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Golding, Jessie, Ph.D., Summer 2022    Fish and Wildlife Biology 
 
Rethinking rare: novel approaches to rare species monitoring and conservation 
 
Chairperson: Joshua J. Millspaugh 
 
Conservation of rare species is widely valued and important for ecosystems. Unfortunately, 
many of the approaches to conserve rare species have been developed with common species 
(e.g., harvested species) which have larger populations and targeted objectives. Conservation of 
rare species is difficult in part because of problems created by scarcity and low information. 
With low information, learning leads to new questions and the utility of information in decisions 
can quickly become obsolete. Therefore, monitoring strategies that can adapt as well as provide 
information tailored to relevant decisions are needed. To address rare species monitoring, I 
developed a long-term monitoring approach for rare species called goal efficient monitoring 
(GEM). GEM allows monitoring questions to evolve as we obtain information. GEM includes 
sampling rules connected to a Bayesian integrated population model (IPM), which allows for 
changing questions and data collection while maintaining long-term inference. For example, 
GEM sampling rules work when populations are small (less than 10 individuals) and provide 
guidance to adjust monitoring observations if the population gets large (over 100 individuals), all 
while maintaining the same long-term inference because of the IPM structure. I outline the GEM 
approach using Canada lynx (Lynx canadensis), which is Threatened under the Endangered 
Species Act. To test GEM, I simulated 100 small populations with constant demographic rates 
for 11 years, applied GEM sampling rules to simulate observations, and predicted population 
values with the GEM model. On average, the predicted range of values from the GEM model 
contained the true values 97.1% of the time. These and other results contained within 
demonstrate how a GEM approach can provide long-term inference for rare species while 
addressing changing information needs. To address the problem of rare species information that 
is tailored to decisions made with rare species information, I propose the use of processes from 
the professional field of Design to reframe the user needs of the rare species information. I 
provide an overview of how some Design methods are already in use in conservation and how 
adopting Design processes more formally through the creation of the field of conservation design 
may aid in rare species conservation.   
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INTRODUCTION: Why rethink rare? 

For as much as individuals and societies around the world value rare species and 

therefore care about and protect them (e.g., Gaston 1994, Angulo & Courchamp 2009), there 

often appear to be a limited number of avenues to achieve actionable conservation of rare 

species. Here I define rare species as those that have low abundance or limited ranges (Gaston 

1994), in contrast to common species which have high abundance and broad ranges. Rare species 

conservation is frequently hindered by lack of funding, but this explanation hides a more 

complex truth about the way we think about rare species and for just how long we have been 

struggling to understand why they exist. As applied conservation disciplines are drifting farther 

from basic ecology (Hintzen et al. 2020), understanding why so many species are rare may be 

moving farther out of reach. In addition, because so frequently rare species populations are small 

and isolated, they defy our systems of monitoring that are built for common species. How does 

one even begin to approach conserving rare species with so many potential difficulties and 

continued rare species declines while we attempt to solve questions of knowledge? These are not 

simply theoretical questions, but questions that we are facing in our lifetimes. In 2021, the U.S. 

proposed to remove 23 species from protection under the U.S. Endangered Species Act (ESA) 

due to extinction, some of which have not been seen since the 1940s, some as recently as 1990 

(FR 2021). Some species have become rare over just the past two decades, like the world’s 

smallest porpoise, the vaquita (Phocoena sinus), which stands the brink of extinction with an 

estimated 10 individuals left (Sonne et al. 2021). The time for actionable rare species 

conservation is now.   

 Therefore, my goal in this dissertation research was to advance our abilities to conserve 

rare species, guided by two overarching questions: 1) how can we meaningfully monitor rare 
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species in small and isolated populations, where population dynamics are irregular and 

stochastic? and 2) how can we turn rare species monitoring information into meaningful 

conservation action? I used two main fields of study to answer that question, each seemingly 

very different, but each providing an integral part to the answer: quantitative ecology and 

Design. Quantitative ecology is the application of mathematical and statistical modeling to 

understand dynamics in ecological systems. Design, denoted throughout this document with a 

capital “D” to distinguish it from the common use of the word, is the professional field of 

research and practice that studies the process of changing existing conditions into preferred ones 

(Simon 2019). While quantitative ecology guided the exploration of understanding rare species 

population dynamics, Design provided a new way to think about how to turn information from 

quantitative ecology into action.  

The first two chapters of this dissertation present the development of a population 

monitoring approach that was built to provide biologically meaningful information on rare 

species: goal efficient monitoring (GEM). The monitoring approach was built on the 

fundamental premise that once people learn new information, they will have new questions. This 

principle dominates rare species monitoring because the stochastic population changes that 

appear as irregular dynamics cause constant changes in knowledge and questions. Therefore, a 

monitoring system built to detect a trend over time, which asks the same question over time (e.g., 

for occupancy trend monitoring asking “is the species present?” or for abundance trend 

monitoring asking “how many are present?”) works well for common species, would be 

unsatisfying to those conducting the monitoring and result in limited learning about the 

stochastic dynamics driving the population. I therefore created the GEM system (model and field 

monitoring approach) that includes the appropriate dynamics for small or isolated populations of 
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rare species, possible using the flexible Bayesian hierarchical integrative population modeling 

structure, and an ability to change questions within a set of five rules based on what is known to 

allow people flexibility (Chapter 1). I also extended the GEM system to reflect more biological 

reality and provided a new monitoring metric that can be used for frequent predictions for small 

populations, which can be used to guide direct management action (Chapter 2). 

However, in thinking about how to move GEM from a theoretical monitoring system to 

on the ground conservation that accomplished a specific goal, I realized there was seemingly no 

guidance on what field to even look to accomplish that. I found Design and quickly realized that 

Design, as a discipline that is about how to turn ideas into plans and processes, was generally 

absent from our growing list of partnerships in conservation biology and practice, despite its 

tremendous potential and widespread used in other fields like technology (Thomke & Feinberg 

2019), business (Liedtka 2018) and healthcare (Bazzano et al. 2017). I recognized the need to 

provide a broad overview of how Design could turn conservation biology into effective 

conservation practice and proposed the idea that we work towards developing a field of 

Conservation Design, combining conservation biology and Design (Chapter 3). I used this idea 

to frame some of how I envision GEM being applied, but I hope that is just a small preview of 

what is to come from this idea.  

 I am optimistic that with this work that I have moved the field of rare species 

conservation even the smallest step forward and that this gives future conservation designers a 

reason to envision a different future for rare species. 
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Chapter 1: Goal efficient monitoring: an approach to monitoring as information changes1 

ABSTRACT 

Long-term monitoring is important for understanding wildlife ecology and management. 

Unfortunately, long-term wildlife monitoring typically focuses on specific questions and can be 

inflexible. In rare species monitoring our questions evolve as we obtain more information. For 

example, we often start with: 1) is a species present? If so, subsequent questions often are: 2) are 

multiple individuals present? and 3) are both females and males present? To make long term 

monitoring programs more flexible, such programs should be able to change questions while still 

providing a long-term data stream. We propose Goal Efficient Monitoring (GEM) as an approach 

to monitoring that includes sampling rules connected to a Bayesian integrated population model, 

which allows for changing data collection and questions while maintaining long-term inference. 

To test GEM, we simulated 100 small populations with constant demographic rates that were for 

11 years, applied our sampling rules to simulate observations, and predicted population values 

with an integrated population model. On average across all simulations, the predicted range of 

values from the model contained the true population values 97.5% of the time. These results 

demonstrate how a GEM approach can guide data collection and provide long-term inference for 

rare species while being responsive to immediate information needs. 

 

INTRODUCTION 

Long-term monitoring of wildlife populations is essential for understanding and effectively 

managing wildlife populations (Holling 1978; Yocozz et al. 2001; Manley et al. 2004; Lyons et 

al. 2008; Conroy et al. 2011; Grant et al. 2013; Ellis et al. 2014; Buckland and Johnson 2017). 

 
1   Plan to submit to Ecological Applications as Golding JD, KS McKelvey, MK Schwartz, JJ Millspaugh, JS 
Sanderlin, and SD Jackson. Goal efficient monitoring: an approach to monitoring as information changes.  
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Monitoring can inform tasks ranging from local wildlife management (Cook et al. 2010; Cook et 

al. 2013) to achieving large global conservation targets, such as those recommended by the 

Convention on Biological Diversity (Laikre et al. 2010; Buckland and Johnson 2017). 

Monitoring can be defined as “the process of gathering information about some state variables at 

different points of time for the purpose of assessing system state and drawing inferences about 

change in state over time” (Yoccoz et al. 2001, p. 446). In addition, given the significant logistic 

and financial investment required for wildlife monitoring (Field et al. 2004; Reynolds et al. 

2016), it is important that monitoring is as useful as possible across many different species and 

time scales. However, ensuring information generated from long-term monitoring programs is 

relevant and meaningful has been consistently raised as an issue (Legg and Nagy 2006; Nichols 

and Williams 2006). Authors have acknowledged that long-term monitoring often does not 

answer questions that it was originally designed to address (Legg and Nagy 2006), nor is it built 

with the specificity necessary to address questions beyond broad “surveillance” monitoring 

(Nichols and Williams 2006). In addition, authors acknowledge that information needs change 

relative to hypotheses, particularly in the face of rapid environmental change (Conroy et al. 

2011). 

The proposed solutions to make monitoring more relevant or useful rely heavily on the 

idea that defining goals a priori can solve many of the relevancy problems. For instance, to 

ensure that monitoring addresses the question of interest appropriately, Legg and Nagy (2006) 

recommend identifying a hypothesis and conducting a power analysis before a long-term 

monitoring program proceeds. Similarly, “targeted” monitoring, which targets a specific 

question, suggested by Nichols and Williams (2006) requires practitioners to define the 

monitoring of question of interest ahead of time, rather than assume that questions that emerge 
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from patterns in “surveillance” monitoring, or broad monitoring that is not question driven, can 

be answered effectively by a monitoring program. The proposed solutions to creating relevant 

information with long-term monitoring do not address two fundamental problems with 

knowledge acquisition over time; 1) questions change once information is learned; and 2) as 

questions change, the previous data stream is often abandoned and answering a new question 

requires a new investment in a different monitoring program (Magurran et al. 2010).  

No single question, regardless of how carefully it is framed, will satisfy all information 

needs about populations over time because questions change as knowledge is gained. Thus, 

changes in questions that arise during long-term monitoring often occur irregularly and in an 

unplanned manner. This pattern of is particularly evident in rare species. For example, consider a 

protected species that is so locally rare that it is generally absent through much of an area of 

interest: the Canada lynx (Lynx canadensis) in the U. S. northern Rocky Mountain Region of the 

contiguous U. S. provides an example. For this species, the first question is typically: are there 

any present (Golding et al. 2018)? Because the organism is absent in many locations throughout 

the Northern Rocky Mountain region, it is critical that a monitoring effort answer the question of 

presence as efficiently as possible. Once the organism is found, the question of presence is 

immediately of less interest than other questions and a monitoring design that exclusively asks 

this presence question will be almost instantly irrelevant. Knowledge of the species presence 

leads to a logical next question conditioned on its established presence: is more than one 

individual present? Once this is known, there are a series of additional questions that logically 

follow as knowledge is gained, such as are both sexes present, is reproduction occurring, or how 

many of each sex are present? Although it is difficult to predict where questions may stop, the 

initial gathering of information proceeds through multiple predictably changing questions of 1) is 
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the species present? 2) Is more than one individual present? 3) Are both sexes present? (Golding 

et al. 2018). 

In wildlife management literature there is little guidance on if or how to use information 

from different monitoring efforts, while the statistical literature suggests that it results in 

uncertain inference (e.g., Magurran et al. 2010), both of which can result in abandoned data 

streams and investments. For example, populations of the western snowy plover (Charadrius 

nivosus nivosus) in the United States have been monitored since the 1970s as a rare species; they 

were federally listed under the ESA in 1993 (58 FR 12864:12874). Recently, managers have 

found that recovering populations are now so abundant that changes in number have become 

non-informative and too expensive to obtain (Marcot 2019). Although monitoring information 

that was once relevant has become uninformative, pivoting monitoring strategies means 

abandoning a long-term data stream for the species that was a large financial investment. 

Additional funding to complete more monitoring is often difficult to obtain because funding 

requires continued societal support and therefore interest over long periods of time.  

There is, however, a growing body of literature that shows that Bayesian integrated 

population models (IPMs) (Schaub and Abadi 2011) are a promising method for integrating 

multiple data streams (Zipkin and Saunders 2018). Although IPMs can be sensitive to underlying 

model assumptions (e.g., Riecke et al. 2019), they are effective tools for combining different data 

streams about a single population and have been shown to facilitate effective conservation 

decisions through improved ecological understanding (Arnold et al. 2018). As a result, IPMs are 

more frequently being used for species monitoring (e.g., Tempel et al. 2014, Ahrestani et al. 

2017). However, the use of the IPM structure in these cases is focused on improving population 
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parameter estimates, which was one of the original benefits noted from the creation of IPMs 

(Schaub and Abadi 2011).  

Rather than approach wildlife monitoring as the process of defining a single, targeted 

question asked repeatedly over time or different questions with disconnected data streams, we 

propose that knowledge acquired through wildlife monitoring can be designed to include 

changing questions collected as a continuous stream over time with multiple data types. Further, 

we suggest that a Bayesian IPM structure provides a statistical model framework that can 

accommodate changing observation needs and questions in a monitoring structure. We therefore 

propose Goal Efficient Monitoring (GEM) as a monitoring approach, that includes a population 

model for the species of interest, a set of sampling rules based on current knowledge (GEM 

sampling rules) and an IPM model that links changing observations to the population. In addition 

to the GEM the sampling rules, the IPM structure allows questions to shift to any parameter of 

the population that is outlined in the IPM, and thus can address the problem of allowing for 

changing questions as knowledge is gained and populations change over time. We consider GEM 

“goal efficient” because it is designed to be responsive to information goals for rare species, 

including the common rare species observation goals of answering the three questions about a 

small or isolated population of 1) is the species present? 2) Is more than one individual present? 

3) Are both sexes present? Additionally, it is designed to be efficient by maximizing information 

gain through changing questions based on what is known from previously collected data using a 

flexible modeling and data structure.  

We use a simulation study to test if the GEM sampling rules, which are field sampling 

rules based on the prior season’s knowledge (explained in further detail in the Methods section 

below), and GEM model can provide reliable population information and if long-term 
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monitoring can be built to be flexible to changing questions while providing continual inference. 

We use the Canada lynx (Lynx canadensis) in the contiguous U.S. as an example species for the 

simulations because in much of its range within the U.S. it is in very small populations. In 

addition, Canada lynx have been listed as threatened under the ESA since 2000 (FR 2000). They 

are useful model organisms for GEM because there are specific regulations related to nested 

questions about presence of different population states on the landscape. If a National Forest is 

occupied by Canada lynx, the presence of a single individual or a female with kittens determines 

which land management regulations occur on National Forest landscapes across large areas of 

the Rocky Mountains (USDA 2007). In addition, surveys for Canada lynx typically employ non-

invasive methods that provide a nested information structure which lends itself to different 

resolutions of information: they include winter track surveys (Squires et al. 2004) that provide 

individual, sex, and species identification through traditional non-invasive sign like scat, 

obtained through backtracking (Squires et al. 2004) or species identification through eDNA in 

the snow tracks (Franklin et al. 2019). Finally, as a rare species in the U. S. northern Rocky 

Mountain region, questions about Canada lynx are likely to change frequently. For example, in 

the Garnet Mountain Range of Montana, the small population of Canada lynx, estimated to be 7 

to 10 individuals, became locally extinct sometime between 2011 and 2015. After that loss, the 

question about Canada lynx in the Garnet Mountains changed to presence of the species in the 

mountain range, which was verified in 2016 (USFWS 2017).   

 To provide a model for the GEM approach, we propose for our Canada lynx example a 

combined multistate and IPM formulation to: 1) incorporate population dynamics for the species 

that are relevant to population changes, including unobserved demographic parameters that may 

be of interest in the future (Zipkin et al. 2018); 2) provide probability metrics to describe 
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immediate (next season) changes that may occur in very small populations, such as the 

probability to retain breeding potential, which can provide immediately relevant information in 

the context of longer term trends and guide changes in monitoring questions over time; 3) shift 

between very small population and larger population dynamics, to maximize relevancy across a 

longer time period for wildlife species.  

To incorporate population dynamics, we build the IPM of a hypothetical Canada lynx 

population at the southern edge of its range with a simple population formulation that includes 

survival of adult females and males, the ability to breed (indicated by the presence of females 

and males), and the birth, survival, and maturation of new individuals. Because we use an IPM 

framework, multiple data types can be used in the model and all variables outlined in the IPM, 

whether they are observed directly or not, can be predicted. We define multistate transition 

probability metrics for small populations based on GEM population states (breeding potential = 

GEM state 4; isolated individuals of single sex = GEM state 3; isolated individual = GEM state 

2; and not present = GEM state 1). We connect the IPM population predictions to the GEM 

population states to provide probabilities that the populations change GEM states in the next 

season, while still providing traditional long-term population monitoring information, such 

abundance over time. To test whether the GEM approach can provide reliable long-term 

monitoring information for a rare species, we simulate 100 populations with constant 

demographic rates for 11 years, simulate observations of the populations with the GEM 

sampling, and use the IPM to generate population predictions, which we compare to the original 

simulated population. In addition, to illustrate how GEM can be used to track two questions of 

“How does the probability of retaining breeding potential over time change?” and “how does the 
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abundance of females over time change?”, we simulate an example of a manager monitoring 

Canada lynx in two different population conditions, established population and a new population. 

 

METHODS 

To develop the basic model structure of GEM, we created an extension of an integrated 

population model to include a multistate model with the four GEM states: not present, single 

individual present, multiple individuals of a single sex present, and multiple individuals and both 

sexes present. We use a Bayesian hierarchical modeling approach because this allows flexibility 

with scarce data, which is typical of rare species and very small populations, as well as a 

continual, consistent way to incorporate multiple data streams to produce reliable estimates of a 

population (Zipkin and Saunders 2018; Sanderlin et al. 2018; Guillera-Arrotia 2017; Kéry and 

Schaub 2012). This extension is based on the previous Bayesian hierarchical multistate dynamic 

occupancy models of Royle (2004), Royle and Link (2005), Nichols et al. (2007), MacKenzie et 

al. (2009), and Kéry and Schaub (2012), as well as the integrated population model. Because we 

are using a Bayesian structure, the parts of the models are explained below with typical Bayesian 

terminology, where the term “biological process” refers to the dynamics of the population of 

interest (i.e., states, abundance, and transitions between states over time driven by population 

dynamics) occurring on the landscape and “observation process” refers to the process of attempts 

by surveyors to observe (i.e., surveys to detect individuals, sexes, or states) the biological 

process. The biological process represents a rare species or small population categorized by four 

population states (Figure 1-1): breeding potential (multiple individuals, both sexes); isolated 

individuals (multiple individuals, single sex); isolated individual; and locally extinct. We first 

describe the Bayesian structure of the hierarchical GEM model and then describe the 



13 
 

simulations, including the basis for the population simulation values and the performance 

metrics, run using R (version 4.0.2; R Development Core Team 2020) and JAGS (http://mcmc-

jags.sourceforge.net) to build and test the GEM model.  

GEM Model 

Biological Process 

Because both female and male abundance are important in very small populations and 

can lead to reproduction in a small population (i.e., 12 individual wolverines that created a 

reproducing population in a mountain range in Montana [Squires et al. 2007]), we modeled male 

and female abundance separately. We modeled female, 𝑁𝑁𝑓𝑓,𝑡𝑡, and male, 𝑁𝑁𝑚𝑚,𝑡𝑡, abundance for a 

population at initial time t=1 (noted as t throughout the manuscript) as Poisson random variables 

with a mean average group size, λ, of 7. Total individuals, 𝑁𝑁𝑡𝑡 , were a derived parameter that was 

the sum of 𝑁𝑁𝑓𝑓,𝑡𝑡 and 𝑁𝑁𝑚𝑚,𝑡𝑡 (equation 3). We derived a population occupancy term for time t=1, 𝑧𝑧1𝑡𝑡, 

and assigned occupancy if 𝑁𝑁𝑡𝑡 > 0, or unoccupied if 𝑁𝑁𝑡𝑡 = 0 (equations 4 and 5). Additionally, we 

derived the GEM population state for time t=1, 𝑧𝑧2𝑡𝑡, from the composition of females and males 

and only allowed it to take on values of 4, 3, 2, or 1 to represent the GEM states (4=breeding 

potential, 3=isolated individuals, 2=isolated individual, and 1=locally extinct) (equations 6 

through 9). Because of the starting numbers of each sex, the populations were likely to start in 

state 4 (multiple individuals and both sexes): 

1) 𝑁𝑁𝑓𝑓,𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (λ)  

2) 𝑁𝑁𝑚𝑚,𝑡𝑡  ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (λ)  

3) 𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑓𝑓,𝑡𝑡 +  𝑁𝑁𝑚𝑚,𝑡𝑡 

4) 𝑁𝑁𝑡𝑡 > 0 →  𝑧𝑧1𝑡𝑡 = 1 

5) 𝑁𝑁𝑡𝑡 > 0 →  𝑧𝑧1𝑡𝑡 = 0 

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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6) 𝑁𝑁𝑓𝑓,𝑡𝑡 = 0 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 0 →  𝑧𝑧21 = 1 

7) 𝑁𝑁𝑓𝑓,𝑡𝑡 = 1 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 0 𝑃𝑃𝑜𝑜 𝑁𝑁𝑓𝑓,𝑡𝑡 = 0 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 1 →  𝑧𝑧2𝑡𝑡 = 2 

8) 𝑁𝑁𝑓𝑓,𝑡𝑡 ≥ 2 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 0 𝑃𝑃𝑜𝑜 𝑁𝑁𝑓𝑓,𝑡𝑡 = 0 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 ≥ 1 →  𝑧𝑧2𝑡𝑡 = 3 

9) 𝑁𝑁𝑓𝑓,𝑡𝑡 ≥ 1 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 ≥ 1 →  𝑧𝑧2𝑡𝑡 = 4 

We assumed that all juveniles could breed at 1 year of age, which is consistent with Canada lynx 

population dynamics when snowshoe hare (Lepus americanus) are abundant (Mowat et al. 2000). 

