z: Up 
% X: Forward (North) 
% Y: Left    (West) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Inertial Frame 
% Rotation 
wI=[0,0,0];       %  Inertial Angular Rate [phidot  thetadot  psidot] 
 
% Translation 
aI=[0,0,0];       %  Inertial Acceleration [xddot   yddot     zddot] 
vI=[0,0,0];       %  Inertial Velocity     [xdot    ydot      zdot] 
rI=[0,0,0];       %  Inertial Position     [x       y         z] 
     
% Body Frame 
% Rotation 
wB=[0,0,0];       %  Body Angular Rate     [p     q     r] 
thetaB=[0,0,0];   %  Body Angle            [pInt  qInt  rInt] 
    
% Translation 
aB=[0,0,0];       %  Body Acceleration     [udot  vdot  wdot] 
vB=[0,0,0];       %  Body Velocity         [u     v     w] 
     
% Prompt user to to determine if using flight data or SITL data 
prompt = 'Is the IMU data Flight data, SITL data, or CUBE data (enter as a 
string) ''FLIGHT'', ''SITL'', or ''CUBE'': '; 
x = input(prompt); 
 
opt_1 = strcmp(x, 'FLIGHT'); 
opt_2 = strcmp(x, 'SITL') + 1; 
opt_3 = strcmp(x, 'CUBE') + 2; 
opt_4 = strcmp(x, 'FAKE') + 3; 
 
if opt_1 == 1 
     
    % load experimental IMU data from drones' autonmous flight 
    DATA = data_cleaner('datalog_FLIGHT_TEST_Cul-de-sac_2.txt'); 
    % only look at data up 17000 sample as flight of interest ends 
    A = DATA(2828:10816,1:6); 
    A(:,1:6) = -1.*A(:,1:6); % adjustment due to IMU being oriented 
differently (rightside up) 
     
    % hardcode correction for bias and scale factor s not modeled 
    % corrections based on ground data 
    load('bias.mat'); 
    A(:,1) = A(:,1) - bias(1).*ones(length(A(:,1)),1); 



    A(:,2) = A(:,2) - bias(2)*ones(length(A(:,2)),1); 
    A(:,3) = A(:,3) - bias(3).*ones(length(A(:,3)),1); 
     
    % convert from g to m/s^2 
    A(:,1:3) = A(:,1:3).*9.80665; 
     
    % get sample rate of flight data 
    t = DATA(2828:10816,8)./1000; 
    T_adis = t; 
     
    ind = length(t); 
    dt = zeros(ind-1,1); 
     
    for i = 1:ind-1 
        dt(i) = t(i+1) - t(i); 
    end 
 
elseif opt_2 == 2 
     
    % load simulated IMU data from arducopter SITL autonomous flight 
    DATA = process_data('flight_test_Data_10_19_2021__01:49:45.csv'); 
    A = DATA(:,2:7); 
     
    % convert from mg to m/s^2 
    A(:,1:3) = (A(:,1:3)/1000)*9.80665; 
     
    % convert from millirad/s to deg/s 
    A(:,4:6) = (A(:,4:6)/1000)*(180/pi); 
     
    % sample rate is 1000Hz in SITL run 
    dt = .001; 
    dt = ones(length(A),1)*dt; 
     
elseif opt_3 == 3 
     
    % load experimental CUBE data from drones' autonmous flight 
    DATA = load('Truth_sec.mat'); 
     
    % [Ax Ay Az Gx Gy Gz] 
    A = [DATA.Truth.IMU.AccX DATA.Truth.IMU.AccY DATA.Truth.IMU.AccZ... 
        DATA.Truth.IMU.GyrX DATA.Truth.IMU.GyrY DATA.Truth.IMU.GyrZ]; 
     
    % convert gryo to deg/s 
    A(:,4:6) = A(:,4:6).*(180/pi); 
 
    % get sample rate of flight data 
    t = DATA.Truth.IMU.Time; 
 
    ind = length(t); 
    dt = zeros(ind-1,1); 
 
    for i = 1:ind-1 
        dt(i) = t(i+1) - t(i); 
    end 
 



elseif opt_4 == 4 
     
    dt = .01; 
    t = 0:dt:100; 
    dt = ones(1,length(t)).*dt; 
     
    % 10 seconds positive acceleration 
    A1 = ones(1,length(t(1:find(t==20)))).*2; 
 
    % 20 seconds constant acceleration 
    A2 = 0*ones(1,length(t(find(t==20.01):(find(t==80)-1))));  
 
    % 10 seconds negative acceleration 
    A3 = -A1; 
 
    % scale the accelerations to make them slower 
    A_fake = [A1 A2 A3]./10; 
    A_fake_noisy = awgn(A_fake,10,'measured'); 
    % [Ax Ay=0 Az=0 Gx=0 Gy=0 Gz=0] 
    A = zeros(length(A_fake),6); 
    A(:,1) = A_fake_noisy;     
     
else 
    fprintf('\n'); 
    disp('Input not compatible with Navigation program'); 
    fprintf('\n'); 
    return 
         
end 
 
if opt_1 == 1 || opt_2 == 2 
     
    % Accelerometer calibration routine (legacy data from senior design 
project) 
    % Establish Variables 
    ayz = 0.008148007102794; azx = -1.768933828441438e-04; azy = 
7.285392573060921e-04; 
    bxa = 0.005807379542338; bya = -0.004916903862676;     bza = 
0.015227423596253; 
    sxa = 0.997086403363496; sya =  0.998478748869561;     sza = 
0.998158676892411; 
 
    Ta = [1 -ayz azy; 
          0   1 -azx; 
          0   0   1;]; 
 
    Ka = [sxa 0  0; 
          0  sya 0; 
          0   0 sza;]; 
 
    Ba = [bxa; 
          bya; 
          bza;];    
 



    % Apply accelerometer calibration to flight data such that accelation 
occur 
    % about nominal reading 
    accel = Ta*Ka*(A(:,1:3)'+Ba); 
    A(:,1:3) = accel'; 
 
end 
 
if opt_1 == 1 
     
    CAL_dat = data_cleaner('orientation_check.txt'); 
    % only look at data up 17000 sample as flight of interest ends 
    cal = CAL_dat(1:1000,1:6); 
    % convert from mg to m/s^2 
    cal(:,1:3) = (cal(:,1:3))*-9.80665; 
     
    %  Gravity calibration 
    G  = cal(1:1000,1:3); % collect averages of component accelerations 
    gx = mean(G(1:1000,1)); % assuming drone is somewhat level and still  
    gy = mean(G(1:1000,2)); % for first few seconds 
    gz = mean(G(1:1000,3)); 
    g  = [gx,gy,gz]; 
     
else 
    %  Gravity calibration 
    G  = A(1:50,1:3); % collect averages of component accelerations 
    gx = mean(G(1:50,1)); % assuming drone is somewhat level and still  
    gy = mean(G(1:50,2)); % for first few seconds 
    gz = mean(G(1:50,3)); 
    g  = [gx,gy,gz]; 
end 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%End Calibration%%%%%%%%%%%%%%%%%%% 
 
% EKF Variables 
rI_ekf = [0,0,0]; 
aI_ekf = [0,0,0]; 
vI_ekf = [0,0,0]; 
wI_ekf       = [0,0,0]; 
 
orenI_ekf    = [0,0,0]; 
orenI_ekf(2) = -asin(gx/norm(g)); 
orenI_ekf(1) = asin(gy/(norm(g)*cos(orenI_ekf(2)))); 
orenI_ekf(3) = 0; 
 
 
if opt_1 == 1 
     
    % Calculate Gyroscope bias 
    % grab the gryo data from the IMU output 
    omega = cal(:,4:6).*(pi/180); % convert to radians 
    omega = omega'; 
 
    [r, ~] = size(omega); 
    i = 1; 



 
    for ind = 1:length(omega) 
        if norm(omega(:,ind)) < .01 && abs(norm(omega(:,ind)))>0 
            AngVel_noise(:,i) = omega(:,ind); 
            i = i + 1; 
        end 
    end 
 
    Ao = 
[mean(AngVel_noise(1,:)),mean(AngVel_noise(2,:)),mean(AngVel_noise(3,:))];   
     
else 
     
    % Calculate Gyroscope bias 
    % grab the gryo data from the IMU output 
    omega = A(:,4:6).*(pi/180); % convert to radians 
    omega = omega'; 
 
    [r, ~] = size(omega); 
    i = 1; 
 
    for ind = 1:length(A) 
        if norm(omega(:,ind)) < .01 && abs(norm(omega(:,ind)))>0 
            AngVel_noise(:,i) = omega(:,ind); 
            i = i + 1; 
        end 
    end 
     
    if opt_4 == 4 
        Ao = [0, 0, 0]; 
    else 
        Ao = 
[mean(AngVel_noise(1,:)),mean(AngVel_noise(2,:)),mean(AngVel_noise(3,:))]; 
    end 
     
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Kalman Filter  
% initial estimates 
x_caret_i=0; 
z_i = 0; 
% priori covariance 
P_bar = eye(15,15);  
 
P = eye(15,15);  
  
