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Abstract 

Mahmut Gemici 

A DEEP LEARNING APPROACH FOR AIRPORT RUNWAY IDENTIFICATION 

USING SATELLITE IMAGERY 

2021-2022 

Nidhal C. Bouaynaya, Ph.D. 

Master of Science in Electrical and Computer Engineering 

 

The United States lacks a comprehensive national database of private Prior 

Permission Required (PPR) airports. The primary reason such a database does not exist is 

that there are no federal regulatory obligations for these facilities to have their information 

re-evaluated or updated by the Federal Aviation Administration (FAA) or the local state 

Department of Transportation (DOT) once the data has been entered into the system. The 

often outdated and incorrect information about landing sites presents a serious risk factor 

in aviation safety. In this thesis, we present a machine learning approach for detecting 

airport landing sites from Google Earth satellite imagery. The approach presented in this 

thesis plays a crucial role in confirming the FAA’s current database and improving aviation 

safety in the United States. Specifically, we designed, implemented, and evaluated object 

detection and segmentation techniques for identifying and segmenting the regions of 

interest in image data. The in-house dataset has been thoroughly annotated that includes 

400 satellite images with a total of 700 instances of runways. The images - acquired via 

Google Maps static API - are 3000x3000 pixels in size. The models were trained using two 

distinct backbones on a Mask R-CNN architecture: ResNet101, and ResneXt101, and 

obtained the highest average precision score @0.75 with ResNet-101 at 92% and recall at 

%89. We finally hosted the model in the StreamLit front-end platform, allowing users to 

enter any location to check and confirm the presence of a runway. 
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Chapter 1 

Introduction 

1.1 Motivation 

            The Federal Aviation Administration (FAA) has an up-to-date database of public 

airports but lacks a comprehensive national database for privately held landing areas. In 

the event of an emergency, pilots must be able to locate suitable landing locations to safely 

deal with a critical aviation situation. The precision of the landing locations including 

latitude and longitudinal coordinates is vitally important to the FAA. Unfortunately, there 

is no federal requirement for private airports to report their landing sites, leading to an 

inaccurate database. It is widely known that the coordinates of several locations are off by 

hundreds of yards to several miles. Because of these deficiencies, pilots receive inaccurate 

information, which may lead to the expiration of their fuel supply or even to fatalities. 

Therefore, it is necessary to validate the current geospatial database of airport runways. 

Airports, on the other hand, are facilities that are significant from both an economic and a 

military point of view. Considering the crucial role that these goals play in the overall 

strategy, automatic airport identification is of the highest concern. This thesis presents a 

detection approach for paved runways, which are the elements of an airport that most stand 

out from one another to meet the FAA’s requirement of validating the current database. 

Object detection and image segmentation are two components that make up this approach. 

Thus, the issue of non-validated landing sites in the FAA’s database can be addressed by 

confirming their coordinates by employing deep learning algorithms. 
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1.2 Scope of Thesis 

            This thesis discusses airport runway identification systems, and it aims to develop, 

build, and experimentally assess a neural network pipeline for identifying runways in 

satellite images. The relevant satellite images contain chromatic information that is visible 

to the human eye and no other remotely sensed data channels than RGB (red, green, and 

blue). The runway is typically the most prominent aspect of an airport facility when viewed 

from above. Compared to the remainder of the airport region, runways have an easily 

recognized shape, share more characteristics, and occupy the most space. This thesis makes 

a case for the implementation of an autonomous runway identification system as a means 

of resolving the issue of accurately identifying runways and validating their 

locations.  Since there is such a massive supply of satellite data, it is now feasible to capture 

overhead imagery at any coordinates that are requested. The data that was collected may 

then be used to train a system to detect the existence of a runway at defined coordinates. 

Additionally, the system can be expanded to enable users to search for a runway within a 

specified region. 

1.3 What are Airport Runways? 

            An airport is a facility designed for aircraft takeoff and landing. Airports may be 

divided into civil and military categories based on their intended use. Generally, civil 

airports have a runway or multiple runways, taxiways, passenger and freight terminals, a 

control tower, and other smaller structures such as passenger walkways or parking lots. 

There can be small civil airports built exclusively for gliders or flying boats that have grass 

runways or none. Military airports often have a runway or multiple runways, taxiways, 
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hangars, barracks, control towers, and defensive structures such as SAM (Surface to Air 

Missile) installations, as well as various smaller structures such as shelters, administration 

buildings, fire stations, and ammunition storage. The runways at military airports designed 

for jet aircraft are typically longer than those at airfields designed for transport aircraft. 

