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Shingleton, Audrey M.S., May 2022 Computer Science

SCULU: Subfamily Clustering Using Label Uncertainty (for transposable element families)

Chairperson: Travis Wheeler

Biological sequence annotation is typically performed by aligning a sequence to a database of
known sequence elements. For transposable elements, these known sequences represent subfamily
consensus sequences. When many of the subfamily models in the database are highly similar to each
other, a sequence belonging to one subfamily can easily be mistaken as belonging to another, causing
non-reproducible subfamily annotation. Because annotation with subfamilies is expected to give
some amount of insight into a sequence’s evolutionary history, it is important that such annotation
be reproducible. Here, we present our software tool, SCULU, which builds upon our previously-
described methods for computing annotation confidence, and uses those confidence estimates to
find and collapse pairs of subfamilies that have a high risk of annotation collision. The result is a
reduced set of subfamilies, with increased expected subfamily annotation reliability.
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CHAPTER 1 INTRODUCTION

Bioinformatics background

Genomes are comprised of genetic material that functions as instructions for how an organism

will grow and behave. It is stored as a string of nucleotides (DNA), with an alphabet of the

letters ’A’, ’C’, ’T’, and ’G’. These strings can be of varying lengths. For instance the human

genome is approximately 3 billion nucleotides long, whereas small viral genomes may only be a few

thousand nucleotides in length. Understanding the genetic material of an organism gives insight

into evolutionary history. Organisms that are related will have DNA sequences with more similarity

than those less related. An important part of gaining this insight relies on recognizing features in

the genome. This process is known as genome annotation.

Genome annotation assigns labels to nucleotide sequences. It is typically based on comparing

these sequences to a database of known sequence elements in a process called sequence alignment.

Scores are assigned to the aligned sequences, corresponding to the strength of the match, and labels

are assigned to the highest scoring matches.

TE subfamilies

Transposable elements (TEs) are mobile genetic elements that often replicate, leaving behind

an extensive trail of copies that result in wide-spread interspersed repetitive regions throughout

a genome (for reviews, see [1, 2]). For the purposes of genome annotation, the remnant copies

found in a genome are typically organized into families within a library of TE families, such as

Repbase [3] or Dfam [4]. In such a library, each family represents a collection of instances resulting

from a distinct history. A family history may involve gradual mutation of an active (”master”) TE

such that copies are all slightly different from each other at their time of creation; such familes are

often represented by a single element in a TE library, which captures a mixture of ancestral forms.
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Alternatively, a family history may be punctuated, with a master producing a large number of

identical copies at each of several lineage bursts; it is common for a library to break such a family

into subfamilies, with each representing the remnants of such a replication burst.

The task of splitting family instances into subfamilies often boils down to clustering sequences

into groups such that there is high similarity within a group, and differentiation between groups.

This often entails identification of shared co-segregating mutations [5, 6, 7], but can also involve re-

construction of ancestral relationships [8], inference of similarity networks [9], or tree-based entropy

measures [10].

Because annotation with subfamilies is often presumed to provide a sense of a sequence’s his-

torical context, it is important that such annotation be reproducible. We recently evaluated the

reliability of genome annotation with common subfamilies using RepeatMasker and the currently-

available Repbase library of TE family/sub-family consensus sequences for human TEs. To assess

reliability, we considered natural replicate copies (i) resulting from segmental duplications in the hu-

man genome, and (ii) based on homologous copies shared by human and chimpanzeec̃itediscordance.

We found that more than 10% of replicates found in segmental duplications are annotated as be-

longing to different subfamilies, both in young families (Alu) and old (MIR, L1). A similar level of

discordant classification was observed in homologous TE instances shared by human and chimp.

One cause of high rates of non-reproducible subfamily annotation is that subfamily models

are so similar to each other that their matching sets are highly intersected: a sequence properly

belonging to one subfamily can easily be mistaken as belonging to another. When subfamily models

are particularly similar, it may take only a few random mutations to flip adjudication preference

from one subfamily to the other. We found that nearly half of all problematic Alu annotations fall

into this category (the others may be due to forces such as recombination and homologous gene

conversion).

Here, we present a new method designed to increase subfamily annotation reliability, imple-

mented in software called SCULU. As input, SCULU is provided with consensus sequences for a

collection of subfamilies belonging to a single primary family, along with a set of instances for each
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subfamily. It identifies subfamilies with high risk for annotation collision, and merges them; the

result is a reduced set of subfamilies, with increased expected subfamily annotation reliability. We

anticipate that SCULU will prove useful as a post-processing step in largely-automated TE cura-

tion pipelines, but it also supports downstream manual curation of subfamilies by producing all

subfamily merging information, allowing a manual curator to override some automated decisions.

