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ABSTRACT

This dissertation deals with three topics inside loop and quasigroup theory. First, as

a continuation of the project started by David Stanovský and Petr Vojtěchovský, we study

the commutator of congruences defined by Freese and McKenzie in order to create a more

pleasing, equivalent definition of the commutator inside of loops. Moreover, we show that

the commutator can be characterized by the generators of the inner mapping group of the

loop. We then translate these results to characterize the commutator of two normal subloops

of any loop.

Second, we study automorphic loops with the desire to find more examples of small

orders. Here we construct a family of automorphic loops, called quaternionic automorphic

loops, which have order 2n for n ≥ 3, and prove several theorems about their structure.

Although quaternionic automorphic loops are nonassociative, many of their properties are

reminiscent of the generalized quaternion groups.

Lastly, we find varieties of quasigroups which are isotopic to commutative Moufang

loops and prove their full characterization. Moreover, we define a new variety of quasi-

groups motivated by the semimedial quasigroups and show that they have an affine rep-

resentation over commutative Moufang loops similar to the semimedial case proven by

Kepka.
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Chapter 1: Introduction

Much of loop theory owes its development to the efforts to try to generalize group the-

ory, and as such, loops are often viewed through the lens of a “nonassociative group.” While

it is useful and enlightening to generalize groups by removing associativity, in many cases

this process makes calculations more convoluted and difficult. Thus, it is also a project of

loop theory to find structures which are, in a sense, “well-behaved” like groups without

making use of the full power of associativity. One example is the variety of automorphic

loops, whose inner mappings are all automorphisms (as they are in the group case, but not

always in the nonassociative case). A working theory of automorphic loops has been laid

down by Kinyon, Phillips, Vojtěchovský, and others in [28, 19], but there are relatively few

concrete examples of small orders. Thus, one of the goals of this dissertation is to construct

a family of automorphic loops of order 2n for any n ≥ 3 and to prove some basic facts about

their structure, which is reminiscent of the structure of the generalized quaternion groups.

Another variety of loops which is “close to” groups is the variety of commutative

Moufang loops (CMLs). Since CMLs have been well studied, it is useful to be able to

represent certain nonassociative structures which are not as well understood – such as cer-

tain varieties quasigroups – as isotopic (a generalization of isomorphic) to CMLs. Thus,

another goal of this dissertation is to give a complete representation theorem of such a

variety of quasigroups. Moreover, we present a new variety of quasigroups which we call

semiparamedial, which turn out to have an affine representation over CMLs.

Lastly, like groups, loops form a variety, and thus can also be viewed through the lens

of universal algebra. From this standpoint, a loop can be defined as an algebra (Q, ·, \, /, 1)

satisfying certain identities. Many times in loop theory the group-theoretical approach
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aligns with the universal-algebraic approach. However, one important area where they dif-

fer is in solvability. Defining solvability in loops by mimicking the group theory definition

ends up not coinciding with the definition brought about from using the notion of congru-

ence solvability from universal algebra. It remains an open question in which varieties of

loops the two notions of solvability coincide, and where they differ. It is our belief that

one part of why this question has gone unanswered is that there has not been a workable

definition of what the commutator of two subloops is. Thus, our last goal in this manuscript

is to build on the work of Stanovský and Vojtěchovský in [40] and create a more pleasing,

and perhaps more useful, definition of the loop commutator.

1.1 Structure of the dissertation

Chapter 2 gives a basic introduction to loop and quasigroup theory, important defi-

nitions, and well-known results. Following this background, the dissertation is divided

into three main sections. The goal of chapter 3 is to present a new definition of the loop

commutator. Thus, in this chapter, we go through a brief history of the loop commutator,

discuss briefly the problem of solvability, and describe the progress made by Stanovský and

Vojtěchovský to write the commutator in terms of generators. In Section 3.4 we present our

new definition of the loop commutator and prove that it is equivalent to the previous defi-

nitions. This new representation of the loop commutator then allows us to answer an open

question presented by Stanovský and Vojtěchovský in [41].

In chapter 4, we present a construction of a family of automorphic loops which we

define as quaternionic automorphic loops. Just as the generalized quaternion groups can

be constructed in a similar way to the dihedral groups, the construction of quaternionic

automorphic loops is inspired by the construction of the dihedral-like automorphic loops

done by Aboras in [1]. We then prove several theorems about these loops, some of which

are reminiscent of their quaternion group analogs.
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Chapter 5 is dedicated to developing a representation theorem for quasigroups which

are isotopic to commutative Moufang loops. Thus, we give a brief introduction to CMLs,

some previous results in the field, and finally prove the full characterization. Moreover,

we define “semiparamedial” quasigroups and show they have an affine representation over

CMLs.

The appendix includes some GAP code which was used during the course of this inves-

tigation.
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Chapter 2: Background

Here we lay out basic definitions in loop and quasigroup theory, as well as some basics

of universal algebra. Moreover, we give some notation conventions and important results

in the field. For an extensive study of the theories, and as a secondary reference for what

follows, we direct the reader to [2, 6, 8, 33, 38].

As mentioned in the introduction, the study of loop and quasigroup theory owes much

of its progress to the efforts to generalize group theory. Thus, it is common to define a

quasigroup as a set with a binary operation, (Q, ·) such that for every a, b ∈ Q there exist

unique x, y ∈ Q such that a · x = b and y · a = b. This is commonly known in group

theory as unique solvability. Then a loop is a quasigroup with a necessarily unique identity

element 1 such that 1 · x = x · 1 = x for every x ∈ Q.

Since loops and quasigroups have unique solvability, their multiplication tables form a

Latin square, but more importantly, the left and right translation maps defined as follows

are permutations on Q:

Lx : Q→ Q Lx(a) = x · a, and Rx : Q→ Q Rx(a) = a · x .

Thus, we may define new operations onQ using their inverse maps. That is, the inverse

permutations L−1
x and R−1

x yield division operations \ and /, defined by L−1
x (a) = x\a and

R−1
x (a) = a/x.

The reason that loops and quasigroups are often thought of as “non-associative” groups

comes from the fact that a quasigroup Q with the property that x · yz = xy · z is, in fact,
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a group. That is, an associative quasigroup has unique two-sided inverses and a unique

two-sided identity element. This is a straightforward exercise.

Loop theory and quasigroup theory also have roots in universal algebra, so we present

here only a few of the necessary definitions to understand these structures through this lens.

We will only be dealing here with finitary universal algebras, or universal algebras where

the set I below is finite.

Definition 2.1. A universal algebra is a tuple A = (A, {fi}i∈I) where A and I are sets and

each fi is an operation on A.

The signature of a universal algebra A = (A, {fi}i∈I) is an |I|-tuple where the ith entry

is the arity of fi.

We note that the following is not the standard definition of a variety, but will suffice for

our purposes.