Some airports can serve both civil and military functions. Temporary airfields and 

emergency airfields are often lengthy, straight roadway portions that serve as runways. As 

a vital airport component, a runway is a long strip that provides the requisite distance for 

aircraft to attain the necessary speed for takeoff and safely land. An airport may have a 

single runway, or many runways arranged in parallel, crossing, non-crossing (non-parallel 

at the same time), or any combination of these layouts. The landing surface may be a natural 

surface such as grass or gravel, but man-made surfaces are more prevalent. These man-

made surfaces may be asphalt (e.g., Helicopter Airfields), concrete, anti-skid concrete (e.g., 

Jet Airfields), or even punctured planking in the case of temporary runways [1]. 

 

Figure 1 

Runway Layout [2] 
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1.4 Related Works 

            This section examines the present approaches for detecting and classifying airport 

runways in satellite imagery. The image processing task that is utilized to identify common 

objects on the surface of the Earth is becoming easier as both the quality and quantity of 

satellite images improve. Due to the importance of the strategic location of airports, it has 

been the subject of much research recently. The method proposed in [3] is based on 

combining texture segmentation and shape detection to identify the region of interest, 

followed by the detection of elongated rectangles in the region of interest to locate runways. 

An approach that utilizes hypothesis creation and verification was suggested by Han et al. 

[4] to locate airports. Using edge tracking algorithms applied to an image that has been 

edge detected, hypotheses may be created by obtaining parallel lines that are oriented in 

the opposite direction. Given that the validity of a hypothesis is determined by examining 

color intensity, illumination which can provide substantial difficulties for this technique. 

Satellite Image Classification with Deep Learning [5] uses a CNN for classifying the 

IARPA Functional Map of the World (fMoW) challenge. FMoW dataset consists of 63 

classes and the presented method achieved an overall average accuracy of 83%. The study 

showed the feasibility of employing deep learning to accomplish precise object detection 

in satellite imagery. Most of these previous methods use traditional image processing 

techniques and work only for those images having a runway as a combination of 

antiparallel lines. To the best of our knowledge, we introduce a novel approach to runway 

detection by combining object detection and image segmentation techniques with the Mask 

R-CNN algorithm. 
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Chapter 2 

Background 

            This chapter gives an overview of the sub-fields this research draws from as its 

foundation. Some of these are convolutional neural networks (CNN), object detection, and 

image segmentation. 

2.1 Convolutional Neural Network 

Since the subject of computer vision first emerged, researchers have 

been developing a variety of methods that may teach a computer program to comprehend 

digital images. Convolutional neural networks are a popular architecture of Artificial 

neural networks that are inspired by the human brain. The architecture of convolutional 

neural networks is a hierarchy of layers that process images in multiple steps. The key idea 

of CNN is to extract features from an image at every layer. The convolutional neural 

network is composed of multiple layers; The input layer receives the image as an input, 

and the first hidden layer contains filters (also known as kernels) that process the input 

from the previous layer. The output from this layer is a set of feature maps, which are then 

passed on to another set of filters in the second hidden layer. The process is repeated until 

the last layer, which outputs a class prediction.  

Image classification, object detection, and semantic segmentation are the most 

common application of Computer Vision that makes use of CNNs. All three applications 

are part of supervised learning which means labels must be provided along with the training 

image set. Unlike image classification which attempts to classify the content of an image, 

with object detection, two things are being accomplished, one is classification and the other 
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one is localization. This allows us to answer “what/where and how many of this object is 

in the image?” questions. Finally, segmentation goes one step further by providing a pixel-

level classification. In the object detection and image segmentation task, each detected 

object is marked by bounding boxes, and each bounding box is associated with a 

confidence score indicating the likelihood that the model estimates a region to contain a 

target object. This granular level of localization is helpful for applications such as satellite 

photography, the decision-making process for autonomous vehicles, and medical imaging. 

