
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2022

A NON-DETERMINISTIC DEEP LEARNING BASED SURROGATE A NON-DETERMINISTIC DEEP LEARNING BASED SURROGATE

FOR ICE SHEET MODELING FOR ICE SHEET MODELING

Hannah Jordan

Follow this and additional works at: https://scholarworks.umt.edu/etd

 Part of the Glaciology Commons, Numerical Analysis and Scientific Computing Commons, and the

Statistical Models Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Jordan, Hannah, "A NON-DETERMINISTIC DEEP LEARNING BASED SURROGATE FOR ICE SHEET
MODELING" (2022). Graduate Student Theses, Dissertations, & Professional Papers. 11991.
https://scholarworks.umt.edu/etd/11991

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by
an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/159?utm_source=scholarworks.umt.edu%2Fetd%2F11991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=scholarworks.umt.edu%2Fetd%2F11991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=scholarworks.umt.edu%2Fetd%2F11991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11991?utm_source=scholarworks.umt.edu%2Fetd%2F11991&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

A NON-DETERMINISTIC DEEP LEARNING BASED SURROGATE

FOR ICE SHEET MODELING

By

HANNAH MICHELLE JORDAN

Thesis presented in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

The University of Montana

Missoula, MT

July 2022

Approved By:

Scott Whittenburg, Dean of The Graduate School

Graduate School

Douglas Brinkerhoff, Chair

Dept. of Computer Science

Jesse Johnson

Dept. of Computer Science

Andrew Ware

Dept. of Physics

Jordan, Hannah, M.A., Summer 2022 Computer Science
Abstract Title Chairperson: Douglas Brinkerhoff

Surrogate modeling is a new and expanding field in the world of deep learning, providing a computa-
tionally inexpensive way to approximate results from computationally demanding high-fidelity simulations.
Ice sheet modeling is one of these computationally expensive models, the model used in this study cur-
rently requires between 10 and 20 minutes to complete one simulation. While this process is adequate for
certain applications, the ability to use sampling approaches to perform statistical inference becomes infeas-
ible. This issue can be overcome by using a surrogate model to approximate the ice sheet model, bringing
the time to produce output down to a tenth of a second or less. In this paper, we introduce the use of a
conditional variational autoencoder as a surrogate model for approximating an ice sheet model producing
surface velocity predictions. For a fair comparison, we test both deterministic and stochastic approaches
and discuss the drawbacks and benefits to both model types. We train a standard vanilla neural network
architecture, a neural network architecture using dropout and normalization, and a neural network with
added dimensionality reduction using principal component analysis. These surrogate models produce output
that is representative of the high-fidelity data, but there is variability between the surrogate and high-fidelity
model. This divergence cannot be determined for a deterministic model without further analysis such as
model ensembling. The use of a stochastic network, such as the conditional variational autoencoder, provides
a solution to this problem. This network provides us with a method to quantify the uncertainty within the
surrogate using the model’s natural stochasticity. This implementation has the potential to be applied across
multiple fields because of the black box nature of the architecture.

ii

1 Introduction

Ice sheet modeling provides important insight on the life cycle, physics and future changes to glaciers around

the world. Glaciers and ice sheets slide as a result of the conversion of potential energy in the form of

accumulated ice at high elevations. This occurs either through viscous dissipation within the ice itself,

or by frictional dissipation at the interface between the ice and underlying bedrock or sediment. This is

referred to as ‘sliding’ and is responsible for a majority of the observed velocity over much of the Greenland

ice sheet (Maier et al., 2019). Variations in ice flow dynamics make up >50% of contemporary ice loss in

Greenland (Mouginot et al., 2019), because of this it is crucial to develop a model that can produce sliding

predictions with few errors. If the basal sliding predictions are off in a simulation, the resulting sea level

rise projections will be uncertain as well. Modeling basal sliding remains one of the most significant open

problems in glacier dynamics and a variety of approximations have been proposed. This problem stems

from the difficulty associated with validating the models of sliding and hydrology due to lack of sufficient

observational constraints on model parameters.

For this study, we work with an ice sheet model that is a spatially explicit and fully coupled system of

partial differential equations. While this model provides us with a powerful tool for modeling glacial ice

flow, it is computationally expensive, making downstream applications and parameter analysis infeasible.

As an attempt to address the problem associated with the variability in the model parameters, downstream

analysis can be used for parameter inference. One such strategy is to perform Markov Chain Monte Carlo

(MCMC) to make an inference of the distributions of model parameters given observations. This method

uses sequential sampling to construct a distribution, which requires sampled parameters to be passed through

a model hundreds to thousands of times in order to construct an accurate representation of the parameter

distribution. This distribution is superior to parameter values because we are able to quantify the variance

in our results, providing insight into the certainty of the model. Without an efficient way to run the model,

this application is computationally infeasible. One solution to this problem is the use of a surrogate model,

allowing us to improve our runtime significantly when sampling sequentially.

Surrogate modeling is the process of using statistical modeling to approximate the solution to complex

simulations. For a high-fidelity model F (x), a surrogate is a function G(x) such that G(x) ≈ F (x). This

function is determined by training a machine learning model to produce output that is representative of the

high-fidelity model. The surrogate is computationally less intensive than the original model, allowing for

tractable downstream applications. A surrogate model applied in this application moves the computational

expense out of the sampling and into the generation of training data, which is easily parallelized. This solu-

1

tion also provides easy access to approximate gradients and higher derivatives of model output with respect

to input parameters. These powerful models can be used alongside high-fidelity models to assist in computa-

tions, used for parameter estimation and optimization, risk analysis and more. Surrogate models have been

used in the field of biology, physics, geology and more and is an ever expanding field of deep learning. The

use of artificial neural networks, Gaussian process regression, random forests and other architectures have

been used to emulate high-fidelity models ranging from molecule generation to climate modeling.

One implementation uses a deep neural network to emulate the shortwave and longwave radiation para-

meterization in a climate model, the Super-Parameterized Energy Exascale Earth System Model (SP-E3SM)

(Pal et al., 2019). This model is a super-parameterized version of the Energy Exascale Earth System (E3SM)

climate model. The super parameterized version replaces the deep convective parameterization in E3SM

which is a source of model biases. The SP-E3SM reduces these model biases, but is significantly more ex-

pensive than the original model, therefore a surrogate has been applied to model the radiation calculations

to improve on the computational expense. These calculations were predicted with an accuracy of 90-95%

and at 8-10 times faster than the original parameterization. Two dense, fully connected, feed-forward deep

neural networks with three hidden layers containing 32 neurons per layer were used as a surrogate, one for

the longwave calculation and the other for the shortwave.

Another application uses a two level hybrid neural network approach to create a surrogate for geological

carbon sequestration modeling (Xiao et al., 2022). This study uses a deep convolutional autoencoder for

nonlinear dimensionality reduction, then a linear transition unit is applied between the encoder and decoder

to evolve the latent space from one time step to the next. The use of dimensionality reduction in combination

with a neural network was used to create an ensemble surrogate model for MCMC analysis of the probability

distribution of eight parameters used to model log-speed (Brinkerhoff et al., 2021). In order to assess the

non-uniqueness within the model parameter solutions, a Bayesian approach is used to characterize the joint

posterior probability distribution over the parameters. This distribution is not analytically tractable, so an

MCMC approach is used with a surrogate model. A 5000 member ensemble of neural networks with added

dimensionality reduction to reduce the free parameter space was used as the surrogate.