New individuals entered the population in time t=1 through a process that was function of three 

events: 1) the population being able to produce a litter, 𝑙𝑙𝑡𝑡 , which was dependent on if the GEM 

population state, 𝑧𝑧2𝑡𝑡, was breeding potential (GEM state 4), and the probability of litter 

production, p. litter, which we assumed was constant over time and populations (equations 10 

and 11); 2) birth events, 𝐵𝐵𝑡𝑡, occurring, which were modeled as a Poisson random variable with 

the probability of success 𝑙𝑙𝑡𝑡 with 𝑁𝑁𝑓𝑓,𝑡𝑡 trials (equation 12); 3) and new individuals born, 𝑊𝑊𝑡𝑡, which 

was modeled as a Poisson random variable with a mean that was a function of birth events, 𝐵𝐵𝑡𝑡, 

and a litter size, 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜 𝑃𝑃𝑃𝑃𝑧𝑧𝑙𝑙, set as constant at 2 (equation 13) to include demographic 

stochasticity, which plays a large role in small populations (Lande 1993). The number of new 

females from the birth events, 𝑊𝑊𝑓𝑓,𝑡𝑡, were derived as a binomial random variable with the 

probability of success set by a sex ratio, 𝑃𝑃𝑜𝑜, of 0.5 out of the 𝑊𝑊𝑡𝑡 trials. The number of males 𝑊𝑊𝑚𝑚,𝑡𝑡 

were then derived from the difference between the total 𝑊𝑊𝑡𝑡  and number of females 𝑊𝑊𝑓𝑓,𝑡𝑡  added to 

the population in time t=1 (equations 13a and 13b): 

10) 𝑧𝑧2𝑡𝑡 = 4 →  𝑙𝑙𝑡𝑡 = 𝑝𝑝. 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜  

11) 𝑧𝑧2𝑡𝑡 = 3  𝑃𝑃𝑜𝑜 𝑧𝑧2𝑡𝑡 = 2  𝑃𝑃𝑜𝑜  𝑧𝑧2𝑡𝑡 = 1 →  𝑙𝑙𝑡𝑡 = 0 

12) 𝐵𝐵𝑡𝑡 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙 �𝑁𝑁𝑓𝑓,𝑡𝑡, 𝑙𝑙𝑡𝑡�  

13) 𝑊𝑊𝑡𝑡 = 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜 𝑃𝑃𝑃𝑃𝑧𝑧𝑙𝑙 ∗ 𝐵𝐵𝑡𝑡  
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a. 𝑊𝑊𝑓𝑓,𝑡𝑡~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙(𝑊𝑊𝑡𝑡, 𝑃𝑃𝑜𝑜)  

b. 𝑊𝑊𝑚𝑚,𝑡𝑡 =  𝑊𝑊𝑡𝑡 −𝑊𝑊𝑓𝑓,𝑡𝑡  

For time t=2 (noted as t+1 throughout the manuscript) and beyond (noted as t+1… 

throughout the manuscript), we modeled these same population dynamics and incorporated 

survival to the next time step (breeding season). We modeled the total number of females and 

males alive at the next time step, 𝑁𝑁𝑓𝑓,𝑡𝑡+1 and 𝑁𝑁𝑚𝑚,𝑡𝑡+1, as the total of adults in time t=1 surviving to 

time t+1, 𝑆𝑆𝑓𝑓,𝑡𝑡+1 and 𝑆𝑆𝑚𝑚,𝑡𝑡+1,(equations 14 and 15) plus newly added individuals from births, 𝑊𝑊𝑓𝑓,𝑡𝑡 

and 𝑊𝑊𝑚𝑚,𝑡𝑡, surviving to t+1 (equations 16 and 17), all of which were modeled as binomial random 

variables with a probability of success s, survival, which we kept as constant over time and age 

classes, and number of trials based on total individuals in that class. Total surviving individuals 

for each sex were derived as sums of the number of individuals that survived in both classes 

(equations 18 and 19):  

14) 𝑆𝑆𝑓𝑓,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑁𝑁𝑓𝑓,𝑡𝑡 , 𝑃𝑃�  

15) 𝑆𝑆𝑚𝑚𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑁𝑁𝑚𝑚,𝑡𝑡 , 𝑃𝑃�  

16) 𝑊𝑊𝑓𝑓𝑡𝑡+1~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑊𝑊𝑓𝑓,𝑡𝑡 , 𝑃𝑃� 

17) 𝑊𝑊𝑚𝑚𝑡𝑡+1~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑊𝑊𝑚𝑚,𝑡𝑡,, 𝑃𝑃� 

18) 𝑁𝑁𝑓𝑓𝑡𝑡+1 =  𝑆𝑆𝑓𝑓,𝑡𝑡+1 + 𝑊𝑊𝑓𝑓,𝑡𝑡+1  

19) 𝑁𝑁𝑚𝑚𝑡𝑡+1 =  𝑆𝑆𝑚𝑚,𝑡𝑡+1 +𝑊𝑊𝑚𝑚,𝑡𝑡+1  

We linked the transition probabilities of the GEM population states, 𝑧𝑧2𝑡𝑡 , to the 

population dynamics of each time t by deriving them from the abundance values at each time 

step. Thus, the likelihood of a population transitioning between the end of a time step and the 

next time step was a derived probability vector 𝚿𝚿𝒕𝒕 that was formulated to track dynamics 

relevant to small populations. To keep the simulation simple and representative of small, isolated 



16 
 

populations, we only allowed transitions based on internal dynamics of birth and death, and not 

immigration and emigration, so that once a population had only isolated individuals (GEM state 

3 or lower) it could only persist or decline, not transition back to include more individuals 

through breeding (which required GEM state 4) (Figure 1-2). Thus, the vector 𝚿𝚿𝒕𝒕 for 

transitioning to the GEM states in the next time step (t+1) was modeled as a four-by-four matrix, 

with the rows representing the GEM state in the previous time step and the columns representing 

the probability of the GEM state in the current time step as follows: 

𝚿𝚿𝒕𝒕 =

⎣
⎢
⎢
⎡

1 0 0 0
𝜓𝜓𝑡𝑡+1,21 1 − 𝜓𝜓𝑡𝑡+1,21 0 0
𝜓𝜓𝑡𝑡+1,31 𝜓𝜓𝑡𝑡+1,32 1 − 𝜓𝜓𝑡𝑡+1,32−𝜓𝜓𝑡𝑡+1,31 0
𝜓𝜓𝑡𝑡+1,41 𝜓𝜓𝑡𝑡+1,42 𝜓𝜓𝑡𝑡+1,43 1−𝜓𝜓𝑡𝑡+1,43 − 𝜓𝜓𝑡𝑡+1,42−𝜓𝜓𝑡𝑡+1,41⎦

⎥
⎥
⎤
 

The transition probabilities in the matrix above are dependent each population’s GEM 

state at time t, such that only a single row is relevant at each time t. The probability of transition 

given population is in a state at time t is dependent on the number of females,𝑁𝑁𝑡𝑡 or 𝑁𝑁𝑓𝑓,𝑡𝑡, males, 

 𝑁𝑁𝑡𝑡 or 𝑁𝑁𝑚𝑚,𝑡𝑡, and survival, 𝑃𝑃, and death, 1 − 𝑃𝑃, probabilities at time t. The only exception was if a 

population was not present at time t, in which case it could not be present at time t+1 because we 

did not include immigration, so the probability of it remaining not present (GEM state 1) was 1 

and all other probabilities of transition from not present were 0.  

Because the probabilities involve multiple classes, we provide the full binomial 

formulations for each transition that was possible below. Note that for each time t, a population 

can only be in a single state so only one row of the matrix is relevant. Thus if a population was in 

breeding potential (GEM state 4) it could: transition at time t+1 to locally extinct (GEM state 1) 

based on the probability that all individuals die (equation 20); transition to an isolated individual 

(GEM state 2) based on the probability that all individuals but one die (equation 21); transition to 

isolated individuals (GEM state 3) based on the probability that all individuals of a single sex die 
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and at least 2 individuals of the remaining sex live (equation 22); or stay in breeding potential 

(GEM state 4), which is the probability of the previously described probabilities not occurring 

(equation 23) (Figure 1-2a).  

20) 𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 1) =  �𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡� (1 − 𝑃𝑃)𝑁𝑁𝑡𝑡 ∗ (𝑃𝑃)𝑁𝑁𝑡𝑡−𝑁𝑁𝑡𝑡  

21) 𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 2) =  �𝑁𝑁𝑡𝑡1 �(1 − 𝑃𝑃)𝑁𝑁𝑡𝑡−1 ∗ (𝑃𝑃)1  

22) 𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 3) = �1 − (�𝑁𝑁𝑓𝑓,𝑡𝑡
1 �(1 − 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑡𝑡−1 ∗ (𝑃𝑃)1) ∗  �𝑁𝑁𝑚𝑚,𝑡𝑡

𝑁𝑁𝑚𝑚,𝑡𝑡
� (1 − 𝑃𝑃)𝑁𝑁𝑚𝑚,𝑡𝑡 ∗

(𝑃𝑃)𝑁𝑁𝑚𝑚,𝑡𝑡−𝑁𝑁𝑚𝑚,𝑡𝑡� + �1 − (�𝑁𝑁𝑚𝑚,𝑡𝑡
1 �(1 − 𝑃𝑃)𝑁𝑁𝑚𝑚,𝑡𝑡−1 ∗ (𝑃𝑃)1) ∗  �𝑁𝑁𝑓𝑓,𝑡𝑡

𝑁𝑁𝑓𝑓,𝑡𝑡
� (1 − 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑡𝑡 ∗ (𝑃𝑃)𝑁𝑁𝑓𝑓,𝑡𝑡−𝑁𝑁𝑓𝑓,𝑡𝑡� 

23) 𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 4) =  1 − (��1 − (�𝑁𝑁𝑓𝑓,𝑡𝑡
1 �(1− 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑡𝑡−1 ∗ (𝑃𝑃)1) ∗  �𝑁𝑁𝑚𝑚,𝑡𝑡

𝑁𝑁𝑚𝑚,𝑡𝑡
� (1 − 𝑃𝑃)𝑁𝑁𝑚𝑚,𝑡𝑡 ∗

(𝑃𝑃)𝑁𝑁𝑚𝑚,𝑡𝑡−𝑁𝑁𝑚𝑚,𝑡𝑡� + �1 − (�𝑁𝑁𝑚𝑚,𝑡𝑡
1 �(1 − 𝑃𝑃)𝑁𝑁𝑚𝑚,𝑡𝑡−1 ∗ (𝑃𝑃)1) ∗  �𝑁𝑁𝑓𝑓,𝑡𝑡

𝑁𝑁𝑓𝑓,𝑡𝑡
� (1 − 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑡𝑡 ∗

(𝑃𝑃)𝑁𝑁𝑓𝑓,𝑡𝑡−𝑁𝑁𝑓𝑓,𝑡𝑡��+ (�𝑁𝑁𝑡𝑡1 �(1 − 𝑃𝑃)𝑁𝑁𝑡𝑡−1 ∗ (𝑃𝑃)1) + (�𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡� (1 − 𝑃𝑃)𝑁𝑁𝑡𝑡 ∗ (𝑃𝑃)𝑁𝑁𝑡𝑡−𝑁𝑁𝑡𝑡)) 

There are multiples ways a population can exist with breeding potential, which means that in 

some cases it can only transition to state 2 or 1 or stay in state 4 (Figure 1-2c). If this is the case 

equation 22 still accommodates this and can be calculated as 0 if that is the case.  

If a population contained isolated individuals and only a single sex (GEM state 3) it could 

transition to locally extinct (GEM state 1) based on the probability that all individuals die 

(equation 20), transition to isolated individual (GEM state 2) based on the probability that all but 

one die (equation 21), or not transition out of isolated individuals (GEM state 3) (equation 24) 

(Figure 1-2c). 

24) 𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 3) =  1 − ((�𝑁𝑁𝑡𝑡1 �(1 − 𝑃𝑃)𝑁𝑁𝑡𝑡−1 ∗ (𝑃𝑃)1) + (�𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡� (1 − 𝑃𝑃)𝑁𝑁𝑡𝑡 ∗ (𝑃𝑃)𝑁𝑁𝑡𝑡−𝑁𝑁𝑡𝑡)) 
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Finally, if a population contained an isolated individual (GEM state 2) it could transition 

at time t+1 to not present based on the probability that that individual died (equation 20), or stay 

as an isolated individual (equation 25) (Figure 1-2d).  

25) 𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 2) =  1 − (�𝑁𝑁𝑡𝑡𝑁𝑁𝑡𝑡� (1 − 𝑃𝑃)𝑁𝑁𝑡𝑡 ∗ (𝑃𝑃)𝑁𝑁𝑡𝑡−𝑁𝑁𝑡𝑡) 

Note that for these formulations we assumed that the number of females surviving is 

independent of the number of males surviving each time step.  

Observation Process 

To accommodate changing questions related to knowledge, the observation process of 

GEM must include the ability to adjust methods based on knowledge and select the appropriate 

detection method to gather information relevant to what is known and unknown. We therefore 

modeled the observation process as three hierarchical processes: observing the presence of a 

species, observing the number of individuals within a population, and observing the distribution 

of females and males within that sample of individuals from the population. We modeled these 

processes based on a series of GEM sampling rules as follows: 

a) GEM sampling rule 1 

If nothing is known, obtain confirmation of presence only. 

b) GEM sampling rule 2 

If presence has been confirmed in the previous season, obtain information on 

whether multiple individuals are present via counts. 

c) GEM sampling rule 3 

If counts are >2 across a single visit in a season (not >2 in total across repeat 

visits in a single season), obtain information on whether females and males are 
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present via collection of sex identifying information (e.g., genetic material) during 

counts.  

d) GEM sampling rule 4 

If multiple individuals and only a single sex were confirmed in the previous 

season, obtain information on whether multiple individuals are present via counts.  

e) GEM sampling rule 5 

If multiple individuals and both sexes were confirmed in the previous season, 

obtain information on whether females and males are present via collection of sex 

identifying information (e.g., genetic material) during counts.  

Table 1-1 shows an example of these rules applied over four time steps (survey seasons) when 

nothing is known prior to the start of the first time step other than that the species may be 

present. Note that which of these sampling rules to apply will change based on what is known, 

but that will also change based on how the population is changing.  

We considered the observation of the presence of the species as during a repeat visit j at 

time t or beyond, 𝑦𝑦𝑧𝑧,𝑗𝑗,𝑡𝑡, to be a Bernoulli random variable that represented the observation of 𝑧𝑧1𝑡𝑡 

with a probability of detection that depended on an individual detection probability, 𝑝𝑝, and the 

total number of individuals presents per the Royle and Nichols (2003) formulation: 1 − (1 − 𝑝𝑝)𝑁𝑁𝑡𝑡 

(equation 26). We modeled the observation of counts of individuals, 𝑦𝑦𝑐𝑐,𝑗𝑗,𝑡𝑡, as a Binomial random 

variable with probability of detection 𝑝𝑝 out of the total that were present, 𝑁𝑁𝑡𝑡 (equation 27). We 

modeled counts of females and males as a subset of counts based on backtracking methods for 

Canada lynx, where a track is encountered and can be verified with an eDNA track collection 

(Franklin et al. 2018) and backtracked to genetic material (i.e., scat or hair) that can be analyzed 

to individual and sex, which can typically be found within 2 km (McKelvey et al. 2006). 
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However, because genetic material is not always detected in backtracking efforts, we modeled 

the number of individuals with available genetic material, 𝑦𝑦𝑔𝑔,𝑗𝑗,𝑡𝑡, as a Binomial random variable 

which was a subset of those counted for that year determined by a probability of leaving genetic 

material, 𝑝𝑝𝑔𝑔 (equation 28). We then modeled the number of females in the individuals observed 

during backtracking in visit j at time t or beyond, 𝑦𝑦𝑓𝑓,𝑗𝑗,𝑡𝑡 , as a hypergeometric random variable that 

was a function of the total population at time t, 𝑁𝑁𝑡𝑡, number of females at time t, 𝑁𝑁𝑓𝑓,𝑡𝑡, and number 

of females counted with genetic identification after collection, which were a subset of genetically 

identified individuals, 𝑦𝑦𝑔𝑔,𝑗𝑗,𝑡𝑡 (equation 28a). The number of males counted with genetic 

identification after collection, 𝑦𝑦𝑚𝑚,𝑗𝑗,𝑡𝑡, were the remainder of the genetically identified individuals not 

identified as females (equation 28b): 

26) 𝑦𝑦𝑧𝑧,𝑗𝑗,𝑡𝑡 ~ 𝐵𝐵𝑙𝑙𝑜𝑜𝑃𝑃𝑃𝑃𝐵𝐵𝑙𝑙𝑃𝑃(1 − (1 − 𝑝𝑝)𝑁𝑁𝑡𝑡)   

27) 𝑦𝑦𝑐𝑐,𝑗𝑗,𝑡𝑡 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙 (𝑁𝑁𝑡𝑡 , 𝑝𝑝)  

28) 𝑦𝑦𝑔𝑔,𝑗𝑗,𝑡𝑡  ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙 �𝑦𝑦𝑐𝑐,𝑗𝑗,𝑡𝑡,  𝑝𝑝𝑔𝑔�  

a. 𝑦𝑦𝑓𝑓,𝑗𝑗,𝑡𝑡~𝐻𝐻𝑦𝑦𝑝𝑝𝑙𝑙𝑜𝑜𝐻𝐻𝑙𝑙𝑃𝑃𝐵𝐵𝑙𝑙𝑙𝑙𝑜𝑜𝑃𝑃𝐻𝐻(𝑁𝑁𝑡𝑡 ,𝑁𝑁𝑓𝑓,𝑡𝑡 ,𝑦𝑦𝑔𝑔,𝑗𝑗,𝑡𝑡) 

b. 𝑦𝑦𝑚𝑚,𝑗𝑗,𝑡𝑡 = 𝑦𝑦𝑔𝑔,𝑗𝑗,𝑡𝑡 −  𝑦𝑦𝑓𝑓,𝑗𝑗,𝑡𝑡 

In this formulation, the detection of females and males is dependent on a probability determined 

by p, the probability of detecting an individual, and the proportion of the class of interest relative 

to the total population size (i.e., for females it is 𝑁𝑁𝑓𝑓,𝑡𝑡

𝑁𝑁𝑡𝑡
). Because the population states defined in 

this paper depend on female and male composition, we derived population occupancy state in a  

population at time t, 𝑧𝑧2𝑡𝑡, from the counts of females and males. This formulation relies on the 

relationship between detection probability and abundance (Royle and Nichols 2003). We 

assumed that no false positives (misidentifications) occurred and that only false negatives 

(missed detections) occurred. We also assumed a pre-breeding survey, so only adults were 
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observed. Figure 1-3 shows an overview of the integrated population model structure, which 

includes both the biological and observation processes, and the relationship of the processes in 

time. 

Simulations 

We simulated 100 replicates to assess the performance of the GEM model that each 

contained three parts: 1) a simulated population for 11 time steps; 2) observation of the simulated 

population with the GEM sampling rules for 11 time steps; and 3) the GEM model run with the 

simulated observation data and posterior distribution predictions from the GEM model. In the 

following section we describe the process for each part of a single simulation replicate in the 

order presented above. 

To create the simulated populations in each replicate we simulated the biological process 

described above (equations 1-19) with the following values. Each population was started in 

breeding potential at time t=1 (GEM state 4, 𝑧𝑧2𝑡𝑡 = 4) and abundance of females, 𝑁𝑁𝑓𝑓,𝑡𝑡, and 

males, 𝑁𝑁𝑚𝑚,𝑡𝑡, was drawn from a Poisson distribution with a mean of 7 (𝜆𝜆 = 7). The probability of 

litter if the population was in breeding potential, p. litter, was set as constant at 0.5, which was 

the lower end of the empirically measured probability of lynx having a litter in mature forest in 

the same region as the study used for detection probability (Kosterman et al. 2018). We modeled 

birth events according to equations 10 - 13 and set litter size at a constant of 2 and sex ratio as a 

constant and equal at 0.5. We used 0.7 for survival, which is equivalent to the highest rates of 

adult lynx survival when snowshoe hare densities are high (Mowat et al. 2000). For each time 

step in a replicate we also calculated the GEM state transition probability according to equations 

20-25. 
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To create the observation data of the simulated population in each replicate, we simulated 

the observation process (equations 26-28) of following the GEM sampling rules. We assumed 

that the first time step of observation in every replicate started with no knowledge of the species. 

Thus, the first observation process was always attempting to observe presence (equation 26). 

This was simulated with 3 repeat visits within the season that generated detection/non-detection 

data. To simplify the simulations and compare across replicates, we set detection probability of 

an individual, 𝑝𝑝, set as a constant at 0.63, which was based on research that showed that was the 

lower end of the cumulative probability of detecting one or more lynx in an area with known 

males and females (Squires et al. 2012). For time steps 2 through 11, we followed the GEM 

sampling rules and changed observation based on what was observed in the previous time step. 

Thus, following the GEM sampling rules, if the question changed to the presence of multiple 

individuals, a count with 3 repeat visits was simulated (equation 27). If multiple individuals were 

detected (at least 2 individuals within a single visit the previous time step), the question changed 

to presence of both sexes, a count with 3 repeat visits and collection of genetic material with a 

detection probability of 𝑝𝑝𝑔𝑔, set at 0.50, which was based on the probability of detection of lynx 

genetic sign with 1 kilometer of snow tracking effort (McKelvey et al. 2006) (equation 28). The 

order of the questions was only set according to the sampling rules. Thus, with the knowledge 

gained each time step, the survey methods (detection/non-detection, counts of individuals, counts 

of females and males and state observation) adjusted based on what was known. For all 

detection, count, and genetic observations we assumed that there were no false positives (i.e., 

individuals that were double counted or misidentified). 

Finally, to assess GEM model performance in each replicate we ran the GEM model with 

the observed population data as the model input to predict the following biological process 
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parameters of the simulated population at each time step: adult female (𝑁𝑁𝑓𝑓,𝑡𝑡,𝑡𝑡+1…) and male 

(𝑁𝑁𝑚𝑚,𝑡𝑡,𝑡𝑡+1…) abundance, birth events (𝐵𝐵𝑡𝑡,𝑡𝑡+1…), new individuals (𝑊𝑊𝑡𝑡,𝑡𝑡+1), new females (𝑊𝑊𝑓𝑓,𝑡𝑡,𝑡𝑡+1…) 

and males (𝑊𝑊𝑚𝑚,𝑡𝑡,𝑡𝑡+1…), total individuals (𝑁𝑁𝑡𝑡,𝑡𝑡+1…), survival (s), and GEM transition probabilities. 

In addition, for each replicate the GEM model also provided predictions of individual detection 

probability (p) and detection probability of genetic sign (𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐). We used the following 

uninformative prior distributions: for survival (s) we used a uniform distribution constrained 

between 0.1 and 1; for litter probability (p.litter) we used a uniform distribution constrained 

between 0 and 1; and for both detection probabilities (p and 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐) we used uniform 

distributions constrained between 0 and 1. For each GEM model run we ran 3 MCMC chains 

each for 400,000 iterations, discarding the first 10,000 as a burn-in, and included thinning at a 

rate of 10 to reduce the size of data stored for each replicate. All simulations were conducted in 

program R (version 4.0.2; R Development Core Team 2020) and JAGS (http://mcmc-

jags.sourceforge.net). Code to generate simulated data, observation, and execute the GEM model 

is included in Appendix A. 

Model Performance 

To assess the GEM model performance, we first assessed model convergence. To assess 

model convergence, we visually examined the trace plots (King et al. 2010) and used the 𝑅𝑅� 

statistic which is a ratio estimator of how variable each chain was compared to how variable all 

chains were and should be around 1.0 (Brooks and Gelman 1998). For a given replicate if the 

average 𝑅𝑅� across all GEM model predictions was at or below 1.05 we assumed the model had 

converged for that replicate. If the average 𝑅𝑅� was higher than 1.05, we discarded the replicate. 

This process was done until we had 100 replicates that converged.  

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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We used four metrics to assess the GEM model performance, or the ability of the model 

to recover the true parameter values for the following biological and observation parameters: 

adult female, 𝑁𝑁𝑓𝑓,𝑡𝑡,𝑡𝑡+1…, and male, 𝑁𝑁𝑚𝑚,𝑡𝑡,𝑡𝑡+1…, abundance, birth events, 𝐵𝐵𝑡𝑡,𝑡𝑡+1…, new females, 

𝑊𝑊𝑓𝑓,𝑡𝑡,𝑡𝑡+1…, new males, 𝑊𝑊𝑚𝑚,𝑡𝑡,𝑡𝑡+1…, total individuals, 𝑁𝑁𝑡𝑡,𝑡𝑡+1…, survival, s, and GEM transition 

probabilities. For each replicate, all true parameters were known based on the simulated 

population in that replicate and all predicted parameters were from the GEM model posterior 

predictions, which were estimated using only the simulated observation data. First, we measured 

coverage, which is the percent of time out of all of the simulations that the 95% Bayesian 

credible interval (CRI) contained the true value of the simulated population. Next, we calculated 

mean absolute percent error of GEM model estimates, which is the absolute value of the 

difference between the true simulated population parameter value and predicted GEM model 

value, divided by the true simulated population parameter value, multiplied by 100. In addition, 

we added a measure we called mean absolute individual error to assist in interpretation of the 

mean absolute percent error metric. We felt that mean absolute percent error is difficult to 

interpret with very small populations because each individual makes up such a large percentage 

of the population (i.e., one individual makes up 25% of a population of 4), so mean absolute 

individual error is the absolute value of the total individuals that the abundance estimates 

deviated by. To determine the accuracy of the GEM model estimates, we calculated relative root 

mean square error (RRMSE) for each estimated parameter using the following equation: 

29) 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 =  
�

1
𝑟𝑟∑ (𝜃𝜃�𝑘𝑘−𝜃𝜃𝑘𝑘)2𝑛𝑛

𝑖𝑖=1
𝜃𝜃�

 

where r was the number of replicates, 𝜃𝜃�𝑘𝑘 is the predicted parameter value and 𝜃𝜃𝑘𝑘 is the true value 

at replicate k and �̅�𝜃 is the mean true value of the parameter over all replicates. We used RRMSE 

so that accuracy was comparable across all of the parameters in the GEM model and replicates. 
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Management Example 

 We ran an additional 200 replicates with the same process described above with two 

different starting conditions in breeding potential (GEM state 4). Rather than a draw from a 

Poisson with a mean of 𝜆𝜆, we set the starting conditions for 100 replicates to be 2 individuals (a 

female and a male) to represent a new population and 100 replicates to be 8 individuals (4 

females and 4 males) to represent an established population. We only tracked the probability to 

retain breeding potential, 𝜓𝜓𝑡𝑡+1,44, and adult female abundance adult female (𝑁𝑁𝑓𝑓,𝑡𝑡,𝑡𝑡+1…) over the 

11 time steps. All other processes were conducted as described in the methods section above. In 

addition, Appendix B contains further explorations of these simulations and how the GEM model 

performs with lower starting GEM states. 

 

RESULTS 

GEM model convergence was achieved for all parameters during the simulation. Visual 

inspection of MCMC chain plots all showed visual signs of adequate mixing. In addition, the 𝑅𝑅� 

statistics for each parameter, were all around 1. All results presented in this section are 

summarized over all simulations, including all time steps within each simulation replicate, and 

the notation for each variable below has been simplified with t and j subscripts to represent the 

values of time and visits over the simulations. Results described below are summarized in Table 

1-2.  

