
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

7-15-2022 

DETECTION OF ROTORCRAFT LANDING SITES: AN AI-BASED DETECTION OF ROTORCRAFT LANDING SITES: AN AI-BASED 

APPROACH APPROACH 

Abdullah Nasir 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Aviation Safety and Security Commons, and the Electrical and Computer Engineering 

Commons 

Recommended Citation Recommended Citation 
Nasir, Abdullah, "DETECTION OF ROTORCRAFT LANDING SITES: AN AI-BASED APPROACH" (2022). 
Theses and Dissertations. 3040. 
https://rdw.rowan.edu/etd/3040 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact graduateresearch@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1320?utm_source=rdw.rowan.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=rdw.rowan.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3040?utm_source=rdw.rowan.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu


 
 

DETECTION OF ROTORCRAFT LANDING SITES   

AN AI-BASED APPROACH 

 

 

 

by 

Abdullah Nasir 
 

 

 

 

A Thesis 
 

Submitted to the 

Department of Electrical & Computer Engineering 

College of Engineering 

In partial fulfillment of the requirement 

For the degree of 

Master of Science in Electrical and Computer Engineering 
at 

Rowan University 

June 15, 2021 

 

 

Thesis Chair: Ghulam Rasool, Ph.D., Assistant Professor, Department of 

Electrical and Computer Engineering 

 

Committee Members: 

Nidhal C. Bouaynaya, Ph.D., Associate Dean for Research and Graduate Studies, 

Electrical and Computer Engineering 

Charles C. Johnson, Rotorcraft Safety Research Team Lead FAA William J. 

Hughes Technical Center, FAA



 
 

© 2021   Abdullah Nasir



iii 
 

Acknowledgment 

This work was supported by the Federal Aviation Administration (FAA) 

Cooperative Agreement Number 16- G-015 and NSF Award DUE-1610911. This Thesis 

was also supported by a subaward from Rutgers University, Center for Advanced 

Infrastructure & Transportation, under Grant no. 69A3551847102 from the U.S. 

Department of Transportation, Office of the Assistant Secretary for Research and 

Technology (OST-R). We would also like to thank LZControl for their guidance and 

assistance with this effort. Via a Cooperative Research and Development Agreement with 

the FAA, LZControl provided a set of data from their system and subject matter 

expertise, which provides landing zones for helicopters across the U.S., often 

complementing the FAA’s 5010 database and including locations/sites absent in the 

FAA’s 5010 system. 

 

 

 

 

 

 

 

 



iv 
 

Abstract 

Abdullah Nasir 
DETECTION OF ROTORCRAFT LANDING SITES 

AN AI-BASED APPROACH 

2021-2022 

Ghulam Rasool, Ph.D. 

Master of Science in Electrical and Computer Engineering 

 

The updated information about the location and type of rotorcraft landing sites is 

an essential asset for the Federal Aviation Administration (FAA) and the Department of 

Transportation (DOT). However, acquiring, verifying, and regularly updating information 

about landing sites is not straightforward. The lack of current and correct information 

about landing sites is a risk factor in several rotorcraft accidents and incidents. The 

current FAA database of rotorcraft landing sites contains inaccurate and missing entries 

due to the manual updating process. There is a need for an accurate and automated 

validation tool to identify landing sites from satellite imagery. This thesis proposes an AI-

based approach to scan large areas using satellite imagery, identify potential landing sites, 

and validate the FAA's current database. The proposed method uses the object detection 

technique, one of the well-known computer vision methods used to identify objects of 

interest from image data. Objection detection techniques are based on the famous 

convolutional neural networks (CNN) and have achieved state-of-the-art performance. 

We used FAA's 5010 database to build a satellite imagery dataset that contained 

manually verified landing sites, including helipads, helistops, helidecks, and helicopter 

runways. We explored different object detection models, including single-shot detector 

(SSD), you only look once (YOLO), and various flavors of mask regional CNN (R-

CNN). Each model presented a unique accuracy-computational complexity trade-off. 