2.1.1 Residual Network 

The Residual neural network (ResNet) has served as the foundation for a wide 

variety of cutting-edge deep learning applications. It is a backbone feature extractor in 

many contemporary networks due to its strong capacity to represent features. As it became 

popular to incorporate deeper networks into deep learning architectures, models like 

AlexNet [6] and the VGG network [7] began to gain traction. However, increasing the 

number of layer cause a common problem called the Vanishing/Exploding gradient. This 

problem occurs when a gradient is backpropagated through numerous layers. And, as a 

result of repeated multiplications, the gradient might become extremely small. The authors 

of ResNet [8] came up with a solution to this problem by implementing what’s called "skip 

connection" which connects activations of a layer to the next layers by skipping one or 

more layers in between. The residual mapping method makes it possible to train networks 

with more than a hundred of layers. In this thesis, we trained our dataset using two versions 

of the residual network which are ResNet101 and ResneXt101 [9] backbones and 

compared their results. 
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2.2 Object Detection 

            Object detection has become one of the most well-known and widely explored 

subjects in the field of computer vision and machine learning. As a result of its popularity, 

which has attracted a large number of researchers in recent years, the area has experienced 

a surge in development. The most recent detectors based on deep learning can be broken 

down into one of two categories: one-stage object detectors and two-stage object detectors. 

The trade-off between the two approaches is speed and precision. While one-stage 

detectors have fast inference times, two-stage detectors provide precise localization and 

recognition. The initial step of two-stage detectors is called a Region Proposal Network 

(RPN), and its purpose is to predict potential bounding boxes. During the second stage, the 

features for the subsequent classification and bounding box regression task are obtained 

from each potential box using a pooling operation that uses the region of interest. The most 

common two-stage detectors are the R-CNN, Fast R-CNN, and Faster R-CNN, as well as 

the FPN and SPPNet [10]–[14].  

            A one-stage detector, on the other hand, is capable of predicting bounding boxes in 

a single step without making use of region proposals. It uses a grid box and anchors to 

narrow down the detecting area in the image and place limits on the object's form. YOLO: 

You Only Look Once, and SSD: Single Shot Detector, are the two of the most commonly 

used one-stage detectors that are optimized for making inferences from video data. When 

one-stage detectors are compared to two-stage detectors, the improvement in detection 

speed comes at the trade-off of localization accuracy, especially when dealing with 

relatively small objects. 
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Since our goal is on developing reliable and accurate models, we are less concerned 

with prediction speed as it is not as important for us. We, therefore, didn’t train our dataset 

with either YOLO or SSD framework.  

2.2.1 R-CNN  

R-CNN is the name given to the product since it is a collaboration between CNN 

and regional proposals. The R-CNN is composed of three primary modules, the first of 

which employs a selective search method to provide two thousand new proposals for 

regions. A feature vector with a length of 4096 is extracted from each suggested region by 

the second module, which also resizes each proposed region to a specific size that has been 

predefined. The third module employs a support vector machine (SVM) classification 

technique that has been pre-trained to assign the proposed region to either the background 

or one of the object classes. With the R-CNN method, we have avoided the usage of the 

sliding window technique, however, it still has some drawbacks. It is a multi-stage model, 

where each stage is an independent component. Thus, it cannot be trained end-to-end. On 

the other hand, each region proposal is fed independently to the CNN for feature extraction 

which makes it impossible to run R-CNN in real-time as it takes about 47 seconds for each 

test image [10]. 
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Figure 2 

Concept of Region-Based Convolutional Neural Networks[10] 

 

 

2.2.2 Fast R-CNN 

The same author who proposed the earlier work R-CNN came up with the idea for 

Fast R-CNN in 2015, which is an enhanced version of R-CNN. By rebuilding the original 

layers of the network, Fast R-CNN was able to overcome some of the shortcomings of R-

CNN, which resulted in improved performance. The method is comparable to the R-CNN, 

but instead of running CNN on each of the 2000 proposals, the input image itself is 

processed by CNN in order to build a feature map. Despite this, the RoI is still calculated 

with respect to the input image utilizing selective search, and the results are then projected 

onto the feature map that is produced by CNN. In the past, CNN was executed on each RoI 

in a standalone fashion; however, this change means that convolution is now distributed 

evenly over all of the network’s region proposals. [11] 
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2.2.3 Faster R-CNN 

Selective search is utilized by both the R-CNN and the Fast R-CNN algorithms in 

order to determine region proposals. The network's performance can suffer as a result of 

selective search because it is a tedious operation that runs incredibly slowly. In response to 

this, a brand-new technique known as Faster R-CNN was developed. The image is given 

as an input to a CNN, which then generates a convolutional feature map in the same way 

as Fast R-CNN does. However, the selective search algorithm is taken out of Faster R-

CNN, so the network can learn from the region proposals. In terms of inference speed and 

accuracy, Faster R-CNN is faster and more accurate than both previous models R-CNN 

and Fast R-CNN. 

