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ABSTRACT 
 
  Efforts to recover endangered carnivore populations are often limited by insufficient populations 
of prey. When recovering prey populations, estimates of population density are invaluable metrics 
to monitor recovery efforts. In Russia, wildlife managers use the Formozov-Malyushev-
Pereleshin (FMP) snow tracking method to estimate densities of ungulate prey of the Amur tiger 
(Panthera tigris). Yet, increasing variability in snow conditions and other challenges have limited 
its reliability. Camera traps offer a promising alternative approach since managers already use 
cameras to monitor tigers. However, the assumptions and study design necessary to implement 
capture-recapture models for tigers are different from those needed to implement models for 
unmarked populations of prey. In Chapter 1, I estimated densities of wild boar (Sus scrofa), red 
deer (Cervus canadensis ssp. xanthopygus), roe deer (Capreolus pygargus), and sika deer (Cervus 
nippon) using Random Encounter models (REM), Space-To-Event models (STE), and Time-To-
Event models (TTE), then compared these with FMP estimates within Sikhote-Alin Biosphere 
Zapovednik. Estimates from the STE and FMP were the most similar, though there were 
challenges implementing the STE to data from motion-trigger cameras. All models detected a 
>90% decline in wild boar density due to African Swine Fever. Simulations indicated that greater 
survey effort for all camera-based methods would be required to achieve a coefficient of variation 
of 20% (an objective set for this study area in 2006). This is likely cost-prohibitive for many 
conservation programs due to the high costs of randomly deploying many cameras. To examine 
the influence of study design on detections of ungulate prey, in Chapter 2 I compared relative 
abundance indices (RAIs) of prey using: (1) cameras placed on roads to monitor tigers; (2) 
cameras placed using systematic random sampling; and (3) “off-road” cameras placed 150 meters 
away from road cameras. Both road and off-road RAIs were greater than random RAIs, and our 
attempt to approximate representative sampling with off-road cameras ultimately did not work. 
These results highlight the importance of random sampling to meet the assumptions of unmarked 
estimators. Detection data of prey species from cameras placed for tiger monitoring should not be 
used to estimate true abundance of prey species using these models.   
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CHAPTER 1: CAMERAS OR CAMUS*? COMPARING CAMERA TRAPS AND SNOW 

TRACK SURVEYS TO ESTIMATE DENSITIES OF LARGE UNGULATE PREY  

*Camus (Russian: камус) refers to the skins Russian hunters attach to the bottoms of skis for traction in the snow.  

1  |  INTRODUCTION 
 
For centuries, Large carnivore populations have suffered from the intensive and widespread 

anthropogenic threats of poaching, habitat loss and fragmentation, and prey depletion (Ripple et 

al. 2014). The loss of primary prey species through overhunting and poaching can decrease 

carnivore survival and recruitment (Fuller and Sievert 2001, Miquelle et al. 2010), increase 

human-carnivore conflicts (Graham et al. 2005, Miquelle et al. 2009, Lubis et al. 2020), and limit 

conservation efforts to restore carnivore populations (Aryal et al. 2016, Qi et al. 2021). 

Conservationists often cite prey recovery as an essential step towards halting the decline of 

predator populations (Wolf and Ripple 2016, Duangchantrasiri et al. 2016). Estimates of prey 

density are invaluable to these efforts, as they allow managers to document that recovery (Harihar 

et al. 2020), as well as to better understand the relationships between carnivores and their prey 

(Miquelle et al. 2010, Vinks et al. 2021).  

 The sustainable management of large herbivore prey species is essential for the recovery 

and persistence of wild tigers (Panthera tigris) across their range (Walston et al. 2010, 

Wikramanayake et al. 2011). Along with poaching of tigers and habitat loss, prey depletion has 

been identified as a major contributing factor to the collapse of tiger populations across Asia 

(Tilson et al. 1997, Dinerstein et al. 2007, Piper et al. 2008, Wolf and Ripple 2017). During the 

2010 Global Tiger Summit, all 13 tiger range countries committed to recovering, sustainably 

managing, and monitoring prey populations to support tigers (Global Tiger Initiative 2010). But 

prey monitoring has proven difficult to implement. While guidelines exist that apply to some 

ecosystems where visibility of prey is high (Karanth and Nichols 2002), a decade after signing the 
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Global Tiger Initiative, most tiger range countries still do not have established systems for 

monitoring prey. There remains an urgent need to develop reliable and practical prey monitoring 

programs across tiger range. 

 In the Russian Far East, the importance of monitoring prey for Amur tiger (P.t. altaica) 

conservation has over twenty years of scientific support. Several studies have demonstrated how 

tigers select for areas of greater relative prey densities more than any landscape feature or 

vegetation (Miquelle et al. 1999, Hebblewhite and Mitchell 2013, Hebblewhite et al. 2014). 

Moreover, across their range, tigers appear to have a numerical response to increases in preferred 

prey densities (Karanth et al. 2004, Miquelle et al. 2010). In Russia, tigers occur at their lowest 

densities and low prey biomass is a major limiting resource (Miquelle et al. 2010). Estimates of 

prey densities will therefore help managers assess and maintain sufficient prey abundance to 

sustain tigers (Karanth and Nichols 2002, Hebblewhite et al. 2014, Jornburom et al. 2020).  

 Estimating the density of large herbivore prey has proven challenging across ecosystems 

and management contexts. Individuals of most large herbivores cannot be uniquely identified, 

precluding the application of capture-recapture models as used to monitor tiger densities (Karanth 

1995, Karanth and Nichols 2002, Efford et al. 2009, Royle et al. 2009). In places such as India, 

where animal visibility is high, prey densities are also high, and animals tend not to flee from 

humans, distance sampling offers a reliable approach to precisely estimate herbivore densities 

(Karanth and Nichols 2002, Harihar et al. 2014, Jhala et al. 2020, Karanth et al. 2020). However, 

many ecosystems do not share these attributes. Limited visibility due to topography or vegetation 

and low densities of hunted, wary prey require managers to survey using other methods. In 

Russia, wildlife managers use a snow-tracking method called the Formozov-Malyushev-

Pereleshin (FMP) method to track prey densities (Formozov 1932, Chelintsev 1995, Lomanov 
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2000, Stephens et al. 2006b) see methods and Table 1-1). The FMP method provides valuable 

long-term datasets across Russia and has been recently validated in the Western literature 

(Stephens et al. 2006b, Keeping et al. 2018, Ahlswede et al. 2019). However, the FMP method 

requires considerable survey effort, is prone to bias caused by convenience sampling, and when 

applied using snow track surveys, depends on consistent, recurring snowfall. The dependence on 

snowfall has become a major concern in the Russian Far East with climate change leading to 

warming temperatures that make tracking conditions more challenging (Stephens et al. 2006a, 

IPCC 2022). These drawbacks compromise the FMP method’s dependability as a future survey 

method in the Russian Far East. This has important consequences considering the number of 

publications that use prey density estimates from the FMP to inform Amur tiger conservation 

(Miquelle et al. 1999, 2005, 2010, Petrunenko et al. 2016, Jiayin et al. 2018, Qi et al. 2021). 

Russian wildlife managers, like many large carnivore and ungulate managers world-wide, need 

alternative methods to monitor herbivore prey species.  

 Camera traps (‘cameras’ hereafter) offer a promising solution to this problem since many 

researchers are already using cameras to monitor large carnivores such as tigers. For example, 

Kafley et al. (2019) recently applied N-mixture models (Royle et al. 2004) to estimate tiger prey 

abundance in Chitwan National Park, Nepal, using “by-catch” photos of prey obtained while 

surveying tigers. Xiao et al. (2018) similarly used cameras placed for tiger monitoring to estimate 

prey abundance with N-mixture models on the Hunchun Nature Reserve in northeast China. 

Tempa (2017) also applied N-mixture models to evaluate the effects of relative prey abundance on 

tiger occupancy across Bhutan. While the estimates of relative prey abundance and inclusion of 

spatial covariates in these studies provided inference about variation in relative prey densities, 

they measure relative or local abundance (i.e., the number of individuals occurring in the vicinity 
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of a particular camera trap) rather than densities of prey at the landscape scale. N-mixture models 

also make challenging assumptions about detections and animal movements, particularly for 

social species such as many ungulates. To meet these assumptions, cameras must be placed 

according to the home range size of the study species, which is a problem for multi-species 

monitoring with the same cameras. These requirements ultimately limit N-mixture models’ ability 

to track trends in prey abundance (Kery and Royle 2015).  

 Several alternative models have been proposed in the last 15 years that estimate densities 

of unmarked populations by extrapolating density within the collective sampled areas in front of 

cameras (“viewsheds”) (Gilbert et al. 2020). These include the Random Encounter Model (REM) 

(Rowcliffe et al. 2008), the Random Encounter and Staying Time model (REST) (Nakashima et 

al. 2018), Camera Trap Distance Sampling (CT-DS) (Howe et al. 2017), and the Space-To-Event 

and Time-To-Event models (STE and TTE) (Moeller et al. 2018). These models (collectively, 

“viewshed density estimators”) have been used to estimate densities of both carnivores (Cusack et 

al. 2015, Doran-myers et al. 2021, Loonam et al. 2021, Ausband et al. 2022) and herbivore prey 

species (Rowcliffe et al. 2008, Moeller et al. 2018, Morelle et al. 2020, Palencia et al. 2021) 

across diverse ecosystems. While the number of tests and validations of these models are 

growing, they are still relatively new and make some common, challenging assumptions about 

sampling designs and statistical analyses (Table 1-1) that may limit their feasibility for monitoring 

tiger prey. For instance, viewshed density estimators assume that (1) animals move independent 

of the camera viewsheds, and (2) that these viewsheds are representative of the physical 

characteristics of the study area that likely affect both animal movement and density. This 

requires researchers to implement some form of randomized or systematic sampling design, 

which translates to much greater effort than setting up cameras on roads and trails for tiger 
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density monitoring (see Chapter 2 of this thesis). Most of the published estimates of these models 

also had poor precision, and the large number of cameras needed to achieve desired precision may 

be prohibitive (Morin et al. 2022). Moreover, none of these models have been published as a 

reliable and practical means to monitor densities of prey for tiger conservation.  

 To address this question of whether cameras can be used to monitor prey of tigers, we 

deployed cameras under a systematic random sampling design over two winters (2019-20 and 

2020-21) to estimate densities of the four main prey species of the Amur tiger in the Russian Far 

East (Miquelle et al. 1996, 2010, Kerley et al. 2015): wild boar (Sus scrofa ussuricus), red deer 

(Cervus canadensis ssp. xanthopygus), roe deer (Capreolus pygargus), and sika deer (Cervus 

nippon). First, we conducted winter track surveys using both conventional and representative 

survey designs to estimate prey densities using the FMP method. We then compared these to 

estimates from three viewshed density estimators: the REM, STE, and TTE models. Finally, we 

followed Riley et al. (2017) and evaluated the statistical, logistical, and cost considerations of 

each model. As an important part of this assessment, we simulated the number of cameras needed 

to achieve a 20% coefficient of variation (CV) for different levels of prey densities in our study 

area (a goal set for this study area by Stephens et al. (2006b)). This allowed us to thoroughly 

evaluate each estimator’s potential to monitor prey in the Russian Far East.   

2  |  MATERIALS AND METHODS 
 
2.1 Study Area 
 
This study took place in the 4,016 km2 Sikhote-Alin Biosphere Zapovednik (“Zapovednik”), 

Primorskyi Krai, Russia. Zapovedniks are a unique type of nature preserve in which entry is 

restricted to only Zapovednik staff and permitted researchers. The Sikhote-Alin Biosphere 

Zapovednik is named after the Sikhote-Alin Mountains, a low-elevation range running northeast 



 

 

 

11 

through the preserve. Summers in the Zapovednik are hot and wet, while winters are relatively 

cold and dry. The reserve is mostly forested, with coastal Mongolian oak (Quercus mongolica) 

and mixed hardwood forests transitioning to mixed forests of Korean pine (Pinus koreansis) 

further inland. These forest transitions result in important spatial variation in mast crop 

availability for wildlife, as acorns and pine nuts are dominant sources of food for much of the 

community (Heptner et al. 1988). Our study took place in a 527 km2 area within the Zapovednik 

and south of the Dalnyi range, which separates the Serebryanka river basin to the north from the 

Golubichnoe and Djigitovka drainages to the south (Figure 1-1).  

 The ungulate community in our study area is made up of six species: the four main prey 

species mentioned above, along with the smaller and rarer goral (Naemorhedus caudatus) and 

musk deer (Moschus moschiferus). Sika deer are only common along the coast of the Zapovednik, 

though their range is expanding and they seem to exclude red deer (Stephens et al. 2006a). Amur 

tigers are the dominant predator in the community, often excluding wolves (Canis lupus) from 

their territory (Miquelle et al. 2005). Brown bears (Ursus arctos) and Himalayan black bears 

(Ursus thibetanus) forage on the same mast crops as ungulates, and tigers will sometimes prey on 

these bear species as well (Miquelle et al. 1996).  

 
2.2 Formozov-Malyushev-Pereleshin (FMP) density estimation 
 
The FMP method has been the standard for wildlife surveys throughout Russia for decades, 

including our study area (Formozov 1932, Chelintsev 1995, Lomanov 2000, Stephens et al. 

2006a). The FMP method estimates density by relating the encounter rate of fresh (<24h old) 

tracks observed along walked/skied transects with independent estimates of the study species’ 

daily travel distance. In the FMP formula, the density D of a population is estimated by: 
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!	 = 	$2 	
&
'	() 					(Equation	1) 

Where x is the total number of tracks encountered, S is the total length of all transects, and ()  is 

the study species’ daily travel distance. The term 
!
" relates the species’ daily travel distance to the 

probability of encountering a track along the surveyed transects, integrated over all possible 

angles of intersection between animal’s movement paths and the transects (Stephens et al. 2006b). 