Definition 2.2. A variety is the class of all universal algebras of a given signature satisfying

a given set of identities.

Since varieties are defined equationally, they are closed under taking appropriate quo-

tients, sub-varieties, products and homomorphic images.

With this in mind, we may equivalently define quasigroups as a variety of universal

algebras (Q, ·, \, /) with signature (2, 2, 2) satisfying:

x · (x\y) = y , x\(x · y) = y , (x/y) · y = x , (x · y)/y = x .

Then loops are a variety of universal algebras (Q, ·, \, /, 1) with signature (2, 2, 2, 0) satis-

fying:

1 ·x = x , x ·1 = x , x ·(x\y) = y , x\(x ·y) = y , (x/y) ·y = x , (x ·y)/y = x .
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It is a straightforward calculation to show that the two definitions of loops (and alter-

natively of quasigroups) are equivalent. Thus, we will employ either definition throughout

the course of this dissertation.

To simplify notation, we will follow convention and use juxtaposition in place of ·,

where juxtaposition is more binding than ·, \, and /. In addition, ·, when used explicitly,

will be less binding than / or \. For example, xy/z = (x · y)/z, xy · z = (x · y) · z, and

x · y/z = x · (y/z).

2.1 Substructures

As one might imagine, a subquasigroup of a quasigroup Q is a nonempty subset of Q

which is closed under ·, /, \, and a subloop is defined similarly. We denote subquasigroups

and subloops as H ≤ Q.

In the context of loops, we may define normal subloops in a way which mimics the

classic group theory definition.

Definition 2.3. LetQ be a loop and H ≤ Q. Then H is normal inQ if and only if for every

x, y ∈ Q,

xH = Hx , (xH)y = x(Hy) , and x(yH) = (xy)H .

Since we are not guaranteed that every subloop of a loop has a coset decomposition

which partitions the loop, we define the following.

Definition 2.4. Let Q be a loop and H ≤ Q. Then saying Q has a left (right) coset

decomposition moduloH means that the set of all left (right) cosets moduloH is a partition

of Q.

We use the notation H ⊴ Q or H ◁ Q to denote when H is normal in Q. For a loop

Q and H ⊴ Q, we may take Q modulo H in the usual way to form the quotient loop,

Q/H = {xH : x ∈ Q}.
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Just as is the case in group theory, loops (or quasigroups) have special subloops (or

subquasigroups) which play important roles in their structure. We define these here in the

context of quasigroups, noting that loops are simply a special variety of quasigroups, so the

definitions apply to loops as well.

Definition 2.5. Let Q be a quasigroup. Then the left nucleus of Q is

Nλ(Q) = {x ∈ Q : x(yz) = (xy)z ∀y, z ∈ Q} ,

the middle nucleus of Q is

Nµ(Q) = {y ∈ Q : x(yz) = (xy)z ∀x, z ∈ Q} ,

and the right nucleus of Q is

Nρ(Q) = {z ∈ Q : x(yz) = (xy)z ∀x, y ∈ Q} .

Then the full nucleus, or simply just the nucleus of Q is

N(Q) = Nλ(Q) ∩Nµ(Q) ∩Nρ(Q) .

In other words, the nucleus of a quasigroup is the set of all elements which associate

with every element in the quasigroup.

Definition 2.6. Let Q be a quasigroup. Then the commutant of Q is

C(Q) = {x ∈ Q : xy = yx ∀y ∈ Q} ,
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and the center of Q is

Z(Q) = C(Q) ∩N(Q) .

Hence, the center of a quasigroup is the set of all elements which both associate and

commute with all elements of the quasigroup.

We note that for any given quasigroup Q, there is no guarantee that the nuclei or the

center are nonempty. However, if any of the nuclei or the center is nonempty, then it will

form a subquasigroup of Q. To show, for example, that a nonempty Nλ(Q) is closed under

·, we let x, y ∈ Nλ(Q) and a, b ∈ Q. Then xy · ab = x(y · ab) since x ∈ Nλ, and

x(y · ab) = x(ya · b) since y ∈ Nλ, and x(ya · b) = (x · ya)b = (xy · a)b since x ∈ Nλ.

Thus, xy ∈ Nλ(Q). If Q is a loop, then it is straightforward to show that the identity

element is in each of N(Q) and Z(Q). In addition, we have the following.

Proposition 2.1. For a loop Q, the center of Q is normal in Q. Moreover, any subloop of

Z(Q) is normal in Q.

2.2 Mapping Groups

As stated in the definition of a quasigroup, the left and right translation maps of a

quasigroup Q are permutations on Q. These generate the permutation group defined as

follows.

Definition 2.7. The multiplication group of a quasigroup Q is

Mlt(Q) = ⟨Lx , Rx : x ∈ Q⟩ .

For loops in particular, we may define the inner mapping group ofQ as the stabilizer of

1 in the multiplication group. It is well known (for proof, see [33]) that the inner mapping
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group of a loop is generated by

Inn(Q) = ⟨Tx , Lx,y , Rx,y : x, y ∈ Q⟩ ,

where

Tx = R−1
x Lx , Rx,y = R−1

yxRxRy , Lx,y = L−1
xyLxLy .

Notice that the map Tx is, in a sense, a measure of commutativity, similar to the conjugation

map from group theory. Moreover, the maps Lx,y and Rx,y are measures of associativity,

and thus have no analogs in the associative setting.

It can be useful to consider the subgroups of Inn(Q) generated by each of these maps

separately. Thus,

Definition 2.8. The left inner mapping group of a loop Q is

LInn(Q) = ⟨Lx,y : x, y ∈ Q⟩.

The right inner mapping group of a loop Q is

RInn(Q) = ⟨Rx,y : x, y ∈ Q⟩.

And the middle inner mapping group of a loop Q is

MInn(Q) = ⟨Tx : x ∈ Q⟩.

2.3 Homomorphisms and Isomorphisms

In addition to maps on the quasigroup itself, we may define maps from one quasigroup

to another. The classic definition of homomorphism and isomorphism applies, formally

stated as follows.
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Definition 2.9. Let (Q, ·) and (S, ∗) be quasigroups. Then a map φ : Q → S is a homo-

morphism of quasigroups if, for every x, y ∈ Q, φ(x · y) = φ(x) ∗ φ(y). We say φ is an

isomorphism of quasigroups if φ is a bijection. In the case when (Q, ·) = (S, ∗) and φ is

an isomorphism, we say φ is an automorphism of Q.

Definition 2.10. The set of all automorphisms of a quasigroup Q is called the automor-

phism group of Q, denoted Aut(Q).

In the case when Q and S are loops, we define the kernel of a homomorphism as

expected.

Definition 2.11. Given a homomorphism of loops φ : Q → S, the kernel of φ is the set of

all elements of Q which map to the identity element in S. That is,

kerφ = {a ∈ Q : φ(a) = 1S}.