2.3 Image Segmentation  

Image segmentation is a computer vision technique that divides an image into 

several specific components with unique attributes. Modern image segmentation 

algorithms are usually categorized as semantic (pixel-wise association with class label), 

instance (accurate delineation of each object in an image), and panoptic (assigning class 

labels to objects and stuff in images). A visual comparison of object detection, semantic 

segmentation, and instance segmentation can be observed in figure 3. Early image 

segmentation methods include threshold-based, centroid-based, density-based, graph-

based, fuzzy theory-based, hierarchical, and distribution-based methods. Since the 

literature on image segmentation is so vast, it is not feasible to cover every algorithm and 

all of its variations. The goal of this section is to outline some of the most popular 

techniques that are well suited to solving the problems of runway extraction. 
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Figure 3  

Object Detection, Semantic Segmentation, Instance Segmentation [15] 

 

 

2.3.1 Mask R-CNN 

Mask R-CNN [16] is the most advanced Convolutional Neural Network for image 

segmentation. This version of a Deep Neural Network recognizes items in an image and 

creates a segmentation mask of high quality for each instance. Mask R-CNN is built on 

Faster R-CNN architecture by extending a parallel branch for pixel-level segmentation. 

Mask R-CNN can detect and segment the objects from the background simultaneously. Its 

simplicity, performance, and flexibility are some of the advantages of the Mask R-CNN. 

The pixel-to-pixel orientation is the most crucial component of Mask R-CNN which was 

the primary issue with Fast/Faster R-CNN had have. Mask R-CNN is easy to set up and 

train because it uses the Faster R-CNN framework, which makes it possible to build a wide 

range of flexible architectures. Detectron2 [17] is an open-source framework that is an 

improvement over the original version of Detectron which was developed by Facebook. It 

is now capable of various types of real-time implementation such as instance and semantic 

segmentation, and human body key point identification are all possible with the Detectron2 

platform thanks to its modular design. Detectron2's training efficiency has been 
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significantly enhanced, and the platform that it was built on, PyTorch, is utilized entirely. 

In this thesis, we trained Mask R-CNN using Detectron2 with two types of ResNet 

backbones for feature extraction. 
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Chapter 3  

Methodology 

This chapter describes the data collection process, methods we used while training 

an object detector and how we evaluate the results. 

3.1 Data Acquisition 

            To be able to acquire the satellite image data, it was necessary for us to collect the 

latitude and longitude information of airports that had previously been reported to the FAA. 

The FAA's Airport Data and Information Portal [18] was the source from which we 

obtained the information of latitude and longitude. From there, we were able to filter out 

any airport-related information that may have caused noise in our dataset. For this thesis, 

we determined that including grass or dirt airports would not add any value to the 

discussion; hence, we restricted the types of runways to only include paved ones. 
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Figure 4 

FAA - Airport Data and Information Portal [18] 

 

  

            After selecting the facility type and other parameters, we were able to get the excel 

file that consists of each airport's information. The column of interests was the latitude and 

longitude information of each airport. In the excel sheet latitude and longitude values were 

entered in the format of “Degree-Minute-SecondsCardinal Direction”. For example, 

Abbeville Municipal Airport’s coordinates are, 31-36-00.8000N, 085-14-17.9100W, 

however, this format is not intuitive to download data from satellite image providers, 
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hence, we converted them into decimal degrees. For decimal degrees, we included a 

negative sign for south and west coordinates.  

3.2 Google Static Maps API 

To collect imagery, Google's static maps API were utilized, which includes Google 

Earth imagery. The Google Maps Statics API returns an image in a variety kind of image 

formats including GIF, PNG, or JPEG. All images used in our dataset were downloaded in 

PNG format. Accessing the service is accomplished by submitting an HTTP request along 

with a query that includes the requested parameters. In response, the service returns an 

image that is based on the parameters. Latitude, longitude, image size, and map size are 

the factors that are utilized here. The position that should be the image's center is 

determined by the latitude and longitude of that location. The pixel count along each axis 

is determined by the size of the image. For instance, if the image size is set to 1000, the 

resulting image will have a resolution of 1000 pixels across and 1000 pixels tall. The scale 

of the map affects how much of the underlying terrain is seen in the image. To meet the 

requirements of this project, the image size was consistently kept at 3000, while the map 

size remained at 5000. To get a fair level of resolution across all images, we believe that a 

map size of 5000 is the best possible figure to use as a trade-off with the image size. In 

