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Abstract 

Fowad Shahid Sohail 
A MACHINE LEARNING FRAMEWORK FOR AUTOMATIC SPEECH 

RECOGNITION IN AIR TRAFFIC CONTROL USING WORD LEVEL BINARY 
CLASSIFICATION AND TRANSCRIPTION 

2021-2022 
Ravi P. Ramachandran, Ph.D. 

Master of Science in Electrical and Computer Engineering 
 

 Advances in Artificial Intelligence and Machine learning have enabled a variety 

of new technologies. One such technology is Automatic Speech Recognition (ASR), 

where a machine is given audio and transcribes the words that were spoken. ASR can be 

applied in a variety of domains to improve general usability and safety. One such domain 

is Air Traffic Control (ATC). ASR in ATC promises to improve safety in a mission 

critical environment. ASR models have historically required a large amount of clean 

training data. ATC environments are noisy and acquiring labeled data is a difficult, 

expertise dependent task. This thesis attempts to solve these problems by presenting a 

machine learning framework which uses word-by-word audio samples to transcribe ATC 

speech. Instead of transcribing an entire speech sample, this framework transcribes every 

word individually. Then, overall transcription is pieced together based on the word 

sequence. Each stage of the framework is trained and tested independently of one 

another, and the overall performance is gauged. The overall framework was gauged to be 

a feasible approach to ASR in ATC.
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Chapter 1 

Introduction 

 

1.1 Problem Statement  

In the earliest stages of technology and computers, signals were entirely binary. 

Binary eventually evolved into instruction sets which allowed for more complex 

operations. As the architecture and hierarchy grew further and further, there were newer 

ways to interact with technology which improved the user experience and allowed 

computers to accomplish greater tasks. For decades, text-based input has been a staple in 

how humans interact with the computers around them. For humans, however, text is not 

the most natural form of communication. The past decade has seen advancements In 

speech recognition which has now allowed for speech-based input to computers – a more 

natural way for humans to interact with technology in a broad range of fields and 

applications. 

A mission critical application of speech recognition is In air traffic control (ATC). 

Traditionally, ATC is done through radio communication between air traffic controller 

(ATCO) and pilot. This is a process that is highly subject to human errors, 

miscommunication and imposes a heavy workload on the ATCO. As a result, lives are 

put in danger because of a one-dimensional communication protocol and process. By 

adding the dimension of transcription, the spoken communication can be automatically 

written down by machines. Now, instead of just one layer of communication, pilot and 

ATCO have another way to understand directions. As a result, air traffic safety is 

improved, and lives can be saved. 
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1.2 Motivation 

This research developed a unique, word-by-word framework for Automatic 

Speech Recognition (ASR) applications in the ATC domain. ASR has enabled many 

new technologies found in day-to-day life. In the ATC space, it promises to improve 

safety by presenting another modality of information for each the pilot and ATCO to 

communicate with. Speech is the most natural way for humans to communicate. 

However, as a failsafe and safety mechanism, transcribing conversations allows for a 

greater degree of confidence and clarity in ATC communications. 

The framework takes advantage of word level binary classification and 

transcription. Instead of attempting to transcribe an entire audio file, each word in the 

file is transcribed and the entire transcription is pieced together. Using Word Error 

Rate (WER) calculations, the framework is compared to a state-of-the-art generalized 

model called Wav2Vec 2.0. The domain uniqueness of ATC presents many 

challenges for modern ASR systems. As such, this framework was developed to 

determine the feasibility of a domain specific, distributed machine learning 

framework for ASR in ATC. 

1.3 Objectives and Hypothesis 

The primary objective of this thesis is to evaluate the feasibility of a distributed 

machine learning framework for automatic speech recognition, specifically for the 

transcription of conversations between air traffic controllers and aircraft pilots. The 

following key tasks were executed to achieve this objective: 

1. To determine the best speech enhancement method for ATC audio data. 

2. To develop a word-by-word ATC audio corpus. 
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3. To train a Binary Classifier to distinguish between ATC and ENGLISH words. 

4. To train ASR models to specifically transcribe ATC and ENGLISH words. 

5. To transcribe ATC audio on word level basis. 

6. To analyze performance of the developed framework in comparison to the current 

state of the art ASR models. 

 

The hypothesis for this research is below: 

Developing a word-by-word audio corpus and distributed machine learning 

framework for ASR will yield statistically significant performance gains over generalized 

ASR models. 

1.4 Contributions 

The following is a list of major contributions of this work: 

1. A unique, word-by-word audio corpus purpose built for ASR in ATC 

2. A determined optimal speech enhancement method for the audio corpus 

3. Word level Binary Classification of ATC speech 

4. Word level transcription of ATC speech 

5. A wholistic framework for word-by-word ASR in ATC  

1.5 Focus and Organization 

The focus of this thesis is to investigate and implement automatic speech recognition 

techniques in air traffic control. There are a variety of unique constraints and problems 

for the ATC space which complicate this task. Standard approaches to ASR perform 

poorly, as the conditions of ATC speech are vastly different than the speech corpora that 
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modern ASR models are trained on. Because of this, model architectures must vary with 

these changing conditions. The thesis is organized as follows: 

 Chapter 1 is an introduction which outlines the motivations and objectives of this 

work to the field of ASR in ATC. 

 Chapter 2 is a literature review which highlights the current state of affairs for 

ASR in ATC. Contained within this chapter is a high-level overview of artificial 

intelligence, air traffic control, speech transcription and how they all intersect for ASR in 

ATC.  

Chapter 3 outlines the methodology and techniques used to implement the ASR on 

ATC data. This includes constructing experiments, training and testing, speech 

enhancement and more. 

Chapter 4 presents the results of all the experimentation conducted in this research. It 

includes tables, figures and diagrams to substantiate the results and claims made in this 

thesis. 

 Chapter 5 finally concludes this thesis with an analysis of the results and 

recommendations for future work.  
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Chapter 2 

Background 

Artificial intelligence (AI) is a field of engineering and computer science that focuses 

on improving performance of machines, specifically in performing tasks that typically 

require human intelligence [1]. AI has become increasingly important in the past few 

decades as advancements in technology have allowed researchers to tackle more complex 

problems by utilizing an increase of computing power [2]. There are several tasks that AI 

can accomplish. AI applications include but are not limited to: search engines [3], 

targeted advertisements [4], self-driving cars [5] and speech recognition systems [6]. AI 

has made its way into our daily lives through technology such as Google [3], Netflix [7], 

Amazon [8] and smart assistants [9]. 

Speech transcription is a versatile application of artificial intelligence which has 

fundamentally changed the way humans interact with technology. At the core, speech 

transcription is a new way for humans to give directions to computers. This opens a 

whole new realm of possibilities and use cases. Some of the places where speech 

transcription has been applied include assistive technology [10], voice assistants [11] and 

air traffic control [12]. Speech transcription has also played a significant role in 

improving the quality of life for those living with disabilities by allowing them to use 

technology with minimal effort, by leveraging their voice [13]. Machine learning is a 

subset of artificial intelligence and includes the process by which computers take in data 

to learn how to perform a specific task.  Advancement in machine learning technologies 

has reduced the need for manual transcription and led to the development of automatic 

speech recognition (ASR) [14]. These advanced algorithms are able to overcome 
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limitations found during previous generations and have paved the way for applications of 

ASR in diverse domains, including Air Traffic Control. 

This chapter focuses on background and foundational information regarding 

automatic speech recognition in air traffic control, including some history and challenges 

in the current state of affairs. 

2.1 Air Traffic Control 

Air Traffic Control (ATC) comprises communication between Air Traffic 

Controllers (ATCOs) and pilots. The main purpose of ATC is to prevent collisions 

between aircrafts, thus making it a mission critical system. The unique conditions 

presented in aviation means that traffic must be managed by a third-party entity that is on 

the ground instead of the aircraft. This third-party entity is the ATCO, who is tasked to 

ensure all flights arrive safely at their destination. The ATCOs and pilots go through 

specialized training and follow specific communication standards to ensure safe 

operations [15]. It has been discovered many times over the years that many pilot errors 

are caused from human error such as distraction or fatigue when performing tasks [16].  

