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ABSTRACT 

 

  Anthropogenic habitat destruction has isolated innumerable populations that now face 

increased extinction risk due to demographic and genetic factors. Although often the best 

strategy, restoring connectivity can be challenging or even harmful. Such is the case for 

westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT) in the Missouri River basin, which 

are limited to completely isolated populations. Nonnative species threaten WCT in connected 

watersheds and barrier removal could be detrimental. My dissertation examines trade-offs and 

strategies for the management of isolated WCT. I first examined how nonnative trout species and 

climate change influence the distribution of WCT using a multispecies, dynamic occupancy 

model parameterized with 21,917 surveys collected over 30 years. I predicted that the future 

distribution of WCT will decline by 16%, primarily due to warming water increasing the 

distributions of harmful nonnative species. I next asked whether genetic metrics indicated that 

isolated WCT populations are at risk of inbreeding depression. I found very low effective 

population sizes (Ne < 25) in two of five WCT populations, suggesting risks of inbreeding 

depression could be high. A promising conservation strategy is to restore gene flow into small 

populations, which can increase vital rates and, ultimately, persistence probability (i.e., genetic 

rescue). To examine genetic rescue as a conservation strategy for WCT, we first conducted a 

literature review to examine what aspects of genetic rescue remain uncertain, including the 

duration and magnitude of genetic rescue and when gene flow may reduce fitness. Finally, we 

conducted an experimental test of genetic rescue in four isolated WCT populations. In the two 

smallest populations, we found that F1 hybrids had a 71% and 379% increase in fitness relative 

to residents, suggesting genetic rescue occurred. However, in the two larger populations, we 

found minimal evidence for genetic rescue. Overall, this research demonstrates that isolation 

likely poses risk to WCT, but removing barriers could pose a far greater risk owing to increased 

interactions with nonnative trout species. These results provide further evidence that when 

restoring connectivity is not an option genetic rescue is a powerful conservation strategy for at-

risk populations of diverse taxa.  

  



     iii 

ACKNOWLEDGEMENTS  

 

I would like to start by thanking my advisor, Dr. Andrew Whiteley. It is hard to imagine a better 

mentor for my PhD research. Andrew provided the perfect balance between giving me trust and 

freedom and always being available when I needed guidance. I owe a huge thanks to my 

Committee Members, Dr. Lisa Eby, Dr. Paul Lukacs, Dr. Gordon Luikart, and Dr. Ryan Kovach, 

all of whom helped with my development as a scientist both during comprehensive exams and 

throughout my PhD. I would also like to thank my undergraduate advisor, Dr. David Tallmon, 

who help to start my career as a scientist. 

This research would not have been possible without several agency partners. Lee Nelson, 

Ron Spoon, Jim Olsen, Joseph Hupka, Allison Pardis, and Jason Mullen from Montana Fish, 

Wildlife, and Parks helped with choosing study populations and translocating fish for the genetic 

rescue study. Clint Muhlfeld, Timothy Cline, and Robert Al-Chokhachy from the USGS, and 

David Schmetterling from Montana FWP helped with the design and writing of my chapter on 

WCT distributions. Diane Whited from the Flathead Biological Station helped with extensive 

GIS analyses and made gorgeous maps for my research. This research was funded by grants from 

the National Science Foundation and the Climate Adaptation Science Center. The Franke 

Graduate Fellowship and Northwest Climate Adaptation Science Center Fellowship also 

provided generous support that allowed me to focus on my research.  

Many UM students and employees were also instrumental to my work. Sally Painter, 

Angela Lodmell, and Steve Amish from the UM Conservation Genetics Lab had incredible 

patience as I asked never-ending questions about genetic lab protocols and bioinformatics. Julia 

Crocker, Marcella Cross, Elise Baker, Phil Douchinsky, Vinny Hughes, Tanner Kohal, James 

Frakes, Michael Krummel, and Anthony Dangora helped with collecting an exceptional dataset. 

The Whiteley Lab: Zak Robinson, Colter Feuerstein, Kaeli Davenport, and Anthony Dangora, 

provided endless intellectual stimulation.   

Finally, I would like to thank my friends and family for making my PhD possible. The 

‘LD Crew’ Jeff Strait, Zak Robinson, Seth Smith, Anthony Dangora, and Sam Pannoni helped to 

make my PhD a blast, both during work and play. Hannah Walker was always supportive and 

had never-ending patience as I lost my mind in the depths of soft selection. My entire family also 

showed tremendous support, including Rick Nelson, Lorna Corrigan, Shawn Corrigan, and 



     iv 

Shannon Corrigan. Most of all, I would like to thank my brother, Conor Bell, my dad, Guy Bell, 

and my mom, Lisa Corrigan, and of whom provided endless support, not only encouraging me to 

follow my passion for ecology, conservation, and evolution but also taking time to understand 

my research and discuss it on a high level.  

  



     v 

TABLE OF CONTENT 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................... iii 

CHAPTER 1: Introduction and overview ....................................................................................... 1 

CHAPTER 2: Climate change and expanding invasive species drive widespread declines of 

native trout in the northern Rocky Mountains, USA ...................................................................... 7 

Abstract ....................................................................................................................................... 7 

Introduction ................................................................................................................................. 7 

Results ....................................................................................................................................... 10 

Local persistence and colonization probabilities .................................................................. 10 

Past and future shifts in distribution sizes............................................................................. 10 

Drivers of distributions shifts................................................................................................ 12 

Discussion ................................................................................................................................. 13 

Methods..................................................................................................................................... 16 

Study region and delineation of stream segments................................................................. 16 

Fish surveys .......................................................................................................................... 17 

Covariates ............................................................................................................................. 18 

Analyses ................................................................................................................................ 19 

Model convergence and assessment ..................................................................................... 22 

Past and future occupancy predictions and sensitivity analysis............................................ 22 

CHAPTER 3: Demographic drivers of small effective population sizes in isolated trout 

populations .................................................................................................................................... 30 

Abstract ..................................................................................................................................... 30 

Introduction ............................................................................................................................... 30 

Methods..................................................................................................................................... 33 

Study populations and sampling procedures......................................................................... 33 

Bioinformatics and genotyping ............................................................................................. 33 

Individual identification and pedigree construction ............................................................. 35 

Demographic modeling ......................................................................................................... 36 

Life history parameters and life table construction............................................................... 38 

Number of mature adults (Nc) ............................................................................................... 39 

Effective number of breeders (Nb) and effective population size (Ne) ................................. 39 



     vi 

Results ....................................................................................................................................... 41 

Variation in life-history traits................................................................................................ 41 

Nb estimates and Nb to Nc ratios ........................................................................................... 42 

Ne estimates, Nb/Ne, and Ne/Nc ............................................................................................. 42 

Discussion ................................................................................................................................. 43 

CHAPTER 4: The exciting potential and remaining uncertainties of genetic rescue ................... 51 

Abstract ..................................................................................................................................... 51 

The promise of genetic rescue and calls for a paradigm shift................................................... 51 

The definition of genetic rescue ................................................................................................ 52 

The complex reality of genetic rescue ...................................................................................... 53 

Uncertainties surrounding genetic rescue ................................................................................. 54 

What is the magnitude of genetic rescue?............................................................................. 54 

What is the duration of genetic rescue? ................................................................................ 55 

When will outbreeding depression occur? ............................................................................ 56 

When will outbreeding depression increase the probability of population extinction? ........ 57 

Can native ancestry be preserved following genetic rescue?................................................ 58 

Genomics and genetic rescue .................................................................................................... 58 

Concluding remarks: The path forward for genetic rescue ....................................................... 59 

Glossary .................................................................................................................................... 62 

Box 1. Expanding the definition of genetic rescue and providing a framework for its 

evaluation .................................................................................................................................. 63 

Box 4-2. The mystery on Isle Royale ....................................................................................... 65 

Box 4-3. Intermediate optima in population divergence and number of migrants ................... 67 

CHAPTER 5: Experimental test of genetic rescue using inbred source populations in imperiled 

trout populations ........................................................................................................................... 69 

Abstract ..................................................................................................................................... 69 

Introduction ............................................................................................................................... 70 

Results ....................................................................................................................................... 72 

Effect of gene flow on genetic composition ......................................................................... 72 

Effect of gene flow on vital rates and population growth rate .............................................. 72 

Comparison of genetic rescue across populations ................................................................ 73 

Discussion ................................................................................................................................. 74 

Methods..................................................................................................................................... 77 



     vii 

Study Populations and Translocations .................................................................................. 77 

Bioinformatics, Filtering, and Genotyping ........................................................................... 78 

Genetic metrics and analyses ................................................................................................ 79 

Component and composite fitness ........................................................................................ 80 

Bayesian model analysis ....................................................................................................... 82 

REFERENCES ............................................................................................................................. 86 

APPENDIX A. Chapter 2 Supplementary Materials .................................................................... 99 

APPENDIX B. Chapter 3 Supplementary Materials .................................................................. 114 

APPENDIX C. Chapter 5 Supplementary Materials .................................................................. 115 



     1 

CHAPTER 1: Introduction and Overview 

 

Freshwater ecosystems contain a considerable portion of global biodiversity yet are among the 

most threatened ecosystems on earth (Dudgeon et al. 2006, Tickner et al. 2020). Key 

anthropogenic threats for freshwater ecosystems include climate change, invasive species, habitat 

loss, and habitat fragmentation (Su et al. 2021). Importantly, the dendritic nature of stream 

networks exposes them to severe human-driven habitat fragmentation through the construction of 

water withdrawals, culverts, and dams (Fagan 2002, Gido et al. 2015). Habitat fragmentation 

threatens populations by preventing critical life-history stages that require movement to other 

water bodies and by reducing or eliminating demographic and genetic connectivity, often forcing 

populations to persist in complete isolation (Brauer and Beheregaray 2020).  

Small, isolated populations face increased extinction risk in part due to genetic factors 

(Soulé and Mills 1998). Small populations tend to have reduced effective population sizes, and 

thus lose genetic variation at a rapid rate. This is concerning because genetic variation 

determines a population's ability to adapt to environmental changes (Kardos et al. 2021). 

Additionally, the frequency of inbreeding increases in small populations, which can expose 

deleterious recessive alleles (Charlesworth and Willis 2009), and, in turn, reduce vital rates and 

potentially population growth rate (Bozzuto et al. 2019). Innumerable isolated populations are 

likely at risk from genetic factors (Ralls et al. 2018).  

A promising conservation strategy for small, isolated populations is to mediate gene flow 

to alleviate genetic problems (Tallmon et al. 2004, Whiteley et al. 2015b). Gene flow can 

increase genetic variation, and allow for adaptive responses to environmental change (Bell and 

Gonzalez 2009, Gonzalez et al. 2012), potentially increasing long-term persistence. Additionally, 

gene flow can alleviate inbreeding depression, leading to increased vital rates, population growth 

rate, and, ultimately, persistence probability (i.e., genetic rescue). Attempting genetic rescue is a 

promising conservation strategy and has contributed to several successful conservation efforts 

(Madsen et al. 1999, Hogg et al. 2006, Johnson et al. 2010, Weeks et al. 2017). However, 

assisting gene flow to promote genetic rescue remains rare as a conservation strategy (Frankham 

et al. 2017). Some have argued that we need a paradigm shift in the genetic management of small 

populations away from keeping populations in isolation to maintain genetic uniqueness toward 



     2 

more widespread genetic rescue attempts (Frankham et al. 2017, Ralls et al. 2018). Despite the 

potential importance of genetic rescue in conservation, the use of genetic rescue is likely limited 

by several uncertainties. A major concern is that gene flow will instead reduce the fitness of 

hybrids, termed outbreeding depression (Edmands 2007). Further, genetic rescue has rarely been 

examined in freshwater ecosystems, inhibiting its effective implementation.  

Genetic rescue is often considered a stop-gap measure to avert extinction in the short 

term, and genetic rescue will likely be temporary unless the habitat constraints that initially 

caused inbreeding depression are removed. Ideally, populations should be reconnected to restore 

natural gene flow (Whiteley et al. 2015b). However, barrier removal can be infeasible or 

impossible, and managers must weigh the severity of different threats to effectively allocate 

limited funds. Further, removing barriers may sometimes expose species to detrimental species 

interactions (Novinger and Rahel 2003). Management of isolated populations thus requires a 

detailed understanding of the multiple competing threats that an at-risk species faces.  

Effective management of isolated populations also requires identification of the 

populations that are most at risk, and genetic population assessments can offer a powerful and 

cost-effective way to do so (Schwartz et al. 2007). Effective population size (Ne) can be 

considered the gold standard for genetic monitoring as it strongly influences the rate that genetic 

variation is lost, the efficacy of natural selection, and the degree that inbreeding accumulates in a 

population (Charlesworth 2009). Populations with a Ne lower than 50 are likely to face short-

term risks from inbreeding (Jamieson and Allendorf 2012), and thus could be targets for genetic 

rescue attempts. However, Ne is notoriously difficult to estimate in age-structure populations 

(Waples et al. 2014). Detailed examinations of Ne not only indicate whether the target population 

is at risk but allow for the calculation of ratios with other parameters that are more readily 

estimated (e.g., effective number of breeders), thus helping to provide approximations of Ne for 

populations with less detailed monitoring efforts.   

The trade-offs between managing populations in isolation versus increasing connectivity 

are exemplified by westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT) in Montana. 

WCT is a species of concern in Montana, and now occupies a small fraction of their historical 

range (Shepard et al. 1997, 2005). Nonnative trout have been extensively stocked throughout the 

range of WCT (Whiteley et al. 2019) and pose a significant threat through competition and 

hybridization (Allendorf and Leary 1988, Peterson et al. 2004). In particular, nonnative rainbow 
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trout (O. mykiss) readily hybridize with WCT, which can lead to outbreeding depression and 

genomic extinction of populations (Muhlfeld et al. 2009, Kovach et al. 2016b, Muhlfeld et al. 

2017). Further, climate change is likely to increase hybridization between rainbow trout and 

WCT (Muhlfeld et al. 2014). The threats from invasive trout are considered to be severe enough 

that managers not only avoid reconnecting many isolated WCT populations but have been 

installing barriers to intentionally isolate WCT from nonnative species (Hilderbrand and 

Kershner 2000, Novinger and Rahel 2003). Isolated WCT populations have significantly reduced 

genetic variation (Carim et al. 2016, Kovach et al. 2021) and, concerningly, non-hybridized 

WCT in the Missouri River basin are almost all in complete isolation (Kovach et al. 2021). 

However, the threats of isolation for WCT, and freshwater fishes more generally, remain poorly 

understood.  

My dissertation examines the competing threats to WCT in connected versus isolated 

populations and the trade-offs managers face while mitigating these threats. Note that throughout 

my dissertation, I use the first-person plural ‘we’ due to the highly collaborative nature of my 

research. We first examined the joint effects of climate change and invasive species on the 

distributions of native WCT in Montana. Next, we provide a detailed summary of two important 

evolutionary parameters - the effective number of breeders (Nb) and the effective population size 

(Ne) – in five small, isolated WCT populations to examine the genetic risks that these 

populations face. My final two chapters examine genetic rescue. We wrote a review/perspective 

that examined the remaining uncertainties surrounding genetic rescue and provided 

recommendations for how to best monitor genetic rescue to guide and promote consistent 

research to help advance our understanding of this potentially powerful conservation strategy. 

Finally, we conducted an experimental test of genetic rescue in multiple isolated WCT 

populations in the Missouri River basin of Montana.  

In Chapter 2, we examined how climate change and invasive trout species, including 

brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout, influence the 

distributions of native westslope cutthroat trout and bull trout (Salvelinus confluentus) (Bell et al. 

2021a). Using 21,917 surveys collected over 30 years, we quantified the impacts of climate 

change on the past and future distributions of these five interacting native and invasive trout 

species throughout the northern Rocky Mountains of Montana. We found that the occupancy of 

native bull trout and cutthroat trout declined by 18% and 6%, respectively (1993-2018), and was 
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predicted to decrease by an additional 39% and 16% by 2080. However, reasons for these 

occupancy reductions markedly differed between species: climate-driven increases in water 

temperature and decreases in summer streamflow likely caused declines of bull trout, while 

climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our 

results demonstrate that climate change can impact ecologically similar, co-occurring native 

species through distinct pathways, necessitating species-specific management actions. For WCT, 

we add support that the primary conservation threat is interactions with invasive species.  

In Chapter 3, we estimated the effective number of breeders (Nb) and effective population 

size (Ne) and examine the factors driving their variation in five isolated populations of WCT. We 

report very low Nb (minimum of 2.4) and Ne (minimum of 9) in several populations, suggesting 

an immediate risk of inbreeding depression. Low ratios of Nb and Ne to Nc were largely explained 

by the largest fish dominating reproduction, creating a high variance in reproductive success. We 

also found that high variation in key life-history traits (e.g., variance in reproductive success, 

generation length, age at maturity, and adult life span) among populations explains differing 

ratios among Nb, Ne, and Nc, highlighting that caution should be taken when applying these ratios 

to derive parameters in other populations. Overall, the low effective sizes we report suggest that 

many WCT populations would likely benefit from genetic rescue attempts. 

In Chapter 4, we reviewed the remaining uncertainties in predicting outcomes of genetic 

rescue to promote and direct future research and to hasten progress toward implementing this 

potentially powerful conservation strategy across a larger range of taxa. We additionally provide 

criteria for the evaluation of genetic rescue to promote consistency across studies (Bell et al. 

2019). We identified an increase in population growth rate with evidence for a contribution from 

gene flow (i.e., controlling for environmental change) as the best support for verifying that 

genetic rescue occurred. On the other hand, an increase in heterozygosity or migrant ancestry 

without reference to an expectation under neutral gene flow provides the weakest evidence, as 

both of these metrics should initially increase irrespective of the outcome of gene flow on 

population persistence. We also identified several outstanding questions about genetic rescue 

including 1) How will the magnitude of genetic rescue vary across diverse scenarios? 2) How 

many generations will genetic rescue persist? 3) When and how often will genetic rescue 

increase, decrease, or have no influence on population growth rate? 4) How often will small, 

isolated populations have unique local adaptations, and how can the risks of genetic swamping 
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be minimized? 5) How should populations and individuals be selected for translocations? 6) 

Under what conditions will severe outbreeding depression occur? Addressing these questions 

using consistent monitoring and evaluation methods will help managers confidently implement 

genetic rescue, potentially making it a powerful and often inexpensive tool for decreasing 

extinction risk. 

In Chapter 5, we conducted an experimental test of genetic rescue in isolated WCT to 

help address uncertainties discussed in Chapter 4 and to determine if genetic rescue is a valuable 

conservation strategy for WCT. We translocated 6-8 mature fish into four isolated recipient 

populations that spanned a gradient of inbreeding risk and carefully monitored the genetic and 

demographic impact of the translocations for five years. The two smallest populations had 

substantially increased genetic variation (39% and 215%) and increased survival from zygote to 

maturity (71% and 379% for hybrids compared to residents), suggesting that genetic rescue 

likely occurred despite high uncertainty in some estimates. The mid-sized population had a 

smaller increase in genetic variation and minimal effects of gene flow on fitness, and the largest 

population had a complete translocation failure, suggesting limited effects of gene flow or 

potentially outbreeding depression. We did not find clear evidence for an increase in population 

growth rate owing to gene flow in any population, which is considered the strongest evidence for 

genetic rescue. The increase in vital rates without an increase in population growth could be due 

to the unique ecology of cutthroat trout compared to previous study organisms, namely high 

fecundity and high variation in vital rates and population growth. Overall, despite evidence for 

genetic rescue in the smallest populations, the genetic benefits of translocations may be smaller 

under this translocation scenario than those reported in some previous studies, highlighting that 

effective, broadscale implementation of genetic rescue will require examination of diverse 

translocation scenarios and taxa. 

My research has several implications for the management of WCT. First, we add support 

that invasive trout species, primarily rainbow trout, are perhaps the greatest threat to WCT. 

However, rising stream temperatures were not found to pose a significant risk to WCT in the 

absence of invasive species. We also add support that many isolated WCT populations are at risk 

of inbreeding depression, evidenced by low effective population sizes in the smallest streams. 

Augmenting gene flow can increase vital rates in WCT and potentially persistence in the smallest 

populations. Additionally, low levels of gene flow can result in massive increases in genetic 
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variation, which can lead to increased evolutionary potential for future change. Our results also 

have implications for barrier installation projects. We found that the amount of habitat required 

to maintain a Ne of 50, a common guideline for short-term inbreeding risks (Jamieson and 

Allendorf 2012), can be as little as 1.5 km of good habitat, but may be much higher in the 

smallest streams with limited high-quality habitat.  

Overall, my dissertation research supports that in areas with strong threats from invasive 

trout species WCT populations are better managed in isolation. However, the smallest isolated 

populations likely face heightened extirpation risk from genetic problems and may often benefit 

from restored gene flow. More generally, we add further support that when reconnecting isolated 

populations is not an appropriate action genetic rescue is a powerful conservation strategy for 

diverse taxa. 
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CHAPTER 2: Climate change and expanding invasive species drive widespread declines of 

native trout in the northern Rocky Mountains, USA 

 

This chapter has been published as:  

Bell, D. A., Kovach, R. P., Muhlfeld, C., Al-Chockhachy, R., Cline, T., Schmetterling, D., R. 

Whited, D., Lukacs, R., Whiteley, A. R. 2021. Climate change and expanding invasive species 

drive widespread declines of native trout in the northern Rocky Mountains, USA. Science 

Advances. 7: eabj5471. 

 

Abstract 

Climate change and invasive species are major threats to native biodiversity, but few empirical 

studies have examined their combined effects at large spatial and temporal scales. Using 21,917 

surveys collected over 30 years, we quantified the impacts of climate change on the past and 

future distributions of five interacting native and invasive trout species throughout the northern 

Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout 

declined by 18% and 6%, respectively (1993-2018), and was predicted to decrease by an 

additional 39% and 16% by 2080. However, reasons for these occupancy reductions markedly 

differed among species: climate-driven increases in water temperature and decreases in summer 

flow likely caused declines of bull trout, while climate-induced expansion of invasive species 

largely drove declines of cutthroat trout. Our results demonstrate that climate change can impact 

ecologically similar, co-occurring native species through distinct pathways, necessitating 

species-specific management actions. 

Introduction 

Climate change and invasive species are leading causes of global biodiversity loss (Clavero and 

García-Berthou 2005, Urban 2015, Trisos et al. 2020) and will likely interact in complex ways to 

further threaten native species (Rahel and Olden 2008). Invasive species often have higher 

tolerances to changing environmental conditions than native species (Bates et al. 2013) and may 

be favored as climate change proceeds (Rahel 2000, Sorte et al. 2013). Thus, many populations 

of native species may need to cope with both altered abiotic conditions and biotic interactions 

under future climate change or become extirpated (Cahill et al. 2013, Ockendon et al. 2014). 



     8 

Freshwater ecosystems are experiencing an outsized loss of biodiversity (Strayer and Dudgeon 

2010, Burkhead 2012, Tickner et al. 2020) and are particularly vulnerable to the combined 

effects of climate change and invasive species (Sorte et al. 2013, Su et al. 2021). Despite these 

concerns, few empirical studies have examined the joint impacts of changing abiotic conditions 

and interactions with invasive species on native freshwater species across broad spatial and 

temporal scales (Gervais et al. 2020).  

