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Simple Summary: Reports of the recovery of proteins and other molecules from fossils have become
so common over the last two decades that some paleontologists now focus almost entirely on studying
how biologic molecules can persist in fossils. In this study, we explored the fossilization history of a
specimen of the hadrosaurid dinosaur Brachylophosaurus which was previously shown to preserve
original cells, tissues, and structural proteins. Trace element analyses of the tibia of this specimen
revealed that after its bones were buried in a brackish estuarine channel, they fossilized under wet
conditions which shifted in redox state multiple times. The successful recovery of proteins from this
specimen, despite this complex history of chemical alterations, shows that the processes which bind
and stabilize biologic molecules shortly after death provide them remarkable physical and chemical
resiliency. By uniting our results with those of similar studies on other dinosaur fossils known to also
preserve original proteins, we also conclude that exposure to oxidizing conditions in the initial ~48 h
postmortem likely promotes molecular stabilization reactions, and the retention of early-diagenetic
trace element signatures may be a useful proxy for molecular recovery potential.

Abstract: Recent recoveries of peptide sequences from two Cretaceous dinosaur bones require
paleontologists to rethink traditional notions about how fossilization occurs. As part of this shifting
paradigm, several research groups have recently begun attempting to characterize biomolecular
decay and stabilization pathways in diverse paleoenvironmental and diagenetic settings. To advance
these efforts, we assessed the taphonomic and geochemical history of Brachylophosaurus canadensis
specimen MOR 2598, the left femur of which was previously found to retain endogenous cells,
tissues, and structural proteins. Combined stratigraphic and trace element data show that after
brief fluvial transport, this articulated hind limb was buried in a sandy, likely-brackish, estuarine
channel. During early diagenesis, percolating groundwaters stagnated within the bones, forming
reducing internal microenvironments. Recent exposure and weathering also caused the surficial
leaching of trace elements from the specimen. Despite these shifting redox regimes, proteins within
the bones were able to survive through diagenesis, attesting to their remarkable resiliency over
geologic time. Synthesizing our findings with other recent studies reveals that oxidizing conditions
in the initial ~48 h postmortem likely promote molecular stabilization reactions and that the retention
of early-diagenetic trace element signatures may be a useful proxy for molecular recovery potential.

Keywords: REE; Brachylophosaurus; molecular paleontology; geochemical taphonomy; diagenesis;
bone; protein; collagen; Judith River Formation
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1. Introduction
1.1. Shifting Views on Molecular Preservation

Fossilization has historically been viewed as a “harsh” process involving forced min-
eralization coincident with the wholesale loss of organic tissues and their component
biomolecules (e.g., [1]). However, an ever-expanding wealth of recent studies employ-
ing methods from histochemistry and immunoassays to genomics and proteomics have
shattered this ‘traditional’ paradigm. As reviewed by ourselves and others [2–7], it is
now clear that not only is the long-term preservation of endogenous DNA, proteins, and
other biomolecules possible in fossils, but select burial circumstances may actually pro-
mote molecular preservation in both plants and animals interred in a diverse array of
depositional environments. For example, drastic advances in analytical resolution over
the last two decades have enabled the recovery of nuclear and mitochondrial genomes
and/or proteomes from fossils of a number of Pleistocene mammals, such as cave bears [8],
mammoths [9–12], horses [13], saber-toothed cats [14], and ancient hominins [15,16].

Given their greater resilience to decay than DNA [17], structural proteins (e.g., collagen I,
actin, and β-keratin) are now known from vertebrate fossils dating all the way back to
the Jurassic (e.g., [18–22]). Considerable attention has been paid especially to the
protein collagen I due to its sheer abundance in bioapatitic tissues [23] and inferred
high preservation potential [18,24–47]. Recent studies have employed numerous inde-
pendent techniques to identify collagen within fossils, with arguably the most convincing
evidence being the identification of original peptide sequences and diagenetiforms (pro-
tein remains demonstrably modified by diagenetic alterations [48]) in fossil bones via
high-resolution tandem mass spectrometry [18,28,30,42,45]. Remarkably, cladistic analy-
ses incorporating collagen I peptides recovered from two Cretaceous nonavian dinosaur
bones confirmed their archosaurian identities and thus endogeneity [45,49]. Such findings
unequivocally demonstrate both that biomolecules can ‘survive’ fossilization and that
portions of them can persist over strikingly-long geologic timescales.

However, the idea of molecular preservation in Mesozoic (and possibly even older)
fossils remains controversial to some due to our incomplete understanding of soft-tissue
fossilization in general and the geochemical reactions which may stabilize biomolecules
within cells and tissues over such immense time frames. While it is universally agreed that
processes such as rapid burial can facilitate the preservation of soft tissues in fossils [50,51],
it largely remains unclear how other taphonomic processes and the physical (e.g., sed-
imentology and hydrodynamics) and chemical attributes (e.g., aqueous geochemistry)
of depositional environments influence decay at the molecular level (but see [52] for an
informative initial foray into this subject). It is therefore vital for researchers to not only
demonstrate the authenticity of biomolecular remnants in fossils but to also identify the
physicochemical factors acting within the diagenetic settings which permitted such cases
of “exceptional” preservation. Pioneering actualistic studies by Schweitzer et al. [4] and
Boatman et al. [53] demonstrated that iron free radicals in diagenetic pore fluids likely play
a role by inducing intra-molecular crosslinking, but are other aspects of groundwater chem-
istry (i.e., redox state; cf. [54]) and diffusion history (i.e., duration spent saturated; cf. [47])
equally important in determining whether or not biomolecules persist in fossils? Addition-
ally, if they are, which depositional settings and diagenetic histories most favor long-term
molecular preservation? In short, we are just beginning to explore these questions.

1.2. Insights from Trace Element Analyses

One of the most effective means of clarifying the geochemical history of a fossil is through
studying its trace element composition. After being solubilized from surrounding sediments
by percolating groundwaters via oxidation, dissolution, and other processes, trace element
ions, including those of the rare earth elements (REE: lanthanum–lutetium), uranium, and
scandium, are ubiquitously adsorbed by bone hydroxyapatite during diagenesis [55]. Since
these elements are essentially absent in bone tissue in vivo, their presence in fossil bones derives
almost entirely from postmortem interactions with surface and groundwaters [55,56]. As a
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result, the proportions and spatial distributions of trace elements within a fossil bone
provide detailed insights into the chemistries of past pore fluids and the geochemical
milieus to which a specimen was exposed throughout its term of burial (e.g., [57–64]).
Trace element signatures have thus been successfully utilized to: (1) infer the relative
degree of chemical alteration a specimen has endured [65,66]; (2) characterize the chemistry
of pore fluids in past environments (e.g., [60,63,67]); (3) track spatiotemporal trends in
redox conditions within specimens throughout diagenesis (e.g., [62–64]); and (4) clarify the
number and relative timing of exposures to pore fluids throughout diagenesis (e.g., [64,68]).
REE signatures, in particular, have also been shown to potentially be viable proxies for
molecular preservation in fossil bones (i.e., they can help identify the most ideal specimens
for paleomolecular investigation [47]).