% Proccess noise 
Q = .001*eye(15); 
 
% Measurement noise 
R = .001*eye(15); 
 
% A(3,:) = A(3,:) + .04.*ones(1,length(A(3,:))); 
 
t=0; 



for i = 1:length(A)-1 
     
% Read in data 
wB   = A(i,4:6).*(pi/180); % wB @t(i)           
aB   = A(i,1:3); % aB @t(i) 
g_b  = norm(g) *[-sin(orenI_ekf(2)), sin(orenI_ekf(1))*cos(orenI_ekf(2)), 
cos(orenI_ekf(1))*cos(orenI_ekf(2))];%Capture Gravity regardless of 
orientation 
 
if opt_4 == 4 
    a_bb = aB; 
else 
    a_bb = aB+g_b; % Acce. in Body frame without gravity 
end 
    
% Angular Rate Transformation ******* Changing Body angular rate to Inertial 
angular rate  
T  = Transform(orenI_ekf); % thetaI @t(i) 
 
% apply bias corrections 
wB = wB- Ao; 
 
wI = T*wB';% wI @t(i) 
wI = wI'; 
 
% Linear Acceleration Transformation ******** Changing body acceleration to 
% inertial acceleration  
R1 = Rotate(orenI_ekf); % orenI_ekf @t(i)A_BB 
 
if opt_4 == 4 
    aI = a_bb; 
else 
    aI = R1*a_bb'; 
    aI = aI';     
end 
 
%  State Defined @ t(i) 
%  X(i,:) = [wB,a_bb,wI,orenI_ekf,aI,vI,rI,v1b,V_BI',rI3];   
x_bar = [rI_ekf vI_ekf aI_ekf orenI_ekf wI_ekf];  
    
% state jacobian matrix (A in the paper introduction to EKF paper) 
F = [1 0 0 dt(i) 0 0 (dt(i)^2)/2 0 0 0 0 0 0 0 0; 
     0 1 0 0 dt(i) 0 0 (dt(i)^2)/2 0 0 0 0 0 0 0; 
     0 0 1 0 0 dt(i) 0 0 (dt(i)^2)/2 0 0 0 0 0 0; 
     0 0 0 1 0 0 dt(i) 0 0 0 0 0 0 0 0; 
     0 0 0 0 1 0 0 dt(i) 0 0 0 0 0 0 0; 
     0 0 0 0 0 1 0 0 dt(i) 0 0 0 0 0 0; 
     0 0 0 0 0 0 1 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 1 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 1 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 1 0 0 dt(i) 0 0; 
     0 0 0 0 0 0 0 0 0 0 1 0 0 dt(i) 0; 
     0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt(i); 
     0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 



     0 0 0 0 0 0 0 0 0 0 0 0 0 0 1;]; 
 
% Measurement Jacobian Matrix consisting of accel and angular rate 
% measurments provided by the IMU 
H = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 1 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 1 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 1 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 1;];  
 
 
 
% V: process noise jacobian (W in EKF paper) 
V = eye(15); 
 
% W: measurement noise jacobian 
W = eye(15); 
 
Z       = [aI wI];   
% Kalman Gain 
K       = P_bar*H'*inv(H*P_bar*H'+V*R*V'); 
% new state estimates with measurement 
x_caret = x_bar+(K*([zeros(1,6) aI zeros(1,3) wI]-(H*x_bar')')')';             
% posteriori covariance 
P = (eye(15)-K*H)*P_bar;  
 
%Prediction 
P_dot = F*P*F' + W*Q*W';  
x_dot = (F*x_caret')'; % B = 0; 
P_bar = P_dot; 
x_bar = x_dot; 
 
% update x_bar 
rI_ekf    = x_bar(1:3); 
vI_ekf    = x_bar(4:6); 
aI_ekf    = x_bar(7:9); 
orenI_ekf = x_bar(10:12); 
wI_ekf    = x_bar(13:15); 
 
  
z_i          = z_i + (Z).*dt(i); 
Zi(:,i)      = z_i;    
Z_b(:,i)     = Z; 
X_BAR(:,i)   = x_bar; 
X_CARET(:,i) = x_caret; 



A_BB(:,i)    = a_bb; 
AI(:,i)      = aI; 
OREN(:,i)    = orenI_ekf*(180/pi); 
WI(:,i)      = wI*(180/pi); 
WB(:,i)      = wB*(180/pi); 
RI_EKF(:,i)  = rI_ekf; 
TT(i)        = t; 
VI_EKF(:,i)  = vI_ekf; 
WI_EKF(:,i)  = wI_ekf*(180/pi); 
AI_EKF(:,i)  = aI_ekf; 
G_B(:,i)     = g_b; 
AB(:,i)      = aB; 
t            = dt(i)+t; 
 
end 
 
% convert cube time signal from minutes to seconds 
if opt_3 == 3 
    TT = TT.*60; 
end 
 
if opt_4 == 4 
     
    dt = .01; 
    t = 0:dt:100-dt; 
    dt = ones(1,length(t)).*dt; 
     
    
    figure(1) 
    plot(t,AI(1,:),'-r') 
    hold on 
    plot(t,AI_EKF(1,:),'-b') 
    hold on 
    plot(t,A_fake(1,1:length(t)),'-k',LineWidth=1) 
    xlabel('time (s)') 
    ylabel('A_{x}   (m/s{^2})') 
    title('Acceleration: Basic 1D rectilitnear motion with Guassian white 
noise') 
    grid on 
    legend Ax_{true} Ax_{noisy} Ax_{EKF} Location best 
 
    % calculate Velocity and Position using true acceleration data applying 
    % basic kinematic equations 
    for idx = 1 
        v0 = 0; 
        d0 = 0; 
        for i = 1:length(dt) 
            Vt(idx,i) = v0 + A_fake(idx,i)*dt(i); 
            Dt(idx,i) = d0 + v0*dt(i) + .5*A_fake(idx,i)*dt(i)^2; 
            v0 = Vt(idx,i); 
            d0 = Dt(idx,i); 
        end 
    end 
 
    % calculate Velocity and Position using EKF acceleration data applying 



    % basic kinematic equations 
    for idx = 1 
        v0 = 0; 
        d0 = 0; 
        for i = 1:length(dt) 
            Vt_ekf(idx,i) = v0 + AI_EKF(idx,i)*dt(i); 
            Dt_ekf(idx,i) = d0 + v0*dt(i) + .5*AI_EKF(idx,i)*dt(i)^2; 
            v0 = Vt_ekf(idx,i); 
            d0 = Dt_ekf(idx,i); 
        end 
    end 
 
    figure(2) 
    plot(t,VI_EKF(1,:)) 
    hold on 
    plot(t,Vt) 
    xlabel('time (s)') 
    ylabel('V_{x} (m/s)') 
    title('Velocity: Basic 1D rectilitnear motion') 
    grid on 
    legend Vx_{EKF} Vx_{true} Location best 
 
    figure(3) 
    plot(t,RI_EKF(1,:)) 
    hold on 
    plot(t,Dt) 
    xlabel('time (s)') 
    ylabel('P_{x}(m)') 
    title('Position: Basic 1D rectilitnear motion') 
    grid on 
    legend Rx_{EKF} Rx_{true} Location best 
     
else 
    % integrate filtered and unfiltered IMU accelerations for inertial 
    % velocities and positions 
    A_xyz = cell(1,2); 
    A_xyz{1,1} = AI; 
    A_xyz{1,2} = AI_EKF; 
 
    % preallocate memory 
    V = cell(1,2); 
    Vt = cell(1,2); 
    D = cell(1,2); 
    Dt = cell(1,2); 
 
    % velocities and positions 
    for i = 1:length(A_xyz) 
        for j = 1:3 
            v0 = 0; 
            d0 = 0; 
            for k = 1:length(dt) 
                Vt{1,i}(j,k) = v0 + A_xyz{1,i}(j,k)*dt(k); 
                Dt{1,i}(j,k) = d0 + v0*dt(k) + .5*A_xyz{1,i}(j,k)*dt(k)^2; 
                v0 = Vt{1,i}(j,k); 
                d0 = Dt{1,i}(j,k); 



            end 
        end 
    end 
 
    figure(1) 
    subplot(3,1,1) 
    plot(TT,Dt{1,1}(1,:),'-r') 
    hold on 
    plot(TT,Dt{1,2}(1,:),'-b') 
    title(' X-Position') 
    legend('X','X_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('X (m)') 
    grid on 
 
    subplot(3,1,2) 
    plot(TT,Dt{1,1}(2,:),'-r') 
    hold on 
    plot(TT,Dt{1,2}(2,:),'-b') 
    title('Y-Position') 
    legend('Y','Y_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('Y (m)') 
    grid on 
 
    subplot(3,1,3) 
    plot(TT,Dt{1,1}(3,:),'-r') 
    hold on 
    plot(TT,Dt{1,2}(3,:),'-b') 
    title('Z-Position') 
    legend('Z','Z_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('Z (m)') 
    grid on 
 
