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Computational models of wildfires are an important tool for fire managers and sci-

entists. However, fuel inputs to wildfire models can be difficult to represent with

sufficient detail to be both computationally efficient and representative of observa-

tions. Recent advances in fuel mapping with airborne and terrestrial laser scanning

(LIDAR) techniques present new opportunities to capture variation in fuels within a

tree canopy and on a landscape. In this paper, we develop a technique for building

3D representations of vegetation from point clouds created by Terrestrial Laser Scans

(TLS). Our voxel based approach can be extended to represent heterogeneous crown

fuels as collections of fuel cells in modern 3D Computational Fluid Dynamics wild-

fire models such as FDS, QUIC-Fire, or FIRETEC. We evaluated the effectiveness of

our technique at different fuel cell resolutions by using the DAKOTA optimization

toolkit to compare simulated fire behavior in FDS with observed burn data collected

during a series of experiments at the Missoula Fire Sciences Laboratory. The primary

finding was that within the search space of point cloud derived fuel cells, we find ac-

curate descriptions of observed fire behavior with the FDS model. We also find that

within our search space, regions of global minima are consistent across fuel cells at

different resolutions. This finding suggests that while new techniques are capable

of characterizing fuel models with a high degree of fidelity, high resolution 3D fuel

models do not improve parity with observed fire behavior in the FDS fire model.

The results of this paper offer fire modelers guidelines for translating LIDAR data to

3D fire models, and what fuel cell resolution can best capture accurate fire behavior.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) fire models are increasingly used to answer

scientific questions related to fire behavior, weather effects, and firefighter safety.

While there is debate on the appropriate role of CFD models in scientific and opera-

tional modeling [2], there is also increasing interest in overcoming model limitations

in order to apply a more general class of coupled fire-atmospheric models to study

and manage prescribed fires [14, 15, 23].

Prescribed fire is an important tool for mitigating the threat of wildfire to fire sensi-

tive areas, such as the Wildland Urban Interface [4], as well as achieving landscape

goals as a form of wildfire emulation [6]. Physics-based, coupled fire-atmosphere

models have been used to simulate grass fires [21, 26], single tree burns [27], and

more recently, complex prescribed fire and wildfire environments [23, 11, 28]. How-

ever, it is a challenge to describe three-dimensional fuel properties in coupled fire-

atmospheric models [23]. Fire modellers must balance trade offs between grid reso-

lution, computational complexity, and data availability to achieve fidelity to limited

observations.

This challenge is especially important in light of the important role fuel heterogene-

ity plays in fire behavior. Laboratory experiments have shown that gaps between

shrubs, and the distribution of gaps within an individual shrub, are important fac-

tors in determining ignition when exposed to a heat source [38]. Additionally, the

distribution of bulk density within a tree canopy was found to significantly alter

crown fire potential in a modeled environment [30]. Recent studies have shown that

manipulating fuel distributions on a landscape scale through fuel treatments alters
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fire behavior in simulations [29, 31, 44]. One study found that increasing fuel fidelity

and heterogeneity information impacted fine-scale wind discontinuities which re-

duced fire spread and area burned [5].

Historically, fuel sampling has been concerned with capturing bulk fuel quantities

to support steady state rate of spread fire models such as the Rothermel model [39].

Fuel types were classified through field sampling methods that captured weight per

unit area of downed woody material, litter and duff, shrubs, and small conifers [8].

Fuel types capture broad fuel trends on a landscape, but are 2D and overlook vertical

fuel heterogeneity in favor of simplifying assumptions.

Advancements in the field of fuel modeling have improved fuel characterization and

sampling methods. Recently, fuel sampling methods have been devised in order to

capture 3D variability in fine scale fuels [13]. This work offers promising charac-

terizations of fine-scale fuels which drive the behavior of low intensity surface fires

often found in prescribed burn environments. However, these techniques are time

consuming, labor intensive, and cannot be scaled to stand scale plots.

Another approach to obtaining high fidelity 3D models are point clouds from Terres-

trial Laser Scans. TLS has been used to map crown profiles [10], predict canopy fuel

loading [41], and simulate 3D surface fuel beds [37]. In addition, point clouds from

TLS are capable of generating precision tree models [33] and quantifying vegetative

characteristics which can be used with allometric equations for biomass estimates

[18]. These techniques are useful for capturing bulk properties of a tree, but do not

describe the spatial distribution of vegetative quantities, such as biomass, through-

out a tree canopy. Currently, there is no established technique for mapping point

clouds to spatially dependent fuel characteristics.