SCULU’s approach is based on our previously-published method for computing annotation

confidence in the face of multiple competing annotations [11, 12], and it is released as open source

software at https://github.com/TravisWheelerLab/sculu. We demonstrate the utility

of SCULU by applying it to (i) human Alu subfamilies and to (ii) members of the metulj family

found in multiple Heliconius (butterfly) genomes [13].

https://github.com/TravisWheelerLab/sculu
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CHAPTER 2 METHODS

The guiding principle of SCULU is that subfamilies should be reliably separable - if a sequence

properly belongs to one subfamily, then it should be very unlikely to be assigned to some other sub-

family due to common chance events. SCULU achieves this goal by identifying pairs of subfamilies

for which separable assignment is unreliable; it merges such pairs into a single subfamily, repeating

until convergence. SCULU identifies unreliably-separable pairs empirically, by aligning instances of

each subfamily to all of the subfamily consensus sequences, and computing a score-based estimate

of annotation confidence to each instance. If a large number of instances indicate low confidence

in separation of two subfamilies, they are merged. Below, we provide details of that process.

Confidence of subfamily assignment for a single sequence

Alignment of all sampled subfamily instances to all subfamily consensus sequences is performed

using cross match[14] which supports complexity adjusted scoring and the custom scoring matrices

used to align and annotated TE instances in RepeatMasker. The cross match tool produces an

alignment score for each aligned instance-consensus pair; this score corresponds to the odds ratio

of (i) the probability of observing the sequence t if it is homologous to the subfamily qi vs (ii)

the probability of observing t under a random (non-homology) model of sequence composition.

Specifically, the score is a scaled logarithm of that odds ratio. Due to the fact that these alignment

scores correspond to probabilities, we are able to compute a measure of confidence that a specific

sequence belongs to a specific subfamily. The confidence in a particular assignment can be computed

as a function of its alignment score relative to the scores of all competing candidate annotations

for that sequence (see [12] for derivation).
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Conf(qi|t) =
2score(t,qi)/λ∑
j 2

score(t,qi)/λ
(2.1)

An extreme example of the consequence of this method of computing annotation confidence is

that if two candidate subfamily annotations produce alignments to the target sequence with the

same score, then the subfamilies will evenly split confidence (for example, if no other subfamilies

produce an alignment, then the confidence for each will be 50%). The ability to compute these

confidence values allows SCULU to assign a measure of confidence to each possible subfamily

assignment. The result is that, for each TE family instance, instead of giving a single classification

based on the subfamily with the best alignment score, SCULU can produce a listing of confidences

for possible annotations from all subfamilies it might have been assigned to.

Confidence-based separability of two subfamilies

Suppose that we have a collection of TE family instances that are aligned to the consensus

sequences for subfamily A and subfamily B. For each sequence in the collection, we can compute

the confidence of assignment to subfamilies A and B.

One mechanism for recognizing failure to discriminate between the two subfamilies would be

to identify the fraction of sequences that did not have sufficiently-strong separation between their

confidences. Let Ct(A) be the computed confidence that sequence t belongs to subfamily A, and

Ct(B) be the confidence that t belongs to subfamily B. If one of these confidence values is not higher

than the other by some threshold p, then this suggests that these subfamilies may not be discernible.

For example, and without loss of generality, suppose we set k = 1
3 and that Ct(A) · k > Ct(B) (so

the confidence of assignment to subfamily A is more than 3x the confidence of subfamily B) - we

may say that sequence t is separable because it’s assignment to one subfamily is quite confident. We

say that t has a ‘clear winner’. Meanwhile, some other sequence s may show that Cs(A) ·k < Cs(B)

- in this case, we say that s does not have a clear winner, and call this an ‘uncertain pair’. After

computing confidence values for each TE instance in our collection, if some threshold fraction of

these instances do not exhibit a clear winner, then we have reason to merge subfamilies A and B.
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Confidence-based separability for a collection of subfamilies

We now extend the approach to assume alignments to a collection of subfamilies. In this

scenario, each TE instance will align to many subfamily consensus sequences, yielding a collection

of confidence values. In order to determine if a pair of subfamilies has sufficiently strong separation,

we define a threshold based on the maximum confidence value from the collection.