After achieving satisfactory performance, we used our selected model to search and scan 

satellite images downloaded from Google Earth for potential landing sites that may or 

may not be part of the FAA's database.  The model identified 1435 new landing sites and 

increased FAA's current database by 46%. We also identify methods to improve our 

proposed model in the future. 
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                                                               Chapter 1 

Background and Introduction 

I-A Problem Formulation and Motivation 

            The FAA maintains an active database of public and private owned landing sites. 

This database contains a variety of information regarding landing sites including latitude 

and longitude coordinates, accuracy of this information is critical for FAA. This database 

is built on FAA records of 7480 and 5010 forms, these forms are primary reporting tools 

used by Public and Private entities. However, due to discrepancies in reporting or lack of 

it in some cases, there is uncertainty about the current database and requires validation. 

Some site coordinates are known to be off by several hundred meters and even a few 

miles in some cases. In some cases, Helipads were decommissioned but not reported, 

hence creating false positives. The FAA is also aware of missing landing sites that are 

unreported, it is estimated by the FAA that there are upwards of 2,000 missing Hospital 

Helipads in the US. Lack of reporting is a bigger issue when it comes to private facilities 

and due to lack of an ongoing audit of those locations, there is a need to develop dynamic 

tools that can expediently search for unreported Helipad locations. These issues can lead 

to misleading information for pilots that can result in fuel exhaustion or even fatal 

accidents. 

          This thesis proposes a solution to address these issues and meet FAA’s requirement 

of validating and improving the current database, developing an autonomous helipad 

identification system and to scale the FAA's database. We relied on a database of satellite 

imagery based on the FAA's 5010 database, our approach was to train a model on 
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manually verified dataset and then build on that to validate the rest. We also wanted to 

scale the FAA's current database by developing a system for searching for missing 

Helipads.  

         Validation of existing helipad coordinates allowed us to identify and remove false 

positives from current records, it also allowed us to train and validate our model which 

was then used to search for missing helipads. We verified our approach by finding new 

helipads and further outlined methods to scale the current database in future works. We 

also implemented our search algorithm to correct existing coordinates and improve their 

accuracy. 

A-1 What are Helipads? 

        A helipad is a designated area that a helicopter is intended to land, it consists of the 

Touchdown and Liftoff area (TLOF). The FAA’s Advisory Circular 150/5390-2C [1] 

defines standards for the construction of helipads. 

However, section 203 notes that these guidelines are not set in stone and act as 

recommendations for Prior Permission Required (PPR) facilities. Section 103 effectively 

states that the minimum required facilities are a clear area with a wind cone, this leads to 

a diverse range of helipad sites. Most landing sites follow these standards and use a 

variant of the markings listed in section 215, which includes a white “H” marking in the 

middle the marked borders of the landing surface. Of note is that as per section 414, all 

hospital helipads will also include a cross around the “H”, and section 215 allows for 

PPR facilities to replace the “H” with another distinctive marking such as a logo. 
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Figure 1  

Structure of a Helipad 

 

 

Helipads are also a part of some form of landing facility. There are 4 main types of 

facilities that will contain a helipad. The first type is a heliport, which will have services 
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for helicopters, such as refueling and repairing. The second is a helistop, which is a 

landing area that offers no services, and allows for clearly marked landing areas without 

the need to make a heliport. The third is an Emergency Helicopter Landing Facility and 

this is effectively a helistop that is only used in the event of an emergency. The last type 

is a helideck, which is a landing facility over the water, such as a boat or oil rig. Along 

with these facilities we will also consider parking pads and helicopter runways as a 

helipad for our purposes as they strongly imply that the area is intended for helicopters to 

land and takeoff at. 

Since our primary aim was to validate existing landing sites and search for additional 

sites, we focused on scaling and recording missing databases instead of a classification 

approach. Though future works could focus on classifying existing and validated 

databases into appropriate categories. 

A-2 Different Approaches in Helipad Identification 

        This thesis is a continuation of FAA’s partnership with Rowan University to develop 

Artificial Intelligence solutions, our work is a continuation of previous thesis published 

on Helipad Detection. [2] That approach focused on using conventional neural network 

models for binary classification of satellite imagery into Helipad or No Helipad category. 