Figures 5,6 and 7, it can be seen how the image size and map size impact the resolution of 

objects. 
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Figure 5  

Atlantic City Airport Satellite View at Low Scale and Low Resolution 

 

Map size = 5000, Image size = 1000 
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Figure 6  

Atlantic City Airport Satellite View at Low Scale and High Resolution 

 

Map size = 5000, Image Size = 5000 

 

Figure 7 

Atlantic City Airport Satellite view at High Scale and Low Resolution 

 

Map size = 25000, Image size = 5000 
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3.3 Image Annotation 

LabelMe is a free graphical image annotation tool designed to be utilized in 

computer vision applications to assist with object detection and image segmentation tasks 

[19]. The annotations are stored in JSON file format that is in the PASCAL VOC format, 

which is ImageNet's preferred format. LabelMe was used to manually draw bounding 

boxes and polygons around each runway. The use of bounding box labeling enables us to 

think about a detection problem in a more complex way than a straightforward binary 

classification problem (such as "Is there an airport visible in this picture?" yes or no).  

Bounding boxes simply indicate the area of interest for the model for each given object 

type. Each bounding box has its own (x, y) coordinates and object type. This information 

allows the model to localize each object and its type to its respective image. Figure 8 

illustrates an image with a bounding box around the airport runways.  

 

Figure 8  

Labeled Airport Runways 
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            Because some airports consist of multiple runways connected to each other, we 

carefully labeled each of them individually. Out of 400 images, 700 runway instances were 

annotated. It is possible for the label file format to vary depending on the object detection 

API that is used to train a model. For example, the TensorFlow object detection API 

requires labels to be provided in XML file format, but Detectron2 demands labels to be 

provided in JSON file format. Luckily the LabelMe image annotation tool can provide 

either of these options. 

3.4 Data Augmentation 

            The process of annotating huge datasets, such as segmentation, typically comes at 

a high cost and takes a lot of time. As an illustration, the COCO dataset required 22 worker 

hours for every one thousand instance masks that were created [20]. The act of developing 

a model that is more resilient and less prone to overfitting by artificially increasing the 

quantity of data collected is referred to as data augmentation. This method also makes the 

model more accurate. It is a method for analyzing data that generates duplicates of the data 

that have been subtly altered or brand-new copies that have been synthetically made [21]. 

Data augmentation is important for improving the performance of machine learning models 

and the results they provide. This is accomplished by adding fresh and unique instances to 

the dataset that is being trained. The use of data augmentation techniques enables 

transformations in datasets, which in turn allows for a reduction in the cost of data labeling 

processes and the risk of overfitting. Although there are a lot of different approaches to 

data enhancement, for this thesis, we decided to employ random brightness, random 

contrast, random saturation, and random flip. 
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Figure 9  

Augmented Image Examples 

 

 

 

3.5 Transfer Learning 

Transfer learning is the process of taking a network that has already been trained 

and retraining it based on new classes. In the case of object detection, transfer learning is 

done by importing the weights that were optimized on another dataset. Most of the time, 

it's not a best practice to start from scratch when training a very large Deep neural 

network.[22] Because of this, object detectors that use deep learning are often pre-trained 

on large datasets like ImageNet or COCO [20] Some of the reasons you might want to use 

transfer learning are: 1) collecting data is expensive and beyond the scope of the project; 

2) using a pre-trained network enhances generalization; or 3) it reduces training time 
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because many features have already been learned from larger datasets. It is essential that 

the architecture of the model that was utilized during training, for instance on MS COCO, 

be like the design of the model that would be utilized during transfer learning. It is not 

necessary to make use of all the weights. For instance, only the weights from the first ten 

convolutional layers can be frozen and imported into a subsequent fresh untrained CNN 

model [21]. In this thesis, we imported COCO weights without freezing any layer to have 

a better starting point instead of starting randomly initialized weights. 