One promising approach to quantifying spatially dependent fuel characteristics is

to reduce point cloud complexity by collecting points into bins of gridded voxels.

Recent works have successfully modeled mature tree canopies as voxelized point

clouds [16, 42]. In addition, voxelized point clouds of fine fuels have been used to

measure post-fire consumption [17], and to predict the distribution of mass and 3D

structure of shrubs at high resolution [36].
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Voxelized point clouds have an additional benefit in that they are a step closer to 3D

wildland fuel cells. The fuel cell concept was initially used to describe gridded fuel

inputs in a computational domain [7, 9]. The definition was expanded to describe

patches of a fuel bed with distinct composition, characteristics, and architecture that

become spatially independent beyond 0.5m2 [19]. More recently, the concept of a

fuel cell has extended to three-dimensions in order to characterize the aggregation

of interacting vegetation types [36].

Reducing point clouds to three-dimensional fuel cells is a potentially direct link

to gridded fuel inputs for coupled fire-atmospheric models. Such a link would

be important because the location, quantity, and characteristics of biomass within

a tree canopy are significant factors in determining fire behavior in coupled fire-

atmospheric models [27, 30]. Several studies have looked at using combinations of

TLS and ALS point clouds to determine the distribution of biomass [17, 36, 41]. To

our knowledge no study has attempted to inform the distribution of fuel cells within

a 3D CFD fire model using TLS data.

Despite these promising advancements in fire and fuels modeling, there are still sig-

nificant gaps in the research linking fuel models to the fire modeling environment.

Fire modelers must balance careful tradeoffs between computational expense, data

collection, and grid resolution when deciding how to represent vegetation as 3D

gridded input data. To date, no comparisons have been published between observed

fire behavior and simulated fire behavior of LIDAR-derived fuel cells. This paper ex-

plores the concept of altering three-dimensional fuel cells in terms of moisture con-

tent, bulk density, and resolution to provide an algorithmic approach to translating

LIDAR point clouds into a CFD based simulation environment.

Leveraging TLS and mass over time data collected in 2021 on burning saplings at

the Missoula Fire Sciences Laboratory, we developed a methodology for represent-

ing complex vegetation in three-dimensional fuel cells. Then, we tested the effect of

fuel cell descriptors such as fuel moisture content, bulk density, and resolution on

modeled fire behavior in the FDS model. We present our methodology, which can

be used to translate point cloud data to any CFD fire model with gridded fuel inputs

such as FDS, FIRETEC, or QUIC-Fire [25, 20, 22]. Lastly, we provide fire modelers
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with heuristics for making decisions on fuel cell fidelity in order to balance simula-

tion accuracy with computational requirements using the FDS model.
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Chapter 2

Methods

2.1 Tree Burn Experiments

The sapling burn experiments reported here were conducted in the Missoula Fire

Sciences Laboratory burn chamber [35]. The experiment overlapped with ecological

work to examine the effect of drought stress on tree mortality when exposed to two

controlled levels of fire intensity. We acquired 123 saplings of two species, Engel-

mann spruce (Picea engelmannii) and Ponderosa pine (Pinus ponderosa), from a local

nursery; 72 were Engelmann spruce and 51 were Ponderosa Pine.

Saplings were acquired in May 2021 and stored in planter containers filled with soil

and with roots intact. The trees were stored in a greenhouse from the time of their

acquisition until their burn day. During this storage period, half of the saplings from

each species were watered every one to two weeks so as to mimic the conditions

of a drought environment. The other half were watered every three days so as to

Number of Saplings per Treatment
Ponderosa Pine High Heat Low Heat No Heat Total
High Water 8 9 8 25
Low Water 9 8 9 26
Total 17 17 17 51
Engelmann Spruce High Heat Low Heat No Heat Total
High Water 12 12 12 36
Low Water 12 12 12 36
Total 24 24 24 72

TABLE 2.1: Categorical breakdown of the number of saplings per
treatment group.
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encourage normal development. Trees in the high water category were watered fully

on the day of their burn, regardless of when they had been watered last.