Trout—a group of cold-water fishes of enormous ecological and socioeconomic value 

(Prosek 2013)—are excellent organisms for examining these critical threats to freshwater 

ecosystems. Like many freshwater species, the distribution, abundance, and phenology of trout 

are strongly influenced by climatic conditions through species-specific adaptations to water 

temperature and flow regimes (Wenger et al. 2011, Kovach et al. 2016c), and climate-induced 

changes in these environmental conditions are predicted to have detrimental effects on many 

trout populations (Wenger et al. 2011, Comte et al. 2013). Moreover, invasive trout species have 

been widely introduced for recreational fisheries (Whiteley et al. 2019) and can impact native 

trout through competition, predation, and hybridization (Shepard et al. 2005, Kovach et al. 

2016c). Increasing evidence suggests that climate change may be facilitating the expansion of 

invasive trout, potentially to the detriment of native trout species (Wenger et al. 2011, 

Almodóvar et al. 2012, Dauwalter et al. 2020). However, how climate-induced changes in 

temperature and stream flow interact with invasive species to influence the distribution of native 

trout across space and through time remains a critical uncertainty for developing effective 

climate adaptation strategies.  

In this study, we use long-term monitoring data to examine how the distributions of 

native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii 

lewisi; here referred to as cutthroat trout) have been influenced by climate change and invasive 

trout species across the northern Rocky Mountains of Montana, USA. This region is well suited 

to examine these dynamics because it is a stronghold for native trout and spans diverse 

environmental gradients. Invasive trout species, including brook trout (S. fontinalis), brown trout 

(Salmo trutta), and rainbow trout (O. mykiss), have been widely introduced for sportfishing from 

the late 1800s to the early 1970s (Whiteley et al. 2019). Moreover, the region has warmed at 

nearly twice the rate of the global average over the past century (Pederson et al. 2010), resulting 

in rising stream temperatures, reductions in summer flow, and increased winter flooding 
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(Pederson et al. 2011, Isaak et al. 2012, Jones et al. 2017, Martin et al. 2020). Previous 

distribution modeling using space for time substitution projected a 47% decline in total suitable 

habitat for native and invasive trout species across the interior western USA (Wenger et al. 

2011). However, time-series analyses conducted on smaller spatial scales in the northern Rocky 

Mountains show that warming temperatures may benefit some invasive trout species (Muhlfeld 

et al. 2014, Al-Chokhachy et al. 2016). We hypothesized that an increase in the distribution of 

invasive trout could further imperil native trout species beyond the direct challenges posed by 

shifting climatic conditions. 

To test this hypothesis, we assessed the effects of rising stream temperatures and 

changing hydrological conditions on the distributions of five interacting trout species (native 

cutthroat trout and bull trout; and invasive brook trout, brown trout, and rainbow trout) using a 

multi-species dynamic occupancy model (MacKenzie et al. 2017, Kery and Royle 2020). 

Dynamic occupancy models allow for the direct modeling of local colonization and extinction 

processes, which leads to a more accurate characterization of environmental niches and 

interspecific interactions (Yackulic et al. 2015, Kery and Royle 2020). We parameterized this 

model with 21,917 fish surveys collected over 30 years (1989-2018; Fig. 2-1). We modeled 

initial occupancy (1989-1993) and subsequent annual colonization and persistence probabilities 

(1994-2018) as functions of the presence of invasive species and high-resolution (1 km) 

estimates of summer stream temperature (Isaak et al. 2017), summer flow (Wenger et al. 2010),  

and winter flood frequency (Wenger et al. 2010) (fig. S2-1). We then used parameter estimates 

from the dynamic occupancy model and climate change projections under the A1B emissions 

scenario (Wenger et al. 2010, Isaak et al. 2017) (similar to the RCP 6.0 emissions scenario) to 

predict the distribution of all five species across the entire stream network (127,705 km) annually 

from 1993 to 2080. Species interactions were allowed to evolve in our model because the 

distributions of invasive species could shift with climate change. Finally, we conducted a 

sensitivity analysis to identify the main drivers of the distribution shifts for each species. 

Together, these analyses describe past and future effects of changing climatic conditions and 

invasive species on native aquatic biota, thereby providing a detailed examination of how climate 

change acts directly and indirectly to influence aquatic ecosystems.   
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Results 

Local persistence and colonization probabilities 

Differences in local persistence and colonization probabilities revealed distinct environmental 

niches among trout species (Fig. 2-2; table S1). Invasive rainbow trout and brown trout persisted 

in warmer streams with higher flow, whereas brook trout persisted in streams with cooler 

temperatures and relatively lower flow (Fig. 2-2a). Native bull trout persisted in colder streams 

with higher flow (Fig. 2-2a,b). In contrast, native cutthroat trout had high persistence 

probabilities across a wide range of temperature and flow regimes (Fig. 2-2a,b; fig. S2-2). 

Native bull trout and cutthroat trout also differed in their responses to invasive species. 

The presence of brown trout lowered the local persistence of bull trout (Fig. 2-2c), but this was 

offset by higher colonization rates (Fig. 2-2f). This suggests that brown trout cause increased 

habitat turnover for bull trout rather than complete displacement. In contrast, the presence of 

invasive species, including brook trout and, especially, rainbow trout, substantially decreased 

local persistence of cutthroat trout (Fig. 2-2c).   

Both native trout species, as well as brook trout, generally had low colonization 

probabilities across all environmental conditions (Fig. 2-2d,e; fig. S2-3). This suggests that once 

lost, native species (and brook trout) are unlikely to recolonize streams. On the other hand, 

invasive brown trout and rainbow trout had the highest colonization rates, particularly in streams 

with moderate to high flow (Fig. 2-2e), suggesting that the distributions of these species are 

shifting across the landscape. 

 

Past and future shifts in distribution sizes 

We detected region-wide declines in the distribution sizes (i.e., the proportion of occupied stream 

length) of native trout species in the past and predicted continued declines under future 

projections (Fig. 2-3; table S2-2). The length of occupied habitat for bull trout and cutthroat trout 

declined by 18% and 6%, respectively, from 1993 to 2018 (Fig. 2-3b) and was predicted to 

decrease by an additional 39% and 16% by 2080 under the A1B emissions scenario. In contrast, 

changes in the distributions of invasive species varied from contractions to expansions. The 

distribution of brook trout declined by 16% in the past and was projected to decrease by an 
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additional 15% in the future. Brown trout declined slightly in the past (5%), and the size of their 

overall distribution was projected to remain stable in the future (2% increase). Conversely, the 

distribution of rainbow trout expanded in the past (6%) and under future projections (10%). 

These trends suggest that invasive rainbow trout may become more widely distributed than 

cutthroat trout by the end of the century in the northern Rocky Mountains (Fig. 2-3a). 

Examination of trends in occupancy among watersheds revealed considerable spatial 

variation in distribution shifts. All species underwent both declines and expansions in at least 

some watersheds over the last 25 years (Fig. 2-4a-e). However, future projections showed less 

spatial variability (Fig. 2-5a-e), where habitat became consistently less suitable for both native 

trout species and more suitable for invasive rainbow trout across the majority of watersheds (Fig. 

2-5a,b,e). We also found substantial differences in predicted future distribution shifts east and 

west of the Continental Divide in the Missouri and Columbia River drainages. As of 1993, native 

trout species were more broadly distributed west of the Continental Divide where abiotic 

conditions were more hospitable, while all three invasive trout species were more common in the 

east (fig. S2-1; fig. S2-4). However, future predictions suggest that the distributions of invasive 

brown trout and rainbow trout will substantially expand west of the Continental Divide (21% and 

19%, respectively) but not to the east, while brook trout are predicted to decline less dramatically 

west of the Continental Divide (11%) than east (17%). Overall, the increase in invasive trout and 

the decline of native trout is occurring more rapidly west of the Continental Divide, the current 

stronghold for native trout in the region (fig. S2-4). These results suggest that the more dire 

environmental conditions in the east may portend future conditions in the west without sufficient 

conservation action.  

As future climate change projections are inherently uncertain, we also examined the 

sensitivity of our future projections to the rate of climate change. Specifically, we re-estimated 

future distribution sizes when climate-induced changes in summer stream temperature, summer 

flow, and winter flood frequency were 50% greater by 2080 than predicted under the A1B 

emissions scenario, reflecting outcomes under high emissions scenarios (e.g., A2 or RCP 8.5). 

These more extreme projected changes had little influence on the future distribution sizes of 

brown trout and rainbow trout, as compared to projections under the A1B emissions scenario 

(fig. S2-5). In contrast, both native trout species, as well as brook trout, were predicted to 

experience greater declines under the more extreme climate change scenario, with the 
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distributions of bull trout and cutthroat trout predicted to decline by 62% and 27%, respectively. 

These results suggest that the faster climate change proceeds the more native trout will decline 

and the more invasive trout will be favored.  

 

Drivers of distributions shifts 

Sensitivity analyses in which aspects of global change were omitted from future projections 

revealed that altered abiotic conditions under climate change likely promoted the stability or 

expansions of invasive brown trout and rainbow trout (Fig. 2-6). Without future increases in 

stream temperature, the distribution size of brown trout was predicted to decline by 4% from 

2018 to 2080, rather than remain stable (Fig. 2-6b,c), and, similarly, the distribution size of 

rainbow trout was predicted to remain stable rather than increase. Although future reductions in 

summer flow were predicted to decrease the occupancy of both species, the net effect of 

changing thermal and hydrological conditions allowed brown trout and rainbow to occupy a 

greater amount of habitat than if climate change did not occur (Fig. 2-6b,c). In contrast, climate 

change negatively affected brook trout; without increasing summer temperatures, brook trout 

would have only declined by 4%, less than one-third of the predicted decline in the full model.  

The factors responsible for distribution declines differed markedly for the two native 

trout species. The decline in bull trout occupancy was primarily explained by reductions in 

summer flow and increases in summer stream temperature, not interactions with invasive species 

(Fig. 2-6d). Without climate-induced changes in flow and stream temperature, bull trout were 

predicted to undergo much smaller declines of 26% and 19% by 2080, and without changes in 

any abiotic conditions, bull trout were predicted to decline by only 7%. Conversely, the future 

distribution size of bull trout was predicted to be similar with or without invasive species in the 

region. 

In strong contrast to bull trout, invasive species had substantial adverse effects on the 

future occupancy of cutthroat trout (Fig. 2-6e). Without invasive species, cutthroat trout were 

predicted to occupy 26% more habitat in 2080 than in 2018 despite rapid changes in stream 

temperatures and flow. Notably, the removal of rainbow trout alone was predicted to allow 

cutthroat trout to occupy 15% more habitat in 2080 rather than decline. The climate-induced 

reduction in suitable habitat was smaller for cutthroat trout than bull trout. Without rising stream 
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temperatures, the distribution size of cutthroat was predicted to undergo a decline of 6%, but this 

was at least in part due to reduced interactions with invasive species, which are tracking 

changing abiotic conditions upstream into cutthroat trout habitat (fig. S2-6). However, cutthroat 

trout were predicted to occupy the most habitat if no invasive species or climate change 

occurred, clearly demonstrating the joint impacts of these stressors on future distributions. 

 

Discussion 

Interactions between climate change and invasive species are a key uncertainty in future 

projections of biodiversity change (Sorte et al. 2013). Using long-term monitoring data spanning 

diverse freshwater ecosystems, we show that past and projected future declines of two native 

trout species were driven by climate-induced reductions of suitable habitat and expansion of 

invasive species. However, the relative impacts of these threats differed markedly among 

ecologically similar, co-occurring native species, demonstrating that species-specific climate 

adaptation strategies may be needed for conservation of freshwater biodiversity.  

We found that declines in bull trout distributions were primarily driven by climate-

induced increases in water temperatures and decreases in summer flow. These changing abiotic 

conditions reduced the distribution of bull trout by 18% from 1993 to 2018 and are predicted to 

cause an additional 39% decline by 2080. Bull trout are habitat specialists that require cold, 

connected, high-quality, and complex riverine habitats for persistence (Rieman and McIntyre 

1993), and the loss of these critical habitats due to climate change has contributed to their decline 

(Eby et al. 2014, Kovach et al. 2017, LeMoine et al. 2020). In contrast, declines in cutthroat trout 

were primarily driven by negative interactions with invasive brook trout and, especially, rainbow 

trout. Brook trout can outcompete cutthroat trout (Peterson et al. 2004), while climate-induced 

expansions of rainbow trout lead to hybridization and genomic extinction of cutthroat trout 

(Muhlfeld et al. 2014, 2017). Surprisingly, in the absence of invasive species, our projections 

suggest that cutthroat trout could occupy more habitat at the end of the century than at present 

despite rapid climate change, consistent with a recent physiological study that found cutthroat 

trout have a higher thermal tolerance than previously documented (Macnaughton et al. 2021). 

The distinctive pathways by which climate change threatens native trout species 

highlights the need for different management and climate adaptation strategies. For example, 
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conservation efforts for cutthroat trout may often be better aimed at reducing invasive species 

through intensive suppression and eradication efforts (Al-Chokhachy et al. 2014, Day et al. 

2021) and intentional isolation of at-risk populations (Peterson et al. 2008). Conversely, 

conservation efforts for bull trout could focus on protecting, reconnecting, and restoring critical 

cold-water habitats across entire riverscapes (Rieman and McIntyre 1993, Armstrong et al. 

2021). However, the scope for mitigating climate impacts on bull trout may be more limited 

since an increasing amount of stream habitat—much of which is in protected areas with minimal 

human impact (Isaak et al. 2015) —is predicted to exceed their narrow thermal niche as the 

climate continues to warm. Accounting for species-specific sensitivities to climate change and its 

interactions with other stressors, such as with invasive species, is a prerequisite for effective 

climate adaptation planning that could extend beyond freshwater fishes to include a range of 

other taxa. 

Species distribution models are increasingly used to make projections of species’ 

responses to future climate change, but efforts to validate these results with past data are rare 

(Kovach et al. 2016c). Our results provide empirical evidence that climate change has already 

had strong ecological impacts on native trout across the northern Rocky Mountains. Smaller-

scale studies on occupancy and population dynamics within the region have documented climate-

associated declines in native trout (Eby et al. 2014, Al-Chokhachy et al. 2016, Kovach et al. 

2017, LeMoine et al. 2020) and increases in invasive brown trout and rainbow trout over time 

(Muhlfeld et al. 2014, 2017, Al-Chokhachy et al. 2016). We show that these trends have also 

occurred across a broad and ecologically diverse region, but with considerable spatial variation 

in occupancy shifts. Although native species distributions increased in some watersheds over the 

last 25 years, our future projections show region-wide declines through 2080. As status quo 

management is implicit in our model, this suggests that climate change impacts may soon 

overwhelm current conservation strategies unless more proactive and innovative measures are 

implemented.  

Several previous bioclimatic studies have projected substantial declines in both native 

and invasive trout distributions (Rieman et al. 2007, Wenger et al. 2011, Almodóvar et al. 2012). 

For example, another broad-scale study in the interior western USA (which encompasses our 

study region) projected dramatic declines in both native cutthroat trout (58%) and invasive brook 

trout (77%), brown trout (48%), and rainbow trout (35%) by 2080 under the A1B emissions 
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scenario. In contrast, we predict smaller declines in cutthroat trout (16%) and brook trout (15%) 

and, importantly, increases in the distributions of invasive brown trout (2%) and rainbow trout 

(10%), with more pronounced increases west of the Continental Divide (21% and 19%, 

respectively). The disparity between these findings could be due to several factors. First, 

ecological conditions in the broader region examined by (Wenger et al. 2011) could differ from 

those in the northern Rocky Mountains, which contains a substantial amount of protected cold-

water habitats. Second, the previous analysis used air temperature as a surrogate for stream 

temperature to estimate changes in thermally suitable habitat (Wenger et al. 2011), which may 

have overestimated the amount of future habitat losses. The latter possibility emphasizes that 

species-range projections, including those herein, should be adaptively updated as downscaled 

climate models are developed and future climate-change simulations are updated. Finally, our 

use of an extensive temporal dataset in a multi-species dynamic occupancy modeling framework 

likely improves future predictions of species distributions compared to models based on a single 

time-period (Clement et al. 2016). Occupancy models that use space-for-time substitution 

assume that species are in equilibrium with the environment, which is unrealistic for species 

experiencing range shifts (Yackulic et al. 2015). This highlights the importance of broad-scale 

and long-term datasets for understanding the effects of climate change and other anthropogenic 

stressors on freshwater biodiversity. 

A major strength of our modeling approach was our ability to account for interactions 

among multiple native and invasive trout species under changing climatic conditions.  However, 

other invasive fishes that we did not consider may pose additional threats to native trout 

persistence. For example, invasive lake trout (S. namaycush) have caused declines in bull trout 

and cutthroat trout populations inhabiting lake ecosystems (Kovach et al. 2017), emphasizing 

that invasive species negatively influence bull trout in some habitats. Looking forward, 

smallmouth bass (Micropterus dolomieu) have been expanding and impacting native salmonids 

(Salmonidae) in some rivers, a pattern that is predicted to continue under future climate change 

(Carey et al. 2011, Rubenson and Olden 2020). While our model may partially account for these 

additional interactions via watershed level random effects, more research is needed to understand 

how climate change will affect the community structure of entire aquatic ecosystems for climate 

adaptation planning and mitigation.  



     16 

Our results add to a growing body of evidence that climate change threatens freshwater 

biodiversity by altering both abiotic conditions (Comte and Olden 2017) and biotic interactions 

(Ockendon et al. 2014). Globally, over one-third of freshwater fishes are predicted to be 

threatened by future climate-induced changes in water temperature and flow in at least half of 

their range (Barbarossa et al. 2021). Compounding this threat, many invasive species may be 

‘poised to prosper’ and outperform native species in aquatic ecosystems under future climate 

change (Sorte et al. 2013), thereby further homogenizing freshwater biodiversity (Rahel 2000, 

Villéger et al. 2011). We add to this body of research by demonstrating that the relative threats of 

direct and indirect climate impacts can differ substantially for ecologically and phylogenetically 

similar native species. Progressive climate adaptation strategies will be essential to reverse 

declines in native species and prevent further homogenization of freshwater ecosystems in the 

face of rapid environmental change.   

Methods 

Study region and delineation of stream segments 

Our study area encompasses the Rocky Mountains of Montana, USA. This region is a stronghold 

for native trout species and spans large thermal and hydrological gradients (fig. S2-1). We 

restricted the analysis to streams and rivers with available environmental data. Further, our study 

did not include lakes or the potential impacts of invasive species and climate change in lake 

ecosystems. Our study area included 127,705 km of stream in 39 subbasins (HUC 8). The study 

area was primarily within two major river drainages, the Columbia River and Missouri River 

basins. 

We divided the regional stream network into biologically significant stream segments. 

Stream networks are comprised of linear sections of stream that merge with other streams at 

confluences. These stream confluences are often associated with changes in environmental 

conditions (Benda et al. 2004, Kiffney et al. 2006), and are also natural locations to begin fish 

surveys. Confluence to confluence stream segments are thus a meaningful spatial scale to study 

ecological processes (Kanno et al. 2015) while accounting for variation in detection probability.  

We used the National Hydrography Dataset (NHD) to delineate confluence to confluence 

sections of stream. Stream segments were then created based on several additional criteria. First, 
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we merged stream sections of the same stream order (a metric of stream size based on 

contributing tributaries) until the length was ≥ 2 km or the stream order changed. Second, as 

larger streams and rivers are minimally influenced by confluences with smaller streams (Kiffney 

et al. 2006) and survey distance is generally greater in larger streams, we scaled the stream order 

used to determine the terminus of a stream segment based on the size of the focal stream. The 

downstream terminus of stream segments in second through fourth-order streams were 

confluences with streams that were one order lower (e.g., a third-order stream segment ends at its 

confluence with a second-order stream), and the downstream terminus of fifth and higher-order 

stream segments was their confluences with streams that were one or two orders lower (e.g., a 

fifth-order stream ends at its confluence with a third or fourth order stream). Third, sections of 

stream that crossed permanent fish movement barriers such as waterfalls and dams (Montana 

Fish, Wildlife & Parks MFISH database) were used to break stream segments. Finally, we 

excluded above barrier drainages that only contained a single first-order stream because 

colonization of these stream segments is impossible, and stream segments less than 50 m were 

deemed too small and removed from the analysis. This resulted in 39,638 stream segments with a 

median length of 2.6 km (IQR = 2.1 km).  

Fish surveys 

 We used electrofishing data from 1989 to 2018, which covers the years with the most extensive 

sampling and starts well after the stocking of nonnative trout species ended (see below for 

stocking details), providing 21,917 surveys (Montana Fish, Wildlife & Parks MFISH database). 

We included all stream segments with at least one survey in our occupancy model (4,633 stream 

segments covering 21,874 km). We simplified surveys to detections or non-detections for each 

species. Detections were inferred from any survey in which at least one individual of the focal 

species was captured, regardless of the life-stage. Non-detections were inferred from surveys that 

failed to detect any fish or detected a salmonid species but not the focal species. False-positive 

detections were unlikely because visual identification of trout is reliable, except for hybrids 

between rainbow trout and westslope cutthroat trout. Any fish visually identified as a hybrid 

between these species was considered a rainbow trout because conservation efforts in Montana 

prioritize non-hybridized cutthroat trout. Hybrids between brook trout and bull trout are less 

common but were likewise considered to be brook trout in this analysis.  
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Covariates 

Initial occupancy, colonization, and persistence probability were all modeled as a function of 

summer stream temperature and flow, which are key limiting factors for all trout species 

throughout their native and invasive ranges and are often considered ‘master variables’ in 

freshwater ecology (Wenger et al. 2010, Kovach et al. 2016c, Isaak et al. 2017). Additionally, we 

included winter flood frequencies in all biological models because fall spawning trout (including 

bull trout, brook trout, and brown trout) can be negatively influenced by winter flooding 

(Wenger et al. 2011). We limited abiotic covariates to these three well-supported factors to avoid 

oversaturating the model because directly modeling colonization and persistence probability 

requires a large amount of temporal data. We obtained spatially explicit summer stream 

temperature predictions from the NorWeST database (Isaak et al. 2017). Mean summer flow and 

winter flood frequency (number of winter days in the top 5% of annual flows) were acquired 

from the Western U.S. Stream Flow Metric Dataset (Wenger et al. 2010). These stream 

temperature and flow metrics were available both during an initial baseline period (1977-2002 

and 1993-2011 for flow and temperature, respectively) and in two future periods under the A1B 

emissions scenario (2040s and 2080s) (Wenger et al. 2010, Isaak et al. 2017). We predicted 

annual stream temperature and flow metrics using separate linear regressions for the two 

available periods: the middle of the initial period (1987 and 2002 for flow and temperature, 

respectively) to 2040 and 2040 to 2080. Linear regressions were fit separately for each stream 

segment, and temperature and flow were predicted in each stream segment and every year from 

1989 to 2080. Thus, the climatic covariates were both spatially and temporally explicit. We 

obtained covariates for each stream segment using ArcGIS (ESRI 2015), and, since these 

covariates had a spatial resolution of 1 km, covariate values were averaged for stream segments 

greater than 1 km. 