Another approach is through the use of physics-informed neural networks (PINNs). Raissi et al. (2019)

introduce these methods, experimenting with using PINNs to model the Schrödinger, Allen-Cahn, Navier-

Stokes and Korteweg-de Vries equations. These models are useful for solving high dimensional inverse

problems and are able to retain high predictive accuracy even when the temporal gap between data points

are large. Lütjens et al. (2021) use a PINN in combination with Polynomial Chaos Expansion (PCE) to

2

simulate a climate model for ocean modeling. These combined methods are used for uncertainty propagation

of known parameter uncertainties. This model uses PINNs to aid in the computational speed up, while adding

stochasticity by using PCE.

While the surrogate is much faster than the high-fidelity model, it is an approximation to the solution

and we do not necessarily know how accurate the surrogate is when compared to the original model. If we

are operating under the assumption that the high-fidelity model is a good approximation of reality, we would

like to be able to account for the degree to which the surrogate deviates, as well as account for the extra

variability in any downstream analyses using the surrogate. For our purposes, we are interested in producing

error metrics alongside our surrogate estimations. Generative modeling, specifically the use of a variational

autoencoder provides a solution to this problem. The variational autoencoder is a deep neural network that is

trained to map input data to a latent space distribution which is then sampled from to produce output data,

a reconstructed form of the input. The sampling process is randomized, providing us with a non deterministic

network. This allows us to produce an infinite number of solutions from the prior distribution for the same

input which can provide an insight into the performance of the network. Variational autoencoders (VAEs)

have been used to generate images, text and audio and are a computationally inexpensive model that allow

for a successful approximation of the probability distribution of a data set, but they do have multiple trade-

offs including variance loss leading to image blurriness, disentanglement, the balancing loss between the

KL Divergence and reconstruction loss and more (Singh and Ogunfunmi, 2021). These shortcomings are

primarily based on VAE applications to images and applications to physical models may lead to different

issues, but the assumptions of the VAE are likely to be more well suited towards physical applications.

VAEs are a useful deep learning architecture, but they do not allow you to constrain what output will be

produced. In the application to handwritten digits, a trained VAE will produce random handwritten digits

when sampled from, but conditions cannot be placed on this output. To limit the control the output of

the VAE, we can inform the model with added conditions. With the addition of conditions when both

training and during generation, we can limit our sampling to the confined part of the latent space providing

a means to only produce digits associated with a label. This form of a VAE is called a conditional variational

autoencoder (cVAE) and has been useful in the field of surrogate modeling because of its ability to limit

data generation.

cVAE’s are recent in the surrogate modelling world and have been applied to a few new applications.

KilonovaNet uses a cVAE to emulate radiative transfer simulations for the study of kilonovae spectra, the

result of an astronomical event occurring upon the merging of two neutron stars or black holes (Lukošiūtė

3

et al., 2022). This implementation was successful because of its ability to be trained on spectra that has not

been pre-processed and reduces the time required for parameter inference. The authors point out possible

errors that stem from the data itself, which require further study of kilonavaes to quantify, as well as an

unavoidable error that comes from using a cVAE due to data-compression. Despite these drawbacks, this

application proved to be a successful surrogate, allowing for the quick analysis of kilonova candidates. Gab-

bard et al. Gabbard et al. (2021) used a cVAE for Bayesian parameter estimation for gravitational-wave

astronomy. The cVAE was trained on binary black hole signals to produce Bayesian posterior probability

estimates while avoiding computationally intensive Bayesian inference approaches. Physically appropriate

decoder distributions were used for the output parameters and they utilized deep convolutional neural net-

works as the encoder, decoder and a ‘recognition’ encoder. Accuracy of the model is illustrated by plotting

the posterior distribution of their model, VItamin, and the current standard. VItamin produces samples at

a rate of ∼6 orders of magnitude faster than the authors benchmark studies. A problem arises from the

difference between the noise the cVAE is trained on and the actual noise of the gravitational wave signals.

Jiang et al. (2021) use a cVAE to create a crustal model that relates the Rayleigh surface wave velocity

and the structure of the crust and upper mantle. The cVAE provides a good estimate of the non-linear

relationship between the group velocity and crustal model. This study uses the cVAE to estimate model

uncertainty without having to apply regularization. When compared to the benchmark crustal model, the

cVAE model reveals more detail in the features and in general provides more subtle feature information.

This model did run into problems with overfitting in the network.

In this work, we develop a cVAE surrogate to approximate an ice sheet model and compare with three

deterministic neural network surrogates. We compare a total of four different deep neural network archi-

tectures in two categories: deterministic and non-deterministic. Three deterministic neural networks were

tested with varying levels of complexity including the use of principal component analysis for dimensionality

reduction. These three models have varying levels of accuracy, but all perform well as a surrogate. Our

cVAE surrogate is stochastic and is the main focus of this study. This architecture serves as an adequate

surrogate and provides a means for error quantification due to its non-deterministic generative nature. We

begin by defining the architectures used, their implementations, our results and then discuss the implications

of these results.

4

2 Methodology

A surrogate model is designed to approximate the function Y = f(X) such that Ypredicted ≈ f(X). The

function f(X) is computed with a high-fidelity model that is computationally intensive. Figure 1 displays

the goal of a surrogate model. We have a set of known points used as training examples, with the surrogate

we are aiming to interpolate between these points in order to approximate our predictions. As seen in figure

1, this distribution is not exact, displaying the surrogate’s error. For this application, we are using the

surrogate to estimate the function computed with an ice sheet model, which requires 10 − 20 minutes to

generate surface velocity predictions given a set of eight physical parameters. The goal of our experiment

is to perform a comparison of four neural network architectures used to emulate this high-fidelity model.

The surrogate models are trained to output ice sheet model predictions given physical parameters as input.

The surrogate applies nonlinear transformations to the physical parameters and maps to an output used to

approximate the ice sheet model predictions. The goal of the model is to match the model predictions as

closely as possible to the ice sheet model predictions. The derivation of each network is described below. Y

is a vector of the generated ice sheet model log speed predictions and X is a vector of physical parameters

used to generate these predictions. We abbreviate the ice sheet model as ISM and surrogate model as SM.

2.1 Dataset

The dataset used here is the same as that in Brinkerhoff et al. (2021); see that work for a more detailed

description. In particular, we seek to emulate the mapping from 8 model parameters to a spatially distrib-

uted but temporally averaged field of glacier surface speeds via a fully coupled model of glacier flow and

channelizing subglacial hydrology subject to a time-varying basal meltwater input discretized with the finite

element method. To generate the dataset, we identified plausible upper and lower bounds for each of the 8

parameters (which represent physical quantities controlling dynamic friction between ice and bedrock, the

characteristic scales of the subglacial hydrologic system, and the porosity of ice), and uniformly drew 5000

samples within these bounds using Latin Hypercube Sampling (Loh, 1996) to generate X. We then ran the

ice sheet model for 20 years, which was sufficient for non-physical transients related to incompatibilities in

initial conditions to disperse, and averaged the model’s predicted speed over the last five simulation years.

The surface speeds for each of these simulations were collected into an array and the logarithm taken to

form Y. We work with the log of the velocities due to the large variability in the magnitude of the fields

produced by the ice sheet model. We will henceforth refer to the surface velocity as the log-speed.