Suppose there are n alignments for subfamilies (a1, a2, ..., an) to a TE instance t, and let Mt =

max1..nCt(ai). If no other confidence values for t are above a defined fractional threshold p ·Mt,

we say that t has a clear winner. On the other hand, if some other subfamily presents a confidence

greater than p·Mt, then sequence t is said to have unclear annotation. All subfamilies exceeding this

confidence threshold are added to an ‘unclear winner set‘ for t, such that each pair of subfamilies

in the set can be said to be an ‘uncertain pair’ for t.

Subfamily pair independence

To determine if a subfamily pair should be merged, SCULU computes a measure of the inde-

pendence between the subfamilies in this pair. Let wi be the number of times subfamily i is a clear

winner over all test sequences, and let uij be the number of times subfamily i is in an uncertain

pair with subfamily j. SCULU computes the independence of subfamily pair (i, j) as:

Independence(i, j) =
wi

wi + uij
(2.2)

If subfamily i is in no uncertain pairs with subfamily j, then Independence(i, j) will be 1;

conversely, if subfamily i is not a clear winner for any TE instance, and shares an uncertain pair

with j on at least one instance, the Independence(i, j) will be 0.

Collapsing unreliable subfamilies

SCULU computes the pairwise independence value for each pair of uncertain subfamilies, and

produces a list of pairs sorted in ascending independence value; ties are broken by uncertain pair

count uij (descending). In the first merging stage, the pair with lowest independence (and in case
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of ties, largest uij) is marked to-be-merged. SCULU proceeds along the sorted list, identifying all

additional pairs (i′, j′) for which neither i′ nor j′ have yet been marked to-be-merged, and adding

them to the to-be-merged set. Traversal of the ordered list stops when Independence(i, j) rises above

a parameterized threshold. All resulting to-be-merged pairs are collapsed into a new subfamily, in

a procedure described in the next paragraph. After this set is collapsed, which concludes a single

iteration in SCULU, the new subfamily elements are each aligned to the full set of TE instances,

then confidence and Independence values are computed for all new pairs. The process is repeated

(sorting, collapsing, aligning, ...) until no pairs with below-threshold Independence remain. The

result is a proposed collection of more discernible subfamilies based on these results.

Collapsing of a pair (i, j) of subfamilies is achieved by (1) performing a multiple sequence

alignment (MSA) of all instances of subfamilies i and j, using the MSA tool MAFFT[15]. A

consensus sequence for the subfamily is computed based on the merged MSA (see next section).

Then the pair of consensus sequences for i and j is removed from the library, and replaced with the

consensus sequence for the merged subfamily. The resulting consensus sequences are then handed

back into the sequence alignment approach that was used to produce our collection of candidate

alignments in the first place. To minimize rework, all alignments not involving subfamilies i and

j are retained, all alignments involving i or j are removed, and alignments are introduced for the

new subfamily.

Computing the consensus for a merged subfamily

The input to SCULU consists of two related collections: (i) a set of instances of each subfamily,

and (ii) a consensus sequence for each subfamily. The consensus sequence serves as the representa-

tive of each subfamily during the process of computing annotation confidence/independence. When

merging two subfamilies, SCULU must produce a consensus sequence for the new subfamily. It does

this by computing an MSA of the collected instances of the two merged subfamilies, then producing

a consensus based on that MSA. A simple mechanism for computing a consensus is to represent a

MSA column with the most frequently occurring letter in that column. This approach can produce
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biased results if the MSA contains a cluster of highly-related sequences; to overcome this, we im-

plemented a method that uses the hmmbuild tool in HMMER [16] to compute a profile that applies

Henikoff position-based weights [17] to overcome such bias, then produces the consensus using the

tool hmmemit.

However, in the case of transposable element subfamilies, subfamily instances have been sub-

jected to long-standing neutral mutations, and in particular show signs of rampant CpG deamina-

tion, in which ‘CG’ dinucleotide pairs mutate to ‘TG’ with exaggerated frequency. The result is

that a naive consensus calling may place a ‘T’ in a column that was originally the ‘C’ of a ‘CG’

dinucleotide. To overcome this, SCULU by default produces consensus sequences using the Linup

tool within RepeatMasker [7], which specifically accounts for these mutations. Because the choice

of ‘T’ or ‘C’ at CpG sites will influence alignment scores in an essentially random fashion, SCULU

also by default ignores all alignment score contributed by positions aligned to ‘CG’ dinucleotides

in the consensus.