Several of our recent studies capitalized on these diverse utilities of trace elements to
elucidate the paleoenvironmental, geochemical, and diagenetic history of two fossils from
the Cretaceous Hell Creek Formation which were each documented to preserve endogenous
collagen I [28,47], specifically an Edmontosaurus fibula [63] and a femur of Tyrannosaurus rex
specimen Museum of the Rockies (MOR) 1125 [64] (also see [69] for alternative taxonomic
assignment of MOR 1125). These studies provided intriguing insights into taphonomic
pathways to protein preservation, but they still merely constitute two case studies in the
same geologic formation; the full suite of taphonomic and diagenetic variables at play in
molecular preservation remains to be clarified.

In this study, we conducted trace element analyses on the only Mesozoic fossil other
than T. rex MOR 1125 known to yield endogenous peptide sequences: Brachylophosaurus
canadensis specimen MOR 2598. Schweitzer et al. [30] and Schroeter et al. [45] each recovered
numerous peptides of collagen I from the left femur of this hadrosaur, the authenticity
of which were independently corroborated by multiple forms of microscopy, infrared
spectroscopy, mass spectrometry, and immunoassays replicated in multiple laboratories by
separate researchers each using dedicated equipment and reagents (see each reference for
further details). The cumulatively-comprehensive approach undertaken by these studies to
demonstrate reproducibility and authenticate the endogeneity of collagen in MOR 2598
set a rigorous standard that has yet to be matched again, despite over a decade of ensuing
research on other specimens. Given this great significance of MOR 2598 in providing
concrete foundations for the field of molecular paleontology, it is only right to resolve the
taphonomic and diagenetic history of this specimen in equally comprehensive detail.

2. Taphonomic and Geologic Context

MOR 2598 consists of an articulated left hind limb of a subadult Brachylophosaurus
canadensis recovered from an outcrop of the Campanian Judith River Formation north of
Malta, Montana, on lands managed by the Montana Department of Natural Resources
and Conservation (Figure 1). The specimen was found within a thick sequence (~7 m) of
trough cross-stratified channel sandstones exposed along the southern side of Cottonwood
Creek. Schweitzer et al. [31] concluded that these strata were deposited in a fluvial channel
within the overall lowland fluviodeltaic system of the Judith River ecosystems [70,71]. The
tibia, fibula, and pes were collected in the summer of 2006, and the femur was collected
in a separate plaster jacket the following year. The articulation of these skeletal elements
implies they were still joined by connective tissues (i.e., ligaments) at the time of burial.
The incomplete nature of the tibia (see below) and slightly lighter color of this bone than
the femur indicate that portions of the tibia were exposed by modern erosion/weathering
upon discovery (whereas the femur was not [30]). All of the skeletal elements are brown
in color (e.g., Figure 1B), indicating their mineralogy has likely been transformed from
hydroxyapatite to fluorapatite, which is typical of bone fossilization [72,73]. As discussed
by Schweitzer et al. [30], the femur was collected with 10–12 cm of sediment still encas-
ing it to maintain geochemical equilibrium for as long as possible before examination
via demineralization, scanning electron microscopy, multiple immunoassays, and liquid
chromatography–tandem mass spectrometry. All of the skeletal elements appear well-
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preserved morphologically in that they lack any signs of weathering or abrasion, but the
tibia (examined herein) is missing its distal end and a section of the posterior and medial
portions of the shaft near its proximal end. The tibia is also highly fractured, exhibiting
numerous transverse and longitudinal fractures arising from compaction after fossilization.
Though the medullary cavity of this bone is partly ‘filled’ due to compaction and the partial
crushing of cancellous trabeculae, there are no signs of permineralization or infilling by the
sedimentary matrix (pers. observations, and [74]).
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Figure 1. (A) Map showing the locality from which MOR 2598 was recovered in Phillips County,
Montana. (B) Left tibia of MOR 2598 examined in this study, shown in lateral view. Map redrawn
and modified from [75].

3. Materials and Methods
3.1. Materials

It was not possible to acquire a sample from the left femur of Brachylophosaurus
canadensis MOR 2598 for this study as prior histologic and paleomolecular studies of this
particular skeletal element of the specimen [30,45,74] and reconstructive efforts undertaken
during preparation to maintain permanent stability of the bone left no portion of the cortex
easily removable without compromising the integrity of the fossil. Therefore, we instead
extracted a fragment of the cortex from the midshaft of the left tibia of MOR 2598. This bone
was found in articulation with the left femur in the field and was accordingly buried at
the same stratigraphic position within the same stratum as the left femur, so it was almost
certainly exposed to the same environmental conditions postmortem and early-diagenetic
regime(s) after burial as the left femur. The cortex at the midshaft of tibiae also possesses a
similar thickness, density, and histologic microstructure to the midshaft cortex of femora
in hadrosaurids (e.g., [76,77]). For these reasons, we are confident that trace element
signatures within the left tibia should be very similar to those that would be identified in
the left femur examined by prior studies, and that this tibia therefore represents a suitable
choice for examining the geochemical history of the hind limb of MOR 2598 as a whole.

The excised cortical fragment encompasses the majority of the cortical thickness of
the bone, including the external margin, but fragile cancellous bone within the medullary
cavity disintegrated away during preparation. Because of this, we infer that the innermost
portion of the internal cortex was not included in our analyses.

3.2. Methods
3.2.1. Sample Preparation

The cortical sample was embedded in Silmar 41TM resin (US Composites, West
Palm Beach, FL, USA) under vacuum, then sectioned using a Hillquist SF-8 trim saw
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(Hillquist, Arvada, CO, USA). The resulting ~3 mm-thick section was briefly rinsed with
distilled water then briefly polished with 600 grit silicon carbide to acquire an evenly
smooth surface for ensuing laser ablation–inductively coupled plasma mass spectrometry
(LA-ICPMS) analyses.