The FMP method assumes: (1) geographic and demographic closure; (2) the age of species’ tracks 

is identified without error; (3) animals move independent of transects; and (4) transects are 

representative of the study area (Table 1-1). Historically, the Zapovednik has conducted surveys 

only along roads and trails due to limitations of staff and resources. However, this is a violation of 

assumptions (3) and (4) above (Stephens et al. 2006a). We therefore estimated density of prey 

species first with the conventional survey routes along roads and trails (“conventional surveys”), 

and second, with survey routes representative of the study area and independent of animal 

movement (“random surveys”). These random surveys were not laid out in a truly random fashion 

but were designed to be distributed across the entire study area, accessible, and representative of 

the slopes, elevations, and aspects of the study area. Random surveys were conducted as close in 

time to the conventional surveys as possible (Table 1-2).  

 For each survey, teams of two surveyors walked, skied, or snowmobiled transects and 

recorded the number of fresh tracks of wild boar, red deer, roe deer, and sika deer. All tracks 

(including re-crossings of the same individual) were counted (Keeping and Pelletier 2014). To 

inform the daily travel distance parameter, we used estimates and associated error from Stephens 

et al. (2006a) for the three deer species. For wild boar, we estimated daily travel distance and 

variance by analyzing fine-scale (15-minute fixes) GPS relocation data from collared wild boar in 

the same study area (Appendix 1B). We used nonparametric bootstrapping (Efron and Tibshirani 
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1993) to estimate 95% confidence intervals of each density estimate. First, encounter rates (x/S) 

were sampled with replacement 5,000 times from the data, along with a daily travel distance (M) 

drawn from values reported by Stephens et al. (2006a) and our wild boar estimates. These 

parameter values were used for 5,000 estimates of density from which final 95% confidence 

intervals and coefficients of variation (CVs) were generated (Efron and Tibshirani 1993, Stephens 

et al. 2006b).  

 
2.3 Random Encounter Model (REM) 
 
The REM was first proposed by Rowcliffe et al. (2008) to estimate the density of wildlife 

populations using cameras for species whose individuals cannot be uniquely identified. The REM 

was derived from both ideal gas theory (Hutchinson and Waser 2007) to describe animal 

movements and from the FMP formula (Stephens et al. 2006b) to relate animal movement to the 

probability of being detected by cameras. Rowcliffe et al. (2008) derived the following equation 

to estimate density D:  

! =	56 	
$

78(2 + :)				(Equation	2) 

Where y is the number of independent detections of the individuals, v is the average daily travel 

distance of the animal, t is the total number of days that cameras were deployed, and r and : are 

the average radius and angle of the sampled area in front of the cameras. The REM uses the 

sampled area in front of cameras both as a component of survey effort, as well as to relate the 

study species’ speed to the probability of being detected within a camera’s sampled area. If 

surveys are conducted on a line and theta	(:) is therefore zero, and if the radius of the camera (r) 

is replaced by the total length of all transects (S in Equation 1), then Equation 2 matches exactly 

the FMP formula (Rowcliffe et al. 2008). The assumptions of the REM are similar to those of the 
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FMP: (1) geographic and demographic closure; (2) the ideal gas model accurately describes the 

movement of the study species and results in a Poisson distribution of animals across the study 

area (Hutchinson and Waser 2007); (3) detections y of animals are independent; (4) animals move 

independently of camera traps; and (5) cameras are representative of the study frame (Table 1-1).  

We considered detections of individuals of the same species 30-minutes apart to be 

independent. Speed estimates were derived as for the FMP. We used 5,000 iterations of non-

parametric bootstrapping of both the encounter rate 
#!
$!

 of each camera i, and the daily travel 

distance v to generate a bootstrapped distribution of density estimates. This distribution gave us 

point estimates of density, 95% confidence intervals, and coefficients of variation. 

 
2.4 Space-To-Event (STE) Model 
 
Rather than using the number of independent detections of animals as a parameter in the 

estimator, the Space-To-Event (STE) model makes use of the relationship between the 

exponential and Poisson distributions to estimate their shared rate parameter, lambda (;), which 

is the average number of animals per unit area. If animals are assumed to be Poisson-distributed 

across the study area, then the amount of sampled area, S, until a detection will be exponentially 

distributed (Moeller et al. 2018): 

'	~	=&>(;)				(Equation	3) 

 The sampled areas in front of the cameras are selected in random order until a detection (i.e., 

“Space-To-Event”) at regular intervals of time (“occasions”). With many occasions, these 

observed spaces-to-event form an exponential distribution from which lambda and associated 

variance are estimated by maximum likelihood estimation. If there are no animal detections at any 

camera during an occasion, then that occasion is right-censored. So long as these measurements 

of space-to-event are instantaneous in time, the STE model estimates density independent of 
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animal movement rate. The STE model also does not require counts or independent estimates of 

group size given the time-to-event framework of the estimator (Moeller et al. 2018, Moeller and 

Lukacs 2021). The STE model assumes: (1) geographic and demographic closure; (2) detections 

of animals at occasions are independent; (3) animals are Poisson-distributed across the cameras’ 

sampled areas; (4) animals move independently of camera traps; and (5) cameras are 

representative of the study area. 

 The STE was initially designed to estimate density using time-lapse photography (Moeller 

et al. 2018). However, because of our expected low densities of prey, our camera data was 

collected using motion-trigger photography, which meant there were times when an animal was 

present in front of a camera, but not detected. We therefore estimated the average number of 

seconds between images where the animal was most likely to still be in front of the camera 

(following Becker et al. 2021), then used this as our sampling window. If this still resulted in zero 

detections across the spaces-to-event, we then increased the window to 60 seconds (Table 1-3). 

We used 15-minute occasions to balance precision and the assumption of independence of each 

measured space-to-event. The approach we used to determine the sampling window violates the 

assumption of instantaneous sampling (Moeller et al. 2018), but was necessary to obtain at least 

one detection used in the measured spaces-to-event to estimate density. To better understand the 

consequences of increasing the sampling window length, we next estimated densities with 

increasing sampling window lengths (1-60 seconds) and occasion lengths (1.5, 5, 10, and 15 

minutes). Variances in the density estimates were produced using the delta method, from which 

we obtained 95% confidence intervals and coefficients of variation. 

 
2.5 Time-To-Event (TTE) Model 
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The concept of the TTE model is like the STE model, relying on the same Poisson-exponential 

relationship to estimate lambda. Instead of instantaneously sampling across all cameras in the 

study area on each occasion, the TTE model samples space at each individual camera during 

shorter, regular intervals of time (“periods”) within each occasion. If the length of these periods is 

only long enough for animals to cross the viewshed of the camera, then the number of periods 

(i.e., the amount of sampled space at one camera across time) until a detection will be 

exponentially distributed (Moeller et al. 2018): 

@	~	=&>(;)				(Equation	4) 

Lambda, the average number of animals in a camera’s sampled area, is estimated with the 

exponential likelihood from the observed times-to-event of the species of interest at each camera. 

The TTE model makes the same assumptions as the STE model: (1) geographic and demographic 

closure; (2) detections of animals in each occasion are independent; (3) animals are Poisson-

distributed across the cameras’ viewsheds; (4) animals move independently of camera traps; (5) 

cameras are representative of the study area. Unlike the STE model, the TTE requires estimates of 

animal movement rate to determine the period length.  

 
2.6 Camera trap study design 
 
The REM, STE and TTE models all share the assumptions that animals move independently of 

cameras and that cameras are representative of the study area. To best meet these assumptions, we 

used a systematic random sampling design for camera locations (Figure 1-1). First, a rectangular 

3.5 × 3.5 km grid was drawn over our study area. This cell size is roughly the average area of a 

female red deer’s home range (Dou et al. 2019). We randomly generated one camera location in 

each cell, then excluded cameras that were not within the bounds of our study area. This allowed 

us to objectively include or exclude cameras in cells that were only partially included in the study 
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area. Different locations were generated for the 2019-20 and 2020-21 winter seasons. Because of 

the remoteness of much of the western part of the area, a few cameras’ locations were adjusted to 

be more easily accessed, while maintaining the random location’s forest type, elevation, and 

aspect.   

Cameras were deployed as close to the randomly generated coordinate as possible, while 

also selecting camera sites that would have minimal obstructions (e.g., dense shrubs, cliffs, dense 

trees) within the cameras’ viewsheds. Because of resource constraints, whenever cameras used for 

monitoring tigers by the Zapovednik were inside a grid cell, we placed a camera roughly 150 m 

away from that tiger camera and considered that camera as the random camera for that cell (see 

Chapter 2). Cameras were placed 1 – 1.5 m above the ground, facing north to minimize glare 

from the sun, and were active 24 hours per day. Whenever the camera site was on a slope, the 

camera was positioned such that its horizontal field of view was in-line with the slope to 

minimize reductions in detection area (Moeller et al. 2018; Appendix 1A, Figure A3). Camera 

settings were configured to take bursts of three photos at each capture with no delay to best 

approximate continuous sampling. No baits or lures were used.  

All camera density estimators require measurements of the camera viewshed to 

extrapolate detections to space. In this study, we used two different measurement techniques to 

measure camera sampled area (Appendix 1A). For winter 2019-20, we performed extensive walk 

tests to determine detection distance and angle of each camera. In winter 2020-21, we measured 

the viewable area in front of each camera, constrained by the maximum detection distance.  

 
2.7 Methods comparison 
 
To fully assess the potential of the above estimators for monitoring tiger prey, we developed a 

ranking system following Riley et al. (2017) based on i) statistical, ii) logistical, and iii) cost 
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categories. For each of these three categories, we developed criteria to compare either each 

estimator or each class of estimator. Each criterion was developed to score estimators relative to 

one another, with 1 being the best score and 4 being the worst. A brief description of each 

criterion is provided in Table 1-3, and the details of how we scored each estimator for each 

criterion are provided in Appendix 1C.  

 
2.8 Data processing and analysis 
 
 Estimates of density were performed using the R programming language in R Studio (R Core 

Team 2022). After we classified camera trap images, we converted them to detection data in R 

using the camtrapR package (Neidballa et al. 2016). To determine our study period, we chose a 

60-day window when detections of each prey species were most consistent over time, and thus 

best met the assumptions of the viewshed density estimators. We adapted previously developed R 

code for REM and FMP density estimates. For STE and TTE estimates, we used the spaceNtime 

package (Moeller and Lukacs 2021). 

 

3  |  RESULTS 
 
3.1 Surveys  
 
 We conducted 103 km of conventional winter track surveys in winter 2019-20 and 117 km of 

surveys during the winter 2020-21. We conducted 64 km of random track surveys in winter 2019-

20 (Figure 1-1). However, because of the COVID-19 pandemic, we were unable to conduct 

random surveys in winter 2020-21. Thus, the comparison of conventional and random survey 

routes was only possible during winter 2019-20. 

  We deployed 50 camera traps in winter 2019-20 and 57 cameras in winter 2020-21. Five 

cameras malfunctioned in winter 2019-20, and seven malfunctioned in winter 2020-21, resulting 
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in data from 45 cameras (2,743 trap nights across 60 days, February 01, 2020 to April 01, 2020) 

and 50 cameras (3,098 trap nights across 60 days: December 10, 2020 to February 10, 2021), 

respectfully (Table 1-2; Figure 1-1). We used a variety of camera brands and models in winter 

2019-20, but only two models during winter 2020-21 (Table 1-2). 

 
3.2 Prey density estimates 
 
We developed a total of 36 estimates of density across species, years, and methods (Figure 1-2, 

Table 1-4). Across all estimators, STE and FMP estimates from random surveys were the most 

similar during 2019-20 (Figure 1-2). Among viewshed density estimators, the STE and REM 

were more similar than the TTE. Conventional snow track surveys estimated higher densities than 

the random surveys in 2019-20, but to varying degrees for each species.  

  Precision varied among species and estimators (Figure 1-2; Table 1-4). The TTE was the 

most precise for all species and across seasons (average coefficient of variation 21%). The STE 

estimated relatively low coefficients of variation (average 29%) for high-density species such as 

wild boar in 2019-20 but had the largest values for low-density species like roe deer and wild boar 

in 2020-21 (average CV of 99%). The conventional snow track surveys estimated slightly better 

average precision than the random surveys (average coefficient of variation 39% vs. 47% in 

winter 2019-20), though wild boar and sika deer estimates were considerably more precise for 

random surveys (Figure 1-2). 

 
3.3 Methods comparison 
 
In our assessment of the statistical, logistical, and cost constraints of each estimator, FMP surveys 

consistently scored better than the viewshed density estimators (Table 1-5). We only included 

random FMP surveys in the comparison because of the bias we found in conventional surveys 
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(Figure 1-2). The FMP scored well because it was a simple model to implement and did not 

require any specialty equipment (i.e., cameras). The FMP’s weakest score was in logistics, as 

planning for FMP surveys was dependent on appropriate snow and weather conditions.  

Among camera-based estimators, the STE and TTE scored identically. The STE scores 

were reduced because it did not require independent estimates of movement, which can be costly 

to derive. While the TTE had more sources of bias and required estimates of animal movement, it 

was considerably more precise than the other estimators. This meant that less cameras were 

necessary to achieve the desired 20% coefficient of variation, which reduced start-up costs and 

time spent processing and analyzing data. Even so, start-up costs to achieve 20% CV for medium-

density populations (0.7 km-2) were high for all camera estimators, with $16,920 being the 

cheapest cost for the TTE. The STE, which scored better in other categories, would require 

$27,020 to purchase 120 cameras, memory cards, and sufficient batteries (Table 1-5). 

4  |  DISCUSSION  

Prey depletion remains a pressing global threat faced by carnivores (Wolf and Ripple 2016). As 

conservationists work to recover prey populations, estimates of prey densities are an invaluable 

metric to assess the success of conservation actions (Williams et al. 2002, Nichols and Williams 

2006, Karanth et al. 2017). To test whether camera traps offer a viable tool to monitor densities of 

ungulate prey in the Russian Far East, we applied the REM, STE, and TTE viewshed density 

estimators and compared them with independent estimates from the FMP snow tracking method. 

Estimates from the STE and FMP estimates from random surveys provided consistently similar 

results across species during the 2019-20 winter (Figure 1-3). The STE was also consistent across 

years for all species except for wild boar, as expected (Figure 1-3; discussed below). Other 

authors have found support for the STE for other species such as large herbivores (Moeller et al. 
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2018) and carnivores (Loonam et al. 2021, Ausband et al. 2022) in Idaho, USA. Among viewshed 

density estimators, the STE also scored well compared to other camera-based estimators 

according to our rubric (Table 1-5), largely because it does not require an estimate of animal 

movement (Appendix 1C). These results provide the most support for the STE model.  