Each day of the experiment, saplings were transported to the burn chamber at the

Missoula Fire Sciences Laboratory and ignited over a pair of concentric ring gas

burners. During the ignition period, each sapling was exposed to one of three fire

intensity categories: no heat treatment, low heat treatment, or high heat treatment.

The low heat treatment samples are defined as a flow rate 10.8 liters of propane

per minute for a heat release rate per unit area of 516.22 kW/m2, and the high heat

treatment samples are defined as a flow rate 21.6 liters of propane per minute for

a heat release rate per unit area of 1032.46 kW/m2. Table 2.1 lists the number of

saplings in each species and treatment category.

(A) Sapling S63 before heat treatment (B) Sapling S63 after heat treatment

FIGURE 2.1: Comparison pictures of S63 before and after 30 seconds of high heat treatment.
S63 was exposed to a high water treatment.

A pair of concentric ring burners were placed over a piece of fibrous cement with a
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12.7 cm diameter hole cut in the center. The inner burner ring had a radius of 14.6 cm,

and the outer burner ring had a radius of 22.3 cm. Both burners had a width of 1 cm.

At the time of the fire treatment, a tree was placed through the hole such that the

tree stand rested on a load balance. The height of the apparatus was adjusted to

ensure that the crown of each sapling was exposed to the pair of ring ignitors. After

ignition, the burner was shut off after 30 seconds. Figure 2.1 compares pictures of

an example Engelmann spruce sapling before and after a high heat treatment. This

example is a representative sample of the observed burn outcomes for many of the

saplings measured in the experiment.

We recorded the weight of the sapling before and after the burning period. Addition-

ally, the weight of the sapling was recorded during the burning period with a load

balance transmitting at 0.5 Hz. Figure 2.2 shows a typical set of observations from

the load balance over the thirty second burn period for a Ponderosa pine sapling.
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FIGURE 2.2: Cumulative change in mass of a single sapling during a 30 second period of
heat exposure from the burner as measured by the load balance.

For each sapling, three-dimensional scans were collected from a Leica Geosystems

BLK360 Terrestrial Laser Scanner. The TLS was run at a high density setting with a
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reported resolution of 5 mm. Two scans were taken from the same location before

and after the burn treatment. Because the scans were taken in the same location,

static reference locations in the burn chamber were used to facilitate spatial refer-

encing. The two scans were co-registered using Cyclone Register 360 software from

Leica Geosystems in order to create a single 3D point cloud.

In addition, each burn experiment was recorded with an infrared camera and three

GoPro cameras. Photographs from four different angles, as well physiological mea-

surements, were taken before and after exposure to the gas burner. Figure 2.3 shows

a photograph of the experimental setup with labeled load balance, TLS device, and

ring burner.

FIGURE 2.3: Photograph of the experimental design at the Missoula Fire Sciences Laboratory.

2.2 Creating Fuel Cells from a 3D Point Cloud

CFD fire behavior models use volumetric cells (voxels) to represent quantities and

spatial distributions of vegetation. In order to represent the point cloud sampling

of the physical sapling in a CFD fire behavior model we need to convert the point
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cloud into voxels. In this paper, we refer to the combination of the spatial location of

a voxel along with its accompanying vegetative quantities as a fuel cell.

In order to translate point cloud data to fuel cells, we begin by reducing the 3D

point cloud to a domain containing only point returns within the sapling extent.

The colocated TLS point clouds contained points from the entire burn chamber at

the Missoula Fire Sciences Laboratory. Points outside the sapling region of interest

were removed. Spurious returns were present in the remaining point clouds due

to residual ash on the table from previous burns. To account for these superfluous

returns, we applied the Point Cloud Outlier Removal tool in the Open3D Python li-

brary [43] to filter points farther away from their neighbors compared to the average

for the point cloud. Points were filtered more aggressively in the lower third of the

sapling to account for a higher accumulation of ash near the burner surface.

There are several challenges associated with correlating 3D point clouds to fine fuel

mass and location without the use of destructive sampling. A higher point cloud

density does not necessarily correlate to a higher density of foliage or stem biomass.

Point density is also related to the scan angle, branch angle, occlusion, and duplicate

points from colocated scans [17, 40]. Therefore, there is no known scaling between

point density and bulk density.