3.2.2. LA-ICPMS Analyses

We employed the same LA-ICPMS methods as Ullmann et al. [63,64] in this study and
refer the reader to the Supplementary Materials and those publications for thorough details.
In brief, LA-ICPMS was chosen as a powerful means of examining the spatial distribution of
REEs and other minor and trace elements within the tibia of MOR 2598, which can provide
unique insights into the diagenetic history of a fossil bone and any geochemical shifts it
endured through its fossilization. Concentrations of elements are reported in parts per mil-
lion (ppm) except for iron, which is reported in weight percent (wt. %). REE concentrations
were normalized against the North American Shale Composite (NASC; [78,79]) to facilitate
comparisons to other fossil bones from other localities. The use of a subscript N denotes
NASC-normalized values and ratios. The reproducibility of our results was taken as the
percent relative standard deviation for all REEs in the NIST 610 glass standard; it averaged
1.5% and was below 3% for all analyzed elements. NASC-normalized REE ratios were used
to calculate (Ce/Ce*)N, (Ce/Ce**)N, (Pr/Pr*)N, and (La/La*)N anomalies following Her-
wartz et al. [60]: (Ce/Ce*)N = CeN/(0.5*LaN + 0.5*PrN), (Ce/Ce**)N = CeN/(2*PrN−NdN),
(Pr/Pr*)N = PrN/(0.5*CeN + 0.5*NdN), and (La/La*)N = LaN/(3*PrN − 2*NdN).

4. Results
4.1. Overall REE Composition

As a whole (i.e., by summing all transect data), the left tibia of MOR 2598 exhibits a
∑REE value of 256 ppm (Table 1). The three most abundant trace elements in the cortex
of the bone are iron (Fe), strontium (Sr), and barium (Ba), which exhibit concentrations
of 0.94 wt. %, 2499 ppm, and 1448 ppm, respectively (Table 1). All of these elements, as
well as manganese (Mn), are present in concentrations approximately one to two orders
of magnitude higher than REEs (Table 1). Whereas the average scandium (Sc) enrichment
(59 ppm) is around the same magnitude as those of most LREEs (~10–90 ppm), the av-
erage yttrium (Y) concentration (190 ppm) is more than double that of the highest REE
(89 ppm for cerium, Ce; Table 1). Among REEs, there is substantially greater enrichment in
light rare earth elements (LREEs, La–Nd) than middle (MREEs, Sm–Gd) and heavy rare
earths (HREEs, Tb–Lu), clearly indicative of fractionation during uptake (see Discussion).
The average whole-bone concentration of uranium (U), 51 ppm, is distinctly higher than
those of bones from the Hell Creek Formation known to also yield endogenous collagen I
(2–38 ppm [63,64]).

Table 1. Average whole-bone trace element composition of the left tibia of Brachylophosaurus canadensis
MOR 2598. Numbers presented are averages of all transect data acquired across the cortex. Iron (Fe)
is presented in weight percent (wt. %); all other elements are in parts per million (ppm). Absence of
(Ce/Ce*)N, (Pr/Pr*)N, (Ce/Ce**)N, and (La/La*)N anomalies occurs at 1.0, and these anomalies were
calculated as in the Materials and Methods. The Y/Ho value reflects this mass ratio.

Element Concentration

Sc 59.23
Mn 834
Fe 0.94
Sr 2499
Y 190
Ba 1448
La 40.65
Ce 88.61
Pr 9.86
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Table 1. Cont.

Element Concentration

Nd 35.26
Sm 7.41
Eu 2.61
Gd 12.41
Tb 2.09
Dy 17.33
Ho 4.44
Er 15.26
Tm 2.21
Yb 15.42
Lu 2.62
Th 0.18
U 51.13

∑REE 256
(Ce/Ce*)N 1.04
(Pr/Pr*)N 0.95

(Ce/Ce**)N 1.10
(La/La*)N 1.12

Y/Ho 42.85

4.2. Intra-Bone Concentration Depth Profiles

Each REE exhibits a steeply-declining concentration profile from the cortical margin.
As an example, lanthanum (La) concentrations decrease from ~1000 ppm at the outer
edge of the cortex to ~10 ppm at 5 mm, thus constituting an order of magnitude decrease
across this distance (Figure 2A). Concentrations of HREEs and the latter half of the MREE
series, as well as U, Sc, Y, and lutetium (Lu), all increase toward the internal end of the
transect (Figure 2A–C). For example, Yb concentrations increase from ~1–2 ppm at a depth
of 25 mm to ~15–20 ppm at the internal end of the transect (Figure 2A, Data S1). Such
increases signify secondary diffusion from within the medullary cavity (see the Discussion
and Supplementary Materials). Among REEs, Ce exhibits the highest concentration at the
cortical margin (~3000 ppm), whereas Lu exhibits the lowest (~10 ppm). LREEs generally
exhibit the steepest concentration profiles, reflective of spatially-heterogeneous uptake,
whereas HREEs generally exhibit flatter profiles, reflective of comparatively more spatially
homogenous uptake. MREE profiles are generally intermediate in steepness, and MREE
concentrations commonly fall below the lower detection limit in the middle and internal
cortices (Data S1).

Brief spikes in concentrations typically encountered in osteonal tissue around Haver-
sian canals are rare and generally of miniscule magnitude. Although this would seem to
imply a lack of major uptake through vascular systems, most REE (e.g., La in Figure 2A)
profiles exhibit a subtle deflection near 2.5 mm reflective of uptake via double medium
diffusion (sensu [80]). Near 1 mm, numerous elements, especially Y, HREE, Sc, and U,
alternatively exhibit a roughly 80% increase in concentrations over values at the cortical
margin (e.g., Figure 2A–C), perhaps reflective of late diagenetic near-surface leaching
(see Discussion).