    figure(2) 
    subplot(3,1,1) 
    plot(TT,Vt{1,1}(1,:),'-r') 
    hold on 
    plot(TT,Vt{1,2}(1,:),'-b') 
    title(' X-Velocity') 
    legend('Vx','Vx_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('V_{x} (m/s)') 
    grid on 
 
    subplot(3,1,2) 
    plot(TT,Vt{1,1}(2,:),'-r') 
    hold on 
    plot(TT,Vt{1,2}(2,:),'-b') 
    title('Y-Velocity') 
    legend('Vy','Vy_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('V_{y} (m/s)') 
    grid on 



 
    subplot(3,1,3) 
    plot(TT,Vt{1,1}(3,:),'-r') 
    hold on 
    plot(TT,Vt{1,2}(3,:),'-b') 
    title('Z-Velocity') 
    legend('Vz','Vz_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('V_{z} (m/s)') 
    grid on 
 
    figure(3) 
    plot(TT,AI(1,:)) 
    hold on 
    plot(TT,AI_EKF(1,:)) 
    title(' X-Acceleration') 
    legend('Ax_{IMU}','Ax_{ekf}','location','best') 
    xlabel('Time (s)') 
    ylabel('A_{x} (m/s{^2})') 
    grid on 
 
    figure(4) 
    plot(TT,AI(2,:)) 
    hold on 
    plot(TT,AI_EKF(2,:)) 
    title('Y-Acceleration') 
    legend('Ay_{IMU}','Ay_{ekf}','location','best') 
    xlabel('Time (s)') 
    ylabel('A_{y} (m/s{^2})') 
    grid on 
 
    figure(5) 
    plot(TT,AI(3,:)) 
    hold on 
    plot(TT,AI_EKF(3,:)) 
    title('Z-Acceleration') 
    legend('Az_{IMU}','Az_{ekf}','location','best') 
    xlabel('Time (s)') 
    ylabel('A_{z} (m/s{^2})') 
    grid on 
 
    % integrate filtered and unfiltered gyroscope data for vehicle 
orientation 
    W_xyz = cell(1,2); 
    W_xyz{1,1} = WI; 
    W_xyz{1,2} = WI_EKF; 
 
    % preallocate memory 
    W = cell(1,2); 
    Wt = cell(1,2); 
 
    % angular position 
    for i = 1:length(W_xyz) 
        for j = 1:3 
            for k = 1:length(dt) 



                W{1,i}(j,k) = W_xyz{1,i}(j,k)*dt(k); 
            end 
        end 
    end 
 
    for i = 1:length(W) 
        for j= 1:3 
            w = 0; 
            for k = 1:length(W{1,i}(j,:)) 
                w = W{1,i}(j,k) + w; 
                Wt{1,i}(j,k) = w; 
            end 
        end 
    end 
 
    figure(6) 
    subplot(3,1,1) 
    plot(TT, Wt{1,1}(1,:),'-r') 
    hold on 
    plot(TT, Wt{1,2}(1,:),'-b') 
    title('Vehicle Orientation') 
    legend('\phi','\phi_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('q_{x} (deg)') 
    grid on 
    subplot(3,1,2) 
    plot(TT, Wt{1,1}(2,:),'-r') 
    hold on 
    plot(TT, Wt{1,2}(2,:),'-b') 
    legend('\theta','\theta_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('q_{y} (deg)') 
    grid on 
    subplot(3,1,3) 
    plot(TT, Wt{1,1}(3,:),'-r') 
    hold on 
    plot(TT, Wt{1,2}(3,:),'-b') 
    legend('\psi','\psi_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('q_{z} (deg)') 
    grid on 
 
    figure(7) 
    subplot(3,1,1) 
    plot(TT, WI(1,:), TT, WI_EKF(1,:)) 
    title('Angular Velocity') 
    legend('\omega_{x}_{IMU}','\omega_{x}_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('\omega_{x} (deg/s)') 
    grid on 
    subplot(3,1,2) 
    plot(TT, WI(1,:), TT, WI_EKF(1,:)) 
    legend('\omega_{y}_{IMU}','\omega_{y}_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('\omega_{y} (deg/s)') 



    grid on 
    subplot(3,1,3) 
    plot(TT, WI(1,:), TT, WI_EKF(1,:)) 
    legend('\omega_{z}_{IMU}','\omega_{z}_{ekf}','location','Best') 
    xlabel('Time (s)') 
    ylabel('\omega_{z} (deg/s)') 
    grid on 
 
    % save all matlab figures 
    figHandles = findall(0,'Type','figure');  
     
    % Create filename  
     fn = strcat(pwd,'\',x,'_EKF_plots');  
      
     % Save first figure 
     export_fig(fn, '-pdf', figHandles(1)) 
      
     % Loop through figures 2:end 
     for i = 2:numel(figHandles) 
         export_fig(fn, '-pdf', figHandles(i), '-append') 
     end 
end 
 



 
% Sky Seliquini 
% Strapdown Navigation 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initial Conditions  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COORDINATE SYSTEM 
% Z: Up 
% X: Forward (North) 
% Y: Left    (West) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% initial guess: sky = eye(15); 
% x = reshape(sky,1, 225); 
close all 
clear 
clc 
 
% Inertial Frame 
% Rotation 
wI=[0,0,0];       %  Inertial Angular Rate [phidot  thetadot  psidot] 
 
% Translation 
aI=[0,0,0];       %  Inertial Acceleration [xddot   yddot     zddot] 
vI=[0,0,0];       %  Inertial Velocity     [xdot    ydot      zdot] 
rI=[0,0,0];       %  Inertial Position     [x       y         z] 
     
% Body Frame 
% Rotation 
wB=[0,0,0];       %  Body Angular Rate     [p     q     r] 
thetaB=[0,0,0];   %  Body Angle            [pInt  qInt  rInt] 
    
% Translation 
aB=[0,0,0];       %  Body Acceleration     [udot  vdot  wdot] 
vB=[0,0,0];       %  Body Velocity         [u     v     w] 
 
% load experimental IMU data from drones' autonmous flight 
% flight 2 
DATA = data_cleaner('datalog_FLIGHT_TEST_Cul-de-sac_2.txt'); 
%only look at data associated with test flight 
A = DATA(2828:10816,1:6); 
 
% % flight 1 
% DATA = data_cleaner('datalog_FLIGHT_TEST_Cul-de-sac_1.txt'); 
% % only look at data associated with test flight 
% A = DATA(806:8629,1:6); 
 
A(:,1:6) = -1.*A(:,1:6); % adjustment due to IMU being oriented differently 
(rightside up) 
 
% hardcode correction for bias and scale factor s not modeled 
% corrections based on ground data 
load('bias.mat'); 
A(:,1) = A(:,1) - bias(1).*ones(length(A(:,1)),1); 



A(:,2) = A(:,2) - bias(2).*ones(length(A(:,2)),1); 
A(:,3) = A(:,3) - bias(3).*ones(length(A(:,3)),1); 
 
% convert from g to m/s^2 
A(:,1:3) = A(:,1:3).*9.80665; 
 
% get sample rate of flight data 
% flight 2 
t = DATA(2828:10816,8)./1000; 
 
% % flight 1 
% t = DATA(806:8629,8)./1000; 
 
T_adis = t; 
 
ind = length(t); 
dt = zeros(ind-1,1); 
 
for i = 1:ind-1 
    dt(i) = t(i+1) - t(i); 
end 
 
CAL_dat = data_cleaner('orientation_check.txt'); 
% only look at data up 17000 sample as flight of interest ends 
cal = CAL_dat(1:1000,1:6); 
% convert from mg to m/s^2 
cal(:,1:3) = (cal(:,1:3))*-9.80665; 
 
%  Gravity calibration 
G  = cal(1:1000,1:3); % collect averages of component accelerations 
gx = mean(G(1:1000,1)); % assuming drone is somewhat level and still  
gy = mean(G(1:1000,2)); % for first few seconds 
gz = mean(G(1:1000,3)); 
g  = [gx,gy,gz]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%End Calibration%%%%%%%%%%%%%%%%%%% 
 
% EKF Variables 
rI_ekf = [0,0,0]; 
aI_ekf = [0,0,0]; 
vI_ekf = [0,0,0]; 
wI_ekf       = [0,0,0]; 
 
orenI_ekf    = [0,0,0]; 
orenI_ekf(2) = -asin(gx/norm(g)); 
orenI_ekf(1) = asin(gy/(norm(g)*cos(orenI_ekf(2)))); 
orenI_ekf(3) = 0; 
 
% Calculate Gyroscope bias 
% grab the gryo data from the IMU output 
omega = cal(:,4:6).*(pi/180); % convert to radians 
omega = omega'; 
 
[r, ~] = size(omega); 
i = 1; 



 
for ind = 1:length(omega) 
    if norm(omega(:,ind)) < .01 && abs(norm(omega(:,ind)))>0 
        AngVel_noise(:,i) = omega(:,ind); 
        i = i + 1; 
    end 
end 
 