Some families end in a poly-A tail, and variable-length Poly-A tails in subfamily consensus

sequences can lead to length-biased annotation confidence. To overcome this, SCULU also includes

the option to require that all subfamily consensus sequences share identical-length poly-A tails.
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CHAPTER 3 RESULTS

To evaluate the efficacy of SCULU, we applied our methods to three different collections of sub-

family consensus sequences using our default merging parameters of k = 1
3 and Independence(i, j) <

50% except where noted in the text. These collections consisted of (i) 45 Alu subfamilies as present

in Repbase, (ii) 195 Alu subfamilies produced by CoSeg [5], and (iii) 2,483 metulj subfamilies from

Heliconiine butterflies [13]. In all cases, a multiple sequence alignment (MSA) of instances of each

subfamily member is provided as input to SCULU. All tests were performed on a 3.2GHz Intel

Xeon E5-2630, with 32 cores and 128 Gb RAM.

For both sets of Alu subfamilies, we sampled the 50 longest sequence instances from each

subfamily as our initial test set for alignment. Due to the size of the metulj dataset, we sampled only

the 10 longest sequence instances from each subfamily for our test set. The metulj subfamily MSAs

present a surprising challenge, in that some instances appear in multiple subfamily MSAs. Since

we wish each test sequence to be unique, duplicate instances were removed. All alignments were

performed using using the alignment software cross match, along with with a custom nucleotide

scoring matrix used in RepeatMasker. 25p41g 3.1:
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Table 3.1: Nucleotide alignment scoring matrix 25p41g.

FREQS A: 0.295 C: 0.205 G: 0.205 T 0.295

A R G C Y T K M S W N X

8 1 -6 -13 -14 -15 -11 -2 -10 -3 -1 -27

2 2 1 -13 -13 -14 -6 -5 -5 -5 -1 -27

-2 3 10 -13 -13 -13 -1 -8 -1 -8 -1 -27

-13 -13 -13 10 3 -2 -8 -1 -1 -8 -1 -27

-14 -13 -13 1 2 2 -5 -6 -5 -5 -1 -27

-15 -14 -13 -6 1 8 -2 -11 -10 -3 -1 -27

-9 -5 -1 -9 -6 -2 -1 -9 -5 -5 -1 -27

-2 -6 -9 -1 -5 -9 -9 -1 -5 -5 -1 -27

-8 -4 -1 -1 -4 -8 -4 -4 -1 -8 -1 -27

-3 -6 -10 -10 -6 -3 -6 -6 -10 -3 -1 -27

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -27

-27 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27
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Repbase Alus

The Alu family is a primate-specific family of non-autonomous transposable elements with more

than 1 million copies making up roughly 10% the human genome. They have been extensively stud-

ied, and have been the subject of a variety of attempts at devising reasonable subfamily sets. One

such effort [5] served as the basis of the CoSeg software now used within RepeatMasker, and pro-

duced a collection of 195 Alu subfamilies. The Repbase database of transposable elements [3]

contains 45 Alu subfamilies, with the reduction resulting from extensive manual curation [personal

communication, Arian Smit]. Because this Repbase Alu set is the result of manual curation that

was in part intended to remove subfamilies with questionable distinctiveness, little overlap between

families is expected. Even so, our earlier analysis [11] found that ∼ 14% of Alu biological replicates

showed discordant annotation across replicates, meaning that some cross-contamination is evident.

We applied SCULU to this set, to gain insight into its merging patterns. With default settings, we

find that SCULU merges 11 pairs of subfamilies. In practice, we do not expect that all of these

subfamilies should be removed from the Repbase dataset, because they may be included specifi-

cally for reasons that may override the desire for annotation independence; even so, this analysis

highlights the fact that SCULU generally conserves most subfamilies, and effectively identifies a

few that demonstrate risk of cross-matching behavior.

Considering the merges in order, the first merged subfamily pair is (AluY, AluYm1). We

sampled 50 instances from each subfamily, so the expectation is that each subfamily will be a clear

winner 50 times over all of the test sequences. However, AluY was never a clear winner, and was

part of an uncertain winner set 131 times. AluYm1 was a part of 102 uncertain winner sets out of

those 131. Equation 2.2 indicates and Independence(AluY,AluYm1) = 0. Meanwhile, AluYm1 was

a clear winner 19 times, so that Independence(AluY,AluYm1) = 19/(19+102) = 0.157. Note that

the Independence values are not symmetric. In this case, both subfamilies have sufficient evidence

of being unreliable with each other making this a reasonable merge.