Extensive fish stocking records (1924–1980; Montana Fish, Wildlife & Parks MFISH 

database) were used to estimate a spatially explicit index of stocking intensity for all invasive 

species. Specifically, stocking intensity was derived for each stream segment using the following 

equation: 

𝑠𝑡𝑜𝑐𝑘𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = ∑ # 𝑆𝑡𝑜𝑐𝑘𝑒𝑑 ∗ 𝑒−0.05∗𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

# 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

1
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Where # Locations is the number of locations within a connected watershed where stocking has 

occurred, # Stocked is the total number of fish stocked at a location across all years, 0.05 is the 

constant decay rate for straying fish, and Distance is the distance to each stocking site in km 

(Bennett et al. 2010, Muhlfeld et al. 2017). Stream distances were calculated using the National 

Hydrography Dataset.  

We standardized all continuous covariates (i.e., mean = 0, sd = 1) to improve model 

convergence. Additionally, we transformed stocking intensity, flow, and stream length because 

these covariates have a strong right skew. Transformations included the cube root of stocking 

intensity, the square root of stream length, and the natural logarithm of flow. Pairwise 

correlations of the covariates used in our analysis were all below 0.7 (table S3), suggesting 

multicollinearity was not a substantial issue (Dormann et al. 2013).  

Additionally, stream segments were designated to be impossible to occupy or colonize if 

they were located in a stream where the focal species has never been detected, either because it is 

outside of their native range (bull trout never colonized the Missouri River basin) or above a 

complete stream barrier (Montana Fish, Wildlife & Parks MFISH database). We therefore 

accounted for habitat fragmentation and its interaction with climate change by not allowing for 

upstream colonization above natural and anthropogenic barriers (Herrera-R et al. 2020). 

Analyses 

We used extensive survey data and microclimatic predictions to parameterize a Bayesian multi-

species dynamic occupancy model (MacKenzie et al. 2003, Kery and Royle 2020). Dynamic 

occupancy models account for imperfect detection and directly model local colonization and 

extinction processes (MacKenzie et al. 2003, 2017). Dynamic occupancy models have closed 

periods in which multiple surveys are used to model detection probability and open periods in 

which local colonization and extinction occurs. The open period extended from February 20 to 

December 14 (298 days) to capture the entire life history of each species, but the majority of 

surveys (72%) were conducted from July 1 to September 30 (91 days). Further, the range of 

sampling dates for a given site was much shorter (median = 29 days). Due to the long open 

period, ‘occupied’ habitat is better interpreted as habitat that is used by the species, rather than 

habitat that sustains a year-round population. 
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In a dynamic occupancy model, zit is the latent state representing the true, unobserved 

occupancy of a stream segment i during time t. The occupancy at the first period (zi1) is 

determined by the initial occupancy probability (𝜓𝑖1). For all subsequent time steps, zit+1 is 

conditional on occupancy in the previous time step. Sites that were occupied remain occupied 

based on the persistence probability (𝜙𝑖𝑡), and sites that were vacant become occupied by the 

colonization probability (𝛾𝑖𝑡). The observed occupancy status for site i at time t during survey j 

(𝑦𝑖𝑡𝑗) is conditional on the latent occupancy status and dependent on the detection 

probability (𝑝𝑖𝑡𝑗).  

𝑧𝑖1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓𝑖1)        

𝑧𝑖𝑡+1|𝑧𝑖𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝑡𝜙𝑖𝑡 + (1 − 𝑧𝑖𝑡)𝛾𝑖𝑡) 

𝑦𝑖𝑡𝑗|𝑧𝑖𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝑡𝑝𝑖𝑡𝑗) 

 

Occupancy, colonization, and persistence probabilities were all modeled using 

generalized linear models with Bernoulli distributions and logit links and using similar sets of 

covariates because they are influenced by similar processes. We included summer stream 

temperature, summer flow, and winter flood frequency as covariates in all three of these 

biological models. Temperature was included as a quadratic in all models because, as 

ectotherms, trout have a suitable thermal range that dictates where they can occupy, persist, and 

colonize. Stream length was also included as a covariate in all initial occupancy models because 

longer stream segments have a higher probability of occupancy, and stocking intensity was 

included in the initial occupancy models for invasive species.  

To account for species interactions, we included the occupancy of invasive species as a 

covariate in all biological models for native species. Models of native and invasive species were 

fit simultaneously, allowing for the predicted distribution of invasive species in the previous time 

step to be used as a covariate for native species models while fully accounting for uncertainty in 

the invasive species distribution. For westslope cutthroat trout, we included the presence of all 

three invasive species as covariates (Shepard et al. 2005, Muhlfeld et al. 2017), and for bull trout, 

we included brown trout and brook trout (Rieman et al. 2006, Kovach et al. 2017).  

We included random effects for subbasin (HUC 8; i.e., mid-sized river drainages) in all 

biological models, which accounted for spatial autocorrelation and the effects of other 

environmental processes not directly incorporated in the models. As an example of the model 
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structure, the colonization probability for bull trout in stream segment i at year t (𝛾𝑖𝑡) was 

modeled as a function of abiotic covariates (temperatureit, flowit, and floodsit), the presence of 

invasive species in the previous year (brookit-1, brownit-1), a random effect for the subbasin using 

a zero-mean Normal distribution with variance σ2
HUC, and an indicator for whether the stream 

segment was in their possible range (range limiti; 1 if within the species range and 0 if outside): 

𝛾𝑖𝑡  ~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑙𝑜𝑔𝑖𝑡(𝛽0 +  𝛽1 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑡 + 𝛽2 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑡
2 + 𝛽3 ∗ 𝑓𝑙𝑜𝑤𝑖𝑡 +  𝛽4

∗ 𝑓𝑙𝑜𝑜𝑑𝑠𝑖𝑡 + 𝛽5 ∗ 𝑏𝑟𝑜𝑜𝑘𝑖𝑡−1 + 𝛽6 ∗ 𝑏𝑟𝑜𝑤𝑛𝑖𝑡−1 + 𝛽𝐻𝑈𝐶𝑖
) ∗ 𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡𝑖 

𝛽𝐻𝑈𝐶𝑖
 ~ 𝑛𝑜𝑟𝑚(0, 𝜎 𝐻𝑈𝐶

2 ) 

We modeled detection probability as a function of stream order and year (table S2-4). 

Although electrofishing has high individual capture probabilities (median = 0.6; fig. S2-7), 

accounting for species-level detection probability was necessary because surveys may fail to 

detect fish when densities are low and when usage varies spatially and by season. We estimated 

separate intercepts and slopes for four groups of stream orders (1-2, 3-4, 5-6, 7-8). Stream order 

likely influences detection probability because alternate electrofishing methods are used in 

streams of different sizes and fish abundance can vary with stream size. We included a linear 

effect for the survey year to account for possible temporal changes in detection probability which 

could bias trends in occupancy (Tingley and Beissinger 2009).  

All models were analyzed in a Bayesian framework in the program JAGs (Plummer 

2003) called from the programming language R (R Core Team 2018) using the rjags and jagsUI 

packages (Plummer 2018, Kellner 2019). We used a burn-in of 15,000 iterations, ran 10,000 

additional iterations, thinned the chains by 25, and included five chains. Priors were set on the 

logit scale using a normal distribution with a standard deviation of 1,000, truncated between -5 

and 5 for all covariates. We used a uniform distribution from 0 to 10 for the standard deviations 

of the random effects for subbasins. These priors typically provided an acceptable range for all 

parameters, but in the few cases that posterior distributions were visually determined to be 

constricted, we changed the priors to -7 to 7 on the logit scale. The priors for the intercepts of 

detection probability were constrained to be greater than 0.12 (-2 on the logit scale), because 

values less than this would indicate extremely minimal usage that is of low biological and 

management interest. Additionally, the prior for the quadratic term of stream temperature was 

constrained to be less than 0 because thermal niches are not U-shaped.  
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Model convergence and assessment 

The model converged well based on visual inspection of Markov chains and Ȓ values that were 

less than 1.1 for all estimated parameters (Gelman and Rubin 1992). To assess the performance 

of our model, we calculated the area under the receiver operating characteristic curve (AUC), 

predictive accuracy (i.e., the proportion of correctly assigned detections), and goodness-of-fit 

based on posterior predictive checks (Kery and Royle 2020) for all stream segments within the 

species range limits (table S2-5; fig. S2-8). The goodness-of-fit test suggested that the model fit 

the data well (supplementary text; table S2-5). AUC values were moderate for brook trout (0.74) 

and good to excellent for all other trout species (0.83-0.92), and predictive accuracy ranged from 

0.66 to 0.85. AUC estimates and predictive accuracy were comparable to, and slightly exceeded, 

those from previous occupancy models in the region (Wenger et al. 2011, LeMoine et al. 2020). 

When we included all stream segments in the study area, including those outside of the focal 

species range limits, AUC (0.78-0.95) and predictive accuracy (0.69-0.89) increased (table S2-

5). 

Past and future occupancy predictions and sensitivity analysis 

We used the parameter estimates from the dynamic occupancy model to predict the occupancy of 

all species in all stream segments within the study region (127,705 km) for each year from 1993 

to 2080. Occupancy was calculated separately for 200 Bayesian iterations to incorporate 

uncertainty in the parameter estimates. We then summarized the spatiotemporal predictions of 

occupancy in several ways. We calculated the proportion of total stream length occupied for each 

species separately for each year. This was done for the entire region, and also grouped by stream 

order, subbasin (HUC 8; mid-sized river drainages), and east and west of the Continental Divide 

in the Missouri and Columbia River drainages (HUC 2; i.e., major river drainages). Although 

some surveys were available in the Saskatchewan River drainage, we did not separately examine 

occupancy dynamics in this basin due to the very small sample size. We estimated temporal 

trends in occupancy by subtracting the 1993 from 2018 predictions to obtain past trends and 

subtracting 2018 from 2080 predictions to estimate future trends. All of these estimates were 

calculated separately for each of the 200 iterations to incorporate uncertainty and allow for 

calculation of the mean and 95% credible intervals.  
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Future projections used the A1B emissions scenario and a mean of 10 global climate 

models that have the strongest association with key aspects of climate in western USA (Wenger 

et al. 2011, Hamlet et al. 2013, Isaak et al. 2017) (Supplementary text). Although the CMIP3 

(including A1B) simulations have now been replaced by CMIP5, CMIP3 and CMIP5 have 

produced similar ecological projections (Wright et al. 2016), and the A1B is a middle-of-the-

road emissions scenario, similar to RCP 6.0. The A1B emissions scenario thus provides a 

reasonable baseline to examine in future shifts in occupancy. We then conducted a sensitivity 

analysis to determine how a 50% greater change in abiotic variables by 2080 than under the A1B 

emissions scenario would influence future occupancy projections, reflecting a high emissions 

scenario, such as the SRES A2 and RCP 8.5. 

We also conducted additional sensitivity analyses to determine which abiotic and biotic 

factors were the main drivers of distribution shifts. We re-estimated future (2080) occupancy 

using the parameter estimates from the dynamic occupancy model but while omitting different 

aspects of global change. To account for climate change, we re-estimated future (2080) 

occupancy while holding one abiotic variable (e.g., stream temperature, summer flow, and winter 

floods) at its 2018 values. To account for invasive species presence, we re-estimated future 

occupancy while each invasive species was separately removed from the landscape (i.e., the 

presence was set to 0 for all stream segments and years). We also re-estimated occupancy when 

all climatic variables were held at their 2018 values, all invasive species were omitted, and the 

combination of both to examine the relative influence of abiotic versus biotic factors on 

distribution shifts. As with the full model, we used parameter estimates from 200 iterations from 

JAGs to incorporate uncertainty. We then calculated the percent change in occupancy from 2018 

(based on the full model which provides our best estimate of current occupancy) to 2080 for each 

of the sensitivity models.  
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Figure 2-1. Fish surveys used to characterize trout distribution shifts in the northern Rocky 

Mountains of Montana, USA. Fish surveys collected between 1989 and 2018 (21,917 surveys) 

grouped by 5-year periods. The Continental Divide separates two major river drainages, the 

Columbia and Missouri River drainages, which have considerably different environmental 

conditions.  
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Figure 2-2. Abiotic and biotic factors influencing local persistence and colonization 

probabilities. The effects of summer stream temperature, summer stream flow, and the presence 

of invasive trout on annual, local persistence (a-c) and colonization (d-f) probabilities. The 

effects of summer stream temperature and summer flow are shown while all other covariates are 

held at their mean and excluding biotic interactions. Effect sizes of invasive species on native 

trout persistence (c) and colonization (f) probabilities are shown on the logit scale with bars 

representing 95% credible intervals. Black, vertical, dotted lines represent the mean stream 

temperature and flow (a,b,d,e). The inset in panel d shows the same trends with an expanded y-

axis. 
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Figure 2-3. Past and future trends in the proportion of occupied stream length across the 

Rocky Mountains of Montana, USA. (a) Trends in the predicted proportion of stream length 

occupied (i.e., occupancy) from 1993 to 2080. The vertical dashed line indicates the final year of 

past predictions (2018). (b) Past and future estimated percent changes in occupancy (note that 

the periods are different lengths). 95% credible intervals are indicated by dashed, colored lines 

(a) and solid, colored bars (b). Climate change projections assume the A1B emission scenario.  
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Figure 2-4. Spatial variation in past shifts in the proportion of occupied stream length 

across the Rocky Mountains of Montana, USA. Past (1993-2018) decadal changes in the 

proportion of occupied stream length by subbasin (HUC 8). Asterisks indicate 95% credible 

intervals that do not overlap zero.  



     28 

 
Figure 2-5. Spatial variation in predicted future shifts in the proportion of occupied stream 

length across the Rocky Mountains of Montana, USA. Predicted future (2019-2080) decadal 

changes in the proportion of occupied stream length by subbasin (HUC 8). Asterisks indicate 

95% credible intervals that do not overlap zero.   
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Figure 2-6. Sensitivity analysis depicting how omitting aspects of climate change and 

invasive species presence influences predicted occupancy in 2080. (a-e) The % change in 

predicted occupancy from 2018 (based on the full model) to 2080 when an element of global 

change was omitted. To omit elements of global change, we held abiotic variables constant at 

their 2018 values and assumed that invasive species were completely absent in the region. In 

addition to omitting single elements of global change, we also tested the effect of no climate 

change (i.e., no change in summer flow, winter flood frequency, or summer stream temperature), 

no invasive species (i.e., all of the invasive species were omitted), and the combination of no 

climate change and no invasive species. The diamonds and colored dashed lines represent the % 

change for the full model (i.e., including climate change and invasive species). Horizontal, 

colored bars are 95% credible intervals. The black dashed lines are included as a reference at no 

change in occupancy. 
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CHAPTER 3: Demographic drivers of small effective population sizes in isolated trout 

populations 

Abstract 

Human-driven habitat degradation and fragmentation of freshwater ecosystems have resulted in 

heightened extirpation risks for many populations, in part due to the increased influence of 

genetic drift in small populations. Perhaps the most informative metric for monitoring small, 

isolates is the effective population size (Ne), but Ne is challenging to estimate. The effective 

number of breeders (Nb) is a promising, related metric for genetic monitoring that can provide 

information about habitat availability, adult census size (Nc), and Ne, but Nb is more difficult to 

interpret. Thus, detailed analyses of Nb and Ne can provide valuable insight into whether a 

population is at risk and also how less intensive monitoring efforts can be used to interpret Nb in 

other populations. Here, we conducted a detailed analysis of Nb, Ne, and Nc and the factors 

driving their variation in five isolated populations of westslope cutthroat trout (WCT). WCT in 

the Missouri River basin of Montana are now limited to a patchwork of completely isolated 

populations. We report very low Nb (a minimum of 4) and Ne (minimum of 9) in several 

populations, suggesting an immediate risk of inbreeding depression. Low Nb and Ne to Nc ratios 

were largely explained by the largest fish dominating reproduction, creating high variance in 

reproductive success. We also find that high variation in life-history traits among populations 

(e.g., generation length varied from 3.3 to 10.3) drives differing ratios among Nb, Ne, and Nc, 

highlighting that caution should be taken when using these ratios to derive parameters in other 

populations. Overall, our results suggest that many WCT populations could likely benefit from 

receiving gene flow and highlight that intensive monitoring of Nb and Ne could provide valuable 

information for conserving a range of freshwater organisms that are threatened by isolation. 

Introduction 

Anthropogenic stream fragmentation poses one of the greatest threats to freshwater biodiversity 

(Brauer and Beheregaray 2020). Humans have extensively fragmented freshwater ecosystems by 

constructing barriers (e.g., dams, water diversions, and culverts) and contributing to habitat 

degradation that reduces connectivity (e.g., climate-induced temperature increases and drought) 

(Gido et al. 2015). A major consequence is that many populations are now completely isolated in 

small habitat patches and face increased extirpation risk due in part to genetic factors (Soulé and 
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Mills 1998). Importantly, small, isolated populations often have increased levels of inbreeding, 

lower genetic variation and adaptive potential, and higher rates of genetic drift, which ultimately 

reduces their persistence probability (Kardos et al. 2021, Willi et al. 2022). A crucial role of 

management will be to determine which small, isolated populations are at immediate risk. 

The effective population size (Ne) is perhaps the most important parameter for the genetic 

monitoring of small, isolated populations. Ne strongly influences the loss of genetic variation, the 

rate of inbreeding, and the efficacy of natural selection (Charlesworth 2009). As a general 

conservation guideline, a contemporary Ne < 50 indicates that a population could be at high risk 

of inbreeding depression (Jamieson and Allendorf 2012). However, Ne is very difficult to 

estimate in age-structured populations (Waples et al. 2014), which is the case for many species 

of concern. 

A promising metric related to Ne is the effective number of breeders that gives rise to a 

cohort (Nb), which can provide valuable information about both genetic and demographic threats 

to a population. Nb can be estimated by applying single-sample genetic estimators to a cohort 

(Waples 2005) and is thus more easily estimated than Ne. Nb can be extrapolated from Ne using 

two to three basic life-history traits (Waples et al. 2013), which aids with the interpretation of 

how Nb relates to genetic threats. However, estimation of life-history traits requires detailed 

demographic data, and applying estimates for other populations may have low accuracy in taxa 

with high variation in life-history across populations. Nb can also correlate with the adult 

population size (Nc) and may offer a cheaper alternative for demographic monitoring (Yates et al. 

2017, Luikart et al. 2021). However, for some populations and taxa, Nb can be more closely 

related to spawning habitat quality and quantity and show little correlation with Nc (Whiteley et 

al. 2010, 2015a). Due to the difficulty in its interpretation, detailed examinations of Nb and its 

relationship to Ne and Nc can provide valuable information about how Nb can be incorporated 

into conservation efforts. 

 Although studies rarely have enough ecological data to obtain demographic estimates of 

Ne (Waples 2005), incorporating demography and life-history data into analyses of Nb and Ne has 

several advantages. Several life history parameters are needed for either estimating Ne or 

extrapolating Ne from Nb, including variance in reproductive success, generation length, age at 

maturity, and adult life span. Further, in contrast to genetic estimators, demographic estimates of 

Ne do not require conformity to Hardy-Weinberg proportions, and may thus provide the only 
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option in some cases (e.g., for populations with high gene flow). Finally, demographic estimators 

allow for examination of the factors that influence Nb, Ne, and their ratios with Nc (Serbezov et 

al. 2012). For example, variance in reproductive success is the main factor that reduces Nb and Ne 

below Nc, and understanding what factors drive variance in reproductive success can provide 

insight into why some populations have very low Nb and Ne. Overall, detailed examinations of Nb 

and Ne based on both demographic and genetic data will help determine whether populations are 

at immediate risk, and also provide insight into how these parameters can be interpreted for less 

intensive monitoring efforts.  

We provide the first detailed examination of Nb and Ne for westslope cutthroat trout 

(Oncorhynchus clarkii lewisi). Westslope cutthroat trout (WCT) is a taxon of concern throughout 

much of their range and are listed in Canada under the Species at Risk Act. Invasive trout 

species, which were extensively introduced in Montana from the late 1800s through the 1980s 

(Whiteley et al. 2019), pose a serious threat to WCT (Muhlfeld et al. 2014, Kovach et al. 2016a, 

Bell et al. 2021a), with the biggest concern coming from hybridization with non-native rainbow 

trout (O. mykiss). These threats are the most pressing in the Missouri River drainage, which has 

the lowest genetic variation of any basin within the subspecies range (Drinan et al. 2011). 

Further, all of the remaining populations of Missouri WCT are isolated, often with very low 

genetic variation (Kovach et al. 2021). Understanding genetic threats to these populations is 

crucial for conservation efforts.  

We estimate Nc, Nb, and Ne, and examined factors that drive variation in their ratios using 

a combination of genetic data and detailed demographic data in five completely isolated 

populations of WCT in the Missouri River drainage of Montana. We address four related 

questions: 1) How much does variance in annual reproductive success (Vk) vary among 

individuals in a population and what demographic factors cause variation in Vk? 2) How much do 

life-history traits that are important for driving variation in Nb and Ne differ among populations? 

3) What are the estimates of Nb in small, isolated populations, and does the ratio of Nb to Nc vary 

across populations? and 4) What is the Ne in these populations and how does it relate to Nc and 

Nb?  
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Methods 

Study populations and sampling procedures 

We intensively monitored five WCT populations from 2017 to 2021. The monitored populations 

were all located on the east of the Continental Divide in the Missouri River basin in Montana 

(Figure 3-1). All populations were completely isolated and had low heterozygosity compared to 

other WCT populations in Montana (Kovach et al. 2021). This monitoring effort was part of an 

experimental test of genetic rescue (Chapter 5), but the detailed dataset allowed for additional 

analyses. We sampled all populations using backpack electrofishing annually from 2017 to 2021. 

We sampled the entirety or near entirety of the inhabited stream for Gold Run Creek, Hall Creek, 

and Staubach Creek. We sampled roughly half of the occupied stream length of Crawford Creek 

(0.4 km) and NF Little Belt Creek (1.2 km). For all captured fish, we measured body length and 

clipped a small piece of the upper caudal fin to provide tissue for genetic analyses. Fish were 

anesthetized using eugenol. We additionally inserted Passive Integrated Transponder (PIT) tags 

into the body cavity of all fish over 70 mm at the study sites on the first capture of the fish and 

scanned all fish for previous PIT tags. PIT tags have minimal influence on growth and survival 

of trout (O’Donnell and Letcher 2017). 

We returned to the streams to perform a recapture one to two weeks after fish were 

marked in 2017 and 2018 to allow for the estimation of individual detection probability. During 

the recapture event, fish were scanned for a PIT tag and visually examined for a fin clip to 

determine if they were previously captured. Fish that had not been previously captured 

underwent the same sampling protocol as fish captured in the initial stream visit. Resampling 

was limited to 8 to 12 randomly sampled 40-meter sections. Half of the sections we selected had 

below-average fish counts, and half had above-average fish counts. This helped ensure that we 

included a range of densities and difficulties of electrofishing.  

Bioinformatics and genotyping 

We genotyped all captured fish using a previously established GTseq panel (Campbell et al. 