Ao = 
[mean(AngVel_noise(1,:)),mean(AngVel_noise(2,:)),mean(AngVel_noise(3,:))];   
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Kalman Filter  
% initial estimates 
x_caret_i=0; 
z_i = 0; 
% priori covariance 
P_bar = eye(15,15);  
% posteriori covariance 
P = eye(15,15);  
 
load('Cov_tuned.mat'); 
% Proccess noise 
Q = reshape(x(226:450),15,15)'; 
 
% Measurement noise 
R = reshape(x(1:225),15,15)'; 
 
% % untuned Covariances 
% Q = .001.*eye(15); 
% R = .001.*eye(15); 
 
t=0; 
for i = 1:length(A)-1 
     
% Read in data 
wB   = A(i,4:6).*(pi/180); % wB @t(i)           
aB   = A(i,1:3); % aB @t(i) 
g_b  = norm(g) *[-sin(orenI_ekf(2)), sin(orenI_ekf(1))*cos(orenI_ekf(2)), 
cos(orenI_ekf(1))*cos(orenI_ekf(2))];%Capture Gravity regardless of 
orientation 
 
 
a_bb = aB+g_b; % Acce. in Body frame without gravity 
 
    
% Angular Rate Transformation ******* Changing Body angular rate to Inertial 
angular rate  
T  = Transform(orenI_ekf); % thetaI @t(i) 
 
% apply bias corrections 
wB = wB- Ao; 
    
if norm(wB)< .01 
    wB= [0,0,0]; 



end 
 
wI = T*wB';% wI @t(i) 
wI = wI'; 
 
% Linear Acceleration Transformation ******** Changing body acceleration to 
% inertial acceleration  
R1 = Rotate(orenI_ekf); % orenI_ekf @t(i)A_BB 
 
aI = R1*a_bb'; 
aI = aI';     
 
%  State Defined @ t(i) 
%  X(i,:) = [wB,a_bb,wI,orenI_ekf,aI,vI,rI,v1b,V_BI',rI3];   
x_bar = [rI_ekf vI_ekf aI_ekf orenI_ekf wI_ekf];  
    
% state jacobian matrix (A in the paper introduction to EKF paper) 
F = [1 0 0 dt(i) 0 0 (dt(i)^2)/2 0 0 0 0 0 0 0 0; 
     0 1 0 0 dt(i) 0 0 (dt(i)^2)/2 0 0 0 0 0 0 0; 
     0 0 1 0 0 dt(i) 0 0 (dt(i)^2)/2 0 0 0 0 0 0; 
     0 0 0 1 0 0 dt(i)/2 0 0 0 0 0 0 0 0; 
     0 0 0 0 1 0 0 dt(i)/2 0 0 0 0 0 0 0; 
     0 0 0 0 0 1 0 0 dt(i)/2 0 0 0 0 0 0; 
     0 0 0 0 0 0 1 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 1 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 1 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 1 0 0 dt(i)/2 0 0; 
     0 0 0 0 0 0 0 0 0 0 1 0 0 dt(i)/2 0; 
     0 0 0 0 0 0 0 0 0 0 0 1 0 0 dt(i)/2; 
     0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 1;]; 
 
% Measurement Jacobian Matrix consisting of accel and angular rate 
% measurments provided by the IMU 
H = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 1 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 1 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 1 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 1;];  
 
 
 
% V: process noise jacobian (W in EKF paper) 
V = eye(15); 



 
% W: measurement noise jacobian 
W = eye(15); 
 
Z       = [aI wI];   
% Kalman Gain 
K       = P_bar*H'*inv(H*P_bar*H'+V*R*V'); 
% new state estimates with measurement 
x_caret = x_bar+(K*([zeros(1,6) aI zeros(1,3) wI]-(H*x_bar')')')';             
% updated error covarience 
P = (eye(15)-K*H)*P_bar;  
 
%Prediction 
P_dot = F*P*F' + W*Q*W';  
x_dot = (F*x_caret')'; % B = 0; 
P_bar = P_dot; 
x_bar = x_dot; 
 
% update x_bar 
rI_ekf    = x_bar(1:3); 
vI_ekf    = x_bar(4:6); 
aI_ekf    = x_bar(7:9); 
orenI_ekf = x_bar(10:12); 
wI_ekf    = x_bar(13:15); 
 
  
z_i          = z_i + (Z).*dt(i); 
Zi(:,i)      = z_i;    
Z_b(:,i)     = Z; 
X_BAR(:,i)   = x_bar; 
X_CARET(:,i) = x_caret; 
A_BB(:,i)    = a_bb; 
AI(:,i)      = aI; 
OREN(:,i)    = orenI_ekf*(180/pi); 
WI(:,i)      = wI*(180/pi); 
WB(:,i)      = wB*(180/pi); 
RI_EKF(:,i)  = rI_ekf; 
TT(i)        = t; 
VI_EKF(:,i)  = vI_ekf; 
WI_EKF(:,i)  = wI_ekf*(180/pi); 
AI_EKF(:,i)  = aI_ekf; 
G_B(:,i)     = g_b; 
AB(:,i)      = aB; 
t            = dt(i)+t; 
 
end 
 
% additional simulated annealing tuning 
load('Q2.mat'); 
A_untuned = [RI_EKF' VI_EKF' AI_EKF' OREN' WI_EKF']; 
A_tuned = A_untuned*Q; 
RI_EKF = A_tuned(:,1:3)'; 
VI_EKF = A_tuned(:,4:6)'; 
AI_EKF = A_tuned(:,7:9)'; 
OREN = A_tuned(:,10:12)'; 



WI_EKF = A_tuned(:,13:15)'; 
 
% integrate filtered and unfiltered IMU accelerations for inertial 
% velocities and positions 
A_xyz = cell(1,2); 
A_xyz{1,1} = AI; 
A_xyz{1,2} = AI_EKF; 
 
% preallocate memory 
V = cell(1,2); 
Vt = cell(1,2); 
D = cell(1,2); 
Dt = cell(1,2); 
 
% velocities and positions 
for i = 1:length(A_xyz) 
    for j = 1:3 
        v0 = 0; 
        d0 = 0; 
        for k = 1:length(dt) 
            Vt{1,i}(j,k) = v0 + A_xyz{1,i}(j,k)*dt(k); 
            Dt{1,i}(j,k) = d0 + v0*dt(k) + .5*A_xyz{1,i}(j,k)*dt(k)^2; 
            v0 = Vt{1,i}(j,k); 
            d0 = Dt{1,i}(j,k); 
        end 
    end 
end 
 
figure(1) 
subplot(3,1,1) 
plot(TT,Dt{1,1}(1,:),'-b') 
hold on 
plot(TT,RI_EKF(1,:),'-r') 
title(' X-Position') 
legend('X','X_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('X (m)') 
grid on 
 
subplot(3,1,2) 
plot(TT,Dt{1,1}(2,:),'-b') 
hold on 
plot(TT,RI_EKF(2,:),'-r') 
title('Y-Position') 
legend('Y','Y_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('Y (m)') 
grid on 
 
subplot(3,1,3) 
plot(TT,Dt{1,1}(3,:),'-b') 
hold on 
plot(TT,RI_EKF(3,:),'-r') 
title('Z-Position') 
legend('Z','Z_{ekf}','location','Best') 



xlabel('Time (s)') 
ylabel('Z (m)') 
grid on 
 
figure(2) 
subplot(3,1,1) 
plot(TT,Vt{1,1}(1,:),'-b') 
hold on 
plot(TT,VI_EKF(1,:),'-r') 
title(' X-Velocity') 
legend('Vx','Vx_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('V_{x} (m/s)') 
grid on 
 
subplot(3,1,2) 
plot(TT,Vt{1,1}(2,:),'-b') 
hold on 
plot(TT,VI_EKF(2,:),'-r') 
title('Y-Velocity') 
legend('Vy','Vy_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('V_{y} (m/s)') 
grid on 
 
subplot(3,1,3) 
plot(TT,Vt{1,1}(3,:),'-b') 
hold on 
plot(TT,VI_EKF(3,:),'-r') 
title('Z-Velocity') 
legend('Vz','Vz_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('V_{z} (m/s)') 
grid on 
 
figure(3) 
plot(TT,AI(1,:)) 
hold on 
plot(TT,AI_EKF(1,:)) 
title(' X-Acceleration') 
legend('Ax_{IMU}','Ax_{ekf}','location','best') 
xlabel('Time (s)') 
ylabel('A_{x} (m/s{^2})') 
grid on 
 
figure(4) 
plot(TT,AI(2,:)) 
hold on 
plot(TT,AI_EKF(2,:)) 
title('Y-Acceleration') 
legend('Ay_{IMU}','Ay_{ekf}','location','best') 
xlabel('Time (s)') 
ylabel('A_{y} (m/s{^2})') 
grid on 
 



figure(5) 
plot(TT,AI(3,:)) 
hold on 
plot(TT,AI_EKF(3,:)) 
title('Z-Acceleration') 
legend('Az_{IMU}','Az_{ekf}','location','best') 
xlabel('Time (s)') 
ylabel('A_{z} (m/s{^2})') 
grid on 
 
% integrate filtered and unfiltered gyroscope data for vehicle orientation 
W_xyz = cell(1,2); 
W_xyz{1,1} = WI; 
W_xyz{1,2} = WI_EKF; 
 