Biological Process  

 The GEM model estimated biological process variables well. For female adult 

abundance, 𝑁𝑁𝑓𝑓,𝑡𝑡,𝑡𝑡+1… , coverage was 98.1%, mean absolute percent error was 74.5%, mean 

absolute individual error was 6.61, and RRMSE was 0.587. For male adult abundance, 𝑁𝑁𝑚𝑚,𝑡𝑡,𝑡𝑡+1… , 
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coverage was  87.9%,  mean absolute percent error was 74.5%, mean absolute individual error 

was 7.25, and RRMSE was 0.676. For birth events, 𝐵𝐵𝑡𝑡,𝑡𝑡+1…, coverage was 99.9%, mean absolute 

percent error was 71.0%, mean absolute individual error (in this case representing events) was 

1.18, and RRMSE was 0.583. For new females, 𝑊𝑊𝑓𝑓,𝑡𝑡,𝑡𝑡+1…, coverage was 99.7%, mean absolute 

percent error was 88.0%, mean absolute individual error was 3.68, and RRMSE was 0.646. 

For new males, 𝑊𝑊𝑚𝑚,𝑡𝑡,𝑡𝑡+1…, coverage was 99.7%, mean absolute percent error was 91.2%, mean 

absolute individual error was 3.71, and RRMSE was 0.653. For total individuals, 𝑁𝑁𝑡𝑡,𝑡𝑡+1, coverage 

was 98.5%,  mean absolute percent error was 54.4%, mean absolute individual error was 18.37, 

and RRMSE was 0.551. For survival, s, coverage was 100%, mean absolute percent error was 

8.10%, and RRMSE was 0.0767. In addition, GEM population state, 𝑧𝑧2𝑡𝑡, coverage was high with 

an overall coverage of 100%.  

The GEM model predicted only transition probabilities that occurred. In all replicates, the 

populations stayed in breeding potential, so the GEM model only provided predictions for 

transitions from breeding potential (GEM state 4) with an average coverage of 99.0% (Table 1-

2). Overall coverage was high for all possible transitions; coverage of the probability of staying 

in breeding potential (𝜓𝜓𝑡𝑡+1,44) was 100%; coverage of the probability of transitioning from 

breeding potential to isolated individuals (𝜓𝜓𝑡𝑡+143) was 100%; coverage of the probability of 

transitioning from breeding potential to a single isolated individual (𝜓𝜓𝑡𝑡+1,42) was 95.9%; 

coverage of the probability of transitioning from breeding potential to locally extinct (𝜓𝜓𝑡𝑡+1,41) 

was 100%. Overall, the error of the transition probabilities was higher than the biological 

variables. For the probability of staying in breeding potential (𝜓𝜓𝑡𝑡+1,44) or going transitioning to 

locally extinct (𝜓𝜓𝑡𝑡+1,41), the mean absolute percent error was low (22.0% for both), whereas the 

mean absolute percent error for the other transitions from breeding potential to isolated 
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individuals (𝜓𝜓𝑡𝑡+1,43) and a single isolated individual (𝜓𝜓𝑡𝑡+1,42) was much higher at 1.60x107% 

and 2.33x1025%, respectively. In addition, the RRMSE showed a similar pattern, with .  

Observation Process  

For the 100 simulations each with 11 time steps, a total of 1,100 simulation time steps 

(GEM questions remained constant across visits within a time step), GEM sampling rules 

resulted in the 100 simulation time steps (9.1%) where the observation question was “Is the 

species present?” with detection data collected, 200 simulation time steps (18.2%) where the 

observation question was “Are multiple individuals present?” with count data collected, and 900 

simulation time steps (72.7%) where the observation question was “Are females and males 

present?” with count and genetic data collected. Individual detection probability, p, was well 

estimated across scenarios. Coverage was 96.0%, mean absolute percent error was 16.9%, and 

RRMSE was 0.191. Genetic sign detection probability, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐, was estimated with less error: 

coverage was 96.0%, mean absolute percent error was 4.96%, and RRMSE was 0.050.  

Management Example 

For the 100 simulations for a new population (2 starting individuals), the GEM model 

estimated female adult abundance, 𝑁𝑁𝑓𝑓,𝑡𝑡,𝑡𝑡+1…, well: coverage was 94.1%, mean absolute percent 

error was 31.0%, mean absolute individual error was 1.17, and RRMSE was 0.235. The 

probability of retaining breeding potential, 𝜓𝜓𝑡𝑡+1,44, was also estimated well: coverage was 

94.2%, mean absolute percent error was 4.46%, and RRMSE was 0.0381. 

For the 100 simulations for an established population (8 starting individuals), the GEM 

model estimated female adult abundance, 𝑁𝑁𝑓𝑓,𝑡𝑡,𝑡𝑡+1…, well: coverage was 93.63%, mean absolute 

percent error was 65.5%, mean absolute individual error was 2.91, and RRMSE was 0.521. The 
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probability of retaining breeding potential, 𝜓𝜓𝑡𝑡+1,44, was also estimated well: coverage was 

94.5%, mean absolute percent error was 2.32%, and RRMSE was 0.0206. 

 

DISCUSSION 

We demonstrate that the ability to change questions within a pre-defined suite of questions is an 

approach to monitoring that can provide relevant information so knowledge is continually built 

upon and that it can be accomplished with the GEM framework, combining hierarchical 

integrated population models and multistate model frameworks. We present an example of those 

combined model frameworks and demonstrate that not only does the GEM model and sampling 

approach consistently predict biological variables accurately, but that it can do so while 

accommodating changing questions based on what is known. Rather than assume that the key to 

relevant and effective monitoring is careful upfront planning to determine a single question of 

interest, the GEM framework provides a way one can outline the dynamics fundamental to a 

population of interest through the GEM IPM portion, adjust sampling in a predictable way with 

GEM sampling rules based on what is currently known about the population, and augment at 

various points additional monitoring variables are of interest to improve monitoring estimates. In 

addition, by providing a quantitative link between observation and the population through GEM 

population state transitions, time-relevant information (i.e., predictions for the next season) that 

is biologically meaningful, such as the probability of breeding capacity persisting in the next 

year, can be produced without losing a long-term monitoring data stream. In addition, the 

sampling rules allow for a series of changing questions (Figure 1-4) that are common for rare 

wildlife and small populations (Golding et al. 2018), but they are flexible enough to still work 

once a population is large.  
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The ability of the GEM model to reliably predict both observed and unobserved 

population parameters from a changing set of sampling approaches, including different field 

methods and data types, is due largely to the underlying IPM structure. Abundance or occupancy 

values that were directly “observed” in the simulation through detection of adults were predicted 

with similar credible interval coverage as those that were not directly “observed”, such as birth 

events per season and new individuals. Although error rates, as measured by mean absolute 

percent error and RRMSE, were lower for the directly “observed” parameters, the high coverage 

for all parameters and the ability to quantify the uncertainty around predictions suggests high 

power to perform in real world settings for small populations. In fact, in many small populations, 

stochastic fluctuations make predictions difficult, and one may therefore not even expect high 

amounts of predictability. However, having a range of possibility expressed through uncertainty 

may be useful for decisions or ecological models, which is something that other single-question 

monitoring approaches do not provide well or at all for small populations. In addition, with the 

prediction of unobserved variables, data that is difficult to obtain for small populations, such as 

survival, does not have to be directly observed to be estimated. Having unobserved variables as 

part of the long-term data stream also means that future monitoring can shift again to focus on a 

previously unobserved parameter and still have a consistent data stream for that parameter from 

the start of monitoring. More potential mechanistic understandings are available with this full 

knowledge than with monitoring confined to a single, repeated question.  

The GEM state structure and transition probabilities are designed to allow for tracking 

population conditions through various phases of small population dynamics: starting with 

individual colonists and progressing through the generation of a small population containing 

males and females and through its decay toward extinction. It can effectively track these 
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dynamics because each of the states and transition probabilities are derived from the observed 

field efforts that contain nested information: in monitoring to determine multiple sexes you can 

detect the states of occupancy or in looking for both sexes you can individuals you count 

individuals. As such, it provides information on small population dynamics that are absent when 

focusing on a single metric. In addition, the transition probabilities of the states are biologically 

relevant and provide time-relevant information (for the next season) in a long-term program, 

which may be more meaningful than long-term trend for a small population. For instance, the 

probability of transitioning out of the multiple individuals and both sexes present (GEM state 4) 

reflects the probability of losing breeding capacity between the end of a survey season and the 

next year. If that probability is predicted to be high, or even highly uncertain, action such as 

limiting access to certain areas can be taken prior to the next year to attempt to bolster 

reproductive success or survival of a litter. Thus, the multistate structure provides the ability to 

produce meaningful information for the immediate future as part of, rather than detracting efforts 

from, the long-term data stream, a key advantage for any long-term monitoring system to remain 

relevant through societal or environmental changes.  

We also show how the GEM state structure and transition probabilities can allow for 

tracking different population metrics such as female abundance and the probability to retain 

breeding potential if question change through the management example. In both a new and 

established population the GEM model and sampling structure provided reliable estimates of 

changing probabilities and abundance. This is important because if the desired type of 

information changes between these metrics, or even to other metrics that are outline in the 

population model portion of the IPM and linked to the multistate structure, this shift can be 

accommodated seamlessly. In addition, if an information goal shifted to a vital rate, such as 
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survival, not only is that variable tracked but because of the IPM structure additional survival 

observation data can be collected and integrated with the existing data stream. 

The GEM structure is also very flexible on the type of data and field methods that can be 

used. The nested nature of the questions also leads to operational efficiencies. In the initial state 

of asking whether the species is present, methods can be designed to detect unmarked individuals 

using flexible and inexpensive methods such as camera sets (Steenweg et al. 2017) or snow-print 

based DNA samples (Franklin et al. 2019). Once an organism has been detected, sampling is 

augmented to more demanding methods: examples include more rigorous camera-based 

detections that allow the application of space to detection models (Moeller et al. 2018) or 

obtaining individual identifications through the collection of forensic DNA (e.g., using scat dogs 

[Wasser et al. 2004] or snow backtracking [McKelvey et al. 2006]) that allows both individual 

and sex identifications. Because the implementation of more intensive non-invasive sample 

collection methods are only undertaken once there is knowledge that the area is occupied (using 

the GEM sampling rules), they are only applied in areas where they are add information to what 

is currently known, leading to an effort that is targeted towards maximizing information gain. 

We are aware that this progression is often applied ad-hoc in occupancy designs. The multistate 

design, however, formalizes its application into a coherent long-term monitoring program. 

There are a few important limitations to consider for the execution of the GEM 

framework as presented. One limitation for small populations is the difficulty of initial values: 

the Bayesian GEM structure at low population values is sensitive to initial values and at very low 

abundance numbers (which may reflect realities) may fail repeatedly due to the stochastic nature 

of such populations. In addition, as with many multistate and IPM models, the model is 

computationally intensive and often can become cumbersome to track because of the large 
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number of dimensions calculated in each iteration. This computational load will increase for any 

parameters that are expected to vary, like survival with different age classes, although there are 

methods to speed up processing (e.g., Yackulic et al. 2020).  

We present a general format for the GEM biological process to show its utility and 

acknowledge that many possible extensions or iterations can be built based on the principles 

provided here. We suggest that further iterations include different or additional biological 

parameters, such as emigration and immigration, to reflect the population of interest, as well as 

different observation processes. We suggest that further simulation and empirical research be 

conducted to provide guidance on how to most effectively use the quantitative metrics in the 

GEM framework, such as transition probabilities or associated uncertainty, to formally guide 

field work, as the structure provides many potential benefits for field operational efficiencies. 

We further suggest future research into sampling approaches with GEM. To illustrate the GEM 

concept and model, we assumed distinct and closed populations and annual sampling with three 

repeat visits within the season, although this is not always reflective of reality. There are 

practical benefits associated with tracking small populations rather than individuals in the GEM 

framework. In conventional occupancy modeling, the ideal spatial area to associate with 

occupancy is generally considered to be defined by a single home range. However, for a variety 

of reasons but most fundamentally because a grid will not line up precisely with the underlying 

home range structure, individual organisms are detected in multiple cells, a fundamental 

violation of model closure assumptions (MacKenzie et al. 2017). The cells associated with a 

multistate model can be larger: they can be delineated to fit a small population and can be more 

closely aligned with topographic features that define populations. For example, Squires et al. 

(2007) estimated the population of wolverines across 3 disjunct mountain ranges to ~12 
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individuals. Applying the multistate model to wolverines in this area, each mountain range 

would provide an appropriate cell. In addition, we see many opportunities for further exploration 

of the use of GEM under different monitoring scenarios, including understanding the effects of 

different monitoring time intervals, variation in biological parameters, and the use of additional 

non-invasive data streams to observe some of the latent variables in the model. 

We believe the GEM framework is an important step forward in rethinking the approach 

to monitoring wildlife populations. Although we highlight its utility for rare species, where 

information gains are often rapid and questions change frequently, we see this approach as an 

important concept for all wildlife monitoring. As we face unprecedented and unpredictable 

change in the climate and environment, there is no doubt that many of our static monitoring 

systems of repeated questions over long periods of time will become obsolete, as they will 

increasingly not reflect current conditions and therefore questions. As such, we see the need to 

re-envision monitoring from a static, repeated process, to a flexible, dynamic, GEM process that 

can be adapted relative the information we are interested in acquiring. We have demonstrated 

that the flexible quantitative Bayesian tools available today can provide the modeling structures 

to accomplish a GEM process, including the ability to have a continuous data stream as questions 

change or species change from rare to common or common to rare. But more importantly, we see 

the need for a shift in thinking about what wildlife monitoring is and should accomplish. 

Ultimately, we believe that we must build evolutionary monitoring systems; otherwise 

monitoring programs, and the information that they provide that once seemed relevant, will go 

extinct. 
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TABLES 

Table 1-1) The Goal Efficient Monitoring (GEM) sampling rules applied across four time steps 

(survey seasons). The process outlined below is based on a hypothetical example for a mountain 

range thought to contain Canada lynx (Lynx canadensis) that has no recent (within the previous 

year) confirmation of that. Although the methods listed are specific to this example, these are not 

intended to represent the only methods available to obtain that type of data. Note that in time step 

4, the females and males question is asked again, but in this case it represents the question if 

females and males continue to be present because it follows a year where they were detected. 

Time 
step 

Knowledge 
from 

previous 
season’s 
sampling 

GEM 
question GEM sampling rule Data to collect 

this season Field method Season 
outcome 

1 None 
Is the 
species 
present? 

GEM sampling rule 1:  
 
If nothing is known, 
obtain confirmation 
of presence only 

Detection/non-
detection Snow tracking Presence 

confirmed 

2 Presence 

Are 
multiple 
individuals 
present? 

GEM sampling rule 2:  
 
If presence has been 
confirmed in the 
previous season, 
obtain information 
on whether multiple 
individuals are 
present via counts 

Count 
 
Derived: 
Detection/non-
detection  

Snow tracking Count >2 on a 
single visit 

3 Multiple 
individuals 

Are females 
and males 
present? 

GEM sampling rule 3:  
 
If counts are >2 across a 
single visit last season, 
obtain information on 
whether females and 
males are present via 
collection of sex 
identifying information 
(e.g., genetic material) 
during counts 

Count 
 
Count of 
females and 
males 
 
Derived: 
Detection/non-
detection, GEM 
state 

Snow tracking 
plus 
backtracking 
to genetic 
material 

Females and 
males 
confirmed 
 
Derived: 
GEM state 4 
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4 Females 
and males  

Are females 
and males 
present? 

GEM sampling rule 5:  
 
If multiple individuals 
and both sexes were 
confirmed through 
counts and sex id last 
season, obtain 
information on whether 
females and males are 
present via collection of 
sex identifying 
information (e.g., genetic 
material) during counts 

Count 
 
Count of 
females and 
males 
 
Derived: 
Detection/non-
detection, GEM 
state 

Snow tracking 
plus 
backtracking 
to genetic 
material 

Females and 
males 
confirmed 
 
Derived: 
GEM state 4 
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Table 1-2) The parameters of the GEM model and performance metrics across 100 replicate 

simulations, each with 3 MCMC chains, 50,000 iterations, 5,000 burn-in period and no thinning, 

with the full observation scenario (counts of males and females with 3 visits and one independent 

observation of GEM population state every time step). RRMSE = relative root mean square 

error. 

Parameter Description 

Mean 
absolute 
percent 

error 

Coverage RRMSE 

Mean 
absolute 

individual 
error 

Biological process 

𝑵𝑵𝒇𝒇𝒕𝒕  
Female abundance in time t 

66.0% 91.0% 0.587 6.61 

𝑵𝑵𝒎𝒎𝒕𝒕  
Male abundance in time t 

74.5% 87.9% 0.676 7.25 

𝒛𝒛𝒛𝒛𝒕𝒕 
State of population in time t 

-- 100% -- -- 

𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 
Probability of transitioning 
from state 4 at time t to 1 at 
time t+1 

22.0% 100% 0.215 -- 

𝝍𝝍𝒕𝒕𝒕𝒕𝒛𝒛 
Probability of transitioning 
from state 4 at time t to 2 at 
time t+1 

2.33x1025% 95.9% 1.35 -- 

𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 
Probability of transitioning 
from state 4 at time t to 3 at 
time t+1 

1.60x107% 100% 3.85 -- 

𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 
Probability of not 
transitioning from state 4 at 
time t to time t+1 

22.0% 100% 0.216 -- 

𝑩𝑩𝑩𝑩𝑩𝑩𝒕𝒕𝑩𝑩 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕 
Number of birth events in the 
population at time t 71.0% 99.9% 0.583 -- 

𝑵𝑵𝒆𝒆𝑵𝑵 𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒇𝒇𝒕𝒕 
New females added from 
birth events at time t 88.0% 99.7% 0.646 3.68 

𝑵𝑵𝒆𝒆𝑵𝑵 𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒎𝒎𝒕𝒕 
New males added from birth 
events at time t 91.2% 99.7% 0.653 3.71 

𝑵𝑵𝒕𝒕 
Total at time t  

54.4% 98.5% 0.551 18.37 

Observation process 

𝒑𝒑 
Probability of detection of an 
individual 16.9% 96.0% 0.191 -- 

𝒑𝒑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐 
Probability of detection of 
genetic sign 4.96% 96.0% 0.050 -- 
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FIGURES 

Figure 1-1) An example of four GEM population states of interest for Canada lynx (Lynx 

canadensis): 1) locally extinct (not present shown as gray); 2) single isolated individual; 3) 

isolated individuals (single sex shown as blue); and 4) breeding potential (males represented as 

blue and females represented as orange). 
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Figure 1-2) An example of four GEM population states of interest for Canada lynx (Lynx 

canadensis),  locally extinct (not present shown as gray), single isolated individual (either sex is 

represented as black), isolated individuals (single sex shown as blue), and breeding potential 

(males represented as blue and females represented as orange), and their transition probabilities 

within a closed population (i.e., only births and deaths lead to population change). Transition are 

shown by the state in which they start: a = transitions from breeding potential (GEM state 4), b = 

transitions from isolated individuals (GEM state 3), c = transitions from isolated individual 

(GEM state 2). The not present state is not shown because once a population is in the not present 

state it stays in that state with a probability of one (as there are only births and deaths shown in 

this example). Note that transition probabilities, 𝜓𝜓 , are simplified for display and exclude time 

subscripts and use the number for the GEM states. 
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Figure 1-3) The integrated population model framework for a hypothetical population of Canada 

lynx (Lynx canadensis) over a single time step. The time scale included shows a single calendar 

year divided by months, including notations of t and t+1 relative to the model. The biological 

process and equations are represented on the top of the timeline and observation process and 

equations are shown on the bottom. Note that all possible parts of a GEM observation approach 

is shown in the observation process.  
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Figure 1-4) Example results from a simulation replicate. The total abundance predicted by the GEM model (black), uncertainty 

associated with the prediction (gray ribbon), and true value of the simulation (blue) is shown on top. GEM questions, knowledge, field 

methods and per-visit data generated with GEM sampling rules, with detection/non-detection first, count of track encounters second, 

and females and males third, are shown on the bottom. MI = multiple individuals, MIB = multiple individuals, both sexes.  
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APPENDIX A: R CODE  

R code for creating the simulations, including packages needed to run the code and:  

1) A function to simulate the biological process (gem_sim_bio) 

2) A function observation process (gem_sim_obs) 

3) A function to run the GEM model using JAGS (gem_run_model) 

####################################################################### 
packages = c("jagsUI", "reshape2", "dplyr", "rlist") 
 
package.check <- lapply(packages,  FUN = function(x) { 
        if (!require(x, character.only = TRUE)) { 
          install.packages(x, dependencies = TRUE) 
          library(x, character.only = TRUE)}}) 
 
 
####################################################################### 
# 1. GEM_SIM_BIO 
####################################################################### 
 
# Name: gem_sim_bio 
# Description:  function to simulate biological process of one or multiple small 
populations with four GEM states (not present, single individual present, multiple 
individuals of a single sex present, and multiple individuals with both sexes present) 
 
####################################################################### 
# Arguments  
####################################################################### 
 
# n.group: number of groups (populations), whole number 
# s.group: group size (for one sex), whole number 
# n.timestep: number of time steps, whole number 
# n.states: number of GEM population states, whole number 
# s.surv: survival probability, probability between 0 and 1 
# p.litter: probability of having a litter, probability between 0 and 1 
# n.litter: number of individuals per litter, whole number  
# sr.litter: sex ratio of females to females per litter, number between 0 and 1 
 
####################################################################### 
# Function outputs 
####################################################################### 
 
# Biodata: a list written to the global environment containing simulated population  
# data 
 
####################################################################### 
# Function  
####################################################################### 
 
gem_sim_bio <- function(n.group, s.group, n.timestep, n.states, s.surv, p.litter,  
                        n.litter, sr.litter){ 
### Create matrices/arrays to hold data 
# Start abundance 
nm <-array(data = NA, dim = c(1,n.timestep,n.group), 
          dimnames = list(c("nm"), 
                          c(1:n.timestep), 
                          c(1:n.group))) 
nf <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("nf"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
 
# Birth events 
be <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("be"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
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# New individuals 
ni <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("ni"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
 
# New males 
wm <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("wm"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
 
# New females 
wf <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("wf"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
 
# End abundance 
wnm <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("wnm"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
wnf <-array(data = NA, dim = c(1,n.timestep,n.group), 
           dimnames = list(c("wnf"), 
                           c(1:n.timestep), 
                           c(1:n.group))) 
 
wtot <-array(data = NA, dim = c(1,n.timestep,n.group), 
            dimnames = list(c("wtot"), 
                            c(1:n.timestep), 
                            c(1:n.group))) 
 
# Lambda 
lam <-array(data = NA, dim = c(1,n.timestep,n.group), 
          dimnames = list(c("l"), 
                          c(1:n.timestep), 
                          c(1:n.group))) 
 
# Z - states 
z <-array(data = NA, dim = c(1,n.timestep,n.group), 
            dimnames = list(c("z"), 
                            c(1:n.timestep), 
                            c(1:n.group))) 
 
nfa1 <-NULL 
nma1 <-NULL 
   
# Reproduction 
litter_prob<-matrix(NA,n.timestep,n.group) 
state_breed <-matrix(NA,n.timestep,n.group) 
 
# Survival 
S <-matrix(NA,n.group,n.timestep) 
 
# Probability of litter 
L <-matrix(NA,n.group,n.timestep)  
   
# Fill in survival and probability of litter 
for (l in 1:n.group){  
for (k in 1:n.timestep){  
  S[l,k] <-s.surv  
  L[l,k] <-p.litter  
} 
} 
 
############################ Initial time 1 values #############################  
## Initial states for time 1 
# Initial population size at time 1 
for (i in 1:n.group){  
  nfa1[i] <- rpois(1,s.group) # females 
  nma1[i] <- rpois(1,s.group) # males 
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} 
######################### Loop to generate population ##########################  
# Population 
for (i in 1:n.group){          
  for(j in 2:n.timestep){      
## Time 1 
# Entering individuals/state 
  nm[1,1,i] <- as.numeric(nma1[i])  
  nf[1,1,i] <- as.numeric(nfa1[i])  
  z[1,1,i] <-ifelse(nm[1,1,i] >= 1 & nf[1,1,i] >=1, 4, 
             ifelse(nm[1,1,i] >  1 & nf[1,1,i] == 0|nf[1,1,i] > 1 & nm[1,1,i] == 0, 3, 
             ifelse(nm[1,1,i] == 1 & nf[1,1,i] == 0|nf[1,1,i] ==1 & nm[1,1,i] == 0, 2, 
             ifelse(nm[1,1,i] == 0 & nf[2,1,i] == 0,1,NA)))) 
   
# Breeding possible 
  state_breed[1,i] <-as.numeric(ifelse(z[1,1,i]==4,1,0)) 
  litter_prob[1,i] <-state_breed[1,i]*L[i,1]  
   