This is why ATCOs are trained extensively so they do not make any mistakes which 

could endanger an entire flight. There are several different types of ATC systems used 

today but one common feature among them is voice communications. 

Because the primary avenue of ATC communication is through spoken language, 

a number of factors have to be considered to ensure the safety and success. ATC voice 

communication is done primarily through radio communications, which opens up the 

door for a variety of environmental factors to impact the quality of audio that is received 

by either the ATCO or the pilot. Radio channels can be affected via weather interference, 
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static and dropouts which impacts both parties communicating with each other. 

Additionally, the radio waves themselves propagate differently due to atmospheric 

changes, which impacts quality of the transmission [17]. Because of constraints such as 

bandwidth, sampling rates and number of channels, audio quality obtained using voice 

radios can be degraded [18]. These issues present problems when using radios for remote 

operations where distance increases between two points [19]. In addition to 

communication equipment reliability being lower than computerized modes of operation, 

it is extremely hard to maintain good audio clarity under these circumstances.  

Noise is always present in various environments, and as a result, speech signals 

cannot be recorded in their purest form [20]. In these cases, we often hear more than what 

was intended because of a combination of echo effect between speaker and microphones 

themselves, and interference signals. Since it’s difficult to separate sound coming out 

from speakers and noise coming from various sources, speech enhancement processing 

can play a significant role in providing better quality during certain critical tasks such as 

landing procedures. Due to this reason, ATC language requires greater accuracy 

especially under noisy conditions. During high-speed environment, even a slight increase 

in transmission time would delay the messages considerably, therefore requiring faster 

data exchange methods. When comparing different communication formats, the most 

obvious choice would be text-based messaging/chat that allows less latency due to its 

constant connection and easy access. However, text-based methods only offer basic 

features whereas voice provides richer content including more details such as the urgency 

of information, background noises or weather issues affecting airplane operation. Voice 

also plays a big part towards effective collaboration amongst ATC personnel, since it 
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allows interaction between both parties in real-time and allows a much quicker response 

if needed.  In critical situations, such as a landing procedure, a real-time Automatic 

Speech Recognition (ASR) system that converts voice into text can significantly enhance 

the quality of communication and save time, resources, and lives.  

2.2 Automatic Speech Recognition (ASR) 

Automatic speech recognition (ASR) is the process by which machines take audio 

and transcribe them into text. There are many applications for ASR, especially in the 

consumer space. Most notably, ASR applications have manifested themselves into our 

everyday lives through voice assistants such as Siri or Cortana [11]. Text is easier for 

computers to work with compared to speech, where speech is easier for humans to 

produce than text into a computer. As such, ASR has enabled a new, more convenient 

way for humans to interact with technology. A detailed systematic review of recent ASR 

methods is provided by Alharbi et al. [21]. While there are many applications of ASR, 

this study focuses on ASR for Air Traffic Control and specifically enhancing 

communication between an Air Traffic Controller and an aircraft pilot.  

An important application for ASR is in the ATC space, where text transcriptions 

of ATCO speech can improve safety in a mission critical system. An example scenario 

could be while pilots land at airports who may receive instructions over their headsets on 

how to approach a runway; they may then follow those instructions by reading back the 

transcription of the instructions given to them by ATCOs or automated systems on board 

their airplanes. Having a machine do the interpretation of speech reduces the risk 

associated with human error in interpreting speech. It should be noted that while it is 
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unlikely for automation to replace every aspect of ATC, it can complement existing 

processes and protocols to make them safer, more efficient, and more cost effective.  

2.3 ASR in the ATC Domain 

Speech communication between ATCO and pilots is highly subject to risks, such 

as human error. These risks are likely to compromise the safety of aircraft. Thus, there 

has been significant research into presenting computerized monitoring systems that can 

improve the safety and reduce the risks of ATC systems [22]. To accomplish this, 

automatic speech recognition (ASR) has been explored as an interface between humans 

and machines in the ATC systems even earlier than 2015 [23]. ASR has received a 

significant amount of attention in the literature worldwide. In the ATC domain, there 

have been a variety of approaches for the application of ASR. These approaches tackle 

many subtasks and challenges, including but not limited to: multilingual ASR [24], real-

time safety monitoring [22] and end to end models [25], [26]. As a whole, there are a 

number of similar challenges that are shared for ASR in ATC. 

2.4 Challenges in ASR for ATC 

ASR in and of itself is a well-researched area with many successful applications 

not only in academia but also in industry [27]. ASR has made its way into everyday 

consumer products, perhaps most commonly in voice assistants such as Siri and Cortana. 

However, despite many advantages that come with ASR techniques, challenges still 

remain regarding their practical implementation within the ATC context. ASR, that is 

training a machine to translate audio to text, is traditionally a supervised learning task. As 

such, training a high performing ASR model will require a high-quality dataset. A high-

quality speech corpus for ASR includes characteristics such as dataset size, diverse 
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vocabulary, varying speakers among others. Given low quality data, an ASR model will 

yield low quality performance. To that end, there have been many different datasets 

developed for general ASR research, including LibriSpeech [28] and TED-LIUM3 [29]. 

These datasets, among others, include hundreds of hours of audio and from domains that 

have a vast amount of data available. These types of datasets have allowed for many 

advancements in ASR research. However, the unique conditions and constraints of the 

ATC domain present unique challenges for ASR that are not present elsewhere. 

2.4.1 Scarcity of Data 

Unlike LibriSpeech [28], which gathers data from audiobooks, and TED-LIUM3 

[29], which gathers data from TED Talks, recording and labeling ATC is significantly 

more difficult. ATCO and pilot training is highly specialized and requires a special 

skillset to properly label data. Thus, creating ATC datasets for ASR tasks is a costly and 

time consuming initiative. Therefore, there are smaller amounts of transcribed recordings 

compared to other applications of ASR. Current ASR models heavily rely on large 

annotated corpora of clean data, resulting in potentially poor generalization for the ATC 

space. 

There has been work done to combat the lack of ATC specific data. Lin et. al 

present a new training approach for this specific problem [30]. Using an unsupervised 

pretraining strategy, they train the model to learn the distribution of features and then 

utilize transfer learning to accomplish the ASR task. In another work, the small dataset 

problem is tackled using speech representation learning in a self-supervised, wave to 

feature paradigm [25]. A multilingual speech corpus called ATCSpeech has been 

developed from real ATC systems [24]. 
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2.4.2 Noise 

Since ATC communication is accomplished via radio communications on high 

frequency bands, there is a propensity to a large amount of noise and, consequently, low 

intelligibility. In addition, the environments of both the pilot and the ATCO will 

introduce more noise in the communications. The pilot is in an environment where the 

humming noise of the cabin will effect his speech. The ATCO is typically in an office 

setting with many other people, which will inevitably introduce noise. All of these factors 

result in more noise in ATC speech. From a signal processing perspective, the signal to 

noise ratio (SNR) for ATC speech is lower than speech from clean environments. From 

an ASR and machine learning perspective, low SNR means that the features in ATC 

speech are very different from that of common speech. As a result, training ASR models 

for ATC using common speech corpora will result in poor performance and 

generalization. 

To properly learn features from ATC speech, rather than learning noise, there 

have been a few different approaches in the literature. One common approach involves 

using multi-scale convolutional neural networks (MCNN) [31]. As a feature engineering 

method, many ASR systems use the Mel-frequency cepstral coefficient (MFCC) [32], 

which relies on Fourier transforms and deals with signals in the frequency domain. The 

tradeoff in using MFCCs is that temporal feature information is not used. MCNNs solve 

this issue by analyzing speech in multiple scales [33]. The philosophy of MCNN based 

approaches is that the noise distribution is generally dispersed throughout the frequency 

and time domains and the multi-scale nature will discard the overlap with speech. This 
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will result in more clear features extracted from the noisy data, which will ultimately 

make for a more robust model. 

2.4.3 Multilingual ASR 

The International Civil Aviation Organization (ICAO) has set requirements that 

English should be the universal language of ATC communication [34]. However, 

practically, especially in domestic flights, pilots are communicating with ATCOs in their 

common local languages [35]. In a single sentence, there may be one or more languages 

spoken. As such, any practical ASR solution in the ATC domain must be equipped to 

deal with multilingual communications. 