It works by producing a matrix function that gives the probability of an image containing 

a Helipad. Since image classification does not localize the Helipad, it can’t be used to 

search and extract coordinates of missing Helipads. Following up on the image 

classification approach, we explored other computer vision approaches to meet FAA’s 

requirements for this task. Our previous work references several Helipad related works 
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that have been done previously, focusing on different pattern recognition approaches.[2] 

We will not discuss those approaches in detail here as we briefly explored conventional 

computer vision approaches. 

       One drawback of these approaches is that they are appropriate for specific 

environments and fail to generalize in complex environments, these approaches work 

only for specific helipad detection patterns such as “H” only or “Circle” helipad. Hence, 

you will need multiple algorithms for each specific pattern type, we will briefly discuss 

one implementation of this approach in a later chapter. 

      Object Detection approaches in recent years have proven to be fruitful for localization 

problems and there have been major advancements in development of various object 

detection models. With having established a benchmark satellite imagery database, this 

approach was very attractive for our task as it requires a clean labeled dataset that can be 

used for model training and validation. We will discuss this model-based approach of 

using “Deep Learning” convolutional neural networks and why we deemed it to be the 

most suitable computer vision solution for Helipad Detection. 

A-3 Object Detection Using Deep Learning 

        Convolutional Neural Networks (CNNs) are designed to process multi-dimensional 

arrays such as images. There are 3 layers typically used in CNNs: convolutional layers, 

pooling layers, and fully connected layers. Convolutional layers consist of filters 

consisting of learnable weights and are followed by an activation function to introduce 

non-linearities. By learning values for the weights, the convolutional layer is capable of 

learning appropriate filters to combine information from previous layers. Pooling layers 
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combine nearby features in an image. Fully connected layers are at the end of the network 

and will come after the convolutional and pooling layers. A fully connected layer will 

define multiple neurons, and each neuron will assign a weight to each input and combine 

the weighted inputs. This is typically followed by a non-linear activation function to add 

in non-linearities for each layer [7]. 

         There are numerous high performance Machine Learning frameworks that have 

shown great results over the past decade, these frameworks include tensor flow, Pytorch, 

darknet, mxnet and darknet etc. We relied on tensor flow, Pytorch and darknet to train 

different object detection models and compare performance metrics to achieve high 

accuracy results. 

       Transfer Learning is a method that has proven to be very effective in Machine 

Learning tasks as it relies on using pre-trained models and generally only training final or 

outer layers (fully connected layers). It leverages knowledge (features, weights etc.) of a 

pre-trained model to train a new model on target dataset, hence improving efficiency of 

the new model. We utilized transfer learning in our training models which reduced our 

dataset constraints and allowed us to achieve high accuracy results despite having a small 

dataset size. 
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                                                         Chapter 2 

Dataset: Data, Labeling and Model Preparation 

II-A Dataset Acquisition  

           We used FAA’s 5010 dataset as our primary data, this data contained information 

on recorded helipad landing sites including longitude and latitude. We also used a dataset 

provided by LZControl, which contained about 200 helipad sites. We used a google maps 

API to extract satellite imagery on these potential landing sites. FAA’s 5010 dataset 

contained about 5,449 potential landing sites; an effort was made last year to manually 

verify this dataset but only parts of the dataset were verified. Dataset contained 3,143 

verified positive samples and 495 negative samples where no landing site was verified, rest 

of the 1,811 samples had no verification. We used those verified positive samples as our 

benchmark database and utilized 50% of those positive samples for training and the other 

half for model validation. 

A-1 Google Static Maps API 

           We used Google static maps API for collecting imagery, which contains google 

earth imagery. The service is accessed by sending an HTTP request with a query containing 

the desired parameters, which are responded with an image based on the parameters. The 

parameters used are center, zoom, size, and map type. Center determines the coordinates 

that should be the center of the image. Zoom determines the distance a pixel will represent. 