# Births 
  be[1,1,i] <- rbinom(1,nf[1,1,i],litter_prob[1,i])  
 
# New individuals  
  ni[1,1,i] <- be[1,1,i]*n.litter 
   
  wm[1,1,i] <- rbinom(1,ni[1,1,i], sr.litter) # new males 
  wf[1,1,i] <- ni[1,1,i] - wm[1,1,i] # new females 
   
# Totals 
  wnm[1,1,i] <- wm[1,1,i] + nm[1,1,i] # total males at time 1 
  wnf[1,1,i] <- wf[1,1,i] + nf[1,1,i] # total females at time 1 
  wtot[1,1,i] <-wnm[1,1,i] + wnf[1,1,i] # total at time 1 
   
# Lambda 
  lam[1,1,i] <- NA 
 
## Time 2 and beyond 
## Entering individuals/state 
  nm[1,j,i] <- rbinom(1,wnm[1,j-1,i],S[i,j]) 
  nf[1,j,i] <- rbinom(1,wnf[1,j-1,i],S[i,j]) 
  z[1,j,i] <-ifelse(nm[1,j,i] >= 1 & nf[1,j,i] >=1, 4, 
             ifelse(nm[1,j,i] > 1  & nf[1,j,i] == 0|nf[1,j,i] > 1 & nm[1,j,i] == 0, 3, 
             ifelse(nm[1,j,i] == 1 & nf[1,j,i] == 0|nf[1,j,i] ==1 & nm[1,j,i] == 0, 2, 
             ifelse(nm[1,j,i] == 0 & nf[1,j,i] == 0,1,NA)))) 
 
# Breeding possible 
  state_breed[j,i] <-as.numeric(ifelse(z[1,j,i]==4,1,0)) 
  litter_prob[j,i] <-state_breed[j,i]*L[i,j]  
   
# Births 
  be[1,j,i] <- rbinom(1, nf[1,j,i], litter_prob[j,i]) 
   
# New individuals  
  ni[1,j,i] <- be[1,j,i]*n.litter 
   
  wm[1,j,i] <- rbinom(1,ni[1,j,i],sr.litter) # new males 
  wf[1,j,i] <- ni[1,j,i] - wm[1,j,i] # new females 
   
# Totals 
  wnm[1,j,i] <- wm[1,j,i] + nm[1,j,i] # total males 
  wnf[1,j,i] <- wf[1,j,i] + nf[1,j,i] # total females  
  wtot[1,j,i] <- wnm[1,j,i] + wnf[1,j,i] # total 
 
  # Lambda 
  lam[1,j,i] <- wtot[1,j,i]/wtot[1,j-1,i] 
 
} 
} 
 
################################################################################ 
### Create long data frames for plotting and result/diagnostic comparisons 
 
  nm2 <-as.data.frame(melt(nm)) 
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  colnames(nm2) <-c("variable","time","group","value") 
   
  nf2 <-as.data.frame(melt(nf)) 
  colnames(nf2) <-c("variable","time","group","value") 
   
  z2 <-as.data.frame(melt(z)) 
  colnames(z2) <-c("variable","time","group","value") 
   
  be2 <-as.data.frame(melt(be)) 
  colnames(be2) <-c("variable","time","group","value") 
   
  ni2 <-as.data.frame(melt(ni)) 
  colnames(ni2) <-c("variable","time","group","value") 
   
  wm2 <-as.data.frame(melt(wm)) 
  colnames(wm2) <-c("variable","time","group","value") 
   
  wf2 <-as.data.frame(melt(wf)) 
  colnames(wf2) <-c("variable","time","group","value") 
   
  wnm2 <-as.data.frame(melt(wnm)) 
  colnames(wnm2) <-c("variable","time","group","value") 
   
  wnf2 <-as.data.frame(melt(wnf)) 
  colnames(wnf2) <-c("variable","time","group","value") 
   
  wtot2 <-as.data.frame(melt(wtot)) 
  colnames(wtot2) <-c("variable","time","group","value") 
   
  lam2 <-as.data.frame(melt(lam)) 
  colnames(lam2) <-c("variable","time","group","value") 
   
  n2 <-rbind(nm2,nf2,z2,be2,ni2,wm2,wf2,wnm2,wnf2,wtot2,lam2) 
 
####################### Write data to global environment ####################### 
  biodata <- list("n.group"= n.group, "s.group"= s.group,"n.timestep"=n.timestep,  
                  "n.states"= n.states, "s.surv" = s.surv, "S"=S,  
                  "p.litter"= p.litter, "L"=L, "n.litter"= n.litter,  
                  "sr.litter" = sr.litter, "N_long" = n2, "breed"= state_breed,  
                  "nf.init" = nfa1, "nm.init"= nma1, "nf" = nf, "nm" = nm,"z" = z, 
                  "be" = be, "ni" = ni, "wm" = wm, "wf" = wf, "wnm" = wnm,  

     "wnf" = wnf,"wtot" = wtot, "lam" = lam) 
  list2env(biodata,.GlobalEnv) 
} 
 
####################################################################### 
# 2. GEM_SIM_OBS 
####################################################################### 
 
# Name: gem_sim_obs 
# Description:  function to simulate observation process with GEM sampling rules 
outlined in this manuscript for one or multiple small populations with four GEM states 
(not present, single individual present, multiple individuals of a single sex present, 
and multiple individuals with both sexes present) 
 
####################################################################### 
# Arguments  
####################################################################### 
 
# p: detection probability of an individual, probability between 0 and 1 
# nf: abundance of females from gem_sim_bio function 
# nm: abundance of males from gem_sim_bio function 
# n.visits: number of repeat visits to a population during a survey season  
# n.timestep: number of time steps 
# n.states: number of GEM population states 
# z: data frame of occupancy of the population from gem_sim_bio function 
# pgenetic: detection probability of genetic sign, probability between 0 and 1 
 
####################################################################### 
# Function outputs 
####################################################################### 
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# obsdata: a list written to the global environment containing observation data 
 
####################################################################### 
# Function  
####################################################################### 
 
gem_sim_obs <- function(p, nf, nm, n.visits, n.group, n.timestep, n.states, z, 
pgenetic){ 
   
### Create matrices/arrays to hold data 
  # Present, counts, genetic sign, females genetic sign, males genetic sign 
  yp <- yc <- yg <- ygf <- ygm <-array(data = NA, dim = c(n.visits, n.timestep, 
n.group)) 
 
for (k in 1:n.visits){  
  for (i in 1:n.group){          
    for(j in 2:n.timestep){  
     
    ## Time 1 
    ## Is the species present? 
      yp[k,1,i] <- rbinom(1,ifelse(z[1,1,i]>1,1,0),1-((1-p)^(nf[1,1,i]+nm[1,1,i]))) 
       
    ## Time 2 and beyond 
    ## Is the species present? 
      yp[k,j,i] <- rbinom(1,ifelse(z[1,j,i]>1,1,0),1-((1-p)^(nf[1,j,i]+nm[1,j,i]))) 
       
    ## Are multiple individuals present? 
      yc[k,j,i] <- ifelse(any(yp[,j-1,i]==1),rbinom(1,nf[1,j,i]+nm[1,j,i],p),NA) 
     
    ## Are females and males present? 
      yg[k,j,i] <- ifelse(any(yc[,j-1,i]>1),rbinom(1,yc[1,j,i],pgenetic),NA) 
      ygf[k,j,i] <-rhyper(1,nf[1,j,i],nf[1,j,i],yg[k,j,i]) 
      ygm[k,j,i] <-yg[k,j,i]-ygf[k,j,i] 
    }    
  } 
} 
 
################################################################################ 
  obsdata <- list("p"= p, "yp"= yp,"yc"= yc, "yg" = yg, "ygf"=ygf, "ygm" = ygm, 
                  "pgenetic" = pgenetic, "n.visits" = n.visits) 
  list2env(obsdata ,.GlobalEnv) 
}  
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####################################################################### 
# 3. GEM_RUN_MODEL 
####################################################################### 
 
# Name: gem_run_model 
# Description:  function to run the GEM model using R and JAGS 
 
####################################################################### 
# Arguments  
####################################################################### 
# yp: a data frame of the observed presence data  
# yc: a data frame of the observed count data  
# yg: a data frame of the observed genetic sign data  
# ygf: a data frame of the observed genetic sign from females data  
# params: parameters to keep track of in the model (example: params = c(“N”,”p”,”z3”)) 
# n.group: number of groups (populations) 
# s.group: mean group size (for one sex) 
# n.timestep: number of time steps 
# n.visits: number of visits in observation season 
# n.litter: number of individuals per litter  
# sr: sex ratio of females to females per litter 
# n.iter: number of JAGS model iterations to run 
# n.burnin: number of burn-in iterations to discard 
# s.surv.init: mean of diffuse normal distribution initial survival value 
 
####################################################################### 
# Function outputs 
####################################################################### 
 
# out: a list written to the global environment of the JAGS model output for the 
parameters that are  
# being tracked 
 
####################################################################### 
# Function  
####################################################################### 
gem_run_model <- function(yp, yc, yg, ygf, params, n.group, s.group, n.timestep,  
                          n.visits, n.litter, sr, n.iter, n.burnin, s.surv.init){ 
 
sink("Model.txt") 
cat(" 
    model{ 
    ## Priors  
    # Detection 
    p ~ dunif(0, 1) 
    s.surv ~ dunif(0.1,1) 
    p.litter ~ dunif(0,1) 
    pgenetic ~ dunif(0,1) 
    lambda ~ dgamma(0.001,0.001) 
 
   for(i in 1:n.group){   
   for(j in 1:n.timestep){ 
    S[i,j] <- s.surv  
    L[i,j] <- p.litter  
    sexratio[i,j] <- sr 
    nl[i,j] <-n.litter 
    } 
   } 
     
    for(i in 1:n.group){ 
      nfi[i] ~ dpois(lambda)  
     nmi[i] ~ dpois(lambda) 
    } 
 
    ## Biological model 
    for(i in 1:n.group){  
        
       
      ## Time 1 
       
      # Entering individuals/state 
     nf[1,1,i] <-nfi[i]  
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     nm[1,1,i] <-nmi[i]  
     z[1,1,i] <- ifelse(nm[1,1,i] >= 1 && nf[1,1,i] >=1,4, 
                  ifelse(nm[1,1,i] > 1 && nf[1,1,i] == 0 || nf[1,1,i] > 1 && nm[1,1,i] 
== 0,3, 
                  ifelse(nm[1,1,i] == 1 && nf[1,1,i] == 0 || nf[1,1,i] == 1 && 
nm[1,1,i] == 0,2, 
                  ifelse(nm[1,1,i] == 0 && nf[1,1,i] == 0,1,99)))) 
                   
      z2[1,1,i] <- ifelse(z[1,1,i] > 1,1,0) 
 
 
     # Breeding possible 
      state_breed[1,i] <-ifelse(z[1,1,i]==4,1,0) 
      litter_prob[1,i] <-inprod(state_breed[1,i],L[i,1]) 
 
      # Births 
      be[1,1,i] ~ dbin(litter_prob[1,i], nf[1,1,i])  
       
      # New individuals 
      ni[1,1,i] <- inprod(be[1,1,i],nl[i,1]) 
 
      wm[1,1,i] ~ dbin(sexratio[i,1], ni[1,1,i]) 
      wf[1,1,i] <- ni[1,1,i] - wm[1,1,i] 
 
      # Totals 
      wnf[1,1,i] <- wf[1,1,i] + nf[1,1,i] 
      wnm[1,1,i] <- wm[1,1,i] + nm[1,1,i] 
      wtot[1,1,i] <- wnm[1,1,i] + wnf[1,1,i] 
       
    for(j in 2:n.timestep){  
      ## Time 2+ 
      # Entering individuals/state 
     nf[1,j,i] ~ dbin(S[i,j], wnf[1,j-1,i]) 
     nm[1,j,i] ~ dbin(S[i,j], wnm[1,j-1,i])  
     z[1,j,i] <- ifelse(nm[1,j,i] >= 1 && nf[1,j,i] >=1,4, 
                  ifelse(nm[1,j,i] >  1 && nf[1,j,i] == 0 || nf[1,j,i] >  1 && 
nm[1,j,i] == 0,3, 
                  ifelse(nm[1,j,i] == 1 && nf[1,j,i] == 0 || nf[1,j,i] == 1 && 
nm[1,j,i] == 0,2, 
                  ifelse(nm[1,j,i] == 0 && nf[1,j,i] == 0,1,99)))) 
                   
      z2[1,j,i] <- ifelse(z[1,j,i] > 1,1,0) 
     
     # Breeding possible 
      state_breed[j,i] <-ifelse(z[1,j,i]==4,1,0) 
      litter_prob[j,i] <-inprod(state_breed[j,i],L[i,j]) 
       
      # Births 
      be[1,j,i] ~ dbin(litter_prob[j,i], nf[1,j,i])  
       
      # New individuals 
      ni[1,j,i] <- inprod(be[1,j,i],nl[i,j]) 
       
      wm[1,j,i] ~ dbin(sexratio[i,j], ni[1,j,i]) 
      wf[1,j,i] <- ni[1,j,i] - wm[1,j,i] 
       
      # Totals 
      wnf[1,j,i] <- wf[1,j,i] + nf[1,j,i] 
      wnm[1,j,i] <- wm[1,j,i] + nm[1,j,i] 
      wtot[1,j,i] <- wnm[1,j,i] + wnf[1,j,i] 
       
      # Lambda 
      lam[j,i] <- (wtot[1,j,i])/(wtot[1,j-1,i]) 
       
    } 
    } 
  
    ## Observation model 
    for (k in 1:n.visits){  
    for(i in 1:n.group){  
       
    ## Time 1 



61 
 

    # Is the species present? 
      yp[k,1,i] ~ dbin((1-((1-p)^(nf[1,1,i]+nm[1,1,i]))), z2[1,1,i]) 
     
    for(j in 2:n.timestep){   
    ## Time 2 + 
    # Is the species present? 
      yp[k,j,i] ~ dbin((1-((1-p)^(nf[1,j,i]+nm[1,j,i]))), z2[1,j,i]) 
       
    # Are multiple individuals present? 
      yc[k,j,i] ~ dbin(p, nf[1,j,i]+nm[1,j,i]) 
     
    # Are females and males present? 
      yg[k,j,i] ~ dbin(pgenetic, yc[k,j,i]) 
      ygf[k,j,i] ~ dhyper(nf[1,j,i],nm[1,j,i],yg[k,j,i],1) 
 
      } 
     } 
    } 
     
} 
    ", fill = TRUE) 
sink() 
 
# Main data 
data <- list(n.group = n.group, s.group = s.group, n.timestep = n.timestep, 
             n.litter = n.litter, sr = sr, n.visits = n.visits, 
             yp = yp, yc = yc, yg = yg, ygf = ygf) 
 
# Initial value data 
inits <- function() { 
  list(nfi = nf.init, nmi = nm.init, s.surv = rtruncnorm(1, a=0, b=1, mean = 
s.surv.init, sd = 0.15)) 
} 
 
# Run model and save output as object out 
out<- jags(data=data, inits=inits, parameters.to.save = params, "Model.txt", 
           n.chains=3, n.thin=10, n.iter=n.iter, n.burnin=n.burnin, n.adapt=5000, 
           parallel = TRUE) 
 
modeldata <- list("out"= out) 
list2env(modeldata ,.GlobalEnv) 
} 
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APPENDIX B: ADDITIONAL SIMULATIONS 

Additional simulations 

To explore how the GEM model predicts downward transitions, the following additional 
simulations were conducted:  

A. 100 simulations starting in state 2 (1 individual, sex selected randomly) 
B. 100 simulations starting in state 3 (3 individuals, single sex selected randomly) 
C. 100 simulations starting in state 4 low (2 individuals – 1 male, 1 female) 
D. 100 simulations starting in state 4 high (8 individuals – 4 males, 4 females) 

For all simulations, the following variables were used to simulate the true populations in all 
simulations.  

 

 

 

 

 

 

 

 

 

 

 

All simulations were run for 400,000 iterations, with a burn-in period of 10,000 iterations and 
thinning at a rate of 10 due to the large amount of simulation data. Only simulations that 
converged (Rhat values at or below 1.05) were used for analysis. All priors were set as 
uninformative. The survival prior was set as a uniform distribution between 0.1 and 1 and given 
an initial value of a diffuse normal distribution with a mean set to 0.7. All simulations were run 
using the GEM model structure described in Chapter 1. 

  

Biological variable Value 

Survival 0.7 (Mowat et al. 2000) 

Probability of litter 0.5 (Kosterman et al. 2018) 

Number of kittens per litter 2 (Mowat et al. 2000) 

Sex ratio 0.5 (Burstahler et al. 2016) 

Observation variable Value 

Detection probability of 
lynx 

0.63 (Squires et al. 2012) 

Detection probability of 
genetic sign 

0.50 (McKelvey et al. 
2006) – probability for 1 
km search 

Repeat visits 3 

Detection target each year GEM sampling rules 
applied 
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Results  

Variable Scenario A 
(state 2) 

Scenario B 
(state 3) 

Scenario C 
(state 4 low) 

Scenario D 
(state 4 high) Metric 

Total 
individuals 

Mean 
absolute 
percent 
error 

3.07% 9.66% 22.48% 59.56% 

Mean 
absolute 
individual 
error 

0.03 0.15 2.69 9.13 

Coverage 100% 99.91% 97.82% 96.73% 
RRMSE 0.03 0.12 0.18 0.55 

Adult females 

Mean 
absolute 
percent 
error 

4.31% 10.17% 31.00% 65.46% 

Mean 
absolute 
individual 
error 

0.04 0.16 1.18 2.91 

Coverage 100% 100% 94.15% 93.64% 
RRMSE 0.05 0.13 0.23 0.52 

Adult males 

Mean 
absolute 
percent 
error 

2.66% 9.49% 41.65% 69.78% 

Mean 
absolute 
individual 
error 

0.03 0.15 1.40 2.95 

Coverage 100% 99.88% 90.52% 91.73% 
RRMSE 0.03 0.12 0.31 0.54 

New and adult 
females 

Mean 
absolute 
percent 
error 

NA NA 

38.84% 94.00% 

Mean 
absolute 
individual 
error 

1.99 1.73 

Coverage 95.61% 94.00% 
RRMSE 0.26 0.61 
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New and adult 
males 

Mean 
absolute 
percent 
error 

NA NA 

36.68% 69.28% 

Mean 
absolute 
individual 
error 

1.97 4.85 

Coverage 93.44% 95.27% 
RRMSE 0.27 0.59 

Birth events 

Mean 
absolute 
percent 
error 

NA NA 

41.14% 105.68% 

Mean 
absolute 
individual 
error 

0.97 8.00 

Coverage 99.08% 98.55% 
RRMSE 0.37 0.84 

State Coverage 100.00% 100.00% 99.64% 100.00% 

Survival 

Mean 
absolute 
percent 
error 

27.16% 16.47% 5.74% 8.15% 

Coverage 48.00% 100.00% 100.00% 100.00% 
RRMSE 0.21 0.14 0.06 0.09 

Detection 
probability 

Mean 
absolute 
percent 
error 

8.06% 8.99% 9.98% 15.85% 

Coverage 96.00% 98.00% 100.00% 96.00% 
RRMSE 0.08 0.09 0.10 0.17 

Detection 
probability of 
genetic sign 

Mean 
absolute 
percent 
error 

0.07% 0.07% 11.37% 7.81% 

Coverage 61.00% 69.00% 71.00% 86.00% 
RRMSE 0 0 0.12 0.08 
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Transition probabilities  

Variable Scenario A 
(state 2) 

Scenario 
B 

(state 3) 

Scenario 
C 

(state 4 
low) 

Scenario 
D 

(state 4 
high) 

Metric 

Retain breeding potential 
(state 4 to state 4) 

Mean 
absolute 
percent error NA NA 

4.46% 2.32% 

Coverage 94.18% 94.51% 
RRMSE 0.04 0.02 

Lose all of one sex and 
breeding potential (state 4 

to state 3) 

Mean 
absolute 
percent error NA NA 

1.49 x104 

% 
9.72 x106 

% 

Coverage 94.09% 93.48% 
RRMSE 0.77 0.89 

Lose breeding potential 
and retain only a single 

individual (state 4 to state 
2) 

Mean 
absolute 
percent error NA NA 

4.79x1012 

% 
6.08x1016 

% 

Coverage 95.27% 95.90% 
RRMSE 1.05 1.30 

Lose breeding potential 
and go locally extinct 

(state 4 to state 1) 

Mean 
absolute 
percent error NA NA 

4.46% 2.32% 

Coverage 94.18% 94.51% 
RRMSE 0.04 0.02 

Stay as isolated individuals 
of a single sex (state 3 to 

state 3) 

Mean 
absolute 
percent error NA 

25.22% 78.95% 26.27% 

Coverage 100.00% 98.18% 80.00% 
RRMSE 0.24 41.24 0.48 

Lose individuals and retain 
only a single individual 

(state 3 to state 2) 

Mean 
absolute 
percent error NA 

54.72% 79.08% 63.12% 

Coverage 94.12% 98.09% 60.00% 
RRMSE 1.71 35.88 0.76 

Lose individuals and go 
locally extinct (state 3 to 

state 1) 

Mean 
absolute 
percent error NA 

64.92% 87.30% 235.21% 

Coverage 94.12% 98.09% 60.00% 
RRMSE 14.62 41.56 2.88 

Stay as isolated individual 
(state 2 to state 2) 

Mean 
absolute 
percent error 

27.80% 17.88% 9.84% 13.14% 

Coverage 43.98% 96.37% 99.91% 100.00% 
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RRMSE 0.28 1.22 2.58 0.13 

Lose isolated individual 
and go locally extinct 

(state 2 to state 1) 

Mean 
absolute 
percent error 

64.87% 41.71% 22.96% 30.65% 

Coverage 43.98% 96.37% 99.91% 100.00% 
RRMSE 1.98 0.60 6.01 0.31 
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Chapter 2: Goal efficient monitoring for small and isolated populations2 

ABSTRACT 

The need to manage small or isolated populations in an evidence-based conservation world 

requires robust information to inform decisions. Monitoring with associated thresholds or trigger 

points is the current gold standard for evidence-based conservation, but there has been little 

development of ecological thresholds that apply across species, particularly for small or isolated 

populations. The recently proposed goal efficient monitoring (GEM) approach provides a 

quantitative framework connected to population dynamics relevant for small or isolated 

populations that can potentially be used to set ecological thresholds for small or isolated 

populations. However, there are three main limitations of using GEM in this way as it was 

originally proposed. The first is that small or isolated populations are sensitive to movement and 

the GEM model did not include immigration or emigration. The second is that the spatial scale of 

GEM states was not defined, which is necessary for application of GEM to real populations. The 

third is that current monitoring methods for small and isolated populations focus on a single 

monitoring question often because of the scarcity of data, so it is unclear if changing questions 

for the GEM observation approach provide an advantage over a single question in a data scarce 

environment. To address these limitations we conducted a series of simulations parametrized 

with Canada lynx (Lynx canadensis) life history information. Using an expanded GEM IPM 

structure, we explored the spatial scale at which GEM states should be measured to most 

effectively describe GEM state changes. In addition, we compared a single occupancy question 

to GEM questions for a small and isolated population of lynx. Our results showed that a spatial 

scale of 9 home range sizes is the optimal size measuring changes in the GEM breeding state. In 

 
2 Planned: submit to Conservation Biology 
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addition, changing questions with GEM provided an advantage over a single question. Thus, the 

GEM structure can be extended to provide novel advances in monitoring thresholds for small and 

isolated populations. 

 

INTRODUCTION 

Small or isolated populations are important for conservation. Often, small or isolated populations 

are rare species, which are valued and protected by individuals and societies around the world 

(Angulo & Courchamp 2009), and often contribute disproportionately to biodiversity and for 

ecosystem functioning (e.g., Lyons et al. 2005; Mouillot et al. 2013; Loiseau et al. 2020). In 

addition, although conservation objectives may reflect goals for an entire species, on-the-ground 

management often occurs in small parcels of land which contain isolated populations, such as on 

private lands where voluntary conservation occurs or land is acquired by non-profits for 

conservation (Gooden et al. 2020). Beyond a legal requirement for protection, as in the 

Endangered Species Act of 1973, conserving small or isolated populations is important for a 

variety of reasons. For example, conserving small or isolated populations can show success of 

conservation spending, often the prerequisite for additional conservation funding (Baier & Segal 

2020). Maintaining populations that appear isolated can also be important for metapopulation 

connectivity for an entire population. For example, Moilanen et al. (1998) showed that what 

appeared to be an isolated group of populations that consistently showed low occupancy in the 

American pika (Ochotona princeps) in Mono County, California, was responsible for the pika’s 

persistence across a larger scale. Finally, conserving small or isolated populations can be the 

entire basis for preservation of a species, such as the Dixie Valley toad (Anaxyrus williamsi), 

which was given emergency protection under the Endangered Species Act on April 7 due to the 
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immediate threat of a geothermal energy development project in the Dixie Meadows, Nevada, 

the only location the species is known to exist (FR 2022). 