 Despite the consistency between the STE and FMP, there are challenges when applying 

the STE to motion-trigger data. STE estimates are sensitive to the chosen sampling window 

length (Figure 1-4; Loonam et al. 2021a), and it remains unclear how best to choose a specific 

sampling window length when analyzing motion-trigger data. Motion-trigger cameras do not 

perfectly detect all animals that pass through their detection zone at every second, as we saw in 

our own data. This translates to non-continuous sampling of the collective camera viewsheds, and 

therefore occasions when there really is an animal within a viewshed when estimating space-to-

event, but no image of that animal at that exact second. When we used a one-second sampling 

window, density estimates were very low or simply not estimable because there were no 

detections (Figure 1-4). This was a result of both the low density of that population and the 

negative bias caused by non-continuous sampling. Increasing the sampling window eventually 

provided a detection with which to measure space-to-event. Both Loonam et al. (2021a) and 

Ausband et al. (2022) also increased their sampling windows beyond one second, but it is unclear 

why they chose their respective sampling window lengths. When we used the average number of 

seconds between frames of the same capture sequence as our sampling window, following Becker 

et al. (2022)’s technique, we obtained at least one detection for only three of our eight STE 

estimates (Table 1-3). We then used a 60-second sampling window and obtained estimates, but 

this decision was arbitrary and violated the assumption of instantaneous sampling (Moeller et al. 

2018). This sampling window and non-continuous sampling issue suggests three conclusions 
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about the STE. First, if possible, managers should use time-lapse photography when applying the 

STE to avoid the issues caused by imperfect detection (Moeller and Lukacs 2021). This will only 

be possible if the cameras have time-lapse capabilities, if the study species is at a sufficiently high 

density, and/or if the managers have enough cameras to obtain at least one detection. Second, the 

STE may only be reasonably applied to animal populations of sufficiently high density. At a 

certain low population density, the STE is simply not estimable without increasing the sampling 

window length by an arbitrary amount, which compromises the reliability of the estimate. Third, 

if researchers use motion-trigger data, they should be cautious when applying the STE. Detection 

data should be examined to determine how frequently instances occur where an animal is likely 

within the viewshed but not detected by cameras. Our adopted approach from Becker et al. (2022) 

provides a reasonable way to choose a sampling window length, but only if there are sufficient 

detections. More work is needed to determine how best to apply the STE to motion-trigger data, 

and the authors are collaborating with other researchers on this challenge. 

An additional challenge with the STE is its relatively poor precision. If Russian wildlife 

managers wish to achieve at least 20% CV in annual estimates of density using the STE, our 

simulations indicated that they would need to deploy considerably more cameras than we did in 

this study (Figure 1-3). For most conservation programs in Russia and across tiger range, resource 

and time constraints make this precision goal in annual estimates infeasible for all except the 

highest prey population densities. When auxiliary movement data is available, the TTE provides 

an alternative model with relatively high precision (Table 1-5). However, we found estimates 

were consistently higher than other estimates (Figure 1-2). Santini et al. (2022) also found the 

TTE to overestimate densities when tested against more realistic simulations of animal 

movement. The TTE is more precise than other viewshed density estimators largely because of its 
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stricter assumptions about animal movement, rooted in the static period length used to estimate 

time-to-event. Because the movements of our study species are variable during the winter 

(Stephens et al. 2006b; Appendix 1B), the inflexibility of the period length in the TTE in its 

current form was likely the cause of bias in our estimates.  

Camera-based approaches are limited by start-up costs, demands for field staff, and the 

image processing necessary to the desired level of precision in our study area. This limits the 

applicability of such approaches to organizations with substantial resources. In contrast, the FMP 

model provided levels of precision similar to the camera-based estimators at much lower cost. 

This is consistent with Keeping et al.’s (2018) findings that FMP surveys in the Kalahari desert 

offered a cost-effective alternative to aerial surveys for community-level monitoring. However, 

when tracks are recorded in snow, the logistics of planning sufficient surveys in a short period of 

time (i.e., when tracks are still present and identifiable) are a major limitation. In our case, we had 

to re-schedule surveys multiple times because of changing snow conditions. Moreover, while 

linear trends since 1966 suggest the Russian Far East may see increased snow precipitation in the 

coming decades (Bulygina et al. 2011), the latest predictions in the sixth assessment report by the 

Intergovernmental Panel on Climate Change clearly indicate significant warming in this region in 

the near future (IPCC 2022). Even if there is more snow precipitation in the Far East, these 

warming temperatures will make snow conditions challenging for accurately identifying track 

age. Still, the FMP method is statistically well-supported (Stephens et al. 2006b, Jousimo and 

Ovaskainen 2016, Keeping et al. 2018), and FMP density estimates were consistent with 

viewshed density estimators generally (Figure 1-2).  

Our results support the FMP method as a reliable tool to monitor densities of unmarked 

wildlife populations for researchers and managers with limited resources and in snow-covered 
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environments. But this is only if the assumption of representative sampling of the landscape is 

met. Our FMP estimates from surveys along roads and trails were consistently higher than our 

representative surveys (Figure 1-2). These roads and trails were typically along rivers and creeks 

and avoided high elevations with more snow. Hebblewhite et al. (2014) found all four prey 

species selected habitats with the same characteristics as these roads and trails at the scale of 

second-order selection (Johnson 1980). At finer scales, prey species may select the roads and 

trails themselves for their ease of travel. For instance, herds of sika deer seem to prefer using 

established game trails to travel in the winter (Zapovednik staff, pers comm). This behavior led to 

greater track counts and therefore higher density estimates. Conducting representative surveys is 

arduous work, but we strongly recommend this as an essential part of study design if density 

estimates are to be an unbiased representation of the entire study area. 

Many researchers do not work in snow-covered environments, and as such are still 

searching for camera-based solutions to unmarked population monitoring. All viewshed density 

estimators are limited by the strict assumption of random sampling and need for a large number of 

cameras to achieve better precision. There are two important areas of development that could 

improve the precision of the STE and all other camera-based estimators. First, repeated estimates 

over time can be used to increase overall precision in population trend. Integrated population 

models (IPMs) combine abundance or count data over time with other sources of information on 

demographic parameters to improve the precision of estimates (Schaub et al. 2007, Schaub and 

Abadi 2011). The inclusion of spatial covariates could improve the precision of density estimates 

as well. For example, Allen et al. (2008) found that by stratifying aerial surveys according to 

different bins from resource selection function models, they improved both precision of elk 

(Cervus canadensis) abundance estimates and design efficiency. In our case, we struggled to 
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obtain precise estimates for sika deer, both in our real data (Table 1-4) and simulation extensions. 

Sika deer are mostly concentrated near the coast in our study area, so our detection data varied 

considerably across the whole study area. A simple categorical covariate for coastal oak would 

explain a lot of the variation in our detections of sika deer across cameras and therefore improve 

the precision of density estimates.    

Even with poor precision, we demonstrated that the estimators tested here are all capable 

of detecting dramatic changes in abundance. We detected a 95% decline (averaged across 

estimators) in wild boar densities (Figure 1-2), even though CVs of estimates in winter 2020-21 

were over 100% for some models (Table 1-4). Our study was concurrent with the arrival of 

African Swine Fever (ASF) in our study area in 2020 (Zakharova et al. 2021), so this decline was 

not surprising. These are the first estimates of the population-level consequences of ASF infection 

in Russia. This level of decline aligns well with that observed by Morelle et al. (2020), who 

detected a 95% decline in wild boar densities in two forests in and near Biolowiecza Primordial 

Forest, Poland. Our estimates can be used as a reference when wildlife managers consider the 

consequences of ASF spread into currently uninfected populations. 

 
5  |  CONCLUSION 
 
Twelve years after the World Tiger Summit, and with the second summit planned for this year, 

most countries still have not established reliable prey monitoring programs. Here, we tested three 

viewshed density estimators against independent estimates from snow track surveys and assessed 

each estimator’s potential to serve as a tool for monitoring densities of large herbivore prey. 

While precision was generally poor, estimates of densities were mostly consistent and, 

importantly, all estimators detected a real, dramatic decline in wild boar densities. The 

consistency of estimates both over time and with our random snow track surveys suggest that 
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these models can provide unbiased estimates of density. With more development, such as the 

inclusion of spatial covariates and consistent monitoring over time, the precision of density 

estimates can be improved. Even so, the strict assumptions of all models that cameras 

representatively sample the study area remain restrictive. This is especially challenging because 

of the rugged terrain in much of tiger habitat and low densities of wary prey. In the next chapter, 

we assessed the importance of this assumption by comparing detections of ungulate prey at 

cameras placed randomly or on roads. We also tested an alternative deployment strategy that 

aimed to balance the need for random sampling with its logistical constraints.    

6  |  LITERATURE CITED 

Ahlswede, S., E. C. Fabiano, D. Keeping, and K. Birkhofer. 2019. Using the Formozov–

Malyshev–Pereleshin formula to convert mammal spoor counts into density estimates for 

long-term community-level monitoring. African Journal of Ecology 57:177–189. 

Allen, J. R., L. E. Mcinenly, E. H. Merrill, and M. S. Boyce. 2008. Using Resource Selection 

Functions to Improve Estimation of Elk Population Numbers. Journal of Wildlife 

Management 72:1798–1804. 

Aryal, A., R. P. Lamsal, W. Ji, and D. Raubenheimer. 2016. Are there sufficient prey and 

protected areas in Nepal to sustain an increasing tiger population? Ethology Ecology and 

Evolution 28:117–120. 

Ausband, D. E., P. M. Lukacs, M. Hurley, S. Roberts, K. Strickfaden, and A. K. Moeller. 2022. 

Estimating wolf abundance from cameras. Ecosphere 13. 

Bulygina, O. N., P. Y. Groisman, V. N. Razuvaev, and N. N. Korshunova. 2011. Changes in snow 

cover characteristics over Northern Eurasia since 1966. Environmental Research Letters 6. 



 

 

 

27 

Chauvenet, A. L. M., R. M. A. Gill, G. C. Smith, A. I. Ward, and G. Massei. 2017. Quantifying 

the bias in density estimated from distance sampling and camera trapping of unmarked 

individuals. Ecological Modelling 350:79–86. 

Chelintsev, N. G. 1995. Mathematical principles of winter censuses of mammals. Byull. Mosk. 

Ova. Ispyt. Prir. 100:3–19. 

Cusack, J. J., A. Swanson, T. Coulson, C. Packer, C. Carbone, A. J. Dickman, M. Kosmala, C. 

Lintott, and J. M. Rowcliffe. 2015. Applying a random encounter model to estimate lion 

density from camera traps in Serengeti National Park, Tanzania. Journal of Wildlife 

Management 79:1014–1021. 

Dinerstein, E., C. Loucks, E. Wikramanayake, J. Ginsberg, E. Sanderson, J. Seidensticker, J. 

Forrest, G. Bryja, A. Heydlauff, S. Klenzendorf, P. Leimgruber, J. Mills, T. G. O’Brien, M. 

Shrestha, R. Simons, and M. Songer. 2007. The fate of wild tigers. BioScience 57:508–514. 

Doran-myers, D., A. J. Kenney, C. J. Krebs, C. T. Lamb, A. K. Menzies, D. Murray, E. K. Studd, 

J. Whittington, and S. Boutin. 2021. Density estimates for Canada lynx vary among 

estimation methods. 

Duangchantrasiri, S., M. Umponjan, S. Simcharoen, A. Pattanavibool, S. Chaiwattana, S. 

Maneerat, N. S. Kumar, D. Jathanna, A. Srivathsa, and K. U. Karanth. 2016. Dynamics of a 

low-density tiger population in Southeast Asia in the context of improved law enforcement. 

Conservation Biology 30:639–648. 

Efford, M. G., D. L. Borchers, and A. E. Byrom. 2009. Density estimation by spatially explicit 

capture-recapture: likelihood-based methods. Modeling demographic processes in marked 

populations:255–269. 



 

 

 

28 

Efron, B., and R. J. Tibshirani. 1993. An introduction to the Bootstrap. Chapman & Hall, New 

York. 

Formozov, A. N. 1932. Formula for quantitative censusing of mammals by tracks. Russ. J. Zool. 

11:66–69. 

Fuller, T. K., and P. R. Sievert. 2001. Carnivore demography and the consequences of changes in 

prey availability. Pages 163–178 in J. L. Gittleman, S. M. Funk, D. W. MacDonald, and R. 

K. Wayne, editors. Carnivore Conservation. Cambridge University Press. 

Gilbert, N. A., J. D. J. Clare, J. L. Stenglein, and B. Zuckerberg. 2020, February 1. Abundance 

estimation of unmarked animals based on camera-trap data. Blackwell Publishing Inc. 

Global Tiger Initiative. 2010. Global Tiger Recovery Program 2010–2022. Page Conference 

Document for Endorsement. 

Graham, K., A. P. Beckerman, and S. Thirgood. 2005. Human-predator-prey conflicts: Ecological 

correlates, prey losses and patterns of management. Biological Conservation 122:159–171. 

Gray, T. N. E. 2018. Monitoring tropical forest ungulates using camera-trap data. Journal of 

Zoology 305:173–179. 

Harihar, A., B. Pandav, M. Ghosh-Harihar, and J. Goodrich. 2020. Demographic and ecological 

correlates of a recovering tiger (Panthera tigris) population: Lessons learnt from 13-years of 

monitoring. Biological Conservation 252. 

Harihar, A., B. Pandav, and D. C. Macmillan. 2014. Identifying realistic recovery targets and 

conservation actions for tigers in a human-dominated landscape using spatially explicit 

densities of wild prey and their determinants. Diversity and Distributions 20:567–578. 

Hebblewhite, M., D. G. Miquelle, H. Robinson, D. G. Pikunov, Y. M. Dunishenko, V. V. 

Aramilev, I. G. Nikolaev, G. P. Salkina, I. V. Seryodkin, V. V. Gaponov, M. N. Litvinov, A. 



 

 

 

29 

V. Kostyria, P. V. Fomenko, and A. A. Murzin. 2014. Including biotic interactions with 

ungulate prey and humans improves habitat conservation modeling for endangered Amur 

tigers in the Russian Far East. Biological Conservation 178:50–64. 