Size determines the number of pixels in the image. Map type determines which type of 

image should be retrieved (as Google maps contains road maps). For the purposes of this 
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project, size was always set to the maximum value of 640x640, and the map type was 

always satellite. Center was set to the desired coordinates to be sampled for the image and 

depending on the case can represent either a helipad location or a location where a helipad 

is not expected. The most detailed images are at a zoom of 20, however a zoom of 18 was 

used instead. The difference between the two zooms can be seen below in Figure 2. There 

is a cost associated with making API calls beyond a certain limit, so efficiency of calls will 

become important when scaling up. 

 

Figure 2 

Difference in Zoom Levels 
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A-2 Issues Encountered During Data Acquisition 

          One of the issues we noticed was margin of error with positive samples, not all 

positive samples were centered and off by a factor but because not all helipad samples were 

centered that added a level of diversity to our dataset where some helipads were in different 

corners of the image. We also noticed some helipad locations being off by a bigger factor 

and being partly or completely outside of the collected image frame. Figure 3: shows a 

location that was nearby reported coordinates but off by a factor big enough that it was not 

visible in the 624 by 624 image.  

 

Figure 3 

Non-Usable Location with Helipad Nearby 
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Another issue with the service is collecting larger imagery. The maximum size of an image 

is limited to 640x640 pixels. This was the size used during the annotation process, and thus 

was the size collected. However, while this allows for larger errors in the coordinates, this 

does also cause an issue when trying to search for and localize helipad locations.  

There is also an issue of recency. The images used in google maps are not real time images, 

but rather imagery taken during a survey. This means that the overhead view that was 

sampled does not actually reflect the current state of the area. Google attempts to keep the 

images up to date such that the available imagery should be less than 3 years old, however 

that is still a long period of time. This does limit the algorithm’s effectiveness for 

determining the accuracy of new entries of recent helipads, as the available imagery may 

come from a point before the helipad was constructed. 

Lastly not every location has the same image quality or zoom size, which leads to some 

images with poor quality and various zoom levels, this also limits effectiveness of training 

a model at a certain zoom level. Following are some examples of inconsistent satellite 

imagery. 

II-B Labeling 

           MakesenseAI is an online platform that assists in labeling data for object detection 

and image segmentation [insert reference]. MakesenseAI provides outputs in various 

formats that support different model frameworks, hence making it easier to train various 

models. 
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           MakesenseAI was used to manually create bounding boxes around helipads. 

Bounding boxes simply indicate the area of interest for the model for each given object 

type. Each bounding box has its image coordinates and object type, this information allows 

the model to localize each object and its type with its respective image. An output file is 

created for each image containing rows for respective bounding boxes of that image, and 

the model associates this file with its respective image to retrieve this information. Figure 

4 illustrates an image with a bounding box; multiple bounding boxes can be drawn on an 

image. 

 

Figure 4 

Labeled Helipads 
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Object detection models have different requirements for file formats of annotated label 

files such as VOC XML, CSV, or single CSV. MakesenseAI allowed us to export our 

annotations in required VOC XML and CSV format hence only having to label images 

once. 

II-C Benchmark Dataset 

           After the above collection, labeling, and curation steps, a helipad identification 

benchmark dataset was created. The positive set contains 3,343 samples. FAA’s database 

consisted of different types of landing areas including helicopter parking pads, helidecks, 

EHLFs, and heliports. These sites included urban and rural landing locations as well as 

some maritime locations. Some helipad types such as hospital landing sites are more 

represented than others, but the dataset was very diverse for most part. Figure 5 shows 

some of the images in the dataset. 

 

Figure 5 

Dataset Examples 
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Chapter 3 

Helipad Detection from Satellite Imagery 

III-A Traditional Computer Vision Techniques 

             Digital Image Processing has long relied on using conventional computer vision 

techniques that have proven very successful in object detection problems such as 

documents scans, detecting license plates and parking occupancy detection. Computer 

vision techniques don’t require having a dataset for training and can produce good results 

with just a few training examples, some of these computer vision techniques include 

SIFT, SURF and Template Matching. For our purposes we only explored Template 

Matching. 