5

Figure 1: Surrogate model visualization shows the surrogate model distribution around the high-fidelity
model training examples. This is a conceptual diagram, not visualization of actual data. The trained
surrogate can then be sampled from using random values and the conditioned parameters. These predictions
may or may not be accurate, therefore the ability to quantify the variability in these predictions is needed.
This variability is displayed as the surrogate distribution at any value of X.

2.2 Deterministic Neural Network as a Surrogate

In order to compare our stochastic surrogate implementation we implemented three separate deterministic

neural networks with varying levels of complexity for comparison against our main contribution. These

networks are deterministic, and therefore will produce the same output for a set of parameters once trained.

For downstream surrogate analysis, this requires further work, such as aggregation with bootstrap in order

to determine the model’s performance. These three SMs are fully connected neural networks, comprised of

multiple layers of artificial neurons each with an associated weight and bias vector. Input is passed through

and a linear transformation is performed at each layer. While training, these neurons are fine tuned so that

the model outputs data that is as close to the training predictions as possible. There are many variations of

the neural network and are the foundation of deep learning. We decided to test and implement three with

varying levels of complexity for comparison against the cVAE SM, below we describe the derivation and

implementation of these networks.

6

2.2.1 Network Architecture

The goal of a multi-layer perceptron (MLP) is to approximate a function f where Y = f(X), X is input

and Y is data. For our ISM, Y are ISM log-speed predictions and X are physical parameters. We use an

MLP to define the mapping Y = f∗(X; θ) where f∗ is the approximating function and θ are trained network

parameters.

A(m) = h(m−1)W (m) + b(m) (1)

h(m) = σ(A(m)) (2)

where h(m−1) is the input, W (m) is layer weight matrix, b(m) is the layer bias vector, σ is the activation

function and m is the current layer. These functions are applied for each layer of the perceptron and the

transformed data is used as input for the next layer. These layers are comprised of nodes or neurons that

are connected to the next layer. Every node within a layer is connected to all the nodes in the layer before

and after it. These layers perform a set of sequentially applied functions on the input in order to output

data that is representative of the training data.

This general structure follows for all neural networks. Each layer’s weight matrix and bias vector are

tuned during each step in the training process to accurately transform the input parameters to the desired

output. We used a five layer neural net. For the output layer activation we used the identity, while all other

layers used the Rectified Linear Unit (ReLU) activation, where

ReLU(X) = MAX(0, X). (3)

2.2.2 Implementation

For the multi-layer perceptron surrogate, we tested several different configurations: a vanilla network, a

neural network with dropout and normalization, and another that used a form of principle component

analysis (PCA) to perform dimensionality reduction which reduces the number of learnable parameters. All

networks were implemented in Pytorch (Paszke et al., 2019).

Figure 2 displays the general architecture of our neural networks without PCA. The SMs consist of five

linear transformation layers whose output is denoted by h(m). The first nodes, h(0), are the input parameters

with dimension n = 8. The first layer maps from this input dimension to 128 nodes. The results from these

7

Figure 2: General deep neural network architecture used as a surrogate in this study. Our vanilla and
dropout networks follow this architecture with variation within each hidden layer.

transformations are then used as input for the next layer. This process is repeated for layers two, three and

four, which do not change dimensions. The final linear layer maps from 128 to 747 nodes, the dimension

of our ISM predictions. The final layer transformation is not passed through the activation function and

directly returned as Ypredicted. This basic schema follows for all networks. Below we outline the differences

between the three models.

Vanilla Neural Network. Our vanilla network is a simple neural network implementation. Referring

to figure 3, we see the internal architecture of each linear layer for our network. This is a standard set of

transformations for any fully connected neural network. We first pass input through a linear transformation

and get our activation vector, a(m). This value is then passed through our activation function, ReLU,

outputting the transformed data that will be useful for the next layer, z(m) = ReLU(a(m)). The final

step is to add the output from our last transformation to our current layer in order to relate these layers,

h(m) = z(m) + h(m−1). These steps are repeated for layers one through four. The last layer does not pass

the transformed product through the activation function, but instead returns h(5) = h(4)W (5) + b(5). This

is Ypred, the predicted output. This last layer must learn the free parameters directly from the data, this

requires determining the key points among 747 data points.

8

Figure 3: Hidden layer architecture for the vanilla neural network surrogate. This consists of a simple set of
transformations standard in most neural networks: linear transformation and activation.

Figure 4: Hidden layer architecture for the dropout neural network surrogate. This is is similar to the vanilla
surrogate, with added layer normalization and dropout.

9

Neural Network with Dropout and Normalization. The next neural network has the same layout

as the vanilla neural network, but includes dropout and normalization. We initialize four normalization

functions for layers one through four. The layer architecture is visualized in figure 4. The LayerNorm class

from PyTorch applies layer normalization over the input. This is done by computing the mean and standard-

deviation and returning the normalized input. This class uses Layer Normalization (Ba et al., 2016), which

reduces the time to train and is independent of mini-batch size like Batch Normalization (Ioffe and Szegedy,

2015). Batch normalization has little to no effect when the batch size is small, this problem is avoided in

layer normalization by applying the normalization on the neuron for a single instance across all features

rather than applying normalization on batches. Layer normalization fixes the problem that arises when the

changes of one layer causes correlated changes to the next layer by fixing the mean and variance to N (0, 1)

of the summed inputs within each layer.

ẑ(m) =
a(m) − µ(m)

σ(m)
(4)

Each layer will be normalized after being passed through the linear transformation, excluding layer 5.

Once the data is normalized, we apply dropout to the activation vector

z
(m)
0 = ẑ(m) ⊙ P (5)

where ẑ(m) is the normalized activation vector, ⊙ is the element-wise product between matrices, and

P is a vector of normally distributed random variables with a mean of p. p = {0.0, 0.2, 0.5, 0.5} for layers

{1, 2, 3, 4} respectively. During training, dropout randomly zeroes some of the input tensor elements. In our

case, we pass in our a(m) values and the same output is returned, but with some of the nodes deactivated.

This is to prevent nodes from becoming dependent on each other, which can lead to overfitting. We use

PyTorch’s Dropout layer which performs random dropout, removing a percentage of the features which has

been shown to greatly reduce overfitting (Hinton et al., 2012) by randomly setting a specified percentage of

neurons within a hidden layer to zero. This prevents neurons from becoming dependent on one another and

swaying the produced output to be fitted to the training data. The final two transformations are consistent

with the vanilla net, but rather than passing the activation vector into ReLU, we pass in our transformed

activation vector.

10

Figure 5: Eigenglacier neural network surrogate architecture consisting of hidden layers matching figure 4
with added dimensionality reduction. There is an extra linear transformation added to project to the ice
velocity space using PCA.

11

Neural Network with Eigenglaciers. Our final neural network uses PCA for dimensionality reduction

and is based on Brinkerhoff et al. (2021). This process of dimensionality reduction determines the optimal

basis for mapping from learned coefficients within the last hidden layer to the spatially explicit ice velocity

space. The last hidden layer in the network learns the mapping from some coefficients back to the ice velocity

space, meaning that this final layer contains 747 free parameters, consistent with our output dimensions.

With PCA we are able to come up with the optimal basis for mapping to that space without any free

parameters because this is determined outside the scope of our SM. This should allow our model to learn

faster and be less susceptible to overfitting. These eigenglaciers are a reduced set of the data that represent

the full set of data. This is done by computing the eigendecomposition:

S = V ΛV T (6)

where Λ is a diagonal matrix of eigenvalues whose diagonal entries represent the variance in the data.