In order to address the problems related to a 3D point cloud for representing vege-

tation, we apply a voxelization method to represent collections of points as a single

voxel [42]. A voxel based representation of the experimental saplings offers numer-

ous advantages. Duplicated points from stitching multiple scans are represented as

a single voxel, voxels can represent points returned to the scanner in addition to

points occluded by overlapping woody material, and voxels are one step closer to

the concept of a 3D fuel cell necessary for input to a CFD fire model [16].

Our voxelization technique begins by identifying reference voxels. We define a ref-

erence voxel as the smallest possible voxel representation of a point cloud, given

the physical constraints of the TLS device and the scanning environment. Reference

voxels have a Boolean value indicating the presence or absence of points within the
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(A) Photograph of S48 (B) Point Cloud Model of S48 (C) Voxel Model of S48

FIGURE 2.4: Comparison between a photograph of spruce sapling 48 (A) and the 3D pro-
cessed point cloud (B) and reference voxel models (C).

voxel. We chose 1cm x 1cm x 1cm voxels for our reference voxel size due to the re-

ported 5 mm resolution of the TLS device. Smaller reference voxels were attempted,

but resulted in grid artifacts due to aliasing. Figure 2.4 compares a photograph of an

example spruce sapling with the point cloud and reference voxel models produced

by our methodology.

We construct voxels at coarser resolutions by creating a voxel grid in the point cloud

domain and counting the number of reference voxels that occur within the voxel at

the desired resolution. Thus, when the voxel is converted to a fuel cell, biomass is

distributed in proportion to the number of contained reference voxels. This is in con-

trast to other techniques which distribute vegetative quantities in proportion to the

number of point returns. Figure 2.5 shows the relative proportion of reference vox-

els in a coarse cell. Coarse voxels reduce memory requirements and computational

complexity in the context of a CFD fire model. A key part of this study is to compare

the results of model output across fuel cell volumes to determine the importance of

voxel resolution on modeled fire behavior.
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FIGURE 2.5: Distribution of 1cm reference voxels in coarse voxel grids. Each pixel represents
the vertical sum of reference voxels across the z-axis. Color is in proportion to the number

of reference voxels present within the coarse voxel.

2.3 Fire Behavior Simulation

We compared experimental outcomes with model output from the Fire Dynamics

Simulator version 6.7.7 released on November 19th, 2021 [25]. FDS is a computa-

tional fluid dynamics (CFD) model of fire-driven fluid flow. The model numerically

solves a form of the Navier-Stokes equations appropriate for low-speed, thermally-

driven flow, with an emphasis on smoke and heat transport from fires on a rectan-

gular grid. FDS uses a Lagrangian particle model to represent objects that cannot be

resolved on the numerical grid. In the particle model, vegetation is represented by a

collection of Lagrangian particles that are heated via convection and radiation. La-

grangian particles can be used to represent different types of vegetation like leaves,
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grass, and needles that occupy a fuel cell.

Saplings were constructed in FDS as a collection of fuel cells. Fuel cells were spatially

distributed in the computational domain using the voxel methodology as discussed

in section 2.2. Due to observations from the experimental data, we assume that

mass loss was driven by the combustion of foliage. Thus, for our simulation model

we distributed biomass to fuel cells in the form of dry foliage mass. Each fuel cell

received a quantity of dry foliage mass in proportion to the number of reference

voxels contained within the fuel cell. The dry foliage mass, mcell,dry, for a given fuel

cell can be computed as:

mcell,dry = mref,dry × n (2.1)

Where mref,dry is the dry mass of the foliage for a reference voxel, and n is the number

of reference voxels contained in the fuel cell.