Hebblewhite, M., and M. S. Mitchell. 2013. Carnivore habitat ecology: integrating theory and 

application. Pages 218–255 in L. Boitani and R. A. Powell, editors. Carnivore Ecology and 

Conservation: A Handbook of Techniques. Oxford Scholarship Online. 

Heptner, V. G., A. A. Nasimovich, and A. G. Bannikov. 1988. Mammals of the Soviet Union: 

Volume 1. Smithsonian Institution, Washington D.C. 

Howe, E. J., S. T. Buckland, M. L. Després-Einspenner, and H. S. Kühl. 2017. Distance sampling 

with camera traps. Methods in Ecology and Evolution 8:1558–1565. 

Hutchinson, J. M. C., and P. M. Waser. 2007, August. Use, misuse and extensions of “ideal gas” 

models of animal encounter. 

IPCC. 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Page (D. C. R. M. T. 

E. S. P. K. M. A. A. M. C. S. L. S. L. V. M. A. O. B. R. (eds. )] Contribution of Working 

Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 

[H.-O. Pörtner, Ed.). Cambridge University Press. 

Jhala, Y. V., Q. Qureshi, and A. K. Nayak. 2020. Status of tigers, copredators, & prey in India, 

2018. New Dehli. 

Jiayin, G. U., Y. U. Lan, Y. Hua, Y. Ning, B. Heng, Q. I. Jinzhe, Z. Long, M. Yao, C. Huang, L. I. 

Zhilin, J. Lang, G. Jiang, and M. A. Jianzhang. 2018. A comparison of food habits and prey 

preferences of Amur tiger (Panthera tigris altaica) at the southwest Primorskii Krai in Russia 

and Hunchun in China. Integrative Zoology 13:595–603. 



 

 

 

30 

Johnson, D.H. 1980. The Comparison of Usage and Availability Measurements for Evaluating 

Resource Preference. Ecology 61: 65-71. 

Jornburom, P., S. Duangchantrasiri, S. Jinamoy, A. Pattanavibool, J. E. Hines, T. W. Arnold, J. 

Fieberg, and J. L. D. Smith. 2020. Habitat use by tiger prey in Thailand’s Western Forest 

Complex: What will it take to fill a half-full tiger landscape? Journal for Nature Conservation 

58. 

Jousimo, J., and O. Ovaskainen. 2016. A spatioorally explicit random encounter model for large-

scale population surveys. PLoS ONE 11. 

Kafley, H., B. R. Lamichhane, R. Maharjan, B. Thapaliya, N. Bhattarai, M. Khadka, and M. E. 

Gompper. 2019. Estimating prey abundance and distribution from camera trap data using 

binomial mixture models. European Journal of Wildlife Research 65. 

Karanth, K. U. 1995. Estimating tiger Panthera tigris populations from camera-trap data using 

capture-recapture models. Biological Conservation 71:333–338. 

Karanth, K. U., N. S. Kumar, and K. K. Karanth. 2020. Tigers against the odds: Applying macro-

ecology to species recovery in India. Biological Conservation 252:108846. 

Karanth, K. U., J. D. Nichols, N. S. Kumar, W. A. Link, and J. E. Hines. 2004. Tigers and their 

prey: Predicting carnivore densities from prey abundance. Proceedings of the National 

Academy of Sciences of the United States of America 101:4854–4858. 

Karanth, K. U., and James. D. Nichols. 2002. Monitoring tigers and their prey: A manual for 

wildlife researchers, managers and conservationists in tropical Asia. Centre for Wildlife 

Studies, Bangalore, India. 

Karanth, U. K., J. D. Nichols, J. M. Goodrich, G. V. Reddy, V. B. Mathur, H. T. Wibisono, S. 

Sunarto, A. Pattanavibool, and M. T. Gumal. 2017. Role of Monitoring in Global Tiger 



 

 

 

31 

Conservation. Pages 1–13 in K. Karanth and J. Nichols, editors. Methods for Monitoring 

Tiger and Prey Populations. Springer, Singapore. 

Kawanishi, K., G. R. Clements, M. Gumal, G. Goldthorpe, M. N. Yasak, and D. S. K. Sharma. 

2013. Using BAD for good: How best available data facilitated a precautionary policy 

change to improve protection of the prey of the tiger Panthera tigris in Malaysia. ORYX 

47:420–426. 

Keeping, D., J. H. Burger, A. O. Keitsile, M. C. Gielen, E. Mudongo, M. Wallgren, C. Skarpe, 

and A. L. Foote. 2018. Can trackers count free-ranging wildlife as effectively and efficiently 

as conventional aerial survey and distance sampling? Implications for citizen science in the 

Kalahari, Botswana. Biological Conservation 223:156–169. 

Keeping, D., and R. Pelletier. 2014. Animal density and track counts: Understanding the nature of 

observations based on animal movements. PLoS ONE 9:1–11. 

Kerley, L. L., A. S. Mukhacheva, D. S. Matyukhina, E. Salmanova, G. P. Salkina, and D. G. 

Miquelle. 2015. A comparison of food habits and prey preference of Amur tiger (Panthera 

tigris altaica) at three sites in the Russian Far East. Integrative Zoology 10:354–364. 

Kery, M., and J. A. Royle. 2015. Applied Hierarchical Modeling in Ecology: Analysis of 

distribution, abundance and species richness in R and BUGS: Volume 1: Prelude and Static 

Models. Academic Press. Elsevier Science. 

Lomanov, I. K. 2000. Winter transect count of game animals for large territories: Results and 

prospects. Zoologicheskii Zhurnal. 

Loonam, K. E., D. E. Ausband, P. M. Lukacs, M. S. Mitchell, and H. S. Robinson. 2021. 

Estimating Abundance of an Unmarked, Low-Density Species using Cameras. Journal of 

Wildlife Management 85:87–96. 



 

 

 

32 

Lubis, M. I., W. Pusparini, S. A. Prabowo, W. Marthy, Tarmizi, N. Andayani, and M. Linkie. 

2020. Unraveling the complexity of human–tiger conflicts in the Leuser Ecosystem, Sumatra. 

Animal Conservation 23:741–749. 

Massei, G., J. Coats, M. S. Lambert, S. Pietravalle, R. Gill, and D. Cowan. 2017. Camera traps 

and activity signs to estimate wild boar density and derive abundance indices. Pest 

Management Science 74:853–860. 

Miquelle, D. G., J. M. Goodrich, E. N. Smirnov, P. A. Stephens, O. Y. Zaumyslova, G. Chapron, 

L. Kerley, A. A. Murzin, M. G. Hornocker, and H. B. Quigley. 2010. Amur tiger: a case 

study of living on the edge. 

Miquelle, D. G., E. N. Smirnov, T. W. Merrill, A. E. Myslenkov, H. B. Quigley, M. G. 

Hornocker, and B. Schleyer. 1999. Hierarchical spatial analysis of Amur tiger relationships 

to habitat and prey. 

Miquelle, D. G., E. N. Smirnov, H. B. Quigley, M. G. Hornocker, I. G. Nikolaev, and E. n. 

Matyushkin. 1996. Food Habits of Amur Tigers in Sikhote-Alin Zapovednik and the Russian 

Far East, and implications for conservation. Journal of Wildlife Research 1:138–147. 

Miquelle, D., I. Nikolaev, J. Goodrich, B. Litvinov, E. Smirnov, and E. Suvorov. 2009. Searching 

for the coexistence recipe: a case study of conflicts between people and tigers in the Russian 

Far East. Pages 305–322 People and Wildlife. Cambridge University Press. 

Miquelle, D., W. C. Society, and P. A. Stephens. 2005. CH A P T E R 1 0 Tigers and Wolves in 

the Russian Far East : Competitive Exclusion , Functional Redundancy , and Conservation 

Implications. 

Moeller, A. K., and P. M. Lukacs. 2021. spaceNtime: an R package for estimating abundance of 

unmarked animals using camera-trap photographs. Mammalian Biology. 



 

 

 

33 

Moeller, A. K., P. M. Lukacs, and J. S. Horne. 2018. Three novel methods to estimate abundance 

of unmarked animals using remote cameras. Ecosphere 9. 

Morelle, K., J. Bubnicki, M. Churski, J. Gryz, T. Podgórski, and D. P. J. Kuijper. 2020. Disease-

Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African 

Swine Fever Outbreak. Frontiers in Veterinary Science 7. 

Morin, D. J., J. Boulanger, R. Bischof, D. C. Lee, D. Ngoprasert, A. K. Fuller, B. Mclellan, R. 

Steinmetz, S. Sharma, D. Garshelis, A. Gopalaswamy, M. A. Nawaz, U. Karanth, N. 

Muhammad, A. Nawaz, and D. J. Morin. 2022. Comparison of methods for estimating 

density and population trends for low-density Asian bears. Global Ecology and Conservation 

35:1–21. 

Nakashima, Y., K. Fukasawa, and H. Samejima. 2018. Estimating animal density without 

individual recognition using information derivable exclusively from camera traps. Journal of 

Applied Ecology 55:735–744. 

Nichols, J. D., and B. K. Williams. 2006. Monitoring for conservation. Trends in Ecology and 

Evolution 21:668–673. 

Palencia, P., J. M. Rowcliffe, J. Vicente, and P. Acevedo. 2021. Assessing the camera trap 

methodologies used to estimate density of unmarked populations. Journal of Applied 

Ecology 58:1583–1592. 

Petrunenko, Y. K., R. A. Montgomery, I. V. Seryodkin, O. Y. Zaumyslova, D. G. Miquelle, and 

D. W. Macdonald. 2016. Spatial variation in the density and vulnerability of preferred prey in 

the landscape shape patterns of Amur tiger habitat use. Oikos 125. 

Pfeffer, S. E., R. Spitzer, A. M. Allen, T. R. Hofmeester, G. Ericsson, F. Widemo, N. J. Singh, 

and J. P. G. M. Cromsigt. 2018. Pictures or pellets? Comparing camera trapping and dung 



 

 

 

34 

counts as methods for estimating population densities of ungulates. Remote Sensing in 

Ecology and Conservation 4:173–183. 

Piper, P. J., J. Ochoa, H. Lewis, V. Paz, and W. P. Ronquillo. 2008. The first evidence for the past 

presence of the tiger Panthera tigris (L.) on the island of Palawan, Philippines: Extinction in 

an island population. Palaeogeography, Palaeoclimatology, Palaeoecology 264:123–127. 

Qi, J., J. Gu, Y. Ning, D. G. Miquelle, M. Holyoak, D. Wen, X. Liang, S. Liu, N. J. Roberts, E. 

Yang, J. Lang, F. Wang, C. Li, Z. Liang, P. Liu, Y. Ren, S. Zhou, M. Zhang, J. Ma, J. Chang, 

and G. Jiang. 2021. Integrated assessments call for establishing a sustainable meta-population 

of Amur tigers in northeast Asia. Biological Conservation 261. 

Ripple, W. J., J. A. Estes, R. L. Beschta, C. C. Wilmers, E. G. Ritchie, M. Hebblewhite, J. Berger, 

B. Elmhagen, M. Letnic, M. P. Nelson, O. J. Schmitz, D. W. Smith, A. D. Wallach, and A. J. 

Wirsing. 2014. Status and ecological effects of the world’s largest carnivores. American 

Association for the Advancement of Science. 

Romani, T., C. Giannone, E. Mori, and S. Filacorda. 2018. Use of track counts and camera traps 

to estimate the abundance of roe deer in North-Eastern Italy: are they effective methods? 

Mammal Research 63:477–484. 

Rowcliffe, J. M., J. Field, S. T. Turvey, and C. Carbone. 2008. Estimating animal density using 

camera traps without the need for individual recognition. Journal of Applied Ecology 

45:1228–1236. 

Rowcliffe, J. M., R. Kays, C. Carbone, and P. A. Jansen. 2013. Clarifying assumptions behind the 

estimation of animal density from camera trap rates. Journal of Wildlife Management 77:876. 

Royle, J. A., A. H. Drive, and A. Roylefwsgov. 2004. N -Mixture Models for Estimating 

Population Size from Spatially Replicated Counts:108–115. 



 

 

 

35 

Royle, J. A., J. D. Nichols, K. U. Karanth, and A. M. Gopalaswamy. 2009. A hierarchical model 

for estimating density in camera-trap studies. Journal of Applied Ecology 46:118–127. 

Schaub, M., and F. Abadi. 2011, September 1. Integrated population models: A novel analysis 

framework for deeper insights into population dynamics. Springer Verlag. 

Schaub, M., O. Gimenez, A. Sierro, and R. Arlettaz. 2007. Use of integrated modeling to enhance 

estimates of population dynamics obtained from limited data. Conservation Biology 21:945–

955. 

Soofi, M., A. Ghoddousi, A. Kh. Hamidi, B. Ghasemi, L. Egli, A.-J. Voinopol-Sassu, B. H. Kiabi, 

N. Balkenhol, I. Khorozyan, and M. Waltert. 2017. Precision and reliability of indirect 

population assessments for the Caspian red deer Cervus elaphus maral . Wildlife Biology 

2017:wlb.00230. 

Stephens, P. A., O. Y. Zaumyslova, G. D. Hayward, and D. G. Miquelle. 2006a. Analysis of the 

long-term dynamics of ungulates in Sikhote-Alin Zapovednik, Russian Far East. 

Stephens, P. A., O. Y. Zaumyslova, D. G. Miquelle, A. I. Myslenkov, and G. D. Hayward. 2006b. 

Estimating population density from indirect sign: Track counts and the Formozov-Malyshev-

Pereleshin formula. Animal Conservation 9:339–348. 

Tempa, T. 2017. The ecology of montane bengal tigers (Panthera tigris tigris) in the Himalayan 

Kingdom of Bhutan. University of Montana. 

Tilson, R., K. Traylor-Holzer, and Q. M. Jiang. 1997. The decline and impending extinction of the 

South China tiger. ORYX 31:243–252. 

Vinks, M. A., S. Creel, P. Schuette, M. S. Becker, E. Rosenblatt, C. Sanguinetti, K. Banda, B. 

Goodheart, K. Young-Overton, X. Stevens, C. Chifunte, N. Midlane, and C. Simukonda. 



 

 

 

36 

2021. Response of lion demography and dynamics to the loss of preferred larger prey. 

Ecological Applications 31. 