Fe, Ba, Sr, and Mn each exhibit much flatter profiles at higher concentrations than all
other elements (Figure 2C,D), with Fe exhibiting both the highest values and greatest range
in variation of concentrations across the transect among these four elements. Unlike all
other elements we investigated, Sc and U each exhibit “W-shaped” profiles with increasing
cortical depth: after slowly decreasing from the cortical margin, each profile includes a
broad, moderate peak in concentrations in the central portion of the middle cortex followed
by steadily-increasing concentrations across the internal cortex (Figure 2B). Y exhibits the
same profile shape as HREEs in the tibia of MOR 2598 (Figure 2C), indicating similar uptake
behavior for these elements in this fossil.
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4.3. NASC-Normalized REE Patterns

Spider diagrams of NASC-normalized REE concentrations reveal overall HREE en-
richment in the bone as a whole (Figure 3B,C), but significant relative enrichment of LREEs
within the external 250 µm of the cortex (Figure 4A). A ternary plot of NdN-GdN-YbN
confirms this trend of relative HREE enrichment by revealing that a data point for the
specimen as a whole plots more closely to the Yb corner (Figure 3C). Whereas there is no
apparent Ce anomaly in the bone as a whole (Figure 3B), the external-most 250 µm of the
cortex exhibits a modest positive Ce anomaly (seen as an upward deflection of the pattern
at this element; Figure 4A). REE concentrations range from ~25 to 50 times NASC values in
the external 250 µm of the cortex.

Substantial spatial heterogeneity in REE composition is evident in both a ternary plot of
LaN-GdN-YbN (Figure 3D) and a spider diagram of individual laser runs compiled into the
full transect (Figure 4B). Both of these figures reveal significantly greater LREE content in the
external-most laser run compared to all other laser runs (i.e., variation exceeds two standard
deviations), signifying variations in composition are largely controlled by cortical depth. In
general, the bone becomes increasingly enriched in MREEs and HREEs relative to LREEs
with increasing cortical depth, with transects through the middle and internal cortices
exhibiting both similar magnitudes of REE enrichment and drastic relative enrichment in
HREEs (Figure 4B). Proportionally, transects through these internal regions of the bone
exhibit one to two orders of magnitude of enrichment in HREEs over LREEs, compared to
just half an order of magnitude of HREE enrichment in the external-most transect.

All laser runs through the middle and internal cortices exhibit isolated peaks at
gadolinium (Gd; Figure 4B), likely attributable to isobaric interference effects between
LREE oxides and other ions likely present within the fossil (e.g., spectral overlap between
Gd157 and BaF [81,82]). Most spider diagrams, especially those which separately plot data
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from the external cortex (e.g., Figure 4), also exhibit subtle peaks at europium (Eu) and
holmium (Ho). These peaks impart a weak ‘M’ shape to the shale-normalized patterns,
which most authors (e.g., [83] and references therein) attribute to influences of tetrad effects
during uptake (also see Supplementary Materials for further discussion on potential tetrad
effects in MOR 2598).
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Figure 4. Spider diagrams of intra-bone NASC-normalized REE distribution patterns within the
tibia of MOR 2598. (A) Average composition of the outermost 250 µm of the cortex, demonstrating
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a whole (B). (B) Variation in compositional patterns by laser transects. The pattern which includes
the external margin of the bone is shown in black, those from deepest within the bone by dotted,
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4.4. (La/Yb)N vs. (La/Sm)N Ratio Patterns

The tibia of MOR 2598 exhibits a whole-bone average (La/Sm)N value of 0.99 and
a (La/Yb)N of 0.26. These values signify modest HREE enrichment relative to many
environmental water samples, dissolved loads, and sedimentary particulates. Specifically,
these values place the bone within the compositional range of river waters, brackish estuary
waters, and marine pore fluids (Figure 5A).
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Figure 5. (La/Yb)N and (La/Sm)N ratios of the tibia of MOR 2598. (A) Comparison of the whole-bone
average (La/Yb)N and (La/Sm)N ratios of the fossil to ratios from various environmental waters
and sedimentary particulates. Literature sources for environmental samples are provided in the
Supplementary Materials. (B) REE compositions of individual laser transects expressed as NASC-
normalized (La/Yb)N and (La/Sm)N ratios. The transect including the external bone margin is
denoted by the black symbol, whereas all other (internal) transects are represented by gray symbols.

When plotted by individual laser runs (Figure 5B), REE ratios from the middle and
internal cortices plot with similar (La/Sm)N values to those seen in the external cortex
but with consistently lower (La/Yb)N values. This difference encompasses roughly one
order of magnitude, on average. The most internal laser run exhibits the lowest (La/Yb)N
ratio (0.006), and all but two laser runs across the middle and internal cortices exhibit
(La/Yb)N ratios < 0.1. (La/Sm)N ratios range between 0.8 and 1.5 and exhibit no apparent
relationship with cortical depth.

4.5. REE Anomalies

Due to the concentrations of many trace elements in the middle cortex being so low
that they fall below the lower detection limit (Data S1), every anomaly examined exhibits
major gaps in coverage through this region of the bone (Figure S1). Occasional instances
of significantly higher neodymium (Nd) than praseodymium (Pr) concentrations also
create gaps in the anomaly profiles. Whereas (Ce/Ce*)N and La-corrected (Ce/Ce**)N
anomalies are absent at the outer cortex edge, (La/La*)N anomalies are slightly negative
in the external-most ~280 µm (Figure S1). All three of these anomalies exhibit substantial
positive and negative fluctuations across the transect.

Although (Ce/Ce*)N anomalies fluctuate from ~0.2 to 20 across the transect, they
are largely positive throughout most of the internal half of the transect (Figure S1). This
trend is not reflected, however, in the whole-bone (Ce/Ce*)N average for the tibia, which
is essentially absent (1.04; Table 1). (Ce/Ce*)N values were also plotted against (Pr/Pr*)N
values (following [84]) to aid us in differentiating true, redox-related cerium anomalies
from apparent anomalies induced by variations in (La/La*)N anomalies. The majority
of (Ce/Ce*)N values from the external 1 mm of the bone plot near the lower margins of
fields 3a and 4a (Figure 6), reflective of slightly negative La anomalies in the external cortex
(in agreement with Figure S1). In contrast, anomaly values from inner regions of the cortex
plot over a broad range encompassing every field of the diagram (Figure 6), indicative of
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substantial heterogeneity at the sub-millimeter scale in the middle and internal cortices.
Within this broad spectrum, there are relatively few data points in fields 1 and 2b (Figure 6);
regions of the internal cortex represented by these data points lack a Ce anomaly.
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Figure 6. (Ce/Ce*)N vs. (Pr/Pr*)N plot (after [84]) of five-point averages along the transect across
the cortex of MOR 2598 recorded via LA-ICPMS. Separate fields (labeled by blue text) are as follows:
1, neither Ce nor La anomaly; 2a, no Ce and positive La anomaly; 2b, no Ce and negative La anomaly;
3a, positive Ce and negative La anomaly; 3b, negative Ce and positive La anomaly; 4a, negative Ce
and negative La anomaly; 4b, positive Ce and positive La anomaly. Measurements from the outer
1 mm of the external cortex are plotted as black triangles, and all measurements from deeper within
the bone are plotted as gray diamonds. (Ce/Ce*)N and (Pr/Pr*)N anomalies calculated as in the
Materials and Methods section of the text.