Template matching is used for finding parts of an image that matches a template image, 

in our case that would be a template helipad sample. It is a much simpler solution than a 

neural network as it does not require extensive manual data labeling for training, template 

matching does a pixel-by-pixel comparison of an image with a template matching. It 

creates a similarity matrix for each section of the image and if similarity of matrix 

reaches a certain threshold that section is identified as a template object. So, it is possible 

to achieve object detection using template matching especially if you are only dealing 

with one class, such as the helipad in our case. Figure 6 shows an example of this 

technique 
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Figure 6 

Template Matching Example 

 

 

A-1 Template Matching 

There are several template matching techniques that can be implemented using python’s 

OpenCV library, but we experimented with the following two correlation methods. 

 

Figure 7 

Correlation Methods 
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We implemented template matching by using a helipad template image, as a result we 

found a successful case where template matching was able to identify the helipad but also 

ran into some issues that restricted practical implementation of template matching. We will 

discuss why we ran into these issues and as a result decided to explore convolutional neural 

networks for a more appropriate solution.  

A-2 Template Matching: Results 

 

Figure 8 

Template Matching Results #1 
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Figure 9 

Template Matching Results #2 

 

Figure 10 

Template Matching Results #3 
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You can see that we used a template image that was not part of successful cases, but 

template matching was still able to identify those helipads due to high similarity with the 

template. But this approach fails when it encounters helipads with a slight variation or 

helipads with a rotated angle, which makes sense as the similarity between those images 

and template drops significantly. Figure 11 and Figure 12 show cases where template 

matching fails to locate helipads with different rotation angles despite having a similar 

template image. 

 

Figure 11 

Template Matching Results #4 
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Figure 12 

Template Matching Results #5 

 

 

We also observed the same issue with a different template image of a circular helipad where 

template matching fails when helipads are at rotation angle despite being circular in pattern. 
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Figure 13 

Template Matching Results #6 

 

Figure 14 

Template Matching Results #7 
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Figure 15 

Template Matching Issues #1 

 

Figure 16 

Template Matching Issues #2 
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Despite showing some promising results template matching fails whenever there is slight 

deviation from template and you need to add a template for each type of helipad pattern, 

which includes having templates with all possible rotation angles. This requires extensive 

manual verification of benchmark dataset to make sure all different templates are included, 

but despite this there are satellite imagery inconsistencies that result in helipad patterns 

deviating from any set of helipad templates. 

Hence, we decided to explore conventional neural networks and use deep learning to find 

a more appropriate solution for our requirements. We will now discuss “Deep Learning” 

and how we used satellite imagery to train and validate our models. 

III-B Deep Learning  

          Deep Learning is a subset of Artificial Intelligence based on artificial neural 

networks; deep learning excels in many areas including representational learning. Deep 

learning consists of neural networks with three or more layers, it leverages a training 

dataset where a model aims to “learn” over iterations. Compared to traditional computer 

vision techniques, deep learning provides optimal solutions for tasks such as image 

classification, semantic segmentation, and object detection. 

There are many objects detection models that have proven their efficiency in recent years 

with different tradeoffs and advantages. We wanted to test and compare different models 

and chose a model that was optimal for our requirements. We decided to train three 

different models on a small dataset of 200 images, these images were manually labeled, 

and their truth values were known. We trained Detection’s Faster R-CNN, TensorFlow’s 

SSD and YOLO V3, we now discuss these models and our comparison results. 
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Faster R-CNN is a very popular convolution architecture and has shown excellent results 

in object segmentation and detection problems. Faster R-CNN uses a region proposal 

network (RPN) for generating region proposals and a network using these proposals to 

detect objects. The time cost of generating region proposals is much smaller in RPN 

compared to other models. RPN ranks region boxes and proposes the ones most likely 

containing objects. 

TF- SSD architecture is a single convolution network that learns to detect objects in one 

pass. The SSD network consists of base architecture (MobileNet in this case) followed by 

several convolution layers. SSD architecture allows faster processing compared to other 

models with a tradeoff for accuracy. 