FDS requires the packing ratio, β, as an input to describe the amount of dry mass

represented by the Lagrangian particle in the fuel cell. The packing ratio is a mea-

surement of the compactness of a fuel cell [3]. Another important quantity is the

bulk density, ρb, which represents the dry mass of vegetation per unit volume. For

each fuel cell resolution, r, in the n-dimensional point we compute the bulk density

of a fuel cell as:

ρb =
mcell,dry

r3 (2.2)

The bulk density is then used to compute the packing ratio for the fuel cell:

β =
ρb

ρd
(2.3)

Where particle density, ρd, is an experimentally determined value representing the

density of particles that make up the substance. Particle density differs from the

bulk density in that bulk density measures the average density of the substance in

a specific medium such as air. We assume that the particle density of needle foliage
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(A) 2cm Fuel Cell (B) 4cm Fuel Cell (C) 8cm Fuel Cell (D) 16cm Fuel Cell

FIGURE 2.6: Distribution of foliage mass in the computational domain for fuel cells of size
2cm (A), 4cm (B), 8cm (C), and 16cm (D).

is 514 kg/m3 for both the pine and spruce saplings considered [34]. One randomly

positioned Lagrangian particle is specified per fuel cell. The amount of foliage a

particle represents is determined by the packing ratio of the fuel cell. Figure 2.6

compares the distribution of foliage mass in the FDS domain for an example sapling.

Fuel moisture content is assumed uniform across fuel cells. All other combustion

properties are held constant across fuel cells. Model parameters are based on the

NIST Douglas Fir experiments in FDS version 6.7.7, and are listed in the FDS Val-

idation Guide [25]. Ignition conditions begin at 0 seconds of simulation time, and

mimic the burner treatments used in the experiment. We model the simulation do-

main on a 0.6m x 0.6m x 1.2m rectangular grid with a cell resolution of 2cm x 2cm

x 2cm. We note that the resolution of the rectangular grid in FDS is independent of

fuel cell resolution. Fuel cells can have the same, or coarser, resolution as the resolu-

tion of the numerical grid. Boundary conditions are open on the sides and top of the

domain, and closed at the bottom of the domain. The total mass of the wet foliage

fuel element was collected during the 30 seconds of simulated burn activity at 100

Hz.
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2.4 Numerical Experiments

We ran computer simulations based on experimental measurements for sixteen of

the saplings. For both species we selected two saplings from each drought stress

and heat intensity treatment categories. We selected a subset of the total data due to

limitations on computational resources. For each of the sixteen saplings in our focus

set, we performed a parameter sweep using the DAKOTA toolkit [1]. DAKOTA is a

suite of iterative mathematical and statistical methods that can perform parametric

exploration of black-box simulations. These parametric explorations can be used for

sensitivity analysis, uncertainty quantification, and model calibration.

In our study, we used DAKOTA to perform a multidimensional parameter study, or

grid search. We ran the multidimensional parameter study for each of the sixteen

focus saplings. Each point in our grid search consisted of three dimensions: dry

foliage mass, fuel moisture content, and fuel cell resolution. The dry foliage mass,

mtotal,dry, was uniformly sampled at 16 points over mtotal,dry ∈ [0.005, 0.08]kg based

on observed mass loss and consumption estimates. Fuel moisture content, M, was

uniformly sampled at 16 points over M ∈ [20, 350]%, following heuristics published

in the Fire Behavior Field Reference Guide [12]. Fuel moisture content is computed

as the ratio of wet mass to dry mass:

M =
mtotal,wet − mtotal,dry

mtotal,dry
× 100% (2.4)

Fuel cell resolution, r, was sampled from the set

r ∈ {2, 4, 8, 16} cm

Where each r represents a fuel cell of volume of r × r × r cm3.

A multidimensional parameter study produces a quantifiable response for each pa-

rameter set [1]. To find this response, we write the parameters sampled by DAKOTA

to an FDS input file in a pre-processing step. This pre-processing step combines the

3D reference voxel fuel model, at the desired fuel cell resolution, with the provided
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dry foliage mass and fuel moisture content to populate the FDS domain with fuel

cells. Figure 2.6 shows the fuel distributed in the FDS domain at the four considered

fuel cell resolutions.

Next, we run a fire behavior simulation using the FDS fire model. FDS produces

mass over time data as model output. We quantify the difference between simulated

and observed mass loss using Root Mean Square Error.

RMSE =

(
N

∑
i=1

(xi − x̂i)
2

N

) 1
2

(2.5)

Where N is the number of mass observations, xi is the observed mass at time step i,

and x̂i is the modeled mass at time step i. The RMSE of a simulation quantifies how

close the simulation output matches the observational data. The end result of our

numerical experiment is that each set of parameters sampled by DAKOTA has an

associated RMSE. Figure 2.7 shows the DAKOTA and FDS pipeline which produces

a link between parameters sampled by DAKOTA and RMSE.