Just as in the group case, the kernel of a homomorphism is a normal subloop of the

loop, and we get isomorphism theorems similar to those in group theory. For a proof of the

Fundamental Homomorphism Theorem, see [6], and then the others follow similarly.

2.4 More on Normality

Many times working with the multiplication group or the inner mapping group of a

loop can make for simpler calculations. Thus, we have the following equivalent definition

of normality. For a proof of the equivalence, see [33].

Proposition 2.2. Let Q be a loop and H ≤ Q. Then H is normal in Q if and only if for

every φ ∈ Inn(Q), φ(H) = H .

Looking at the fixed points of the three generators of the inner mapping group tells

more than just normality. As stated previously, Tx measures commutativity. Thus, it is

straightforward to see that for some q in a quasigroup Q, Tx(q) = q for all x ∈ Q if and
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only if q ∈ C(Q). Moreover, Lx,y and Rx,y measure associativity. So, for some q ∈ Q,

Lx,y(q) = q for all x, y ∈ Q if and only if q ∈ Nρ(Q). Similarly, Rx,y(q) = q for all

x, y ∈ Q if and only if q ∈ Nλ(Q).

While it can be the case that the cosets of a subloop do not partition the loop, we do

have that the cosets of normal subloops partition the loop, as definition 2.3 suggests. Thus,

the index of a normal subloop in a finite loop makes sense to define. In fact, for a finite

loop Q, it is enough for Q to have a left and right coset decomposition modulo a subloop

H to define the index as follows.

Definition 2.12. Let Q be a finite loop and H ≤ Q such that Q has a left and right coset

decomposition modulo H . The index of H in Q, denoted [Q : H], is the number of cosets

of H in Q.

It is not difficult to see that if [Q : H] makes sense then [Q : H] = |Q|
|H| . It also holds

that if [Q : H] = 2, then H ◁Q, using the same proof as the group case.

2.5 Isotopisms

Another type of mapping between quasigroups is called an isotopism. These are gen-

eralizations of the notion of an isomorphism, and are useful in many settings in nonasso-

ciative algebra.

Definition 2.13. Let (Q, ·) and (S, ◦) be quasigroups. An isotopism from (Q, ·) to (S, ◦) is

a triple of bijections (α, β, γ) from Q to S such that for every x, y ∈ Q,

α(x) ◦ β(y) = γ(x · y).

Then Q and S are said to be isotopic, or that S is an isotope of Q.

In the case where (Q, ·) = (S, ◦), then (α, β, γ) is an autotopism.

In the case where Q = S and γ = id, then (α, β, id) : (Q, ·) → (Q, ◦) is a principle

isotopism.
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It is fairly clear to see that isotopy is a generalization of isomorphy. Take, for instance,

the isotopism (φ, φ, φ) : (Q, ·) → (S, ◦). This means simply, for every x, y ∈ Q, φ(x) ◦

φ(y) = φ(x · y), which is precisely the definition of isomorphism.

It is useful on many occasions to study the isotopes of a loop or quasigroup. To do so,

it is sufficient to study just the principle isotopes, as the following theorem suggests. For a

proof, see [33].

Theorem 2.3. If (Q, ·) and (S, ◦) are isotopic quasigroups, then (S, ◦) is isomorphic to

some principle isotope of (Q, ·).

2.6 Special Types of Loops and Quasigroups

As implied in Chapter 1, there are several varieties of loops and quasigroups which

receive special attention because they have nice properties or are similar to groups in some

way. We introduce here only two of the varieties which will appear in this dissertation, the

rest will be defined as needed throughout the course of this study.

Those familiar with group theory may recall a structure similar to Inn(Q) called the

inner automorphism group. However, once associativity is no longer assumed, it is not

necessary that the inner mappings of a loop are automorphisms. In fact, it is a very special

loop in which this is the case.

Definition 2.14. A loopQ in which every inner mapping is an automorphism ofQ is called

an automorphic loop, or an A-loop.

Clearly groups are a variety of automorphic loops, but another important variety is

called commutative Moufang loops. Moufang loops in general will be defined in more

detail in chapter 5, but for now we define the commutative version as follows.

Definition 2.15. A loop Q is a commutative Moufang loop, or CML, if for every x, y, z ∈

Q,

xx · yz = xy · xz.
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Chapter 3: Commutators in the variety of loops

3.1 Motivation

Since loop theory has both group theoretic and universal algebraic influences, it is no

surprise that there have emerged differing definitions of what nilpotency and solvability

should be for loops. It turns out that defining nilpotency in loops by mimicking the upper

central series definition from group theory is equivalent to the iterated central extensions

definition from universal algebra, which we will not expound on here. However, solvability

is not so lucky.

Perhaps the most famous attempt at defining solvability in loops using group-theoretic

intuition comes from Bruck [6], who defined the derived subloop of a loop using element-

wise commutators and associators. While this definition was quite useful to Bruck in dis-

covering important results for nilpotency and solvability in Moufang loops, it falls short

when trying to generalize to the commutator of two normal subloops and consequently, to

solvability in general loops. See Section §3.2 and [40] for more details.

On the other hand, the universal algebraic approach to commutators has been studied

for more than 40 years, thanks to the initial theory set down by Smith [37], who laid out

the notion of commutators for congruence permutable varieties. This was later general-

ized to congruence modular varieties by Freese and McKenzie [15], among others (Hage-

mann, Hermann, Gumm, Snow), who defined the commutator of two congruences using a

term condition defined in §3.2. Over a decade later, Janelidze and Pedicchio examined the

Freese-McKenzie commutator within the context of category theory. In [18], they devel-

oped an equivalent definition of the commutator in congruence permutable varieties based

on the variety’s Malcev terms as follows: the commutator of two congruences α and β in
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an algebra A in a congruence permutable variety is the smallest congruence δ such that the

composition of maps

φ : {(x, y, z) ∈ A3 : xα y β z} p−→ A→ A/δ

is a homomorphism, where p is a Malcev term in the variety. While this definition is per-

haps more conceptual than the term condition, the proof of the equivalence of the Janelidze-

Pedicchio commutator and the Freese-McKenzie commutator in [18] is category theoretic

instead of universal algebraic.

The Freese-McKenzie term-condition commutator has proven to be useful in several

applications and has been extended to even wider classes of varieties. We direct the reader

to [30] for more details and some nice examples, specifically in the varieties of rings and

lattices. In addition to the examples detailed in [30], the term condition definition of the

commutator was used extensively in the recent work by Stanovský and Vojtěchovský ([40,

41]) to develop a detailed commutator theory within varieties of loops. The difficulty of

working with the Freese-McKenzie commutator is that within loops, the term condition is

cumbersome to work with. To alleviate this, Stanovský and Vojtěchovský found explicit

generators for commutators within varieties of loops, a result described in more detail in

§3.2 and §3.6 below.