This requirement has yielded research solutions that include a dedicated 

multilingual ATC speech corpus, which has proven to generalize well when trained on 

state-of-the-art ASR models [24]. There have been both end to end [25] and phoneme 

based [31] approaches that tackle the multilingual ASR in ATC problem. End to end 

models convert the raw waveform into text directly where phoneme and language-based 

models have an intermediate vocabulary which is then translated into the text label. 

2.4.4 Differing Speech Rates 

Speech rate is defined simply as the rate at which words are spoken. Typically, it 

is calculated in words spoken per minute (wpm) or words spoken per second (wps). 

Typically, every day spoken speech is between 120 and 150 wpm. However, the speech 

rate in ATC is higher than this [36]. In addition, ATC speech rates vary based on 

conditions. The ATC speech datasets gathered in [31] are compared to the speech rates 

for standard English and Chinese speech corpora. In this comparison, the ATC speech 

datasets have higher average speech rates and higher standard deviations. This is 



13 
 

indicative of the fact that ATCOs typically speak quicker than everyday speech but will 

also vary the speed at which they speak, presumably according to the conditions. 

Intuitively, there are many reasons for this. ATCOs operate in a very active environment 

where they must monitor and communicate with many flights and pilots at one time. 

Because of this, the ATCOs can be influenced by their working conditions and, as a 

result, have higher speech rates in order transmit information quickly. During less busy 

times, the ATCOs are likely to speak slower, as they are under less stress.  

Because of the higher and varying speech rate, feature extraction becomes a 

difficult and application specific task. To solve this, researchers have taken approaches 

which vary the model architectures according to the constraints. A feature encoder, multi 

layered convolutional neural network (MCNN) approach is highlighted in [25]. The 

different CNN layers cope with the peculiarities of ATC speech, including the unstable 

speech rate. In [30], Lin et al. introduce another approach to MCNNs in which they vary 

the kernel sizes according to the speech rate, where smaller kernels are used for higher 

speech rates. 

2.4.5 Imbalanced Features and Code Switching 

 The International Civil Aviation Organization (ICAO) published a set of 

guidelines and procedures for communication and pronunciation [37]. By and large, ATC 

speech adheres to these guidelines. Included in these guidelines is code switching. Code 

switching is replacing certain words with others to eliminate miscommunication. The 

ICAO guidelines also include different pronunciations of words used in daily life [31]. 

An example of this switch is that “nine” becomes “niner”. Common speech corpora do 
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not include this type of vocabulary. As a result, developing an ASR system for ATC 

becomes increasingly challenging due to code switching and differing pronunciations.  

 Even though the ICAO has published guidelines for ATC communication, out of 

vocabulary words still occur in practice. ATCOs and pilots do not strictly adhere to the 

rules and terminology. In addition, when the standardized rules are not followed, the 

speech features and vocabulary are subject to colloquialisms specific to the region of 

flight or cultures of the ATCOs. This leads to a feature imbalance where the vocabulary 

is not normally or equally distributed. In fact, there are cases where 40% of the words 

appear less than ten times and other words are present millions of times [31].  

2.5 Summary 

This chapter provided a brief introduction about the challenges associated with 

speech transcription, specifically transcribing conversations between air traffic 

controllers and pilots. As presented in the chapter, the primary challenges are scarcity of 

data, noise, multilingual transcription, differing speech rates and code switching. The 

niche of the ATC realm means that dataset creation requires domain expertise, making it 

difficult to create large audio corpora. The conditions of recording environments mean 

that the resulting audio files are very noisy, thus making it difficult to train a machine 

learning model on the data. A variety of feature imbalances also pose challenges for ASR 

in ATC, as ATC communication can be done in many languages, can be spoken at 

varying speeds and be subject to code switching. Considering the challenges presented in 

this chapter and the mission critical nature of ATC communications, there is a pressing 

need to investigate speech transcription processes and develop application-specific 
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solutions that remain consistently accurate. The next chapter describes the methods 

adopted for this research to accomplish this task.   
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Chapter 3 

Methodology 

 This chapter introduces the research approach and provides an explanation of the 

proposed architecture. First, the research methodology is introduced in a sequence of 

three tasks: (1) Dataset Development,  (2) Machine Learning, and (3) Evaluation. An 

explanation of each task and its subtasks is given in the following sections. This chapter 

sets the stage for Chapters 4 and 5 which present the results of the conducted 

experimentation and the conclusions drawn therein. 

3.1 Research Tasks 

The research methodology employed for this work is explained in this section. 

The research is divided into three tasks. Figure 1 below shows a flowchart and the 

sequence of these tasks.  
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Figure 1 

Research Tasks Breakdown 

 

 

 As presented in Figure 1, Task 1, titled Dataset Development, encompasses all the 

data creation, cleaning, labeling and maintenance tasks pertinent to machine learning 

research and applications. The first subtask under Dataset Development is Dataset 

Construction. This includes the creation of audio files, transcription labels and class 

labels – all in a format acceptable to the machine learning models used in Task 2. The 

second subtask under Dataset Development is Speech Enhancement. Because of the noisy 

nature of ATC audio, the data had to be cleaned to optimize the performance of the 

overall transcription outputted from Task 2. 

 Task 2 is titled Machine Learning. It contains the machine learning framework 

used to transcribe the ATC audio created in Task 1. The first subtask under Machine 

Learning is Binary Classification. The role of the Binary Classifier was to label each 
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word in each audio file in one of two classes: ATC or ENGLISH. Many words used in 

ATC communication are unique and are not common in every day English. As a result, 

the nature of this data lends itself to binary classification. The next subtask under Task 2 

is Speech Transcription. Once the word-by-word data has been given a class, it is then 

fed to two purpose-built models that will transcribe them. One of these models is only 

trained on ATC words and the other only trained on ENGLISH words. The rationale 

being that only training on one of the two classes will provide a purpose-built model 

suited for transcribing a particular class. This is by and large very similar to transcription 

models for different languages, which are only trained on words from a particular 

language. These transcription models predict and provide a word-by-word sequence of 

text labels. Given this and the sequence of words, the overall transcription for the entire 

audio file is constructed. 

 Task 3 is titled Evaluation. Its purpose is to quantify the performance of the 

framework. The first subtask under Task 3 is titled Framework Testing. The framework’s 

performance is quantified using a Word Error Rate (WER) metric on the entire dataset. 

This gives a clearer picture on how well the model performs on its task of transcribing 

spoken sentences in an ATC environment. The next subtask under Task 3 is titled 

Comparison with Generalized Models. The framework is compared to a variety of 

baseline models to gauge its performance and practical feasibility. 

3.2 Task 1: Dataset Development 

 As with any machine learning task, the quality and structure of the dataset is 

critical. This was no different for this research – especially due to its niche, both in its 

domain and underlying machine learning architecture. The ASR task in ATC domain 
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presents unique challenges, as highlighted in Chapter 2. Furthermore, the machine 

learning framework used to accomplish this task, highlighted in Task 2, is distinct in that 

it has a variety of machine learning tasks embedded within it. As a result, the dataset 

needs to be highly catered to this specific application and architecture.  This section 

covers Task 1, the development of the dataset. This includes constructing audio files, 

feature extraction, cleaning the data, class labels, transcriptions, and data formats. 

3.2.1 Dataset Construction 

 Because of the highly unique nature of this task and framework, constructing a 

purpose-built dataset was critical. Not only did the data have to be representative of the 

domain in which the model would be deployed, it also had to be presented in a format 

which the machine learning models would accept. Contained within this section is an 

overview of the given FAA data, constructed open-source data and the formats of the 

dataset at large.  

3.2.1.1 FAA Data. The FAA provided us with a dataset of 10 audio files and their 

respective labels. These audio files were taken from real-life flights and record the 

communication between pilots and ATCOs. The audio is 8kHz and 16-bit sampled. Many 

of the dataset specific challenges mentioned in Chapter 2 were observed in this small 

sampling of data, including code switching and ATC specific vocabulary. 

 There were already a few challenges with this given dataset, having not even 

conducted any experimentation. First, there were only 10 given audio samples, totaling to 

under 40 seconds of audio. Machine learning is heavily data dependent – that is, without 

a high quality and high-volume dataset, the resulting model will perform very poorly. 