FIGURE 2.7: Outline of the workflow between DAKOTA and FDS. This cycle is run for all
16,384 points in the multidimensional parameter study. The workflow produces a direct
link between parameters sampled by DAKOTA and a measure of goodness of fit between

simulation output and observed data.
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Chapter 3

Results
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FIGURE 3.1: Comparison between simulated and observed curves of cumulative mass
change. The red line shows the cumulative change in mass from the FDS fire model, whereas
the black line with x marks shows the observed cumulative mas change as measured by the
load balance for sapling S63. This is the lowest RMSE value found out of the 16,384 model

runs.

We computed the RMSE of each simulation in the parameter sweep across sixteen

saplings. For each sapling, we found the minimum RMSE determined from com-

paring the mass loss curves for observed and simulated burns. Figure 3.1 shows

the minimum RMSE found in the set of simulations for Engelmann spruce sapling

S63. We observe close parity between the simulated and observed mass loss in both
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the shape of the curves and the resulting change in mass. However, the simulated

mass loss curve captures a smooth, sigmoidal relationship between cumulative mass

change and time. It does not capture the plateaus and variable drops in cumulative

mass change found in the observed mass loss curve.

(A) Mass per Unit Volume kg/m3 (B) Cell-centered Temperature °C

FIGURE 3.2: Smokeview views of mass per unit volume (A) and cell-centered temperature
(B) at simulation time 20.4 seconds in an example FDS simulation.

Despite the close relationship between observed and simulated mass loss curves in

Figure 3.1, we also observe non-physical fire behavior in the FDS model. Figure

3.2 shows non-physical fire behavior present in an example FDS simulation. In this

simulation, the primary area of consumption is the center of the simulated sapling

along the central axis. For reference, Figure 2.6d shows the initial distribution of

foliage mass in the simulation. This modeled behavior contradicts observed fire

effects in the experimental data. Figure 2.1 suggests that most of the combustion

of foliage occurred away from the stem of the sapling, whereas the model suggests

the opposite. We also find that the central concentration of simulated temperature

differs from experimental data which show an even temperature distribution.
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The correspondence between RMSE and the independent variables allows us to ex-

amine the space sampled by DAKOTA in our multidimensional parameter study.

Figure 3.3 shows the results of the numerical experiment as described above for one

Engelmann spruce sapling. Each pane in the image represents a parameter sweep

across 2D points for a given fuel cell resolution. Each pixel has a value for fuel mois-

ture content and dry foliage mass. Fuel moisture content was sampled uniformly in

the range [20, 350]%, and dry foliage mass was sampled in the range [10, 80]g for a

total of 256 points for each sampled fuel cell resolution.
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FIGURE 3.3: Distribution of RMSE values for the full 1,024 samples in the parameter sweep
for sapling S50. The upper left pane is for simulations with a fuel cell resolution of 2cm,
upper right for 4cm, bottom left for 8cm, and bottom right for 16cm. The x and y axis of each
pane correspond to the sampled range of dry foliage mass and fuel moisture content. Each
pixel is colored according to the RMSE resulting from the comparison between the simulated

model output and the observed data for sapling S50.

The multidimensional parameter study identifies a region of consistent minima across

all fuel cell resolutions. The model is sensitive to dry foliage mass values as evi-

denced by the areas of high RMSE below 25g and above 50g along the x-axis in figure

3.3. Minimum RMSE values occur at higher dry foliage mass values for the coarsest
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fuel cell resolution of 16cm x 16cm x 16cm. Additionally, the model shows sensitiv-

ity to fuel moisture content. This effect is more pronounced when dry foliage mass

is high, and the model appears less sensitive to fuel moisture content when the dry

foliage mass is low. The parameter sweep identifies a consistent region of minima

across all fuel cell resolutions. We find that the coarsest fuel cell resolution expands

the area of RMSE minima across a larger range of dry foliage mass values.
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FIGURE 3.4: Distribution of RMSE values for the full 1,024 samples in the parameter sweep
for sapling P11. The upper left pane is for simulations with a fuel cell resolution of 2cm,
upper right for 4cm, bottom left for 8cm, and bottom right for 16cm. The x and y axis of each
pane correspond to the sampled range of dry foliage mass and fuel moisture content. Each
pixel is colored according to the RMSE resulting from the comparison between the simulated

model output and the observed data for sapling P11.