% preallocate memory 
W = cell(1,2); 
Wt = cell(1,2); 
 
% angular position 
for i = 1:length(W_xyz) 
    for j = 1:3 
        for k = 1:length(dt) 
            W{1,i}(j,k) = W_xyz{1,i}(j,k)*dt(k); 
        end 
    end 
end 
 
for i = 1:length(W) 
    for j= 1:3 
        w = 0; 
        for k = 1:length(W{1,i}(j,:)) 
            w = W{1,i}(j,k) + w; 
            Wt{1,i}(j,k) = w; 
        end 
    end 
end 
 
figure(6) 
subplot(3,1,1) 
plot(TT, Wt{1,1}(1,:),'-b') 
hold on 
plot(TT, OREN(1,:),'-r') 
title('Vehicle Orientation') 
legend('\phi','\phi_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('q_{x} (deg)') 
grid on 
subplot(3,1,2) 
plot(TT, Wt{1,1}(2,:),'-b') 
hold on 
plot(TT, OREN(2,:),'-r') 
legend('\theta','\theta_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('q_{y} (deg)') 



grid on 
subplot(3,1,3) 
plot(TT, Wt{1,1}(3,:),'-b') 
hold on 
plot(TT, OREN(3,:),'-r') 
legend('\psi','\psi_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('q_{z} (deg)') 
grid on 
 
figure(7) 
subplot(3,1,1) 
plot(TT, WI(1,:), TT, WI_EKF(1,:)) 
title('Angular Velocity') 
legend('\omega_{x}_{IMU}','\omega_{x}_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('\omega_{x} (deg/s)') 
grid on 
subplot(3,1,2) 
plot(TT, WI(1,:), TT, WI_EKF(1,:)) 
legend('\omega_{y}_{IMU}','\omega_{y}_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('\omega_{y} (deg/s)') 
grid on 
subplot(3,1,3) 
plot(TT, WI(1,:), TT, WI_EKF(1,:)) 
legend('\omega_{z}_{IMU}','\omega_{z}_{ekf}','location','Best') 
xlabel('Time (s)') 
ylabel('\omega_{z} (deg/s)') 
grid on 
 
%     % save all matlab figures 
%     figHandles = findall(0,'Type','figure');  
%      
%     % Create filename  
%      fn = strcat(pwd,'\',x,'_EKF_plots');  
%       
%      % Save first figure 
%      export_fig(fn, '-pdf', figHandles(1)) 
%       
%      % Loop through figures 2:end 
%      for i = 2:numel(figHandles) 
%          export_fig(fn, '-pdf', figHandles(i), '-append') 
%      end 
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TEENSY DAQ SCRIPTS



/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  November 2017 | Updated July 2021 
//  Author: Juan Jose Chong <juan.chong@analog.com> 
//  Edited: Sky Seliquini- <sseli001@odu.edu>  
//  Edited: Rob Stuart - @bornity - <rob@stuart.org> 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  ADIS16475_Teensy_Expanded_Read.ino 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  
//  This Arduino project interfaces with an ADIS16475 using SPI and the  
//  accompanying C++ libraries, reads IMU data in LSBs, scales the data, and  
//  outputs measurements to a serial debug terminal (PuTTY) via the onboard  
//  USB serial port. The Full IMU data set is read, not just the first 20 
bytes.     
// 
//  This project has been tested on a PJRC 32-Bit Teensy 3.6 Development 
Board,  
//  but should be compatible with any other embedded platform with some 
modification. 
// 
//  Permission is hereby granted, free of charge, to any person obtaining 
//  a copy of this software and associated documentation files (the 
//  "Software"), to deal in the Software without restriction, including 
//  without limitation the rights to use, copy, modify, merge, publish, 
//  distribute, sublicense, and/or sell copies of the Software, and to 
//  permit persons to whom the Software is furnished to do so, subject to 
//  the following conditions: 
// 
//  The above copyright notice and this permission notice shall be 
//  included in all copies or substantial portions of the Software. 
// 
//  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
//  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
//  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
//  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
//  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
//  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
//  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
// 
//  Pinout for a Teensy 3.6 Development Board 
//  RST = D6 
//  SCK = D13/SCK 
//  CS = D10/CS 
//  DOUT(MISO) = D12/MISO 
//  DIN(MOSI) = D11/MOSI 
//  DR = D2 
// 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
 
#include <ADIS16475.h> 
#include <SPI.h> 
#include <SD.h> 
 



 
unsigned long myTime; 
 
// SD CARD 
// On the Ethernet Shield, CS is pin 4. Note that even if it's not 
// used as the CS pin, the hardware CS pin (10 on most Arduino boards, 
// 53 on the Mega) must be left as an output or the SD library 
// functions will not work. 
 
// change this to match your SD shield or module; 
// Arduino Ethernet shield: pin 4 
// Adafruit SD shields and modules: pin 10 
// Sparkfun SD shield: pin 8 
// Teensy audio board: pin 10 
// Teensy 3.5 & 3.6 & 4.1 on-board: BUILTIN_SDCARD 
// Wiz820+SD board: pin 4 
// Teensy 2.0: pin 0 
// Teensy++ 2.0: pin 20 
const int chipSelect = BUILTIN_SDCARD; 
 
 
//ADIS16475 
// Uncomment to enable debug 
//#define DEBUG 
 
// Initialize Variables 
// Temporary Data Array 
uint16_t *burstData; 
 
// Checksum variable 
int16_t burstChecksum = 0; 
 
// Accelerometer 
float AXS, AYS, AZS = 0; 
 
// Gyro 
float GXS, GYS, GZS = 0; 
 
// Delta Angle 
float DAXS, DAYS, DAZS = 0; 
 
// Delta Velocity 
float DVXS, DVYS, DVZS = 0; 
 
// Gyro Bias Offset Correction 
float GBXS, GBYS, GBZS = 0; 
 
// Accelerometer Bias Offset Correction 
float ABXS, ABYS, ABZS = 0; 
 
// Control registers 
int MSC = 0; 
int FLTR = 0; 
int DECR = 0; 
 
// Temperature 
float TEMPS = 0; 



 
// Time Stamp 
float TIME = 0; 
 
// Delay counter variable 
int printCounter = 0; 
 
// Call ADIS16475 Class 
ADIS16475 IMU(10,2,6); // Chip Select, Data Ready, Reset Pin Assignments 
 
void setup() 
{ 
    Serial.begin(115200); // Initialize serial output via USB 
    //IMU.configSPI(); // Configure SPI communication //NOTE .configSPI() is 
wrong 
    IMU.select(); // Configure SPI communication 
    delay(500); // Give the part time to start up 
    IMU.regWrite(MSC_CTRL, 0xC1);  // Enable Data Ready, set polarity 
    IMU.regWrite(FILT_CTRL, 0x04); // Set digital filter 
    IMU.regWrite(DEC_RATE, 0x00), // Disable decimation 
 
    // Read the control registers once to print to screen 
    MSC = IMU.regRead(MSC_CTRL); 
    FLTR = IMU.regRead(FILT_CTRL); 
    DECR = IMU.regRead(DEC_RATE); 
 
    attachInterrupt(2, grabData, RISING); // Attach interrupt to pin 2. 
Trigger on the rising edge 
    //SD Card Initialization  
      //while (!Serial) { 
     // ; // wait for serial port to connect. 
     // } 
 
    Serial.print("Initializing SD card..."); 
 
    // see if the card is present and can be initialized: 
      if (!SD.begin(chipSelect)) { 
        Serial.println("Card failed, or not present"); 
        while (1) { 
        // No SD card, so don't do anything more - stay stuck here 
        } 
      } 
    Serial.println("card initialized."); 
} 
 
// Function used to read register values when an ISR is triggered using the 
IMU's DataReady output 
void grabData() 
{ 
    burstData = {}; 
    IMU.select(); // Configure SPI before the read. Useful when talking to 
multiple SPI devices 
    burstData = IMU.wordBurst(); // Read data and insert into array 
} 
 
// Function used to scale all acquired data (scaling functions are included 
in ADIS16470.cpp) 



void scaleData() 
{ 
    GXS = IMU.gyroScale(*(burstData + 1)); //Scale X Gyro 
    GYS = IMU.gyroScale(*(burstData + 2)); //Scale Y Gyro 
    GZS = IMU.gyroScale(*(burstData + 3)); //Scale Z Gyro 
    AXS = IMU.accelScale(*(burstData + 4)); //Scale X Accel 
    AYS = IMU.accelScale(*(burstData + 5)); //Scale Y Accel 
    AZS = IMU.accelScale(*(burstData + 6)); //Scale Z Accel 
    TEMPS = IMU.tempScale(*(burstData + 7)); //Scale Temp Sensor 
    TIME = (*(burstData + 8)); //Time Stamp     
    DAXS = IMU.deltaAngleScale(*(burstData + 11)); // Scale X Delta Angle  
    DAYS = IMU.deltaAngleScale(*(burstData + 11)); // Scale Y Delta Angle  
    DAZS = IMU.deltaAngleScale(*(burstData + 12)); // Scale Z Delta Angle  
     
} 
 
// Main loop. Print data to the serial port. Sensor sampling is performed in 
the ISR 
void loop() 
{ 
    printCounter ++; 
    if (printCounter >= 500) // Delay for writing data to the serial port 
    { 
      detachInterrupt(2); //Detach interrupt to avoid overwriting data 
      scaleData(); // Scale data acquired from the IMU 
      burstChecksum = IMU.checksum(burstData); // Calculate checksum based on 
data array 
      // open the file. 
       