YOLO model architecture is one of the most popular models used for object detection 

and is known for its high accuracy and fast computation speeds. This model is based on 

the idea that a single network predicts bounding boxes and class probabilities directly 

from full images in one pass. This allows for end-to-end optimization specifically on 

detection performance.  
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Figure 17 

YOLO V3 Network Architecture 

 

 

Figure 17 displays the YOLO v3 model architecture. The input is a batch of imagery 

data, in our case it will be places of interest with the potential to contain helipads. The 

output is a list of bounding boxes along with recognized classes. Then utilizing 

intersection over union, or the overlap of the predicted bounding box compared to the 

ground truth labels, a confidence score can be given on the accuracy of the detection. The 

model is 53 layers deep and pretrained on the ImageNet model. 

Before we discuss our results and comparison on these models it's important to 

understand a few accuracy metrics, metrics used here are True Positive, False Positive 
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and False Negative. These metrics are intuitive, but we also added another metric that we 

called “Unseen False Negative”.  

Figure 18 shows an example of a true positive as the predicted bounding box overlaps the 

ground truth, for our purposes we set a threshold of 33% overlap between predictive and 

ground truth bounding box to consider a detection true positive. 

 

Figure 18 

True Positive 
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Figure 19 shows an example of false positives as the model falsely identifies a helipad 

area. 

 

Figure 19 

False Positive 
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Figure 20 shows an example of False Negative where the model identifies an image with 

no helipads and misses a true positive. 

 

Figure 20 

False Negative 
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In our validation data we also included positive samples that models had not been trained 

on and were slightly different from the training set, this gave us an additional insight to 

different model performances. Figure 21 shows an example of this, where the image 

contains helipad patterns that were not part of the training sample. 

 

Figure 21 

Unseen Images 

 

 

Figure 22 shows comparison results of three models, detectron’ Faster RCNN detected 

the greatest number of positive samples but also had the highest false positive count. 

TensorFlow’s SSD had the lowest false positive count but also a low true positive count 
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and high false negative count. YOLO V3 had a decent true positive and false negative 

ratio, as well as low false positive count. All models performed relatively well with 

“unseen” images and had low unseen false negatives, which shows the ability of deep 

learning to generalize a problem to an extent and handle small variations in testing 

dataset. Based on these metrics we decided to move forward with YOLO V3 as it had 

promising results with low false positives and high true positives. 

 

Figure 22 

Models Comparison 
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III-C Detection Results 

We manually annotated the rest of our benchmark dataset and set up a training dataset of 

about 1,771 images which contained 200 LZControl and 1,571 FAA 5010 database 

images. We manually vetted this dataset to remove some inconsistencies and 

discrepancies, we trained YOLO V3 on this dataset and used the rest of our benchmark 

database as validation set. 

We thoroughly evaluated our model’s performance on validation dataset by calculating 

precision and recall. Figure 23 shows how these metrics are calculated 

 

Figure 23 

Accuracy Metrics 

  

Figure 24 

Accuracy Results 
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 YOLO V3 showed satisfactory numbers for precision and recall. Since all the validation 

dataset images contained positive samples, we can narrow down the model's performance 

to true positives and false negatives. Where true positives are images that were 

successfully identified as positive samples and false negatives where our model failed to 

identify positive samples. Model had 85% true positives and 15% false negatives 

accuracy on validation dataset. 

 

Figure 25 

Accuracy on Validation Dataset 

 

 

C-1 True Positives Detected by Model 

        Following are some examples of true positives detected by model, these include 

different patterns, images with multiple helipads and some images that were slightly 

different than training set. Figure 29 shows a good example of model detecting new 

patterns based on similarity with training set. 
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Figure 26         

True Positives Detected by Model #1         

                                      

                            

Figure 27 

True Positives Detected by Model #2         
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Figure 28 

True Positives Detected by Model #3         

 

 Figure 29 

True Positives Detected by Model #4         
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Figure 30 

True Positives Detected by Model #5         

 

Figure 31 

True Positives Detected by Model #6         
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As shown in above images our model detected different types of helipads and performed 

well in detecting helipads in different terrains as well. Some images contained multiple 

helipads but for our accuracy metrics we counted each image as one positive sample. 