The columns of V are the eigenvectors of the covariance matrix S where

S =

X∑
i=1

ωd,i

[
log10 F(Xi)− log10(F̄)

]2
(7)

where ωd is a vector of randomly sampled weights that sum to 1 and

log10(F̄) =

X∑
i=1

ωd,i log10 F(Xi). (8)

We are able to simplify the data by assessing the fraction of the variance in the data still unexplained

after representing it with the number of eigenglaciers, j.

f(j) = 1−
∑j

i=1 Λii∑m
i=1 Λii

(9)

We determine how many eigenglaciers to retain by computing a cutoff threshold c = maxj ∈ {1, ...,m} :

f(j) > s where s = 10−4. For this SM, c = 51, but ranges 47 < c < 51. We can then approximate any

log-speed field as

F(X) ≈
c∑

j=1

λj(X)Vj (10)

where Vj is the j-th eigenglacier and λj is its coefficient.

12

This model has the same architecture as our Dropout NN, but the last layer maps from 128 nodes to the

number of eigenglaciers and an extra step is employed after the last linear transformation, see figure 5. Our

final transformation is as follows

YSM = z(5)V̂ T (11)

where YSM is the predicted log-speed output from our SM. This maps the data from the number of

eigenglaciers back to the dimension of our ISM log-speed predictions.

2.2.3 Training

Now, we need to have a way to train our SMs. In this case, we seek to find the function f∗(X) such that YSM

and YISM are as similar as possible. This is done by computing the loss, or L(θ), θ = {W1, . . . ,W5, b1, . . . , b5},

then performing gradient descent. There are many different ways to compute the loss, but you must be able

to take the gradient in order to perform gradient descent. Our implementation uses mean square error loss,

the sum of the difference between predicted and observed data squared.

MSE =
1

n

n∑
i−1

(Yi − Ypredi
)2 (12)

The parameter and log-speed vectors from our high-fidelity model are passed through each model and the

predicted log-speeds are output. We calculate the loss between the ISM prediction and our SM prediction

and increment our optimizer for a total of 3000 epochs with a batch size of 128. An epoch is complete once

all training data has been passed through the SM once, and the output evaluated and the SM adjusted. We

split our training data into batches of size 128 for performance improvements, rather than storing values for

the full set, we work with batches then update weights and biases after all data has been seen. We use the

Adam optimizer (Kingma and Ba, 2014) to optimize the objective.

2.3 Stochastic Neural Network as a Surrogate

The last surrogate tested and the primary focus of this work was a cVAE. The cVAE is a VAE that is condi-

tioned on a set of parameters. This allows for more controlled sampling, as well as downstream applications.

cVAEs are a part of the variational inference family and are a generative model, producing samples from

P (Y |X) rather than a deterministic Y = f(X) as with our previous models. The key difference between

a VAE and cVAE is that a VAE samples from P (Y) where the cVAE samples from P (Y |X), taking into

13

account the conditions X. With this stochastic nature, we are able to continuously sample from the latent

space to determine the divergence of the surrogate from the high-fidelity model.

The basic architecture of a cVAE includes an encoder and decoder neural network, see figure 6. Data

is passed through the encoder which compresses the data into the latent space. The latent space is then

decompressed through the decoder, outputting predicted data values. These values are passed through a

loss function and the encoder and decoder neural networks are optimized so that the produced values match

closely with observed.

2.3.1 Derivation of Conditional VAE

The goal of our model is to determine the probability of the output ISM predictions occurring given the

physical parameters, or P (Y |X). The ISM is deterministic as it is computing the solution to a function,

Y = f(X) where Y are model predictions, such as log-speed in this case, and X are the physical parameters.

For every value of X, the produced Y values are constant. A SM is an approximation of Y = f(X).

This model does not perfectly approximate the original function, and we account for this by allowing the

surrogate to produce random output from the distribution P (Y |X). How do we go about finding P (Y |X)?

The cVAE computes an approximate sample from P (Y |X) and if enough samples are taken, the model

eventually converges to the distribution, which is characterized in the sense of a histogram by looking at

a large number of samples. In order to compute these samples, we need to find a way to approximate the

unknown distribution. We need to ensure that our model is representative of the dataset, this is to say that

for every data point, Y , there is at least one setting of the latent space that will cause the model to generate

data similar to Y . We are aiming to maximize the probability of each Y given some condition X:

P (Y |X) =

∫
P (Y, z|X) dz (13)

Using the product rule

P (Y |X) =

∫
P (Y |z,X)P (z|X)dz (14)

where P (Y |z,X) is the distribution of the ISM predictions given the latent space and physical parameters,

represented by the Decoder. P (z|X) is the latent space prior distribution given the physical parameters.

The Encoder is used to efficiently train the model, and maps the data to the latent space. When samples

are generated, we sample directly from P (z|X) and run the resulting latent vector along with the conditions

14

through the encoder.

We are aiming to find a way to sample from P (Y |X), as it stands now this is intractable. The first problem

we overcome is how to choose the latent space such that it is representative of the latent information. All

VAEs make the assumption that the latent space can be represented by sampling from a simple distribution,

in most cases N (0, I). This is done by training an encoder that maps from n-dimensional data to a set

dimension latent space, which we assume to be normally distributed a priori. Sampling from this latent

space thus produces an encoded set of data that is representative of the original data. Now we need to

sample from P (Y |z,X), but need to do so in a way that is not computationally intensive. The distribution

can be directly sampled from, but in high dimensional spaces, the number of samples needed to represent

the distribution could be large. To avoid this problem, we apply the knowledge that for most values of z,

P (Y |z,X) will be nearly zero. We want the cVAE to sample values of z that are likely to have produced Y

given the conditions X.

Rather than computing P (Y |z,X) for z, we will instead propose a new function Q(z|Y, θ) where θ are

learned parameters. We seek to maximize P (Y |X) with respect to the parameters of this approximating

distribution. This can be equivalently accomplished by minimizing the Kullback-Leibler (KL) divergence

between P (z|Y) and Q(z|Y, θ)), or D[Q(z)||P (z|Y)]. The KL-divergence (Joyce, 2011) measures the simil-

arity between two distributions, and was used to train our model to match P (Y |X) as closely as possible.

This allows us to compute Ez∼QP (Y |z,X) without oversampling. We will train this proposed distribution

in order to maximize the similarity between Ez∼QP (Y |z,X) and P (Y |X).

To compute the relationship between Ez∼QP (Y |z,X) and P (Y |X), we first look at the KL-divergence,

or D, between P (z|Y) and Q(z). We will ignore the conditions X for the time being.

D[Q(z)||P (z|Y)] = Ez∼Q[log
Q(z)

P (z|Y)
] (15)

As it stands, we are unable to compute the KL-divergence and we must expand this equation to bring

it to a computable form, which is called the evidence lower bound (ELBO). Expanding the expectation out

we get

D[Q(z)||P (z|Y)] =

∫
Q(z) log

Q(z)

P (z|Y)
dz (16)

We take all conditionals with respect to Q(z).