Presented with little data, there are very few features that the model can learn, yielding 
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poor performance and generalization. This is very problematic for any machine learning 

application, let alone one in a specific domain. Further, because this data was recorded in 

a real-life ATC environment, it is not surprising that it is very noisy. This posed 

challenges for the transcription task as low signal-to-noise ratios result in features that are 

harder to differentiate and detect. 

3.2.1.2 Open-Source Data. Given the data scarcity issues in the provided FAA 

dataset, a larger dataset had to be constructed to make for a more robust model and to 

prove the effectiveness of the proposed framework and experimentation. The open-source 

dataset Air Traffic Control Complete [42] was used to construct additional audio files. 

Similar to the FAA data, the open-source dataset is also 8kHz and 16-bit sampled. 

 The same challenges present in the FAA data were also present with this dataset. 

The issues specific to ATC data, such as vocabulary and code switching, were also 

present in this dataset. In addition, the noisy ATC environments also posed an issue for 

this data. Finally, the small sample issue was not entirely solved with this constructed 

dataset. In total, 30 additional audio files were constructed from a two hour long 

recording. The addition of this data brought the total time of the entire dataset to just over 

2 minutes. Comparing this to other common speech corpora, it becomes clear just how 

big an issue the small dataset size is. LibriSpeech [28], for example, is a speech dataset 

recorded in a clean environment coming in at 1000 hours or 60,000 minutes long. 

LibriSpeech is 5 orders of magnitude larger than the dataset used in this research. As a 

result, the purpose of this research was not to achieve state of the art performance. 

Rather, it was to prove the feasibility of the dataset format and machine learning 

framework.  
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3.2.1.3 Data Format. The format of this dataset is unique in that it presents audio 

files in a word-by-word sequence. Every audio file was manually split word-by-word. A 

segmentation algorithm was not used to achieve this word-by-word splitting for a variety 

of reasons. First, a segmentation algorithm would subject this dataset to the algorithm’s 

own accuracy, and no segmentation algorithm is perfect. Second, performance 

degradation would occur due to the noise and domain of this data. There is no tailor-made 

segmentation algorithm for ATC data. For all these reasons, the audio files were 

manually split into word-by-word files by visually examining the waveform and listening 

for the beginning and end of each word. 

Each word was given two labels: a binary class definition and a transcription. The 

binary class definition corresponds to either ATC or ENGLISH, where ATC is given to 

words that are specific to ATC speech and ENGLISH is given to words that belong to 

every day spoken English. The binary class labels are used in Task 2, Chapter 3.3.1. The 

transcription label is the written word that is spoken in each audio file. These labels are 

used to train transcription models corresponding to each of the two binary classes. The 

transcription models are developed in Task 2, Chapter 3.3.2. This highly specific dataset 

format is what allows for the machine learning framework, highlighted in Task 2, to 

function properly. 

3.2.2 Speech Enhancement  

Given the environment that ATC speech is recorded in, any experimentation 

would have to account for the presence of volatile noise. In this research, experimentation 

was conducted to determine the best method for speech enhancement on this particular 

dataset. Only spectral subtractive speech enhancement methods were examined. A deep 
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learning approach was not selected to maintain an independence on training data, as there 

is no speech enhancement method tailor made for ATC data. Once the optimal method 

was determined, the data was enhanced with this method before being used for training 

on the several models presented in this framework. 

There are a total of seven different speech enhancement methods tested in this 

portion of the work. They are as follows: Martin [43], MCRA [38], MCRA2[38], 

IMCRA [39], Doblinger [44], Hirsch [44] and Conn_Freq [45]. Only spectral subtractive 

speech enhancement methods were tested as they have proven to perform well, 

comparable to other techniques such as Wiener Filtering [46]. All speech enhancement 

methods were tested using MATLAB code provided in [47]. Every audio file in the given 

FAA dataset and the constructed open-source dataset was enhanced using all seven 

aforementioned enhancement methods. Given enhanced audio files, the quality of the 

enhancement could then be tested. 

The metrics selected to measure the enhancement quality are PESQ [40] and 

STOI [48]. The MATLAB code for the PESQ calculation was taken from [47]. These two 

metrics were used to compare the original, noisy speech to the enhanced speech, for both 

given FAA data and crafted open-source data.  

3.2.2.1 Determining the Optimal Enhancement Method. The PESQ and STOI 

scores were determined for all audio files, enhanced with every enhancement method. 

Given these scores, the next step was to determine which method enhanced the audio the 

best.  

 To determine the optimal enhancement method, the 95% confidence intervals 

were calculated for both PESQ and STOI scores. This was the most accurate way to 
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determine the best enhancement method on these datasets – independent of sample size. 

Because the two datasets were independently recorded, the PESQ and STOI scores and 

graphs were independently calculated as means to combat discrepancies in recording 

environments. This also substantiated the effectiveness of the optimal enhancement 

method. Finally, given the 95% confidence intervals, the optimal enhancement method 

was determined to be the Martin method. The Martin method was used to enhance all the 

audio files, which were then used for Task 2: Machine Learning.  

3.3 Task 2: Machine Learning 

The purpose of Task 2 was to take the cleaned data from Task 1 and develop a 

framework to transcribe the audio files. The architecture for Task 2 is highlighted in 

Figure 2 below. 

 

Figure 2  

Framework for Task 2: Machine Learning 

 

 

The architecture is heavily influenced by the word by word, sequential nature of 

the dataset. On the left side of the figure, the word-by-word audio is fed into the Binary 

Classifier. The job of the Binary Classifier is to label whether the given word belongs to 
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an ATC corpus or if it is every day, non-ATC speech. Given this, the entire dataset is 

split up into ATC words and non-ATC words. These two subsets are then used to train 

two separate speech transcription models, one for ATC words and the other for non-ATC 

words. Depending on the class label given by the Binary Classifier, each word is fed 

through to the respective model corresponding to its class. Finally, given the sequence of 

words and the transcriptions of the models, a final transcription is outputted. 

3.3.1 Binary Classification 

3.3.1.1 Data Preprocessing. The word-by-word audio files went through a 

preprocessing step before they were ready to be fed into the Binary Classifier for training. 

Because of the nature of the model architecture, discussed in the next section, the data 

had to be converted into spectrograms before being used for training and testing. 

Spectrograms were used because of the convolutional neural network architecture of the 

Binary Classifier. There have been audio recognition tasks accomplished using 

spectrograms as a data preprocessing step in CNN models [49]. This work converts the 

audio recognition task into an image recognition task by way of their data preprocessing. 

They found an 88.9% accuracy using their own CNN model and an 88.5% accuracy using 

transfer learning on a VGG19 model. In addition, multi-task audio classification was 

accomplished using spectrograms and deep learning [50]. They showed that the 

recognition accuracy was better using their multi-task model compared to multiple task 

specific models, many of which do not use deep learning but instead use traditional 

machine learning approaches. Spectrograms have proven their effectiveness as a data 

preprocessing step in deep learning audio classification tasks. As a result, a deep learning 
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approach to audio binary classification was chosen, thereby leveraging the effectiveness 

of spectrograms as a data preprocessing step. 

 A spectrogram is a way of representing audio visually in an image format. It 

shows the signal strength over time at the various frequencies that are present in the 

waveform. Spectrogram conversion is a common feature extraction technique used in 

speech recognition tasks. Spectrograms are very information dense, meaning they convey 

a lot of information very concisely. Where a typical time domain signal would only show 

signal amplitude at any given time, a spectrogram presents information in another 

dimension - the signal strength, over many frequencies and across time. Figure 3 below 

shows an example of a spectrogram in the training dataset for the Binary Classifier. 

 

Figure 3 

A Sample Spectrogram 
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This feature extraction and data preprocessing also allows for use of different 

model architectures. Because the audio is now represented in images, machine learning 

techniques suited for image data can be used to distinguish between the two binary 

classes, ATC, and ENGLISH. It is widely known that Convolutional Neural Networks 

(CNNs) are very effective at image classification [51]. Now that the Binary Classifier 

effectively became an image classifier, we can take advantage of CNN models to 

accomplish this task. The CNN model architecture of the Binary Classifier is discussed in 

the next section.  