We also analyzed false negatives to understand why the model missed those samples, 

these false negatives could be helpful in retraining the model in future works. We noticed 

a few issues in false negatives, these issues included poor imagery resolution, un-trained 

helipad patterns, and false zoom level imagery. These issues limit the model's 

performance as Google Maps’ imagery is not consistent with all areas. Images that 

contained new helipad patterns that weren’t part of the training cycle can be used as 

feedback for future works. Following are some examples of false negatives 

C-2 API Issues  

Figure 32 

API Issues #1       
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Figure 33 

API Issues #2 

 

Figure 34 

API Issues #3 
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C-3 Untrained Helipad Patterns 

Figure 35 

Untrained Helipad Patterns #1       

 

Figure 36 

Untrained Helipad Patterns #2       
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Figure 37 

Untrained Helipad Patterns #3 

 

Figure 38 

Untrained Helipad Patterns #4 
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In conclusion false images consisted of images that were poor resolution, zoom level and 

untrained helipad patterns. With satisfactory results on the validation dataset, we were 

ready to deploy our model and develop tools to meet FAA requirements. We will discuss 

our applications of this model which were focused on scaling the FAA's current database 

by searching for new helipads.  
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Chapter 4 

Search For New Helipads 

          The algorithm developed was reliable enough for us to move forward with it and 

develop tools that could utilize it, with the primary aim of scaling the FAA's current 

database of helipads. We wanted to have the ability to scan any given area and search for 

helipads in that vicinity.  Our approach was to input a set of coordinates and then collect 

satellite imagery with a certain mile radius and run model inference on that imagery to 

detect helipads. This would help us find missing helipads in the 5010-database due to 

reporting errors or coordinates being off by an error factor. We specifically wanted to 

apply this approach to completely verify the FAA's 5010 database which contained 495 

negative samples and 1,811 samples with no verification. We could use this tool to scan 

these sites and search for a helipad in a certain radius vicinity. 

        We needed the ability to scan bigger areas around a set of coordinates to run 

inference on that imagery, one possible way to do this would be to use a smaller zoom 

level so imagery would cover a bigger area. However, this approach would not work as 

the model was trained on zoom level 18 and would fail to perform if run on much smaller 

zoom levels. Our second option was to apply a “Collage” approach, an approach 

developed in previous works of this project. We will not discuss the details of this 

approach development and refer to our previous work for further explanation [2]. This 

approach samples a region numerous times around a given set of coordinates and 

combines this information. 
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While this approach is not very inefficient as it requires numerous singular API requests 

for each site and is time consuming, it does maintain the integrity of the zoom level that 

our model requires. Future works could revisit this approach and develop a more efficient 

way of collecting bigger area imagery. 

IV-A Search and Scan 

         Using the collage approach, we were able to collect imagery around a set of 

coordinates by setting any desired mile radius area. After collecting desired imagery, we 

used our model to scan and search for helipads in collected imagery. Our algorithm 

would output identified images with helipads along with their centered coordinates, all 

these output images could be then manually verified to confirm positive samples. Once 

validated we could deliver these newly found sets of coordinates to the FAA. This would 

enable us to search for helipads whose coordinates were off in the database and could 

now be corrected. Following images demonstrate an example of this approach. 

 

Figure 39 

Output Image with Set of Coordinates 
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Figure 40 

3 Mile Search Area 
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Once set up we applied this algorithm on the FAA's 5010 database, we scanned and 

searched 495 negative labeled and 1,811 unknown sites with a search radius of 3 miles. 

This was a good “real world” test for our model as these coordinates consisted of diverse 

terrain and regions. After manual verification and cleanup of collected potential positive 

samples, we attained following results. 

 

Figure 41 

Scan and Search Results 

 

 

We successfully corrected and added 462 helipad landing sites to the FAA's current 

database, all these sites were manually verified and delivered to the FAA.  

During this approach we observed some patterns in false positives that appeared over and 

over, these false positives could be used to train models on true negatives in future works. 