Population monitoring, often coupled with vegetation or other environmental variable 

monitoring, is one of the main tools for understanding and managing small and isolated 

populations (McDonald-Madden et al. 2010). The often legally required and scientifically-

supported push for evidence-based conservation (Sutherland et al. 2004), requires that 

information is known about populations through monitoring. However, many have pointed out 

that for an evidence-based conservation and management monitoring system to be effective, 

decision triggers related to monitoring need to be clearly defined (Schultz et al. 2013; Cook et al. 

2016). Here, we use the definition of decision triggers provided by Cook et al. (2016), and 

describe decision triggers as pre-defined events that when detected in monitoring data are linked 

to a pre-defined management action. Ecological thresholds, which are points that represent 

biological consequences for a population (Martin et al. 2009), are one of the most important 

factors for setting decision triggers (Lindemeyer et al. 2013; Cook et al. 2016), particularly for 

small or isolated populations. Although there has been some effort to define what makes 

effective ecological thresholds (e.g., Samhouri et al. 2010) and these concepts have been applied 

in marine and freshwater aquatic environments (Dodds et al. 2010), ecological thresholds that are 

generalizable across species or ecosystems have been difficult to define (Johnson 2013). Not 

only have effective thresholds been difficult to define, but finding thresholds that are relevant for 

conservation, detectable with monitoring, and connectable to decisions remains a challenge 

(Cook et al. 2016). 

One of the reasons ecological thresholds for small or isolated populations are difficult to 

define are that small populations dynamics are characterized by stochastic events (Fauvergue et 
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al. 2012), which are difficult to predict with traditional monitoring metrics such as trend. 

Stochastic dynamics result in what often appears as sudden population changes, making them 

more appropriately thought of as state changes. We define “state” in this manuscript as a 

description of a condition at a specific time of an individual (e.g., alive or dead), area such as a 

home range (e.g., occupied or unoccupied), or population (e.g., breeding or non-breeding). 

Indeed, one reason occupancy modeling (MacKenzie et al. 2002), which has grown to become 

the primary rare species monitoring tool since it was introduced, was promoted for rare species 

monitoring is because it can be effectively accomplished with state-based metrics. State 

descriptions like occupancy of a home range (occupied or not occupied), however, often provide 

little insight on mechanism of population change because they fail to capture demographic 

information that can explain causes (Schaub et al. 2010). State models have been expanded to be 

more descriptive of population processes by including multiple (three or more) states, also 

known as multistate models, and can include additional population descriptions such as a 

breeding state (MacKenzie et al. 2009). These multistate models work best in systems where the 

state describes a discrete entity that is discrete and therefore closed, such a bird’s nest. As state 

descriptions are scaled up to less definably discrete entities, such as home ranges or populations, 

the semi- or complete openness of the entity means that the likelihood of a state like breeding 

occurring can change based on multiple individuals present in the entity. In most multistate 

models, similar to occupancy, this is addressed with the assumption of closure or a definition of 

discreteness of the unit rather than accounting for the possibility of multiple individuals. 

However, for small or isolated populations, particularly when Allee effects are strong and 

individuals group together, the composition of a small number of individuals can drastically alter 

the likelihood of different states being present, particularly as they relate to breeding.  
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To provide state definitions appropriate for small and isolated individuals, Golding et al. 

(Chapter 1), proposed four state descriptions for small or isolated populations that account for 

individuals as part of goal efficient monitoring (GEM) approach (Table 2-1): breeding potential 

(multiple individuals and both sexes, GEM state 4); isolated individuals (multiple individuals of 

a single sex, GEM state 3); isolated individual (single individual, GEM state 2); and locally 

extinct (not present, GEM state 1). GEM is a monitoring system designed for small or isolated 

populations that tracks changes using an integrated population model (IPM) structure, where the 

biological process includes an age-based population model linked to the states listed above. It is 

important to note that while these states vary in their importance for persistence of a small or 

isolated population, with breeding potential representing the most important state, all are 

important for conservation and management of a small or isolated population for a number of 

reasons. For example, if a species is protected under the ESA, such as the Dixie Valley toad, all 

states of the isolated population are important to know. Similarly, if a private landowner wants to 

provide habitat for elk on their conservation easement property near a reintroduction site, 

dynamics of a few individuals that might move in and breed are essential to know.  

In addition to describing states that are important for management, GEM population 

states can also be used to look at patterns over time of state changes, or transitions. Here we use 

the term state change to describe changes, or no change, in the GEM population state between 

time t and t +1. Each time period, the probability of a state change, including which changes are 

possible, depend on the current state of the population. We focus on breeding population 

potential (GEM state 4), although all changes and states are possible, and the changes available 

from that state for the remainder of the manuscript. Figure 2-1 shows the potential state changes, 

which can be described as probabilities (shown as arrows to the other states), from a breeding 
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potential population at time t. The arrow highlighted in yellow represents the probability that the 

population will retain breeding potential (i.e., the probability that the yellow arrow occurs and 

gray arrows do not occur). This change is important for conservation and management because it 

provides a near-term  description of the likelihood of persistence, as it is relevant to a time period 

between 2 time steps, which is much shorter than the trend time periods necessary for most trend 

monitoring programs (e.g., Ellis et al. 2014).  

The short time period over which the state change is relevant, combined with the IPM 

structure of GEM means that population predictions, in the form of the probability of retaining 

breeding potential (e.g., staying in GEM state 4), can be made concurrently with the gathering of 

long-term monitoring data. These short-term predictions of GEM state changes can also provide 

a practical, quantifiable, and biologically meaningful way to define decision trigger. For 

example, a threshold on the probability of retaining breeding can be set at 90% based on a 

species biology. However, a variety of additional factors, such as legal protections and a risk-

averse management approach, can be considered to adjust the threshold to 95%. With this 

threshold determined prior to the start of monitoring, a practitioner or conservation agency can 

then use the GEM monitoring approach and state change predictions each time step to make 

decisions about conservation actions each year. Figure 2-2 provides a hypothetical example of 

how this can be accomplished for a simulated population of Canada lynx (Lynx canadensis), 

which was the model organism used for the illustration of the GEM system. There are a number 

of ways in which actions can be linked to the threshold as well, depending on the conservation 

actions that are possible. Importantly, because this is conducted within an IPM structure, long-

term monitoring data collection is not compromised or sacrificed for the threshold data collection 

effort: in fact, the long-term population data is the basis of the state change metrics.  
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However, GEM was originally proposed as a conceptual model under simplified 

conditions and did not include immigration and emigration in the population simulations or the 

state change probabilities. Immigration can be an important dynamic for small and isolated 

populations. In fact, immigration can be one of the main dynamics that allows small or isolated 

populations to persist (With & King 2008) and retain enough occupied territories for breeding 

(Lande 1987). For example, Stacey and Taper (1992) showed that in the southwestern US the 

acorn woodpecker (Melanerpes formicivorus) in small, isolated populations only with 

immigration, but that for populations to persist for over 1000 years in simulations, only 5 

migrants per year were needed. Thus, to use GEM to monitor for ecological thresholds with 

GEM state changes effectively for small or isolated populations, which are often the populations 

most in need of monitoring and conservation action, it is essential that the dynamics of 

immigration and emigration are captured in the GEM states and underlying population model 

structure in the GEM IPM. In addition, the GEM observation process has five sampling rules 

(Table 2-2), designed to address the fact that changing questions arise rapidly in rare species 

systems because populations change frequently. These sampling rules were developed to 

optimize the original simplified format of GEM which did not include immigration and 

emigration.  

We therefore had three main objectives in this study to explore the benefits of the GEM 

approach and the use of GEM state changes for real-world small or isolated population 

monitoring. The first was to capture the important dynamics for small and isolated populations 

and expand the underlying GEM IPM structure and state change probabilities to include 

immigration and emigration. Second, we set out to determine the most relevant spatial scale at 

which the probability of small or isolated populations retaining or losing breeding capability 
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(staying in or changing from GEM state 4) should be measured. Finally, our third goal was to 

determine if the GEM observation structure of changing questions based on the GEM sampling 

rules provided a benefit over traditional state-based presence monitoring given the potentially 

high amount of variability introduced with both immigration and emigration in the biological 

systems and changing observation. We predicted that because of the large amount of population 

change in small populations that would occur when immigration and emigration were added, 

compared to a single question, changing questions would provide more efficient information 

relative to the information goal for the population, which was the basis of the GEM system 

development, and lead to improved GEM state change metrics. After extending the model and 

state change probabilities to include immigration and emigration, we used a series of population 

simulations, parameterized with lynx information as the model organism, to accomplish the 

second and third goals, described below.  

METHODS 

We provide a series of model expansions and simulations to further the GEM model 

structure and accomplish the goals outlined above. We first describe the GEM model structure 

and expansion for immigration and emigration. We then describe the simulations to determine 

the appropriate scale, which we define as a GEM grid cell, for GEM state change monitoring. 

Finally, we describe our simulations to examine if changing questions according to the GEM 

sampling rules provided improved GEM state change estimation over simple presence absence 

observation. All data simulation and analysis described below was run using R (version 4.0.2; R 

Development Core Team 2020) and JAGS (http://mcmc-jags.sourceforge.net).  

We use lynx as our example organism for a number of reasons. Lynx have been listed as 

Threatened in the US under the ESA since 2000. In the US northern Rocky Mountain area, lynx 

http://mcmc-jags.sourceforge.net/


75 
 

are at the southern periphery of their range and therefore are rare and subject to fluctuating 

metapopulation dynamics (Ruggiero et al. 2000; Schwartz et al. 2002). In addition, under the 

Northern Rockies Lynx Management Direction (NRLMD) (USDA Forest Service 2007), there 

are different regulations and considerations applied to 8,282,000 acres of Forest Service land 

when no lynx are present, a single lynx is present, a female with kittens is present, or a 

population is present. Thus, GEM states are relevant and parallel to the NRLMD lynx states. 

However, we emphasize that the GEM approach, as well as the approach for including 

immigration and emigration extensions, and cell size simulations are potentially applicable to a 

wide variety of species other than lynx.  

For all simulations we simulated a 10-season survey period (11 time steps total: 1 

baseline survey year and 10 monitoring periods after) across a small lynx population. We set 

survival, s, constant at 0.7, based on the highest rates of adult lynx survival when snowshoe hare 

densities are high (Mowat et al. 2000). We set the probability of having a litter, 𝑝𝑝. 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜, constant 

at 0.5, based on the lower end of measured probability of lynx having a litter in mature forest in a 

study area in the northern Rocky Mountains (Kosterman et al. 2018). We set the number in each 

litter equal to 2, which is the low end of number per litter in normal years for lynx (Mowat et al. 

2000) and the sex ratio as constant and equal at 0.5, which is close to the ratio observe in real 

lynx population (Burstahler et al. 2016). 

GEM biological process model 

 To construct the biological process of the IPM, we modeled female, 𝑁𝑁𝑓𝑓,𝑡𝑡, and male, 𝑁𝑁𝑚𝑚,𝑡𝑡, 

abundance for a population at initial time t as ) as Poisson random variables with a mean average 

group size, λ, of 7 (equations 1 and 2). Total individuals, 𝑁𝑁𝑡𝑡, were a derived parameter that was 

the sum of  𝑁𝑁𝑓𝑓,𝑡𝑡and 𝑁𝑁𝑚𝑚,𝑡𝑡 (equation 3). Population occupancy at time t, 𝑧𝑧1𝑡𝑡 , was derived 𝑧𝑧1𝑡𝑡 and 
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assigned as occupied if 1 if 𝑁𝑁𝑡𝑡 > 0 (equations 4 and 5). GEM state for each time t, 𝑧𝑧2𝑡𝑡, was also 

derived from 𝑁𝑁𝑓𝑓𝑡𝑡and 𝑁𝑁𝑚𝑚𝑡𝑡 (composition of females and males at time t) and assigned a 4, 3, 2, or 

1 to represent the GEM states (equations 6 - 9): 

1) 𝑁𝑁𝑓𝑓,𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (λ)  

2) 𝑁𝑁𝑚𝑚,𝑡𝑡  ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (λ)  

3) 𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑓𝑓,𝑡𝑡 +  𝑁𝑁𝑚𝑚,𝑡𝑡 

4) 𝑁𝑁𝑡𝑡 > 0 →  𝑧𝑧1𝑡𝑡 = 1 

5) 𝑁𝑁𝑡𝑡 > 0 →  𝑧𝑧1𝑡𝑡 = 0 

6) 𝑁𝑁𝑓𝑓,𝑡𝑡 = 0 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 0 →  𝑧𝑧21 = 1 

7) 𝑁𝑁𝑓𝑓,𝑡𝑡 = 1 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 0 𝑃𝑃𝑜𝑜 𝑁𝑁𝑓𝑓,𝑡𝑡 = 0 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 1 →  𝑧𝑧2𝑡𝑡 = 2 

8) 𝑁𝑁𝑓𝑓,𝑡𝑡 ≥ 2 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 = 0 𝑃𝑃𝑜𝑜 𝑁𝑁𝑓𝑓,𝑡𝑡 = 0 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 ≥ 1 →  𝑧𝑧2𝑡𝑡 = 3 

9) 𝑁𝑁𝑓𝑓,𝑡𝑡 ≥ 1 𝑎𝑎𝑃𝑃𝑎𝑎 𝑁𝑁𝑚𝑚,𝑡𝑡 ≥ 1 →  𝑧𝑧2𝑡𝑡 = 4 

We then modeled the abundance of new females 𝑊𝑊𝑓𝑓,𝑡𝑡 and males 𝑊𝑊𝑚𝑚,𝑡𝑡 in time t. New 

individuals entered the population in based on a combination of the following processes: 1) a 

probability of the population producing a litter at time t, 𝑙𝑙𝑡𝑡, which was a function of the 

probability of litter production, 𝑝𝑝. 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜, based on if the GEM state, 𝑧𝑧2𝑡𝑡, at time t was in breeding 

potential (GEM state 4) (equations 10 and 11); 2) birth events, 𝐵𝐵𝑡𝑡, which were modeled as a 

binomial random variable with the probability of success, 𝑙𝑙𝑡𝑡, with 𝑁𝑁𝑓𝑓,𝑡𝑡 trials (equation 12); 3) and 

new individuals born, 𝑊𝑊𝑡𝑡, which was modeled as a function of birth events, 𝐵𝐵𝑡𝑡 , multiplied by a 

𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜 𝑃𝑃𝑃𝑃𝑧𝑧𝑙𝑙, which we set as constant at 2 (equation 13). New females from the birth events, 𝑊𝑊𝑓𝑓,𝑡𝑡, 

were were derived as a binomial random variable with the probability of success set by a sex 

ratio, sr, of 0.5 out of 𝑊𝑊𝑡𝑡 trials (equation 13a) and new males from the birth event, 𝑊𝑊𝑚𝑚,𝑡𝑡, were 

derived from the difference of 𝑊𝑊𝑡𝑡 and 𝑊𝑊𝑓𝑓,𝑡𝑡 (equation 13b): 



77 
 

10) 𝑧𝑧2𝑡𝑡 = 4 →  𝑙𝑙𝑡𝑡 = 𝑝𝑝. 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜  

11) 𝑧𝑧2𝑡𝑡 = 3  𝑃𝑃𝑜𝑜 𝑧𝑧2𝑡𝑡 = 2  𝑃𝑃𝑜𝑜  𝑧𝑧2𝑡𝑡 = 1 →  𝑙𝑙𝑡𝑡 = 0 

12) 𝐵𝐵𝑡𝑡  ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙 �𝑁𝑁𝑓𝑓,𝑡𝑡 , 𝑙𝑙𝑡𝑡�  

13) 𝑊𝑊𝑡𝑡~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐵𝐵𝑡𝑡 ∗ 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜 𝑃𝑃𝑃𝑃𝑧𝑧𝑙𝑙)  

a. 𝑊𝑊𝑓𝑓,𝑡𝑡~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙(𝑊𝑊𝑡𝑡, 𝑃𝑃𝑜𝑜) 

b. 𝑊𝑊𝑚𝑚,𝑡𝑡 =  𝑊𝑊𝑡𝑡 −𝑊𝑊𝑓𝑓,𝑡𝑡  

We assumed juveniles bred at 1 year of age, so could breed in the next time step and were 

counted as part of the adult population if they survived. Survival for all classes to time t=2 (noted 

as t+1 throughout the manuscript) and beyond (noted as t+1… throughout the manuscript), was 

modeled as a binomial random variable with a probability of success of survival probability s, 

which we kept constant at 0.7, out of the number of trials in the class of interest (adult females, 

𝑁𝑁𝑓𝑓,𝑡𝑡; adult males, 𝑁𝑁𝑚𝑚,𝑡𝑡; new females from the previous time step, 𝑊𝑊𝑓𝑓,𝑡𝑡; new males from the 

previous time step, 𝑊𝑊𝑚𝑚,𝑡𝑡 (equations 14-17). We derived the total adult abundance at the next time 

step as the combination of the existing adults and new individuals added from breeding events 

(equations 18-19). 

14) 𝑆𝑆𝑓𝑓,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑁𝑁𝑓𝑓,𝑡𝑡 , 𝑃𝑃�  

15) 𝑆𝑆𝑚𝑚,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑁𝑁𝑚𝑚,𝑡𝑡, 𝑃𝑃�  

16) 𝑆𝑆𝑓𝑓,𝑡𝑡+1~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑊𝑊𝑓𝑓,𝑡𝑡, 𝑃𝑃� 

17) 𝑆𝑆𝑚𝑚,𝑡𝑡+1~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑊𝑊𝑚𝑚,𝑡𝑡 , 𝑃𝑃� 

18) 𝑁𝑁𝑓𝑓,𝑡𝑡+1 =  𝑆𝑆𝑓𝑓,𝑡𝑡+1 + 𝑆𝑆𝑓𝑓,𝑡𝑡+1  

19) 𝑁𝑁𝑚𝑚,𝑡𝑡+1 =  𝑆𝑆𝑚𝑚,𝑡𝑡+1 + 𝑆𝑆𝑚𝑚,𝑡𝑡+1  

Immigration and emigration extension 
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 To incorporate more biological reality for small and isolated populations into the GEM 

model, we extended the original GEM model from Chapter 1 to include a parameter for 

emigration, or leaving population i, and immigration, or new individuals entering population i 

through movement (not birth processes). We then modified the GEM biological process 

described above with the following considerations: first, lynx kittens remain with females in their 

first year and do not disperse until April or May of the following year (Slough et al. 1997); 

second, because we considered juveniles capable of breeding at 1 year of age, by the time lynx 

move they will be considered adults, so we considered processes of immigration and emigration 

only for adult individuals in a population and one that occurred in late spring and early summer. 

Because female and male lynx often exhibit different movement behavior, we modeled each sex 

separately. Thus, we modeled the total females who emigrated from a population at time t, 𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡, 

as a binomial random variable with a probability of success of a migration probability of 

females, 𝐵𝐵𝑝𝑝𝑓𝑓, which we kept constant at 0.05, and the number of trials as the total number of 

females in the population at time t, 𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡 (equation 20). Adult males who emigrated at time t, 

𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡, were similarly modeled as a binomial random variable with a probability of success of a 

migration probability of males, 𝐵𝐵𝑝𝑝𝑚𝑚, which we kept constant at 0.10, and the number of trials as 

the total number of males in the population at time t, 𝑁𝑁𝑚𝑚,𝑔𝑔,𝑡𝑡 (equation 21). These probabilities 

were based on observed low rates of movements among adult lynx (Mowat et al. 2000; Kolbe 

and Squires 2006). 

20) 𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡,𝐵𝐵𝑝𝑝𝑓𝑓� 

21) 𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡~𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑁𝑁𝑚𝑚,𝑔𝑔,𝑡𝑡 ,𝐵𝐵𝑝𝑝𝑚𝑚� 

We modeled the process of survival during movement and assumed only a subset of those 

who moved would survive with probability s, which we kept as the same survival probability as 
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for the other processes at 0.7 (equations 22 and 23). To make this model implicitly spatial, we 

modeled 3 populations that were set in a vertical row as follows: population 1, population 2, 

population 3. To represent that, we set the distance between the populations with colonization 

probabilities, with the populations farthest from each (populations 1 and 3) other having the 

lowest colonization probability. Colonization probability was represented as a matrix, 𝐶𝐶𝑝𝑝𝑔𝑔, where 

rows represent the population i that the individuals were coming from and columns represented 

the population that the individuals were going to. We kept the colonization probabilities as 

constant throughout the simulations (equation 24). We assumed that all individuals who survived 

colonized another population, but not their own. Finally, the number of females, 𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡, and males, , 

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡, that colonized an adjacent GEM population i were modeled as a binomial random variable 

with probability of success as a colonization probability out of the total surviving individuals that 

left population i, 𝑆𝑆𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡 and 𝑆𝑆𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡, trials (equations 22 and 23). 

22) 𝑆𝑆𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡 ,  𝑃𝑃� 

23) 𝑆𝑆𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡,  𝑃𝑃� 

24) 𝐶𝐶𝑝𝑝𝑔𝑔 = �
0 0.3 0.4

0.3 0 0.6
0.4 0.6 0

� 

25) 𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑆𝑆𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡+1,  𝐶𝐶𝑝𝑝𝑔𝑔� 

26) 𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙�𝑆𝑆𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡+1,  𝐶𝐶𝑝𝑝𝑔𝑔� 

Finally, we modified the total number of individuals at the end of time t+1 to include 

losses of adults due to emigration from population i (subtraction of 𝑅𝑅𝑓𝑓,𝑔𝑔,𝑡𝑡 and 𝑅𝑅𝑚𝑚,𝑔𝑔,𝑡𝑡 from 𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡 and 

𝑁𝑁𝑓𝑓𝑔𝑔𝑡𝑡 before the next time step t+1…) an additions of new colonizing individuals, 𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡 and 𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡, 

starting in the next time step t+1. Figure 2-3 shows an overview of this extended model 

structure. 
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We also modified the GEM population state change probabilities. We linked the GEM 

states, 𝑧𝑧2𝑡𝑡 , to the population dynamics of each time t by deriving the state from the abundance 

values at each time step. Thus, the likelihood of a population changing between the end of a time 

step and the next time step was a derived probability matrix Ψ𝑡𝑡. Because we expanded the 

population dynamics to include birth, death, immigration, and emigration, all state changes were 

theoretically possible (Figure 2-4). The matrix Ψ𝑡𝑡 for each time step after t was modeled as a 

four-by-four matrix, with the rows representing the GEM state in time t and the columns 

representing the probability of the GEM state changing in the next timestep t+1 as follows: 

Ψ𝑡𝑡

=

⎣
⎢
⎢
⎡
1 − 𝜓𝜓𝑡𝑡,12 − 𝜓𝜓𝑡𝑡+1,13 − 𝜓𝜓𝑡𝑡+1,14 𝜓𝜓𝑡𝑡+1,12 𝜓𝜓𝑡𝑡+1,13 𝜓𝜓𝑡𝑡+1,14

𝜓𝜓𝑡𝑡+1,21 1 − 𝜓𝜓𝑡𝑡+1,21 − 𝜓𝜓𝑡𝑡+1,23 − 𝜓𝜓𝑡𝑡+1,33 𝜓𝜓𝑡𝑡+1,23 𝜓𝜓𝑡𝑡+1,24
𝜓𝜓𝑡𝑡+1,31 𝜓𝜓𝑡𝑡+1,32 1 − 𝜓𝜓𝑡𝑡+1,32−𝜓𝜓𝑡𝑡+1,31−𝜓𝜓𝑡𝑡+1,34 𝜓𝜓𝑡𝑡+1,34
𝜓𝜓𝑡𝑡+1,41 𝜓𝜓𝑡𝑡+1,42 𝜓𝜓𝑡𝑡+1,43 1−𝜓𝜓𝑡𝑡+1,43 − 𝜓𝜓𝑡𝑡+1,42−𝜓𝜓𝑡𝑡+1,41⎦

⎥
⎥
⎤
 

 

Because each population can only be in a single state at one time, the state change, or 

transition, probabilities are conditional, so that only a single row is relevant at each time step. 

Appendix A provides a full written and mathematical description of the probabilities presented in 

the vector Ψ𝑡𝑡. 

GEM observation process model 

We modeled the sampling process within a GEM grid cell according to the GEM 

sampling rules as follows: 

a. If nothing is known, obtain confirmation of presence only. 

b. If presence has been confirmed in the previous season, obtain information on 

whether multiple individuals are present via counts. 



81 
 

c. If counts are >2 across a single visit in a season (not >2 in total across repeat 

visits in a single season), obtain information on whether females and males are 

present via collection of sex identifying information (e.g., genetic material) during 

counts.  

d. If multiple individuals and only a single sex were confirmed in the previous 

season, obtain information on whether multiple individuals are present via counts.  

e. If multiple individuals and both sexes were confirmed in the previous season, 

obtain information on whether females and males are present via collection of sex 

identifying information (e.g., genetic material) during counts.  