The generators given by Stanovský and Vojtěchovský rely on a slightly unfamiliar

object called the total inner mapping group of a loop. Although the total inner mapping

group is easy enough to define, the commutator in loops would be more intuitively satisfy-

ing if it relied only on the inner mapping group, a more familiar group which is generally

smaller than the total inner mapping group. Whether or not this can be done was explicitly

stated as an open problem in [41].

14



We find that the most satisfying approach to answering the open problem is to use the

definition of commutator as given by the Janelidze-Pedicchio Malcev term definition. After

establishing some preliminaries in §3.2, we present in §3.3 another proof of the equivalence

of the Freese-McKenzie and Janelidze-Pedicchio commutators. One direction of the proof

works in general congruence permutable varieties, the other direction is specific to the

variety of loops.

We then use the Janelidze-Pedicchio commutator to find more satisfying generators

in §3.4. We introduce a new loop term we call a mediator. Mediators are analogous to

element-wise associators and commutators, that is, a mediator measures how far a loop is

from being both commutative and associative. Mediators turn out to give generators for

commutators. Moreover, mediators are directly related to inner mappings, allowing us also

to bypass the total inner mapping group completely and write the commutator in terms of

just inner mappings. This answers in the affirmative the open question posed in [41]. In

particular, we will prove the following theorem, where m is a specific mediator and F is a

specific inner mapping, both defined in §3.4, andC(α, β; δ) relates to the Freese-McKenzie

term condition, defined in detail in §3.2:

Theorem 3.5. Let Q be a loop and α, β, and δ congruences on Q. Then the following are

equivalent:

(a) C(α, β; δ).

(b) The composition of maps φ : {(x, y, z) ∈ Q3 : xα y β z} p−→ Q → Q/δ is a loop

homomorphism, where p is the loop Malcev term p(a, b, c) = a(b\c).

(c) δ contains the congruence generated by all pairs (m(x1, x2, b1, b2),m(y1, y2, b1, b2))

where xi α yi and bi β 1.

(d) δ contains the congruence generated by all (Lx1,x2(b), Ly1,y2(b)) and all

(Fx1,x2(b), Fy1,y2(b)) such that xi α yi and b β 1.
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In loops, congruences are in bijective correspondence with normal subloops, so in §3.5

we rephrase this main theorem to show that the commutator of two normal subloops can

also be generated by mediators and inner mappings. The answer to the open problem of

[40] presents new questions about whether or not this representation of the commutator in

loops can help in solving other open problems, such as the question of whether congruence

solvability and classical solvability coincide in certain varieties of loops.

3.2 Preliminaries

We begin this section with a slightly more in depth look at the problem of the com-

mutator and solvability in loops, and then we will present the definitions needed for the

representation of the commutator.

Recall that a group G is defined to be solvable if there exists a subnormal series 1 =

G0◁G1◁ · · ·◁Gn = G such that eachGi+1/Gi is an abelian group. Equivalently in group

theory, we may say that G is solvable if its derived series terminates, where the derived

series is defined recursively as follows. The derived subgroup of G is G′ = [G,G] =

⟨[g, h] : g, h ∈ G⟩ where [g, h] = ghg−1h−1. Then we have G(0) = G, G(1) = G′, and

G(i+1) = [G(i), G(i)].

The project of Bruck [6] was to mimic this definition in the variety of Moufang loops

in particular. However, since in loops we are not guaranteed associativity or two-sided

inverses, some care must be taken to define what exactly is meant by [a, b] for a and b in

a loop Q. Moreover, in groups, G′ is the smallest normal subgroup of G such that G/G′

is an abelian group. If we want the same result for a loop Q, we must also make sure

Q/Q′ is associative, so there is some notion of an element-wise associator as well. In the

literature, there are many different versions of what is meant by an element-wise associator

or commutator in loops. For some a, b in a loop Q, we would like the commutator of a and

b, [a, b], to be a measure of commutativity – so it should vanish when a and b commute.

One way to write this is that [a, b] is the unique element such that ab = ba · [a, b]. Similarly,
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the associator (a, b, c) should vanish when a, b, and c associate. We make this explicit as

follows.

Definition 3.1. For a loop Q and a, b, c ∈ Q, the element-wise commutator of a and b is

[a, b] = ba\ab ,

and the element-wise associator of a, b, and c is

(a, b, c) = (a · bc)\(ab · c) .

Then the derived subloop of Q, Q′, is the normal subloop generated by all element-wise

commutators and associators.

Notice that Q′ here is the smallest normal subloop of Q such that Q/Q′ is an abelian

group. Then a loop solvable in this Bruck’s sense if this derived series terminates. We will

call this definition of solvability classical solvability.

The difference now arises from the notion of the commutator of two normal subloops.

Here the derived series of a loop Q is being defined by the commutator of certain subloops

H with themselves: [H,H], and this is calculated by taking all of the element-wise com-

mutators and associators with inputs from H as generators: [a, b] where a, b ∈ H . This is

what is called the “the commutator of H in H .” However, the universal algebraic notion of

solvability takes the commutator of two normal subloops within the context of the entire

loop, that is, [H,H]Q, which is “the commutator of H in Q,” and creates an abelian series

from these. If this series terminates, this is what we will refer to as congruence solvability.

In groups, and indeed in Moufang loops as well, taking the commutator inside H versus

inside the entire loop Q is equivalent. However, this is not true in general loops, where
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congruence solvability is strictly stronger than classical solvability [15]; i.e., being abelian

inside the full loop is stronger than simply being abelian.

Classical solvability is often more intuitive, since the derived subloop is defined by

taking specific terms and building up a subloop. The project started in [40] was to make

congruence solvability just as intuitive by showing that the commutator of two normal

subloops inside the full loop can also be generated by certain terms. In this chapter we sim-

ply taken the next step in this project, focusing on the commutator as defined in universal

algebra.

First we start with some necessary definitions.

Definition 3.2. For a universal algebra A, a congruence on A is an equivalence relation

which respects all of the operations on A.

Definition 3.3. For a universal algebra A and a set S of pairs of elements of A, the con-

gruence generated by S, written Cg(S), is the smallest set of pairs θ such that S ⊆ θ and

θ is a congruence on A.

Definition 3.4. A variety V is congruence permutable if for every algebra A ∈ V and every

pair of congruences θ, δ on A, θ ◦ δ = δ ◦ θ, where ◦ is composition of binary relations.

Definition 3.5. A variety V is congruence modular if for every algebra A ∈ V , the lattice

of congruences of A is a modular lattice.