2015), which included 373 SNPs and a sex ID marker. We additionally genotyped fish from Hall 

Creek, Staubach Creek, and Gold Run Creek using a previously established RAD-Capture (Ali et 

al. 2016) SNP panel. To increase read depth in individuals with low DNA concentrations, we 

included some individuals on multiple sequencing lanes/runs and then combined reads. Genotype 
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error rates were 0.016% for GTseq (83 duplicated individuals) and 0.1% for RAD-Capture (53 

duplicated individuals). 

We tested for conformity to Hardy-Weinberg and Linkage Equilibrium expectations for 

each population. We limited tests to fish sampled in 2017 as this was before the pulse of age-1 

hybrids, which would cause large deviations from both HW and LD. HW expectations were 

tested in the R program pegas (Paradis 2010) and used Chi-squared tests and exact tests (Guo 

1992). We examined LD using chi-squared tests in the genetics package in R (Warnes et al. 

2021). Markers in which the chi-squared test was significant (P < 0.001) in 2 populations were 

removed in several analyses.  

We removed loci that had greater than 40% missing genotypes for both RAD-Capture 

and GTseq. Further, individuals with 75% missingness on GTseq and 50% on RAD-Capture 

were not genotyped for that panel, but could still be retained for further analyses if the individual 

was successfully genotyped on the other panel. We were more stringent with RAD-Capture as 

the error rates were higher for individuals with low read depth using that method. For GTseq, we 

removed 14 markers that did not conform to HW proportions in two or more populations (p-

value <= 0.01), both with the same direction of FIS. We also inspected loci that significantly 

deviated from HW proportions in one population, but found no clear signs that the markers had 

problems.  

To avoid close physical linkage and multiple SNPs on the same bait, we thinned markers 

so that only one SNP was selected for every 10,000 base pairs. To reduce additional linkage, we 

removed markers that had a mean r > 0.5 across at least 2 populations. Finally, we found a block 

of rainbow trout ancestry in Hall Creek that covered roughly half of chromosome 6. We only 

selected one marker on this block. When deciding which markers to retain, we favored markers 

on the GTseq panel as genotypes were available for all populations, and we chose the loci with 

the high average allele frequency across populations. We retained 825 SNPs (229 GTseq and 596 

RAD-Capture) before filtering for linkage and 554 SNPs (199 GTseq and 355 RAD-Capture) 

after filtering for linkage. 
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Individual identification and pedigree construction 

 

PIT tags allowed for individual identification of most fish, but we used genotype data to identify 

individuals that were too small to initially PIT tag (e.g., < 70 mm) or that shed their PIT tags. 

PIT shed rates are very low but do occur in larger females during spawning. We used the 

dupGenotype function from the R package StrataG (Archer et al. 2017) to identify duplicate 

genetic samples, which uses pairwise comparisons of all individuals in a population to calculate 

the proportion of identical genotypes across loci. We used a 99% percent match as a threshold to 

call the same individual, which typically provided adequate power.  

Admixture following a pulse of gene flow can cause a deviation from Hardy-Weinberg 

expectations for a generation, which is required as an assumption in many parentage analyses. 

We thus used a combination of exclusion-based parentage, which does not require HW 

proportions, and maximum likelihood-based sibship and parentage, which has higher power but 

assumes populations are close to HW proportions. Exclusion-based methods also lack an implicit 

expectation of LD, allowing for more markers to be used in the analysis.  

 Potential parents for a cohort were allowed from all sampling years, but potential parents 

were omitted based on being an unreasonable length to have produced offspring in the cohort of 

interest. Length cutoffs for parents were informed by growth modeling (described below) and 

previous estimates of size at maturity (Downs et al. 1997). Offspring for a cohort were 

determined based on being age-1 at time t+1, or being age-2 at time t+2. Age-1 and age-2 fish 

were determined based on visual inspection of length-frequency histograms separately for each 

sex, and we used length at age-2 of known fish to help verify length cutoffs for age-2. 

Exclusions were based on both offspring and the parent having opposite homozygote 

genotypes and on both parents being homozygous for the same allele while the offspring was 

heterozygous (Cockburn et al. 2021). Additionally, we used full-likelihood joint sibship and 

parentage estimation in Colony2 allowing for polygamy in both males and females and for 

inbreeding, which relaxes HW assumptions (Wang and Santure 2009, Jones and Wang 2010, 

Wang 2012). We ran Colony2 separately for each population and each cohort.  

 To combine results, we used Colony2 results to determine resident x resident crosses. 

When Colony2 determined two potential parents as having similar probabilities of being the true 
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parent, we checked if exclusion had identified either of these parents as the top parent. For F1 

hybrid fish, we used exclusion-based parentage results due to non-conformity with HW 

proportions for these fish. 

 

Demographic modeling  

Detailed demographic modeling allowed for the construction of life tables, which are the basis of 

much theory on Ne. The parameters of primary interest were age-specific survival and 

reproductive output, which allow for estimation of generation length and variance in lifetime 

reproductive success. However, a series of demographic models were required to estimate these 

parameters and construct life tables, including individual detection probability, individual growth 

rate, survival by length, and annual reproductive output by length.  

Individual detection probability was needed to estimate both abundance (described 

below) and reproductive output since detection probabilities of less than 1 lead to biased 

estimation of demographic parameters (Kery and Royle 2020). We used the within-year 

recaptures from 2017 and 2018 to estimate detection probability as the proportion of fish 

captured on the recapture event that were marked earlier in the same year. This was done using 

generalized linear models (GLM) with a logit link and a Bernoulli distribution. We estimated 

detection probability separately for every stream and for different size classes, including fish < 

120 mm (juveniles),   120 and < 150 mm (sub-adults),  150 and < 180 (smaller adults), and  

180 (large adults).  

Individual annual growth was modeled to estimate body lengths for years in which fish 

were not caught. For each population, growth was modeled using a GLM with a normal 

distribution and a log link. The log link prevented negative growth and helped to account for the 

non-linear relationship between fish length and growth. Growth was modeled as a function 

length (quadratic) in the previous year, which was estimated separately for both sexes. We used 

parameter estimates from this GLM to estimate length in all years in which the fish of interest 

was not captured. Importantly, this allowed us to estimate the parental length in the year that 

reproduction occurred. As growth is equal to size at time t minus size at size t -1, these values 

can be rearranged to estimate lengths in both future and previous time steps. We additionally 

used our growth model to estimate length-at-age. Separately for each population, we simulated 
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length at age for fish starting at age-1 through age-15 (2 years older than the maximum identified 

age of WCT in the region; Janowicz et al. 2018). We used the mean and standard deviation of 

age-1 length to specify a normal distribution for each population, and simulated growth for 

100,000 individuals. We then calculated the mean length at age from the simulated output.  

We estimated survival at age (sx) using a multistate CJS (Kery and Royle 2020). The 

models allowed for uncertainty in the length class into which an individual fell during years in 

which it was not captured and corrected for individual detection probability. This allowed for 

unbiased estimates of stage-specific survival. Specifically, sex-specific survival was dependent 

on length-based size categories (age-1, and age-2+ < 130 mm, >= 130mm & < 170 mm, >= 

170mm & < 210 mm, and >= 210 mm), and transition probabilities were also calculated between 

length categories, while accounting for category-specific detection probability (Kery and Royle 

2020). The state transition probabilities were: 

 

 

 

𝑎1𝑡

𝑎2(<130)𝑡

𝑎2(≥130 & <170)𝑡

𝑎2(≥170 &<210)𝑡

𝑎2(≥210)𝑡

𝑑𝑒𝑎𝑑𝑡 [
 
 
 
 
 
 
𝑎1𝑡+1 𝑎2(<130)𝑡+1 𝑎2(≥130 & <170)𝑡+1 𝑎2(≥170 &<210)𝑡+1 𝑎2(≥210)𝑡+1 𝑑𝑒𝑎𝑑𝑡+1

0 𝑝ℎ𝑖1 ∗  𝛼12 𝑝ℎ𝑖1 ∗  𝛼13 𝑝ℎ𝑖1 ∗  𝛼14 0 1 −  𝑝ℎ𝑖1
0 𝑝ℎ𝑖2 ∗  𝛼22 𝑝ℎ𝑖2 ∗  𝛼23 𝑝ℎ𝑖2 ∗  𝛼24 𝑝ℎ𝑖2 ∗  𝛼25 1 −  𝑝ℎ𝑖2
0 0 𝑝ℎ𝑖3 ∗  𝛼33 𝑝ℎ𝑖3 ∗  𝛼34 𝑝ℎ𝑖3 ∗  𝛼35 1 −  𝑝ℎ𝑖3
0 0 0 𝑝ℎ𝑖4 ∗  𝛼44 𝑝ℎ𝑖4 ∗  𝛼45 1 −  𝑝ℎ𝑖4
0 0 0 0 𝑝ℎ𝑖5 1 −  𝑝ℎ𝑖5
0 0 0 0 0 1 ]

 
 
 
 
 
 

 

 

 

with rows representing the starting state (t) and the columns the ending state (t+1).  

 

We used pedigree results to model a parent’s annual number of offspring recruiting to 

age-1 as a function of body length. We separately modeled whether or not an individual 

produced any offspring that survived to age-1 (recruited) and the annual number of recruiting 

offspring given successful reproduction, akin to a zero-hurdle model (Zuur et al. 2009). Both of 

these processes contribute to Poisson overdispersion in reproductive success. The probability of 

reproduction was modeled using a generalized linear model with a Bernoulli distribution and a 

logit link. We used parental length at the time the cohort was produced as an independent 

variable because length increases the probability of maturity.  
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Given an individual produced recruiting offspring, the annual number of recruiting 

offspring was modeled using a binomial mixture model that used a latent, unobserved, estimate 

of true family size in which detection probability had been accounted for. The latent true number 

of offspring was the dependent variable in a GLM with a zero-truncated negative binomial 

distribution and a log link. This allowed us to obtain estimates of annual reproductive success 

with low bias and increased precision. Binomial-mixture models are commonly used to estimate 

abundance using multiple surveys within a ‘closed’ period to estimate and account for imperfect 

detection. Here, we resampled families on two occasions separated by one year. As mortality 

occurred over this period, we used Bayesian estimates of age-1 to age-2 survival (surival1-2) and 

age-specific detection probability (p) as fixed variables in the model: 

 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑡~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑎𝑔𝑒(𝑖) ∗ 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑎𝑔𝑒(𝑖),  # 𝑜𝑓𝑓𝑝𝑠𝑟𝑖𝑛𝑔𝑖𝑡) 

 

Using estimates from 2 years was important because age-1 fish have lower detection 

probabilities (p = 0.12 to 0.48) than age-2 fish (p = 0.34 to 0.77), and there were multiple 

instances in which a family was first detected at age-2. We first ran this model without covariates 

to allow for the incorporation of both sampled parents and parents that were imputed in Colony2 

to ensure we included all offspring in the model. We then ran a second model with only known 

parents and with parental length at the time of the cohort production as an explanatory variable.  

All demographic models described above were analyzed using Bayesian inference in the 

program JAGS (Plummer 2003) in the R program jagsui (Kellner 2019). Models were run with a 

burn-in of 50,000 iterations, 50,000 additional iterations, and five chains. This resulted in 

successful convergence of all models based on 𝑅̂ values less than 1.1 and visual inspection of 

MCMC chains.  

 

Life history parameters and life table construction  

We used the demographic models (described above) to construct population-specific life tables, 

including age-specific survival (sx) and reproduction (bx). We estimated age-specific survival by 

simulating age of death for 100,000 fish starting at age-1 in the multistate survival model. The 

number of individuals that died at each age was converted to age-1 specific survival 

probabilities. Age-specific reproductive output was estimated by inputting the mean length at age 

into both the model for the probability of reproduction and the number of offspring produced, 
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given reproduction. These two components of reproduction were then multiplied together to get a 

total estimate of age-specific reproductive success. Both of these parameters were calculated 

separately for each sex and in each population. 

We additionally calculated several life-history parameters that were important for 

calculating or interpreting Nb and Ne estimates. Maximum age () was determined as the age at 

which 99% of individuals had died. Age at maturity () was the first age in which 10% of 

individuals were mature based on our length estimates and length-based probability of maturity 

from Downs et al (1997). Life tables were then analyzed in AgeNe (Waples et al. 2011), which 

provides estimates of lifetime variance in reproductive success and generation length (described 

further below). 

  

Number of mature adults (Nc)  

 

We estimated abundance as the number of detected fish in a given year divided by the detection 

probability. This was done separately for each size class and population. The summation of age-

2+ (age-2 and older) size-class provides an estimate of the total age-2+ abundance. However, not 

all age-2+ fish are sexually mature, and the timing of our sampling did not permit us to 

determine if fish were mature. However, a previous study in the same region developed a logistic 

equation for the probability of maturity by length (Downs et al. 1997). We used this logistic 

equation to randomly sample whether fish were mature based on their length. We repeated this 

1000 times to incorporate uncertainty into our Nc estimates.  

 

 

Effective number of breeders (Nb) and effective population size (Ne) 

We estimated the effective number of breeders using two methods: a genetic-based estimation 

using linkage disequilibrium (Nb(gen)) (Waples and Do 2008) and a demographic-based estimation 

(Nb(dem)). Genetic-based estimators are widely used but assume HW equilibrium and that the 

primary or only source of LD comes from genetic drift, and are thus more sensitive to gene flow. 

For the genetic estimator, we used the program LDNe. We selected monogamy because our 

parentage analysis suggested that polygamy is common across years but is uncommon within a 

cohort. Nevertheless, low levels of polygamy could bias our estimates high because LDNe 
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estimates using monogamy are higher than those assuming polygamy. We only included loci 

with a minor allele frequency of 0.02 or higher within the population (Waples and Do 2010). We 

provide estimates of Ne(gen) for all populations despite the low level of gene flow except for 

Staubach Creek, which had significantly higher gene flow than other populations. We thus only 

estimate Ne(gen) in Staubach Creek before gene flow, in the 2015 and 2016 cohorts. To prevent 

admixture LD, we removed hybrids from our samples. Note that these estimates will have a 

small bias because 1-2 families were removed from the sample.  

For the demographic estimation of annual Nb (𝑁̂𝑏(𝑑𝑒𝑚)), we first estimated sex-specific 

annual Nb based on the variance in annual reproductive success (Vk), where individual 

reproductive success (ki) was the latent true estimate from the binomial mixture model described 

above. Using females as an example (Hedrick 2000): 

 

𝑁𝑏𝑓 =  
𝑁𝑓𝑘̅𝑓 − 1

𝑘̅𝑓 − 1 +
𝑉𝑘𝑓

𝑘̅
⁄

 

 

 

where 𝑘̅𝑓 and 𝑘̅  are the mean numbers of progeny produced in a given year for females and all 

adults, respectively, and the variance in reproductive success was calculated as (Crow and 

Kimura 1970): 

 

𝑉𝑘𝑓 =
∑(𝑘𝑖

2)

𝑁𝑓
− (

∑𝑘𝑖

𝑁𝑓
)

2

 

 

We then used sex-specific estimates of Nb to adjust for skew in the sex ratio, and estimated an 

overall Nb using the equation (Crow and Kimura 1970):  

 

𝑁𝑏 =
4𝑁𝑏𝑓𝑁𝑏𝑚

𝑁𝑏𝑓 + 𝑁𝑏𝑚
 

 

We only included individuals that produced offspring that recruited to age-1 because omitting 

parents with no offspring does not influence inbreeding Ne or Nb (Waples and Waples 2011).  

We used our life tables and the program AgeNe to estimate the ratio of Nb to Ne (Waples 

et al. 2011). AgeNe provides estimates for Ne for age-structured populations (Felsenstein 1971, 

Hill 1972, Waples et al. 2011). These estimates can be highly accurate, and have been used to 
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ground truth other methods to estimate Ne (Waples et al. 2014). However, directly estimating Ne 

from AgeNe is dependent on age-1 abundance, and sensitive to variation in these estimates. On 

the other hand, the ratio of Nb to Ne estimated from AgeNe is not dependent on abundance 

estimates. As age-1 abundance is highly uncertainty and variable in WCT, we used estimates of 

Nb/Ne rather than Ne, and then used Nb/Ne to convert our estimates of Nb to Ne. 

 Finally, we used estimates of Ne and generation length to predict the loss of genetic 

variation in each population by 2100 (e.g., Pero et al. 2022). Specifically, we used the recursive 

equation: 

ℎ𝑡+1 = (1 −
1

2𝑁𝑒
) ℎ𝑡 

 

where t is time in generations. We then converted generations to years using estimated 

generation lengths for each population. We used the genetic based estimate of Ne for this 

projection.  

Results 

Variation in life history traits 

 

Annual reproductive output was strongly influenced by adult body length. The probability of 

contributing offspring to a cohort that recruit to age-1 had a strong positive relationship with 

length in all populations and for both males and females (Figure 3-2). Previous research found 

that WCT have a 50% probability of reaching sexual maturity (based on the presence of mature 

gametes) at 135 mm for males and 156 mm for females (Downs et al. 1997). However, fish were 

not predicted to have a 50% chance of successfully reproducing in a given year until they 

reached 201 mm for males and 198 mm for females, on average (Figure 3-2). Additionally, given 

that a fish does reproduce in a given year, the number of offspring produced was positively 

associated with length in all population and for both females and males with the exception of 

males in Hall Creek, which had no relationship between length and reproductive output (Figure 

3-3). These differences in length based reproductive output translate to differences in age-based 

reproductive output (see Table 3-1 for example life tables), which helps to explain why variance 

in annual and life-time reproductive success is high. 



     42 

Life history parameters derived from demographic models and life-tables varied 

considerably across populations (Table 3-2). Variance in lifetime reproductive success was far 

greater than expected under a Poisson process (2), and ranged from 22.3 in Staubach Creek to 

50.1 in Crawford Creek. Age at first maturity estimates ranged from 2 for males in Crawford 

Creek, NF Little Belt Creek, and Staubach Creek, to 4 for females Gold Run Creek and Hall 

Creek. Maximum age estimates ranged from 4 for males in NF Little Belt Creek to 13+ for males 

and females in Gold Run Creek. Finally, generation lengths ranged from 3.3 years in NF Little 

Belt Creek to 10.3 years in Gold Run Creek. Overall, these life history traits that are important 

for determining Nb and Ne all had at least a twofold difference across populations. 

Nb estimates and Nb to Nc ratios 

Demographic estimates of Nb (𝑁̂b(dem)) ranged from 2.4 in Hall Creek during 2018 to 169.8 in NF 

Little Belt creek during 2016 (Figure 3-4). Similarly, genetic estimates of Nb (𝑁̂b(gen)) ranged 

widely from 2.6 in Hall during 2017 to 115 in NF Little Belt during 2016. Notably, the harmonic 

mean Nb of Hall Creek was very low, with estimates of 3.6 and 5.3 for Nb(dem) and Nb(gen), 

respectively. Nb(dem) and Nb(gen) were highly correlated (r = 0.96) but Nb(dem) estimates were 

generally larger than Nb(Gen) (Figure 3-4). 

 The correlation between Nb and Nc within populations ranged from 0 to 0.99 for Nb(gen) 

based estimates and -0.90 to 0.91 for Nb(dem). Although correlations between 3-4 points are prone 

to spurious relationships, this nevertheless suggests that Nb is unlikely to closely track Nc in all 

populations. The ratio of Nb to Nc ranged from 0.04 in Hall for the 2017 cohort to 0.24 in 

Crawford for the 2018 cohort based on Nb(gen) (Table 3-3). Similarly, Nb to Nc ratio ranged from 

0.05 in Hall for the 2018 cohort to 0.34 in NF Little Belt for the 2017 cohort based on Nb(dem). 

Across all populations and years, mean Nb/Nc was 0.13 for Nb(Gen) based estimates and 0.18 for 

Nb(dem) for based estimates.  

Ne estimates, Nb/Ne, and Ne/Nc 

Nb/Ne estimates from AgeNe ranged from 0.38 to 0.61 (Table 3-2). On average, Nb was predicted 

to be roughly half of Ne (𝑁𝑏 𝑁𝑒⁄̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.54 ). Ne estimates derived from Nb/Ne varied by an order of 

magnitude despite similar habitat patch sizes (Table 3-3, Table S3-4). Hall Creek, the population 

at the small extreme, had an 𝑁̂𝑒(𝑔𝑒𝑛) of 9 and an 𝑁̂𝑒(𝑑𝑒𝑚) of 14 in Hall Creek, while NF Little 
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Belt Creek, the population at the large extreme, had an 𝑁̂𝑒(𝑔𝑒𝑛) of 108 and an 𝑁̂𝑒(𝑑𝑒𝑚) of 246 

(Table 3-3). Of the five populations, four had an Ne(gen) < 50 and three of those four had an Ne(dem) 

< 50.  

Ne was correlated with Nc across populations (r = 0.70). However, populations with 

similar Nc had vastly different Ne. For example, Gold Run Creek had a slightly larger Nc than NF 

Little Belt Creek, but had an Ne of 140% or 203% lower than NF Little Belt Creek based on 

Nb(gen) and Nb(dem), respectively. Ne/Nc ranged from 0.11 to 0.40 or 0.19 to 0.74 for estimates 

based on Nb(gen) and Nb(dem), respectively. 

The rate of loss of genetic variation per year is based both on Ne and the generation 

length. Hall and Staubach are expected to have large declines in heterozygosity by 2100 (54% 

and 42%, respectively). Although Gold Run has less than half of the Ne of Little Belt, the longer 

generation length led to a similar, small loss of heterozygosity for both streams of 9% and 11% 

by 2100, respectively (Fig. 3-5).  

 

Discussion 

Innumerable small, isolated populations face increased extirpation risk due to genetic factors 

(Frankham et al. 2017), which is especially concerning for freshwater ecosystems due to 

extensive habitat fragmentation (Gido et al. 2015). Our detailed analysis of using both genetic 

and demographic data shows that isolated westslope cutthroat trout (WCT) populations often had 

very low effective population sizes (Ne), consistent with a previous study that provided less 

precise estimates of Ne (Carim et al. 2016). At least three of the five study populations likely had 

an Ne < 50, indicating potential immediate threats from inbreeding (Jamieson and Allendorf 

2012). This is also consistent with extremely high genetic divergence and very low genetic 

variation recently reported in isolated WCT populations throughout the Missouri drainage in 

Montana (Kovach et al. 2021). Further, our study populations are representative of the range of 

heterozygosity of WCT in the Missouri River drainage, suggesting that many of these 

populations could have very low Ne.  

 Both Nb and Ne were considerably lower than the number of mature adults (Nc). This 

appears to be primarily driven by high variance in reproductive success across length and age. 

Importantly, we show that the size and age of sexual maturity may be substantially smaller than 

the size and age at which fish begin to reproduce (Downs et al. 1997, Carim et al. 2021). 
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Although our Nb/Nc and Ne/Nc ratios are not as low as many previous estimates (Frankham 1995, 

Palstra and Fraser 2012), this finding emphasizes that apparently healthy densities in these 

isolated populations could belie the genetic threats that the populations face. We also note that 

the method in which Ne and Ne are calculated can dramatically change the Nb/Nc and Ne/Nc in 

these populations, further emphasizing the difficulty with interpreting these ratios.  