3.3.1.2 Model Architecture. The chosen binary classifier model architecture was 

primarily influential in the data preprocessing and feature extraction steps conducted 

before training. The conversion of each audio file into a spectrogram meant that we were 

now dealing with image data. In addition, the new type of data also simplified the task. 

The task was no longer to train a classifier to distinguish audio files into two classes. 

Instead, the task was to train a classifier to distinguish images into two classes. This 

change in datatype and task presented many new options when determining the Binary 

Classifier model architecture. 

 Convolutional Neural Networks (CNNs) have proven effective at classifying 

images [51]. As a result, it was wise to use a CNN model to build this Binary Classifier. 

The Binary Classifier consisted of 14 different layers and a total of almost 14 million 

trainable parameters. The architecture used a pattern in its design such that a succession 

of 2D convolutional layers, max pooling layers and dropout layers were repeated three 

times followed by flatten and dense layers which provided the final class output. Each 

piece of the repeated pattern has a rationale behind its selection. The convolutional layers 
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were selected due to their superior performance on the spectrogram image data. Max 

pooling and dropout layers were selected intuitively based on the initial training 

performance. Initial testing revealed that model was overfitting the training data and 

generalizing poorly on the test data. As such, max pooling and dropout layers were 

employed to combat this issue. A summary of the model architecture is seen in Figure 4 

below. 

 

 



 28 

Figure 4 

A Summary of the Binary Classifier Model Architecture 

 

 

 As mentioned above and seen in the model summary, there is a sequence of 2D 

convolution, max pooling and dropout layers that repeat several times in the Binary 



29 
 

Classifier’s architecture. A diagram of the entire model architecture is seen in Figure 5 

below. The model begins with a 2D convolutional layer, followed by a max pooling layer 

and three repetitions of a pattern of a 2D convolutional layer, max pooling layer and a 

dropout layer. Finally, the model output is preceded by a flatten layer and two dense 

layers which produce the binary class output. 
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Figure 5  

A Diagram of the Binary Classifier Architecture 
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3.3.1.3 Training and Performance Metrics. As with training any machine 

learning model, there are a number of decisions to make by way of hyperparameters and 

performance metrics. The Binary Classifier was trained on 10 epochs, using the Adam 

optimizer and sparse categorial cross entropy loss function. The model was trained on 

70% of the total data and tested on the remaining 30%.  

The performance metrics used to prove the model architecture and data format 

were loss values and validation accuracy. The loss value is a metric which measures how 

far off the model’s prediction was from the actual label. As the model trains, the loss 

values should decrease because of the model learning the features in the dataset. 

Validation accuracy is a measure of how well the model performs on the test dataset, i.e. 

how many of the test samples it classifies correctly. As the model learns, the validation 

accuracy should increase, meaning the model has learned how to generalize to data it has 

not seen before. In addition, it is important to examine the accuracy for a class imbalance. 

If the model is only accurately identifying one of the classes, the overall accuracy metric 

can be misleading. As such, the overall accuracy was further examined to determine if 

there was a class imbalance.  

3.3.2 Speech Transcription 

 There were two ASR transcription models trained in Task 2. These models were 

trained for the two different classes that each word in the dataset belonged to – ATC or 

ENGLISH. Both models have the same architecture and follow a pretrained, fine-tuning 

strategy to adjust model parameters in hopes to combat the issue of small sample size and 

domain uniqueness. The following sections explain the datasets, model architecture and 

performance metrics in greater detail.  
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3.3.2.1 Dataset. The word-by-word audio dataset was split into two classes which 

corresponded to ATC specific vocabulary and everyday English speech. These two 

classes were analogous to two different languages. As such, there were two different 

models trained on datasets specific to these classes. Because of the scarcity of samples, 

there were too few features to train a single model for fear that the model would not be 

able to learn enough. In addition, the framework was constructed such that the preceding 

Binary Classifier step would distinguish between the two classes and feed each word into 

the corresponding transcription model. Much in the same way as the Binary Classifier 

training, the datasets for these two models followed the same 70/30 train/test split. 

3.3.2.2 Model Architecture. The model chosen for the transcription task was 

Facebook’s Wav2Vec 2.0 [52]. As explained by their team, there are thousands of 

different languages spoken in the world, with different dialects, environments, and 

accents. This presents many difficulties for speech recognition tasks, as developing high 

quality datasets for all of the different languages and environments is not realistic. As a 

result, it becomes critical to investigate methods of speech transcription that can 

generalize well by training on relatively few samples.  

This dataset is marred by many of the problems Wav2Vec 2.0 aims to solve – 

especially the scarcity of samples. In addition, noise, domain uniqueness and feature 

imbalances all pose issues for a typical ASR model. The team behind Wav2Vec 2.0 

showed that training on a small amount of labeled audio and pretraining on a large 

amount of unlabeled data resulted in good performance – achieving as low as 5.2% word 

error rate. 
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 Following much of their example, the transcription models are fine-tuned 

Wav2Vec 2.0 models. That is, they take the pretrained weights of the existing model and 

fine-tune them according to the relevant dataset corresponding to the two binary classes, 

ATC or ENGLISH. This methodology promised to optimize the performance of the 

transcription, as it closely mirrored the procedure followed in the original work. 

3.3.2.3 Performance Metrics and Experimentation. Because the training 

strategy consisted of fine-tuning an existing model, there were significantly less decisions 

to make by way of hyperparameters and tuning. An important decision to make in this 

experimentation was to determine an appropriate metric to calculate model accuracy. In 

addition, the accuracies of the transcription models were determined both on classes. That 

is, the ASR transcription model was tested on not just ASR words, but also on ENGLISH 

words. The same is true for the ENGLISH transcription model – it was tested on both 

ENGLISH and ATC datasets. The motivation behind testing on the other dataset was to 

gauge performance in case the preceding Binary Classifier was wrong in its prediction, in 

which case a word would be given to the wrong transcription model. The following 

sections explain the chosen accuracy metric as well as all the experiments conducted for 

the transcription models. 

3.3.2.3.1 Character Error Rate. The overall task of the transcription models was 

to take in audio of a single word and output a predicted transcription. The delta between 

the prediction and the label gives an indication of accuracy. To quantify this discrepancy 

and gauge model accuracy, the Character Error Rate (CER) was calculated. Equation 1 

shows the formula used to calculate CER.  
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!"# = (& + ( + ))
+ 	 (1) 

  

In this equation, the numerator holds information about the model prediction and the 

denominator represents the label. In the numerator, S is the number of substitutions, D 

the number of deletions and I the number of insertions. In the denominator, N is the 

number of characters in the label. The CER formula is intuitive in that a more accurate 

prediction will yield a smaller numerator and, thus, a smaller error rate. The smaller the 

CER, the better the transcription model performed. 

3.3.2.3.2 Determining Accuracies on Specific Datasets. The transcription models 

were tested on a variety of datasets. Both the ASR and ENGLISH models were tested on 

their corresponding datasets, as well on the opposite dataset. This resulted in four 

different CERs:  

1. ATC model on ATC data 

2. ATC model on ENGLISH data 

3. ENGLISH model on ATC data 

4. ENGLISH model on ENGLISH data. 

The motivation behind these experiments was to determine how the transcription 

step would perform if the Binary Classifier predicted the word’s class both correctly and 

incorrectly. There is a possibility that the classifier predicts the word’s class wrong and 

ends up sending it to the wrong model for transcription. These four metrics give a greater 

understanding of the strengths and potential weaknesses of the transcription step.  
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3.4. Task 3: Evaluation 

 Finally, with the Binary Classifier and Transcription models individually trained 

and tested, the entire framework was ready to transcribe audio files. This section explains 

the flow of testing the framework. It is a unique workflow as it contains several different 

machine learning models and is dependent on the sequential nature of the word-by-word 

dataset.  

3.4.1. Framework Testing 

To test the framework, all audio files were fed through the framework and the 

final Word Error Rate (WER) was calculated. WER is the same as CER except that the 

calculations are done on a word-by-word basis instead of character by character. To test 

the framework, the word-by-word audio files were first fed into the Binary Classifier, 

transformed into spectrograms, and given a class, ATC or ENGLISH. Then, each word 

was fed into the transcription model corresponding to its predicted class. The 

transcription model would then transcribe the word. At this point, every word in the audio 

file had a transcription. Because the sequence of words was known, a transcription of the 

entire audio file was pieced together word by word to obtain the entire transcription. 