3.6 Performance Metrics 

Unlike image classification tasks, object detection is more challenging since it is 

necessary to determine whether or not the given image contains the required class and if it 

does, is it accurately localized. As a consequence of this, we need to examine its precision, 

recall, and intersection over union (IoU) scores. In this thesis, precision was used to 

measure how many successful runways were detected out of all the detected regions by the 

model. In a mathematical expression, precision is calculated by dividing the number of true 

positives (TP) by the total number of true positives and false positives (FP): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

            When it comes to defining each detected area whether it's a true positive or false 

positive, we set a certain threshold value for the bounding box that overlaps between the 

ground truth label and the predicted region. True positive means that the object detector's 

prediction matches the ground truth label more than the threshold value. In contrast, a false 
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positive indicates that the detector tried to guess where a runway would be, but the area it 

picked up was wrong.  

 

Table 1 

Confusion Matrix Truth Table 

Actual Predicted Confusion Matrix 

Positive Positive TP 

Positive Negative FN 

Negative Positive FP 

Negative Negative TN 

 

            With missed runways taken into consideration, recall is a measure of how many 

runways were correctly spotted. As a mathematical quantity, recall equals the proportion 

of correct identifications made to the total number of correct identifications and false 

negatives(FN): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

IoU is used to figure out how accurate object detection prediction is. IoU analyzes 

the overlap between the regions of Ground Truth and Prediction. An IoU score of 1 means 

that the bounding box that was predicted matches the bounding box that's been identified. 

A score of 0 means that the predicted bounding box and the true bounding box do not 

intersect at all. The MS-COCO dataset was evaluated using an IoU threshold of 0.5 [20], 
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which will also be used in this thesis meaning that every prediction that has above IoU 

score of 0.5 is a True Positive, and the ones below are considered as False Positive. 

𝐼𝑜𝑈 =
𝐵𝐵𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐵𝐵𝑢𝑛𝑖𝑜𝑛
 

            Mean Average Precision(mAP) on the other hand is now the most often used 

evaluation metric in object detectors.  In Mask-RCNN, mAP@0.5 is the primary 

measurement. Evaluating mAP@0.5 means measuring the Average precision at a 0.5 IoU 

threshold across all classes in the dataset. Since we only have one class, which is a runway, 

the mAP is already the same as precision. 
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Chapter 4 

Experimental Results 

            In the previous chapter, I presented the implementation of the data collection, 

preprocessing, training, and evaluation process. This section, I present and analyze the 

results. 

4.1 Computation Environment 

Although, I performed preliminary training on local computer with a CUDA-

enabled GPU, I ended up choosing a remote server to speed up the model training phase. 

The operation system (OS) used was Ubuntu 20.04.3 LTS generic. For the entire project, 

the programming language Python 3.8 and PyTorch version 1.10 was used. We 

implemented the runway identification model using Detectron2 which allowed us to create 

Mask-RCNN. The model training was performed on Rowan Artificial Intelligence Lab’s 

lambda machines which are equipped with NVIDIA Quadro RTX 8000 GPUs for 50000 

iterations each. The longest training took 13 hours and 51 minutes with the help of 48GB 

VRAM. The version of CUDA and cuDNN was 11.1 and 8.0.5 respectively. 

4.2 Results 

            We trained the neural network models using the Detecton2 framework for the Mask 

CNN instance segmentation task with two different ResNet backbone architectures which 

are ResNet 101-FPN and ResNeXt-101-FPN. To have a fair comparison between the 

models, both models were trained in the same configuration settings, meanthe ing same 

learning rate and same batch size for 50000 iterations. Although Resnet-101 and ResneXt-
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101 yielded similar mAP scores @0.5:0.95, we noticed Resnet-101 yields significantly 

higher precision score at AP0.75 compared to ResneXt-101. 

 

Table 2 

Model Performance Comparison  

Architecture Model Size Map 

@0.5:0.95 

AP 

@0.75 

Recall Training time 

ResNet 101 480MB 80% 85% 89% 9 hr 40 mins 

ResNeXt 101 817MB 81% 92% 83% 13 hr 53 mins 

 

            The confidence score is a measure of how certain the model is that there is an object  

in the image, and it is used to filter out weak detections when evaluating a model for object 

detection. The threshold is usually set to 0.5 or above, meaning only detections with a 

confidence score higher than 0.5 are included in the detection results. A higher confidence 

score means that model believes that the detected area is likely to consist of target object, 

and a lower confidence score means that it’s less likely. However, our task is to detect only 

one object. Therefore, setting the confidence threshold at 0.5 will likely uncover lots of 

false positives due to the fact that highways look pretty much the same as the runways from 

a top-down view. As a consequence, we set the confidence score threshold at 0.75 to 

prevent our model from detecting highways as runways.  
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Figure 10  