15

D[Q(z)||P (z|Y)] =

∫
Q(z) log

Q(z)P (Y)

P (z, Y)
dz (17)

Which then expands to

D[Q(z)||P (z|Y)] =

∫
Q(z)

(
logP (Y) + log

Q(z)

P (z, Y)

)
dz (18)

Removing terms not dependent on Q(z), we reduce the equation to

D[Q(z)||P (z|Y)] = logP (Y)−
∫

Q(z) log
P (z, Y)

Q(z)
dz (19)

Now, we have an equation with an integral with terms that we know, P (z, Y) = P (z)P (Y |z), and because

we are minimizing the KL-divergence over Q(z), logP (Y) is a constant with respect to Q(z). This gives us

the ELBO

D[Q(z)||P (z|Y)] = logP (Y)− ELBO. (20)

This displays the lower bound on the log of the evidence, logP (Y) > ELBO(Q)

ELBO(Q) =

∫
Q(z) log

P (z, Y)

Q(z)
dz = E[logP (Y, z)− logQ(z)], (21)

with expectation taken with respect to Q(z).

The ELBO is the core of variational inference. This equation is the general basis of any VAE model and

allows us to compute a loss in order to train the model. To apply it to our conditional application of the

VAE, we will simply impose our physical parameters on the model.

ELBO(Q) = E[logP (Y, z|X)− logQ(z|X)] (22)

Applying the product rule on logP (Y, z|X)

logP (Y, z|X) = logP (Y |z,X)P (z|X) = logP (Y |z,X) + logP (z|X) (23)

ELBO(Q) = E[logP (Y |z,X)] + E[logP (z|X)− logQ(z|X)] (24)

where data loss = E[logP (Y |z,X)] and prior loss = E[logP (z|X) − logQ(z|X)] = D[Q(z|X)||P (z|X)].

16

This reduces the ELBO to a sum of the data loss and prior loss.

ELBO(Q) = dataloss + priorloss = E[logP (Y |z,X)] +KL[Q(z|X)||P (z|X)] (25)

To compute the dataloss we can avoid sampling through the entire prior space by taking one sample of

z and treating the corresponding value of P (Y |z,X) as an approximation for the expectation. This is a

standard in variational inference (Blei et al., 2017).

We propose a distribution Q(z|Y,X) such that we can perform stochastic gradient descent in order to

train the model. This is typically done by saying that Q(z|Y,X) = N (z|µ(Y ; θ),Σ(Y ; θ), X) where µ and

Σ are arbitrary deterministic functions with parameters θ, for example: neural networks. These functions

are designed to encompass the mean, µ and standard deviation, Σ, of the distribution based on the data

and physical parameters. We then assume P (z|X) ≈ N (0, I), therefore reducing the KL-divergence to the

comparison between two multivariate Gaussian distributions, both of which being easily tractable.

D[N (z|µ(Y ; θ),Σ(Y ; θ), X||N (0, I)] (26)

2.3.2 Implementation

The cVAE is composed of a series of simple neural networks that take data and conditions as input and

outputs predicted data. A cVAE has three main components: Encoder, Latent Space, and Decoder.

The Encoder takes a vector of ISM predictions and the corresponding vector of physical parameters.

These two vectors are concatenated together then passed through the encoder. The encoder contains four

linear transformation layers. The first layer maps from N = ndatapoints + nparameters = 755 to 512 features.

Next we map down to 256 features. The output from layer one and layer two are passed through the ReLU

activation function. Now, we want to have a way to sample from the latent space and in order to do so, the

last two layers of our encoder neural network will both map from 256 features to our latent dimension. This

can be set to any value, our model mapped to 40 latent variables. We will call these two layers µ and Σ

and they will be trained to encapsulate the mean and standard deviation of our proposed distribution. Our

encoder outputs µ and Σ which will be used to sample from the latent space.

µz

Σz

 = Encoder(Y,X) (27)

17

Figure 6: Conditional variational autoencoder network architecture which consists of an encoder which
outputs µ and Σ distributions that characterize the data distribution. These distributions are used to
sample from the latent space, which is then passed through the decoder along with the conditions X. The
decoder outputs a set of data predictions.

Now that we’ve mapped our ISM predictions and parameters, Y and X, into an encoded latent space with

reduced dimensions, we need to generate new predictions with our SM, Ypredict. This is where the decoder

comes in. The cVAE Decoder accepts z, a sample from the latent space, and X the physical parameters, or

conditions. We compute z using the following equation:

z = µz + ϵΣ
1
2
z (28)

where ϵ ∼ N (0, I). This reparameterization trick is performed in order to back-propagate through the

layer that samples z. Without ϵ, z = µ+Σ is just a random sampling and is therefore a discrete operation,

with ϵ this becomes a continuous operation.

The decoder is again made up of a series of linear transformation layers, and is similar in structure to the

encoder, but rather than condensing the data it decompresses. There are three layers in the decoder. The

first maps from the latent dimension, 40, to 256 features. The second maps from 256 to 512 features, and

the last layer maps from 512 features back to ndata−points, 747. Again, the first and second layer outputs

are passed through the ReLU activation function. The output of the last linear layer is returned as Ypredict.

18

Ypredict = Decoder(z,X) (29)

So far we have approximated P (Y |X) using an encoder, decoder and by sampling from the latent space.

With our generated model predictions, we need to have a way of determining how well our model performed.

This is done by computing the ELBO 25.

The prior loss, KL[Q(z|X)||P (z|X)] is computed as follows using the results from our encoder network.

KL[Q(z|X)||P (z|X)] ≈ −1

2

n∑
i=1

[1 + Σi − µ2
i − eΣi] (30)

The data loss, E[logP (Y |z,X)] is computed as a standard data loss, for this application we used L2

normalization to determine the loss between our SM and ISM predictions.

E[logP (Y |z,X)] =

n∑
i=1

[(Y − Ypredict)
2] (31)

2.3.3 Training

The cVAE model was trained on 80% of the 4,133 ice sheet model velocity predictions, the other 20% were

reserved for testing. The model maps to a latent dimension of 40 and was trained over 3000 epochs with

a batch size of 128. For each epoch, the model is trained on the training dataset. The ISM log-speed

predictions and physical parameters are passed to the cVAE. The SM predictions, µ and Σ are output. The

prior loss 30 is computed with µ and Σ and the data loss 31 computed then the two are summed together.

Gradient descent is performed using Adam (Kingma and Ba, 2014).

3 Results

To validate the performance of our SMs we use the coefficient of determination, or R-squared, to measure the

quantitative similarity between the SM and ISM log-speed predictions. This provides a mode of determining

how close the model’s predictions are to the desired values. R-squared is defined as the explained variation

over the total variation. A score of 1.0 represents a perfect match between the predictions and the desired

value. The value can be negative, which means that the model is arbitrarily worse. A score of 0.0 represents

a situation where the model is always predicting the average output without taking the input into account.

The coefficient of determination is computed as follows, and was implemented using SciKit Learn’s r2 score

19

Model Runtime (s)

Vanilla 120.1924
Dropout 164.1810
Eigen 182.7690
cVAE 169.4615

Table 1: Time to train each surrogate network over 3,000 epochs.

function (Pedregosa et al., 2011)

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(32)

where ȳ = 1
n

∑n
i=1 yi and

∑n
i=1(yi − ŷi)

2 =
∑n

i=1 ϵ
2
i .

All models were tested with the same test data set. A total of 827 simulations were used for testing, out

of the 4,133 total ice sheet model predictions. To draw from the deterministic surrogate, parameters were

input and the log-speed predictions were output. To draw from the stochastic surrogate, parameters were

input alongside a random sampling from the latent space, z ∈ N (0, 1) to generate log-speed predictions.