(La/La*)N anomalies and La-corrected (Ce/Ce**)N anomalies were also directly cal-
culated (see Methods) to quantitatively assess these qualitative inferences. Unfortunately,
as mentioned above, frequent drops in concentrations of LREEs below the detection limit
severely limit coverage in these profiles. However, based on Figure S1, it is clear that
(La/La*)N anomalies are exclusively negative in the internal 29 mm of the cortex. The
average (La/La*)N value across this region is 0.20. (Ce/Ce**)N anomalies are also almost
exclusively negative in the middle and internal cortices, exhibiting a similarly low average
(0.65) across this same span. The values of both of these anomalies fluctuate by roughly
two orders of magnitude across the transect. As a whole, the tibia of MOR 2598 exhibits
slightly positive (Ce/Ce**)N and (La/La*)N anomalies (1.10 and 1.12, respectively; Table 1),
but these are each clearly biased by overweighting of data from the external cortex (caused
by abundant missing data from internal regions of the bone, as discussed above). Plotting
(Ce/Ce**)N anomalies against U concentrations for each laser run yielded a poor correlation
between these two redox-sensitive signatures (r2 = 0.29; Figure S2).

The yttrium/holmium (Y/Ho) ratios are slightly above chondritic (26; [85]) in the outer
~10 mm of the bone and the innermost ~7 mm of the transect, wherein they range ~20–300.
Though data are sporadic through the middle cortex due to very low concentrations,
ratios from this region form a broad swale below these peaks in the external and internal
cortices (Figure S1). Specifically, the average of the Y/Ho ratios through the central 15 mm
of the cortex (10–25 mm along the transect) is 35, and values across this region mostly
fall between ~10 and 80. These spatial contrasts partially negate one another when data
are averaged for the entire transect, which yields a slightly positive whole-bone average
anomaly of 43 (Table 1).
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5. Discussion
5.1. MOR 2598’s Paleoenvironmental and Taphonomic Context

Though limited taphonomic and stratigraphic data are available, the excellent preser-
vation quality of MOR 2598 suggests it was protected by rapid burial postmortem. The full
articulation of the hind limb, negligible signs of (ancient) weathering and abrasion, and
excellent histological preservation (Figure 10B of [74]) each support the interpretation that
burial took place within a few years postmortem, perhaps even just weeks after death [86].
However, the absence of the remainder of the skeleton implies this hind limb became
disarticulated from the remainder of the carcass during brief subaerial decay, as well as the
probable short-distance transport of the limb (from an upstream site of death) prior to burial
(cf. [87,88]). The recovery of MOR 2598 from a channel sandstone [30] strongly suggests
that: (1) decay primarily occurred subaqueously under oxygenated conditions (cf. [89]);
(2) fluvial currents likely caused the separation of the limb from the body, and; (3) the
carcass likely reached the “bloat” or active decay phase of postmortem decomposition
for this to occur (cf. [90,91]). Ultimately, a lull in flow competency induced deposition
and burial of the limb within the channel. Based on the great thickness of the succession
of channel sandstone horizons from which MOR 2598 was recovered (7 m), it appears
burial occurred within a well-established lowland channel rather than a recently-formed
avulsion channel. This conclusion is consistent with prior interpretations of the Judith River
Formation as generally representing lowland fluvial environments close to the coastline of
the Western Interior Cretaceous Seaway (WIKS; [70,71]).

To briefly summarize, the available data reveal that this Brachylophosaurus canadensis
individual (MOR 2598) died within or near a fluvial channel on the coastal lowlands. Its
carcass experienced fairly brief decay within the channel, where currents eventually led
to disarticulation of the left hind limb which was carried shortly downstream. Either an
obstruction in the channel, a temporary lull in flow competency, or slowing of currents due
to gradual channel broadening caused the deposition of the limb on the channel floor where
it became quickly buried and fossilized within cross-stratified sands. Our trace element
data provide illuminating insights into the ensuing diagenetic history of MOR 2598, which
we now characterize in an effort to constrain geochemical pathways to cellular, soft tissue,
and biomolecular preservation.

5.2. Reconstructing the Geochemical History of MOR 2598

The tibia of MOR 2598 exhibits low REE concentrations near the cortical margin
(e.g., ~800 ppm for La; Data S1) and a low whole-bone ∑REE (256 ppm) compared to many
other bones from the Cretaceous period (Table 2), which have been found to possess ∑REE
ranging from 1110 to 25,000 ppm [58,63,92–95]. Notably, however, these values each fall
within the range of other dinosaur bones we have examined from the Cretaceous Hell Creek
Formation [63,64] which have also been found to yield endogenous proteins [28,29,47].
Compared to those specimens from the Hell Creek Formation, MOR 2598 exhibits lower
average concentrations of Fe (0.94 wt. %), Mn (834 ppm), and Y (190 ppm), a higher
concentration of U (51 ppm), and similar concentrations of Sr (2499 ppm), Ba (1448 ppm),
and Lu (3 ppm). Although these comparisons do not take into account differences in taxon,
cortical width, histology, or diagenetic regimes, they still reveal that the tibia of MOR 2598
is (for most elements examined) less chemically altered than the majority of fossil bones
of similar age. We have previously attributed such cases of minimal alteration to various
sequestration processes limiting the availability of trace element ions in early-diagenetic
pore fluids (e.g., complexation with humic acids and/or dissolved carbonates [96–99] and
coprecipitation with phosphates in entombing sediments [100–103]), and those processes
may also account for the modest alteration of MOR 2598 (see Supplementary Materials for
further discussion).
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Table 2. Summary of the REE composition of the left tibia of Brachylophosaurus canadensis MOR 2598.
Qualitative ∑REE content is based on the value shown in Table 1 (256 ppm) in comparison to values
from other Mesozoic bones (as listed in the main text). Abbreviations: DMD, double medium
diffusion sensu [80]; LREEs, light rare earth elements.

Clear DMD Kink
for LREE?

Relative Noise in
Outer Cortex

for La

REE Suggest Flow
in Marrow Cavity?