 There was substantial variation in Nb, Ne, and Nc ratios among populations. These 

differences could be due to several factors. Importantly, WCT, and salmonids in general, have 

considerable life history variation (Carim et al. 2017). We document variation in life-history 

traits among nearby populations, including differing generation length, age-at-maturity, 

maximum age, and variance in life-time reproductive success. This life-history variation likely 

underlies variation in the in ratios among the tested parameters (e.g., Waples et al. 2013). Due to 

the high variability, applying these ratios to other, even nearby, populations is unlikely to 

provide precise approximations of unmeasured parameters. Nevertheless, we report mean Nb/Ne 

of 0.54, Nb/Nc of 0.15-0.19, and Ne/Nc of 0.26-0.34, which could allow for useful conversions 

between parameters for isolated WCT populations when other information is not available.  

Despite difficulty in its interpretation, the effective number of breeders (Nb) has been 

suggested to be a useful metric for the monitoring of freshwater ecosystems (Waples and Do 

2010, Whiteley et al. 2015a). Nb could be particularly useful for the monitoring of small isolated 

populations. Nb estimates are the more precise in small populations (Waples and Do 2010, 

Luikart et al. 2021), and sampling for the entirety of an inhabited stream reach will often be 

possible simply because of the decrease in time and effort required. Additionally, isolated 

populations will have little or no gene flow, which can cause bias for genetic estimators (Waples 

and England 2011, Whiteley et al. 2017). Further, Nb is much easier to estimate than Ne for 

species with overlapping generations, while still likely capturing the rate of genetic drift and 

degree of inbreeding in a stream, and also potentially providing valuable information on the 

amount of breeding habitat a population contains (Whiteley et al. 2015a). Overall, Nb could be 

one of the most cost-effective ways to determine that a population is at high risk of genetic 

problems, and the same sampling efforts can readily produce He estimates, which could together 

provide complementary pieces of information for conservation.  

Estimates of Nb and Ne will be particularly informative for determining when to attempt 

genetic rescue – an increase in persistence probability owing to gene flow (Whiteley et al. 2015b, 
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Ralls et al. 2018, Bell et al. 2019). Genetic rescue has been documented in several at-risk 

species, but the strategy is highly under-utilized (Ralls et al. 2018) and has rarely been attempted 

in freshwater fishes (but see Robinson et al. 2017, Kronenberger et al. 2018). The low Nb and Ne 

in our study populations further support that many WCT populations could benefit from human 

mediated gene flow (Kovach et al. 2021). 

Intentional isolation by installing barriers is an important strategy to protect cutthroat 

trout from harmful effects of invasive trout species that has been used for decades. An important 

consideration is to determine how much habitat is needed for cutthroat trout populations to 

persist (Hilderbrand and Kershner 2000, Novinger and Rahel 2003, Peterson et al. 2008, Fausch 

et al. 2009). Our results provided further evidence that populations with two to three habitable 

kilometers of stream can face risks from inbreeding. However, similar stream lengths support 

vastly differing fish densities. For example, Hall Creek and Gold Run Creek had slightly more 

habitable kilometers of stream, both streams were first order with no tributaries, and Hall had a 

larger drainage area, yet Gold Run Creek had considerably larger Nb and Ne (4 to 9 times greater 

depending on the estimator). Care must be taken to ensure sufficient habitat is available for 

barrier construction projects, and Nb and Ne offer promising metrics to help determine the 

minimum amount of habitat that should be isolated. 

 Countless freshwater populations and species face increased extinction risk due to being 

isolated in small habitat patches. Ne is perhaps the important indicator of which populations are 

likely to be the most vulnerable to genetic problems. However, due to the difficulty in estimating 

Ne, Nb may provide a cost effective wet powerful monitoring alternative. Taxa specific 

examinations of Nb, Ne and Nc will provide valuable insight into how Nb can be interpreted and 

used to guide conservation actions.  

  



     46 

Table 3-1. Example life tables for Staubach Creek and Gold Run Creek. The remainder of the 

population-specific life tables are provided in Table S3-1, Table S3-2, and Table S3-3.  sx is age-

specific annual survival probability, lx is the probability of surviving to age x, and bx is the age-

specific number of offspring that survive to age-1. 

Stream Age (x) sx(male) lx(male) bx(male) sx(female) lx(female) bx(female) 

  Staubach 1 0.63 1.00 0.0 0.68 1.00 0.0 

 2 0.53 0.63 0.9 0.59 0.68 0.0 

 3 0.53 0.33 4.5 0.55 0.40 2.1 

 4 0.47 0.18 10.3 0.43 0.22 8.1 

 5 0.43 0.08 16.1 0.39 0.09 15.7 

 6 0.43 0.04 21.0 0.37 0.04 22.3 

  7 0.00 0.02 24.9 0.00 0.01 27.5 

  Gold Run 1 0.64 1.00 0.0 0.62 1.00 0.0 

 2 0.85 0.64 0.0 0.86 0.62 0.0 

 3 0.76 0.54 0.0 0.83 0.53 0.0 

 4 0.75 0.41 0.1 0.81 0.44 0.0 

 5 0.75 0.31 0.3 0.81 0.36 0.1 

 6 0.75 0.23 0.7 0.81 0.29 0.3 

 7 0.75 0.17 1.3 0.80 0.24 0.6 

 8 0.75 0.13 2.1 0.79 0.19 1.0 

 9 0.75 0.10 3.0 0.79 0.15 1.5 

 10 0.74 0.07 4.1 0.79 0.12 2.1 

 11 0.74 0.05 5.1 0.79 0.09 2.6 

 12 0.75 0.04 6.2 0.78 0.07 3.2 

  13 0.00 0.03 7.2 0.00 0.06 3.8 

 

 

 

Table 3-2. Life-history parameters, including age at first maturity, maximum age, generation 

length, and the variance in life-time reproductive success shown for each population and the 

mean across all populations.  

Population 

Age at 

maturity 

(female) 

Age at 

maturity 

(male) 

Maximum 

age 

(female) 

Maximum 

age 

(male) 

Generation 

Length 

Life-time variance 

in reproductive 

success 

Crawford 3 2 7 6 4.9 50.1 

Gold Run 4 3 13 13 10.3 36.3 

Hall 4 3 7 8 5.8 49.6 

Little Belt 3 2 5 4 3.3 39.5 

Staubach 3 2 7 7 4.4 22.3 

Mean 3.4 2.4 7.8 7.6 5.7 39.6 
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Table 3-3. Estimates of the census size (𝑁c), effective number of breeders (𝑁b), the effective 

population size (Ne) and the ratios between these parameters. 𝑁b and Ne include both 

demographic (dem) and genetic (gen) estimators.  

Population Nb/Ne 𝑁b(gen) 𝑁b(dem) Ne(gen) Ne(dem) 𝑁c Ne(gen)/ 𝑁c Ne(dem)/ 𝑁c 

Crawford 0.54 15 9 28 17 90 0.31 0.19 

Gold Run 0.61 28 49 45 81 411 0.11 0.20 

Hall 0.38 4 5 9 14 63 0.15 0.22 

Little Belt 0.55 59 135 108 246 334 0.32 0.74 

Staubach 0.64 11 10 18 16 44 0.40 0.36 

Mean 0.54 23 42 42 75 188 0.26 0.34 

 

 

 

 
Figure 3-1. The five study populations located on the east of Continental Divide (dashed line) in 

Montana. The red polygon indicates the Upper Missouri Drainage (HUC 8) and the orange 

polygon indicates the Belt Drainage. The inset map shows Montana. 
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Figure 3-2. Pedigree-based probability of sexual maturity and producing offspring that recruit to 

age-1 in a given year as a function of parental length (mm; solid lines) shown separately by sex. 

Dashed lines represent the probability of maturity based on the presence of mature gametes from 

nearby populations (Downs et al. 1997). Confidence bands are 95% credible intervals.  
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Figure 3-3. The annual number of offspring produced that recruit to age-1 (given that 

reproduction occurred) as a function of parental length (mm) shown separately by sex. 

Confidence bands are 95% credible intervals.  
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Figure 3-4. Relationships between the effective number of breeders (Nb), the census population 

size (Nc), and cohort year. The effective number of breeders includes genetic estimates (gen, A-

D) demographic estimates (dem, D-G). Dashed lines represent a 1:1 ratio between parameters.  

 

 

 
Figure 3-5. Predicted loss of genetic variation (proportion of initial observed heterozygosity, Ho) 

through 2100.   
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Abstract 

Restoring gene flow into small, isolated populations can alleviate genetic load and decrease 

extinction risk (i.e., genetic rescue), yet augmented gene flow is rarely implemented. Due to this 

discrepancy between opportunity and action, a recent call was made for widespread genetic 

rescue attempts. However, several aspects of augmenting gene flow are poorly understood 

including the magnitude and duration of beneficial effects and when deleterious effects are likely 

to occur. We discuss the remaining uncertainties of genetic rescue in order to promote and direct 

future research and to hasten progress toward implementing this potentially powerful 

conservation strategy on a broader scale.  

The promise of genetic rescue and calls for a paradigm shift 

Restoring gene flow is a promising strategy to combat the global threat of human-driven 

population declines and extinctions. Habitat destruction and fragmentation have isolated many 

small populations (Haddad et al. 2015), and interactions between demographic and genetic 

factors can drive these populations toward extinction (Soulé and Mills 1998). Over the last two 

decades, researchers have provided strong evidence that restoring gene flow into these small, 

isolated populations can alleviate genetic load (see Glossary) and increase persistence 

probability (Tallmon et al. 2004, Frankham 2015, Whiteley et al. 2015b), termed genetic rescue 

(Tallmon et al. 2004). Evidence for genetic rescue has now been documented across a wide 

range of taxa including plants (Newman and Tallmon 2001), invertebrates (Hufbauer et al. 

2015), fish (Fitzpatrick et al. 2016, Robinson et al. 2017), birds (Westemeier et al. 1998, Heber 

et al. 2012), reptiles (Madsen et al. 1999) and mammals (Johnson et al. 2010, Weeks et al. 2017, 

Hasselgren et al. 2018).  
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Despite the promise of genetic rescue, augmented gene flow is rarely used as a 

conservation strategy (Frankham et al. 2017). Recommendations have been made for cautious 

and limited application of augmented gene flow due to concerns about outbreeding depression 

(Edmands 2007) and genetic homogenization (Kolodny et al. 2019). The standard conservation 

practice is to manage populations in isolation to preserve genetic distinctiveness (Weeks et al. 

2016, Ralls et al. 2018). However, genetic distinctiveness can be caused by genetic drift in small, 

isolated populations, and managing these populations in isolation may increase their extinction 

risk (Weeks et al. 2016). Recent calls have been made for a paradigm shift in the genetic 

management of small, isolated populations away from inaction and toward widespread 

consideration of augmenting gene flow (Weeks et al. 2016, Frankham et al. 2017, Ralls et al. 

2018, Chan et al. 2019). 

We agree that genetic rescue should be attempted more frequently. Nevertheless, several 

aspects of genetic rescue are poorly understood. Importantly, the benefits and risks of restoring 

gene flow need to be better characterized to provide realistic expectations and to enable accurate 

cost-benefit analyses with competing conservation strategies. Conservation practitioners also 

need a clearer understanding of how to best implement genetic rescue attempts across a broad 

range of scenarios in order to maximize the utility of restoring gene flow. Here, we highlight 

aspects of genetic rescue that remain uncertain. Our goal is to promote and direct additional 

research that will help transition the conservation community toward widespread genetic rescue 

attempts.  

The definition of genetic rescue 

The ‘rescue effect’ was coined nearly 50 years ago to refer to decreased extinction risk of 

populations following immigration (Brown and Kodric-Brown 1977). The rescue effect was 

primarily attributed to the simple addition of immigrants to the population, which decreases 

Allee effects and demographic stochasticity (Ingvarsson 2001) (i.e., demographic rescue). 

Genetic rescue was distinguished from demographic rescue after studies provided empirical 

evidence that the genetic contribution of immigrants can cause a further increase in abundance 

(Westemeier et al. 1998, Madsen et al. 1999, Ingvarsson 2001).  

Genetic rescue was originally defined as “the increase in the probability of a population’s 

survival due to the immigration of genes from another population (Richards 2000).” Several 
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competing definitions of genetic rescue have since been used. Definitions that reduce the 

emphasis on extinction risk can cause confusion in how genetic rescue is best evaluated, which 

in turn may be inhibiting much-needed progress. We contend that genetic rescue is best defined 

as “a decrease in population extinction probability owing to gene flow, best measured as an 

increase in population growth rate”. This is consistent with the original more theoretical 

definition (Brown and Kodric-Brown 1977, Richards 2000) but also emphasizes that, in practice, 

genetic rescue is best measured as an increase in population growth rate (Box 1).  

Genetic rescue is typically attributed to the masking of deleterious alleles. However, gene 

flow can also promote adaptation to changing environmental conditions by increasing the 

variation upon which selection acts. These mechanisms are not mutually exclusive, and will 

often co-occur in small populations that suffer from both inbreeding depression and mal-

adaptation. Genetic rescue overlaps with evolutionary rescue when gene flow provides the 

variation needed for evolution to reverse population declines, which is often the case for small 

populations (Gonzalez et al. 2012).  

The complex reality of genetic rescue 

Although genetic rescue is conceptually simple, gene flow has complex influences on individual 

fitness and population dynamics. These influences depend on the genetic composition and 

environmental conditions of the recipient and source populations. The maximum potential 

increase in fitness is determined by the severity of the genetic load in the recipient population, 

but realized fitness benefits also depend on the introduced genetic material. Migrants introduce 

both beneficial and deleterious genetic variation. Beneficial effects of gene flow include masking 

deleterious, recessive alleles and increasing additive genetic variation (Whiteley et al. 2015b). 

Deleterious effects of gene flow can be caused by a reduction in local adaptation or genetic 

incompatibilities between the source and recipient populations. The net effect of introduced 

beneficial and deleterious genetic variation determines whether genetic rescue, outbreeding 

depression or neither occurs.  

The fitness effects of gene flow change over time because beneficial and deleterious 

genetic variation manifest at different time scales. In the first (F1) generation, the maximum 

number of deleterious, recessive alleles are expected to be masked, often causing heterosis. In 

the second (F2) generation, hybrid fitness declines as the population approaches Hardy-
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Weinberg equilibrium (Tallmon et al. 2004), but maternal effects can transfer the fitness benefits 

of heterosis to F2 progeny (Frankham 2015). As a result, fitness benefits are predicted to be 

maximal in the F1 and F2 generations and can decline in later generations as genetic load re-

accumulates due to inbreeding and genetic drift. In the F2 and later generations, recombination 

can expose genetic incompatibilities (Frankham et al. 2011, Havird et al. 2016) or form novel 

beneficial genotypes (Hwang et al. 2011). The fitness effects of gene flow are also influenced by 

the effective population size and the strength of natural selection, which determine whether novel 

beneficial alleles and genotypes increase in frequency.  

These evolutionary dynamics, of course, play out in an ecological theater. Gene flow can 

only increase population growth rate when abundance is suppressed below carrying capacity due 

in part to a high genetic load. Additionally, population growth rate is influenced by 

environmental conditions. For example, in a deteriorating habitat, abundance may continue to 

decline despite beneficial effects of gene flow. These complex eco-evolutionary interactions 

make it difficult to accurately predict how restoring gene flow will influence a population.  

Uncertainties surrounding genetic rescue 

What is the magnitude of genetic rescue? 

Understanding how often gene flow appreciably decreases population extinction risk is critical 

for informing conservation decisions. As genetic rescue is due to alleviating genetic load, 

uncertainty about the magnitude of genetic rescue is related to the long-standing debate over how 

often genetic load is a key contributor to extinction. Substantial evidence now suggests that 

inbreeding and genetic drift can depress individual fitness (Keller and Waller 2002, 

Charlesworth and Willis 2009), with strong evidence coming from genetic rescue studies 

(Frankham 2015). Less is known about how often elevated hybrid fitness will translate into 

increased population growth rate. Evidence for increased population growth rate following gene 

flow has been found in laboratory and wild populations (Tallmon et al. 2004, Whiteley et al. 

2015b). In wild populations, concurrent habitat improvements and lack of control and replicate 

populations make it difficult to characterize the contribution of genetic factors to increased 

population growth rate (Tallmon 2017). Additionally, current genetic rescue attempts have 

involved severely inbred populations, but many populations with less severe genetic loads could 
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still benefit from gene flow. In these cases, the magnitude of genetic rescue is not expected to be 

as large. Better characterization of the magnitude of genetic rescue will increase confidence and 

interest in conservation applications of restoring gene flow.   

What is the duration of genetic rescue? 

The duration of genetic rescue is a major outstanding question (Waller 2015). Most studies have 

been limited to the period when beneficial effects are expected to be maximal (i.e., F1 and F2 

generations). A recent meta-analysis provided evidence that increased fitness due to gene flow 

can persist through, and may even be higher in, the F3 generation (Frankham 2016). However, 

this meta-analysis was based on a small number of mostly laboratory invertebrate populations 

(16 of 17 comparisons). These data limitations highlight the lack of long-term studies on genetic 

rescue. Even if elevated hybrid fitness is primarily limited to the F1 and F2 generations, 

abundance may still increase if sufficient habitat is available, which in turn would decrease Allee 

effects and demographic stochasticity. Importantly, genetic rescue is still beneficial in this 

scenario because it can buy time while further conservation strategies are planned and 

implemented.  

Genetic rescue is expected to be temporary when the same habitat constraints that caused 

the initial population decline remain present or when habitat is deteriorating (Fig 4-1A; Box 4-2). 

Unfortunately, habitat constraints are a recurring theme in the limited number of conservation-

motivated genetic rescue attempts. For example, the abundance of greater prairie chickens 

(Tympanuchus cupido) initially increased following gene flow (Westemeier et al. 1998), but 

habitat constraints likely contributed to the subsequent population decline (Bouzat et al. 2009). 

In another recent example, gene flow was augmented as part of a broader conservation strategy 

to protect mountain pygmy possums (Burramys parvus) (Weeks et al. 2017). Genetic rescue 

likely contributed to the rapid increase in abundance, and concurrent habitat improvements may 

allow for abundance to remain elevated. However, climate change is beginning to cause large 

declines in a key food resource for mountain pygmy possums (Gibson et al. 2018), and continued 

conservation efforts will be essential for the possums’ persistence. Both examples were last-ditch 

efforts to prevent extinctions in populations that face extreme habitat constraints. Future genetic 

rescue attempts are likely to include populations where habitat constraints are more easily 

alleviated and the benefits of gene flow are longer lasting (Fig. 4-1A). 
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When will outbreeding depression occur? 

The limited number of genetic rescue attempts is partly due to concerns over outbreeding 

depression. Risks of outbreeding depression can be minimized by following current genetic 

rescue guidelines (Hedrick and Fredrickson 2010, Frankham et al. 2011). These guidelines call 

for selecting populations that occur in similar habitats and have low population divergence to 

avoid reducing local adaptation and genetic incompatibilities, respectively. A meta-analysis of 

studies adhering to these guidelines found very limited evidence for outbreeding depression 

(Frankham et al. 2011). This has led several researchers to assert that outbreeding depression is 

avoidable and concerns are overstated (Ralls et al. 2018, Chan et al. 2019).   

However, current guidelines are mostly based on studies that are limited to the F1 and F2 

generations. Delayed onset of outbreeding depression until F3 and later generations has not been 

well examined and may be a concern in some circumstances. Outbreeding depression may not 

manifest until later generations because heterosis is temporary and recombination can expose 

additional genetic incompatibilities over time (Fenster and Galloway 2000). Although 

concerning, severe genetic incompatibilities are unlikely to occur in closely related populations 

because they tend to form over long time periods. The onset of outbreeding depression may be 

further delayed if local adaptations are to extreme, periodic events (e.g., floods or fires). This 

would delay the manifestation of outbreeding depression until the next extreme event, though 

this has not been demonstrated to our knowledge. The potential for late onset of outbreeding 

depression further emphasizes the need for long-term studies on genetic rescue, but should not 

dissuade genetic rescue attempts that fall within existing guidelines.   

Outbreeding depression is less predictable and presents a greater concern when source 

populations that meet the criteria in the current guidelines are unavailable (Harrisson et al. 2016). 

This may be common for endangered species with few remaining populations. Evolutionary 

theory predicts that natural selection tailors populations to their local environment, and gene flow 

predominantly reduces these local adaptations (Lenormand 2002). For example, migrants had 

substantially reduced fitness compared to residents in large Atlantic salmon (Salmo salar) 

populations (Mobley et al. 2019). However, small populations that are governed by strong 

genetic drift are less likely to have fine-scale local adaptations (Leimu and Fischer 2008), 

especially in changing or stressful environments, and alleviation of genetic load may overpower 

the deleterious effects of reduced local adaptation (Sexton et al. 2011). A recent study 
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documented genetic rescue in Trinidadian guppies (Poecilia reticulata) despite many generations 

of divergent selection pressure to high versus low predation (Kronenberger et al. 2018). 

Trinidadian guppies offer a classic example of adaptive differentiation (Bassar et al. 2010), but 

local adaptation is generally difficult to identify in wild populations (Hoban et al. 2016). More 

studies will be required to understand when differences in local adaptation will cause 

outbreeding depression in small, inbred populations.  

Population divergence is less likely to cause outbreeding depression than differences in 

environmental conditions (Frankham et al. 2011). The extent of population divergence before 

strong genetic incompatibilities form is highly variable among taxa (Box 4-3), but complete 

reproductive isolation often takes millions of years (Edmands 2007). The genetic rescue 

guideline of 500 years of divergence is purposely conservative to minimize risk. However, 

genetic rescue attempts with greater divergence times are being increasingly considered (e.g., 

(Harrisson et al. 2016)) and may become common in the future. Researchers need to carefully 

evaluate what is known about outbreeding depression in their focal species because the extent of 

local adaptation and the potential for genetic incompatibilities will vary widely among taxa.  

When will outbreeding depression increase the probability of population extinction? 

Compared to inbreeding depression, even less is known about when outbreeding depression will 

substantially decrease persistence probability, but outbreeding depression does not appear to be a 

common contributor to extinction. In the commonly cited example, outbreeding depression 

resulting from maladaptive birth timing contributed to the extinction of Tatra Mountain ibex 

(Capra ibex) (Templeton et al. 1986). However, immigrants were moved from arid to alpine 

environments, and are now considered to be different species (C. nubiana and C. aegagrus). This 

example should not deter genetic rescue attempts because most conservation practitioners would 

not consider such a high-risk translocation today. Generally, outbreeding depression is most 

likely to appreciably depress population growth rate when increases in migrant ancestry are 

large, either due to high migration rates or substantial reproductive success of migrants and their 

offspring.  

In some cases, populations have recovered from outbreeding depression (Templeton 

1986, Hwang et al. 2011, 2016) (Fig. 4-1b). Crosses between marine copepod (Tigriopus 

californicus) populations with known genetic incompatibilities had reduced fitness in the F2 
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generation but elevated fitness in the F3 generation due to novel beneficial genotypes (Hwang et 

al. 2011). This has led several researchers to suggest that outbreeding depression is often 

temporary (Erickson and Fenster 2006, Ralls et al. 2018). However, in small populations, a 

rebound in abundance following outbreeding depression may be prevented by low efficacy of 

natural selection. In some cases, even subtle outbreeding depression could tip the scale toward 

extinction.  

Can native ancestry be preserved following genetic rescue? 