We used this sampling process to then generate the observation of one or more of the 

following based on whatever the GEM rule dictated: the presence of the species in population i 

during a repeat visit j at time t or beyond, 𝑦𝑦𝑧𝑧,𝑔𝑔,𝑗𝑗,𝑡𝑡 , which we modeled as a Bernoulli random 

variable that represented the observation of 𝑧𝑧1𝑡𝑡 with a probability of detection, p, that depended 

the total number of individuals present (equation 27); counts of individuals in population i during 

a repeat visit j at time t or beyond, 𝑦𝑦𝑐𝑐,𝑔𝑔,𝑗𝑗,𝑡𝑡 , which we modeled as a Binomial random variable with 

probability of success of detection 𝑝𝑝 out of the total that were present, 𝑁𝑁𝑡𝑡, trials (equation 28); or 

counts of females and males as a subset of individuals counted that deposited genetic sign that 

was detected, 𝑦𝑦𝑔𝑔,𝑔𝑔,𝑗𝑗,𝑡𝑡, which we modeled as a Binomial random variable with a probability of 

success of the probability leaving genetic material that was found, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐, out of the number 

that were counted, 𝑦𝑦𝑐𝑐,𝑔𝑔,𝑗𝑗,𝑡𝑡, trials (equation 29). Counts of females, 𝑦𝑦𝑓𝑓,𝑔𝑔,𝑗𝑗,𝑡𝑡 , were modeled as a 

hypergeometric random variable that was a subset of the number of females 𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡 in the total 

population 𝑁𝑁𝑔𝑔,𝑡𝑡, and the total number counted with genetic sign, 𝑦𝑦𝑔𝑔,𝑔𝑔,𝑗𝑗,𝑡𝑡 (equation 29a). The 

number of males counted with genetic identification after collection, The number of males 
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counted with genetic identification after collection, 𝑦𝑦𝑚𝑚,𝑗𝑗,𝑡𝑡, were the remainder of the genetically 

identified individuals not identified as females (equation 29b): 

27) 𝑦𝑦𝑧𝑧,𝑔𝑔,𝑗𝑗,𝑡𝑡 ~ 𝐵𝐵𝑙𝑙𝑜𝑜𝑃𝑃𝑃𝑃𝐵𝐵𝑙𝑙𝑃𝑃(1 − (1 − 𝑝𝑝)𝑁𝑁𝑡𝑡) 

28) 𝑦𝑦𝑐𝑐,𝑔𝑔,𝑗𝑗,𝑡𝑡 ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙 (𝑁𝑁𝑡𝑡 , 𝑝𝑝) 

29) 𝑦𝑦𝑔𝑔,𝑔𝑔,𝑗𝑗,𝑡𝑡  ~ 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑃𝑃𝑎𝑎𝑙𝑙 �𝑦𝑦𝑐𝑐,𝑔𝑔,𝑗𝑗,𝑡𝑡 ,𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐� 

a. 𝑦𝑦𝑓𝑓,𝑔𝑔,𝑗𝑗,𝑡𝑡 ~ 𝐻𝐻𝑦𝑦𝑝𝑝𝑙𝑙𝑜𝑜𝐻𝐻𝑙𝑙𝑃𝑃𝐵𝐵𝑙𝑙𝑙𝑙𝑜𝑜𝑃𝑃𝐻𝐻 �𝑁𝑁𝑔𝑔,𝑡𝑡 , 𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡 ,𝑦𝑦𝑔𝑔,𝑔𝑔,𝑗𝑗,𝑡𝑡� 

b. 𝑦𝑦𝑚𝑚,𝑔𝑔,𝑗𝑗,𝑡𝑡 = 𝑦𝑦𝑔𝑔,𝑔𝑔,𝑗𝑗,𝑡𝑡 −  𝑦𝑦𝑓𝑓,𝑔𝑔,𝑗𝑗,𝑡𝑡 

GEM cell size  

GEM was originally proposed without spatial information. However, for GEM to be used 

in a real-world monitoring context for small or isolated populations, the appropriate scale at 

which it should be used needs to be defined. We use the concept of grid cells (Mackenzie et al. 

2002), which represent a home range of an individual and the scale at which detection or non-

detection information is observed. Because GEM is based on four population states (breeding 

potential; isolated individuals; isolated; and locally extinct), the GEM grid cell size must be large 

enough to accommodate the largest state (breeding potential) and incorporate multiple (at least 

two) home ranges. However, the cell must also be at the appropriate scale to measure the change 

around the breeding potential state. If it is too large, the state description becomes irrelevant. For 

example, knowing there is breeding potential in a population of 50 individuals is not informative. 

However, if it is too small then the grid cell always changes out of the state, such as a cell size of 

2 individuals where a female and male could represent breeding potential, but with survival and 

only two individuals it is unlikely that that scale would ever stay in breeding potential more than 

occasionally. Thus, to determine an optimal size for this grid cell, we conducted a series of 

simulations with different starting population sizes above the minimum needed to be in the 
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highest state of breeding potential within a single closed GEM grid cell using the original GEM 

model. We used three different starting population sizes (all with equal sex ratios of females and 

males): 

• 4 individuals (2 females, 2 males) 

• 8 individuals (4 females, 4 males) 

• 12 individuals (6 females, 6 males) 

To simulate a true “grid cell,” we used a closed population without the immigration and 

emigration extension, so that the dynamics of the cell could accommodate internal growth 

through breeding or loose individuals through death but were not obscured by movement in and 

out of the population. We assumed that the starting population size was representative of the 

GEM grid cell size and refer to the grid cell sizes in the remainder of the manuscript based on 

number of home ranges (starting population) in each cell. We then compared probability of 

staying in breeding potential, 𝜓𝜓44, using the original closed population GEM formulation state 

calculation (see Appendix B for probability equations), as the basis for cell size evaluation. For 

each of the three GEM grid cell sizes tested (4, 8, and 12 home ranges) we ran 100 simulations 

of the GEM model described above. 

Monitoring with a single question or GEM sampling rules to change questions 

 To quantify how much changing questions with the GEM observation process for 

monitoring small or isolated populations would provide better, and therefore potentially more 

valuable, information, we used two observation scenarios with the biological process as the 

GEM IPM structure described above: 1) a single question – is the species present – observation 

scenario across all time (hereafter single question scenario); and 2) a GEM sampling rule 

approach to ask three changing questions – is the species present, are multiple individuals 
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present, are males and females present – observation scenario across all time steps (hereafter 

GEM question scenario). Both scenarios were simulated with the same underlying biological 

process described in the GEM biological process model section above. The single question 

scenario was simulated with only the observation of presence each time step (Equation 13) and 

the GEM question scenario was simulated with the observation of all questions if the GEM 

sampling rules applies (Equations 13-27). 

For each of the two question scenarios (single question and GEM question), we ran 100 

simulations with the expanded GEM model and used the same biological parameters used for the 

grid cell size, but with the addition of two more populations and movement probabilities for 

females (0.05) and males (0.10), which were based on observed low rates of movements among 

adult lynx (Mowat et al. 2000; Kolbe and Squires 2006). 

GEM cell size and question performance metrics 

For each simulation, we ran 3 MCMC chains each for 50,000 iterations, discarding the 

first 5,000 as a burn-in, and included a thinning rate of 1 to reduce simulation file size. We used 

the following uninformative prior distributions: for both detection probabilities (p and 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑔𝑔𝑐𝑐) 

we used uniform distributions constrained between 0 and 1. Because there were so many 

complex axes of change for these simulations, we chose to provide the model with the values for 

survival (s = 0.7) litter probability (p.litter = 0.5). To assess model convergence, we used the 𝑅𝑅� 

statistic which is a ratio estimator of how variable each chain was compared to how variable all 

chains were and should be around 1.0 (Brooks & Gelman 1998).  

To assess how well the GEM model predicted variables under the different conditions of 

differing cell size and questions, including population variables and the GEM state change 

probabilities, we calculated mean absolute percent error (MAPE), the absolute value of the 



85 
 

difference between the true parameter value and GEM parameter estimate, divided by the true 

parameter value, multiplied by 100, of model estimates compared to the true simulation values. 

To compare the accuracy of the GEM model estimates across different question scenarios, we 

calculated relative root mean square error (RRMSE) for 𝜓𝜓𝑡𝑡44 each GEM grid cell size using the 

following equation: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 =  

�
1

𝑜𝑜 ∑ (𝜃𝜃�𝑘𝑘 − 𝜃𝜃𝑘𝑘)2𝑔𝑔
𝑘𝑘=1

�̅�𝜃
 

where r was the number of replicates, 𝜃𝜃�𝑘𝑘 is the predicted parameter value and 𝜃𝜃𝑔𝑔 is the true 

parameter value at replicate k and �̅�𝜃 is the mean true value of parameter over all replicates. In 

addition, for the GEM grid cell size simulations, we tracked the percentage of time over 100 

simulations that each population spent with breeding potential (i.e., in GEM state 4), which we 

measured as the number of time steps across all simulations where the population was in state 4 

out of the total number of time steps across all simulations (1,100, or 100 simulations of 11 time 

steps). For population parameters, we also calculated coverage, which is the percent of time the 

95% Bayesian credible interval (CRI) contained the true value for each parameter over all 

simulations. For abundance estimates, we also used a measure of the absolute value of the total 

individuals that the abundance estimates deviated by, or mean absolute individual error (MAIE), 

which was a metric suggested by Golding et al. (Chapter 1) to provide an additional descriptive 

measure of error in small or isolated populations. 

RESULTS 

GEM cell size  

All results presented in this section are summarized over all 100 simulations for each grid 

cell size (4, 8, or 12 home ranges), including all timesteps within each simulation run. The three 
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GEM grid cell sizes all resulted in estimates of retaining breeding potential, 𝜓𝜓44 , with mean 

absolute percent error rates below 14%. An increase in GEM grid cell size resulted in lower 

𝜓𝜓44 prediction error: a grid cell size of 4 home ranges resulted in a 𝜓𝜓44 mean absolute percent 

error rate of 13.4% and an RRMSE of 0.156; 8 home ranges resulted in a 𝜓𝜓44 mean absolute 

percent error rate of 6.95% and an RRMSE of 0.104; and 12 home ranges resulted in a 𝜓𝜓44 mean 

absolute percent error rate of 3.96% and an RRMSE of 0.0754. In addition, an increase in GEM 

grid cell size resulted in an increase in the proportion of simulations that each population spent in 

the state of breeding potential, with 25.9% (4 home ranges), 48.2% (8 home ranges), and 78% 

(12 home ranges) of time step simulations in breeding potential (GEM state 4) (Table 2-3).   

Monitoring with a single or changing questions: GEM state changes and population parameters 

Overall, the GEM question scenario predicted the GEM state change probabilities with 

lower error for all state changes that occurred. We only present state changes that occurred, as 

they are conditional probabilities so ones that did not occur had a probability of zero and were 

thus predicted as zero. Therefore, we present changes from isolated individual (GEM state 2), 

isolated individuals (GEM state 3), and breeding potential (GEM state 4). For each state change 

probability, we calculated the MAPE and the RRMSE and information is summarized in Tables 

2-4a (GEM state 2), 2-4b (GEM state 3) and 2-4c (GEM state 4).  

For predicting state changes from breeding potential (GEM state 4), the GEM 

observation scenario performed better than the single question scenario for three of the four 

probabilities. For the probability that the population would change from breeding capable to 

locally extinct, 𝜓𝜓𝑡𝑡+1,41, the GEM observation scenario resulted in lower error that the single 

question scenario, with an RRMSE of 2.44 and 6.57, respectively, and mean MAPE of 1501 and 

8.09e31, respectively. Similarly, for the probability that the potentially breeding population lost 
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all but a single individual, 𝜓𝜓𝑡𝑡+1,42, the GEM observation scenario again resulted in lower error 

than the single question scenario, with an RRMSE of 1.73 and 4.84, respectively, and mean 

MAPE of 963 and 2.03e31, respectively. For the probability of losing breeding capability by 

dropping to only individuals of a single sex, 𝜓𝜓𝑡𝑡+1,43, the GEM observation scenario resulted in 

lower error than the single question scenario, with an RRMSE of 1.10 and 2.39, respectively, and 

mean MAPE of 135 and 8.02e14, respectively. Finally, for the probability that the population 

retained breeding capability, 𝜓𝜓𝑡𝑡+1,44, the GEM observation scenario resulted in slightly higher 

error than the single question scenario, with an RRMSE of 0.172 and 0.106, respectively, and 

mean MAPE of 14.9 and 5.82, respectively (Table 2-4c). 

 Overall, the prediction of the population parameters across both observation scenarios 

was accurate, with predictions from the GEM model in both observation scenarios well 

recovered by the simulations. Across all population parameters predicted from the GEM model 

(GEM population state, 𝑧𝑧2𝑡𝑡; female and male abundance at the end of each time step 

(𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡 ,𝑁𝑁𝑚𝑚,𝑔𝑔,𝑡𝑡); female and male abundance at the beginning of each time step (𝑁𝑁𝑓𝑓,𝑔𝑔,𝑡𝑡+1,𝑁𝑁𝑚𝑚,𝑔𝑔,𝑡𝑡+1); 

birth events (𝐵𝐵𝑡𝑡); and new females and males born (𝑊𝑊𝑓𝑓,𝑔𝑔,𝑡𝑡 ,𝑊𝑊𝑚𝑚,𝑔𝑔,𝑡𝑡), the GEM observation scenario 

resulted in lower MAPE, MAIE and RRMSE than the single question observation scenario. 

Similarly, coverage of the predicted model values across all population variables measured from 

the GEM model with the GEM observation scenario was higher than the single question 

scenario. This information is summarized in table 2-5. 

DISCUSSION 

 Finding meaningful ways to monitor small or isolated populations, particularly with 

traceable and biological meaningful thresholds that can be linked to actions has in the past been 

difficult. However, the GEM approach and the state change probability that is calculated 
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annually along with long-term monitoring data provides a new potential solution to this problem. 

When immigration and emigration are included within the GEM IPM structure, the GEM model 

provides predictions of the GEM state transitions better than a single question in most cases. 

With an IPM structure, the GEM approach also provides estimates of demographic parameters 

that were previously unobservable (Zipkin & Saunders 2018). In addition, changing questions 

results in monitoring predictions across all population parameters. However, these estimates are 

on model runs with a large amount of information (including known demographic parameters of 

survival) and thus may be unrealistic for many rare species. But the expansion of the GEM IPM 

structure and the results presented here suggest that many expansions of GEM are possible. 

Results from Chapter 1 with uninformative priors suggest that less information in these 

simulation will likely still results in high CRI coverage but variables predicted larger amounts of 

error. Optimization of parameter estimates in expanded GEM settings, including exploration of 

what variables are known or unknown, should be explored in species- and context-specific 

studies. Thus, GEM provides an important step forward for small or isolated population 

monitoring with a threshold that can be defined and detected annually according to state change 

probabilities.  

Near-term, or between the time periods set by monitoring, predictions of the GEM state 

change probabilities offer many possible approaches to setting biologically meaningful 

thresholds, as suggested by many (Schultz et al. 2013; Cook et al. 2016). For example, if a GEM 

cell with breeding potential is in danger of losing breeding capability by the next season 

(probability of staying in state 4 is low or below a certain threshold that has been defined), a 

practitioner can decide to reduce human activity in areas that are important for connectivity or 

movement to that cell or attempt to increase chance of survival of individuals. Because these 
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thresholds can be assessed on an annual basis, they can provide the basis for much more frequent 

(if needed) interventions that may save a small or isolated population from extinction. This is 

arguably a favorable alternative to continued population monitoring as a population declines with 

few potential opportunities or logical points for intervention (e.g., Lindenmeyer et al. 2013). 

In addition, because GEM is abundance-based and still a long-term monitoring system, it 

can result in a continuous monitoring approach and data stream for the species, even if the 

species has periods where it may become common, like lynx in the US in the 1970s (Ruggiero et 

al. 2000) or snowy plover (Charadrius nivosus nivosus) (Marcot et al. 2019) in the US which 

became common after ESA protection was given to them in 1993 (58 FR 12864:12874). In these 

instances, the long-term monitoring data stream provided in the GEM system from when the 

species was rare to when they become common would not be interrupted and still function. 

Although we suggest that thresholds for small and isolated populations are defined relative to 

breeding potential, we see the possibility for expanding this type of structure to state changes that 

are potentially meaningful to larger populations. For example, additional state transitions may be 

set for larger populations, such as skewed sex ratios, which can be early indicators of population 

decline in larger populations (Lehikoinen et al. 2008). Importantly, these types of extensions are 

feasible in the GEM framework because it is already designed to keep track of both females and 

males. If thresholds of interest are linked to state changes in the IPM framework as GEM 

provides, they can be set or adjusted according to biology, risk tolerance (Burgman 2005) and 

monitored with an extension of the GEM approach.  

We show that when movement is incorporated in a GEM framework, changing questions 

using the GEM system that includes changing questions provides the best basis for estimating 

state changes and population metrics. Because the changing questions that arise from the GEM 



90 
 

sampling rules allow for targeted collection of information based on the states present, provide a 

way to effectively target information that is systematic and traceable. This is important because it 

makes the process flexible, which is a necessity for a small or isolated populations because of the 

large amount of change, but repeatable. Repeatable and transparent methods in monitoring 

systems, particularly as presented with a tie to meaningful threshold metrics, because they 

support one of the core elements of transparency of collaborative environmental decision making 

(Hemming et al. 2022).  

GEM was originally proposed to address changing questions that arise due to species 

rarity. However, with this extension to include movement and the demonstration of the benefit 

that changing questions provides for effective estimation of GEM metrics, we provide a real way 

for GEM to advance rare species monitoring. With a basis of state-of-the-art data inference from 

an IPM structure and the addition of realistic metrics to predict short-term dynamics, we have 

begun the construction of what we hope is a new era in rare species monitoring. Many have the 

desire to leverage the small amounts of data that are available for rare species into as much 

inferences as possible. We provide a framework that potentially opens a new realm of 

conservation actions, guided by biological processes that govern small populations. 

Although we use lynx as an example to demonstrate this, the structures provided, 

including the GEM state change probabilities with immigration and emigration, are flexible and 

can be extended or modified for many different species. We suggest that additional efforts to 

explore GEM in lynx and other species include empirical and simulation exploration of GEM, 

particularly to explore the how different thresholds related to the state of breeding potential may 

lead to different conservation outcomes. For broader application of GEM for small and isolated 

species, we encourage practitioners consider the following guidelines. The first is that the GEM 
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grid cell size should be scaled to 9 home ranges of the species of interest. Overall, simulations 

showed that the optimal cell size was approximately 8 home ranges, which is the size where the 

cell spent approximately half the time in GEM state 4 but still changed from that state so error on 

the estimates of the GEM state 4 change probability remained low. However, to put this into 

practice, we recognize that a group of 8 can have difficult spatial properties (i.e., it cannot be 

aggregated into a square cell from a grid of single-home-range-sized cells) that make it less than 

ideal for surveying or drawing inference. Therefore, we determined that a GEM grid cell size of 

9 home ranges would still accomplish most of the estimation benefits of a GEM cell size of 8 

home ranges, but provide a significant increase in real-world usability. We thus suggest a GEM 

grid cell size of 9 home ranges for GEM field applications. The second is that a basic 

understanding of the life history and population process should be known to create the IPM 

structure, although we highlight that demographic parameters do not have to be known. The third 

is that practitioners should consider the range of ways in which the basis of GEM sampling 

information can be collected. The three tiers of information, presence, counts (to determine 

multiple individuals), and counts of females and males can be determined with multiple methods, 

including non-invasive genetic methods (Schwartz et al. 2007), cameras (Moeller et al. 2018), 

even to artificial intelligence (e.g., Green et al. 2020), such that conservation practitioners may 

have multiple options to obtain this information. 
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TABLES 

 
Table 2-1) The goal efficient monitoring (GEM) population states used in this manuscript. 

Additional information on the biological meaning of the state, population importance, 

conservation and management importance, and the contribution of the state to persistence 

potential are also provided. Females are represented with an f and males represented with an m 

on the lynx figure.  
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Table 2-2) The goal efficient monitoring (GEM) sampling rules for the GEM observation 

process to change questions and field methods based on what is known. 

 
Sampling Rule 
# 

Description 

1 If no information about the population is known, obtain confirmation of 
presence only. 

2 If presence has been confirmed in the previous season, obtain information on 
whether multiple individuals are present via counts. 

3 If counts are >2 across a single visit in a season (not >2 in total across repeat 
visits in a single season), obtain information on whether females and males 
are present via collection of sex identifying information (e.g., genetic 
material) during counts. 

4 If multiple individuals and only a single sex were confirmed in the previous 
season, obtain information on whether multiple individuals are present via 
counts. 

5 If multiple individuals and both sexes were confirmed in the previous 
season, obtain information on whether females and males are present via 
collection of sex identifying information (e.g., genetic material) during 
counts. 
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Table 2-3) The estimates of the GEM model for 𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕, the probability of staying in multiple 

individuals of both sexes, or retaining breeding capability, across 100 replicate simulations of the 

GEM model, each with 3 MCMC chains, 50,000 iterations, 5,000 burn-in period and no thinning. 

All simulations in used the following for the biological process: different starting populations (4 

individuals, 8 individuals, and 16 individuals, all with an equal sex ratio to begin with) and the 

same demographic parameters (survival = 0.7, probability of litter =0.5, size of litter = 2, and 

equal sex ratio of litter). All populations used the GEM sampling rules for the observation 

process, which included 3 visits each season, detection probability of individuals of p=0.63, and 

probability of detection of genetic sign of pgenetic = 0.7. RRMSE = relative root mean square 

error. 