Relative ∑REE
Content

(Whole Bone)

Relative U
Content

(Whole Bone)

Relative Porosity
of the Cortex

Yes Moderate Yes Low Moderate Low

Ba, Fe, and Mn each exhibit flat concentration profiles (Figure 2C,D) probably indica-
tive of incorporation into homogenously distributed, minute, secondary mineral phases,
presumably barite, goethite, and Mn oxides [104]. Sr likely exhibits a similarly flat profile
shape due to spatially homogenous substitution for Ca in bone hydroxyapatite [105,106]. In
contrast to these more abundant elements, all REEs exhibit steep declines in concentrations
from the cortical margin, with LREEs exhibiting the steepest declines and HREEs the shal-
lowest (due to crystal–chemical controls based on ionic radius [107]). Meanwhile, MREE
concentrations commonly drop below detection limit in the middle and internal cortices
(Data S1). These trends are typical of fossil bones which experienced relatively brief uptake
largely by simple ‘external-to-internal’ diffusion and did not equilibrate with external
pore fluids during diagenesis (cf. [60,63,64,68,108]). However, clear kinks in concentration
profiles for many REEs and substantial, locally-restricted variations in their concentrations
in the external cortex (e.g., La in Figure 2A) also indicate at least partial uptake via double
medium diffusion (sensu [80]) through Haversian canals.

Spider diagrams reveal even proportions of REEs within the external-most cortex
(Figure 4A) yet significant relative HREE enrichment throughout the bone as a whole
(Figure 3B,C and Figure 4B). Relative HREE enrichment is especially evident in the internal
cortex, where, for example, concentrations of Yb rise to more than double those of La
(Figure 2A). These signatures are very similar to, but less pronounced than, those observed
in a Tyrannosaurus rex femur recovered from an estuarine channel sandstone in the Hell
Creek Formation [64]. As with that specimen, it is likely that such HREE enrichment
reflects protracted trace element uptake from relatively HREE-enriched brackish waters
and/or diagenetic pore fluids under oxidizing conditions. This interpretation is supported
by the whole-bone composition of this specimen being similar to those of lowland river
waters, estuarine waters, and marine pore fluids (Figure 5A) which typically exhibit such
relative HREE enrichment [55,92,109]. Interestingly, these findings strongly suggest that
the channel in which MOR 2598 was interred was likely tidally influenced, which in turn
suggests that it was recovered from an estuarine channel, not a (strictly speaking) fluvial
channel—an insight not apparent from the sedimentology/stratigraphy of the quarry.

Regarding redox regimes through diagenesis, at the whole-bone level, the tibia exhibits
a slightly positive (Ce/Ce**)N anomaly (1.10) reflective of a weakly oxidizing overall
diagenetic history; this is consistent with the inferred burial setting having been an estuarine
channel (see above). Generally high U concentrations throughout much of the cortex
(Figure 2B and Table 1) and a relatively high average Sc concentration (59 ppm) corroborate
this signal, as U and Sc enrichment have each been linked with uptake under oxidizing
conditions [110–112]. The plotting of numerous data points from the middle and internal
cortices in fields 3b and 4a of the (Ce/Ce*)N vs. (Pr/Pr*)N plot (Figure 6) also supports
the presence of oxidizing conditions within the bone. However, both (Ce/Ce*)N and
(Ce/Ce**)N anomalies are essentially absent at the cortical margin, whereas their values
fluctuate considerably (both positively and negatively) throughout the middle and internal
cortices (Figure S1). These contrasts, as well as the broad distribution of data points in
Figure 6, demonstrate the presence of considerable spatial heterogeneity in redox conditions
throughout the bone through diagenesis, especially in the middle and internal cortices.

Although the trace element anomaly profiles in Figure S1 may seem somewhat stochas-
tic, (Ce/Ce*)N and (Ce/Ce**)N values are generally positive and negative, respectively,
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across the inner half of the transect. If these trends are taken as reliable records of redox
regimes during early diagenesis/fossilization, as all indications appear to support (see
below), then these anomaly trends would signify that uptake occurred under prevailingly
reducing conditions within the interior of the bone. The development of reducing mi-
croenvironments within fossil bones is relatively common [104] due to the release of iron
and hydrogen sulfide from decaying organics within a dysaerobic, enclosed space [113].
However, high Sc concentrations in the internal cortex (Figure 2B) appear incompatible
with this interpretation (as this should be a product of uptake under oxidizing conditions,
as discussed above). We attribute this apparent “contrast” to temporal changes in redox
conditions in this region of the bone through early diagenesis. Specifically, these conflicting
signals could arise via the significant uptake of Sc in the internal cortex under initially
oxidizing conditions followed by a shift to reducing conditions, during which latter time
the internal cortex secondarily acquired positive (Ce/Ce*)N anomalies (and Sc ions remained
sequestered by, as in adsorped to, bone crystallites; also see the Supplementary Materials for
further discussion of the peculiar shapes of Sc and U concentration profiles in MOR 2598).

The redox scenario just described would necessitate a supply of significant amounts
of Sc to the interior of the bone. This would have to be supplied by a pore fluid percolating
through the medullary cavity (after the decay of blood and other internal organics), which
would presumably also supply numerous other trace elements to the internal cortex. The
concentration profiles of HREEs (e.g., Yb in Figure 2A), U (Figure 2B), Y, Lu, and the
latter half of the MREE series (Data S1) each exhibit increases toward the internal end
of the transect (in the internal cortex), providing concrete evidence of uptake from a
second diffusion front in the interior of the bone. That LREEs exhibit negligible rises in
concentrations toward the internal end of the transect (e.g., La in Figure 2A) indicates that
the majority of elements supplied by the pore fluid passing through the medullary cavity
were mostly those with comparatively-modest to low diffusivities (based on [108]). This
bias signifies that the pore fluid must have been a chemically ‘evolved’, highly-fractionated
fluid which, based on the magnitude of select elemental enrichments in the internal cortex
(e.g., Figure 2B), either flowed through the medullary cavity for an extended period of time
or, more likely due to burial and compaction, became pooled there, allowing protracted
uptake. It is also apparent that this pore fluid was likely not simply an HREE-enriched
solution passing through during some later phase of late diagenesis because there are
no clear signs of similar HREE enrichment in the external-most cortex (e.g., Figure 2A,B).
Instead, the majority of elements exhibiting enrichment toward the internal end of the
transect (e.g., U, Y, HREE) exhibit a subtle ‘plateau’ of stable concentrations in the outermost
~1 mm of the cortex followed by a ~80% increase near ~1.5–2 mm (Figure 2A–C). We
interpret this pattern to reflect modest leaching of trace elements from the outermost ~1
mm of the external cortex, most likely during late diagenesis and under slightly oxidizing
conditions (based on the weakly positive (Ce/Ce*)N anomalies in this region; Figure S1).
This conclusion may also be supported by: (1) the common presence of negative (La/La*)N
anomalies in the outermost ~500 µm of the external cortex (potentially reflective of near-
surface loss of La; Figure S1), and; (2) a lack of a correlation between U concentrations and
(Ce/Ce**)N anomalies for each laser run (r2 = 0.29; Figure S2), implying uptake of U and
REEs over differing timescales [112].