Walston, J., J. G. Robinson, E. L. Bennett, U. Breitenmoser, G. A. B. da Fonseca, J. Goodrich, M. 

Gumal, L. Hunter, A. Johnson, K. Ullas Karanth, N. Leader-Williams, K. MacKinnon, D. 

Miquelle, A. Pattanavibool, C. Poole, A. Rabinowitz, J. L. D. Smith, E. J. Stokes, S. N. 

Stuart, C. Vongkhamheng, and H. Wibisono. 2010. Bringing the tiger back from the brink-

the six percent solution. PLoS Biology. 

Wikramanayake, E., E. Dinerstein, J. Seidensticker, S. Lumpkin, B. Pandav, M. Shrestha, H. 

Mishra, J. Ballou, A. J. T. Johnsingh, I. Chestin, S. Sunarto, P. Thinley, K. Thapa, G. Jiang, 

S. Elagupillay, H. Kafley, N. M. B. Pradhan, K. Jigme, S. Teak, P. Cutter, M. A. Aziz, and 

U. Than. 2011. A landscape-based conservation strategy to double the wild tiger population. 

Conservation Letters 4:219–227. 

Wiles, G. C., O. Solomina, R. D’Arrigo, K. J. Anchukaitis, Y. V. Gensiarovsky, and N. 

Wiesenberg. 2015. Reconstructed summer temperatures over the last 400 years based on 

larch ring widths: Sakhalin Island, Russian Far East. Climate Dynamics 45:397–405. 

Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and Management of Wildlife 

Populations. Academic Press. 

Wolf, C., and W. J. Ripple. 2016. Prey depletion as a threat to the world’s large carnivores. Royal 

Society Open Science 3:1–13. 

Wolf, C., and W. J. Ripple. 2017. Range contractions of the world’s large carnivores. Royal 

Society Open Science 4. 



 

 

 

37 

Xiao, W., M. Hebblewhite, H. Robinson, L. Feng, B. Zhou, P. Mou, T. Wang, and J. Ge. 2018. 

Relationships between humans and ungulate prey shape Amur tiger occurrence in a core 

protected area along the Sino‐Russian border. Ecology and Evolution 2018:1–17. 

Zakharova, O. I., I. A. Titov, A. E. Gogin, T. A. Sevskikh, F. I. Korennoy, D. V. Kolbasov, L. 

Abrahamyan, and A. A. Blokhin. 2021. African Swine Fever in the Russian Far East (2019–

2020): Spatio-Temporal Analysis and Implications for Wild Ungulates. Frontiers in 

Veterinary Science 8:1–13. 

  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

38 

7  |  TABLES & FIGURES 
 

Table 1-1: Comparison of four methods to estimate densities of species the individuals of which cannot be uniquely 
identified. A brief explanation of the technique is given, along with the advantages, assumptions, and difficulties 
involved with each technique. Underlined references are considered foundational to the technique in its development 
and/or explanation. Other references are example applications of the technique since the model’s development.  
 

Method Technique Advantages Assumptions & Difficulties References 
Formozov- 
Malyushev- 
Pereleshin 
Method 
(FMP) 

• Winter track surveys 
conducted along transects, 
typically ~5-10km long. 
• Tracks <24h old are 
recorded by species and 
number of individuals 
 

• Long history of use in Russia 
• Scientists gain additional 
information about species by 
following them through their 
habitat 
• Continuity of methods for 
long-term data sets in Russia 
• Method robust to animal 
movement tortuosity 
• Estimates apparently 
unaffected by double-counting 
of tracks 
 

• Assumes animals move independent of 
transects 
• Depends on recurrent snowfall 
• Group size often difficult to determine 
• Impractical survey effort required for low 
densities 
• Assumes perfect species identification by 
tracks 
• Assumes tracks correctly ID’d as <24h old 
• Prone to convenience sampling 
• Assumes closed population 
• Prone to bias with inaccurate estimates of 
travel distance 
 

• Lomanov 2000) 
• Stephens et al. 2006b 
• Keeping and Pelletier 2014) 
• Jousimo & Ovsaiken et al. 2016 
• Petrunenko et al. 2016 
• Romani et al. 2018 
• Jiayin et al. 2018) 
• Ahlswede et al. 2019 
• Doran-meyers et al. 2021 
 

Random 
Encounter 
Model 
(REM) 

• Uses camera traps 
• Estimates density based 
on two components: 
(1) animal encounter rate 
with cameras; and 
(2) the cameras’ field of 
view (radius and angle of 
detection) 
• Equation very similar to 
and inspired by the FMP 
method (above) 

• Minimal survey effort 
required to deploy cameras 
• Allows for animal 
movements non-independent 
of one another ((Rowcliffe et 
al. 2013) 
• Robust to assumption of 
random, independent animal 
movement 
 

• Assumes camera viewsheds collectively 
represent the study area 
• Assumes random placement of cameras 
with respect to animal movement 
• Assumes closed population 
• Prone to bias with inaccurate estimates of 
travel distance 
• Requires estimates of camera viewshed, 
which are laborious to estimate (e.g. 
Hofmeester et al. 2017) 
 

• Rowcliffe et al. 2008 
• Chauvenet et al. 2017 
• Massei et al. 2017 
• Soofi et al. 2017 
• Gray 2018 
• Pfeffer et al. 2018 
• Loonam et al. 2020a 
• Palencia et al. 2021 
• Doran-meyers et al. 2021 
• Morin et al. 2022 
 
 

Space-To- 
Event Model 
(STE) 

• Uses camera traps 
• Estimates density based 
on the amount of space 
sampled to the first 
observation for each 
sampling occasion; uses  
spatial trapping rate 

• The camera’s viewshed is the 
sample grid cell - eliminates 
detection probability within a 
larger cell  
• Robust to closed populations 
• Robust to the assumption of 
independent detection events 
 
 
 

• Assumes camera viewsheds collectively 
represent the study area 
• Assumes animals are Poisson-distributed 
across camera viewsheds 
• Lower precision of estimates relative to 
other estimators 
• Assumes observations are independent 
between occasions t and t+1 
• Requires estimates of camera viewshed, 
which are laborious to estimate (e.g. 
Hofmeester et al. 2017) 
• With motion-trigger data, decisions about 
the sampling window length are arbitrary 
 

• Moeller et al. 2018 
• Loonam et al. 2020a 
• Ausband et al. 2022 
• Morin et al. 2022 

Time-To-
Event Model 
(TTE) 

• Uses camera traps 
• Elaboration of STE: the 
amount of space sampled 
before the 1st observation 
is isolated for each 
camera, calculated over 
many occasions (hence 
time to event at each 
camera).  

• Able to account for 
heterogeneity in density 
• The camera’s viewshed is the 
sample grid cell - eliminates 
detection probability 
• Robust to closed populations 
• Robust to the assumption of 
independent detection events 
 

• Assumes random placement of cameras 
with respect to animal movement 
• Assumes animals are Poisson-distributed 
across camera viewsheds 
• Prone to bias with inaccurate estimates of 
travel distance 
• Assumes observations are independent 
between occasions t and t+1 
• Requires estimates of camera viewshed, 
which are laborious to estimate (e.g. 
Hofmeester et al. 2017) 
 

• Moeller et al. 2018 
• Loonam et al. 2020a 
• Ausband et al. 2022 
• Morin et al. 2022 
• Santini et al. 2022 
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Figure 1-1. Locations of random cameras, and both the standard and random winter track surveys conducted in the southern 
portion of Sikhote-Alin Biosphere Zapovednik, Russian Far East. Only camera locations (N=62) and random track surveys (22 
surveys totaling 168 km) from winter 2021-22 are shown (the three winters varied in their locations). The village of Terney is 
labeled to the northeast.   
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Table 1-2.  Summary of survey efforts during winters 2019-20 and 2020-21 for both camera trap 
surveys and snow track surveys. See methods for more details about study design. During winter 2019-
20, the number in parentheses after the brand of camera indicates the number of models of that brand 
that were used.  

  Winter 2019-20 Winter 2020-21 
 Study dates 01-Feb-2020 – 01-Apr-2020 20-Nov-2020 – 10-Feb-2021 

 Deployed N cams 50 57 

Camera traps 
N cams used in 

analysis 
45 50 

Total trap nights 2,743 4,050 
 Brands of cameras Bushnell (2) Panthera V7 
  Reconyx (2) Browning Recon Force 
  SPromise (2)  
  Browning (2)  

FMP random 
surveys 

Dates of survey 27-Feb-2020 – 15-Mar-2020 -- 
Total effort (km) 64 -- 
N survey routes 8 -- 

FMP 
conventional 

surveys 

Dates of survey 26-Feb-2020 – 02-Mar-2020 16-Feb-2021 – 27-Feb-2021 
Total effort (km) 103 117 
N survey routes 19 19 
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Table 1-3. Descriptions of criteria used to score camera trap and snow track survey estimators for their 
use to monitor prey of the Amur tiger. Criteria are grouped by the three broad categories of statistics, 
logistics, and costs of each estimator. More detailed descriptions and the scoring of each estimator are 
provided in Appendix 1C.  
Category Criterion Score Description 

Statistics 

Precision (CV) 1 - 4 
Average CV of each estimator for each species 
and for the two seasons: 10-20%, 1; 20-30%, 2; 
30-40%, 3; and 40%+, 4.  

Potential bias in 
parameters 1 – 4 Relative scores based on # of parameters in the 

estimator and their susceptibility to bias. 
Potential bias in 

study design 
1 – 4 Relative score for camera traps and snow track 

surveys. 

Complexity of 
analysis 1 – 4 Relative scores based on both the number of 

analysis steps and their complexity.  

Logistics 

Difficulty in 
planning survey 1 – 4 

Relative scores based on difficulty in 
implementation, considering staff, season, and 
weather-dependence.   

Difficulty of gear 
preparation 

1 – 4 
Relative scores preparing for sampling 
(deploying cameras or preparing for survey 
routes). 

Difficulty of site 
setup 

1 – 4 Relative scores based on the stages involved in 
camera site setup (no penalty for track surveys). 

Difficulty 
preparing data 

for analysis 
1 – 4 Relative scores based on complexity of 

preparing data for statistical analysis  

Costs 

Survey effort to 
achieve 20% CV 

1 – 4 

The number of cameras required to achieve 
this precision, based on simulations from 
our real data. For snow track surveys, we 
converted surveys into camera-equivalent 
effort (Appendix 1A).  

Start-up costs to 
achieve 20% CV 

1 – 4 
Cost to purchase the number of cameras to 
achieve 20% CV (determined above). No start-
up penalties for track surveys. 

Stages of 
analysis 1 – 4  

Rank based on the number of stages of analysis, 
from the processing of raw data (all camera trap 
images and notebooks with snow tracking data) 
to final density estimates.  
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Table 1-4. Values of parameters and other information used to estimate the densities of prey species during 
winter 2019-20 (February 01 – April 01, 2020; S1) and winter 2020-21 (November 20, 2020 – February 10, 
2021; S2). Parameter symbology and definitions are explained in the Methods section.  

   Wild boar Red deer Roe deer Sika deer 

Method Parameter S1 S2 S1 S2 S1 S2 S1 S2 
FMP 

Random Y/S (tracks/km) 2.09 -- 0.35 -- 0.10 -- 1.51 -- 

 v (km/day) 2.42 - 3.59 1.18 - 1.40 0.79 - 0.99 1.50 - 4.06 
 S (km) 63.8 -- 63.8 -- 63.8 -- 63.8 -- 

FMP 
Trail Y/S (tracks/km) 3.26 0.38 0.99 0.30 0.18 0.32 6.29 4.26 

 v (km/day) 2.42 - 3.59 1.18 - 1.40 0.79 - 0.99 1.50 - 4.06 
 S (km) 103.2 116.9 103.2 116.9 103.2 116.9 103.2 116.9 

REM Y/t (detections/day) 0.067 0.002 0.011 0.021 0.004 0.011 0.019 0.023 
 v (km/day) 2.42 - 3.59 1.18 - 1.40 0.79 - 0.99 1.50 - 4.06 
 r (km, median) 0.012 0.010 0.012 0.010 0.012 0.010 0.012 0.010 

 theta (radians, 
mean) 0.820 0.960 0.820 0.960 0.820 0.960 0.820 0.960 

STE Occasion (min) 15 15 15 15 

 Sample window 
(sec) 7 60 60 60 7 

 Censor area (m2) 1443 2502 1443 2502 1443 2502 1443 2502 
 Non-NA STEs 14 1 3 8 1 5 9 15 

TTE Occasion (minutes) 1440 1440 1440 1440 
 Period (seconds) 189 260 499 624 208 

 N periods per 
occasion 24 24 24 24 

 Occasion length 14900 23250 14900 23250 14900 23250 14900 23250 
 Non-NA TTEs 68 7 20 55 7 32 27 44 

 
 
 
 
 
 
 
 
 



 

 

 

43 

Table 1-5. Point density estimates and their coefficients of variation for ungulate prey species during winter 
2019-20 (February 01 – April 01, 2020; S1) and winter 2020-21 (November 20, 2020 – February 10, 2021; 
S2). Random FMP surveys were not conducted during Winter 2020-21.  
   Wild boar Red deer Roe deer Sika deer 
Method Parameter S1 S2 S1 S2 S1 S2 S1 S2 

FMP 
Random 

D (ind/km2) 1.02 -- 0.42 -- 0.17 -- 0.80 -- 

CV 32% -- 53% -- 63% -- 39% -- 

FMP 
Trail 

D (ind/km2) 1.62 0.21 1.19 0.41 0.32 0.63 3.41 2.61 
CV 46% 45% 34% 44% 32% 39% 42% 44% 

REM 
D (ind/km2) 3.27 0.11 0.92 1.91 0.49 1.35 0.89 1.13 
CV 31% 88% 38% 35% 43% 35% 53% 69% 

STE 
D (ind/km2) 1.12 0.05 0.28 0.34 0.08 0.26 0.72 0.77 
CV 27% 124% 64% 41% 125% 48% 35% 26% 

TTE 
D (ind/km2) 3.21 0.14 1.80 1.75 0.72 1.23 1.37 0.58 
CV 12% 40% 23% 14% 40% 18% 20% 15% 
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Figure 1-2. Estimates of population density with 95% confidence intervals for each prey species during 
winters 2019-20 (February 01 – April 01, 2020) and 2020-21 (November 20, 2020 – February 10, 
2021). The two colors represent the two approaches to data collection: camera traps and snow track 
surveys. Each model is represented by a different shape at the point estimate. We were not able to 
conduct random snow tracking surveys during winter 2020-21. 
 