The potential for loss of evolutionary lineages and genetic homogenization are prominent 

concerns for restoring gene flow. Genetic swamping may eliminate the unique adaptations that 

made the population of such high conservation value in the first place. Large increases in migrant 

ancestry appear common and difficult to prevent. High profile genetic rescue studies consistently 

document large increases in migrant ancestry (Johnson et al. 2010, Adams et al. 2011, Fitzpatrick 

et al. 2016, Robinson et al. 2017). For example, migrant ancestry reached approximately 70% 

following translocations into an inbred bighorn sheep population (Ovis canadensis) (Hogg et al. 

2006). Further, recent simulation work shows that the magnitude of genetic rescue can be 

strongly associated with loss of native ancestry (Harris et al. 2019). Although the increase in 

migrant ancestry is a stochastic process and the extent of genomic sweeps will be hard to 

anticipate, conservation practitioners can influence migrant ancestry by introducing an 

appropriate number of migrants (see (Hedrick 1995); Box 4-3), or potentially using controlled 

crosses in a captive environment (Hedrick and Fredrickson 2010, Hedrick and Garcia-Dorado 

2016). The challenge facing conservation practitioners is to determine if the consequences of 

inbreeding depression outweigh the risk of genetic homogenization (Kolodny et al. 2019) and if 

genetic distinctiveness is the product of unique local adaptations.  

Genomics and genetic rescue 

The genomic revolution provides new and exciting opportunities to address many of the 

uncertainties described above (Fitzpatrick and Funk 2019). Understanding the genomic 

architecture of the genetic load will be valuable for informing expectations about the magnitude 

and duration of genetic rescue. However, the genomic architecture remains poorly understood 

(Kardos et al. 2016). The genetic load in small, inbred populations is likely caused by many loci 
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of varying effect (Charlesworth and Willis 2009, Paige 2010). If the loci underlying the genetic 

load are also highly variable among populations, the notion that inbred source populations can 

produce genetic rescue will be reinforced (Heber et al. 2012). This would also imply that 

specifically tailoring source populations and immigrants to maximize genetic rescue effects 

would be difficult. Another related uncertainty is whether loci contributing to genetic load 

contain deleterious alleles that are segregating within a population or have become fixed due to 

strong genetic drift. If most deleterious alleles are segregating, we expect genetic rescue effects 

to be ephemeral unless the effective population size increases, subsequently allowing selection to 

overwhelm genetic drift (Harris et al. 2019). Alternatively, if fixed deleterious alleles are 

primarily responsible for reduced fitness, gene flow will expose novel genetic variation to 

selection and the duration of genetic rescue may be greater, particularly if fixation occurred 

during a period of low effective population size. 

Genomic techniques can help identify recipient populations in need of genetic rescue and 

source populations that will maximize benefits and minimize risks. Genomic approaches allow 

for precise estimates of inbreeding (Kardos et al. 2016), which is a useful indicator of genetic 

load in the recipient population (see (Fitzpatrick and Funk 2019)). Genomic techniques can also 

help researchers to identify loci that have a large contribution to the genetic load. When large 

effect loci are identified, specifically selecting immigrants or source populations that possess 

beneficial alleles will be more practical. Similarly, facilitating adaptation to climate change may 

be improved by targeting specific loci (but see (Kardos and Shafer 2018)). Researchers can also 

use genomic approaches to identify inversions and other structural differences that may cause 

outbreeding depression. In addition, researchers can increasingly identify adaptive differentiation 

among populations (Forester et al. 2018), which will help to minimize the risk of outbreeding 

depression and also to distinguish between neutral versus adaptive genetic distinctiveness.  

Concluding remarks: The path forward for genetic rescue  

Evidence for genetic rescue is rapidly accumulating and a transition toward widespread 

restoration of gene flow is likely warranted. However, further research is needed to address 

remaining uncertainties and to increase confidence in this promising strategy (see Outstanding 

Questions). Researchers should take advantage of naturally occurring genetic rescue and 

outbreeding depression to help reduce this uncertainty (e.g., natural immigration (Vilà et al. 
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2003, Hedrick et al. 2019), hybrid zones (Muhlfeld et al. 2009), and invasive species (Kolbe et 

al. 2004)). In addition, academics should continue to collaborate with managers to assist with 

detailed evaluation of genetic rescue attempts and publish findings (for an excellent example see 

(Johnson et al. 2010)). When possible, multigenerational genetic rescue experiments should be 

implemented (Tallmon 2017).  

Additionally, deliberate efforts to experimentally examine genetic rescue and outbreeding 

depression across a wide range of conditions would enhance our ability to refine current 

guidelines. Although diverse outcrossing scenarios have been explored in the plant literature 

(e.g., (Fenster and Galloway 2000, Willi and Van Buskirk 2005, Bontrager and Angert 2018)),  

examining these relationships across diverse taxa would be informative. A more detailed 

understanding of genetic rescue will help conservation practitioners weigh restoring gene flow as 

a stop-gap measure against alternative conservation strategies, or better still, to incorporate 

genetic rescue into broader conservation plans that include restoring, expanding, and 

reconnecting habitat. 

Although uncertainties remain, the extinction crisis is happening now (Ceballos et al. 

2017). Genetic rescue should be attempted more aggressively when proposed translocations 

conform to current guidelines. When translocations do not meet guidelines, potential risks of 

outbreeding depression and genetic homogenization need to be compared against inaction (Ralls 

et al. 2018). In these instances, genetic rescue should be attempted with caution because even if 

severe outbreeding depression is rare, one high profile case may inhibit progress by altering 

perceptions (Royzman and Rozin 2001). Researchers should strive to improve our understanding 

of genetic rescue to the point where we can confidently and effectively restore gene flow with 

minimal monitoring. Once this is achieved, restoring gene flow may become one of the most 

practical, powerful, and inexpensive tools in conservation biology, potentially decreasing the 

extinction risk for a vast number of populations. 
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Figure 4-1. Potential trends in abundance following gene flow into a declining population. 

(A) Genetic rescue will likely be ephemeral (orange line) unless the habitat constraints that 

caused the initial population decline are removed (light blue line). (B) Severe outbreeding 

depression may drive populations toward extinction (red line) unless the efficacy of natural 

selection is sufficient to allow for recovery (dark blue line). The initial population trajectory is 

represented by the solid grey line, gene flow is represented by the dotted line, and carrying 

capacity is represented by the dashed line.   

  



     62 

Glossary 

Allee effects: a positive relationship between population growth rate and density. Allee effects 

can increase extinction probability in small populations. 

Carrying capacity: the maximum number of individuals that a habitat can sustain given no 

genetic load. 

Demographic rescue: a decrease in population extinction probability owing to the demographic 

contribution of immigrants.  

Demographic stochasticity: fluctuations in population size due to random variation in survival 

and birth rates. Demographic stochasticity can increase extinction probability in small 

populations.  

Evolutionary rescue: a decrease in population extinction probability owing to adaptation to 

environmental stress from standing genetic variation, de novo mutation, or gene flow. 

Genetic homogenization: an increase in genetic similarity of populations due to gene flow. 

Genetic homogenization can lead to loss of species-level genetic diversity (see (Kolodny et al. 

2019)). 

Genetic incompatibilities: reduced fitness due to deleterious interactions among loci. 

Genetic load: the proportional decrease in fitness between the average genotype in a population 

and the theoretically fittest genotype (see (Wallace 1991, Hedrick and Garcia-Dorado 2016)). 

Genetic rescue can alleviate genetic load that is due to inbreeding depression, deleterious alleles 

that have reached high frequency or fixation by genetic drift, and maladaptation to changing 

environmental conditions.  

Genetic rescue: a decrease in population extinction probability owing to gene flow, best 

measured as an increase in population growth rate. 

Genetic swamping: loss of locally adaptive alleles due to gene flow.  

Heterosis: elevated fitness of F1 hybrids relative to their parents (see (Charlesworth and Willis 

2009)). Heterosis is due to increased genome-wide heterozygosity following mating between 

individuals from divergent lineages. 

Hybrid: an individual with both migrant and resident ancestry. Here, we are referring to both 

intraspecific and interspecific hybrids and including first and later generation hybrids. 

Inbreeding depression: reduced fitness of offspring with related parents.  

Outbreeding depression: reduced fitness of hybrids. Outbreeding depression is typically 

attributed to maladaptation to local environmental conditions or genetic incompatibilities.  
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Population divergence: the time since isolation between populations (see (Edmands 2007)). 

Population growth rate: change in abundance over time.  

 

Box 1. Expanding the definition of genetic rescue and providing a framework for its 

evaluation 

The ultimate goal of attempting genetic rescue is to decrease a population’s risk of extinction. 

Whether a population persists or goes extinct is determined primarily by the population growth 

rate (Shaffer 1981), making population growth rate the critical parameter for conservation. For 

this reason, we emphasized population growth rate in our previous definition of genetic rescue: 

“an increase in population growth rate owing to gene flow” (Tallmon et al. 2004, Whiteley et al. 

2015b). This definition has received criticism for being overly narrow (Hedrick et al. 2011). 

Populations cannot expand when habitat is limiting, even when gene flow alleviates genetic load. 

Additionally, an increase in population growth rate is difficult to measure in wild populations. In 

order to capture a wider range of beneficial outcomes, we expand our definition of genetic rescue 

to “a decrease in population extinction probability owing to gene flow, best measured as an 

increase in population growth rate”. 

A concern arising from this broader definition is that studies may report genetic rescue 

based on parameters that are weakly associated with persistence probability. Importantly, an 

increase in heterozygosity (i.e., decrease in inbreeding) by itself provides very limited evidence 

for genetic rescue. Increased heterozygosity is associated with future adaptive potential, but 

resulting demographic responses will typically occur outside of the timeframe of monitoring and 

conservation objectives. Increased genetic variation is a weak indicator of contemporary 

extinction risk because gene flow initially increases heterozygosity irrespective of whether 

genetic rescue or outbreeding depression occurs.  

A positive demographic response is needed to infer increased persistence probability in 

the short-term (Fig. 4-I). An increase in migrant ancestry, beyond expectations under genetic 

drift alone, provides evidence for elevated fitness of hybrids compared to residents (Hedrick et 

al. 2011), but determining neutral gene flow expectations is difficult in practice. Better evidence 

for increased persistence probability is an increase in vital rates to which population growth rate 
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has a high sensitivity (Johnson et al. 2011). The best evidence is an increase in population 

growth rate due to gene flow. Monitoring should cover multiple generations and focus on the 

metrics that provide the strongest evidence for evaluating whether genetic rescue occurred given 

the available resources. Conservation practitioners can follow similar criteria for evaluating 

genetic rescue attempts, but will often be less concerned with separating the genetic versus 

demographic contribution of immigrants.  

 

 

 
 

 

Box 4-1; Figure I. The relative strength of different types of evidence for genetic rescue.  
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Box 4-2. The mystery on Isle Royale 

Isle Royale wolves present perhaps the most detailed example of inbreeding depression 

contributing to a functional extinction (Hedrick et al. 2019, Robinson et al. 2019), but the 

influence of gene flow on this extinction is unclear. Isle Royale (on Lake Superior, Michigan, 

USA) contains a small population of highly inbred wolves (mean census size of 24 (Adams et al. 

2011)). In 1997, a single male immigrated to Isle Royale. Due to extremely high fitness, his 

ancestry constituted 56% of the genomic composition of the population within two generations 

(Adams et al. 2011). Inbreeding coefficients rapidly increased within the population, which 

likely contributed to a precipitous decline in abundance. By 2018, only two highly related wolves 

remained on the island, with the male being both the father of and half-siblings with the female. 

They produced one inviable offspring (Hedrick et al. 2019) and have shown no further signs of 

courtship (Mlot 2018).  

It is uncertain whether the migrant’s arrival forestalled or contributed to the demise of the 

Isle Royale wolves. If the migrant increased the rate of extinction, it would be the first 

documentation of a distinct negative effect of gene flow in which a genomic sweep leads to a 

rapid increase in inbreeding depression (Figure I). Current genetic rescue guidelines would not 

be relevant for this deleterious effect because individuals with a low risk of outbreeding 

depression could still cause a genomic sweep. Interestingly, if more than one wolf had 

immigrated to Isle Royale, inbreeding depression may have been less severe because inbreeding 

coefficients would have increased less rapidly. Alternatively, additional immigrants may have 

introduced more deleterious alleles into the population and increased the extent of inbreeding 

depression for a given inbreeding coefficient. Further research is needed to understand how gene 

flow into populations with severe habitat constraints can influence the duration of genetic rescue 

or potentially increase extinction risk. A wolf reintroduction program was recently announced 

(Mlot 2018) and translocations began in 2018, which will allow researchers to observe the 

process unfold again.  
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Box 4-2; Figure I. Can Gene Flow Increase Inbreeding Depression? Blue lines represent the 

relationship between inbreeding coefficients and fitness, and orange lines represent the mean 

inbreeding coefficient of a population. Gene flow may be able to increase inbreeding depression 

by causing a genomic sweep that increases the mean inbreeding coefficient in a population 

(orange dashed line), that introduces novel deleterious alleles that increase the severity of 

inbreeding depression for a given inbreeding coefficient (blue dashed line), or both. Unbroken 

lines represent the pre-gene flow and dashed lines represent the post-gene flow conditions. 

Inbreeding depression is the reduction in fitness of an inbred individual relative to a non-inbred 

individual (dotted grey line). The intersection of blue and orange lines represents the mean 

inbreeding depression of individuals in a population.  
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Box 4-3. Intermediate optima in population divergence and number of migrants 

Intermediate amounts of population divergence and immigration rates should result in the 

strongest genetic rescue effects. Populations with low divergence may minimize rescue effects 

because they will often share the majority of the loci underlying their genetic load. On the other 

hand, high divergence may lead to outbreeding depression (Willi and Van Buskirk 2005, Kovach 

et al. 2016a). Making matters more complicated, the relationship between population divergence 

and rescue effects is taxon-specific and is also influenced by demographic history and the extent 

of local adaptation within the species (Figure 4-IA). These complexities make it difficult to 

predict the amount of population divergence that will have high risks of outbreeding depression. 

Attempts to identify optimally divergent source populations can be difficult, risky, and often 

unnecessary. However, more detailed considerations are necessary for cases where few, 

divergent source populations exist, especially for species with fine-scale local adaptations.   

Likewise, intermediate immigration rates will typically result in the greatest rescue 

effects (Hedrick and Fredrickson 2010). Moving too few individuals may limit rescue effects and 

potentially accelerate the re-accumulation of genetic load (See Box 4-2). On the other hand, 

moving too many individuals may result in the loss of genetic distinctiveness and can potentially 

make outbreeding depression more likely to have large demographic effects. The relationship 

between migration rate and rescue effects is influenced by life-history, the magnitude of the 

genetic load, habitat constraints, and the extent of local adaptation in the recipient population 

(Figure 4-IB). Experimental tests of genetic rescue across various scenarios will help to identify 

these intermediate optima for diverse taxa and maximize genetic rescue effects.  
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Box 4-3; Figure 4-I. The influence of population divergence and migration rates on hybrid 

relative fitness in F2 and later generations. Intermediate amounts of population divergence 

(A) and migration rates (B) typically maximize genetic rescue effects (e.g., the fitness of hybrids 

relative to residents). However, relationships between these factors vary considerably due to 

taxonomic, evolutionary, and environmental differences. For example, divergent crosses or high 

immigration rates may be less risky for a generalist species (Species A; blue line) than a species 

with fine-scale local adaptation (Species B; orange line). Equal fitness between resident and 

hybrid individuals is represented by the dashed line. 
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CHAPTER 5: Experimental test of genetic rescue using inbred source populations of 

imperiled cutthroat trout  

 

Abstract 

Translocations aimed at increasing persistence by alleviating genetic problems (i.e., genetic 

rescue) and boosting genetic variation are a promising conservation strategy to combat human-

driven habitat loss and fragmentation. However, our understanding of genetic rescue is hampered 

by few empirical studies that are confounded by multiple ongoing conservation efforts. We 

conducted an experimental test of genetic rescue in wild westslope cutthroat trout (WCT) 

populations in the Missouri River basin of Montana, USA, where remaining populations are 

isolated and have substantially depressed genetic variation. We translocated 6-8 mature fish into 

four isolated recipient populations that spanned a gradient of inbreeding risk and carefully 

monitored the genetic and demographic outcomes. The two smallest populations had 

substantially increased heterozygosity (39% and 215%) and increased survival (71% and 379% 

for hybrids compared to residents), suggesting that genetic rescue occurred. The mid-sized 

population had a smaller increase in genetic variation and minimal effects of gene flow on 

fitness, and the largest population had very low transplant reproductive output, suggesting 

limited effects of gene flow or potentially reduced fitness (i.e., outbreeding depression). We did 

not find clear evidence for an increase in population growth rate (i.e., the strongest evidence for 

genetic rescue) owing to gene flow in any population. The increase in vital rates without an 

increase in population growth could be due to the unique ecology of freshwater fishes compared 

to previous study organisms, and suggests that the population effects of genetic rescue may be 

more limited in fishes than some other taxa. Nevertheless, massive increases in genetic variation 

following translocations will likely translate into increased adaptive potential and promote the 

persistence of isolated fish populations. These results highlight that effective, broadscale 

implementation of genetic rescue will require examination of diverse translocation scenarios and 

taxa. 
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Introduction 

Human-driven habit loss and fragmentation have confined enumerable populations to small 

habitat fragments with little or no connectivity to other populations. Small, isolated populations 

face heightened extinction risk due to demographic and genetic factors (Soulé and Mills 1998, 

Tallmon et al. 2004). Ideally, habitat should be restored and reconnected, but these actions are 

often impractical or impossible for at-risk populations. A promising conservation strategy is to 

institute a small amount of gene flow into isolated populations to alleviate genetic problems, 

increase vital rates, and ultimately, increase persistence probability, termed genetic rescue 

(Whiteley et al. 2015b, Bell et al. 2019). Despite numerous documented successes (Johnson et al. 

2010, Weeks et al. 2017), genetic rescue is rarely attempted in populations of conservation 

concern (Frankham et al. 2017).  

Recent calls have been made for a paradigm shift towards more widespread genetic 

rescue attempts (Ralls et al. 2018). However, concerns remain that augmenting gene flow will 

have limited or negative effects in some populations. For example, evolutionary theory predicts 

that gene flow should often reduce local adaptations (e.g., outbreeding depression). Further, 

detailed studies of genetic rescue in wild populations remain rare, and controlled and replicated 

studies are almost non-existent, necessitating further research to address uncertainties before 

genetic rescue can be confidently implemented on a broad scale (Bell et al. 2019).  

Another important uncertainty surrounding genetic rescue is the degree to which inbred 

source populations can induce genetic rescue in other inbred populations. Genetic rescue using 

inbred source populations remains very rare (but see Heber et al. 2012). Outbred source 

populations are generally thought to result in greater fitness benefits (Frankham 2015), but large 

populations can carry a greater number of harmful mutations, potentially making the use of 

larger populations as the source of translocated individuals a greater risk in some cases (Kardos 

et al. 2021, Kyriazis et al. 2021, Pérez-Pereira et al. 2022). Importantly, many threatened species 

may no longer have any large, outbred populations left, leaving inbred source populations as the 

only option for genetic rescue attempts. Determining the efficacy of using isolated source 

populations will be crucial for the conservation of many taxa.  

Freshwater ecosystems are among the most threatened on earth (Tickner et al. 2020) and 

have undergone extensive habitat fragmentation (Brauer and Beheregaray 2020). Genetic rescue 

has received limited attention in freshwater ecosystems (Frankham et al. 2017), yet many 
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freshwater taxa could likely benefit from gene flow. One such taxon is the westslope cutthroat 

trout (Oncorhynchus clarkii lewisi) in the Missouri River basin. Westslope cutthroat trout (WCT)  

are now limited to a small fraction of their historical range due to habitat degradation and 

invasive species (Shepard et al. 2005, Bell et al. 2021a). In particular, hybridization with 

invasive rainbow trout is widespread and can lead to genomic extinction of populations 

(Muhlfeld et al. 2014, Kovach et al. 2016b), and was the main impetus for a petition to list WCT 

as threatened under the Endangered Species Act (Allendorf et al. 2004). All remaining non-

hybridized populations are fragmented from one another, and are often confined to short stream 

reaches (Kovach et al. 2021). These populations have significantly reduced genetic variation 

(Fig. 5-1) and could be at increased risk of extinction (Drinan et al. 2011, Kovach et al. 2021). 

Given the severe threats from invasive species, restoring connectivity is unadvisable and 

pragmatically impossible, leaving augmented gene flow as one of the only viable conservation 

strategies for these populations. 

We conducted an experimental test of genetic rescue using inbred populations as the 

sources for translocations into other small, isolated WCT populations that spanned a gradient of 

inbreeding risk. We translocated 6-8 fish into each of four small, completely isolated populations 

(Figure 5-1a) and also removed the same number of fish of the same sex and similar length as we 

introduced to isolate the genetic contribution of the immigrants. The recipient populations had 

only 10% to 56% of the mean heterozygosity found in >200 WCT populations in Rocky 

Mountains of Montana and southern British Columbia (Figure 5-1b). Three of the recipient 

populations were previously identified as candidates for genetic rescue (Kovach et al. 2021) and 

have effective population sizes that indicate inbreeding could be an immediate threat (Jamieson 

and Allendorf 2012; Chapter 3), while the largest recipient population was likely at less 

immediate risk. We intensively monitored the four recipient populations and two additional 

control populations for 5 years to document the influence of gene flow on genetic metrics, vital 

rates and population growth rate and to examine how these effects differ across the gradient of 

inbreeding risk.  
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Results 

Effect of gene flow on genetic composition 

At least one translocated fish reproduced in all study populations but the number of transplants 

that reproduced and total number of transplant offspring varied considerably among populations. 

In the largest population (Little Belt), three of eight transplants reproduced, but only had a total 

of four detected offspring. By the final year of the study, we found no evidence for any 

remaining ancestry from the migrants in Little Belt (Figure 5-2a). In the second largest 

population (Gold Run, Ne = 45, Chapter 3), 7 of 8 transplants produced 56 detected offspring, 

which lead to a migrant ancestry of 4.2% in 2021. In Hall Creek, which had the lowest effective 

size (Ne = 9, Chapter 3), 3 of 6 transplant produced 32 detected offspring, resulting in a migrant 

ancestry of 5.7% by 2021 (4 years after transplantation). In the population with the lowest 

genetic variation (Staubach, Ho = 0.027), 4 of 6 reproductively-successful migrants produced 235 

F1 hybrids and 28 F2 hybrids that were detected, resulting in a migrant ancestry of 17.4% by 

2021.  

Individual heterozygosity was considerably greater for F1 hybrids relative to residents in 

all populations. Despite large differences in resident heterozygosity, F1 hybrids had similar 

heterozygosity in all populations (Figure 5-2b). This created a gradient in the difference in 

heterozygosity between hybrids and residents across populations of 84% in Little Belt, 70% in 

Gold Run, 285% in Hall, and 1025% in Staubach (Figure 5-2b). This translated to population 

increases in heterozygosity in all populations except for Little Belt (Figure 5-2c). For Gold Run 

and Hall, respectively, heterozygosity was 4% and 39% greater in 2021 than before gene flow in 

2017. In Staubach Creek, the 4 reproductively successful migrants increased the observed 

population heterozygosity by 215% (Ho = 0.027 to 0.085). 