Within the training and test set of predictions, there are simulations that are not physically realistic which

produced log-speed values that are too high relative to reality by several orders of magnitude. We will discuss

the implications of this.

The times required to train the SMs were recorded and are displayed in table 1. Once the SMs were

trained, this test data was passed through our SM and the predicted output was returned. The data is

output in a vector of size 747, each index mapping to a coordinate on the glacier. Initial analysis consisted

of producing plots, see figure 7, and comparing the predicted display to the ISM output.

All of our models performed well on a majority of the testing data. Our Eigen and cVAE models appear

to better represent more of the subtlety in the dataset, but this is dependent on the input parameters. To

get a good idea of the dataset and where the models performed the best and where they performed poorly,

we inspected a random sampling from our results. Figures like figure 7 were created and evaluated. Looking

at figure 7, you can see the output of all four models and the observed log-speeds, we refer to the ISM

predictions as the observed for simplicity. Each point represents a coordinate on the glacier, and the color

denotes the log-speed at that point.

The following figures display the R-Squared values for a subset of 784 of our test set results. For each SM,

we compute the R-squared between the SM and ISM predictions. Figure 9 shows the R-squared distribution

20

(a) High-fidelity log-speed output.

(b) Surrogate model output for Vanilla NN, Dropout NN, EigenGlacier NN and cVAE

Figure 7: Log-speed comparison for the following set of physical parameters: [-0.5762, -0.7871, -0.1270,
-0.4546, 7.3049, -0.8897, -0.9761, -3.6475]. All models performed the best for this simulation. This set of
predictions is a fairly physically realistic simulation as it has physically reasonable estimates of velocities.
The R-squared values for Vanilla, Dropout, Eigen and cVAE are as follows: [0.9990, 0.9985, 0.9986,0.9994].

21

(a) High-fidelity log-speed output.

(b) Surrogate model output for Vanilla NN, Dropout NN, EigenGlacier NN and cVAE

Figure 8: Log-speed comparison for the following set of physical parameters: [-1.1392, -3.2271, -0.7134,
0.7272, 4.7162, -0.2786, -0.9831, -2.0378]. This set of predictions is an example of unrealistic simulation
results, as you can see, the velocities are an order of magnitude greater than the other simulations. All
models performed the worst for this simulation, as expected, with R-squared values for Vanilla, Dropout,
Eigen and cVAE are as follows: [-6.7868, -7.0688, -11.2620,-21.1166].

22

Figure 9: R-Squared values for the simulations produced by the four SM’s. The figure displays a random
sampling of 784 of the 827 tested simulations. R-squared values less than 0 are not included. This displays the
distribution of R-squared values for the test data set, demonstrating that most simulations are approximated
with accuracy by all four SM’s.

Model Average R2

Vanilla 0.8590
Dropout 0.9040
Eigen 0.9090
cVAE 0.8110

Table 2: R2-score value for each surrogate averaged over the entire test set.

23

for our test set. The SMs produce output that is representative of the ISM log-speeds given the parameters

for a majority of the test data. All four SMs appear to perform with similar accuracy. From this, we pose

the questions: How do we know the SM is doing well? and Can we quantify the surrogates uncertainty?

This query leads us to the cVAE. With the autoencoder, we are able to generate new data and determine

the variance of the SM outputs when we randomly sample from the latent space. To quantify our cVAE

surrogate performance, we take a vector of parameters, a random sampling from our latent space, and pass

these values through the trained decoder. The output is stored, the process repeated 100 times and the

mean and variance of the data computed. Figure 10 displays the results of this experiment for the same

parameters input to produce the results viewed in figure 7b, demonstrating one of the SMs highest scoring

predictions. Figure 11 displays the results for the same parameters as 8b, one of the SMs poorest scoring

predictions.

4 Discussion

This study provides useful insight on using a surrogate model to predict the output of a high-fidelity ice

sheet model. All four of the SMs that were trained performed well. On average, the SM matched the ISM

predictions with an accuracy of 80% and greater. We define the accuracy as the R-squared score between

the generated and the high-fidelity predictions, an average R2 score of 0.8 therefore will be referred to as

having an accuracy of 80%. This average includes all predictions from the reserved test set, some of which

are not physically feasible. All of these SMs train in a minimal amount of time, and produce output at a

rate of 4 orders of magnitude faster than the ISM with the surrogate requiring 0.01 seconds on average and

around 20 minutes for the high-fidelity model. With a less computationally intensive way to make these

predictions, any of these models can be used in a downstream application requiring consecutive, non parallel

predictions. These results allow us to conclude that any of these models would be an appropriate surrogate

to use to predict ISM output and with this training data we were able to develop multiple successful SMs,

but the cVAE surrogate provides us with more insight into its divergence from the high-fidelity model.

From our research, there is not a clear surrogate architecture that is more accurate with its predictions,

but each model did have its own benefits. The vanilla neural network was the easiest to implement. This

network took little time to develop and did not require fine tuning, it almost immediately produced viable

predictions. The vanilla model produced log-speed predictions with an average accuracy of 85.9% on the

test set. This was the second worst average, but still good when considering the lack of overhead for this

24

(a) High-fidelity predictions compared to the mean of the generated surrogate predictions. The mean of
the predicted values have an R-squared score of 0.9995.

(b) Variance of generated predictions.

Figure 10: Mean and variance comparison for 100 generated log-speed predictions using the set of physical
parameters used to display figure 7.

25

(a) High-fidelity predictions compared to the mean of the generated surrogate predictions. The mean of
the predicted values have an R-squared score of -19.5792.

(b) Variance of generated predictions.

Figure 11: Mean and variance comparison for 100 generated log-speed predictions using the set of physical
parameters used to display figure 8.

26

(a) High-fidelity predictions compared to the mean of the generated surrogate predictions. The mean of
the predicted values have an R-squared score of 0.9372.

(b) Variance of generated predictions.

Figure 12: Mean and variance comparison for 100 generated log-speed predictions using the following physical
parameters: [-3.7314, -2.5107, -1.4014, -0.0745, 7.4946, -0.1002, -0.5004, -3.3198].

27

(a) High-fidelity log-speed predictions.

(b) Surrogate model output for Vanilla NN, Dropout NN, EigenGlacier NN and cVAE.

Figure 13: Log-speed comparison for the following physical parameters: [-2.1816, -3.0566, -2.1465, -0.5513,
6.2063, -0.3293, -0.7574, -3.9971]. The R-squared values for Vanilla, Dropout, Eigen and cVAE are as follows:
[0.8925, 0.8745, 0.8949,0.9390].

28

(a) High-fidelity log-speed predictions.

(b) Surrogate model output for Vanilla NN, Dropout NN, EigenGlacier NN and cVAE.

Figure 14: Log-speed comparison for the following physical parameters: [-3.8066, -3.4316, -1.7715, -1.3950,
5.1750, -0.8825, -0.3995, -3.0596]. The R-squared values for Vanilla, Dropout, Eigen and cVAE are as follows:
[0.8833, 0.9387, 0.9738,0.9442].