Figure 3.4 shows a similar parameter space plot as discussed above for a Ponderosa

pine sapling that received a low heat treatment and a high water treatment during

the experiment. Once again, we observe areas of minima across all fuel cell resolu-

tions. The cost surface of the coarsest 16cm fuel cell resolution deviates significantly

from the finer fuel cell resolutions. We also observe parity between a low dry foliage
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mass and high fuel moisture content, and a high dry foliage mass and low fuel mois-

ture content. For example, in the 4cm fuel cell resolution pane, the RMSE associate

with a dry foliage mass of 25g and 50% fuel moisture content is roughly equivalent

to the RMSE associated with a dry foliage mass of 20g and a fuel moisture content

of 350%.
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FIGURE 3.5: Kernel density estimate plots of the dry foliage mass associated with the min-
imum RMSE for each fuel cell and n=16 saplings. The distribution of dry foliage mass is

plotted as an individual curve for each fuel cell.

While we observe areas of minima across fuel cell resolutions in the parameter sweep,

the area of minima shifts with respect to dry foliage mass in the coarsest resolution

considered. Figure 3.5 shows kernel density estimates computed over the dry foliage

mass value at the lowest RMSE simulation for each fuel cell resolution. Density esti-

mates for the 2, 4, and 8cm fuel resolution simulations suggest close parity. However,

the coarsest fuel cell shows a distinct rightward shift of the density plot with respect

to dry foliage mass. We find a mean minimum RMSE dry foliage mass of 37.92g

with a standard deviation of 15.33g for the 2-8cm fuel cell resolutions, and a mean

of 52.81g with a standard deviation of 17.32g for the coarsest fuel cell resolution.

In addition to the parameter space plots for individual saplings, we also analyze the
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FIGURE 3.6: Box and whisker plot of the distribution of correlation coefficients between
log(RMSE) and three independent variables: Dry Foliage Mass, Fuel Moisture Content, and
Fuel Cell Resolution for n=16 saplings. The box extends from the first quartile (Q1) to the
third quartile (Q3) of the data, with a line at the median. Whiskers extend from the lowest
correlation coefficient to the highest correlation coefficient in the data. We take the absolute
value of the correlation coefficient in order to capture the magnitude, but not the direction,

of the correlation.

effects of independent variables on RMSE. We compute the Pearson correlation coef-

ficients between dry foliage mass, fuel moisture content, and fuel cell resolution on

the logarithm of RMSE for each of the sixteen multidimensional parameter studies.

The distribution of correlation coefficients are displayed in Figure 3.6. This result

suggests that fuel cell resolution has a significantly lower ability to predict RMSE

than dry foliage mass or fuel moisture content.

The correlation coefficients for dry foliage mass and fuel moisture content are likely

underestimated due to the non-monotonic behavior of the RMSE values. Such non-

monotonic behavior can be observed, for example, in the valleys of minima that

occur along the x-axis of figure 3.3. This analysis is meant to illustrate the relative

importance of dry foliage mass and fuel moisture content for predicting RMSE.
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Chapter 4

Discussion

In this study we developed a methodology for describing heterogeneous canopy

fuel loads using LIDAR point clouds. Next, we conducted a series of numerical

experiments examining the effectiveness of this technique by comparing FDS model

output with observed load balance data taken from a series of experimental tree

burns. We used DAKOTA to conduct a parameter sweep on fuel moisture content

and dry foliage mass and identified physically plausible local minima. Additionally,

we found that our sampling technique identified an area of RMSE minima for all

fuel cell resolutions, and that the area was consistent for 2-8cm resolution fuel cells.

Our work presented here represents a shift from traditional approaches for modeling

fuels in CFD fire models. Previous works have used simplified geometries like cones

or cylinders with homogeneous and continuous fuel distributions to model fire be-

havior in individual trees [27] and stands [31]. However, it is well documented that

heterogeneous fuel distributions have a large impact on fire behavior [30, 32]. While

other studies have built systems for deriving fuel models from LIDAR point clouds

[24, 37], our study is the first that we are aware of to make a direct link between

LIDAR point clouds and fuel inputs to 3D fire effects models.