The second Repbase Alu subfamily merge selected by SCULU is AluSg and AluSz. AluSg was a

clear winner two times, and was part of 38 unclear winner sets. Meanwhile, AluSz was a clear winner
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35 times, and was part of an unclear winner set 156 times, AluSg and AluSz were both found in the

same unclear winner set 22 times. As a result, Independence(AluSg,AluSz) = 2/(2+22) = 0.083

and Independence(AluSz,AluSg) = 35/(35+22) = 0.614. Though Independence(AluSz,AluSg) is

safely above the merge threshold, the same is not true of Independence(AluSg,AluSz). Essentially,

this analysis calls for AluSg to be merged into AluSz, since AluSg is not sufficiently independent

of AluSz.

We find it instructive to explore the unclear winner sets for each of the merged subfamilies 3.2.

AluSg was part of 38 unclear winner sets; for 10 sequences, only one other subfamily was in

contention for a confidence annotation, but in some cases many more subfamilies were within the

threshold confidence fraction:

Table 3.2: Distribution of the unclear winner set sizes containing AluSg.

Uncertain winner set size Counts

2 10

3 6

4 9

5 3

6 6

12 1

13 1

19 1

20 1

Meanwhile, AluSz was part of 156 unclear winner sets, mostly with sizes of 2-4 3.3:
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Table 3.3: Distribution of the unclear winner set sizes containing AluSz.

Uncertain winner set size Counts

2 63

3 49

4 28

5 6

6 6

8 1

12 1

13 1

19 1

While SCULU suggests a few merges for Repbase Alu subfamilies, most pairs are not merged;

we investigate an example in which SCULU choose to reject the merge of the ’uncertain pair’

(AluYi6 4d, AluYf1). AluYi6 4d was a clear winner 46 times and was found to be in an ‘unclear

winner set’ 55 times. This means that when AluYi6 4d showed high enough confidence for a test se-

quence, it was the clear winner of that sequence about half of the time. The specific pair (AluYi6 4d,

AluYf1) shared an unclear winner set 33 times, so that Independence(AluYi6 4d, AluYf1) =

46/(46+33) = 0.582. For the inverse relation, AluYf1 was a clear winner 118 times (more than

double the expected 50 from its representative instances), so that Independence(AluYf1,AluYi6 4d)

= 118/(118+33) = 0.781. Since both relations exceed the independence threshold, the pair is not

merged.

The runtime of SCULU on this dataset was 10 minutes and 28 seconds and required 2 iterations
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to reduce the set of 45 subfamilies to 33. The following are the selected merges (in order) 3.4:

Table 3.4: Repbase Alu merging statistics.

Subfamily pair w i w j u ij Independence(i,j) Independence(j,i)

AluY,AluYm1 0 19 102 0 0.157

AluSg,AluSz 2 35 22 0.083 0.614

AluSq2,AluSq 7 53 55 0.113 0.491

AluSx,AluSx1 14 23 77 0.154 0.230

AluYk3,AluYh3 18 48 87 0.171 0.356

AluYh7,AluYh9 15 16 46 0.246 0.258

AluSx3,AluSx4 8 24 22 0.267 0.522

AluSg4,AluSg7 10 50 24 0.294 0.676

AluYe6,AluYe5 20 47 32 0.385 0.595

AluJr,AluJo 20 27 27 0.426 0.500

AluYk2,AluYk4 20 18 23 0.474 0.535

AluYk11,AluYj4 1 267 5 0.167 0.982

SCULU’s default merging parameters are k = 1
3 and Independence(i, j) < 50%. We explored

the impact of altering these parameters, and found that the merging results are fairly resilient to

modest changes 3.5:
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Table 3.5: Repbase Alu subfamily output set sizes.

Independence

50% 60% 70%

1/4 31 30 27

k 1/3 33 30 27

1/2 36 34 31

CoSeg Alus

We also sought to understand how SCULU would perform on the original set of 195 subfamilies

identified by CoSeg. With default settings, SCULU reduced the number of subfamilies to 124.