      File dataFile = SD.open("datalog.txt", FILE_WRITE); 
 
      // if the file is available, write to it: 
      if (dataFile) { 
 
        // Print Time Stamp data 
        dataFile.println(" "); 
        //Serial.print(TIME,2); 
         
        // Print scaled gyro data 
        //Serial.print(" "); 
        dataFile.print(AXS,4); 
        dataFile.print(","); 
        dataFile.print(AYS,4); 
        dataFile.print(","); 
        dataFile.print(AZS,4); 
       
        // Print scaled accel data 
        dataFile.print(" ,"); 
        dataFile.print(GXS,4); 
        dataFile.print(","); 
        dataFile.print(GYS,4); 
        dataFile.print(","); 
        dataFile.print(GZS,4);         
         
        //Time associated with data registers 
        dataFile.print(" ,"); 
        dataFile.print((*(burstData + 8))); 



 
        // print time since board turned on to serve as clock in milliseconds 
        myTime = millis(); 
        dataFile.print(" ,"); 
        dataFile.print(myTime); 
        delay(1); //sample at 10000Hz 
        dataFile.close(); 
      }  
      else { 
      // if the file isn't open, pop up an error: 
      Serial.println("error opening datalog.txt"); 
      } 
       
    #ifdef DEBUG  
        detachInterrupt(2); //Detach interrupt to avoid overwriting data 
        scaleData(); // Scale data acquired from the IMU 
        burstChecksum = IMU.checksum(burstData); // Calculate checksum based 
on data array   
 
        // Print Time Stamp data 
        Serial.println(" "); 
        //Serial.print(TIME,2); 
         
        // Print scaled gyro data 
        //Serial.print(" "); 
        Serial.print(GXS,3); 
        Serial.print(","); 
        Serial.print(GYS,3); 
        Serial.print(","); 
        Serial.print(GZS,3); 
       
        // Print scaled accel data 
        Serial.print(" ,"); 
        Serial.print(AXS,4); 
        Serial.print(","); 
        Serial.print(AYS,4); 
        Serial.print(","); 
        Serial.print(AZS,4); 
 
        // Print scaled delta angle data 
        Serial.print(" ,"); 
        Serial.print(DAXS,6); 
        Serial.print(","); 
        Serial.print(DAYS,6); 
        Serial.print(","); 
        Serial.print(DAZS,6); 
         
        //Time 
        Serial.print(" ,"); 
        Serial.print((*(burstData + 8))); 
 
    #endif 
        printCounter = 0; 
        attachInterrupt(2, grabData, RISING); 
    } 
} 



 



/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  November 2017 | Updated July 2021 
//  Author: Juan Jose Chong <juan.chong@analog.com> 
//  Edited: Rob Stuart - @bornity - <rob@stuart.org> 
//  Edited: Sky Seliquini <sseli001@odu.edu> 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  ADIS16475.h 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  
//  This library provides all the functions necessary to interface the 
ADIS16475 IMU with a  
//  PJRC 32-Bit Teensy 3.6 Development Board. Functions for SPI 
configuration, reads and writes, 
//  and scaling are included. This library may be used for the entire 
ADIS1646X family of devices  
//  with some modification. 
// 
//  Permission is hereby granted, free of charge, to any person obtaining 
//  a copy of this software and associated documentation files (the 
//  "Software"), to deal in the Software without restriction, including 
//  without limitation the rights to use, copy, modify, merge, publish, 
//  distribute, sublicense, and/or sell copies of the Software, and to 
//  permit persons to whom the Software is furnished to do so, subject to 
//  the following conditions: 
// 
//  The above copyright notice and this permission notice shall be 
//  included in all copies or substantial portions of the Software. 
// 
//  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
//  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
//  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
//  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
//  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
//  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
//  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
// 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
 
#pragma once 
 
#define ADIS16475_h 
#include "Arduino.h" 
#include <SPI.h> 
 
// User Register Memory Map from Table 8 
// Updated July 2021 
#define Reservedx00    0x00  //Reserved 
#define DIAG_STAT      0x02  //Diagnostic and operational status 
#define X_GYRO_LOW     0x04  //X-axis gyroscope output, lower word 
#define X_GYRO_OUT     0x06  //X-axis gyroscope output, upper word 
#define Y_GYRO_LOW     0x08  //Y-axis gyroscope output, lower word 
#define Y_GYRO_OUT     0x0A  //Y-axis gyroscope output, upper word 
#define Z_GYRO_LOW     0x0C  //Z-axis gyroscope output, lower word 



#define Z_GYRO_OUT     0x0E  //Z-axis gyroscope output, upper word 
#define X_ACCL_LOW     0x10  //X-axis accelerometer output, lower word 
#define X_ACCL_OUT     0x12  //X-axis accelerometer output, upper word 
#define Y_ACCL_LOW     0x14  //Y-axis accelerometer output, lower word 
#define Y_ACCL_OUT     0x16  //Y-axis accelerometer output, upper word 
#define Z_ACCL_LOW     0x18  //Z-axis accelerometer output, lower word 
#define Z_ACCL_OUT     0x1A  //Z-axis accelerometer output, upper word 
#define TEMP_OUT       0x1C  //Temperature output (internal, not calibrated) 
#define TIME_STAMP     0x1E  //PPS mode time stamp 
#define Reservedx20   0x20  //Reserved 
#define DATA_CNTR     0x22  //New Data Counter 
#define X_DELTANG_LOW  0x24  //X-axis delta angle output, lower word 
#define X_DELTANG_OUT  0x26  //X-axis delta angle output, upper word 
#define Y_DELTANG_LOW  0x28  //Y-axis delta angle output, lower word 
#define Y_DELTANG_OUT  0x2A  //Y-axis delta angle output, upper word 
#define Z_DELTANG_LOW  0x2C  //Z-axis delta angle output, lower word 
#define Z_DELTANG_OUT  0x2E  //Z-axis delta angle output, upper word 
#define X_DELTVEL_LOW  0x30  //X-axis delta velocity output, lower word 
#define X_DELTVEL_OUT  0x32  //X-axis delta velocity output, upper word 
#define Y_DELTVEL_LOW  0x34  //Y-axis delta velocity output, lower word 
#define Y_DELTVEL_OUT  0x36  //Y-axis delta velocity output, upper word 
#define Z_DELTVEL_LOW  0x38  //Z-axis delta velocity output, lower word 
#define Z_DELTVEL_OUT  0x3A  //Z-axis delta velocity output, upper word 
#define Reservedx3C   0x3C  //Reserved 
#define Reservedx3E   0x3E  //Reserved 
#define XG_BIAS_LOW       0x40  //X-axis gyroscope bias offset correction, 
lower word 
#define XG_BIAS_HIGH   0x42  //X-axis gyroscope bias offset correction, upper 
word 
#define YG_BIAS_LOW       0x44  //Y-axis gyroscope bias offset correction, 
lower word 
#define YG_BIAS_HIGH   0x46  //Y-axis gyroscope bias offset correction, upper 
word 
#define ZG_BIAS_LOW       0x48  //Z-axis gyroscope bias offset correction, 
lower word 
#define ZG_BIAS_HIGH   0x4A  //Z-axis gyroscope bias offset correction, upper 
word 
#define XA_BIAS_LOW       0x4C  //X-axis accelerometer bias offset 
correction, lower word 
#define XA_BIAS_HIGH   0x4E  //X-axis accelerometer bias offset correction, 
upper word 
#define YA_BIAS_LOW       0x50  //Y-axis accelerometer bias offset 
correction, lower word 
#define YA_BIAS_HIGH   0x52  //Y-axis accelerometer bias offset correction, 
upper word 
#define ZA_BIAS_LOW       0x54  //Z-axis accelerometer bias offset 
correction, lower word 
#define ZA_BIAS_HIGH   0x56  //Z-axis accelerometer bias offset correction, 
upper word 
#define Reservedx58   0x58  //Reserved 
#define Reservedx5A   0x5A  //Reserved 
#define FILT_CTRL      0x5C  //Control, Bartlett window FIR filter 
#define RANG_MDL      0x5E  //Measurement range (model specific) identifier 
#define MSC_CTRL       0x60  //Control, input/output and other miscellaneous 
options 
#define UP_SCALE       0x62  //Control, scale factor for input clock, pulse 
per second (PPS) mode 