We give this brief, unexplained definition of a congruence-modular variety because

the work of Freese and McKenzie in [15] is primarily concerned with congruence-modular

varieties. However, we are more interested in the stronger condition of congruence per-

mutability in this chapter, and it is a well-known result that if a variety is congruence

permutable, then it is congruence modular. For a proof, see [8]. Thus, Freese and McKen-

zie’s results apply to congruence-permutable varieties, and an understanding of these more

restricted varieties will suffice for the work done here.
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Definition 3.6. Given a variety V and A ∈ V , an n-ary term operation t on A is a word-

builder which takes as its input n letters from A and composes them using the operations

from A.

Example 3.1. For some G in the variety of groups, conjugation in G can be represented as

a binary term operation: t(x, a) = x · a · x−1.

Definition 3.7. Given a variety V , V has a Malcev term if there is some term operation p in

the variety satisfying p(x, x, y) = p(y, x, x) = y.

Example 3.2. Again in the variety of groups, the term operation t(a, b, c) = a · b−1 · c is a

Malcev term since t(x, x, y) = y = t(y, x, x).

Congruence-permutable varieties are often referred to as Malcev varieties, since a vari-

ety is congruence-permutable if and only if it has a Malcev term. This is a well known

result, for a proof, see [2]. It is not difficult to see that the variety of loops is congruence

permutable (take p(x, y, z) = x(y\z) as one example of a Malcev term), and as such is also

congruence-modular. Since the Freese-McKenzie commutator seems to be the correct lens

with which to view commutator theory in loops, so we present it here as the definition of

the commutator. We start with the following precursory definitions:

Definition 3.8. For A a universal algebra and α, β, δ congruences on A, we say that α

centralizes β over δ, and write C(α, β; δ), if for every (n+1)-ary term operation t on A, if

aα b and ui β vi for each i ∈ {1, . . . , n}, then

t(a, u1, u2, . . . , un) δ t(a, v1, v2, . . . , vn) ⇒ t(b, u1, u2, . . . , un) δ t(b, v1, v2, . . . , vn).

Given a specific term operation t, this implication is referred to as the term condition for t,

written TC(t, α, β, δ).
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We note that given a specific term t, it is not necessary that a be in the first slot. By

defining a new term t′, we may freely rearrange the order of the arguments for t and get an

equivalent definition.

With these definitions in hand we may define the commutator as follows:

Definition 3.9. For A a universal algebra and α, β congruences on A, the commutator of α

and β, [α, β], is the smallest congruence γ such that C(α, β; γ).

To illustrate this definition and show that it is a natural choice even in the variety of

groups, we present the following example.

Example 3.3. Suppose that Q is a group and α, β congruences on Q. We associate normal

subgroups A and B with the congruences α and β in the usual way, where xαy if and

only if xy−1 ∈ A and similarly x β y if and only if xy−1 ∈ B. Let a, b, u1, u2, v1, v2 ∈ Q

such that aα b, ui β vi, and consider the group term operation t(x, y, z) = yxz. To say that

TC(t, α, β, δ) is satisfied means that (u1au2 δ v1av2 ⇒ u1bu2 δ v1bv2).

If we assume for a while that δ is equality, then this means that (u1au2 = v1av2 ⇒

u1bu2 = v1bv2) or equivalently, (a · u2v−1
2 · a−1 = u−1

1 v1 ⇒ b · u2v−1
2 · b−1 = u−1

1 v1).

Noticing that w1 := u−1
1 v1 ∈ B and w2 := u2v

−1
2 ∈ B, we define a map Ta(x) := a−1xa,

and see that the above implies that any two α-congruent elements act on the subgroup B in

the same way. That is, Ta(w) = Tb(w) ∈ B for any w ∈ B. Now ab−1 ∈ A, so a−1b ∈ A,

or alternatively, b ∈ aA. Since A is normal, it follows that b ∈ Aa, so we can write b = ca

for some c ∈ A. This implies that for any a ∈ Q, c ∈ A, and w ∈ B, a−1wa = a−1c−1wca,

or w = c−1wc, so cw = wc. Thus, if C(α, β; δ), then we must have cw δ wc. This implies

that [A,B] must contain the elements [a, b] = a−1b−1ab such that a ∈ A and b ∈ B, as is

usual in group theory.

While this example is illustrative, it is incomplete. To be certain that C(α, β; δ), we

must have that TC(t, α, β, δ) is satisfied for every choice of term t, which is by no means a
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simple task in general varieties, including loops. Given the power of the object and yet the

difficulty of working with it, [40] set out to find generators for such a commutator in the

variety of loops. To follow this construction, one must deal with an object called the total

inner mapping group, which is defined as follows.

Definition 3.10. Let Q be a loop and define a map on Q by Mx(y) = y\x. Then the total

multiplication group of Q is

TMlt(Q) = ⟨Lx , Rx ,Mx : x ∈ Q⟩

and the total inner mapping group of Q is the stabilizer of 1 in TMlt(Q).

With this, we may give the following generators for the commutator of two congru-

ences, as presented in [40].

Theorem 3.1. [Stanovský and Vojtěchovský] Let V be a variety of loops and W a set of

words that generates total inner mapping groups in V . Then

[α, β] = Cg((Wū(a),Wv̄(a)) : W ∈ W , 1α a, ū β v̄)

for any congruences α, β of any Q ∈ V .

In [40], Stanovský and Vojtěchovský prove that the total inner mapping group in any

variety of loops is generated by

TInn(Q) = ⟨Lx,y , Rx,y ,Mx,y , Tx , Ux : x, y ∈ Q⟩,

Where Mx,y = M−1
y\xMxMy and Ux = R−1

x Mx. Thus, in Theorem 3.1, we may take these

generators to be the set W .
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This theorem is given in this section merely as motivation for the discussion which

follows, as it will be presented in more depth in Section 3.6. While the work done in [40]

greatly improved how the Freese-McKenzie commutator was understood, our goal is to

present this same commutator in an even simpler way by using the power of the Malcev

term to find generators in the inner mapping group instead.

3.3 The equivalence of two commutators

To begin this task, we acknowledge first the work of G. Janelidze and M.C. Pedic-

chio, who recognized and proved in [18] that the commutator of two congruences may

be equivalently defined as the smallest congruence such that the composition of maps

φ : {(x, y, z) ∈ A3 : xα y β z} p−→ A → A/δ is a homomorphism, where A is a universal

algebra in a congruence-permutable variety and p is some Malcev term in the variety. To

emphasize what this means, as it will be used several times throughout this chapter, we

take a specific algebra A, α, β, δ congruences on A, xα y β z ∈ A, and uα v β w ∈ A. To

say that φ is a homomorphism means that p(xu, yv, zw) δ p(x, y, z)p(u, v, w). Being able

to reduce the commutator to a problem of homomorphisms helps to simplify its charac-

terization in terms of generators. Here we present a new proof of this equivalence, where

the forward direction is viewed from inside universal algebra, and the converse from inside

loop theory.