3.4.2. Comparison with Generalized Models  

The performance of the developed framework was determined with the audio files 

of several test datasets. Word error rate (WER), much like CER, is a common metric for 

measuring the accuracy of a speech-to-text ASR system. Instead of calculating the 

difference between the prediction and label on a character per character basis, the 

difference is calculated on a word-by-word basis. 
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 To gauge the framework’s feasibility, it was compared to two different Wav2Vec 

2.0 models. The first was an off the shelf, pretrained, Wav2Vec 2.0. This was trained on 

thousands of hours of audio that was recorded in a clean environment. The second was a 

Wav2Vec 2.0 model trained from scratch using the proprietary ATC dataset, following a 

70/30 train/test split – training on under 2 minutes of data. These two points of 

comparison were chosen to gauge whether the research approach and framework were 

feasible. Given a large dataset, spanning several hours of audio, a transcription model 

would be trained with the standard approach that ASR algorithms use. However, ATC 

corpora are noisy and large datasets are hard to come by. This thesis’s framework was 

developed to combat those issues. As such, even in the presence of few samples, the 

word-by-word framework should theoretically outperform both Wav2Vec 2.0 models, 

pretrained and trained on this dataset. 

 To prove that the framework outperformed other baselines consistently, it’s WER 

was determined using 20-fold cross validation. 20 different test datasets were constructed 

and a corresponding WER was calculated for each set. Then, the average WERs and 95% 

confidence intervals were calculated for each of the three models. Finally, the average 

and confidence intervals were plotted on the same graph to determine whether the 

framework statistically outperformed the other baselines.  
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Chapter 4 

 

Results and Discussion 

This chapter provides a detailed look into the results of all experimentation done 

throughout this research. The results are presented in the same order as Chapter 3, the 

order in which the experiments were performed. 

The first experiment done was to determine the optimal speech enhancement 

method for this dataset. The 95% confidence interval plots for both PESQ and STOI 

metrics are presented in Figures 6, 7, 8 and 9. These graphs are used to determine the best 

enhancement method to combat the noisy nature of ATC data. 

Next, a Binary Classifier was developed to categorize every word as either ATC 

or ENGLISH. The Binary Classifier’s performance was analyzed with two metrics: 

validation loss and validation accuracy. The relevant section contains loss and accuracy 

plots versus training epoch. The final validation accuracy was determined using these 

graphs. 

Then, two transcription models were trained on purpose built datasets to 

transcribe words belonging to either of the two classes: ATC or ENGLISH. These models 

were evaluated for their performance using their Character Error Rate (CER). The 

average CER was calculated for the class that they were trained for as well as the 

opposing class – as a measure to determine model robustness. 

Finally, the overall framework’s performance was determined using WER. Given 

a word-by-word transcription of an audio file, the entire transcription was pieced 

together. The average WER was calculated and compared to two baseline generalized 

models: a pretrained Wav2Vec 2.0 and a Wav2Vec 2.0 trained from scratch. 
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4.1 Speech Enhancement 

 Four 95% confidence interval plots, corresponding to two datasets and two 

performance metrics (PESQ and STOI), for the analysis of seven speech enhancement 

methods follow. The four different experiments done in this section are: FAA PESQ, 

FAA STOI, non-FAA PESQ and non-FAA STOI. Each experiment yielded a plot of 

averages and 95% confidence intervals. These four plots were analyzed to determine the 

optimal enhancement method according to the conducted experiment. Finally, the last 

subsection in this experiment provides the rationale for determining the best speech 

enhancement method according to these four experiments. 

4.1.1 FAA PESQ Scores 

Figure 6 below shows the PESQ scores and 95% confidence intervals for the FAA 

dataset. Each datapoint represents the average PESQ score for the given enhancement 

method. The vertical lines extending from the dot represents the 95% confidence interval 

for the data. For the FAA dataset, the PESQ scores show, with statistical significance, 

that the Martin method is the most optimal speech enhancement method. FAA speech 

files enhanced with the Martin method yielded a range of PESQ scores from 3.45 to 3.63, 

with an average of 3.54. The method that is closest to the Martin method, in terms of 

PESQ performance, is the Hirsch method. All the other six enhancement methods, 

however, all have overlapping confidence intervals. This is an indication that, for this 

experiment, they are not statistically significantly different from each other. The 

conclusion of this experiment was that the Martin method performed best on the FAA 

dataset. 
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Figure 6 

PESQ Scores for the FAA Dataset

 

 

Table 1  

PESQ 95% Confidence Intervals for the FAA Dataset 

 Average 95% CI 

Conn_Freq 2.43 [2.39, 2.47] 

Doblinger 2.35 [2.3, 2.4] 

Hirsch 3.02 [2.72, 3.32] 

IMCRA 2.61 [2.18, 3.04] 

Martin 3.53 [3.45, 3.61] 

MCRA 2.42 [2.23, 2.61] 

MCRA2 2.29 [2.17, 2.41] 
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4.1.2 FAA STOI Scores 

Figure 7 below shows the STOI scores for the FAA dataset. STOI scores have a 

much lower range compared to PESQ. This is important to note because the data does not 

have large variation for this reason. The result of this experiment was that the Doblinger 

enhancement method yielded the highest STOI scores for the FAA dataset. Doblinger did 

not outperform the rest of the enhancement methods with statistical significance, 

however. It had a range of STOI scores from 0.61 to 0.63, with an average of 0.62. While 

it did have the highest average, its confidence interval overlapped with all of the other 

enhancement methods. This very well may be due to the smaller range of values that 

STOI scores can take as well as the small sample size of the data, only ten audio files. 

 

Figure 7 

STOI Scores for the FAA Dataset 

 



41 
 

Table 2 

STOI 95% Confidence Intervals for the FAA Dataset 

 Average 95% CI 

Conn_Freq 0.58 [0.57, 0.59] 

Doblinger 0.62 [0.61, 0.63] 

Hirsch 0.62 [0.61, 0.63] 

IMCRA 0.56 [0.5, 0.62] 

Martin 0.62 [0.61, 0.63] 

MCRA 0.6 [0.59, 0.61] 

MCRA2 0.6 [0.59, 0.61] 
 

 

4.1.3 Non-FAA PESQ Scores 

Figure 8 below is a graph of the PESQ scores on the non-FAA dataset. The 

averages and 95% confidence intervals have a much wider range of values compared to 

STOI. The results from this experiment show that the Martin method has the highest 

range PESQ score, ranging from 4.06 to 4.26 with an average of 4.16. Martin scores 

highest, but without statistical significance, as the error bars overlap with the Hirsch and 

IMCRA enhancement methods. A potential cause for this is the small sample size of this 

dataset, coming in at 30 audio files. In addition, this data was recorded in a different 

environment from the FAA dataset. Upon cursory auditory evaluation, it appears that the 

non-FAA dataset is not as noisy as the FAA dataset. These observations very well may 

impact the scores and results of experimentation. The conclusion of this test was that the 

Martin method was the optimal speech enhancement method for the non-FAA dataset, 

albeit without statistical significance. 
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Figure 8 

PESQ Scores for the Non-FAA Dataset 

 

 

Table 3 

PESQ 95% Confidence Intervals for the Non-FAA Dataset 

 Average 95% CI 

Conn_Freq 2.84 [2.57, 3.11] 

Doblinger 2.59 [2.47, 2.71] 

Hirsch 3.98 [3.7, 4.26] 

IMCRA 3.78 [3.39, 4.17] 

Martin 4.16 [4.06, 4.26] 

MCRA 3.22 [2.91, 3.53] 

MCRA2 2.78 [2.59, 2.97] 
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4.1.4 Non-FAA STOI Scores 

The plot of STOI scores on the non-FAA dataset are shown in Figure 9 below. 