#define DEC_RATE       0x64  //Control, decimation filter (output data rate) 
#define NULL_CFG       0x66  //Control, bias estimation period (Default = 
0x070A) 
#define GLOB_CMD       0x68  //Control, global commands 
#define Reservedx6A   0x6A  //Reserved 
#define FIRM_REV       0x6C  //Firmware revision 
#define FIRM_DM           0x6E  //Firmware revision date, month and day 
#define FIRM_Y        0x70  //Firmware revision date, year 
#define PROD_ID           0x72  //Product identification  
#define SERIAL_NUM    0x74  //Serial number (relative to assembly lot) 
#define USER_SCR1      0x76  //User scratch register 1  
#define USER_SCR2      0x78  //User scratch register 2  
#define USER_SCR3      0x7A  //User scratch register 3  
#define FLSHCNT_LOW   0x7C  //Flash update count, lower word  
#define FLSHCNT_HIGH  0x7E  //Flash update count, upper word  
 
 
// ADIS16475 class definition 
class ADIS16475 { 
 
public: 
  // Constructor with configurable CS, data ready, and HW reset pins 
 
  // ADIS16475(int CS, int DR, int RST, int MOSI, int MISO, int CLK); 
  ADIS16475(int CS, int DR, int RST); 
 
  // Destructor 
  ~ADIS16475(); 
 
  // Performs hardware reset by sending pin 8 low on the DUT for n 
milliseconds 
  int resetDUT(uint8_t ms); 
 
  // Sets SPI bit order, clock divider, and data mode and sets CS chip to 
LOW. 
  int select(); 
 
  // Disables SPI bus and sets CS chip to HIGH. 
  int deselect(); 
 
  // Read single register from sensor 
  int16_t regRead(uint8_t regAddr); 
 
  // Write register 
  int regWrite(uint8_t regAddr, int16_t regData); 
 
  // Read sensor data using a burst read. Returns bits 
  uint8_t *byteBurst(void); 
 
  // Read sensor data using a burst read. Returns bytes 
  uint16_t *wordBurst(void); 
 
  // Calculate checksum 
  int16_t checksum(uint16_t * burstArray); 
 
  // Scale accelerator data 
  float accelScale(int16_t sensorData); 



 
  // Scale gyro data 
  float gyroScale(int16_t sensorData); 
 
  // Scale temperature data 
  float tempScale(int16_t sensorData); 
 
  // Scale delta angle data 
  float deltaAngleScale(int16_t sensorData); 
 
  // Scale delta velocity 
  float deltaVelocityScale(int16_t sensorData); 
 
  // Scale delta velocity 
  float timeStamp(int16_t sensorData); 
 
private: 
  // Variables to store hardware pin assignments 
  int _CS; 
  int _DR; 
  int _RST; 
  int _stall = 20; 
 
}; 

 



/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  November 2017 
//  Author: Juan Jose Chong <juan.chong@analog.com> 
//  Edited: Rob Stuart - @bornity - <rob@stuart.org> 
//  Edited: Sky Seliquini- <sseli001@odu.edu>  
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  ADIS16475.cpp 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
//  
//  This library provides all the functions necessary to interface the 
ADIS16475 IMU with a  
//  PJRC 32-Bit Teensy 3.2 Development Board. Functions for SPI 
configuration, reads and writes, 
//  and scaling are included. This library may be used for the entire 
ADIS1646X family of devices  
//  with some modification. 
// 
//  Permission is hereby granted, free of charge, to any person obtaining 
//  a copy of this software and associated documentation files (the 
//  "Software"), to deal in the Software without restriction, including 
//  without limitation the rights to use, copy, modify, merge, publish, 
//  distribute, sublicense, and/or sell copies of the Software, and to 
//  permit persons to whom the Software is furnished to do so, subject to 
//  the following conditions: 
// 
//  The above copyright notice and this permission notice shall be 
//  included in all copies or substantial portions of the Software. 
// 
//  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
//  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
//  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
//  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
//  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
//  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 
//  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
// 
/////////////////////////////////////////////////////////////////////////////
/////////////////////////// 
 
#include "ADIS16475.h" 
 
//////////////////////////////////////////////////////////////////////////// 
// Constructor with configurable CS, DR, and RST 
//////////////////////////////////////////////////////////////////////////// 
// CS - Chip select pin 
// DR - DR output pin for data ready 
// RST - Hardware reset pin 
//////////////////////////////////////////////////////////////////////////// 
ADIS16475::ADIS16475(int CS, int DR, int RST) { 
  _CS = CS; 
  _DR = DR; 
  _RST = RST; 
  // Initialize SPI 
  SPI.begin(); 



  // Set default pin states 
  pinMode(_CS, OUTPUT); // Set CS pin to be an output 
  pinMode(_DR, INPUT); // Set DR pin to be an input 
  pinMode(_RST, OUTPUT); // Set RST pin to be an output 
  digitalWrite(_CS, HIGH); // Initialize CS pin to be high 
  digitalWrite(_RST, HIGH); // Initialize RST pin to be high 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// Destructor 
//////////////////////////////////////////////////////////////////////////// 
ADIS16475::~ADIS16475() { 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// Performs a hardware reset by setting _RST pin low for delay (in ms). 
// Returns 1 when complete. 
//////////////////////////////////////////////////////////////////////////// 
int ADIS16475::resetDUT(uint8_t ms) { 
  digitalWrite(_RST, LOW); 
  delay(ms); 
  digitalWrite(_RST, HIGH); 
  delay(ms); 
  return(1); 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// Selects the ADIS16475 for read/write operations. 
// Sets SPI bit order, clock divider, and data mode. 
// Also sets chip select to LOW. 
// This function is useful when there are multiple SPI devices 
// using different settings. 
// Returns 1 when complete. 
//////////////////////////////////////////////////////////////////////////// 
int ADIS16475::select() { 
  SPISettings IMUSettings(1000000, MSBFIRST, SPI_MODE3); 
  SPI.beginTransaction(IMUSettings); 
  digitalWrite(_CS, LOW); // Set CS low to enable device 
  return (1); 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// Deselects the ADIS16475 for read/write operations. 
// Frees up the SPi bus for other devices. 
// Also sets chip select to HIGH. 
// Returns 1 when complete. 
//////////////////////////////////////////////////////////////////////////// 
int ADIS16475::deselect() { 
  SPI.endTransaction(); 
  digitalWrite(_CS, HIGH); // Set CS high to disable device 
  return (1); 
} 
 
/////////////////////////////////////////////////////////////////////////////
/////////////// 
// Reads two bytes (one word) in two sequential registers over SPI 
// Returns an (int) signed 16 bit 2's complement number 



/////////////////////////////////////////////////////////////////////////////
/////////////// 
// regAddr - address of register to be read 
/////////////////////////////////////////////////////////////////////////////
/////////////// 
int16_t ADIS16475::regRead(uint8_t regAddr) { 
//Read registers using SPI 
   
  // Write register address to be read 
  select();              // select the device 
  SPI.transfer(regAddr); // Write address over SPI bus 
  SPI.transfer(0x00); // Write 0x00 to the SPI bus fill the 16 bit 
transaction requirement 
  deselect();            // deselect the device 
 
  delayMicroseconds(_stall); // Delay to not violate read rate  
 
  // Read data from requested register 
  select();              // select the device 
  uint8_t _msbData = SPI.transfer(0x00); // Send (0x00) and place upper byte 
into variable 
  uint8_t _lsbData = SPI.transfer(0x00); // Send (0x00) and place lower byte 
into variable 
  deselect();            // deselect the device 
 
  delayMicroseconds(_stall); // Delay to not violate read rate  
   
  int16_t _dataOut = (_msbData << 8) | (_lsbData & 0xFF); // Concatenate 
upper and lower bytes 
  // Shift MSB data left by 8 bits, mask LSB data with 0xFF, and OR both 
bits. 
 
  return(_dataOut); 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// Writes one byte of data to the specified register over SPI. 
// Returns 1 when complete. 
//////////////////////////////////////////////////////////////////////////// 
// regAddr - address of register to be written 
// regData - data to be written to the register 
//////////////////////////////////////////////////////////////////////////// 
int ADIS16475::regWrite(uint8_t regAddr, int16_t regData) { 
 
  // Write register address and data 
  uint16_t addr = (((regAddr & 0x7F) | 0x80) << 8); // Toggle sign bit, and 
check that the address is 8 bits 
  uint16_t lowWord = (addr | (regData & 0xFF)); // OR Register address (A) 
with data(D) (AADD) 
  uint16_t highWord = ((addr | 0x100) | ((regData >> 8) & 0xFF)); // OR 
Register address with data and increment address 
 
  // Split words into chars 
  uint8_t highBytehighWord = (highWord >> 8); 
  uint8_t lowBytehighWord = (highWord & 0xFF); 
  uint8_t highBytelowWord = (lowWord >> 8); 
  uint8_t lowBytelowWord = (lowWord & 0xFF); 