29

model. While the vanilla network performed well on a majority of the test data set, it had a difficult

time encapsulating the subtle variation in some of the more diverse log-speed predictions. Figure 13 is a

great example of this. As you can see, the surface velocities produced by this set of parameters display

a different pattern than the majority of our training predictions. The vanilla network is able to capture

the general change in velocity as you move further down the glacier (from bottom right to top left), but

does not encompass the magnitude of the log-speed change. This is most likely caused by overfitting to the

training set where most of the training predictions look like figure 7 where log-speed peaks at 1 with a

gradual decrease in speed as we move down the glacier. All of our SMs perform best with these predictions,

any predictions that differ from this general pattern are not as accurately reproduced. This makes sense as

there are fewer predictions outside of the general pattern of figure 7 which leads the vanilla model to reward

predictions more closely resembling the majority of the training data, over-fitting the model to the training

data.

The next surrogate tested was our dropout model. Like the vanilla network, this architecture was easy to

implement, but did require more fine tuning to get working most accurately. The dropout model performs

a little better than the vanilla model as it utilizes both normalization and dropout in an attempt to prevent

the model from over-fitting during training. This attempt improves the average accuracy to 90%, but doesn’t

completely solve the problem. Looking at figure 13, we can see that there is not a clear improvement. The

dropout model does better at capturing the transition from slow to fast at the start of the glacier, which

can be seen more clearly in the predictions seen in figure 14. We see a clear improvement from the vanilla to

dropout surrogate, with the dropout generating smoother transitions with a more physically feasible set of

predictions. This demonstrates the power of dropout where instead of overfitting to our training data, the

model is forced to not depend on neighboring pixels.

Building on this, the eigen model improves upon the vanilla model even more. This is clearly demonstrated

in figure 14, as you can see the progression between the three SMs. The eigen surrogate uses the same

architecture as our dropout model with the added use of dimensionality reduction. This appears to help

the model focus on the key elements when making a prediction. On average, this surrogate performed with

close to the same accuracy as the dropout model. The eigen model performs well, but does require more

time to implement and train. While more time is required to add in the dimensionality reduction of this

model when compared to our vanilla network, this is still a simple model to implement and was effective at

capturing the subtleties of the data.

The cVAE surrogate did not perform as well as our other SMs, but it fluctuates in performance less

30

and is able to generate the subtleties in the velocity predictions more consistently. The cVAE was also

simple to implement and has the added benefit of using a form of dimensionality reduction like the eigen

model. This surrogate trained quickly and can quickly generate new predictions. Referring back to figure

13, it is apparent that the cVAE is the only surrogate that generates a prediction that visually matches the

high-fidelity prediction. The other models encompass the pattern, but not the intensity of the velocities.

This is not always the case and results vary between the SM’s compared. In certain cases the vanilla model

performs better, other times the cVAE performs better, and so on. While the results are not conclusive to

rule out one architecture as the most effective surrogate for this application, the cVAE lends itself to simple

error quantification.

4.0.1 Error Quantification

While these models are able to make accurate predictions, they do not lend themselves to a simple method

of quantifying uncertainty in the surrogate. This is because for every set of parameters, there exists only one

output. In other words, when you input the parameters Xa into Feigen, the same results will be produced

every time. During training, the neural network is fine tuning the linear transformations applied to the input

that produces output closest to the training data. With the cVAE, we are adding stochasticity because we

are sampling from the latent space to make our predictions, therefore no two computations will be exactly

the same. This encapsulates the variability in the surrogate model, and provides insight into the fact that it

is an approximation of our high-fidelity model because we are able to sample multiple times with the same

set of parameters and evaluate the mean and variance of the output. Although the cVAE surrogate performs

worse on average with an accuracy of 81%, the downstream application power of this model provides us

with a powerful tool.

The cVAE does not necessarily outperform either of the other SMs, but it does have a tendency to be

more robust to parameters that produce lots of variation. See figure 13 where the cVAE outperforms the

other three models. This is possibly because the model is not relying solely on the parameters as input, but

also utilizing the information contained within the log-speed fields when training. This builds a latent space

that better represents the relationship between the parameters and velocity predictions. While this model

does not perform as well as our other neural network models, it is the only model that we can easily evaluate

to quantify the error metrics of the surrogate without aggregation for analysis of the variance between SM

predictions.

As we have discussed, a surrogate model is an approximation to a high-fidelity model. This means that

31

the surrogate may not make predictions with 100% accuracy. Our cVAE surrogate provides us with a means

to understand how well our model is performing by assessing multiple predictions for the same parameter

input. We performed this process for many parameters, and within our test set the physically reasonable

predictions were matched well with little variation, see figure 10. This informs us that the cVAE surrogate

produces consistent predictions when randomly sampled from the latent space with the same conditions.

Looking at figure 11 we can see that although the model does not predict the results of the input parameters

accurately, it does do so with little variance. This implies that even though the model fails to predict the

correct values, it does so consistently so this is not a fault of our model but is indicative that this parameter

set is an outlier. Knowing that the magnitude of the velocities are not physically appropriate, we can

disregard this test.

The results for figures 10 and figure 11 indicate that our cVAE surrogate performs as expected without

any abnormal sections of variation. Referring to figure 12 we can see the mean and variance of 100 outputs of

the cVAE surrogate. This displays where the surrogate performs poorly. The variance between the different

predictions increases by a factor of ten as you move into the middle of the glacier showing that that model

is not as certain what to do for these parameters, leading to the variance amongst the different predictions.

We expect this variance, as it is where our surrogate performs poorly. While this shows that our surrogate

performs poorly, it indicates that our model is behaving as expected. This analysis cannot be performed

with the other surrogate models we tested without training multiple models and aggregating them using

bootstrap aggregation (Breiman, 1996).

(a) Average R-Squared score for training epochs 1 to
50.

(b) Average R-Squared score for training epochs 100
to 3000.

Figure 15

32

(a) Individual surrogate average R2-score from epoch
100 to 3000. (b) cVAE average R2-score from epoch 100 to 3000.

Figure 16

4.0.2 Training

During the training process all of the surrogate’s were trained for 3000 epochs for experiment control, but

the question arose whether all four of the models needed to be trained for that long. To explore this, we

tracked the average R-squared score for the entire training and test set over the course of the training cycle,

see figure 15 and figure 16. These figures display the average R2 score of the SM predicted values and

ISM predictions computed after every epoch. Figure 15 displays the first 50 epochs, which show our SMs

performing as expected during the first stages of training. We begin with SM predictions on the data test

set that do not correlate with our ISM, but as training continues the surrogates begin to improve. Both

the vanilla and dropout models are the least accurate to start, then the eigen with the cVAE being the

most accurate. After around 10 epochs all of our models begin to perform with approximately the same

accuracy. This changes after 100 epochs, see figure 15b, where our models begin to diverge. We see our

deterministic neural network models climbing until after 2500 epochs where they reach a more consistent

state with an accuracy of 90% while the cVAE peaks after 500 epochs with an accuracy of 80%. We observe

more variability in the cVAE and vanilla surrogate’s accuracy overall, while the dropout and eigen models

are more variable initially, but reach a more consistent state than the other surrogates. This is more clearly

displayed in figure 16a. Looking more closely at the cVAE training results, figure 16b, we can see that our

average performance plateaus after just over 500 training epochs. For our other models, they continue to

improve in accuracy over this time. I argue that it is enough to train our cVAE surrogate for 1000 epochs

or less and we will still obtain an adequate surrogate. This speaks to the immediate effectiveness of this

surrogate.

33

4.0.3 Sampling outside scope of training data

What happens when parameters that are not within the scope of the training data are input into our models?