ResNet 101 vs ResneXt 101  

 

 

            Figure 10 presents the quantitative results of true positive, false positive, and false 

negative predictions for both models when the threshold set to 0.75. Although both models 

failed detecting 3 runways (false negative), the model trained with ResNet-101 was able to 

successfully output more true positives and fewer false positive predictions. 
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            Figure 11 shows an inference example of both models. Both models were able to 

detect true positive targets, however, ResNeXt101 outputted two other predictions which 

are not the runway. As it is apparent, the model trained with ResneXt101 could not 

differentiate between runway, taxiway, and highway.  

 

Figure 11   

Model Comparison #1 
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            Figure 12 shows that while Resnet 101 is able to detect and segment both runways 

visible in an image, ResneXt 101 failed to detect the second runway which counts as a false 

negative.  

 

Figure 12   

Model Comparison #2 
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           Figure 13 is an example of successful detection from both models. All detections 

count as true positive. 

 

Figure 13 

Model Comparison #3 
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            Figure 14 is an example of both true and false positive predictions generated on the 

same image. 

 

Figure 14 

True Positive and False Positive Examples 
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           Figure 15 is an example of a false negative where the model fails to identify the 

runway. Runway locations are denoted with red dashes on the figures. 

 

Figure 15 

False Negative Examples 

  

 

4.3 Limitations 

            There are a few problems that still exist with the Google static maps service, despite 

the fact that this service makes it possible to easily access overhead imagery for the 

majority of coordinates. One of these problems is that the imagery for this service is not 

available at all zoom levels or in all geographic locations. This implies that, while you may 

be able to see a large-scale map of the city. The image will not change if you zoom in. In 
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some cases, the API sends images at a large scale, so objects in the image appear extremely 

small and contain relatively few features recognizable by the trained model. 

 

Figure 16 

Expected Scale vs Large Scale 

   

 

            Another issue with Google Maps is that certain regions have information that is out 

of date and does not match with actual topography of the land. For example, figure 17 

represents the same region from two different satellite image provider. While Apple maps 

could locate the AKUTAN (AKQ) Airport which was built in 2012, google maps provides 

an image of bare land which was captured before airport was built. This is a big issue as it 

complicates our ability to locate and identify places. 
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Figure 17 

Google Maps vs Apple Maps 

   

 

4.4 Model Implementation on StreamLit 

Streamlit is an open-source python library for constructing web apps for machine 

learning and data science projects which gives users a chance to actively interact with the 

dashboard. We developed a very simple front-end using StreamLit as it is compatible with 

most of the deep learning libraries, including Scikit-learn, Keras, PyTorch, NumPy, etc. 

The Runway Detector dashboard enables users to enter any coordinate on earth. Our model 

pulls the satellite image from Google Maps Static API and makes predictions. Finally, it 

returns an image with the predicted bounding box and segmented area for each runway.  
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Figure 18 

Runway Detector – Webapp Dashboard 

 

Figure 18 shows an image outputted by the model at given location.  
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Chapter 5 

Conclusion & Future Work 

5.1 Conclusion 

In this thesis, a region-based detector, Mask R-CNN was applied to detect and 

segment airport runways in satellite images. The aim of this project was to develop an 

algorithm with the ability to identify airport runways in satellite imagery. We achieved 

satisfactory results, although most object detection algorithms are rarely well suited to the 

object sizes or orientations present in satellite imagery, nor designed to handle images with 

hundreds of megapixels. The best model trained with ResNet-101 backbone reached 92% 

precision and 89% recall. Given that runways and highways are the most visually similar 

constructions from an aerial view, it is undeniable that the model needs improvement in 

order to distinguish between the two. 

5.2 Future Work   

In this thesis, two distinct models -ResNet101 and ResNeXt101 explored, and 

trained models with a relatively small dataset using Detectron2 framework. We suggest 

future works to extend the dataset including more runway instances and surface types to 

be able to verify more locations. It is also recommended to explore different satellite image 

data providers such as OpenStreetMap, Sentinel, Nasa Worldview, etc. as Google Maps 

itself comes with some drawbacks. To address the false positive predictions due to 

highway-runway similarity, runway detector model may be combined with a Road 

Detection model. This method can then be used to identify other parts of the airport facility 

such as taxiways, airplanes, and helicopters. 
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