These patterns included soccer fields, golf courts and water towers. Following are 

examples of few false positives detected.  
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Figure 42                                                          

False Positives #1 

 

Figure 43                                                          

False Positives #2 
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Figure 44                                                          

False Positives #3 

 

Figure 45                                                          

False Positives #4 
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Figure 46                                                         

False Positives #5 

 

Figure 47                                                         

False Positives #6 
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Figure 48                                                      

False Positives #7 

 

Figure 49                                                         

False Positives #8 
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Figure 50                                                         

False Positives #9 

 

Figure 51                                                         

False Positives #10 

 



48 

IV-B Other Implementations of Our Model 

        The FAA believes there are over 2,000 missing hospital helipads in the US, using 

Google’s API we retrieved coordinates of over 800 US cities, we then pulled satellite 

imagery of all these sites. This dataset contained 9K images collected via Google Maps 

API, these images were collected at zoom 18. We used our model to filter this dataset and 

identify images with helipads. Our model filtered out 1,748 images as positive samples, 

we then manually annotated these images to get an accurate assessment of our model. We 

found 1,458 images containing one or more helipad landing sites, hence our model had 

accuracy of 83% true positives and 17% false positives. After removing duplicates, we 

delivered the FAA with a list of 972 newly detected hospital helipads, marking great 

success of our deep learning approach.  

Our model can be used to further scale the FAA's database by collecting more imagery on 

areas of potential landing sites and filtering out potential helipad sites. Model’s 

performance can be improved continuously by incorporating feedback and re-training our 

model. 
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Chapter 5 

Conclusion and Future Works 

V-A Conclusion 

         Aim of this project was to develop an algorithm that had the ability to identify 

helipads in satellite imagery, our secondary objective was to use the model and develop a 

process to find new satellite imagery. We achieved satisfactory results on both goals. 

        Our comparison of different object detection models helped us choose the 

appropriate model for our requirements, YOLO V3 produced fruitful results in 

identification of helipads using satellite imagery. We utilized FAA’s 5010 database as 

our primary training and validation dataset, our model was trained on a diverse enough 

dataset that it produced satisfactory performance. We constantly evaluated and refined 

our dataset by manual verification throughout our training process to ensure a clean 

training dataset, it is crucial to minimize noise and bad samples in the training set. Our 

model demonstrated its efficiency by identifying additional hospital helipads from a large 

set of hospitals satellite imagery, manual inference of such a huge dataset would have 

been a very tall task. 

        Our model also performed well on our secondary objective of searching for new 

helipads given a region coordinate, we used our “collage approach” to collect imagery in 

each mile radius and scanned for new helipads. This approach also proved fruitful as we 

were able to find helipads that had incorrect coordinates or simply missing from the 

FAA's database, this was a critical requirement for this project. Our approach validated 
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our model being used as an inference tool and opened the door for further search and 

identification of helipads in other areas of interest.  

We have several suggestions for future works that could improve accuracy and efficiency 

of this system, this includes model training approach, improving training dataset and 

more optimal programming tools to utilize models for imagery inference.  

V-B Future Work 

        We only explored 3 distinct models for object detection and trained them on a very 

brief dataset for performance comparison, we suggest future works thoroughly explore 

more models and use a bigger dataset for training and performance comparison. We also 

recommend comparing models based on not only their accuracy but also on 

computational and processing efficiency.  

       Future works should also improve training dataset by incorporating our feedback of 

false positives which shows clear patterns that can compromise performance, these 

patterns include, water towers, golf courses, soccer fields and solar panels. These images 

could be included in the training dataset as true negatives, hence reducing the chance of 

the model identifying them as positive samples in future works. We recommend further 

study of academic studies on using true negatives in object detection model training and 

reducing false positives.  

       Though our search and scan approach were successful, it can be improved by 

developing more cost-efficient tools as currently it relies on making single API requests 

to collect imagery of a region, a program with parallel requests and inference could 



51 

drastically increase speed. We also recommend that future works consider the inference 

speed of different models as a performance metric. Improving the speed of this system 

would be critical if the model is to be used at a much bigger dataset or scan larger regions 

for searching new helipads.  

      Our work can also be used for FAA’s other identification and localization problems 

such as detecting airports, identifying, and classifying different distinct helipad types and 

detecting objects landing hazards near a helipad.  
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