 

 

 

45 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1-5. Scores for each density estimator based on the rubric described in Table 1-4. The information 
used and decisions made for each score are presented in Appendix 1C. The “data collection cost index” is 
not used to rank estimators, but is instead listed because of the context it provides readers.  

 Criterion Score STE TTE REM FMP 

Statistics 

Precision (CV) 1 - 4 4 (61%) 2 (23%) 4 (49%) 4 (47%) 

Potential bias in 
parameters 1 – 4 2 3 3 2 

Potential bias in 
study design 

1 – 4 2 2 2 1 

Complexity of 
analysis 1 – 4 3 4 4 2 

Logistics 

Difficulty in 
planning survey 1 – 4 2 2 2 4 

Difficulty of 
gear preparation 1 – 4 3 3 3 1 

Difficulty of site 
setup 

1 – 4 3 3 3 1 

Difficulty 
preparing data 

for analysis 
1 – 4 3 4 4 2 

 
Cameras to 

achieve 20% 
CV  

1 – 4 3 (120) 2 (75) 4 (150) 1 (58) 

Costs 
Start-up costs to 

achieve 20% 
CV 

1 – 4  4  ($27,072) 3  ($16,920) 4  ($33,840) 1  ($0) 

 
Stages of 
analysis 1 – 4 3 4 4 2 
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Figure 1-3. Simulated number of cameras or camera-equivalent survey effort for the three viewshed 
density estimators and FMP surveys, respectfully. Simulations used real data from the three winter 
seasons. Dot-dash lines represent the camera survey effort (N=45) from winter 2019-20, and the 
dashed line above represents the camera survey effort (N=50) from winter 2020-21. 
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Figure 1-4. Sensitivity of Space-To-Event density estimates to increases in the sampling 
window length. This example figure is based on red deer detection data from the 2020-21 
winter season, though the relationship is the same for all species and all seasons. Each panel 
(a-d) represent an increasing occasion length. As the sampling window increases, density 
estimates increase. As the occasion length increases, point estimates of density remain 
consistent, but precision decreases.   
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8  |  APPENDICES 
 
APPENDIX 1A: VIEWSHED AREA MEASUREMENTS 
 
Winter 2019-20 

During our first camera deployment season, we conducted extensive walk tests at each camera to 

determine the angles and distances to detection. We considered a distance as consistent if it 

detected at least one passage out of three. To measure angles, the first field technician would 

move to the outer edge of the detection zone. Once they identified the location of the maximum 

angle, the second field technician would take a bearing with a compass placed on top of the 

camera trap. This was repeated for the other side of the detection zone, and the detection angle 

thus estimated. This process was time consuming, often taking over 30 minutes, depending on the 

camera model and age, weather conditions, and terrain.  

 
Winter 2020-21 

During the winter 2020-21 deployment season, we tried an alternative approach to measuring 

viewshed area developed by Idaho Fish & Game biologists. First, 30cm X 40cm pieces of 

plywood were cut, and a dot drawn in the center of edge of the short side. Using a protractor and 

ruler, a pie shape was drawn according to the lens angle of a particular camera model. Next, that 

pie shape was divided into 6 equal sectors. Finally, small nails were tapped into the center of the 

edge of the widest part of each sector (away from the pie piece’s origin). When in the field, one 

technician would kneel and place her head directly in front of the camera. Then, she would hold 

this “viewboard” to their forehead, such that their vision became divided into 6 equal sections. 

This technician would dictate to the other technician how far she could see in that sector. The 

other technician then measured the distance to the obstruction (such as a thick bush, rock, or tree). 
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If there were no obstructions, then the maximum detection distance was recorded. An example 

recorded data sheet is provided below (Figure A3).    

 

 

 

 

 
 
 

Figure A1. Histograms of individual camera viewshed areas measured during the winter 2019-
20 and 2020-21 seasons.  
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APPENDIX 1B: ESTIMATING WILD BOAR DAILY TRAVEL DISTANCES WITH GPS 

RELOCATION DATA  

Between the spring of 2019 and fall 2020, we captured 13 adult female wild boar in corral traps. 

We used a combination of Zoletil (6-9.2-mg/kg) and Medetomidine (0.07-mg/kg) to anaesthetize 

wild boar (Mikhail Goncharuk, pers comm), before fitting them with Lotek GPS Litetrack 420 

Iridium collars set to a 15-minute fix interval schedule between November-1 and April-1. All 

captures and handling were conducted by WCS Russia and Zapovednik staff, and met IACUC 

animal care standards as approved by the University of Montana (AUP 061-19). Eight of these 

captured individuals contributed sufficient relocation data to estimate winter daily travel 

distances.  

We estimated daily travel distance by summing the straight-line distances between points 

of an individual’s relocation data during 24-hour periods (00:00:00 – 23:59:59). While this 

approach has been called into question (Noonan et al., 2019; Rowcliffe et al., 2016), previous 

analyses found no significant difference between this approach, the asymptotic approach used by 

Musiani et al. (1998) and the continuous time movement model estimates as described in Noonan 

et al. (2019) (Scott Waller, unpublished data). We used 1,000 iterations of nonparametric 

bootstrapping to estimate 95% confidence intervals of the median daily travel distance. We used 

values within the 95% confidence intervals as possible distances when estimating density with the 

REM and FMP in chapter 1.  

 Wild boar traveled a median daily distance of 3.1km in winter 2019-20 (N=487 days; 

Figure 4). This coincides with the early and later winter travel distances reported in Stephens et 

al. (2006). Most daily travel distances fell between 1-7 km. There were lots of acorns available 
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during this winter, as well as relatively little snow. As such, wild boar were able to forage freely, 

as described by the range of daily travel distances we estimated 

 This winter (2020-21), wild boar traveled a median daily distance of 2.3km (N=220), 0.9km 

less than the median of the previous winter. Most distances were between 0.5 – 4.5km. 

Importantly, much of this data was gathered while several of our wild boar were infected by, and 

eventually died from, African Swine Fever. This could partially explain the shorter distances 

traveled. What’s more, this year there was little acorn mast available, as well as high snowfall and 

low temperatures. It makes sense then that our collared wild boar attempted to minimize energy 

expenditure, given challenges of disease infection, harsh environmental conditions, and little 

available resources.  
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FIGURE 4. Histogram of daily travel distances for two winter seasons. Data are 
based on 487 and 220 estimated daily travel distances for winters 2019-20 and 
2020-21, respectively. Dashed lines represent the median daily travel distances: 
for winter 2019-20, 3161 meters; for winter 2020-21, 2346 meters. 
 



 

 

 

53 

APPENDIX 1C: DETAILS OF RUBRIC SCORES FOR EACH ESTIMATOR 
 
The following statistics, logistics, and cost categories and their respective criteria were adopted 

from Riley et al. (2017) and their comparison of methods to monitor Amur tiger populations.  

 
STATISTICS 

Precision 

Rank each model based on their average coefficient of variation (CV) across species and 

years: 1 (10-20%), 2 (20-30%), 3 (30-40%), 4 (40%+). 

• STE: 4 (61%) 

• TTE: 2 (23%) 

• REM: 4 (49%) 

• FMP: 4 (47%) 

Potential sources of bias in parameters 

• STE: viewshed area, discontinuous sampling with motion-trigger: 2 

• TTE: viewshed area, discontinuous sampling with motion-trigger, independent estimates 

of daily movement rate: 3 

• REM: Viewshed radius and angle, discontinuous sampling with motion-trigger, 

independent estimates of daily movement rate: 3 

• FMP: independent estimates of daily movement rate, only fresh tracks < 24h counted: 2 

Potential sources of bias in study design 

• STE: random camera placement, camera malfunctions: 2 

• TTE: random camera placement, camera malfunctions: 2 

• REM: random camera placement, camera malfunctions: 2 

• FMP: placement of routes in study area: 1 
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Complexity of data analysis (steps) 

NOTE: these steps are after the detection data has been processed and ready for analysis (track 

encounter data for FMP, species detections for viewshed density estimators), and camera 

deployment dataframe is prepared with accurate location, effort, and viewshed area data. 

• STE: set parameter values (occasion and sampling window), build encounter history, run 

STE function: 3 

• TTE: set parameter values (period length based on movement, sampling window, periods 

per occasion), build encounter history, run TTE: 4 

• REM: parameterize animal movement rate, bootstrap density and variance: 3 

• FMP: parameterize animal movement rate, bootstrap density and variance: 3 

 
LOGISTICS 

Difficulty planning for data collection 

FMP: Because it can be so challenging to plan track surveys due to the weather, the FMP gets the 

worst score of 4. Cameras: 1 point each for planning deployment, and retrieval of cameras.  

• STE: 2 

• TTE: 2 

• REM: 2 

Difficulty of gear preparation 

• STE: put memory cards and batteries in cameras, check settings are correct: 2 

• TTE: put memory cards and batteries in cameras, check settings are correct: 2 

• REM: put memory cards and batteries in cameras, check settings are correct: 2 

• FMP: no gear preparation beyond any requirements for being in the field : 1 
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Difficulty of site set-up 

• STE: choosing the location of the camera and placing correctly, measuring viewshed area, 

turning on camera: 3 

• TTE: choosing the location of the camera and placing correctly, measuring viewshed area, 

turning on camera: 3 

• REM: choosing the location of the camera and placing correctly, measuring viewshed 

area, turning on camera: 3 

• FMP: no sites involved: 1 

Expertise required 

• STE: only basic knowledge of how to use a GPS needed: 1 

• TTE: only basic knowledge of how to use a GPS needed:: 1 

• REM: only basic knowledge of how to use a GPS needed: 1 

• FMP: expert assessment of track species and age, but this can be trained relatively easy 

especially for large ungulate prey species: 3 

Difficulty preparing collected data for analysis (steps) 

• STE: delete empty images, identify species correctly, calculate camera area: 3 

• TTE: delete empty images, identify species correctly, calculate camera area, estimating 

movement: 4 

• REM: delete empty images, identify species correctly, calculate camera area, estimating 

movement: 4 

• FMP: record surveyor’s written data, estimate animal movement: 2 
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COSTS 

Simulated effort to achieve 20% CV 

To fully understand the effort required to deploy the number of cameras our simulations indicated 

to achieve 20% CV for various densities, we estimated the fieldwork travel that would be required 

to deploy the indicated number of cameras, based on survey efforts during winter 2021-22. That 

year, field crew walked a total of 360 km and drove 156 km to deploy 62 cameras, which amounts 

to 8.4 km of total field travel for each camera trap deployed. To make our simulations of effort 

comparable between camera traps and snow track surveys, we divided the simulated kilometers of 

snow track surveys by 8.4. This represented the snow track survey efforts in units of camera-

equivalents. We also recorded the km driven by snowmobiles or 4-wheelers during this survey, 

which gave us an average survey length of 7.7 km for each track survey, or roughly 0.91 cameras 

deployed during each survey. This information is useful, but because we are already scoring 

estimators based on the number of cameras or camera-equivalent effort, we did not include this in 

the rubric.  

For the rubric scores, we used simulated effort values based on the medium density 

species. The results of all simulations are presented in Figure 1-4 (pg. 46). Note that this approach 

favors camera trapping, because we do not account for the equivalent effort required to retrieve 

those cameras.  

Number of cameras (camera equivalent effort for FMP) to reach 20% CV for density of 0.7 km-2: 

• STE: 120 – 3 

• TTE: 75 – 2 

• REM: 150 – 4 

• FMP: 54 – 1 
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Start-up costs:  

• STE: 120 cameras @ $200 each, 120 memory cards @ $8 each, 960 lithium AA batteries 

(8 per camera) @ $2.2 per battery: total = $27,072: 4 

• TTE: 75 cameras @ $200 each, 75 memory cards @ $8 each, 600 lithium AA batteries (8 

per camera) @ $2.2 per battery: total = $16,920: 3 

• REM: 150 cameras @ $200 each, 150 memories @ $8 each, 1,200 lithiium AA batteries 

(8 per camera) @ $2.2 per battery: total = $33,840: 4 

• FMP: nothing beyond typical field work gear. Total = $0: 1 

Stages of analysis 

• STE: saving and recording data from camera memory cards, cleaning empty photos, 

tagging photos and creating detection file, statistical analysis: 4 

• TTE: saving and recording data from camera memory cards, cleaning empty photos, 

tagging photos and creating detection file, statistical analysis: 4 

• REM: saving and recording data from camera memory cards, cleaning empty photos, 

tagging photos and creating detection file, statistical analysis: 4 

• FMP: record track data written in surveyor booklets, statistical analysis: 2 

 
 
Table C1: Average scores for each estimator in each category.   

STE TTE REM FMP Mean 

Statistics 2.8 2.8 3.3 2.3 2.8 

Logistics 2.8 3.0 3.0 2.0 2.7 

Costs 3.3 3.0 4.0 1.3 2.9 

Total 2.9 2.9 3.4 1.9 2.8 
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CHAPTER 2: COMPARING ROAD, OFF-ROAD, AND RANDOMLY PLACED CAMERA 

TRAPS: LINEAR FEATURES BIAS DETECTIONS OF LARGE UNGULATES  

1  |  INTRODUCTION 
 
Random sampling is an essential tool in scientific research. The degree to which a sample of 

observations represents the study population in an unbiased way determines the quality of our 

statistical inferences (Fisher 1925, Cochran 1977, Garton et al. 2012). Random sampling ensures 

that we achieve a sample of the population that does not bias estimates of the sample mean and 

variance by sample selection (Cochran 1977, Jolly 1979, Williams et al. 2002). In the field of 

population ecology, researchers make inferences about a study population of a species based on 

parameters estimated from, ideally, a random sample of that population (Garton et al. 2012, Mills 

2013). Estimates of the true abundance of a population are especially valuable as it allows 

managers to monitor trends over time and thus assess the consequences of management and 

conservation actions (Williams et al. 2002).  Population size and trends are also key metrics by 

which the IUCN categorizes a species’ threat status (IUCN 2012). Because of the value of 

abundance estimates, much effort has been spent on its accurate, precise, and efficient estimation 

(Williams et al. 2002). Random sampling is often a key component of proposed methods to 

estimate abundance because it ensures the sample is representative of study population (Jolly 

1979, Williams et al. 2002). 