Effect of gene flow on vital rates and population growth rate 

To determine if gene flow influenced fitness, we first examined family size (an indicator of 

survival to age-1) and stage-specific survival of residents versus F1 hybrids and then combined 

vital rates to obtain a proxy of survival from fertilization to maturity (composite fitness). We 

omitted Little Belt from these analyses due to the very low gene flow. Hybrids in Gold Run had 

slightly (nonsignificant) depressed early life survival compared to residents, but higher age-2+ 
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survival, which resulted in hybrids having a 20% lower survival to age-4 (pd = 0.67; Figure 5-3a-

e), the age at which most fish have reached maturity. Hybrids in Hall had higher fitness than 

residents for all fitness components, but family size was the only significant difference. This 

resulted in hybrids having a 379% greater probability of surviving to maturity in Hall than 

residents (pd = 0.98), although with considerable uncertainty in parameter estimates. In 

Staubach, hybrids had 108% larger family size than residents (pd = 1), but non-significantly 

lower survival for all life-stages, which led to a 71% higher survival to maturity for F1 hybrids 

than residents (pd = 0.99). Overall, our examination of composite fitness revealed that the higher 

relative fitness of hybrids was statistically and biologically significant in Hall and Staubach. 

  An increase in abundance is often considered the best evidence for genetic rescue 

(Tallmon et al. 2004, Bell et al. 2019, but see Hedrick 2005, Hogg et al. 2006), and we calculated 

abundance and geometric population growth rate (G) in both the recipient and control streams 

(Figure 5-4). G of age-2+ fish from 2017 (pre-translocation) to 2021 ranged considerably from 

0.93 in Hall to 1.26 in Staubach. Notably, the large increase in the abundance of Staubach 

occurred the year before F1 hybrids reached age-2 (Figure 5-4). Generally, the extent to which 

gene flow influences population growth is challenging to separate from environment influences. 

G was slightly positive for the control populations (1.02 and 1.03), falling in the middle of the 

estimates for the recipient populations. However, the correlation in abundance between the 

recipient and control streams was variable and generally low (-0.88 to 0.86), suggesting low 

correlation in the population dynamics, limiting the usefulness of these comparisons. 

Comparison of genetic rescue across populations 

The recipient populations spanned a gradient of heterozygosity and effective size (Chapter 3), 

which is expected to influence genetic rescue outcomes. The number of detected offspring per 

transplant had a strong negative correlation with both the pre-translocation heterozygosity (r = -

0.52) and the effective population size (r = -0.80) of the recipient population (Figure 5-5). 

Notably, migrants had an average of 39 detected offspring in Staubach (Ne = 18, Ho = 0.03) and 

only 0.4 offspring in Little Belt (Ne = 108, Ho = 0.16), which suggests 100 times greater 

reproductive success in Staubach. As stated above, composite fitness was the highest in hybrids 

in the two smallest populations. 
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Discussion 

The influence of gene flow from inbred source populations on fitness differed among the four 

isolated recipient populations, consistent with the gradient of heterozygosity and effective 

population size. We found evidence for genetic rescue in the two smallest populations (Ne of 9 

and 17): both Hall and Staubach had a large increase in early life survival, the life-stage in which 

lethal and highly deleterious mutations cause mortality (e.g., Isle Royale Wolves; Robinson et al. 

2019), which translated into increased survival from conception to age-4. Gene flow appeared to 

have a minimal effect in Gold Run despite the population having an Ne of 45 that can often pose 

short-term risks from inbreeding (Jamieson and Allendorf 2012). Conversely, the largest 

population (Ne = 108) had no signs of any remaining migrant ancestry by the final year of the 

study, suggesting that transplants had no fitness advantage or possibly lower relative fitness (i.e., 

outbreeding depression).  

Understanding how the use of inbred sources influences the outcome of translocations for 

genetic rescue is critical as it will be the only option in many cases. The effect size of genetic 

rescue in our two smallest populations was apparently smaller than many previous studies 

documenting genetic rescue (Johnson et al. 2010, Weeks et al. 2017), especially given that we 

did not see obvious increases in population growth rate. These smaller effect sizes could be due 

to our use of inbred source populations. Notably, our effect sizes were smaller than a similar 

study in a different headwater trout species that examined genetic rescue using gene flow from a 

large outbred source population (Robinson et al. 2017). Inbred sources populations are typically 

expected to carry fewer highly deleterious mutations due to purging, thus posing a lower risk 

(Kyriazis et al. 2021, Pérez-Pereira et al. 2022), but are also expected to result in lower heterosis 

(Frankham 2015). Studies examining the genetic architecture of inbreeding depression and 

genetics rescue (e.g., the number of loci and their effect size) will further improve our 

understanding of using inbred source populations (Fitzpatrick and Funk 2019).    

The smaller genetic rescue effects could also be in part due to salmonids being more 

resilient to isolation than many previously studied taxa. Several factors may limit the impact of 

inbreeding depression on the population dynamics of trout populations. Salmonids have residual 

tetraploidy, which may allow for the retention of variation in some critical genomic regions 

(Frankham et al. 2017). Additionally, in high fecundity species with stages of strong 

competition, natural selection may have minimal influence on population growth both because 
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selection can determine which but not how many individuals make it through a density regulated 

life stage (i.e., soft selection) or because mortality due to selection could be compensatory 

(Wallace 1975, Bell et al. 2021b). Staubach had a pattern consistent with compensatory 

mortality. Hybrid fish in Staubach appear to have considerably elevated survival to age-1, as 

evidenced by increased family sizes, then reduced survival at later life-stages. A possible 

explanation is that high densities created by these large families reduced survival in the later life-

stages. This suggests early life inbreeding depression could result in compensatory mortality 

because density determines the number of juveniles a stream section can support. It remains 

possible that gene flow has increased rmax, which would allow for more rapid recovery from 

environmental catastrophes. 

A major concern with genetic rescue attempts is that gene flow may sometimes depress 

fitness (i.e., outbreeding depression). Outbreeding depression offers a potential explanation for 

the reduction in some vital rates of hybrids and for the complete failure to the translocation into 

Little Belt, although alternative explanations cannot be ruled out (i.e., the stochastic nature of 

translocations). Salmonids are thought to have fine-scale local adaptation (Taylor 1991, Eliason 

et al. 2011, Fraser et al. 2011, Mobley et al. 2019) which could increase their susceptibility to 

reductions in these local adaptations from gene flow. Gold Run and Little Belt have higher Ne, 

and therefore could be more likely to be locally adapted and adaptively differentiated, which 

increases the risk of disrupting local adaptations via translocations.  

Verifying that genetic rescue occurred is a considerable challenge. Almost all of our 

understanding of genetic rescue has come from laboratory experiments and opportunistic 

monitoring of translocations that are part of a suite of conservation efforts to protect threaten 

species (Bell et al. 2019), making it challenging to separate genetic from environmental effects. 

Further, genetic rescue studies may face inherent power limitations because inbreeding is the 

most problematic in the smallest populations which by definition will have low samples sizes 

even with intensive monitoring efforts (Robinson et al. 2021). Hall Creek provides a good 

example. Sample size could have been increased by translocating more fish, but this risks genetic 

swamping and with an average of only 4 detected age-1 families a year, the habitat could be 

placing a very low upper limit on sample size. This conundrum with small sample sizes is not 

unique to our study. Our samples sizes, even in the smallest populations, were consistent with or 

larger than many previous high-profile studies (Madsen et al. 1999, Johnson et al. 2010, Weeks 
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et al. 2017, Hasselgren et al. 2018). Unless the effect size is large, genetic rescue outcomes will 

be challenging to determine in many small populations (Robinson et al. 2021).  

Finally, despite population growth providing the best support for genetic rescue in most 

cases (Tallmon et al. 2004, Whiteley et al. 2015b), trends in abundance may be difficult to 

document in some taxa, which is likely the case for salmonids. High fecundity of salmonids 

likely allows for populations to track carrying capacity despite inbreeding depression, and 

depressed vital rates may not result in depressed population growth. Further, salmonids can have 

highly variable population dynamics, making the detection of trends in population growth a 

considerable challenge.  

In addition to increasing fitness (i.e., heterosis), translocations can boost genetic 

variation, which correlates with heightened evolutionary potential (Kardos et al. 2021). We show 

that translocating a small number of individuals can cause massive increases in heterozygosity in 

small, isolated salmonid populations. Although differences in marker types limit comparisons, 

the increase in heterozygosity in Staubach appears to be among the largest documented in any 

genetic rescue study (e.g., Weeks et al. 2017). This is consistent with a recent study on WCT that 

documented low variation and high levels of divergence between nearby WCT populations, and 

also demonstrated that gene flow could potentially results in large increases in genetic variation 

(Kovach et al. 2021). We also found that hybrid fish in all populations had similar levels of 

heterozygosity, suggesting much of the basin level variation that could have been present pre-

isolation can be restored via translocations. Together, this suggests that translocations will likely 

be beneficial for small, isolated fish populations even if fitness benefits are smaller than in other 

taxa. 

Our findings of potentially-weaker genetic rescue effects in cutthroat trout using inbred 

sources highlights that need for further research using a greater diversity of implementation 

strategies and taxa. Mammals have been the focus of much genetic rescue, and may other taxa 

remain underrepresented or nearly absent from the genetic rescue literature (Frankham et al. 

2017). Nevertheless, fragmentation now threats countless populations and species spanning 

diverse taxa and ecosystems, many of which could benefit from restored gene flow into small 

recently-isolated populations. For example, freshwater ecosystems are at greater risk than most 

terrestrial ecosystems (Tickner et al. 2020) and are highly fragmented (Brauer and Beheregaray 

2020), yet have been the focus of little genetic rescue research. On limited conservation budgets, 
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understanding the influences of gene flow across diverse taxa and scenarios will help to 

determine when, how, and if genetic rescue should be attempted for the species of concern.  

 

Methods 

Study Populations and Translocations 

We selected seven genetically depauperate, isolated westslope cutthroat trout (WCT) populations 

in the Missouri Basin for this study (Figure 5-1a). Four of the populations were designated as 

recipients of gene flow (Little Belt, Gold Run, Hall, and Staubach), two streams were left 

unaltered as controls (Crawford and McClellan), and the remaining stream was used as a source 

of gene flow (Quartz). Criteria for population selection included complete isolation above a 

barrier in a small first order stream (i.e., less than 5 km of perennial stream habitat) and low 

heterozygosity compared to the mean of >200 WCT populations in Montana (Figure 5-1b). All 

populations tested negative for non-native genetic ancestry and whirling disease. The selected 

populations span a range of He (0.03 to 0.17) and Ne (9 to 108). Three of the four recipient 

populations (Hall, Gold Run, and Staubach) have recently been identified as top candidates for 

genetic rescue attempts (Kovach et al. 2021), while one stream (Little Belt) was not. Little Belt 

thus offers a useful comparison to the other populations, as genetic rescue effects are not 

expected to be as large.  

We translocated 6 to 8 mature adults into each recipient population from nearby isolated 

populations in 2017. We removed the same number of fish as we introduced and of the same sex 

and similar size to minimize demographic influences of translocations (Figure S5-1). In all study 

sites, fish were translocated to recipient populations within the same subbasin (HUC8) as the 

source population to reduce the risk of outbreeding depression. We reciprocally translocated four 

males and four females between Little Belt and Gold Run (Table S5-1; FST = 0.43), and 

translocated three males and three females from Quartz Creek into Hall Creek (FST = 0.70) and 

Staubach Creek (FST = 0.76). Translocations took place between June 6 and 8, which is just prior 

to spawning to increase the probability of transplant reproduction.  

 

Sampling Procedures 
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We sampled all populations using backpack electrofishing. Gold Run Creek, Hall Creek and 

Staubach Creek were sampled in their entirely or near entirety. We sampled roughly half of the 

occupied stream length of Little Belt Creek, and we sampled 400-500 m of the control streams. 

For all captured fish, we measured length and clipped a small piece of the upper caudal fin to 

provide tissue for genetic analyses. We additionally inserted Passive Integrated Transponder 

(PIT) tags in to the body cavity of all fish over 70 mm at the study sites on the first capture of the 

fish. PIT tags have been found to have minimal effects on growth and survival for trout 

(O’Donnell and Letcher 2017). Starting in 2018, we scanned all fish for PIT tags.  

We returned to the streams to perform a recapture sample one to two weeks after the first 

sampling occasion in 2017 and 2018 to allow for estimation of individual detection probability. 

Fish were scanned for a PIT tag and visually examined for a fin clip to determine if they were 

marked. Fish that had not been previously captured underwent the same sampling protocol as 

fish captured in the initial stream visit. Recaptures were limited to a subset of the initially 

sampled stream sections, and we randomly selected eight to 12 forty-meter stream sections to 

resample.  

Bioinformatics, Filtering, and Genotyping 

We genotyped all captured fish using GTseq (373 markers, including a sex marker), and 

additionally genotyped fish from Hall Creek, Staubach Creek, and Gold Run Creek using Rad-

capture (see supplementary text S1 for detailed laboratory and bioinformatic methods). To 

increase read depth in individuals with low DNA concentrations, we included some individuals 

on multiple sequencing runs and then combined reads. Genotype error rates were 0.02% for 

GTseq (83 duplicated individuals) and 0.09% for Rad-capture (53 duplicated individuals).  

We tested for conformity to Hardy-Weinberg (HW) and Linkage Disequilibrium (LD) 

expectations for each population. We limited tests to fish sampled in 2017 as this was prior to the 

pulse of age-1 hybrids, which would cause large deviations from both HW and LD. We tested for 

HW expectations using chi-squared tests in the R program pegas (Paradis 2010), and we 

examined LD using chi-squared tests in the genetics package in R (Warnes et al. 2021). Markers 

in which the chi-squared test was significant (p = 0.001) in 2 populations were removed in 

several analyses.  For GTseq, we removed 14 markers that deviated from HW proportions in two 

or more populations (P <= 0.01), both of which had the same direction of FIS. 
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We removed loci that had greater than 40% missing genotypes across individuals for both 

Rad-capture and GTseq. Further, individuals with > 75% missingness on GTseq and > 50% on 

Rapture were not given genotypes for that panel. We were more stringent with Rad-capture as 

the error rates appeared to be higher for individuals with low read depth using that method. For 

both GTseq and Rapture, we filtered based on a minor allele count of 5. 

To avoid close physical linkage and multiple SNPs on the same bait, we thinned markers 

so that only one SNP was selected every 10,000 base pairs. To avoid additional linkage, we 

removed markers that had a mean r of > 0.5 across at least 2 populations. Finally, we found a 

block of rainbow trout ancestry in Hall Creek that covered roughly half of chromosome 6. We 

only selected one marker on this block. When deciding which markers to keep, we favored 

markers on the GTseq panel as genotypes were available for all populations, and we chose the 

loci with the highest average allele frequency across populations.  

Genetic metrics and analyses 

We used genotype data to identify resampled individuals that were too small to PIT tag initially 

(e.g., > 70 mm), or that shed their PIT tags. PIT shed rates are very low, but do occur in larger 

females during spawning. We used the dupGenotype function from the R package StrataG 

(Archer et al. 2017) to identify duplicate genetic samples, which uses pairwise comparisons of all 

individuals in a population to calculate the proportion of identical genotypes. We used a 99% 

percent match as a threshold to call the same individual, which typically provided adequate 

power. 

We identified hybrids (i.e., outcrosses) and determined hybrid class (i.e., F1, F2, or 

resident backcross) using NewHybrids (Anderson and Thompson 2002) run using the R program 

parallelnewhybrid (Wringe et al. 2017). We used 2017 captures and transplants as individuals of 

known population origin to help determine population specific allele frequencies. We used a 

burn-in of 5,000 and ran 10,000 sweeps. This showed perfect consistency with an alternative 

method in which we identified loci with fixed differences in recipient and source populations, 

and used the number of heterozygous ‘diagnostic’ loci to determine hybrids. Finally, parentage 

analysis identified a similar set of hybrid individuals.  

Gene flow causes a deviation from Hardy Weinberg expectations, which is required as an 

assumption in many parentage analyses. We thus used a combination of exclusion-based 
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parentage, which does not require HW proportions, and maximum likelihood based sibship and 

parentage, which has higher power but assumes populations are close to HW proportions. 

Exclusion based methods also lack an implicit expectation of LD, allowing for more markers to 

be used in the analysis.  

 Parentage analyses require the specification of potential parents and offspring. Potential 

parents for a cohort were allowed from all sampling years, but potential parents were omitted 

based on being an unreasonable length to have produced offspring in the cohort of interest. 

Length cutoffs for parents were informed by growth modeling (described below and in Chapter 

2) and previous estimates of size at maturity (Downs et al. 1997). Offspring for a cohort were 

determined based on being age-1 at time t+1. 

Exclusions were based on both offspring and the parent have opposite homozygote 

genotypes and on both parents being homozygous for the same allele while the offspring was 

heterozygous (Cockburn et al. 2021). Additionally, we used full-likelihood joint sibship and 

parentage estimation in Colony2 allowing for polygamy in both males and females and for 

inbreeding, which relaxes HW assumptions (Wang and Santure 2009, Jones and Wang 2010, 

Wang 2012). We ran Colony separately for each population and each cohort.  

 To combine results, we used Colony results to determine resident by resident crosses, and 

to cluster families. When Colony determined two potential parents as having similar probabilities 

of being the true parent, we checked if exclusion had identified either of these parents as the top 

parent. Family size was calculated as the number of detected age-1 fish assigning to the same 

parents. 

Component and composite fitness 

We did not capture juveniles until they reached age-1, but early life survival is perhaps the most 

important stage for inbreeding depression (Keller and Waller 2002). Estimating the difference in 

the number of age-1 juveniles in resident versus hybrid families while controlling for maternal 

length provides a proxy for survival from embryo to age-1. This method first requires an estimate 

of maternal length at the time of reproduction, which often did not align with years in which the 

fish was captured. We thus predicted maternal lengths in all years by modeling individual growth 

using a GLM with a normal distribution and a log link. The log link prevented negative growth. 

Growth was modelled as a function length (quadratic) in the previous year, and this relationship 
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was fit separately for each population. We used parameter estimates from this GLM to estimate 

length in all years in which the fish of interest was not captured. As growth is equal to length at 

time t+1 minus length at time t, these values can be rearranged to estimate lengths in both future 

and previous time steps.   

Family size was then modelled using length estimates and pedigree results. Family size 

was the dependent variable in a GLM with a log link and a zero-truncated Poisson distribution 

with maternal length and cross type (i.e., resident versus hybrid) as covariates. Colony infers 

unobserved moms for families, for which we did not have lengths estimates. To include these 

families in the analysis, maternal length was specified as a normal distribution, and allowing for 

full uncertainty of missing lengths of missing moms to be included into the analysis.  

We estimated differences in survival by life-stage using a multistate CJS (Kery and Royle 

2020). The models allowed for uncertainty in the length-class an individual fell in during years in 

which it was not captured and corrected for individual detection probability, allowing for 

unbiased estimates of stage-specific survival. Specifically, survival was dependent on age and 

length-based size categories: age-1 (juvenile), age-2+ < 150 mm (sub-adult), and >= 150 mm 

(adult). Stage-based survival and transitions among states were modeled as a function of cross 

type (i.e., resident versus hybrid).  

We combined estimates of family size and age/class specific survival to obtain a measure 

of composite fitness. We first converted family size to survival from conception to age-1 by 

dividing family size (given mean maternal length) by an estimate for mean number of fertilized 

offspring (50). A precise estimate of the number is not necessary, as inferring relative fitness 

differences between residents and hybrids is the primary goal of our study. We added this 

estimate of survival to age-1 to the projection matrix of survival of age-1+. We then simulated 

survival from age-0 to age-4, which is the age at which many WCT reach maturity. 

 

Number of mature adults (Nc) and population growth rate 

Individual detection probability was needed to estimate abundance, since detection probabilities 

of less than 1 lead to biased estimation of demographic parameters (Kery and Royle 2020). We 

used the within year recaptures from 2017 and 2018 to estimate detection probability as the 

proportion of fish captured on the return visits to the streams that were captured earlier in the 

same year. This was done using generalized linear models (GLM) with a logit link and a 
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Bernoulli distribution. We estimated detection probability separately for every stream and for 

different size classes, including fish < 120 mm (juveniles),   120 and < 150 mm (sub-adults),  

150 and < 180 (smaller adults), and  180 (large adults), which was necessary since smaller fish 

have lower detection probabilities. We estimated abundance as the number of detected fish in a 

given year divided by the detection probability. This was done separately for each size class and 

population. The summation of age-2+ size-class provides an estimate of the total age-2+ 

abundance. Annual population growth rate (t) was calculated as Nt+1/Nt. We then took the 

geometric mean of t (G) to obtain an average population growth rate spanning from pre-

translocation to 4 years post-translocations. Age-2 F1 hybrids were first detected in 2019, which 

resulted in one pre-translocation estimate of t and three post-translocation estimates.  

 

Bayesian model analysis 

All demographic models described above were analyzed using Bayesian inference in the 

program JAGS (Plummer 2003) in the R program jagsui (Kellner 2019). Models were run with a 

burn in of 50,000 iterations, 50,000 addition iterations, five chains, and were thinned by 10. This 

resulted in successful convergence of all models based on 𝑅̂ values less than 1.1 and visual 

inspection of MCMC chains. We report 95% CRIs and probabilities of direction (pd; the 

proportion of estimates the more common direction), and test for statistical significance for 95% 

CRIs the do not overlap 0 or pd greater than 0.975. 
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Figure 5-1. Summary of study populations and translocations. The dashed line on the map is the 

Continental Divide. The histograms show the mean observed heterozygosity for >200 

populations of westslope cutthroat trout in Montana and southern Canada found east and west of 

the Continental Divide (adapted from Kovach et al. 2021). Diamonds show heterozygosity in the 

four recipient populations. 

 

 

 

 

 
 

Figure 5-2. Genetic summary statistics in the recipient populations, including (a) % migrant 

ancestry in 2021, (b) heterozygosity of resident versus F1 hybrids, and (c) population observed 

heterozygosity (Ho) before (2017) and after (2021) gene flow. Bars represent 95% bootstrap CIs. 
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Figure 5-3. Fitness of residents versus F1 hybrids, including family size (a), annual survival 

probabilities (b-d) and survival from age-0 to maturity, a measure of composite fitness (e). 

Asterisks represent probabilities of direction (pd) for the difference between resident and hybrid 

fitness > 0.975 (*) or 0.99 (**). Vertical lines on point estimates 95% credible intervals. 