Again, because of the nature of STOI scores, the data does not vary as much as PESQ 

scores. The Doblinger enhancement method had the highest average STOI score, at 0.62, 

with a range of 0.57 to 0.67. However, as with the STOI data on the FAA dataset, it did 

not outperform the other methods with statistical significance. In fact, the STOI scores on 

the non-FAA dataset varied even less than the FAA dataset. A potential reason for this is 

the different, and observed to be less noisy, environment this data was collected in 

compared to the FAA data. In addition, the larger dataset size may have reduced the 

variation in STOI scores. There are three times as many audio samples in this dataset 

compared to the FAA dataset. As such, the averages and confidence intervals are less 

likely to be swayed by potential outliers. In any case, the conclusion of this experiment 

was that the Doblinger method was most optimal for speech enhancement on the non-

FAA dataset, without statistical significance.  
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Figure 9 

STOI Scores for the Non-FAA Dataset 

 

 

Table 4 

STOI 95% Confidence Intervals for the Non-FAA Dataset 

 Average 95% CI 

Conn_Freq 0.6 [0.55, 0.65] 

Doblinger 0.62 [0.57, 0.67] 

Hirsch 0.59 [0.53, 0.65] 

IMCRA 0.59 [0.53, 0.65] 

Martin 0.59 [0.53, 0.65] 

MCRA 0.6 [0.55, 0.65] 

MCRA2 0.6 [0.55, 0.65] 
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4.1.5 Determining the Optimal Speech Enhancement Method 

 The four experiments conducted in this section each yielded an enhancement 

method which scored the best for the particular metric under examination. FAA PESQ 

scores said that the Martin method was optimal, with statistical significance. Non-FAA 

PESQ scores also said the Martin method was optimal, without statistical significance. 

Both FAA and non-FAA STOI scores said that the Doblinger method was optimal, 

without statistical significance. Table 5 below shows a concise breakdown of these 

results. Given these varied results, an optimal method had to be chosen to continue with 

experimentation. Statistical significance was given importance as deciding factor. In the 

case of statistically insignificant data, the overlap of error bars was analyzed. If there was 

a lot of overlap with many other enhancement methods, the statistical insignificance was 

given less importance.  

 

Table 5 

Optimal Enhancement Methods for the Four Conducted Experiments 

 FAA Non-FAA 

PESQ 

Martin 
(statistically 
significant) Martin 

STOI Doblinger Doblinger 
 

 

Given this rationale, the STOI plots became less relevant, as the data was 

statistically insignificant. The vast majority confidence intervals overlapped. In the case 

of PESQ plots, the only instance of statistically insignificant data was such that 
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overlapping confidence intervals were small and infrequent. As a result, the optimal 

speech enhancement method for this research was determined to be the Martin method. 

4.2 Binary Classifier 

 Graphs of performance metrics for the Binary Classifier are contained within this 

section. Two performance metrics were selected: validation loss and validation accuracy. 

These two metrics were plotted in a graph versus training epoch. The training epoch is a 

measure of time – a higher number epoch means that the model has been training for 

longer. An inverse relationship between loss and accuracy was expected. That is, the loss 

versus epoch graph would trend downward and that the accuracy versus epoch graph 

would trend upward, as the model trained. 

4.2.1 Validation Loss 

 The following plot is a loss versus time graph of the Binary Classifier’s loss 

values as it trains. The loss of a model is a metric which acts as a proxy to the model’s 

performance. It is a measure of how far the model’s prediction is from the actual label. 

Larger loss values indicate that the model is performing poorly – that is the model 

prediction is far from the true value. Because the loss is a performance metric, it is 

expected that as the model trains for more epochs, the loss values will decrease. Figure 

10 below shows a loss versus epoch graph of the Binary Classifier. 



47 
 

Figure 10  

Binary Classifier Loss Values Versus Epoch 

 

 

 As expected of successful model training, both the train and test loss curves trend 

downward as the epoch values increase. The train loss has a descends quicker and 

terminates at a lower value than the test loss. The train loss terminated at a value of 0.38 

where the test loss terminated at a value of 0.57. Should model training have continued 

for more epochs, it is expected that the loss curves would asymptotically approach a loss 

value which is likely going to be the lowest it can get for this dataset and model 

architecture. Because this research was to prove the overarching framework, extensive 

time was not spent in hyperparameter optimization. Given more time to conduct more 

experimentation, it is possible that the model can achieve lower loss values. These 
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optimizations yield diminishing returns, however, as the training and tuning of 

hyperparameters takes time and does not produce corresponding results.  

4.2.2 Validation Accuracy 

 The following plot is an accuracy versus time graph of the Binary Classifier’s 

accuracy values as it trains. It is expected that as the model trains for longer, it will learn 

the features in the dataset. As a result, the model will increase in its accuracy. This should 

hold true for both the train and test datasets. Once the model sees and learns from more 

data in the train set, its weights, biases, and parameters will continue to update. These 

updates will yield better generalization on the test set – data that it has not seen before. 

Successful model training yields accuracy plots that trend upward. Figure 11 below 

shows an accuracy versus epoch plot for the Binary Classifier.  
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Figure 11  

Binary Classifier Accuracy Values Versus Epoch 

 

 

 The Binary Classifier trained successfully and achieved acceptable accuracy 

values. As expected, the accuracy curves trended upwards as the model trained for more 

epochs. The Binary Classifier achieved a final train accuracy of 97% and a final test 

accuracy of 88%. Much like the loss values, there are diminishing returns for extensive 

hyperparameter optimization. Training for more epochs, modifying model architecture, 

testing different loss functions will all have an impact on model accuracy. This impact, 

however, is not guaranteed to be positive. Hyperparameter optimization very well may 

improve model accuracy. However, it comes with the tradeoff of investing time which 

will yield insignificant gains given the model’s adequate performance. 
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 The Binary Classifier proved a successful technique to classify words into two 

classes: ATC or ENGLISH. Each audio file was first converted into spectrogram images. 

These images were then fed into a CNN model suited for image classification. The 

Binary Classifier portion of the framework proved successful – as it classified word by 

word audio files with 88% accuracy.  

4.3 Transcription Models 

 There were four experiments conducted to test the transcription models. The 

following sections contain the results for testing on all four scenarios for the transcription 

step of the framework. Each experiment resulted in a calculated CER. It was expected 

that models tested on their corresponding dataset would perform better than models tested 

on the opposing dataset. Table 6 below shows the average CERs on both the train and test 

sets for the four combinations of models and datasets. 

 

Table 6 

Character Error Rates for the Four Combinations of Models and Datasets 

Model – Dataset 

Combination 

Train CER Test CER 

ATC – ATC 79% 75% 
ATC – ENGLISH - 83% 

ENGLISH – ENGLISH 76% 74% 
ENGLISH – ATC - 86% 

 

 

 The four conducted experiments yielded results that were expected of the 

transcription step. Models tested on their corresponding datasets had lower CERs than 

when they were tested on the opposing datasets. The ATC model achieved a CER of 75% 
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on ATC words and 83% on ENGLISH words. The ENGLISH model had a CER of 74% 

on ENGLISH words and 86% on ATC words. These CERs are certainly not adequate 

performance for a live, mission critical system. In the best case, one out of every four 

letters, or every fourth letter, would be correct in the word level transcription. It can be 

very difficult to make sense of the word given these errors. It becomes next to impossible 

to make sense of an entire sentence if all of the words have significant errors in them. 

This is in the best case, where the Binary Classifier predicts the class of the word 

correctly. In the cases where the word is given to the wrong transcription model, the 

accuracies suffer even more. In the worst case, the ENGLISH model on ATC words, only 

14% of the characters would be transcribed correctly. Given these results, it is difficult to 

say that the transcription step had adequate performance when state of the art models 

regularly achieve single digit character and word error rates. 

4.4 Overall Framework Performance 

The following section contains the performance of the overall framework as well 

as a comparison to two baseline Wav2Vec 2.0 models. Table 7 below compares average 

WERs and corresponding 95% confidence intervals for three models: the framework, a 

pretrained Wav2Vec 2.0 model and a Wav2Vec 2.0 trained, from scratch, on this dataset. 

 

Table 7 

Word Error Rates for the Framework and Generalized Models 

 Framework 
Wav2Vec2.0 
(pretrained) 

Wav2Vec2.0 
(trained from scratch) 

WER 84.05% 88.65% 95.45% 

95% CI [82.72, 85.38] [89.87, 89.87] [94.04, 96.86] 
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Percent Improvement 11.40% 6.80% 0.00% 
 

 The proposed framework achieved an 84.05% average WER on all the audio files 

in this dataset. A pretrained Wav2Vec 2.0 model had an 88.65% WER. Training 

Wav2Vec 2.0 from scratch yielded a 95.45% WER. To analyze and properly compare 

these results, the averages and 95% confidence intervals were plotted on the same graph 

to determine whether the results were statistically significant. Figure 12 below is a graph 

depicting the performance of the three models. 