For over 100 years, ecologists have used the unique markings of individuals to estimate 

population size. Danish biologist C.G.J. Petersen was one of the first in the field of population 

ecology to apply mark-recapture techniques in 1889, though not for abundance purposes. His 

approach was later developed by F.C. Lincoln as the Lincoln-Petersen index to estimate 

abundance of waterfowl populations in the United States based on capture-recapture of randomly 
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marked individuals (Lincoln 1930, le Cren 1965, Mills 2013). Recently, spatially explicit capture-

recapture (SECR) models were developed to make use of repeated detections of individuals 

within their home ranges to estimate the distribution of individuals across a study area. This 

provides a robust and well-tested means of estimating both abundance in a capture-recapture 

framework and, critically, the area of sampling (Efford et al. 2009, Royle et al. 2009).  

Estimating abundance of unmarked populations has proven more difficult. Over the years, 

methods proposed have ranged from sightability models (Steinhorst and Samuel 1989), drive 

counts (Borkowski et al. 2011, Keuling et al. 2018), and distance sampling (Buckland et al. 2015). 

These models all assume that animals are observed in places representative of the study area, and 

randomly distributing routes, drives, or transects is a common technique. A major disadvantage of 

these ground-based models is that animals must be visually observed, and in the case of drive 

counts, in an area with clearly defined borders. But many wildlife populations of interest are 

hunted and therefore wary of humans, exist at densities too low to obtain sufficient observations, 

or live in thick vegetation and rugged terrain that make observing individuals infeasible.  

 One important example of the need for and challenges with estimating abundance of 

unmarked species is monitoring prey species for the conservation of wild tigers (Panthera tigris). 

Tiger density is ultimately dependent upon prey density across the tiger’s range, and estimates of 

true population size – beyond relative abundance – has allowed researchers to describe this 

dependency (Karanth et al. 2004, Miquelle et al. 2010) and identify areas where insufficient prey 

limit tiger recovery (Harihar et al. 2020, Qi et al. 2021). Most prey species cannot be uniquely 

identified, and distance sampling is limited to only certain places in tiger range such as India 

(Karanth and Nichols 2002). Most countries still have not developed rigorous tiger prey 

monitoring programs, a major goal identified during the 2010 Global Tiger Summit (Global Tiger 
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Initiative 2010). Many tiger managers are using cameras and SECR models to monitor tiger 

densities (Tempa et al. 2019, Harihar et al. 2020, Jhala et al. 2020, Matiukhina 2020). These 

cameras coincidentally capture images of prey species, and some researchers have already 

estimated relative abundances of prey based on this “by-catch” data (Tempa 2017, Xiao et al. 

2018, Kafley et al. 2019). However, the N-mixture models (Royle 2004) used in these analyses 

make strict assumptions that ultimately mean they cannot be interpreted as estimates of true 

abundance (Kery and Royle 2015, Gilbert et al. 2020).  

The recent unmarked estimators developed to estimate true abundance with cameras also 

make the strict assumption that the area sampled in front of cameras ( i.e., the “viewshed”) is 

representative of the study area (Gilbert et al. 2020). Randomly placing cameras is a basic 

approach to meet this assumption when applying these methods, and has been used successfully 

to estimate densities of diverse wildlife populations (Rowcliffe et al. 2008, Howe et al. 2017, 

Moeller et al. 2018, Morelle et al. 2020, Palencia et al. 2021). While random sampling is 

expensive and takes more effort than placing cameras on roads and trails (see Chapter 1 of this 

thesis), cameras placed on linear features likely violate this important assumption of 

representative sampling. Past studies have investigated the differences between randomly placed 

cameras and cameras placed on linear features (e.g. Harmsen et al. 2010, Cusack et al. 2015, 

Kolowski and Forrester 2017, Tanwar et al. 2021). Yet most of these examples have focused on 

community-scale camera trap analyses such as species accumulation curves and measurements of 

species richness. Those that compared detection rates between camera deployment strategies 

found that differences between them vary widely depending on the study area and species (e.g., 

Tanwar et al. 2021). There remains a need to directly assess the differences in detections between 
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cameras placed on targeted features, and those deployed to represent the study area, such as 

through random sampling.  

The studies mentioned above also did not account for the potential confounding effects of 

lower abundance and avoidance of human use of those roads and trails. Many studies have 

demonstrated that wildlife across diverse taxa avoid roads, especially with high levels of human 

use (Vistnes and Nellemann 2001, Jaeger et al. 2005, Northrup et al. 2012, Thurfjell et al. 2015). 

The avoidance of humans on roads and trails where camera traps are placed may therefore 

confound abundance when interpreting detection rates. Though evidence is accumulating that 

detections of many species are influenced by linear features, the degree to which sampling along 

such features leads to biased density estimates of unmarked populations remains unclear. 

In this study, we assessed the importance of representative sampling and the influence of 

linear features in camera trap studies of population abundance by comparing relative abundance 

indies (RAIs) from three different deployment strategies:   

1. Pairs of cameras placed in one location for tiger density monitoring (“road cameras”); 

2. Single cameras placed 150 m from tiger monitoring cameras, in a random direction and 

without targeting landscape features to attract animals (“off-road cameras”); 

3. Single cameras placed using a systematic random sampling design (“random cameras”). 

We compared RAIs of four ungulate species that are the main prey of the Amur tiger (Miquelle et 

al. 2010): wild boar (Sus scrofa ssp. ussuricus), red deer (Cervus canadensis ssp. xanthopygus), 

roe deer (Capreolus pygargus), and sika deer (Cervus nippon). We recognize that RAIs 

sometimes fail to detect trends in abundance or compare relative abundances among species 

(Harmsen et al. 2010, O’Brien 2011, Sollmann et al. 2013). However, our purpose was to 

compare camera deployment strategies that differed most meaningfully in the number of 
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detections of animals. Most of the variation in unmarked estimators comes from detection rates 

(Palencia et al. 2021). Thus, our comparison of RAIs should be relevant to researchers estimating 

densities of unmarked populations with cameras. Lastly, to understand how human use of roads 

and trails might affect detection rates of ungulates, we investigated how levels of low or high 

human traffic on roads where we placed cameras for monitoring tigers influenced estimates of 

ungulate RAIs.  

 
2  |  MATERIALS AND METHODS 
 
2.1 Study Area 
 
We deployed cameras in three study sites in central Sikhote-Alin, Russian Far East (Figure 1-1). 

The dominant geographical feature in this region is the low-elevation Sikhote-Alin Mountains 

that run parallel with the coast of the Sea of Japan. East of the divide, coastal forests of 

Mongolian oak (Quercus mongolica) transition to mixed hardwood forests with larch (Larix spp.) 

and Korean pine (Pinus koreinsis). These forests predominate our southern and eastern study sites 

in the Sikhote-Alin Biosphere Zapovednik (SABZ) (Figure 2-1). Across the Sikhote-Alin 

Mountains, forests are more coniferous with Korean pine, spruce (Picea spp.), and fir (Abies 

spp.), though diverse hardwood species such as Japanese poplar (Populus maximowiczii) and cork 

bark elm (Ulmus propinqua) grow in the riparian valleys. These forests characterize both the 

Sidatun Hunting Lease (Sidatun) and Udege Legend National Park (ULNP) study sites where we 

deployed additional road and off-road cameras (Figure 2-1). 

 The large mammal community in this system contains seven species of ungulates and 

multiple predators. Wild boar, red deer, roe deer, and sika deer are the predominant ungulate prey 

species, though less-common goral (Naemorhedus caudatus) inhabit the coastal cliffs and musk 

deer (Moschus moschiferus) occur in the spruce-fir forests of northern slopes. Sika deer are only 
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common along the coast of the Zapovednik, though their range is expanding (Stephens et al. 

2006). Across the Sikhote-Alin Mountains, both red deer and roe deer are more abundant. Moose 

(Alces alces) are rare, especially in SABZ. Wild boar abundance fluctuates depending on the 

availability key mast crops, namely acorns from Mongolian oak along the coast and pine nuts 

from Korean pine further inland (Heptner et al. 1988). Amur tigers are the dominant predator in 

the community, often excluding wolves (Canis lupus) from their territory (Miquelle et al. 2005), 

and sometimes preying on both brown bears (Ursus arctos) and Himalayan black bears (Ursus 

thibetanus) as well as ungulate species (Miquelle et al. 1996, Kerley et al. 2015).  

 
2.2 Road camera deployment 
 
We deployed pairs of remote cameras at each site for tiger population monitoring in SABZ, 

ULNP, and Sidatun (Figure 2-1). Using a 7 × 7 km grid across the entire study area, one pair of 

cameras was placed in each cell. Camera sites were selected to maximize detections of tigers 

along roads, trails, and ridges, and facing tiger marking trees if present. Cameras were placed 

roughly 4 m away from and on either side of the road (no more than 100 m apart) to photograph 

both sides of passing tigers and were no more than 100 m apart from each other. Cameras were 

set to capture bursts of 3 photos with minimum trigger delay.  

 
2.3 Off-road camera deployment 
 
To test a deployment strategy that balances the need for random camera placement and logistical 

constraints, we deployed single cameras roughly 150 m away from each pair of tiger monitoring 

cameras and at least 100 m from the road itself. Typically, field staff alternated whether they went 

up steep slopes on one side of the road, or further into the river valley on the other side. For 
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camera site selection, field staff chose areas with minimal brush and other obstructions while 

avoiding features like game trails. 

 
2.4 Random camera deployment 
 
In the 527 km2 southern SABZ study site (Figure 2-1), we deployed cameras using a systematic 

random sampling design to serve as a reference for unbiased estimates of RAIs. First, a 

rectangular 3.5 × 3.5 km grid was drawn over our study area. This cell size approximates the area 

of a female red deer’s home range (Dou et al. 2019). We randomly generated one camera location 

in each cell, then excluded cameras that were not within the study area. Because of the remoteness 

of some cells, a few cameras’ locations were adjusted to be more easily accessed, while 

maintaining the random location’s forest type, elevation, and aspect. Because of resource 

constraints, if a pair of tiger monitoring cameras occurred within a cell, we only placed an off-

road camera in that cell.  

 Both off-road and random cameras were placed 1 – 1.5 m above the ground and facing 

north to minimize glare from the sun. Whenever the camera site was on a slope, the camera was 

positioned such that its horizontal field of view was in-line with the slope to minimize reductions 

in detection area (Moeller et al. 2018; Appendix 1A, Figure A3). Cameras were set to take bursts 

of three photos at each capture with no delay. We considered detections of individuals of the same 

species 30 minutes apart to be independent events. 

 
2.5 Estimating Relative Abundance Indices (RAIs) 
 
The value of using an RAI instead of only the number of detections at a camera is that RAIs 

adjust those detections by the number of days that camera was operational (O'Brien 2011). In 
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most applications, RAIs are calculated for individual cameras, then averaged across sites for a 

mean RAI:  

!"# = 	
∑ '(!)! 	× 	100-
"
!#$

. 										Equation	1 

Where (! is the number of independent detections at camera i, )! is the number of days camera i 

was operational, and N is the total number of cameras.  

 While the estimation of RAIs using Equation 1 is widespread (Johnson et al. 2006, 

O’Brien 2011, Gilbert et al. 2020, Tanwar et al. 2021), our RAIs were always negative-

exponentially distributed across study sites and seasons. Medians are a better summary statistic 

for skewed distributions, as means can be heavily biased by outliers. We therefore fit exponential 

distributions to RAIs of a study site using maximum likelihood estimation to estimate the rate 

parameter of the distribution, lambda (λ). The median M of an exponential distribution can be 

estimated by evaluating the integral of the probability density function from zero to M, then 

taking the logarithm of the reciprocal such that: 

7 = 	8 ln(2) 										Equation	2 

Finally, we used 1,001 iterations of nonparametric parametric bootstrapping (Efron and Tibshirani 

1993) to estimate the median RAI and associated standard error.  

 For random and off-road cameras, we used bootstrapping to estimate the median RAI and 

its standard error. For road cameras, we had to additionally account for the difference in 

detections between the pair of cameras at one location, since they were up to 100 meters apart and 

thus sometimes had variable numbers of detections. To estimate an RAI for one location with a 

pair of cameras, we simply took the average of the individual camera RAIs. The paired cameras 

often had similar numbers of detections, and if there was a large difference, then we assumed the 

average adequately represented the variation between them.  
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2.6 RAI comparisons 
 
To assess the importance of representative sampling and the influence of linear features on 

detection rates of ungulates, we first calculated RAIs from random cameras as a reference, 

unbiased estimate. We then calculated RAIs for road and off-road cameras, and compared these 

estimates to the random cameras. Note that all the cameras in this first analysis were within the 

southern SABZ study area (Figure 2-1). We then used linear mixed-effects models (Raudenbush 

& Bryk 2002) to test whether off-road and road RAIs were significantly different from random 

RAIs, with a random intercept for year. To better understand the differences between road and 

off-road RAIs alone, we expanded our study area and used linear mixed-effects models to 

compare differences in RAIs in the eastern SABZ, ULNP, and Sidatun study areas. In this second 

analysis, we used a random intercept for study area and, since we had multiple years of cameras 

in eastern SABZ, study year. 

 
2.7 Effects of human road traffic on relative abundance of prey 
 
To understand how detections of prey species on roads and trails were affected by the amount of 

human traffic on those linear features, we first estimated RAIs using the detections of humans, 

vehicles, and logging machinery at camera sites, using equation 1 above. These RAIs were 

summed together as a total human traffic index for each camera site. If the human traffic index 

was less than 75 detections per 100 days, that site was categorized as “low traffic”; if the index 

was equal to or greater than 75 detections per 100 days, the camera was categorized as “high 

traffic.” Because of the low sample of camera sites with high human traffic, we analyzed the 

relationship between prey RAIs and human traffic indices by including data from the years 2018-

19, 2019-20, and 2020-21, and across our three study regions. We additionally included indices 
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from camera sites in the Terney hunting lease, to the east of SABZ (Figure 2-1), for a total of 295 

camera sites. We then used linear regression to test for a significant effect of human traffic on 

individual prey species RAIs, as well as a combined prey RAI. 