The absence of more major signs of leaching or late-diagenetic trace element uptake
at the cortical edge (Figure 2), as well as the retention of clear evidence of spatiotemporal
changes in pore fluid compositions (described in the last few paragraphs), imply that late-
diagenetic overprinting of trace element signatures in MOR 2598 was not substantial, and,
therefore, that the tibia at least partially retains early-diagenetic signatures. Indeed, there
are numerous signs of relatively brief interaction with pore fluids. For example, a spider di-
agram (Figure 4B) and ternary plot (Figure 3D) of REE proportions by individual laser runs
each reveal clear signs of significant fractionation during uptake from circum-neutral pH
surface/groundwaters (cf. [114]) in the form of increasing relative LREE depletion/HREE
enrichment with increasing cortical depth (as in, e.g., [59,107,115]). These fractionation
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effects are also evident from significant spatial variations in (La/Yb)N ratios (Figure 5B), a
positive (La/La*)N anomaly and Y/Ho ratio for the bone as a whole (1.12 and 43, respec-
tively; cf. [60]), and differing concentration profile shapes (contrast Figure 2A,B) for U and
REE (which should otherwise have similar shapes due to their similar diffusivities [108]).
Similarly-high Y/Ho ratios in the external and internal cortices (Figure S1) further imply
fractionation also occurred during uptake from the chemically ‘evolved’ pore fluid pooled
in the medullary cavity.

To review, our trace element data thus identify that after brief subaqeous decay and
transport down a fluvial stream, the hind limb of MOR 2598 became fossilized after burial
in a sandy, oxic, estuarine channel (Figure 7). Its bones experienced relatively brief primary
uptake of REEs and other trace elements from circum-neutral pH, HREE-enriched, and
potentially brackish channel waters and groundwaters under oxidizing conditions during
early diagenesis. Comparatively slower percolation of pore fluids through the medullary
cavity of the tibia than around its exterior led to the development of reducing conditions
inside the bone. Recent erosion, typical of that in desert/badlands environments from
which most fossil bones are recovered, re-exposed MOR 2598 to oxidizing conditions and
caused minor leaching of trace elements from the outermost ~1 mm of the cortex but had
no significant effects on the overall chemistry of the bone. As a result, the specimen remains
modestly altered compared to others of similar age.

5.3. Insights into Molecular Taphonomy from Comparative Geochemistry

MOR 2598 is only the third vertebrate fossil of pre-Cenozoic age to have both yielded
endogenous protein and have its geochemical history characterized through trace element anal-
yses. Both other specimens in this short list, namely Tyrannosaurus rex MOR 1125 [28,29,64]
and Edmontosaurus annectens SRHS-DU-231 [47,63], are also large nonavian dinosaurs
recovered from Late Cretaceous strata in Montana, USA. Adding MOR 2598 into this
comparative framework reveals both geochemical similarities to, and differences from,
these two other specimens which: (1) bolster prior hypotheses about protein preservation
pathways; and (2) add new insights into the complexity of post-burial diagenetic alterations
which biomolecules can withstand.

Taken as a whole, the biostratinomic history of Brachylophosaurus MOR 2598 is quite
similar to that which we recently explicated for T. rex MOR 1125 [64]. After death and a
short period of (likely subaqueuous) decay, brief fluvial transport brought each specimen
into coastal estuaries along the western coast of the WIKS where they were rapidly buried
in sandy estuarine channels, and throughout this history, the bones of each specimen were
acquiring trace elements from brackish, HREE-enriched surface and groundwaters (this
study and [64]). As at the MOR 1125 quarry [64], early cementation of the sediments
entombing MOR 2598 appears to have limited trace element uptake by the fossil bones,
allowing them to exhibit minimal alteration at the elemental level. This is evident in the low
∑REE of the tibia compared to many other bones of Cretaceous age (as discussed above),
as well as its steep declines in REE concentrations from the cortical margin (Figure 2A) and
very low concentrations of elements with ionic radii similar to that of Ca2+ (i.e., MREE)
in the middle cortex (Data S1). Thus, MOR 2598 adds further support to the assertions
of Schweitzer [116], Herwartz et al. [59], and Ullmann et al. [64] that: (1) early-diagenetic
cementation of sediments can effectively thwart protracted decay and chemical alteration of
bones after burial (presumably by minimizing exposure to percolating groundwaters and
the exogenous microbes they carry with them), and; (2) this diagenetic pathway also facili-
tates rapid molecular stabilization (presumably via the iron free-radical-induced molecular
crosslinking mechanism elucidated by Boatman et al. [53]). Fossils from the Standing Rock
Hadrosaur Site (SRHS; [47,63,117]) demonstrate that rapid burial in fine-grained sediments
with low-permeability and/or encasement in early-diagenetic concretion can similarly
hinder the decay of endogenous cells, tissues, and their component biomolecules.

As for SRHS-DU-231 [63] and MOR 1125 [64], MOR 2598 exhibits high Sc enrichment
and a slightly positive whole-bone (Ce/Ce**)N anomaly (Table 1) reflective of a generally
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oxidizing diagenetic history. Although this pattern superficially supports the proposition
by Wiemann et al. [54] that oxidizing depositional environments may be more favorable
settings for molecular preservation than reducing environments (perhaps due to greater
release of crosslink-catalyzing iron free radicals; cf. [53]), it is clear that both MOR 2598
and bones from SRHS also experienced reducing conditions during diagenesis. This is
evident from consistently-positive (Ce/Ce*)N anomalies in the internal cortex of the tibia
of MOR 2598 (Figure S1) and external cortices of many SRHS bones (Figure 6 of [63]).
Microbial decay of organics (including those within bones) is known to decrease local
pH and create dysoxic to anoxic conditions, thereby eliciting the production of reducing
conditions [118], especially within confined microenvironments such as those within and
around a carcass in compacted or low-permeability sediments (e.g., [50,119]) or within the
internal pore spaces of bones (e.g., [104,120,121]). It is also well known that reducing early
diagenetic conditions do not preclude exquisite morphologic and biochemical preservation
of structural soft tissues, perhaps due to induced dysoxia/anoxia (e.g., [122–125]). Thus,
there are reasons that fossil bones preserved under largely-reducing conditions may still
yield original molecules.