The answer to this depends on how much the novel input diverges from the training input. If the input is

within a reasonable range of the training parameters, the output produced will be consistent with previous

predictions. The problem arises when the input is much different than any previously seen input. The

model will produce output that is not representative of the model. This implies that in order to develop a

surrogate that can effectively be used to approximate a high-fidelity model, the surrogate must be trained

on a representative data set containing a diverse set of input that will be used with the surrogate. Any input

that is outside the scope of the training data will result in output that may or not not be physically feasible.

(a) Predictions generated by the vanilla surrogate
with a vector of zeroes passed as the input paramet-
ers.

(b) Predictions generated by the cVAE surrogate
with a vector of zeroes passed as the input paramet-
ers.

Figure 17

A generative model, such as a cVAE, is designed to produce new output by sampling from the latent

space. Deterministic neural networks do not generate new data in the same sense, as a sample of a trained

network will produce the same output every time the model is ran. This output will differ from the training

output slightly, so in this sense new output is produced, where with a generative model, an infinite number of

solutions exists for the same set of parameters. Figure 17 displays the results of passing a set of parameters

consisting of all zeroes through the cVAE and vanilla surrogates. It is not immediately clear that this is

not a viable set of parameters as both models produce results that appear to be obtainable to the untrained

eye. With the cVAE we are able to generate these results multiple times, as displayed in figure 18. From

this process it becomes more clear that the model is unable to produce a consistent set of predictions. The

variance in the predictions from these parameters ranges from less than 0.205 to greater than 0.637. This

is a significantly higher variation than all other predictions. Seeing that there is significant variance among

34

the generated predictions shows us that the surrogate does not have a constrained value in the latent space

for this input. This allows us to disregard any results with too much variance when testing on stochastic

parameters. With the deterministic surrogates, we have no way to quantify the discrepancy and rely on

visually determining whether the solution is viable.

(a) Mean (b) Variance

Figure 18: Mean and variance comparison for 100 cVAE generated log-speed predictions using a vector of
zeroes as parameter input. This demonstrates the results of passing input outside of training data scope into
the surrogate.

4.0.4 Future Improvements

While the surrogate models developed were all able to successfully emulate the high-fidelity ice sheet model,

but struggle to make accurate predictions when the variance in the log-speed predictions is large. If the

log-speed value spikes to a value larger than the average test set prediction, all of the surrogates have

difficulty emulating this accurately. Another problem arises when the surrogate produces a prediction that

is physically impossible. These models need to have a way of improving on these predictions.

These models perform well for this application, but can still be improved. A way to do so would be

to incorporate a Physics Informed Neural Network (PINN) into our surrogate architecture to help further

inform the model. This would help the model to make more informed decisions based on physical equations

and limitations. In order to maintain the features provided by the cVAE, we could apply ideas used by PINNs

to our existing architecture by adding a penalty to our data loss corresponding to physical limitations. An

analysis of the physical parameters used in our models could be performed in order to better understand

what parameters cause the ice sheet model to produce unrealistic velocity predictions. Using these results,

we could penalizes these predictions using the physical equations associated with the parameters deemed

most variable.

35

5 Conclusion

We developed a deep learning based surrogate model to approximate an ice sheet model using a conditional

variational autoencoder. Three neural network based surrogate’s were used to compare our novel architec-

ture, a vanilla neural network, a neural network with dropout and normalization, and a neural network with

dimensionality reduction to reduce the number of free parameters. These models were trained and tested

using physical parameters and the corresponding log-speed predictions output by the ice sheet model. All

of networks take parameters as input and output velocity predictions in an order of magnitude faster than

the original high-fidelity model. All of these models produced output with an average R2-score of 80% and

greater. While our conditional variational autoencoder (cVAE) surrogate did not outperform their bench-

mark models, we were able to infer the divergence between the cVAE surrogate and ice sheet model without

aggregation which is crucial for quantifying the variability in applications using the surrogate. Our cVAE

surrogate allows us to generate new predictions for the same set of parameters because of the architecture’s

stochasticity, providing a simple approach for quantifying the distribution the surrogate produces. This study

introduces the use of a cVAE as a surrogate for an ice sheet model, allowing us to encompass the variability

introduced by a surrogate model in order to quantify this error when used in downstream applications.

References

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.

Journal of the American Statistical Association, 112(518):859–877.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Brinkerhoff, D., Aschwanden, A., and Fahnestock, M. (2021). Constraining subglacial processes from surface

velocity observations using surrogate-based bayesian inference. Journal of Glaciology, 67(263):385–403.

Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F., and Murray-Smith, R. (2021). Bayesian parameter

estimation using conditional variational autoencoders for gravitational-wave astronomy. Nature Physics,

18(1):112–117.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving

neural networks by preventing co-adaptation of feature detectors.

36

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift.

Jiang, P., Meinert, N., Jordão, H., Weisser, C., Holgate, S., Lavin, A., Lütjens, B., Newman, D., Wainwright,

H., Walker, C., and Barnard, P. (2021). Digital twin earth – coasts: Developing a fast and physics-informed

surrogate model for coastal floods via neural operators.

Joyce, J. M. (2011). Kullback-Leibler Divergence, pages 720–722. Springer Berlin Heidelberg, Berlin, Heidel-

berg.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

Loh, W.-L. (1996). On latin hypercube sampling. The annals of statistics, 24(5):2058–2080.

Lukošiūtė, K., Raaijmakers, G., Doctor, Z., Soares-Santos, M., and Nord, B. (2022). Kilonovanet: Surrogate

models of kilonova spectra with conditional variational autoencoders.

Lütjens, B., Crawford, C. H., Veillette, M., and Newman, D. (2021). Pce-pinns: Physics-informed neural

networks for uncertainty propagation in ocean modeling.

Maier, N., Humphrey, N., Harper, J., and Meierbachtol, T. (2019). Sliding dominates slow-flowing margin

regions, greenland ice sheet. Science Advances, 5(7):eaaw5406.

Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B.,

and Wood, M. (2019). Forty-six years of greenland ice sheet mass balance from 1972 to 2018. Proceedings

of the National Academy of Sciences, 116(19):9239–9244.

Pal, A., Mahajan, S., and Norman, M. R. (2019). Using deep neural networks as cost-effective surrogate

models for super-parameterized e3sm radiative transfer. Geophysical Research Letters, 46(11):6069–6079.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,

Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance

deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran

Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

37

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019). Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations.

Journal of Computational Physics, 378:686–707.

Singh, A. and Ogunfunmi, T. (2021). An overview of variational autoencoders for source separation, finance,

and bio-signal applications. Entropy (Basel, Switzerland), 24(1):55–.

Xiao, C., Zhang, S., Ma, X., Jin, J., and Zhou, T. (2022). Model-reduced adjoint-based inversion us-

ing deep-learning: Example of geological carbon sequestration modeling. Water Resources Research,

58(1):e2021WR031041. e2021WR031041 2021WR031041.

38

	A NON-DETERMINISTIC DEEP LEARNING BASED SURROGATE FOR ICE SHEET MODELING
	Let us know how access to this document benefits you.
	Recommended Citation

	Introduction
	Methodology
	Dataset
	Deterministic Neural Network as a Surrogate
	Network Architecture
	Implementation
	Training

	Stochastic Neural Network as a Surrogate
	Derivation of Conditional VAE
	Implementation
	Training

	Results
	Discussion
	Error Quantification
	Training
	Sampling outside scope of training data
	Future Improvements

	Conclusion