 
2.8 Data processing and analysis 
 
RAIs were calculated using the R programming language in R (R Core Team 2022). After raw 

camera trap images were processed by field staff, detection data was produced in R using the 

camtrapR package (Neidballa et al. 2016). We used the fitdistrplus package in R to fit exponential 

distributions to the RAIs from different study sites (Delignette-Muller and Dutang 2015).  

 
3  |  RESULTS 
 
We deployed cameras at 262 different locations over three years across the three study sites, and 

estimated 53 separate RAIs across prey species, deployment strategies, and study sites (Table 2-

1). Seasons were each 60 days with the following dates: winter 2019-20, February 10 – April 10, 

2020; winter 2020-21, October 10 – December 10, 2021. Season 3, (TBD). We picked these dates 

to minimize changes in animal movement and thus detection rates, as abundance and movement 

are confounded when using RAIs (Broadley et al. 2019).  

In our comparison of RAIs estimated from cameras placed by representative sampling 

(“random”), targeting linear features for tiger monitoring (“road”), and restricting cameras to 150 

m from roads (“off-road”), our linear mixed-effects models found both road and off-road RAIs to 

be consistently higher than random RAIs (Table 2-2). For instance, our regression analysis of roe 

deer found both road RAIs (=%&'( = 1.66, SE = 0.07, p < 0.001) and off-road RAIs (=&))*%&'( = 

1.79, SE = 0.05, p < 0.001) were significantly greater than random RAIs (=%'+(&, = 0.87, SE = 

1.13), with road and off-road RAIs being roughly double the reference random RAIs. The 
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exception to this was red deer, with off-road RAIs (=%&'( = 1.30, SE = 0.09, p = 0.99) being 

nearly identical to the random RAIs intercept (=&))*%&'( = 5.77, SE = 6.05). 

 In our further comparison of road and off-road RAIs including eastern SABZ, Sidatun, 

and ULNP (Figure 2-1), our regression models found road RAIs were significantly greater than 

off-road RAIs (Table 2-3) for all species. The strongest difference was for sika deer, with road 

RAIs (=%&'( = 3.85, SE = 0.09, p < 0.001) being close to three times greater than off-road RAIs 

(=&))*%&'( = 1.42, SE = 0.14). The weakest difference was for roe deer, as road RAIs (=%&'( = 

0.30, SE = 0.02, p < 0.001) were only slightly greater than off-road RAIs (=&))*%&'( = 1.46, SE = 

0.55), though this difference was still significant.  

 In our assessment of the effects of human traffic on prey relative abundance, our analysis 

was limited because only 27 cameras (9%) of the 295 cameras classified as high traffic. Still, we 

found that high traffic generally had a negative effect on prey RAIs, both for individual species 

and for the combined prey index (Figure 2-4, Table 2-4). For instance, red deer RAIs decreased 

by over 50% on roads with high traffic (=-!.-	0%'))!1 = -5.66, SE = 2.36, p = 0.02) compared to 

roads with low traffic (=2&3	0%'))!1 = 10.19, SE = 0.72). In contrast, roe deer showed a slight 

increase in RAI estimates on roads with high traffic (=-!.-	0%'))!1 = 1.37, SE = 0.83, p = 0.10) 

compared to low traffic (=2&3	0%'))!1 = 2.74, SE = 0.25), though this difference was insignificant.  

 
4  |  DISCUSSION  

Many research techniques in biology depend on random sampling to obtain unbiased observations 

of the population of interest (Cochran 1977, Jolly 1979), and the recent models proposed to 

estimate densities of unmarked populations using camera traps are no exception (Gilbert et al. 

2020). For wildlife managers who wish to implement these viewshed density estimators, this 
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translates to significant amounts of resources spent deploying and retrieving cameras across 

challenging terrain (see Chapter 1). Because camera traps are typically placed on roads and trails 

to maximize the detections of certain species (O’Brien 2011), many researchers may be tempted 

to gloss over the assumption of representative sampling and place cameras on roads and trails 

anyways. Or, as in the case with tiger managers, they may wish to use “by-catch” images of prey 

species from tiger monitoring cameras as data to estimate prey abundance. We found clear 

evidence that placing cameras on roads and trails leads to greater detection rates of large 

ungulates (Figure 2-2, Table 2-2). This aligns with previous work in other systems that 

demonstrated higher detections for most species on roads versus trails (Cusack et al. 2015b), 

though the opposite is sometimes true (Tanwar et al. 2021). Even in our attempt to approximate 

randomness by moving 150-meters away from tiger monitoring cameras, these cameras 

collectively still had higher detection rates than random cameras for most species (Figure 2-2).  

The most probable cause of greater estimated RAIs at off-road cameras than random 

cameras was species’ selection for lower-elevation habitats. Our random cameras sampled across 

all elevations in our study area, while off-road cameras were restricted to relatively lower 

elevations in forested river valleys. Hebblewhite et al. (2014) found that all four prey species 

selected habitats with the same characteristics as these roads and trails where road cameras were 

placed. This makes sense as in winter 2019-20 in SABZ, low elevation areas had the quickest 

melting of snow and green-up, while during periods of snow in winters 2020-21 and 2021-22, 

prey species likely restricted their movements to lower elevations where there was less snow and 

wind and warmer temperatures. Some of our highest elevation random cameras had no detections 

of prey species. While many of our off-road cameras were placed on steep slopes, they still were 

not far from valley bottoms and therefore likely had higher capture probabilities than high-
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elevation random cameras. One possible solution would be to stratify the study area by elevation 

class and extend the 150 m distance for certain off-road cameras such that all elevation classes are 

adequately represented. However, this would also require more effort in planning and on the part 

of field staff, and reaching those high-elevation locations are the most time-consuming, tiresome, 

and dangerous.  

  Differences in detection rates between cameras are the main source of variance in 

unmarked density estimators (Palencia et al. 2021). This may be affected by differences in either 

actual local abundance or in animal movement patterns (Neilson et al. 2018, Broadley et al. 

2019). The greater detections at road cameras compared to off-road and random cameras are 

likely a result of selection for roads, and greater movement speeds on roads. Animals from 

diverse taxonomic groups are known to behave differently on roads compared to off-road (e.g. 

Roever et al. 2010). At our study sites, prey species likely used roads to cover the study area more 

efficiently and to avoid areas of deep snow. We expect wild boar especially used roads to travel 

large distances while investigating pine nut and acorn mast crop quality, and this was reflected in 

the higher wild boar RAIs on roads compared to off-road in ULNP (Figure 2-3). In contrast, we 

do not think the differences between off-road and random cameras were due to micro-site 

characteristics of the cameras, but instead had to do with spatial and temporal variation in 

abundance (e.g. avoidance of high-elevation areas). This emphasizes the importance of tools like 

random sampling in unmarked estimators to ensure the study area is sufficiently represented.  

 While different movement behavior on roads may have influenced the differences in RAIs 

between random cameras and road cameras, our analysis of traffic effects on RAI estimates 

indicate that human activity also decreases detection rates. Both wild boar and red deer RAIs 

decreased on roads that had high levels of human use (Figure 2-4, Table 2-4), though our sample 
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size of roads with high levels of use was small. When interpreting detection data from cameras 

placed on roads, researchers should consider the level of human use on those roads, and how that 

can bias their population-level inferences from detection data.  

 
5  |  CONCLUSION 

Many wildlife researchers and managers have wondered whether cameras placed on roads and 

trails can be used to estimate population size of unmarked animals. This is the case for many tiger 

conservationists, since they are already putting cameras on roads and trails to monitor tiger 

densities and obtain “by-catch” images of prey species in the process. Our results provide clear 

evidence that linear features like roads and trails bias detections of large ungulate prey species in 

the Russian Far East. What’s more, avoidance of human activity on those roads may confound 

truly lower abundance of prey. Camera-based methods to estimate densities of unmarked 

populations assume that (i) the area sampled by cameras does not affect animal movement, and 

(ii) that these collective viewshed areas are representative of the study area. Based on our results, 

road cameras violate both of these assumptions. If managers wish to implement these methods, 

they should not deploy cameras on roads. While we tested a more feasible deployment strategy 

with off-road cameras that likely met assumption i) above, RAIs from these off-road cameras 

were still higher than random RAIs. Random or other representative forms of sampling remain 

essential to the implementation of these camera-based estimators. We strongly recommend 

wildlife researchers account for this when planning studies of unmarked wildlife population.  
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7  |  TABLES & FIGURES 
 
Table 2-1. Summary of the seasons and number of cameras (N) for the comparison of RAIs between 
road, off-road, and random cameras. The dates of the years are as follows: 2019-20 (February 10 – 
April 10, 2020); 2020-21 (October 10 – December 10, 2020); 2020-21 (TBD). For the road and off-
road cameras, the left value describes the number of cameras used in the road-off-road comparison as 
opposed to the southern study area comparison only on the right. For instance, “31 | 14” indicates that 
31 road cameras were used for the road / off-road comparison, but only 14 road cameras were used in 
the road / off-road / random comparison.   

Study area Year N road N off-road N random 

SABZ 2019-20 0 31 | 14 35 

SABZ 2020-21 31 | 14 31 | 14 36 

UL Nat'l Park 2020-21 19 19 NA 

Sidatun 2021-22 30 30 NA 

Confirmed total:  80 | 14 111 | 28 71 
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Figure 1. Study sites within Central Sikhote-Alin, Russian Far East. Sikhote-Alin Biosphere 
Zapovednik (SABZ) and Udege Legend National Park (ULNP) are both protected areas and are 
colored yellow. Sidatun Hunting Lease (Sidatun) is represented in blue. Road and off-road cameras are 
in triangle shape, while random cameras are circles. Note that the locations between Seasons 1, 2, and 
3 for random and off-road cameras varied. Here we have combined road and off-road locations and 
presented only random locations from Season 3 for simplicity.   
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Figure 2-2. Comparisons of relative abundance indices (RAIs) for road and off-road cameras compared 
to random cameras. RAIs are the median of an exponential distribution fitted to camera-specific RAIs 
using maximum likelihood estimation. Error boars indicate standard error of the median RAI using 
1001 iterations of nonparametric bootstrapping.   
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Figure 2-3. Comparisons of relative abundance indices (RAIs) between road and off-road cameras for 
3 seasons in Sikhote-Alin Zapovednik (SABZ), as well as the Sidatun hunting lease and Udege Legend 
National Park (UL). RAIs are the median of an exponential distribution fitted to camera-specific RAIs 
using maximum likelihood estimation. Error boars indicate standard error of the median RAI using 
1001 iterations of nonparametric bootstrapping.   
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Table 2-2. Summary results from the linear mixed-effects model testing for significant differences in 
bootstrapped RAIs between random (the intercept, !!, in the regression model), road, and off-road 
cameras deployed in a southern study area in the Sikhote-Alin Biosphere Zapovednik. We used a 
random intercept for year to account for differences in RAIs for a given species between years. 
Asterisks indicate a significance level of p < 0.05.   
  Model formula Species Parameter Estimate SE p 

  RAI ~ deployment + (1 | year) Wild boar Random (!!) 6.70 7.02  

  Road 2.12 0.07 p < 0.001* 

  Off-road 0.92 0.05 p < 0.001* 

 Red deer Random (!!) 5.77   

  Road 1.30 0.09 p < 0.001* 

  Off-road -0.00 0.07 p = 0.99 

 Roe deer Random (!!) 0.87 1.13  

  Road 1.66 0.07 p < 0.001* 

  Off-road 1.79 0.05 P < 0.001* 

 Sika deer Random (!!) 2.84 4.06  

  Road 6.49 0.16 P < 0.001* 

  Off-road 6.84 0.12 P < 0.001* 
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Table 2-3. Summary results from the linear mixed-effects model testing for significant differences in 
bootstrapped RAIs between off-road (the intercept, !!, in the regression model), and road cameras 
deployed during two different years in eastern Sikhote-Alin Zapovednik, and one year each in Sidatun 
hunting lease and Udege Legend National Park . We used a random intercept for study area to account 
for differences in RAIs between study areas. Asterisks indicate a significance level of p < 0.05.   
  Model formula Species Parameter Estimate SE p 

  RAI ~ deployment + (1 | study area) Wild boar Off-road (!!) 1.17 0.59  

  Road 1.22 0.02 p < 0.001* 

 Red deer Off-road (!!) 3.19 1.72  

  Road 2.03 0.04 p < 0.001* 

 Roe deer Off-road (!!) 1.46 0.55  

  Road 0.30 0.02 p < 0.001* 

 Sika deer Off-road (!!) 1.42 0.14  

  Road 3.85 0.09 P < 0.001* 
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Table 2-4. Results from categorical regression testing for a significant effect of high human traffic (> 
75 vehicles / 100 days) on prey RAIs. Regression results are reported for each prey species. We did not 
include sika deer because they are virtually absent from our two study areas of Sidatun hunting lease 
and Udege Legend National Park. We also included the effects on a combined prey index (the sum of 
individual prey RAIs). Asterisks indicate a significance level of p < 0.05.  
  Model formula Species Parameter Estimate SE p 

  RAI ~ traffic_binary Wild boar Low traffic (!!) 11.85 1.34  

  High traffic -5.24 4.43 p = 0.24 

 Red deer Low traffic (!!) 10.19 0.72  

  High traffic -5.66 2.36 p = 0.02* 

 Roe deer Low traffic (!!) 2.74 0.25  

  High traffic 1.37 0.83 p = 0.10 

 Combined prey Low traffic (!!) 26.32 1.74  

  High traffic -10.67 5.76 p = 0.06 
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Figure 2-4. (a) Scatter plot showing the relationship between the combined human traffic index at 
road cameras, and a combined prey index (the sum of all prey species’ RAIs). Data are combined from 
295 camera locations across 3 years and 4 study areas (Sikhote-Alin Biosphere Zapovednik, Udege 
Legend National Park, Sidatun hunting lease, and Terney hunting lease, east of Sikhote-Alin 
Zapovednik). The dashed line indicates the traffic index (75) which divided our categories of traffic as 
low (≤ 75 vehicles / 100 days) or high (> 75 vehicles / 100 days). (b) Box plots showing the 
distribution of combined prey RAIs at roads categorized as having either low or high human traffic.  

a) b) 
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