Though the acidic pH that would have temporarily accompanied reducing condi-
tions within the medullary cavity of this specimen may seem (at face value) preclusive
to molecular preservation, weak acidity has been implicated in the rapid nucleation of
inert, protective, microcrystalline goethite crystals within ‘osteocytes’ and ‘blood vessels’
recovered from fossil bones [4,53]. For this reason, initial redox conditions in the immediate
~48 h after death may ultimately be the most critical, as it has been demonstrated that
inter- and intra-molecular crosslinking (i.e., stabilization) reactions can operate in this brief
timeframe, promoting equilibration with the early-diagenetic environment which may then
persist through fossilization and late diagenesis [53]. However, we must note that actualis-
tic studies examining molecular stability through temporal shifts in redox regimes would
be necessary to further evaluate this hypothesis. Regardless, our recognition of varied pH
and redox conditions over time within the tibia of MOR 2598 is thus not incompatible with
these prior studies, but rather augments them by revealing that biomolecular remains may
survive multiple changes in redox regimes through diagenesis (Figure 7).

In particular, as discussed above, the bones of MOR 2598 experienced two compar-
atively ‘extra’ diagenetic events which MOR 1125 and bones from SRHS did not [63,64]:
(1) protracted trace element uptake from stagnant pore fluids ‘pooled’ in the central
medullary cavity (evidenced by elevated concentrations of HREEs, U, Sc, Y, and Lu in
the internal cortex; Figure 2, Data S1), and; (2) modest late-diagenetic leaching of the
cortical surface (evidenced by negative (La/La*)N anomalies and reduced concentrations
of many trace elements in the outermost ~0.5–1 mm; Figure 2 and Figure S1). Despite
this complex diagenetic history, cortical bone from the femur of MOR 2598 has yielded
numerous microstructures retaining endogenous peptide sequences of multiple proteins
(namely collagen, actin, tubulin, histones, myosin, and tropomyosin [18,30,45]). This fact
indicates that processes which stabilized diagenetiforms within this specimen in the initial
hours to days postmortem imparted remarkable long-term resiliency. Novel experiments
by Schwietzer et al. [4] and Boatman et al. [53] have begun to shed light on how this may
occur, but testing of more fossils and further actualistic studies are needed to fully resolve
the endurance of diagenetiforms under the wide array of physicochemical/thermodynamic
regimes of natural diagenetic environments.

Finally, all three specimens examined in this discussion (MOR 2598, SRHS-DU-231,
and MOR 1125) also each exhibit abundant signals of fractionation of REEs during uptake,
which when combined with their low ∑REE content indicate at least partial retention of
early-diagenetic trace element signatures. These signs include positive whole-bone Y/Ho
anomalies (Table 1, and Table 1 in [63,64]), negative (La/La*)N anomalies in the middle and
internal cortices (Figures S1 and S2 of [64]), steeper concentration profiles for LREEs than
HREEs (Figure 2A, Figure 2 of [63], and Figure 4A of [64]), and increasing relative-HREE
enrichment with cortical depth (Figure 4B, Figure 4 of [63], and Figure 6B of [64]). As
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suggested by Ullmann et al. [64], the retention of such early-diagenetic signatures may
constitute a useful proxy for molecular recovery potential because it indicates a specimen
has avoided protracted interactions with any late-diagenetic pore fluids (e.g., phreatic
groundwaters) which could plausibly cause hydrolysis and other decay processes.
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6. Conclusions

Synthesizing our results with those of other recent experimental and actualistic studies
in molecular taphonomy leads us to conclude the following:

1. By allowing the quick characterization of spatial patterns of diagenetic alteration
within a fossil, trace element analyses constitute a useful and effective means of
screening fossil tissues prior to paleomolecular analyses;
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2. Retention of early-diagenetic trace element signatures may constitute a useful proxy
for molecular recovery potential because it indicates a specimen has avoided pro-
tracted interactions with any late-diagenetic pore fluids;

3. Although burial in coarse, permeable sediments in oxic environments appears con-
ducive to molecular preservation, it is also possible for fossils preserved in reducing
paleoenvironments to yield endogenous molecules. This dichotomy suggests that the
presence of oxidizing conditions in the initial ~48 h postmortem may be more key to
molecular preservation than the redox state of the final setting of burial;

4. Rapid burial in fine-grained sediments with low permeability, encasement in early-
diagenetic concretion, and/or early-diagenetic cementation of entombing sediments
can effectively thwart protracted decay and chemical alteration of bones (and their
component cells, tissues, and biomolecules) by minimizing exposure to percolating
groundwaters and the exogenous microbes they carry with them, and;

5. Biomolecular remains may survive multiple changes in redox regimes through dia-
genesis, and this indicates that processes which stabilize biomolecules in the initial
hours to days postmortem can impart remarkable long-term resiliency.

While these insights are obviously enlightening, it must be reiterated that they primarily
derive from fossils from just three Cretaceous localities. In agreement with Schroeter et al. [126],
we propose that paleomolecular and trace element analyses on Paleogene and Miocene
fossils are direly needed to close the long window of the Cenozoic for which protein
preservation has yet to be explored. Based on all data currently available, it seems very
likely that future studies will continue to broaden the suite of depositional and diagenetic
circumstances known to be conducive to molecular preservation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11081177/s1, Supplementary Materials narrative: A
DOCX Word file including further details on our LA-ICPMS methods, discussion of potential tetrad
effects in the left tibia of MOR 2598, discussion of potential sequestration processes that may have
limited REE availability to the bones of MOR 2598, discussion of potential causes for the peculiar
concentration profile shapes of U and Sc in the left tibia of MOR 2598, sources for environmental
data in Figure 5, and additional data on the trace element composition of the left tibia of MOR 2598
(Figures S1 and S2). Data S1: Raw transect data acquired and analyzed in this study, provided as an
XLSX Excel spreadsheet. References [127–189] are cited within the Supplementary Materials narrative.
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