Each Repbase subfamily maps to a distinct CoSeg subfamily, except in cases mirroring the merges

identified in the previous section. The runtime of SCULU on this dataset was 11 minutes and 27

seconds and 2 iterations were required to reduce the set of 195 subfamilies to 124. Merging results

were largely impervious to parameter changes - increasing the Independence value threshold did not

provide significantly more merges, nor did changes in k (the parameter that influences the counts

of the ’uncertain pairs’) 3.6:
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Table 3.6: Coseg Alu output set sizes.

CoSeg Alu subfamily output set sizes

Independence

50% 60% 70%

1/4 117 111 107

k 1/3 124 117 110

1/2 133 126 120

Metulj

We also evaluated the performance of SCULU on a dataset with many more subfamilies, and

with much less analytical history: the metulj subfamilies from Heliconius (butterfly) genomes [13].

The metulj family represents a highly-abundant class of SINE transposable elements, and has been

clustered into a remarkably-large 2,493 subfamiles. One suggestion that the subfamilies are not

entirely independent of each other is that the distributed dataset of subfamily instances contains

numerous cases of redundancy, in which a single instance is included in the MSAs of multiple

subfamilies. With default parameters, SCULU collapses the initial set down to 334 independent

subfamilies. While this is still quite a large subfamily set, SCULU automates a massive amount of

merging, making it much easier for this set to be further reduced with manual input if needed. In

the resulting set, 221 of the initial subfamilies were not merged with any other subfamilies, meaning

that a mere 9% of the initial metulj subfamilies were considered to be reliably separable on their

own. Of the subfamilies that were merged, a majority only required a single merge in order to meet

our standards of Independence. However, in some cases SCULU merged an extremely large amount

of subfamilies together to meet our thresholds - in the most extreme case, one merged subfamily

proposed by SCULU consisted of 908 of the initial subfamilies, about 36%. The table below shows
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the distribution of the number of merges for each subfamily in the resulting output set 3.7:

Table 3.7: Distribution of the number of merges in an output subfamily.

Merge count Frequency

1 221

2 99

4 2

10 1

12 1

18 1

22 1

40 1

68 1

76 1

82 1

190 1

284 1

346 1

908 1

The metulj data exemplifies the value in SCULU’s approach of collapsing multiple non-overlapping
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’uncertain pairs’ in each iteration, rather than performing only a single merge per iteration. Given

n subfamilies and m test sequences, SCULU will read in n ·m alignments. For each test sequence,

up to n2

2 independence value calculations are performed. As a single independence calculation takes

O(1) work, each iteration of SCULU will perform O(mṅ2) work, regardless of the number of pairs

that need to be merged. Since the amount of work per iteration is high, it is beneficial to make

multiple merges per iteration, to reduce the number of times SCULU must read in new alignments

and calculate new Independence values. With the multi-merging approach implemented in SCULU,

only 73 iterations were required, rather than the 2,149 that would be required for a naive merging

approach 3.8.

Table 3.8: Distribution of the number of pairs merged per iteration.

Pairs merged per iteration Number of iterations

1-10 49

11-50 12

51-150 8

151-300 2

300+ 2

The runtime of SCULU on this dataset was 41 hours, 21 minutes and 47 seconds and required

73 iterations to reduce the set of 2,483 subfamilies to 334 3.9.
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Table 3.9: Metulj subfamily output set sizes.

Independence

50% 70%

k 1/4 278 256

1/3 334 275
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CHAPTER 4 DISCUSSION

We have demonstrated the efficacy of SCULU on multiple collections of subfamily consensus

sequences, and have shown that it produces reasonable results for extremely large collections of

subfamilies. The output subfamily set sizes and proposed merges are fairly stable with parameter

changes.

The methods in SCULU are designed to work for subfamilies that can be represented by at

least 10 near full length sequence instances. This makes it suitable for relatively young subfamilies,

but may not be immediately applicable to families whose representatives are mostly fragments.

SCULU proves to be a useful tool as an initial first pass for automating the process of reducing

subfamily sets based on annotation confidence. Users can then use the results and accept or

reject the proposed merges. For instance, even if a subfamily pair was considered to be unreliable

by SCULU, it may still be useful to keep them separate given expert knowledge of a family’s

evolutionary history.

While the development of SCULU was motivated by TE-specific subfamily classification, and

all experiments are constrained to this domain, we note that the method is sufficiently general that

it may prove useful in curating other hierarchically clustered datasets as well, such as exploring the

seperability of families sharing the same clan in the Pfam [18] database of protein domains or the

Rfam [19] database for non-coding RNA families.
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