Theorem 3.2. Let V be a congruence-permutable variety, A an algebra in V , and α, β,

and δ congruences on A. Suppose that the composition of maps φ : {(x, y, z) ∈ A3 :

xα y β z} p−→ A → A/δ is a homomorphism of algebras, where p is a Malcev term in the

variety. Then C(α, β; δ).

Proof. Let t be an (n + 1)-ary term operation on A. Suppose a, b ∈ A such that aα b

and ui, vi ∈ A such that ui β vi for all i = 1, 2, . . . , n. We assume that δ is a congru-

ence such that φ is a homomorphism in V and that t(a, u1, u2, . . . , un) δ t(a, v1, v2, . . . , vn).

To simplify notation, we will denote congruence modulo δ by ≡, (u1, . . . , un) by u⃗, and
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(v1, . . . , vn) by v⃗. In order to prove C(α, β; δ), we must show that t(b, u⃗) ≡ t(b, v⃗). To

start, we have:

t(b, u⃗) = p(t(b, u⃗), t(a, u⃗), t(a, u⃗)) p is a Malcev term

≡ p(t(b, u⃗), t(a, u⃗), t(a, v⃗)) t(a, u⃗) ≡ t(a, v⃗)

Now φ being a homomorphism means we can, in a sense, commute φ with t. That is, given

xi α yi β zi for all i ∈ {1, 2, . . . , n+ 1}:

φ(t(x1, x2, . . . , xn+1), t(y1, y2, . . . , yn+1), t(z1, z2, . . . zn+1))

= t(φ(x1, y1, z1), φ(x2, y2, z2), . . . , φ(xn+1, yn+1, zn+1))

Since aα b, we have t(b, u⃗)α t(a, u⃗), and since ui β vi for all i ∈ {1, 2, . . . , n}, we have

that t(a, u⃗) β t(a, v⃗). Thus, t(b, u⃗)α t(a, u⃗) β t(a, v⃗), so (t(b, u⃗), t(a, u⃗), t(a, v⃗)) is in the

domain of φ and it follows that

φ(t(b, u1, u2, . . . , un), t(a, u1, u2, . . . , un), t(a, v1, v2, . . . , vn))

= t(φ(b, a, a), φ(u1, u1, v1), φ(u2, u2, v2), . . . , φ(un, un, vn)).

Since φ sends triples to their δ-equivalence classes via p, this then shows that

t(b, u⃗) ≡ p(t(b, u⃗), t(a, u⃗), t(a, v⃗)) ≡ t(p(b, a, a), p(u1, u1, v1), . . . , p(un, un, vn)).

Employing the Malcev term, we have

t(p(b, a, a), p(u1, u1, v1), . . . , p(un, un, vn)) = t(b, v1, v2, . . . , vn) = t(b, v⃗).
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So t(b, u⃗) ≡ t(b, v⃗), as desired.

While the converse holds in any congruence-permutable variety, as shown in [18], we

return to the context of loops to present the following proof.

Theorem 3.3. Let Q be a loop and α, β, and δ congruences on Q such that C(α, β; δ).

Then the composition of maps φ : {(x, y, z) ∈ Q3 : xα y β z} p−→ Q → Q/δ is a loop

homomorphism where p is the loop Malcev term p(a, b, c) = a(b\c).

Proof. We will again use ≡ to denote congruence modulo δ. Let xα y β z and uα v β w

and define a term operationm(a, b, c, d) = (ab)\(ac·bd). We use the fact proved in [15] that

C(α, β; δ) if and only if C(β, α; δ). Now we havem(y, v, 1, 1) = 1 = m(x, u, 1, 1), so cer-

tainly m(y, v, 1, 1) ≡ m(x, u, 1, 1). Since 1α 1, xα y, uα v, and (y\z) β 1, we employ the

term condition TC(m,β, α, δ) to conclude that m(y, v, y\z, 1) ≡ m(x, u, y\z, 1). More-

over, since xα y, uα v, (y\z)α(y\z), and (v\w) β 1, we again employ the term condition

TC(m,β, α, δ) to conclude that

m(y, v, y\z, v\w) ≡ m(x, u, y\z, v\w).

By evaluating these terms, this then shows that

(yv)\(y(y\z) · v(v\w)) ≡ (xu)\(x(y\z) · u(v\w)).

We simplify to obtain (yv)\(zw) ≡ (xu)\(x(y\z) · u(v\w)). Multiplying both sides

on the left by xu, we have (xu)((yv)\(zw)) ≡ x(y\z) · u(v\w). This is equivalent to

p(xu, yv, zw) ≡ p(x, y, z)p(u, v, w), so φ is a homomorphism of loops.

Combining the results of Theorems 3.2 and 3.3, we have shown the following:

24



Corollary 3.4. Let p be the loop Malcev term p(a, b, c) = a(b\c). For a loop Q and α and

β congruences onQ, the commutator [α, β] is the smallest congruence γ such that the com-

position of maps φ : {(x, y, z) ∈ Q3 : xα y β z} p−→ Q→ Q/γ is a loop homomorphism.

The reader may notice that one direction of this equivalence was proved in general for

any congruence permutable variety while the other direction made explicit use of certain

properties of loops. It would be interesting to have a complete universal-algebraic proof

for both directions for any congruence-permutable variety.

In light of the above corollary, we will freely use either definition of the commutator

throughout the remainder of this paper.

3.4 Commutators and mediators

While the Malcev term characterization of the Freese-McKenzie commutator is per-

haps more conceptual than its original definition, it is still difficult to use in practice. The

goal of this section to describe the same commutator in terms of explicit generating pairs.

Note that an essential role was played by the loop term operation m(a, b, c, d) in the proof

of Theorem 3.3. In this section, we give this term a name and show how it simplifies finding

generating pairs for the commutator.

In group theory, a (syntactic) commutator measures how far a group is from being

abelian, while in nonassociative algebra, associators measure how far algebras are from

being associative. Borrowing an idea from quasigroup theory, we note that a loop is an

abelian group if and only if it satisfies the medial (or entropic) identity ab · cd = ac · bd.

We will define a mediator to be a loop term which measures how far a loop is from

being medial. There are many possible conventions we could use. For example, the term

µ(a, b, c, d) = (ab\(ac · bd))/cd, which vanishes precisely when the medial identity holds,

is a close analogy to commutator and associator terms. Notice that if µ(x1, x2, a, b) ≡

µ(y1, y2, a, b) where ≡ is some congruence, multiplying on the right by ab gives the equiv-
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alent (x1x2)\(x1a · x2b) ≡ (y1y2)\(y1a · y2b). Since we will dealing mainly with terms of

this form, we will adopt the latter as our definition.