 

Starting population 

Percent of time steps in 
simulations that were 

in state 4 (total number 
out of 1,100) 

𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 mean absolute 
percent error RRMSE 

4 (2 females, 2 males) 25.9% (285) 13.4% 0.156 

8 (4 females, 4 males) 48.2% (531) 6.95% 0.104 

16 (4 females, 4 males) 78.0% (862) 3.96% 0.0754 
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Table 2-4) The population parameters of the GEM model and performance metrics across 100 replicate simulations, each with 3 

MCMC chains, 50,000 iterations, 5,000 burn-in period and no thinning, with the single question observation scenario (is the species 

present) and the GEM question scenario (is the species present, are multiple individuals present, are males and females present). The 

different performance metrics of relative root mean square error (RRMSE) (a), coverage (b), average mean absolute percent error 

(MAPE) (c), and average mean absolute individual error (MAIE) (d) are provided below. Because not all metrics apply to all 

variables, only the relevant variables for each metric are included. 

c. RRMSE (lower error is shown with lower numbers) 

Observation 
scenario 𝑵𝑵𝒇𝒇𝒕𝒕  𝑵𝑵𝒎𝒎𝒕𝒕  

𝑩𝑩𝑩𝑩𝑩𝑩𝒕𝒕𝑩𝑩 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵
𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒇𝒇𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵 
𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒎𝒎𝒕𝒕

 𝑵𝑵𝒇𝒇𝒕𝒕+𝒕𝒕 𝑵𝑵𝒎𝒎𝒕𝒕+𝒕𝒕 

GEM question 0.520 0.453 1.08 1.51 1.48 0.407 0.376 

Single question 0.753 0.653 0.859 0.970 0.995 0.727 0.619 

 
d. Coverage (better parameter estimation is shown with higher numbers) 

Observation 
scenario 𝑵𝑵𝒇𝒇𝒕𝒕  𝑵𝑵𝒎𝒎𝒕𝒕  

𝒛𝒛𝒛𝒛𝒕𝒕 
GEM population 

state 
𝑩𝑩𝑩𝑩𝑩𝑩𝒕𝒕𝑩𝑩 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵
 𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒇𝒇𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵 
𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒎𝒎𝒕𝒕

 𝑵𝑵𝒇𝒇𝒕𝒕+𝒕𝒕 𝑵𝑵𝒎𝒎𝒕𝒕+𝒕𝒕 

GEM question 98.6 98.7 93.4 99.6 99.5 99.5 99.3 99.1 

Single question 97.1 97.3 91.1 98.3 98.3 98.1 97.1 98.3 
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e. Mean MAPE (lower error is shown with lower numbers) 

Observation 
scenario 

𝑵𝑵𝒇𝒇𝒕𝒕  
Female 

abundance 
𝑵𝑵𝒎𝒎𝒕𝒕  

male abundance 
𝑩𝑩𝑩𝑩𝑩𝑩𝒕𝒕𝑩𝑩 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵
 𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒇𝒇𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵 
𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒎𝒎𝒕𝒕

 𝑵𝑵𝒇𝒇𝒕𝒕+𝒕𝒕 𝑵𝑵𝒎𝒎𝒕𝒕+𝒕𝒕 

GEM question 22.9 22.7 32.1 23.1 26.5 15.4 16.9 

Single question 86.1 69.8 91.6 80.2 81.9 69.8 65.5 

 
f. Mean MAIE (lower error is shown with lower numbers) 

Observation 
scenario 

𝑵𝑵𝒇𝒇𝒕𝒕  
Female 

abundance 
𝑵𝑵𝒎𝒎𝒕𝒕  

male abundance 
𝑩𝑩𝑩𝑩𝑩𝑩𝒕𝒕𝑩𝑩 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒕𝒕𝒆𝒆𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵
 𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒇𝒇𝒕𝒕

 𝑵𝑵𝒆𝒆𝑵𝑵 
𝑩𝑩𝒆𝒆𝒊𝒊𝒆𝒆𝒎𝒎𝒕𝒕

 𝑵𝑵𝒇𝒇𝒕𝒕+𝒕𝒕 𝑵𝑵𝒎𝒎𝒕𝒕+𝒕𝒕 

GEM question 0.514 0.543 0.562 0.315 0.378 0.266 0.324 

Single question 3.28 2.78 2.62 1.49 1.52 2.12 1.84 
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Table 2-5) The relative root mean square error (RRMSE) and the mean across all simulations and groups of the mean absolute percent 

error (mean MAPE) of the GEM state change probabilities across 100 replicate simulations, each with 3 MCMC chains, 50,000 

iterations, 5,000 burn-in period and no thinning, with the single question observation scenario (is the species present) (top) and the 

GEM question scenario (is the species present, are multiple individuals present, are males and females present). The description of 

what each of the state change probability means biologically is included below each probability. 

 
a. State changes from single individual present (GEM state 2) 

Observation scenario 

𝝍𝝍𝒕𝒕𝒛𝒛𝒕𝒕 𝝍𝝍𝒕𝒕𝒛𝒛𝒛𝒛 𝝍𝝍𝒕𝒕𝒛𝒛𝒕𝒕 𝝍𝝍𝒕𝒕𝒛𝒛𝒕𝒕 

Probability of local 
extinction (from single 

individual present) 

Probability of only 
single individual 

persisting (from single 
individual present) 

Probability of gaining at 
least one individual of 

the same sex (from 
single individual 

present) 

Probability of gaining 
breeding capability 

(from single individual 
present) 

RRMSE Mean 
MAPE RRMSE Mean 

MAPE RRMSE Mean 
MAPE RRMSE Mean 

MAPE 

GEM question 0.155 9.72 0.0845 2.85 Not predicted Not predicted 

Single question 0.259 26.7 0.150 9.37 Not predicted Not predicted 
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b. State changes from multiple individuals present of a single sex (GEM state 3) 

Observation scenario 

𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 𝝍𝝍𝒕𝒕𝒕𝒕𝒛𝒛 𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 

Probability of local 
extinction (from 

multiple individuals 
and single sex present) 

Probability of only 
single individual 
persisting (from 

multiple individuals 
and single sex present) 

Probability of only 
persisting as multiple 
individuals but only a 

single sex (from 
multiple individuals 

and single sex present) 

Probability of gaining 
breeding capability 

(from multiple 
individuals and single 

sex present) 

RRMSE Mean 
MAPE RRMSE Mean 

MAPE RRMSE Mean 
MAPE RRMSE Mean 

MAPE 

GEM question 0.551 50.2 0.411 34.6 0.300 22.4 0.591 48.0 

Single question 0.869 138 0.724 85.8 0.539 52.1 1.01 92.6 

 

c. State changes from multiple individuals and both sexes present (GEM state 4) 

Observation scenario 

𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 𝝍𝝍𝒕𝒕𝒕𝒕𝒛𝒛 𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 𝝍𝝍𝒕𝒕𝒕𝒕𝒕𝒕 

Probability of local 
extinction (from 

females and males 
present) 

Probability of only 
single individual 
persisting (from 

females and males 
present) 

Probability of losing 
breeding capability 
(from females and 

males present) 

Probability of retaining 
breeding capability 
(from females and 

males present) 

RRMSE Mean 
MAPE RRMSE Mean 

MAPE RRMSE Mean 
MAPE RRMSE Mean 

MAPE 

GEM question 2.44 1501 1.73 963 1.10 135 0.172 14.9 

Single question 6.57 8.09e31 4.84 2.03e31 2.39 8.02e14 0.106 5.82 
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FIGURES 

 

Figure 2-1) The goal efficient monitoring (GEM) state change probabilities from a potential 

breeding population (GEM state 4) at time t to the other states of isolated individuals, isolated 

individual, and local extinction at time t+1. The table provides an additional explanation for the 

probability highlighted with the yellow arrow (probability of not changing state and retaining 

breeding). Additional information on the biological meaning of the state, population importance, 

conservation and management importance, and the ability of existing monitoring methods to 

detect the state change are also provided. Females are represented with an f and males 

represented with an m on the lynx figure. Note that any of the other state changes (shown with 

gray arrows) are possible, but not described in the figure.  
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Figure 2-2) Goal efficient monitoring (GEM) data from a simulation of a single population that 

started with 19 individuals based on the methods presented in Chapter 1. The data presented 

include population predictions (shown in black and uncertainty shown in gray), state change 

probabilities (represented as the proportion of the yellow state filled, also listed on the state) 

between time steps, generated in a GEM simulation using the GEM observation approach. Below 

the x-axis are examples of assessments and decisions at each time step relative to a hypothetical 

ecological threshold (red dashed line) set prior to monitoring. After the population is assessed to 

see if the state change probability is below the threshold (i.e., likely to lose breeding capability), 
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a decision is made, and conservation actions can be taken or removed. Females are represented 

with an f and males represented with an m on the lynx figure. 
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Figure 2-3) The GEM integrated population model framework for Canada lynx (Lynx canadensis) with an extension for emigration 

and immigration. The time scale included shows a single calendar year divided by months, including notations of t and t+1 relative to 

the model. The biological process and equations are represented on the top of the timeline and observation process and equations are 

shown on the bottom. Note that all possible parts of a GEM observation approach are shown in the observation process.  
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Figure 2-4) The goal efficient monitoring (GEM) state change probabilities possible with the 

immigration and emigration extension.   
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APPENDIX A: TRANSITION PROBABILITIES 

Not present (GEM state 1 – Ψ𝑙𝑙+1 row 1) 
1. If the population is in state 1 (locally extinct) it can: 

a. Transition to state 2 (isolated individual) based on the probability that: 

i. A single male immigrates into the population and exactly zero females immigrate 

into the population 

or 

ii. A single female immigrates into the population and exactly zero males immigrate 

into the population 

 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 2) =  ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1 ∗   �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� + 

                            ��
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1 ∗   �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� 

b. Transition to state 3 (isolated individuals) based on the probability that: 

i. At least two males immigrate and exactly zero females immigrate into the population 

or 
ii. At least two females immigrate and exactly zero males immigrate into the population 

 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 3) =  �1 − ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗  �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� + 

                                �1 − ��
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗   �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� 

 

c. Transition to state 4 (breeding potential) based on the probability that: 

i. At least one male and at least one female immigrates into the population 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 4) =  �1 − ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗  1 − ��

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1�� 

 

d. Stay in state 1 (not present) based on the probability that none of the other transitions (1a-1c) 

occur 
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𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 1) = 1

− ���
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1 ∗   �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

+ ��
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1 ∗   �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

− ��1 − ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗  �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1

∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

+ �1 − ��
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗   �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

− ��1 − ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗  1

− ��
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1��� 

 

Single individual present (GEM state 2 – Ψ𝑙𝑙+1 row 2) 
2. If the population is in state 2 (isolated individual) it can: 

a. Transition to state 1 (locally extinct) based on the probability that: 

i. The single individual dies and no males and no females immigrate into the 

population 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 1) = ��
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� ∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� 

b. Transition to state 3 (isolated individuals) based on the probability that: 
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i. At least one male immigrates and the single individual present survives and exactly 

zero females immigrate into the population  
or 

ii. At least one female immigrates and the single individual present survives and 

exactly zero males immigrate into the population 

or 
iii. At least two males immigrate and exactly zero females immigrate into the population 

and the single individual present does not survive 

or 
iv. At least two females immigrate and exactly zero males immigrate into the population 

and the single individual present does not survive 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 3) = ��1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� ∗  ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙�

∗ �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

+ ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� ∗ ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙�

∗ �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

+ ��1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗ �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1

∗ �
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁,𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙�

+ ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗ �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ �
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁,𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� 

 

c. Transition to state 4 (breeding potential) based on the probability that: 

i. At least one male immigrates and at least one female immigrates into the population 

and the single individual dies 
   or 
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ii. At least one male immigrates and at least one female immigrates into the population 

and the single individual lives 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 4) =  ��1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� ∗   ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙��

+ ���1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� ∗   ��

𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ 𝑃𝑃1��� 

d. Stay in state 2 (single individual present) based on the probability that none of the other 

transitions (2a-2c) occur  
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𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 2) = 1

− ���
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� ∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

− ���1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� ∗  ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙�

∗ �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

+ ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� ∗ ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙�

∗ �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

+ ��1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗ �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1

∗ �
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁,𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙�

+ ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1� ∗ �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ �
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁,𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙��

−

⎝

⎜
⎛
��1 − �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� ∗   ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙��

+ ���1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�
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∗  �1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1� ∗   ��

𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ 𝑃𝑃1���

⎠

⎟
⎞

 

 

Multiple individuals of a single sex present (GEM state 3 – Ψ𝑙𝑙+1 row 3) 
3. If the population is in state 3 (isolated individuals) it can: 

a. Transition to state 1 (not present) based on the probability that: 

i. All individuals die and exactly zero males and exactly zero females immigrate into 

the population 

 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 1) = ��
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� ∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� 

 

b. Transition to state 2 (isolated individuals) based on the probability that: 

ii. A single individual present lives and exactly zero males and exactly zero females 

immigrate 

or 
iii. All individuals present die and a single male immigrates and exactly zero females 

immigrate into the population 

or 

iv. All individuals present die and a single female immigrates and exactly zero males 

immigrate into the population 
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𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 2) = ���
𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ 𝑃𝑃1� ∗ � �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ � �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

+ ��
𝑁𝑁𝑙𝑙
𝑁𝑁𝑙𝑙
� (1− 𝑃𝑃)𝑁𝑁𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑙𝑙−𝑁𝑁𝑙𝑙 ∗  �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1

∗ � �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1��

+ ��
𝑁𝑁𝑙𝑙
𝑁𝑁𝑙𝑙
� (1− 𝑃𝑃)𝑁𝑁𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑙𝑙−𝑁𝑁𝑙𝑙 ∗  �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1�� 

 

c. Transition to state 4 (breeding potential) based on the probability that: 

i. At least one male and at least on female immigrates and the single individual present 

dies 

or 

ii. At least one male and at least on female immigrates and the single individual present 

lives 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 4) = ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� ∗   ��

𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� �

+ ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� ∗   ��

𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ (𝑃𝑃)1� � 

 

d. Stay in state 3 (multiple individuals of a single sex present) based on the probability that none 

of the other transitions (3a-3c) occur. 
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𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 3) = 1

− ���
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� ∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

− ����
𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ 𝑃𝑃1� ∗ � �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ � �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

+ ��
𝑁𝑁𝑙𝑙
𝑁𝑁𝑙𝑙
� (1− 𝑃𝑃)𝑁𝑁𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑙𝑙−𝑁𝑁𝑙𝑙 ∗  �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1

∗ � �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1��

+ ��
𝑁𝑁𝑙𝑙
𝑁𝑁𝑙𝑙
� (1− 𝑃𝑃)𝑁𝑁𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑙𝑙−𝑁𝑁𝑙𝑙 ∗  �

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1���

− ���1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗   ��
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� �

+ ��1 − �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗  �1 − �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1�

∗   ��
𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ (𝑃𝑃)1� �� 
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Multiple individuals of both sexes present (GEM state 4 − Ψ𝑙𝑙+1 row 4) 
4. If the population is in state 4 (breeding potential) it can: 

a. Transition to state 1 (locally extinct) based on the probability that: 

i. All individuals die and no males and no females immigrate into the population 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 1) =  ��
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙� ∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1� 

b. Transition to state 2 (isolated individual) based on the probability that: 

i. A single individual present lives and no males and females immigrate 

or 
ii. All individuals present die and a single male immigrates and exactly zero females 

immigrate into the population 

or 

iii. All individuals present die and a single female immigrates and exactly zero males 

immigrate into the population 

𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 2) =  ���
𝑁𝑁𝑃𝑃,𝑙𝑙
1 � (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−1 ∗ 𝑃𝑃1� ∗ � �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1�

∗ � �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

+ ��
𝑁𝑁𝑙𝑙
𝑁𝑁𝑙𝑙
� (1− 𝑃𝑃)𝑁𝑁𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑙𝑙−𝑁𝑁𝑙𝑙 ∗  �

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1

∗ � �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1��

+ ��
𝑁𝑁𝑃𝑃,𝑙𝑙
𝑁𝑁𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑃𝑃,𝑙𝑙−𝑁𝑁𝑃𝑃,𝑙𝑙 ∗  �
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1

∗ � �
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1�� 

c. Transition to state 3 (isolated individuals) based on the probability that: 

i. At least two males present live and no females live and no females immigrate 

or 

ii. At least two females present live and no males live and no males immigrate 

  or 
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iii. No females present live and no males present live and at least two females 

immigrate 

or 

iv. No females present live and no males present live and at least two males immigrate 

or 

v. One male present lives and no females live and no females immigrate and at least 

one male immigrates 

or 

vi. One female present lives and no males live and no males immigrate and at least one 

female immigrates 
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𝑃𝑃(𝑧𝑧2𝑡𝑡+1 = 3) = ��1 − �
𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙

1 � (1− 𝑃𝑃)𝑁𝑁𝐵𝐵,𝑃𝑃𝑙𝑙−1 ∗ (𝑃𝑃)1� ∗ ��
𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙
𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙−𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙�

∗ ��
𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑓𝑓,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑓𝑓,𝑖𝑖,𝑡𝑡+1��

+ ��1 − �
𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙

1 � (1− 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑃𝑃𝑙𝑙−1 ∗ (𝑃𝑃)1� ∗ ��
𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙
𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙−𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙�

∗ ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1��

+ ��1 − �
𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙

1 � (1− 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑃𝑃𝑙𝑙−1 ∗ (𝑃𝑃)1� ∗ ��
𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙
𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙−𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙�

∗ �1 − ��
𝐶𝐶𝑚𝑚,𝑔𝑔,𝑡𝑡+1

1
� (1 − 𝐶𝐶𝑝𝑝𝑔𝑔)𝐶𝐶𝑚𝑚,𝑖𝑖,𝑡𝑡+1−1 ∗ (𝐶𝐶𝑝𝑝𝑔𝑔))1���

+ ��
𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙

1 � (1− 𝑃𝑃)𝑁𝑁𝐵𝐵,𝑃𝑃,𝑙𝑙−1 ∗ (𝑃𝑃)1 ∗ �
𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙
𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙

� (1− 𝑃𝑃)𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙 ∗ (𝑃𝑃)𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙−𝑁𝑁𝑓𝑓,𝑃𝑃,𝑙𝑙

∗  �1− ��
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d. Stay in state 4 (breeding potential) based on the probability that none of the other transitions 

(4a-4c) occur 
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Chapter 3: Conservation design3 

ABSTRACT 

Conservation biology and practice currently relies on biological, social, and policy-based 

solutions to connect science to actions. However, processes to ensure conservation actions are 

effective is often ill-defined, which can lead to ineffective outcomes. To achieve effective 

solutions in conservation, we propose that conservation practice would benefit from the field of 

Design – a discipline that engages in research and practice on the plans and processes to change 

existing problematic conditions into preferred ones. The field is concerned with a wide range of 

design practices from communication, to engineering to business. In this article, we argue that 

the approach to problem solving known as Design Thinking will complement and improve 

conservation practice. Design thinking is an iterative process that guides designers and 

stakeholders on how to effectively build a product or process that meets the needs of the users 

they are intended for; it complements existing conservation practice approaches through its focus 

on building and testing effective solutions. We propose that combining conservation biology and 

Design thinking, which we call Conservation Design, could result in effective solutions and new 

innovations to further the field of conservation practice. 

 

THE STATE OF CONSERVATION PRACTICE 

When Michael Soulé founded the modern field of conservation biology in 1985, he defined it as 

“…a new stage in the application of science to conservation problems,” (Soulé 1985). The use of 

the phrase “application” may have foreshadowed where the field was going, because today, 

almost 30 years later, the field of conservation biology has now grown to more broadly and 

 
3 Plan to submit to Biological Conservation as Golding JD, MK Schwartz, and S Ishizaki. Conservation design. 
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formally encompass the idea of conservation practice (Fleishman et al. 1999), or the acts taken to 

achieve a conservation goal. From the addition of an entire journal dedicated to practice, 

Conservation Science and Practice from the Society for Conservation Biology (Schwartz et al. 

2019), to widely used frameworks such as the Open Standards for the Practice of Conservation 

for practitioners to share lessons from practice (CMP 2022), to increased research on ways to 

link science to decisions (e.g., Schwartz et al. 2018), practice has in many ways become a 

renewed frontier of conservation. Limited funding, accelerated environmental change, and 

increased standards for science-based conservation and management means that conservation 

practice has to be more efficient than it has ever been.  

To make conservation practice more effective, or likely to achieve the desired 

conservation goal, there has been a rapid development of frameworks, processes, and tools for 

conservation practitioners to accomplish conservation. According to Schwartz et al. (2018): a 

framework is a cohesive set of guidelines and specific tools to accomplish conservation 

practice; a process is a set of steps to accomplish a specific activity in conservation practice, 

with fewer prescriptions on how to accomplish the steps and what tools to use than a framework; 

and a tool is an individual product (e.g., software, planning method) designed to accomplish a 

specific purpose. These frameworks, processes, and tools are providing theoretical advances, as 

well improvements for on-the-ground processes (e.g., CMP 2022). However, for these 

frameworks, processes, and tools to be useful on the scale and pace required for current 

conservation practice, they need to be usable far beyond the scientific literature. One way this 

can occur is through more attention into developing these as usable systems and products, 

including carefully defining who and what they are intended to be used by and for. To more 

effectively achieve conservation practice with current frameworks, processes, and tools, we need 
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an effective way to articulate and build the purpose of the methods at multiple levels and 

integrate the existing steps within the processes to work towards that purpose.  

An interdisciplinary approach where Design plays a larger role in defining the system 

provides a promising way forward to accomplish the transformation of conservation practice into 

a more usable system built with existing methods. The field of Design, which we define here as 

the professional field of research and practice to change existing conditions into preferred ones 

Glossary 

conservation biology: “a new stage in the application of science to conservation problems” (Soule 1985) 

conservation practice: the acts taken to achieve a conservation goal 

design: to plan how something will be created (verb); the plans and processes to achieve an idea (noun) 

Design: the professional field of research and practice to change existing conditions into preferred ones 

Designer: a professional in Design, either in academic or industry setting 

Design thinking: a Design framework that helps people generate and quickly test a range of possible options and 
identify an optimal solution by iterating through five steps of empathizing, defining, ideating, prototyping, and testing 

effective conservation practice: likely to achieve the desired conservation goal 

empathize: the first step in Design thinking  

empathy interviews: a Design method for interviewing to build empathy through an interview by observing, emerging, 
and engaging with users 

experience prototyping: a Design method that uses a physical or visual representation of what it is like to be the user 

framework: cohesive set of guidelines and specific tools to accomplish conservation practice or Design 

process: steps to accomplish a specific activity in conservation practice, but with fewer formal prescriptions on how to 
accomplish steps and what tools to use than a framework 

results chain: conservation practice method to visually show the assumed links between a conservation action and the 
desired goals of the action 

role playing: a Design method that uses acting out the role of the user by the Designer in realistic scenarios 

scenario description swim lanes: a Design method to visualize the activities of multiple stakeholders through a process 
to visualize how a complex group may respond to a Design 

stakeholder maps: a Design method that is widely used in other disciplines to visually represent the key stakeholders 
of a project and their connections to one another 

stakeholder walk through: a Design method to bring stakeholders together with Designers to present and evaluate 
early prototypes 

story board: a Design method to provide a visual narrative of how a user will interact with a product, specifically used 
to generate empathy and understand the context the user will interact with the Design 

l  d d l d  (  f  l h d  l  h d) d d     f  l  
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(Simon 1970), and conservation practice can both be improved when used together in novel 

ways. In particular, Design thinking, which is a Design framework that helps designers generate 

and quickly test a range of possible options and identify an optimal solution, can provide a broad 

and flexible framework to help at a number of scales to make these processes more effective and 

usable. Because the field of Design has been working for decades to hone how to most effectively 

turn purpose into plans, it is a new discipline to bring a structured cohesion to conservation 

practice. In fact, conservation practice already recognizes some value in Design; terms like “use 

inspired science” (Wall et al. 2017) and the description of science products produced for “users” 

(Fisher et al. 2019) are not just language of the discipline of Design, these are the foundation of 

Design activities.  

In this chapter we present a review of Design and Design thinking, some of the most 

common frameworks and processes in conservation practice, examples of where we think Design 

thinking can help to improve these frameworks and processes and provide synergistic 

possibilities for innovations created between the fields of Design and conservation practice. We 

then provide an example of how we might use Design to build a monitoring implementation 

system for two different goals. Finally, we suggest ways in which a field that combines Design 

and conservation practice may develop. Although Design has not been widely used in 

conservation practice (a few notable examples do exist, however – see Design for Wildlife), we 

believe there is great potential in including Designers on the conservation practice team to build 

connections between conservation information and implementation.   
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DESIGN, DESIGN WITH A CAPITAL “D,” AND DESIGN THINKING 

First, it is important that we clarify the 

use of the terms surrounding design, as that is 

often a source of confusion. As a verb, design 

refers to planing how something will be 

created, and as a noun, design refers to the 

plans and processes to achieve an idea. In his 

foundational book on design, The Science of 

the Artificial, Herbert Simon defined design as 

“The process of changing existing conditions 

into preferred ones” (Simon 2019). We bring 

these definitions up to highlight that all of 

us, whether in our daily life or in our professional careers, design to achieve specific purposes. 

Design, noted with a capital “D,” in this essay is used to refer to the professional field of research 

(conducted in academic settings such as the Carnegie Mellon School of Design or the Rhode 

Island School of Design) and practice of Design (conducted throughout both academic and 

professional settings to accomplish service, social, or societal goals). Design is conducted for a 

user or target group (usually people unless stated otherwise) by a Designer, also noted with a 

capital “D”, who is a professional in the Design field, typically either in academic or industry 

setting.  

We focus on Design thinking for use in conservation practice because of the breadth of 

situations it can be applied to; as Buchanan (1992) noted, “the subject matter of design (thinking) 

is potentially universal in scope...” Design thinking is often explained as five stages, all of which 

Figure 3-1) The Design thinking process (adapted from 
Stanford d.school 2019) 
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are meant to be iterative before the completion of the final design: empathize, define, ideate, 

prototype, and test (Figure 3-1). Empathize is the process of fully understanding the needs of the 

end users. It starts with stakeholder interviews and literature surveys with the goal of 

empathizing with the people and culture surrounding the problem (Kouprie & Visser 2009) and 

understanding their needs. Next, information gained from the empathize step is applied to frame 

the Design problem from the stakeholders’ perspective, using techniques such as generating 

“point of view” problem statements (e.g., “Local business owners need economically feasible 

clean water options from a municipality because they care about their livelihoods and value their 

community”). Then, a Designer generates ideas using this problem statement. This step, often 

called “ideation,” involves techniques of mass idea production (e.g., brainstorming) and visual 

representation of those ideas (Martin & Hanington 2012). Filtering ideas is critical in the ideation 

process and is conducted after ideas are generated, often using filter categories such as: 1) idea 

most likely to succeed; 2) idea most likely to delight; 3) most breakthrough idea (Stanford 

d.school 2019). After selecting one or a few ideas through filtering, a Designer will build 

prototypes—moving gradually from lower to higher fidelity prototypes, which allows for 

minimal investment and rapid iterative evaluation of the ideas. Prototypes are tested with 

interviews or users interacting directly with the prototypes (Stanford d.school 2019). These five 

steps are conducted repeatedly as an iterative process, with iteration often more frequently 

occurring in prototyping through testing.  

Design thinking has been a successful framework to create some of the most important 

experiences in people’s lives. For example, the Design firm IDEO has worked with Los Angeles 

County to build a prototype for new voting machines to replace the current machines from the 

1960s. The machine is designed to be customizable and provide an equitable experience for 
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anyone voting, with adjustable options for vision impairment, reading disabilities, and audio 

controller available with just a few buttons (IDEO 2022). Design thinking has arguably changed 

our lives and societies through the products it has produced. With a goal to lead with Design and 

what people needed, rather than the technology that made a Design possible, Steve Jobs and 

others at Apple had a core value system based on Design that was responsible for the modern 

products today that reshaped music (iPod), communication (iPhone), and personal computing 

(the Macintosh computer) (Thomke & Feinberg 2009). Design thinking in healthcare has also 

fundamentally changed some aspects of how healthcare is delivered. For example, in 2002 the 

Mayo Clinic created the See-Plan-Act-Refine-Communicate (SPARC) laboratory with Design 

firm IDEO (Brown 2019), as collaborative space for doctors, designers, health care 

Design for Wildlife: applying Design to human-wildlife conflict 

Elephant crop raiding is a major human-wildlife conflict issue in Africa and Asia (MacKenzie & Ahabyona 
2012). A large body of conservation research has refined understanding of the problem (e.g., Barua et al. 
2013), as well as effectiveness of natural repellent solutions to deter elephants (e.g., Hedges & Gunaryadi 
2010). Yet, there was little research to ensure that solutions to alleviate the conflict could both be built 
and sustained. To address this, Design for Wildlife, a collective of creative professionals focused on 
applying Design principles to solve human-wildlife conflicts, approached creating an economically 
sustainable elephant-crop raiding solution as a Design problem. They asked if disseminating information 
about what effectively repels elephants in a simple format (i.e., a recipe) would result in production of the 
repellent and sustained use of these methods and, if not, how might they ensure that happens?  