 
  // Write highWord to SPI bus 
  select();              // select the device 
  SPI.transfer(highBytelowWord); // Write high byte from low word to SPI bus 
  SPI.transfer(lowBytelowWord); // Write low byte from low word to SPI bus 
  deselect();            // deselect the device 
 
  delayMicroseconds(_stall);; // Delay to not violate read rate  
 
  // Write lowWord to SPI bus 
  select();              // select the device 
  SPI.transfer(highBytehighWord); // Write high byte from high word to SPI 
bus 
  SPI.transfer(lowBytehighWord); // Write low byte from high word to SPI bus 
  deselect();            // deselect the device 
 
  delayMicroseconds(_stall);; // Delay to not violate read rate  
 
  return(1); 
} 
 
 
uint8_t *ADIS16475::byteBurst(void) { 
 
  static uint8_t burstdata[32]; 
 
  // Trigger Burst Read 
  select(); // select the device 
  SPI.transfer(0x68); 
  SPI.transfer(0x00); 
 
  // Read Burst Data 
  burstdata[0] = SPI.transfer(0x00); //DIAG_STAT 
  burstdata[1] = SPI.transfer(0x00); 
  burstdata[2] = SPI.transfer(0x00); //XGYRO_OUT 
  burstdata[3] = SPI.transfer(0x00); 
  burstdata[4] = SPI.transfer(0x00); //YGYRO_OUT 
  burstdata[5] = SPI.transfer(0x00); 
  burstdata[6] = SPI.transfer(0x00); //ZGYRO_OUT 
  burstdata[7] = SPI.transfer(0x00); 
  burstdata[8] = SPI.transfer(0x00); //XACCEL_OUT 
  burstdata[9] = SPI.transfer(0x00); 
  burstdata[10] = SPI.transfer(0x00); //YACCEL_OUT 
  burstdata[11] = SPI.transfer(0x00); 
  burstdata[12] = SPI.transfer(0x00); //ZACCEL_OUT 
  burstdata[13] = SPI.transfer(0x00); 
  burstdata[14] = SPI.transfer(0x00); //TEMP_OUT 
  burstdata[15] = SPI.transfer(0x00); 
  burstdata[16] = SPI.transfer(0x00); //TIME_STMP 
  burstdata[17] = SPI.transfer(0x00); 
  burstdata[18] = SPI.transfer(0x00); //RESERVED 
  burstdata[19] = SPI.transfer(0x00); 
  burstdata[20] = SPI.transfer(0x00); //XDELTA_ANGLE 
  burstdata[21] = SPI.transfer(0x00); 
  burstdata[22] = SPI.transfer(0x00); //YDELTA_ANGLE 
  burstdata[23] = SPI.transfer(0x00); 
  burstdata[24] = SPI.transfer(0x00); //ZDELTA_ANGLE 



  burstdata[25] = SPI.transfer(0x00); 
  burstdata[26] = SPI.transfer(0x00); //XDELTA_VELOCITY 
  burstdata[27] = SPI.transfer(0x00); 
  burstdata[28] = SPI.transfer(0x00); //YDELTA_VELOCITY 
  burstdata[29] = SPI.transfer(0x00); 
  burstdata[30] = SPI.transfer(0x00); //ZDELTA_VELOCITY 
  burstdata[31] = SPI.transfer(0x00); 
  /* 
  burstdata[32] = SPI.transfer(0x00); //XGYRO_BIAS 
  burstdata[33] = SPI.transfer(0x00); 
  burstdata[34] = SPI.transfer(0x00); //YDGYRO_BIAS 
  burstdata[35] = SPI.transfer(0x00); 
  burstdata[36] = SPI.transfer(0x00); //ZGYRO_BIAS 
  burstdata[37] = SPI.transfer(0x00); 
  burstdata[38] = SPI.transfer(0x00); //XACCEL_BIAS 
  burstdata[39] = SPI.transfer(0x00); 
  burstdata[40] = SPI.transfer(0x00); //YACCEL_BIAS 
  burstdata[41] = SPI.transfer(0x00); 
  burstdata[42] = SPI.transfer(0x00); //ZACCEL_BIAS 
  burstdata[43] = SPI.transfer(0x00);  
  burstdata[44] = SPI.transfer(0x00); // 
  burstdata[45] = SPI.transfer(0x00); 
  */  
  deselect(); // deselect the device 
 
  return burstdata; 
} 
 
uint16_t *ADIS16475::wordBurst(void) { 
 
  static uint16_t burstwords[17]; 
 
  // Trigger Burst Read 
  select(); // select the device 
  SPI.transfer(0x68); 
  SPI.transfer(0x00); 
 
  // Read Burst Data 
  burstwords[0] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//DIAG_STAT 
  burstwords[1] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//XGYRO 
  burstwords[2] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//YGYRO 
  burstwords[3] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//ZGYRO 
  burstwords[4] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//XACCEL 
  burstwords[5] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//YACCEL 
  burstwords[6] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//ZACCEL 
  burstwords[7] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//TEMP_OUT 
  burstwords[8] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//TIME_STMP 
  burstwords[9] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 



//CHECKSUM1 
  burstwords[10] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//DATA_CNTR 
  burstwords[11] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//XDELTA_ANGLE 
  burstwords[12] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//YDELTA_ANGLE 
  burstwords[13] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//ZDELTA_ANGLE 
  burstwords[14] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//XDELTA_VELOCITY 
  burstwords[15] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//YDELTA_VELOCITY 
  burstwords[16] = ((SPI.transfer(0x00) << 8) | (SPI.transfer(0x00) & 0xFF)); 
//ZDELTA_VELOCITY 
 
  deselect();  // deselect the device 
 
  return burstwords; 
} 
 
//////////////////////////////////////////////////////////////////////////// 
// Calculates checksum based on burst data. 
// Returns the calculated checksum. 
//////////////////////////////////////////////////////////////////////////// 
// *burstArray - array of burst data 
// return - (int16_t) signed calculated checksum 
//////////////////////////////////////////////////////////////////////////// 
int16_t ADIS16475::checksum(uint16_t * burstArray) { 
  int16_t s = 0; 
  for (int i = 0; i < 9; i++) // Checksum value is not part of the sum!! 
  { 
      s += (burstArray[i] & 0xFF); // Count lower byte 
      s += ((burstArray[i] >> 8) & 0xFF); // Count upper byte 
  } 
 
  return s; 
} 
 
/////////////////////////////////////////////////////////////////////////////
//////////// 
// Converts accelerometer data output from the regRead() function 
// Returns (float) signed/scaled accelerometer in g's 
/////////////////////////////////////////////////////////////////////////////
//////////// 
// sensorData - data output from regRead() 
/////////////////////////////////////////////////////////////////////////////
//////////// 
float ADIS16475::accelScale(int16_t sensorData) 
{ 
  float finalData = sensorData * 0.00025; // Multiply by accel sensitivity 
(0.00025g/LSB) 
  return finalData; 
} 
 
/////////////////////////////////////////////////////////////////////////////
//////////////// 



// Converts gyro data output from the regRead() function  
// Returns (float) signed/scaled gyro in degrees/sec 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// sensorData - data output from regRead() 
/////////////////////////////////////////////////////////////////////////////
//////////// 
float ADIS16475::gyroScale(int16_t sensorData) 
{ 
  float finalData = sensorData * 0.025; // Multiply by gyro sensitivity 
(0.025 deg/LSB) 
  return finalData; 
} 
 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// Converts temperature data output from the regRead() function  
// Returns (float) signed/scaled temperature in degrees Celcius 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// sensorData - data output from regRead() 
/////////////////////////////////////////////////////////////////////////////
//////////// 
float ADIS16475::tempScale(int16_t sensorData) 
{ 
  float finalData = (sensorData * 0.1); // Multiply by temperature scale (0.1 
deg C/LSB) 
  return finalData; 
} 
 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// Converts integrated angle data output from the regRead() function  
// Returns (float) signed/scaled delta angle in degrees 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// sensorData - data output from regRead() 
/////////////////////////////////////////////////////////////////////////////
//////////// 
float ADIS16475::deltaAngleScale(int16_t sensorData) 
{ 
  float finalData = sensorData * 0.0082; // Multiply by delta angle scale 
(0.0082 degrees/LSB) 
  return finalData; 
} 
 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// Converts integrated velocity data output from the regRead() function  
// Returns (float) signed/scaled delta velocity in m/sec 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// sensorData - data output from regRead() 
/////////////////////////////////////////////////////////////////////////////
//////////// 
float ADIS16475::deltaVelocityScale(int16_t sensorData) 
{ 



  float finalData = sensorData * 0.003052; // Multiply by velocity scale 
(0.01221 m/sec/LSB) 
  return finalData; 
} 
 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// Converts integrated velocity data output from the regRead() function  
// Returns (float) signed/scaled delta velocity in m/sec 
/////////////////////////////////////////////////////////////////////////////
//////////////// 
// sensorData - data output from regRead() 
/////////////////////////////////////////////////////////////////////////////
//////////// 
 
float ADIS16475::timeStamp(int16_t sensorData) 
{ 
  float finalData = sensorData; //Convert Time Stamp Data 
  return finalData; 
} 
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APPENDIX D

HARDWARE PINOUT

Fig. 50: Analog Devices ADIS 16475 Pinout
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Fig. 51: Teensy 3.6 with Micro SD Pinout
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Fig. 52: Raspberry Pi 3B+ Pinout
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