Definition 3.11. Let Q be a loop and a, b, c, d ∈ Q. The mediator of a, b, c, d is the 4-ary

term m(a, b, c, d) = ab\(ac · bd).

This convention for mediators turns out to be a natural choice, because they are closely

related to inner mappings, as the following discussion will show.

For x, y ∈ Q, we define a map Fx,y : Q → Q as Fx,y = L−1
xyRyLx and recall Lx,y =

L−1
xyLxLy where L and R are the usual translation maps. Notice that Fx,y(1) = 1, so Fx,y

is indeed an inner mapping. With these definitions we come to the main result of this

chapter, which relates these inner mappings to mediators and applies both concepts to our

new (equivalent) definition of the commutator.

Theorem 3.5. Let Q be a loop and α, β, and δ congruences on Q. Then the following are

equivalent:

(a) C(α, β; δ).

(b) The composition of maps φ : {(x, y, z) ∈ Q3 : xα y β z} p−→ Q → Q/δ is a loop

homomorphism, where p is the loop Malcev term p(a, b, c) = a(b\c).

(c) δ contains the congruence generated by all pairs (m(x1, x2, b1, b2),m(y1, y2, b1, b2))

where xi α yi and bi β 1.

(d) δ contains the congruence generated by all pairs (Lx1,x2(b), Ly1,y2(b)) and

(Fx1,x2(b), Fy1,y2(b)) such that xi α yi and b β 1.

Proof. The equivalence of (a) and (b) is given by Theorems 3.2 and 3.3 in §3.3.
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(b) =⇒ (c): Suppose the homomorphism condition holds for δ and let x1, x2, y1, y2, b1,

and b2 be in Q such that xi α yi and bi β 1. Since yi β yibi, (b) implies that

p((x1, y1, y1b1)(x2, y2, y2b2)) δ p(x1, y1, y1b1)p(x2, y2, y2b2) ,

or equivalently,

x1x2 · ((y1y2)\(y1b1 · y2b2)) δ x1(y1\y1b1) · x2(y2\y2b2) = x1b1 · x2b2 .

Dividing on the left by x1x2, and recalling the definition of m, we have

m(y1, y2, b1, b2) δ m(x1, x2, b1, b2) .

Thus δ contains all pairs (m(x1, x2, b1, b2),m(y1, y2, b1, b2)) where xi α yi and bi β 1, and,

consequently, the congruence generated by such pairs.

(c) =⇒ (d): For any x, y, b ∈ Q:

m(x, y, 1, b) = xy\(x · yb) = L−1
xyLxLy(b) = Lx,y(b)

and

m(x, y, b, 1) = xy\(xb · y) = L−1
xyRyLx(b) = Fx,y(b) .

Thus if (c) holds then certainly (d) holds as well.

(d) =⇒ (b): To prove (b), we will prove

φ((u1, v1, w1)(u2, v2, w2)) = φ(u1, v1, w1)φ(u2, v2, w2) ,

27



or equivalently

p(u1u2, v1v2, w1w2) δ p(u1, v1, w1)p(u2, v2, w2)

for all ui α vi β wi, i = 1, 2. We first use (d) to prove two special cases:

1. If xα y β w and z α u, then p(x, y, w) · z δ p(xz, yu, wu).

2. If xα y and z α u β w, then x · p(z, u, w) δ p(xz, yu, yw).

For (1), we have

p(x, y, w) · z = x(y\w) · z

= xz · (xz)\(x(y\w) · z)

= xz · Fx,z(y\w)

δ xz · Fy,u(y\w) using (d) since y\w β 1

= xz · (yu\wu)

= p(xz, yu, wu) .

For (2), we have

x · p(z, u, w) = x · z(u\w)

= xz · (xz)\(x · z(u\w))

= xz · Lx,z(u\w)

δ xz · Ly,u(u\w) using (d) since u\w β 1

= xz · (yu\yw)

= p(xz, yu, yw) .
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Now let ui α vi β wi, i = 1, 2. Since u2 α v2, we have u1u2 αu1v2, and hence

u1u2/v2 αu1. Thus by (2),

u1 · p(u2, v2, w2) δ p(u1u2, u1u2/v2 · v2, u1u2/v2 · w2)

= p(u1u2, u1u2, u1u2/v2 · w2) = u1u2/v2 · w2 .

(*)

Next, u2 α v2 implies u2\w2 α v2\w2, and thus

w2 αu2 · v2\w2 = p(u2, v2, w2) . (**)

Next, u1 α v1 and u2 α v2 imply u1u2 α v1v2, hence

u1u2/v2 α v1 . (***)

Similarly, v1 β w1 implies v1w2 β w1w2, so

w2 β v1\w1w2 . (†)

Moreover, v1 β w1 and v2 β w2 imply

v2 β v1\w1w2 . (‡)

Now we compute

p(u1, v1, w1)p(u2, v2, w2) δ p(u1p(u2, v2, w2), v1w2, w1w2) by (1) and (**)

δ p(u1u2/v2 · w2, v1w2, w1w2) by (*)

= p(u1u2/v2 · w2, v1w2, v1 · v1\w1w2)

δ u1u2/v2 · p(w2, w2, v1\w1w2) by (2), (***) and (†)
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= u1u2/v2 · v1\w1w2

= u1u2/v2 · p(v2, v2, v1\w1w2)

δ p(u1u2/v2 · v2, v1v2, v1 · v1\w1w2) by (2), (***) and (‡)

= p(u1u2, v1v2, w1w2) .

This completes the proof.

Since the commutator is defined as the smallest congruence satisfying (a) or, equiva-

lently (b), we have the following corollary.

Corollary 3.6. Let Q be a loop and α and β congruences on Q. Then

[α, β] = Cg((m(x1, x2, b1, b2),m(y1, y2, b1, b2)) : xi α yi and bi β 1)

= Cg((Lx1,x2(b), Ly1,y2(b)), (Fx1,x2(b), Fy1,y2(b)) : xi α yi and b β 1).

Having now found a simpler characterization of the commutator of two congruences

than its definition in terms of the term condition (or its Malcev term homomorphism char-

acterization), we will translate this into a characterization of the commutator of two normal

subloops in the next section.

3.5 The commutator of normal subloops

It is well known that the normal subloops of a loop Q are in bijective correspondence

with the congruences of Q. This correspondence sends a congruence α to the block of α

containing 1, which is a normal subloop of Q. Conversely, we may send any subloop A to

the set of pairs (x, y) such that y\x ∈ A, which forms a congruence on Q. Thus, having

defined the commutator of two congruences, it is natural to define the commutator of two

normal subloops of a loop.
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Let A and B be normal subloops of a loop Q. Define a subset of Q3 as follows:

S = {(xa, x, xb) | a ∈ A, b ∈ B, x ∈ Q} .