In 2017-2019, Design for Wildlife conducted trials and showed that the elephant repellent made from 
natural ingredients grown throughout Africa reduced crop raiding by 80%. However, Design for Wildlife 
also found that a recipe alone was not sufficient to encourage widespread production of the repellant 
because the recipe called for cash crops (crops grown for sale and not local consumption) such as chili, 
which are not grown unless there is a market for them. Through Design field research in Uganda, which 
included role playing, voting, and categorization exercises, they determined that creating a local business 
market for repellent would be most successful and economically sustainable (i.e., not donor dependent). 
However, before implementing a large, systematic solution, they evaluated it by creating full-scale local 
production prototypes and testing them in various markets in Uganda.  

Design for Wildlife was successful. Now the repellent is widely produced through a local market created 
by and for local residents of Uganda. By using a Design thinking process, Design for Wildlife demonstrated 
a key benefit of Design in conservation: it is a way to bridge the gap between technical knowledge of a 
solution and the creation of a long-term, functional solution in practice (Design for Wildlife 2022). 
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professionals, and even patients to work together on new ways to deliver care. The innovation 

process in the SPARC laboratory generated early prototypes of telemedicine. During an ideation 

phase of Design thinking, SPARC laboratory determined through the ideation process that care 

might also be able to be delivered via video. The prototype of the video system turned out to be 

successful and time saving way to access appointment (Malagrino et al. 2012). This innovation 

helped spur the larger development of telemedicine (Vimalananda et al. 2015). Whether it is in 

business (Brown 2019), education (Koh et al. 2015), public health (Bazzano et al. 2017), or 

government defense (US Air Force 2017), Design thinking is transforming the way fields solve 

problems. 

 

HOW DESIGN THINKING CAN IMPROVE CONSERVATION PRACTICE 

APPROACHES 

Currently the theory of conservation practice is described in the scientific literature as 

frameworks, processes, and tools. Here, we focus on a small group of more frequently cited 

frameworks and processes to explore how Design thinking and adding a Designer to the teams 

that can lead to new innovations. While we recognize that Design thinking applied to the 

construction of the tools in conservation practice could greatly increase their popularity and 

functionality, there are so many and being produced so fast that it would likely take a book to 

describe them all. In addition, we feel that focusing on frameworks and processes allows for 

more possibilities for innovation with Design and conservation practice.  

Schwartz et al. (2018) identified five major decision support frameworks in conservation 

practice: open standards for the practice of conservation (CMP 2022); evidence-based practice 

(Salafsky et al. 2019); systematic conservation planning (Margules and Pressey 2000); structured 
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decision making (Conroy & Peterson 2013); and strategic foresight (Cook et al. 2014). In 

addition, we identified three more processes, which are less prescriptive in their tools and ways 

to achieve steps, which represent additional ways in which scientists are actively participating in 

conservation practice: impactful science (Fisher et al. 2019); coproduction of science (Beier et al. 

2017); and translational ecology (Enquist et al. 2017). These frameworks and processes are the 

most current in broad conservation practice approaches that are in use today. We see many areas 

where Designers on the team using Design thinking can augment existing frameworks or 

processes and innovate with conservation practitioners. We describe some examples below 

according to the Design thinking step they correspond to and provide additional information in 

Table 3-1. 

 

Empathizing  

Conservation practice is an applied science, meaning it requires us on some level to be 

empathetic to a stakeholder. Trends toward inclusion of stakeholders in all processes in 

conservation practice reflect the desire to consider stakeholder needs (e.g., Beier et al. 2017; 

Enquist et al. 2017). However, science itself is not designed to create a product that we can 

empathize with.  We often conduct science to discover non-intuitive information, but not through 

empathy. While conservation biology and conservation practice may include empathy as part of 

a larger solution, the science itself actively does not use empathy. However, empathy may be a 

key factor in success of conservation practice. As Zimmerman et al. (2021) noted, conservation 

practice situations can each be very different because of the different people and socioeconomic 

factors involved. Having a Designer who is professionally trained and frequently uses empathy 

techniques such as observation studies, where a Designer observes a user in their environment, 
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and experience prototyping, where a Designer uses a representation of what it is like to be the 

user (Kouprie & Visser 2009), who can actively work with empathy may provide solutions that 

were not previously considered.  

An empathy approach used to understand the problem may be particularly useful in a 

framework such as structured decision making (SDM), which is used for making collective 

environmental decisions, often to meet multiple stakeholder objectives (Conroy & Peterson 

2013). The entire tone and direction of the SDM exercise is built on defining the problem as the 

first step. Individual problem definitions may be very different than a group definition, and may 

even differ if stakeholders are sharing their views with the entire group or in a one-on-one setting 

with a Designer who is actively working to understand their problem. Designers use empathy 

because of the understanding that there is frequently a difference between what people say, think, 

feel and do. Often what people will do is based on what they feel, so empathy is a good 

technique to use to understand this. However, conservation practice has been effective in using 

social science and measuring what people say and think more scientifically and rigorously 

(Bennett et al. 2016) and the SDM process attempts to quantify that so others can see it. We see 

the potential for Design and conservation practice to develop novel methods for groups to 

visualize or interact with the information about what people are saying, thinking, feeling and 

doing to define more inclusive collective problem statements.  

Defining 

Defining the correct problem has been widely recognized as one the most important steps in 

most conservation practice and many aspects of conservation biology. The same is true for 

Design thinking. In fact, many of the methods currently in use in some of the conservation 

practice approaches, such as the open standards for the practice of conservation are methods 
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commonly used by Designers. For instance, Designers are already experts and well-practiced in 

many of the methods suggested in the assess step of the open standards for the practice of 

conservation framework, including stakeholder maps, stakeholder walk throughs, and 

storyboards (Martin & Hanington 2018). Because open standards for the practice of conservation 

framework is meant to be very usable and accessible, Designers may not always be present to 

assist with these techniques. However, Designers could help to provide widely usable ways to 

create stakeholder maps, walkthroughs, or storyboards to include with the documents already 

produced by open standards for the practice of conservation. The Conservation Measures 

Partnership, developers of the open standards for the practice of conservation framework, already 

show a commitment to investing in creating more usable products, with the development of their 

user-friendly “cookbook” version of the framework (CMP 2022) and could greatly benefit from 

working with Designers to Design more user-centered material. 

 

Ideating 

The ideation phase of Design thinking is intended to broaden the range of possible solutions 

through a combination of divergent thinking and a complimentary filtering process for 

converging on one or two ideas. Broadening the range of potential solutions through ideation has 

two major benefits: a larger space of potentially functional, not just optimal, solutions is explored 

(Munzner 2014) and the ability to produce potentially major innovations (Liedtka 2018). This 

ideation phase could provide new ways to approach steps of systematic conservation planning, 

which is a framework to systematically plan so that protected areas remain representative of the 

biodiversity they were designed to protect and provide for the persistence of biodiversity targets 

(Margules & Pressey 2000). The second step in this framework could be setting quantitative 
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goals for biodiversity targets. Margules and Pressey (2000) admit these goals may be subjective, 

but the benefit of having a target outweighs any downside to subjectivity.  

Here, Designers and conservation practitioners could create a new approach to 

brainstorming to set these goals. A project planning group could brainstorm possible biological 

targets, making sure to include area and biodiversity, purposely removing the constraints of 

possibility while generating ideas. This is yet another point of synergy for a Design and 

conservation practice approach. Whereas Designers have methods to filter such as idea most 

likely to succeed or idea most likely to delight (Stanford d.school 2019), conservation practice 

approaches lean more heavily on scientifically documented evidence. Not only can Designers in 

a multidisciplinary project use an additional scientific filtering criterion, such as idea with the 

most empirical evidence of success, but a combined filter approach could include the more 

traditional Design criteria. Accordingly, ideas generated in the brainstorming process could be 

filtered according to the criteria of biologically possible, idea most likely to delight, and most 

affordable. This could allow bolder ideas to be taken forward to a prototyping phase if the full 

process of Design thinking is in use, where new possibilities for accomplishing the ideas might 

be considered (importantly, before any official targets are set). In addition, the use of a scientific 

filtering criteria can give credibility to the Design, which is especially important in urgent 

conservation action. 

 

Prototyping and Testing 

Prototyping and testing before a system is implemented to see if it would be successful is a 

significant departure from some of the long cycles of iteration that have been proposed in 

conservation practice. Long iterative cycles in conservation practice systems, such as adaptive 
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management, are likely to not lead to iterative improvements or changes as intended because 

once organizations have invested in an effort, changing that effort can be seen as an 

abandonment of an investment (Williams & Brown 2014). However, Design thinking condenses 

much of this iteration to before the project is implemented on the ground, still retaining the 

important testing step to ensure feasibility, however.  

There are many potential areas for innovation between Design and conservation practice 

when it comes to prototyping and testing. For example, theoretical ecological models and 

simulated data can provide environments to explore changes on multiple timelines relevant for 

conservation, which can be used as a form of prototyping for conservation practice that does not 

require any risk associated with implementation. In addition, although they are not described 

with the word “prototyping,” there are already prototyping methods in use in conservation 

practice. For instance, a results chain analysis (Margoluis et al. 2013), is a prototyping method 

where a conservation practitioner draws a diagram of the assumed links between a conservation 

action and the desired goals of the action. A theory of change analysis is another prototyping 

approach where a conservation practitioner writes out the chain of events and assumptions that 

they think create a desired result to understand the assumptions and potential real-world results 

of the action. Results chain or theory of change analyses, as well as other prototyping methods 

already in use in conservation practice can be adapted to include additional testing methods from 

Design thinking. Finally, the simulations I present to test the goal efficient monitoring GEM 

system I present in Chapters 1 and 2 of this dissertation are in many ways a prototype and the 

different scenarios that were run are analogous to testing.  

 



136 
 

THE POTENTIAL FOR DESIGN IN CONSERVATION PRACTICE 

Access to the information of conservation practice can be further Designed. For the conservation 

practice frameworks and processes to be maximally effective they should have a version that is 

accessible and understandable for a non-scientific audience (beyond the scientific literature 

which is important for documentation and theoretical advances in the field). However, rather 

than assume what form this would best be accomplished with before the Design process, a 

Designer would identify a user, interview them, and create and refine a problem statement before 

any potential designs were created. For example, a Designer might identify a small group of 

government employees at a land management agency as users of conservation practice 

frameworks. After conducting empathy interviews with employees that represent that user group, 

the Designer might define the problem as follows (name used for illustrative purposes): “Team X 

needs a way to update their 10-year management plan to provide and maintain for biodiversity 

and stay within legal requirements, but only has access to one full time staff for 3 months to 

accomplish that. They do not understand the difference in scope or application of the 

conservation practice frameworks, but would like to use them because they are scientifically 

defensible approaches and they are required to use the best available science.” This may get 

further refined to: “provide a clear way to choose between conservation practice frameworks 

based on the applicability to biodiversity goals, the number of people required to execute it, and 

the ratio of planning time to implementation”. The Designer then might ideate through 

brainstorming ways to present this information. After a brainstorming and filtering session that 

resulted in selection of visual Designs, the Designer would prototype a system that might look 

like Figure 3-2. 
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With a few rounds of testing this Design with Team X and other employees, the Designer might 

then work with the government agency, conservation practitioners, and conservation scientists to 

Design this visual tool for the government agency users. This is a fictional example with fictional 

metrics, but it is meant to illustrate the how a Designer might help to translate complex 

conservation practice information into a usable format. The Designer would help to create 

Designs that bring together the best available science and user needs.  

 

Figure 3-2) A visual design that could result from a Design thinking process used to provide a way for practitioners to 
decide what conservation practice frameworks to use based on the criteria important to the user. Biodiversity is 
represented with the symbol on the left (hypothetical qualitative comparisons among the frameworks are listed). The 
symbol on the right represents the team members required for the full use of the framework (hypothetical numbers are 
listed). The hypothetical balance of upfront planning time (shown in blue) relative to implementation time (shown in 
yellow) is also listed. 
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LARGE-SCALE DESIGN OF CONSERVATION PRACTICE 

We see many potential avenues for Designers to use principles of Design thinking to innovate 

within existing conservation practice approaches. However, we also see the possibility of using 

Design on a larger scale to create new conservation practice systems. We illustrate this with an 

example for Canada lynx (Lynx canadensis) monitoring in the US Northern Rocky Mountains. 

We use a cycle of common steps in active rare species management for the species that involves 

protection, through laws or policies, monitoring, analysis, knowledge and an eventual update and 

recycle through the system (Figure 3-3). 

The first step in applying Design 

thinking to this process could be to 

understand and define the purpose of the 

system. In this case the system involves so 

many potential stakeholders that it will be 

beneficial to define the purpose of the 

system to focus the Design of the system. 

Therefore, one might define the purpose as 

maintaining breeding potential of lynx in the 

area of management (using goal efficient monitoring [GEM] population state criteria presented 

in Chapter 2). This could then lead to an exercise of mapping stakeholders in this process, 

including natural resource managers, research and monitoring scientists, as well as the lynx. The 

next step would then be to narrow the user groups to the natural resource managers who will 

work most directly with this system and the research and monitoring scientists who advise or 

construct the population monitoring for the species. Empathy interviews with these users could 

Figure 3-3) A simplified representation of a system of 
information flow for active rare species management by an 
agency. 
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uncover key barriers in communication or understanding about how information is used or 

created. For example, a practitioner reading a technical monitoring report that covers the past 

five years of monitoring data may not know how to interpret what significant regional trends 

mean for their smaller area of interest. This might highlight a lack of reality in the way the 

system is conceived and illuminate the fact that the arrows are undefined processes that result in 

long timelines, confusion, and lack of the right product arriving at the next step. This could lead 

to the Designer identifying users at each step and previously undefined users in the interim steps 

represented by the arrows. This process could lead to an additional iteration through defining the 

problem, mapping stakeholders, and interviewing a broader group of users.  

The Designer then might ideate with an interdisciplinary team in a stepwise fashion, 

starting with the main steps, to determine potential plans to build each step effectively. 

Separately, the team might ideate for how to build the steps of the connecting arrows most 

effectively and at the end filter them according to a mix of Design criteria, like most 

breakthrough idea, and criteria related to the steps, including most likely to achieve information 

goals for the next step. With the interim step ideas narrowed, the team could run through another 

round of filtering with the main steps and the filtered connecting steps. This multi-tiered ideation 

and filtering process could allow for creativity and flexibility in generating ideas to effectively 

build the entire system, without the team getting distracted in the complexity and scope of the 

entire system.  

After the ideation phase a few ideas for the design of the entire system would move 

forward to the prototyping phases. These could involve a series of simulations of lynx 

populations, which could build on the work presented with GEM, and the monitoring data that 

might come from the populations. Simulating the other steps in the process, including the flow of 
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information but also the change of protection status or change in monitoring, could not only be 

useful to understand future conditions, it could help to identify if and how there were appropriate 

mechanisms for them to change within the system to occur. Different scenarios related to 

protection (which can be broadly defined to also include management) could be adjusted 

according to different risk tolerances, protection levels, monitoring funding, or other factors. 

More user-centered prototyping could be carried out for the steps and arrows, including story 

boards, experience prototyping, scenario description swim lanes to describe how a team might 

interact with information at certain steps. Because the purpose would be to keep breeding 

potential of lynx in the landscape of interest, this could be determined through the system-wide 

simulation, separate from the usability of each step. However, the simulation could be modified 

to see what decreasing usability in each step would do to the entire system to achieve the goal of 

maintaining breeding potential. Because there is biological processes occurring in this process, it 

is possible that the system would change regardless. But with a biological processes built into the 

simulation, the sensitivity of that metric to the entire system could be test.  

Importantly, this Design process linking the biology and conservation of the species, 

tested with simulation and user-centered prototyping, could be transparently described and 

documented. Finally, a full plan for the system with the design processes well documented, could 

be presented and implemented.  

 

WHAT MIGHT A FIELD OF CONSERVATION DESIGN LOOK LIKE? 

We have presented a broad overview of just a few ways in which we envision a Designer using 

Design thinking could add value to and innovate with and expand conservation practice. 

However, we envision a broader potential future of this idea as a field of “Conservation Design” 
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where the fields of Design, conservation practice, and conservation biology can all grow 

together. We see tremendous need not only for the innovation and efficiency brought by Design, 

but for the role that a conservation Designer could play. In conservation practice many have 

recognized the need for a boundary spanning positions (e.g., Cook et al. 2013; Enquist et al. 

2017). There have been multiple proposals for who the boundary spanner should be and their 

role. Some have proposed that scientists function in this role (Ruckelshaus et al. 2020), but 

others have noted that the role truly remains undefined and there is a lack of ownership of 

conducting the overall process of conservation practice (Carr et al. 2017). This lack of defined 

roles potentially leaves the crucial connecting steps (i.e., the arrows in all the cycles) and the 

functioning of the entire system as a whole almost always undesigned (there has been no one 

single role to design it). Having a conservation Designer in the role of a boundary spanner but 

who actively Designs conservation practice action could solve these issues. A Designer in the 

role of Designing conservation practice system would ensure not only that all arrows and steps 

work together, but that each process is built for specific users; a Designer is invested in the 

functioning of the solution rather than the work underpinning the solution (i.e., conservation 

biologist), and is a professional trained to recognize, understand, and design with knowledge 

from users and stakeholders of a product. Professional Designers are expert planners to achieve 

ideas. In addition, there is growing recognition that Designers can play more collaborative roles 

that facilitate collaborative Designing (Sanders & Stappers 2008).  

As a discipline, we would envision research in conservation Design that innovates with 

the research in Design and conservation biology and practice. We have highlighted a few places 

where we see possibilities, including new approaches to ideating for conservation, designing 

conservation practice framework operation, and entirely new ways to design conservation 
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practice. We envision students of Conservation Design trained in both Design and conservation 

biology, and practitioners with the ability to work as a Designer or biologist. Together, these 

disciplines could innovate test long-term conservation solutions, envisioned with the rigor of 

science and creativity of Design. 

 

THE FUTURE 

We hope this is the start of new discussions and collaborations between Designers of all 

disciplines, conservation biologists, conservation practitioners, and stakeholders who are 

involved in conservation. We invite potential collaborators to get in touch because we feel we 

must approach the use of Design thinking in conservation as both Designers and scientists: like 

Designers, we must actively Design and build, not just theorize about Design, and like scientists, 

we must document if and how it is successful. We are confident that with optimism and 

creativity, we can reimagine the future of conservation. 
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Approach Visual 

Does the 
approach 

include on 
the ground 

action? 

Targeted user 
or user group 

Benefits of a 
Designer in 
the approach 

Areas of 
innovation 

with Design 

Open 
standards for 
the practice of 
conservation 
 
A framework 
for 
program 
design, 
management, 
and 
monitoring 
 
CMP 2022 
 

 

Yes, for a 
specific 
project 

Multidisciplin
ary team 

Expert in 
many of the 
tools used in 
steps (esp. 
assess) such as 
stakeholder 
maps (Martin 
& Hanington 
2018), 
stakeholder 
walk throughs, 
storyboards 
 
 
 
 

Information 
sharing system 
with user-
centered 
design focus 
 
Build analyze 
and adapt into 
planning step 
using novel 
prototyping 
and testing 
approaches 
prior to 
implementatio
n 
 
 

Evidence 
based practice 
 
A framework 
for making 
decisions and 
taking action 
informed by 
systematic 
analysis of 
evidence 
  

 

Yes, scope of 
action not 
defined 
(decision or 
project) 

Multidisciplin
ary team 

Build 
processes to 
ensure 
connecting 
arrows have 
built pathways 
to occur (i.e., 
direct ways to 
access and use 
evidence) 

Develop novel 
ways to show 
the use of 
evidence in 
decisions 
linked to calls 
to action 
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Approach Visual 

Does the 
approach 

include on 
the ground 

action? 

Targeted user 
or user group 

Benefits of a 
Designer in 
the approach 

Areas of 
innovation 

with Design 

Salafsky et al. 
2019 
Systematic 
conservation 
planning  
 
 
 
A framework 
for structured, 
systematic 
conservation 
planning to 
ensure that 
protected 
areas remain 
representative 
and provide 
for the 
persistence of 
biodiversity 
targets 
 
 
 
 
Margules and 
Pressey 2000 

 

 

Yes, broad-
scale on the 
ground action 

Governments 
or land 
managers 

Build 
connections 
and 
information 
delivery 
systems for 
monitoring 
feedback that 
can be easily 
updated and 
accessed by 
the team 
responsible for 
management 

Develop novel 
brainstorming 
processes to 
set goals (step 
2) and filtering 
criteria that is 
evidence, 
resource, and 
theoretically 
based  
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Approach Visual 

Does the 
approach 

include on 
the ground 

action? 

Targeted user 
or user group 

Benefits of a 
Designer in 
the approach 

Areas of 
innovation 

with Design 

Structured 
Decision 
Making 
 
 
A framework 
for making 
collective 
environmental 
decision, 
often to meet 
multiple 
stakeholder 
objectives 
 
 
Conroy and 
Peterson 2013 

 

No, process 
ends before 
action 

Multidisciplin
ary team 

Define 
problem with 
individual 
empathy 
interviews 
 
Design 
implementatio
n for action to 
ensure that it 
can be 
accomplished 
and meets 
objectives 

 
Develop 
quantitatively 
informed 
visuals of risk 
or evidence 
weight (e.g., 
Marin et al. 
2009)  
 
Develop 
experience 
prototyping 
approaches to 
show 
consequences  
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Approach Visual 

Does the 
approach 

include on 
the ground 

action? 

Targeted user 
or user group 

Benefits of a 
Designer in 
the approach 

Areas of 
innovation 

with Design 

Strategic 
foresight 
 
A framework 
for making 
collective 
environmental 
decision, 
often to meet 
multiple 
stakeholder 
objectives 
 
 
 
 
Cook et al. 
2014  

Yes Government or 
organizations 

Scenario 
description 
swim lanes to 
visualize the 
activities of 
multiple 
users/people 
(Martin & 
Hanington 
2018) 
 
Build plans to 
achieve 
desired action 
to get to 
desired futures 
identified in 
the process 

Develop novel 
ways to 
visualize or 
experience 
future 
scenarios 
identified in 
“interpret the 
information” 
step 

Impactful 
science 
 
A process for 
making 
collective 
environmental 
decision, 
often to meet 
multiple 
stakeholder 
objectives 
  

No Environmental 
scientists  

Identify 
potential users 
(audience) 
with processes 
like 
stakeholder 
maps 

Design 
communicatio
ns with calls to 
action 
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Approach Visual 

Does the 
approach 

include on 
the ground 

action? 

Targeted user 
or user group 

Benefits of a 
Designer in 
the approach 

Areas of 
innovation 

with Design 

Fisher et al. 
2014 
Coproduction 
of Science 
 
A process for 
making 
collective 
environmental 
decision, 
often to meet 
multiple 
stakeholder 
objectives 
 
 
Beier et al. 
2017 

 
Vincent et al. 2018 

Yes Multidisciplin
ary team 

Define 
management 
need with task 
analysis to 
ensure 
appropriate 
parts of 
problem are 
understood 
(Martin & 
Hanington) 
 
Prototype co-
developed 
solution 
 

Novel 
extensions of 
science 
delivery that 
are based on 
user-centered 
design for both 
managers 
AND 
scientists/futur
e scientific 
inquiry 
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Approach Visual 

Does the 
approach 

include on 
the ground 

action? 

Targeted user 
or user group 

Benefits of a 
Designer in 
the approach 

Areas of 
innovation 

with Design 

Translational 
ecology 
 
A process  
to develop 
research that 
“addresses the 
sociological, 
ecological, 
and political 
contexts of an 
environmental 
problem” 
 
 
Enquist et al. 
2017 

 

No 

Multidisciplin
ary team 
including 
translational 
ecologists, 
stakeholders, 
decision 
makers 

Build user-
centered 
systems to 
facilitate 
creation of 
common 
knowledge 

Develop novel 
systems for 
groups of 
experts to 
interface and 
use the same 
information in 
different ways 
(e.g., track 
your 
contribution 
through 
different 
processes) 

 
Table 3-1) An example of how Design may compliment and innovate with some of the most widely used existing conservation 

practice frameworks and processes. 
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