 

Figure 12  

Framework Performance Compared to Generalized Models 

 
 

The framework performed the best out of the three tested models, with statistical 

significance. All three of the models had very high WERs that are not fit for mission 
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critical systems. In the case of the Wav2Vec model developed from scratch, training on 

minutes of data yielded the highest WER, because there was simply not enough data to 

learn from. For the pretrained Wav2Vec 2.0, trained on thousands of hours of data, 

yielded better performance, but still far from adequate. The wide range of features and 

larger dataset helped improve the performance, but it was still far from state of the art. 

The unique, word-by-word framework presented in this thesis proved to improve 

performance compared to the other two models, with statistical significance across 20 test 

datasets. This is a promising step for the future of this research. This type of dataset and 

word-by-word transcription may prove to be a feasible method for ASR in ATC. 

 In summary, this chapter presented detailed results and relevant discussion on 

how the proposed framework performed compared to available standard speech 

transcription models. The following chapter provides a conclusion, limitations of the 

research and future recommendations.   
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Chapter 5 

Conclusion 

Chapter 5 contains a summary of the chapters and accomplishments of this thesis. 

The research objectives and accomplishment as presented in Chapter 1 are reviewed. In 

addition, recommendations for future research and improvements are given.  

5.1 Thesis Review 

 Chapter 1 presented the problem solved by this research as well as an overview of 

the goals and objectives of this thesis. Chapter 2 was a literature review of the current 

state of affairs for ASR in ATC. Chapter 3 is a detailed examination of the methodology 

and framework used in this research to accomplish the goals laid out in Chapter 1. 

Chapter 4 presented the results of the experimentation explained in Chapter 3. Finally, 

this chapter, Chapter 5, is a summary of the work and accomplishments of this thesis. 

5.2 Summary of Accomplishments 

 The goal of this thesis was to evaluate feasibility of a novel distributed machine 

learning framework for ASR in ATC designed to combat the common problems of the 

domain. The results demonstrated that a word-by-word, binary classification and 

transcription architecture is a feasible approach to accomplish ASR on ATC data. 

Compared to baseline state-of-the-art ASR models, the framework presented in this 

research achieved better performance. The objectives laid out in Chapter 1 are reviewed 

and a summary of related accomplishments is given: 

1. To determine the best speech enhancement method for ATC audio data. 

- Seven spectral subtractive speech enhancement methods were tested for their 

performance on ATC data. PESQ and STOI scores were used to measure 
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performance. All audio samples in the dataset were enhanced using the seven 

enhancement methods and the PESQ and STOI scores were calculated. Given this 

data, the average and 95% confidence intervals were plotted to determine which 

enhancement method performed best, with statistical significance. 

2. To develop a word-by-word ATC audio corpus. 

- A word-by-word ATC dataset was developed using a combination of FAA 

provided data and an open-source ATC audio corpus. This dataset was tailor-

made for the framework. Every audio file had a corresponding spectrogram and 

two labels. One label was a binary class indicating which of the two classes the 

word belonged to, either ATC or ENGLISH. The other label was a transcription 

of the word spoken in the audio file.  

3. To train a Binary Classifier to distinguish between ATC and ENGLISH words. 

- A Binary Classifier was trained to classify words into two classes. It took 

advantage of data preprocessing by converting audio files into spectrogram 

images. This preprocessing then allowed the Binary Classifier architecture to use 

convolutional layers suited for image detection. The Binary Classifier achieved an 

accuracy of 88%.  

4. To train ASR models to specifically transcribe ATC and ENGLISH words. 

- Two ASR transcription models were trained to transcribe words belonging to the 

two classes. That is, a transcription model was trained specifically on ATC words 

with the sole purpose of transcribing only words belonging to the ATC class. The 

same was done for a model to transcribe ENGLISH words. The models used a 

pretrained Wav2Vec 2.0 and fine-tuned its parameters to achieve greater accuracy 
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for their transcription tasks. The ATC model achieved a 75% CER and the 

ENGLISH model achieved a 74% CER. 

5. To transcribe ATC audio on a word level basis. 

- ATC audio files containing entire sentences were transcribed on a word-by-by 

basis using the proposed framework. First, every word was fed into a Binary 

Classifier which would predict which class the word belonged to – either ATC or 

ENGLISH. Then, the word was given to a purpose-built transcription model 

trained to transcribe words belonging to one of the two classes. ATC words were 

transcribed by an ATC transcription model and ENGLISH words were transcribed 

by an ENGLISH transcription model. With every word transcribed and the 

sequence of words known from the original audio file, a transcription of the entire 

spoken sentence was pieced together. 

6. To analyze performance of the developed framework in comparison to the current 

state of the art ASR models. 

-   The performance of the proposed framework was determined using a WER 

accuracy metric which compared the transcription to the label. The framework 

achieved an 84% WER on this dataset. The framework was then compared to two 

baseline models: an off the shelf, pretrained Wav2Vec 2.0 and a Wav2Vec 2.0 trained 

from scratch on the developed dataset. The pretrained model had a WER of 88% and 

the model trained from scratch had a WER of 95%. The framework performed better 

than the two baselines, with statistical significance. However, this performance is still 

far from adequate for a mission critical system such as ATC. These results are 

promising for the future of this framework and application. However, further testing 
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needs to be conducted to improve the framework’s accuracy and achieve sufficient 

performance. 

5.3 Limitations of the Research and Recommendations for Future Work 

 The biggest challenge for this research was the severe lack of data. In totality, 

there were only about 2 minutes of audio in the entire dataset. Many state of the art ASR 

systems are trained on thousands of hours of audio. However, as presented in Chapter 4 

and concluded in Chapter 5, the proposed distributed machine learning framework 

performed better than the generalized models. This suggests that testing of this 

framework on a larger dataset may provide significant performance gains. More research 

efforts and funds should be allocated towards development of a word-by-word dataset in 

the mold laid out in this thesis. This would further validate the framework to be a viable 

solution to the unique problem of ASR in ATC. 

 A modification of this framework should be tested in the Binary Classification 

step. In this work, a CNN based model was used. This required the audio data to be 

converted into spectrogram images. However, it is worth investigating other traditional 

machine learning methods to achieve Binary Classification. Some of these methods 

include Gaussian Mixture Models and Support Vector Machines. These methods would 

use the time series audio data and would not require the audio files to be converted into 

spectrograms. If these methods provide similar or better performance than the CNN 

based Binary Classification approach used in this work, it will eliminate a data 

preprocessing step and simplify the framework without diminishing performance. 

 Another point of improvement in future research is optimizing the transcription 

step of the framework. In this work, the two transcription models operated independent of 
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each other. To improve this, game theory can be implemented such that the two models 

act as players who will act as a unit to optimize their output. This may prove to be a 

fruitful area of research as it may increase the framework’s robustness to any errors the 

Binary Classifier may make. This increased robustness may likely result in greater 

framework accuracy and performance. 

 In terms of practicality, this model requires a very specific type of dataset for 

training and testing. Word-by-word audio corpora are not common. In addition, in a live, 

deployed scenario, this model would not function properly on a full audio file containing 

a sentence. Any conversation between a pilot and ATCO would need to be split word by 

word for the model to transcribe it. This is far too time consuming for a human to 

manually do for every sentence that each party speaks. However, a future area of research 

is to train a segmentation algorithm which would split up the audio files automatically 

into word-by-word segments. The output of this segmentation algorithm would then be 

fed into the transcription framework and the ATC audio could be transcribed.  
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Appendix A 

Glossary of Terms 

 

1. ATC: Air Traffic Control 

2. ATCO: Air Traffic Controller 

3. ICAO: International Civil Aviation Organization 

4. MCRA: Minima Controlled Recursive Averaging [38] 

5. MCRA2: Minima Controlled Recursive Averaging 2 [39] 

6. PESQ: Perceptual Evaluation of Speech Quality [40] 

7. STOI: Short Term Objective Intelligibility [41] 
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