 

 

 
Figure 5-4. Abundance of fish > 120 mm (sub-adults and adults) in the four recipient and two 

control populations (Crawford and McClellan). 2019 was the first year with sub-adult F1 

hybrids.  
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Figure 5-5. Relationship between transplant reproductive success (detected offspring per 

transplant) and genetic metrics (Ho and Ne) of recipient populations. The vertical dashed line 

shows an Ne of 50, a commonly used guideline for an effective size of concern.      
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APPENDIX A. Chapter 2 Supplementary Materials 

 

Model validation 

Model validation was based on observed versus predicted species detections, which is a product 

of occupancy probability and detection probability. Notably, distribution models that do not 

explicitly account for detection probably are estimating the product of occupancy and detection 

probability (30, 31, 61), and our model validation is thus directly comparable to models that 

ignore detection probability. We predicted detection histories using parameter estimates from 

200 MCMC iterations to incorporate model uncertainty. Observed and predicted detection 

histories were then used to calculate the area under the receiver-operating characteristic curve 

(AUC), predictive accuracy, and goodness-of-fit. We calculated AUC and predictive accuracy 

for both sites within the study species possible range (i.e., sites that were predicted based on 

estimated parameters), and throughout the entire study region (i.e., including sites that were 

forced to 0 due to being outside of the species possible range). The latter was calculated to 

determine our overall representation of the species distribution within the study region, which 

was especially important for invasive species since their presence were used as covariates in 

models for native species. 

 

Predictive accuracy was determined by rounding the predicted probability that a species 

was both present and detected to 0 or 1. We then calculated the proportion of samples that were 

true positives or true negatives separately for each species. For our goodness-of-fit test, we 

summed the total number of observed and predicted detections by year for each species. We then 

used chi-squared tests to determine if the observed and predicted detections significantly 

differed, which would suggest that our model did not fit the data well.   

 

AUC values were fair for brook trout (0.74), good for bull trout, cutthroat trout, and 

rainbow trout (0.83-0.87), and excellent for brown trout (0.92; Table S5). Our AUC values and 

predictive accuracy slightly exceed previous studies on trout covering the same region (17, 36). 

Mean chi-squared p-values for the goodness-of-fit test ranged from 0.12 to 0.96, indicating the 

model fit the detection history data well.  
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Climate change projections and emissions scenarios 

Our dynamic occupancy model and projections of future distributions used the Western U.S. 

Stream Flow Metrics and Norwest Stream Temperature Database, both of which accurately 

characterize stream conditions (33, 34). The Western U.S. Stream Flow Metrics were derived 

from a variable infiltration capacity (VIC) hydrological model, and the NorWeST stream 

temperatures were based on spatial-stream-network models. NorWeST stream temperatures were 

modeled as a function of several covariates, including summer stream flow from the VIC model 

and downscaled estimates of August air temperature (15 km2 gridded). These stream temperature 

and stream flow metrics are widely used for research and management in the Pacific Northwest, 

USA, and are among the highest quality stream metrics available for any region globally.  

 

Future stream flow and stream temperature projections were based on a composite of 10 

global climate models (GCMs) used to simulate the A1B scenario. These 10 GCM scenarios 

were the best at capturing key features of the climate in the Pacific Northwest, USA, and 

included hadcm, cnrm_cm, ccsm3, echam5, echo_g, cgcm3.1_t47, pcm1, miroc_3.2, ipsl_cm4, 

and hadgem1 (69). Although CMIP3 emissions scenarios have now been replaced by CMIP5, 

our future projections were limited to the A1B emissions scenario because this was the only 

scenario available for the U.S. Stream Flow Metrics and NorWeST Stream Temperatures 

database. However, the middle-of-the-road scenarios for CMIP3 (e.g., A1B) and CMIP5 (e.g., 

RCP 6.0) are similar, and CMIP3 and CMIP5 projections have produced similar ecological 

outcomes (70). 
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Fig. S2-1. Summary of the abiotic variables, including summer stream temperature, summer 

stream flow, and winter flood frequency, by stream segment, including the initial 1993 value and 

the predicted decadal rate of change. Winter floods are the number of winter days in the top 5% 

of annual flow. The natural logarithm of stream flow is shown in cubic meters per second. Red 

represents stream segments on the west of the Continental Divide, blue represents stream 

segments east of the Divide, and purple shows the overlap in these distributions.  
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Fig. S2-2. The influence of stream flow and stream temperature on persistence probability, where 

purple depicts stream segments where the focal species is not predicted to persist. The 

relationships are shown with winter flooding held at its mean value and without species 

interactions. Temperature and flow are standardized. 
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Fig. S2-3. The influence of stream flow and stream temperature on colonization probability, 

where purple depicts stream segments the focal species is not predicted to colonize. The 

relationships are shown with winter flooding held at its mean value and without species 

interactions. Temperature and flow are standardized.  
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Fig. S2-4. Past (1993) and future (2080) occupancy estimates and future change in occupancy 

per decade (2019-2080) on the east and west of the Continental Divide, with bars representing 

95% credible intervals.  
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Fig. S2-5. Sensitivity analysis of how more extreme climate change influences predicted 

occupancy in 2080. (a-e) The % change in predicted occupancy (2080) when a climate variable 

changed 50% more than under the A1B emissions scenario compared to the 2018 occupancy 

estimate for the full model. This rate of climate change is consistent with a high-emissions 

scenario such as the SRES A2 or the RCP 8.5. The diamonds and colored dashed lines represent 

the % change in occupancy for the full model under the A1B emissions scenario. Horizontal, 

colored bars are 95% credible intervals. 
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Fig. S2-6. Initial occupancy and decadal changes in past and future occupancy by stream order. 

Bands are 95% credible intervals.  
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Fig. S2-7. Individual detection probabilities by species based on multi-pass depletion estimates 

within the study region (left). Probability of catching at least 1 fish of the focal species (i.e., 

species-level detection probability) versus the number of fish in the stream section being 

sampled, based on the median individual detection probabilities for each species (right). Lines 

strongly overlap for all species besides rainbow trout, which had a lower individual detection 

probability. Note that occupancy models use species level detection probabilities, not individual 

detection probabilities.  
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Fig. S2-8. Predicted probability of species occupancy x detection for surveys that did and did not 

detect the focal species. White diamonds indicate the mean probability of occupancy x detection 

for samples within the species possible range and grey circles for all stream segments within the 

study region. 
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Table S2-1. Parameter estimates for all biological models with 95% credible intervals shown in 

parentheses.  

Covariate Brook trout Brown trout Bull trout Cutthroat trout Rainbow trout 

Occupancy      

Intercept 0.93(0.39,1.48) -1.88(-2.53,-1.26) -2.23(-3.42,-0.98) 3.03(1.82,4.38) -1.41(-2.33,-0.7) 

Temperature 0.21(-0.05,0.46) 1.07(0.67,1.5) -1.55(-2.06,-1.04) -1.37(-1.81,-0.96) 0.52(0.21,0.82) 

Temperature2 -0.4(-0.55,-0.24) -0.1(-0.28,0) -0.36(-0.63,-0.11) -0.6(-0.87,-0.36) -0.04(-0.13,0) 

Flow -0.06(-0.31,0.19) 1.03(0.69,1.38) 1.62(1.05,2.29) 0.65(0.27,1.05) 0.68(0.37,1.01) 

Floods 0(-0.3,0.3) 0.28(-0.16,0.72) -0.68(-1.2,-0.19) 0.26(-0.27,0.85) 0.03(-0.34,0.42) 

Stocking 0.04(-0.13,0.2) 1.01(0.72,1.34) NA NA 0.08(-0.14,0.33) 

Stream Length 0.06(0,0.16) 0.07(0,0.21) 0.08(0,0.25) 0.02(0,0.08) 0.07(0,0.21) 

Brook Pres. NA NA -0.42(-1.11,0.24) -1.77(-2.34,-1.26) NA 

Brown Pres. NA NA -1.16(-2.19,-0.25) -3.37(-4.65,-2.21) NA 

Rainbow Pres NA NA NA -0.14(-0.88,0.64) NA 

HUC8 (RE) 1.28(0.83,1.86) 1.06(0.54,1.77) 1.39(0.73,2.57) 2.41(1.63,3.48) 1.93(1.24,2.94) 

Colonization      

Intercept -3.09(-3.6,-2.65) -3.96(-4.59,-3.37) -3.7(-4.62,-2.97) -3.18(-3.76,-2.62) -3.18(-3.64,-2.76) 

Temperature 0(-0.29,0.33) 0.35(0,0.74) 0.21(-0.16,0.59) -0.42(-0.69,-0.16) 0.17(-0.1,0.46) 

Temperature2 -0.11(-0.21,-0.01) -0.31(-0.57,-0.15) -0.04(-0.14,0) -0.04(-0.12,0) -0.09(-0.2,-0.01) 

Flow 0.4(0.15,0.62) 1.25(0.9,1.64) -0.07(-0.4,0.29) 0.38(0.14,0.62) 0.85(0.6,1.13) 

Floods 0.21(-0.1,0.51) 0.23(-0.11,0.56) -0.12(-0.47,0.26) 0.54(0.24,0.84) 0.5(0.2,0.81) 

Brook Pres. NA NA -0.14(-0.66,0.39) 0.28(-0.16,0.71) NA 

Brown Pres. NA NA 1.12(0.43,1.8) -0.03(-0.49,0.43) NA 

Rainbow Pres NA NA NA 0.39(-0.08,0.84) NA 

HUC8 (RE) 0.97(0.62,1.42) 1.06(0.59,1.73) 1.22(0.62,2.16) 0.72(0.42,1.1) 0.86(0.54,1.27) 

Persistence       

Intercept 3.78(3.37,4.18) 3.06(2.4,3.82) 1.09(-0.16,2.23) 4.72(4.23,4.99) 2.13(1.66,2.61) 

Temperature 0.07(-0.18,0.3) 1.12(0.7,1.56) -1.37(-1.8,-0.97) -0.06(-0.32,0.22) 0.59(0.34,0.86) 

Temperature2 -0.56(-0.67,-0.45) -0.18(-0.31,-0.04) -0.23(-0.38,-0.07) -0.12(-0.22,-0.02) -0.04(-0.11,0) 

Flow -0.16(-0.37,0.05) 0.18(-0.16,0.48) 2.31(1.69,2.93) 0.29(0,0.56) 0.15(-0.08,0.37) 

Floods -0.28(-0.54,-0.01) -0.05(-0.44,0.35) 0.17(-0.31,0.62) -0.69(-1.02,-0.38) -0.37(-0.67,-0.07) 

Brook Pres. NA NA -0.05(-0.62,0.53) -0.7(-1.14,-0.28) NA 

Brown Pres. NA NA -1.25(-2,-0.5) -0.24(-0.79,0.34) NA 

Rainbow Pres NA NA NA -3.05(-3.55,-2.53) NA 

HUC8 (RE) 0.85(0.57,1.27) 1.28(0.68,2.15) 1.9(1,3.41) 1.24(0.87,1.79) 1.07(0.73,1.55) 

 

* RE indicates that the covariate was included as a random effect 
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Table S2-2. Summary of past and future occupancy shifts. Occupancy shifts are summarized for 

the entire study area, as well as east and west of the Continental Divide. Raw changes and 

percent changes in occupancy are shown. 95% credible intervals are shown in parentheses. Note 

that bull trout have a very limited range east of the Continental Divide in Montana—in the 

Saskatchewan River Drainage—and were only captured in a small number of surveys east of the 

Divide.  

 

  Brook trout Brown trout Bull trout Cutthroat trout Rainbow trout 

Change in occupancy per decade     

Past total -0.032(-0.057,-0.008) -0.004(-0.019,0.015) -0.005(-0.011,0) -0.008(-0.022,0.009) 0.006(-0.023,0.029) 

Past west -0.016(-0.041,0.016) 0.002(-0.007,0.011) -0.016(-0.028,-0.005) -0.005(-0.025,0.018) -0.001(-0.02,0.016) 

Past east -0.035(-0.061,-0.007) -0.006(-0.025,0.015) 0.002(0,0.003) -0.006(-0.02,0.012) 0.009(-0.022,0.033) 

Future total -0.01(-0.014,-0.005) 0.001(-0.004,0.005) -0.003(-0.004,-0.002) -0.008(-0.011,-0.005) 0.004(0,0.008) 

Future west -0.007(-0.013,0.001) 0.003(0.001,0.007) -0.009(-0.012,-0.006) -0.012(-0.017,-0.007) 0.005(0.002,0.01) 

Future east -0.011(-0.015,-0.007) -0.001(-0.006,0.005) -0.001(-0.001,0) -0.006(-0.009,-0.003) 0.003(-0.002,0.009) 

Percent change in occupancy     

Past total -16.3(-27.5,-4.2) -4.6(-20.2,20.7) -18.2(-36.1, 1.5) -6(-16,6.9) 6(-18.6,39.7) 

Past west -10.4(-24.2,11.6) 3.6(-24.3,41.2) -24.7(-41.4,-5.9) -3.8(-14.1,7.9) -5(-32.1,31) 

Past east -18.9(-31.3,-4.3) -6.1(-23,19.8) 99.7(15.7,460.8) -8.8(-26.3,14.7) 10(-17.5,44.7) 

Future total -14.8(-21.4,-7.2) 1.7(-11.7,15.3) -38.7(-49.1,-25.2) -15.7(-21.6,-8.3) 9.9(-1.1,19.1) 

Future west -11(-21.3,1.2) 21.2(6.8,39) -39.5(-49.7,-27.5) -12.9(-17.6,-7.4) 19.3(7,32.8) 

Future east -16.6(-22.6,-10.2) -2.1(-15.5,10.9) -34.4(-52.2,-13.1) -20.5(-30,-7.3) 6.7(-4.1,15.7) 
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Table S2-3. Correlations between covariates used in our analyses. All transformations used in 

our analysis were performed before testing for correlations among covariates. Correlations that 

did not include invasive presence were performed on site-level data. Correlations involving 

invasive presence included data for sites in all years in which sampling occurred. Invasive 

presence was determined if the focal species was detected within a site at a given year.  

 

  

Stream 

temperature 

Stream 

flow 

Winter 

floods 

Stream 

length 

Brook 

stocking 

Brown 

stocking 

Brook 

Presence 

Brown 

Presence 

Stream flow 0.47 - - - - - - - 

Winter floods 0.33 0.38 - - - - - - 

Stream length 0.16 -0.32 -0.09 - - - - - 

Brook Stocking 0.34 0.22 0.22 0.06 - - - - 

Brown Stocking 0.33 0.16 0.21 -0.06 0.52 - - - 

Rainbow Stocking 0.3 0.2 0.24 0.08 0.55 0.51 - - 

Brook Presence -0.05 -0.12 0.1 -0.07 - - - - 

Brown Presence 0.6 0.53 -0.06 0.42 - - -0.12 - 

Rainbow Presence 0.53 0.51 -0.14 0.38 - - -0.1 0.55 
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Table S2-4. Parameter estimates for the detection probability models with 95% credible intervals 

shown in parentheses. 

Covariate Brook trout Brown trout Bull trout Cutthroat trout Rainbow trout 

Intercept      

Order 1-2 1.41(1.26,1.56) 0.18(-0.16,0.53) 0.67(0.4,0.95) 1.82(1.68,1.97) 0.53(0.28,0.78) 

Order 3-4 1.13(0.95,1.31) 1.28(1.07,1.5) 1.43(1.21,1.65) 1.57(1.39,1.75) 1(0.79,1.2) 

Order 5-6 -0.1(-0.46,0.26) 2.35(2.05,2.64) 0.98(0.6,1.39) 1.35(1,1.71) 2.57(2.27,2.89) 

Order 7-8 -1.17(-1.92,-0.24) 3.71(3.04,4.45) -1.07(-1.91,0.06) 2.79(1.44,4.33) 1(0.69,1.34) 

Year      

Order 1-2 0(-0.01,0.01) 0.03(0.01,0.06) 0.02(0,0.03) 0.02(0.01,0.04) 0(-0.02,0.02) 

Order 3-4 0.02(0,0.03) 0.01(0,0.03) 0.01(-0.01,0.02) 0.02(0,0.03) 0.01(0,0.03) 

Order 5-6 0.01(-0.02,0.03) 0.03(0,0.05) -0.03(-0.06,-0.01) -0.01(-0.04,0.01) -0.03(-0.05,-0.01) 

Order 7-8 0.03(-0.03,0.09) -0.08(-0.12,-0.04) 0.06(-0.01,0.11) -0.07(-0.16,0) 0.01(-0.01,0.03) 
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Table S2-5. Model validation statistics including AUC, predictive accuracy, and chi-squared p-

values for the goodness-of-fit test.  

  
AUC – 

excluding sites 

outside of 

possible range 

AUC - 

including sites 

outside of 

possible range 

Predictive Accuracy 

- excluding sites 

outside of possible 

range 

Predictive Accuracy 

- including sites 

outside of possible 

range 

Goodness-

of-fit chi-

squared p-

value 

Brook Trout 0.74 0.78 0.66 0.69 0.12 

Brown Trout 0.92 0.95 0.85 0.89 0.96 

Bull Trout 0.83 0.94 0.76 0.89 0.62 

Cutthroat Trout 0.83 0.87 0.76 0.79 0.17 

Rainbow Trout 0.87 0.9 0.83 0.85 0.36 
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APPENDIX B. Chapter 3 Supplementary Materials 

 

Table S3-1. Life table for Crawford Creek. 

 

Age (x) sx(male) lx(male) bx(male) sx(female) lx(female) bx(female) 

1 0.66 1.00 0.0 0.51 1.00 0.0 

2 0.36 0.66 0.1 0.42 0.51 0.0 

3 0.49 0.24 0.9 0.49 0.21 0.4 

4 0.47 0.12 3.5 0.59 0.10 2.5 

5 0.44 0.05 7.7 0.56 0.06 6.3 

6 0 0.02 11.9 0.53 0.03 9.5 

7 0 0.00 0.0 0 0.02 11.7 

 

 

Table S3-2. Life table for Hall Creek. 

 

Age (x) sx(male) lx(male) bx(male) sx(female) lx(female) bx(female) 

1 0.72 1.00 0.0 0.52 1.00 0.0 

2 0.63 0.72 0.0 0.63 0.52 0.0 

3 0.64 0.45 0.1 0.57 0.33 0.0 

4 0.54 0.29 0.7 0.50 0.19 0.2 

5 0.50 0.16 3.5 0.45 0.09 0.9 

6 0.47 0.08 8.7 0.42 0.04 2.2 

7 0.46 0.04 13.3 0.00 0.02 4.0 

8 0.00 0.02 15.8 0.00 0.00 0.0 

 

Table S3-3. Life table for Little Belt Creek. 

 

Age (x) sx(male) lx(male) bx(male) sx(female) lx(female) bx(female) 

1 0.38 1.00 0.0 0.47 1.00 0.0 

2 0.27 0.38 0.3 0.36 0.47 0.0 

3 0.27 0.10 1.2 0.27 0.17 0.7 

4 0.00 0.03 2.7 0.32 0.05 2.1 

5 0.00 0.00 4.8 0.00 0.01 4.2 
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Table S3-4. Summary of stream characteristics. 

 

Stream 

NHD Above 

Barrier Flowline 

Length (km) 

Start 

Elevation (ft) 

Above Barrier 

Drainage Area (km2) 

Sampled 

Mainstem (m) 

Little Belt 3.4 4,788 7.98 1,160 

Gold Run 2.5 5,880 3.38 1,520 

Hall 3.8 5,755 5.44 1,360 

Staubach 4.9 4,955 4.76 1,480 

Crawford 3.4 5,856 5.56 400 

 

APPENDIX C. Chapter 5 Supplementary Materials 

 

Sampling details 

We began sampling at the barrier and worked upstream all populations. At Staubach Creek, we 

began sampling approximately 1 km above the barrier in 2017 and 0.5 km above the barrier in 

2018. We sampled Gold Run Creek in its entirety in all years, and Hall Creek in its near entirety 

in all years. Hall Creek does not have a defined and the core population of both Hall Creek and 

Staubach Creek. We sampled through the core of the population to a partial barrier in all other 

study streams. The presence of fish above the partial barriers was confirmed in all of these 

streams. Densities were very low above the sampling reaches in Staubach Creek and Hall Creek, 

but remained high in NF Little Belt Creek and the control streams. Study reaches ranged from 

1,400 m to 1,760 m, and we sampled the entirety of these reaches. We additionally sampled two 

tributaries in NF Little Belt Creek. Study reaches in all control streams began at the barrier and 

ended 500 m upstream. Study reaches were broken into sections to allow for spatial analyses. 

 

 

 

Table S5-1. Summary of translocations. 
Subbasin 

(HUC8) 

Creek Creek 

Abbr. 

Experimenta

l Type 

Source Creek # of Fish 

Introduced/

Removed 

Translocation 

Date (2017) 

Belt NF Little Belt LB Study Gold Run 8/8 6/6 

Belt Gold Run GR Study NF Little Belt 8/8 6/6 

Upper Missouri Hall HA Study Quartz 6/6 6/8 

Upper Missouri Staubach ST Study Quartz 6/6 6/8 

Belt Crawford CR Control NA 0/0 NA 

Upper Missouri McClellan MC Control NA 0/0 NA 
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Figure S5-1. Length of fish that were introduced (dark grey) and removed (light grey) from each 

study population during 2017 translocations.  

 


	GENETIC RESCUE OF ISOLATED CUTTHROAT TROUT
	Let us know how access to this document benefits you.
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	CHAPTER 1: Introduction and Overview
	CHAPTER 2: Climate change and expanding invasive species drive widespread declines of native trout in the northern Rocky Mountains, USA
	Abstract
	Introduction
	Results
	Local persistence and colonization probabilities
	Past and future shifts in distribution sizes
	Drivers of distributions shifts

	Discussion
	Methods
	Study region and delineation of stream segments
	Fish surveys
	Covariates
	Analyses
	Model convergence and assessment
	Past and future occupancy predictions and sensitivity analysis


	CHAPTER 3: Demographic drivers of small effective population sizes in isolated trout populations
	Abstract
	Introduction
	Methods
	Study populations and sampling procedures
	Bioinformatics and genotyping
	Individual identification and pedigree construction
	Demographic modeling
	Life history parameters and life table construction
	Number of mature adults (Nc)
	Effective number of breeders (Nb) and effective population size (Ne)

	Results
	Variation in life history traits
	Nb estimates and Nb to Nc ratios
	Ne estimates, Nb/Ne, and Ne/Nc

	Discussion

	CHAPTER 4: The exciting potential and remaining uncertainties of genetic rescue
	Abstract
	The promise of genetic rescue and calls for a paradigm shift
	The definition of genetic rescue
	The complex reality of genetic rescue
	Uncertainties surrounding genetic rescue
	What is the magnitude of genetic rescue?
	What is the duration of genetic rescue?
	When will outbreeding depression occur?
	When will outbreeding depression increase the probability of population extinction?
	Can native ancestry be preserved following genetic rescue?

	Genomics and genetic rescue
	Concluding remarks: The path forward for genetic rescue
	Glossary
	Box 1. Expanding the definition of genetic rescue and providing a framework for its evaluation
	Box 4-2. The mystery on Isle Royale
	Box 4-3. Intermediate optima in population divergence and number of migrants

	CHAPTER 5: Experimental test of genetic rescue using inbred source populations of imperiled cutthroat trout
	Abstract
	Introduction
	Results
	Effect of gene flow on genetic composition
	Effect of gene flow on vital rates and population growth rate
	Comparison of genetic rescue across populations

	Discussion
	Methods
	Study Populations and Translocations
	Bioinformatics, Filtering, and Genotyping
	Genetic metrics and analyses
	Component and composite fitness
	Bayesian model analysis


	REFERENCES
	APPENDIX A. Chapter 2 Supplementary Materials
	APPENDIX B. Chapter 3 Supplementary Materials
	APPENDIX C. Chapter 5 Supplementary Materials