Enhanced models of fuel derived from LIDAR data have the potential to link ad-

vanced fire behavior models with field observations [14]. For example, such a pro-

cess opens the door to collecting LIDAR data in fire sensitive areas to assess the

impact of a hypothetical fire disturbance. In addition, the capability to quantify vari-

ability in fuels on a landscape presents opportunities to evaluate the effectiveness of

management actions like prescribed burns or fuel treatments.
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Our fuel cell methodology represents a first step at achieving this goal of linking

data from LIDAR points clouds and coupled fire-atmospheric models. While we

found close parity between our fire simulations in FDS and observational data using

our 3D fuel models, many opportunities for further research and refinement exist.

For example, our technique tends to over-sample reference voxels associated with

the stem of the saplings. The result of this phenomenon is the over-weighting of

combustible thermally thin foliage concentrated in the middle of the 3D fuel model.

This phenomenon is well represented in Figure 2.5, and likely results in an overes-

timation of mass loss when the vegetation is exposed to a heat source in a fire ef-

fects model. Future research can expand on previous work segmenting foliage from

woody material in LIDAR point clouds [40] in order improve our methodology by

characterizing reference voxels by vegetative return type.

In our numerical experiment, we link observations of fire behavior, data from LIDAR

point clouds, and fire effects from the FDS model. We accomplish this by compar-

ing model output with observed mass loss data. We used DAKOTA to uniformly

sample the parameter space of dry foliage mass, fuel moisture content, and fuel cell

resolution for sixteen saplings. This experiment also has implications for fire behav-

ior modeling. One important modeling conclusion that we draw from our results is

the relative importance of dry foliage mass and fuel moisture content on predicting

mass loss. Fuel cell resolution was found to have little impact on the characteriza-

tion of modeled mass loss, whereas dry foliage mass and fuel moisture content were

found to be highly correlated with characterizing observed mass loss.

Both fine and coarse fuel cell grids were capable of accurately characterizing ob-

served mass loss in a simulation environment. Based on these results, we conclude

that if the primary goal of a simulation is to reproduce the burning behavior of a 3D

fuel model, then a coarse fuel cell grid can successfully balance tradeoffs between

computational complexity and representative heterogeneity. While high resolution

LIDAR data can improve the representative heterogeneity of 3D fuel models, we

find that high resolution fuel descriptions do not improve model results.

Additionally, the importance of dry foliage mass and fuel moisture content suggest

that fire modelers should have a high level of confidence in their fuel attributes in



Chapter 4. Discussion 24

order to have confidence in model results. Non-destructive biomass estimates of

vegetation are an active area of research. Our study suggests that obtaining accurate

biomass estimates is crucial for achieving model accuracy. More work is needed

to examine the relationship between biomass measurements from traditional field

techniques or derived from LIDAR data, and fuel inputs to couple fire-atmospheric

models.

One major shortcoming of our study is that we were unable to evaluate the relation-

ship between numerically identified fuel attributes from RMSE minima and actual

fuel attributes measured from vegetation samples. While the majority of parameter

spaces resulted in physically plausible fuel attributes, regions of RMSE minima also

contained physically implausible minima. For example, our numerical experiments

consistently identified regions of high dry foliage mass and low fuel moisture con-

tent as minima. This often contradicted known high water treatments applied to the

sapling.

The tendency for the core of the simulated sapling to burn, as seen in Figure 3.2a,

may be responsible for pushing RMSE minima out of the range of physically plau-

sible values. This phenomenon likely occurs for two reasons. Firstly, the closed

boundary condition at the bottom of the simulated domain contributes to a strong air

draw along the central axis. This concentrates the energy introduced by the burner

to the middle of the sapling which can be seen in Figure 3.2b. Secondly, the central

axis of the simulation domain is over-weighted with fuel cells associated with the

stem of the sapling. Due to these two factors, our study likely overestimates the role

that the combustion of thermally thin vegetation plays in driving mass loss.

Future research can examine the role of branchwood in thermal degradation, ve-

locity fields, and moisture content. The role of DAKOTA can expand to include

additional parameters, simulation designs, and more advanced analysis techniques.

Additional investigations into the effects of more detailed 3D fuel models on fire be-

havior models will help us better understand how to apply coupled fire-atmospheric

fire models to real world problems like prescribed burn planning.
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