While this subset mimics the initial subloop in Theorem 3.5, it is not obvious that S forms

a subloop of Q3. However, we notice for x, y ∈ Q, ai ∈ A, and bi ∈ B:

(xa1, x, xb1)(ya2, y, yb2) = (xa1 · ya2, xy, xb1 · yb2)

= (xy · [(xy)\(xa1 · ya2)], xy, xy · [(xy)\(xb1 · yb2)]) .

Since A and B are both normal subloops of Q, we see (xy)\(xa1 · ya2) = (xy)\(xy ·

a′) = a′ for some a′ ∈ A, and similarly (xy)\(xb1 · yb2) = b′ for some b′ ∈ B. Thus, the

expression above reduces to the triple (xy · a′, xy, xy · b′) ∈ S. Moreover, since A and B

are normal subloops of Q, it follows that xA\yA = (x\y)A and xB\yB = (x\y)B for

any x, y ∈ Q. Thus,

(xa1, x, xb1)\(ya2, y, yb2) = (xa1\ya2, x\y, xb1\yb2) = ((x\y)a′, x\y, (x\y)b′)

for some a′ ∈ A and b′ ∈ B. Thus, (xa1, x, xb1)\(ya2, y, yb2) ∈ S. A dual argument shows

that (xa1, x, xb1)/(ya2, y, yb2) ∈ S, so S is a subloop of Q3.

Now we may define [A,B] to be the smallest normal subloop C such that the compo-

sition of maps S
p−→ Q → Q/C is a homomorphism of loops, where p is the usual Malcev

term p(x, y, z) = x(y\z). To find a set of generators for this commutator, first note this

composition is a homomorphism is equivalent to saying

p((xa1, x, xb1)(ya2, y, yb2)) ≡ p(xa1, x, xb1)p(ya2, y, yb2)
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where congruence is modulo C. Equivalently,

p(xa1 · ya2, xy, xb1 · yb2) = (xa1 · ya2)((xy)\(xb1 · yb2))

≡ (xa1)(x\(xb1)) · (ya2)(y\(yb2))

= (xa1 · b1)(ya2 · b2) .

Dividing on the left by xa1 · ya2, this is then equivalent to

(xy)\(xb1 · yb2) ≡ (xa1 · ya2)\[(xa1 · b1)(ya2 · b2)] .

Recalling our loop term m, this shows

m(x, y, b1, b2) ≡ m(xa1, ya2, b1, b2) .

Thus, we get that the commutator of two normal subloopsA andB of a loopQ is generated

by all of the elements of the form m(x, y, b1, b2)\m(xa1, ya2, b1, b2). That is,

[A,B] = Ng(m(x, y, b1, b2)\m(xa1, ya2, b1, b2) : x, y ∈ Q, ai ∈ A, bi ∈ B) .

Taking into account this discussion, we can state the subloop version of Theorem 3.5

as the following corollary.

Corollary 3.7. Let Q be a loop and A, B normal subloops of Q. Then the following are

equivalent:

(a) The composition of maps φ : {(xa, x, xb) | a ∈ A, b ∈ B, x ∈ Q} p−→ Q → Q/C is

a homomorphism of loops, where p is the usual Malcev term p(x, y, z) = x(y\z).
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(b) C contains the normal subloop generated by all m(x, y, b1, b2)\m(xa1, ya2, b1, b2)

where x, y ∈ Q and ai ∈ A and bi ∈ B.

(c) C contains the normal subloop generated by all Lx,y(b)\Lxa1,ya2(b) and all

Fx,y(b)\Fxa1,ya2(b) such that x, y ∈ Q and ai ∈ A and b ∈ B.

Again, in a style similar to Corollary 3.6, we see that the congruence of two normal

subloops of a loop can be characterized as follows.

Corollary 3.8. Let Q be a loop and A,B normal subloops of Q. Then

[A,B] = Ng(m(x, y, b1, b2)\m(xa1, ya2, b1, b2) : x, y ∈ Q, ai ∈ A, and bi ∈ B)

= Ng(Lx,y(b)\Lxa1,ya2(b), Fx,y(b)\Fxa1,ya2(b) : x, y ∈ Q, ai ∈ A and b ∈ B)

3.6 A note on total inner mappings

As stated previously, the Freese-McKenzie commutator has been widely used in loop

theory to expound on many topics including nilpotency and solvability, the latter having dif-

ferent interpretations inside loops. One of the questions we wanted to try to answer is when

these interpretations of solvability coincide inside loops and when they do not. Having a

workable, straightforward approach to the commutator is essential to this project as well as

many others in loop theory, a problem that was realized by Stanovský and Vojtěchovský.

Thus, much work is done in [40, 41] to find generators for the Freese-McKenzie commu-

tator, just as we have done above. However, without the use of mediators as this paper has

detailed, they needed in [40, 41] to go through the total inner mapping group to find their

generators. More specifically, they choose a set of mappings which together generate the

total inner mapping group of a loop and use these mappings with inputs given specifically

by the two congruences α and β in order to generate a congruence, which turns out to be

the commutator of α and β. We present here a brief summary of their definitions and results
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in order to then answer the open question presented in [41] as to whether the total inner

mapping group was necessary. In other words, is looking at just the inner mapping group

enough? With the results from Theorem 3.5, we can answer this question in the affirma-

tive, giving a simpler characterization of the commutator which may or may not prove to

be easier to apply to other, larger open problems.

We again emphasize that what follows is only a summary of results from [40, 41], and

direct the reader to these resources for proofs, calculations, and more details.

Recall that the total multiplication group of a loop Q is the permutation group on

Q generated by the maps Lx, Rx, and Mx, where Lx(a) = x · a, Rx(a) = a · x, and

Mx(a) = a\x for x, a ∈ Q, and the total inner mapping group is the stabilizer of 1 in the

total multiplication group. Then a tot-inner word is defined to be a composition W of the

maps Lx, Ry and Mz such that x, y, z ∈ Q and W (1) = 1. With these definitions, we

can then present the following characterizations of the commutator both as the commutator

of two congruences (presented first in Section 3.2) and then as the commutator of two

subloops.

Theorem 3.1. (Stanovský and Vojtěchovský) Let V be a variety of loops and W a set of

words that generates total inner mapping groups in V . Then

[α, β] = Cg((Wū(a),Wv̄(a)) : W ∈ W , 1α a, ū β v̄)

for any congruences α, β of any Q ∈ V .

Theorem 3.9. (Stanovský and Vojtěchovský) Let W be a set of tot-inner words such that

for every loop Q we have TInn(Q) = ⟨Wū : W ∈ W , ui ∈ Q⟩. Let Q be a loop and A,B

two normal subloops of Q. The commutator [A,B]Q is the smallest normal subloop of Q
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containing the set

{Wū(a)/Wv̄(a) : W ∈ W , a ∈ A, ui, vi ∈ Q, ui/vi ∈ B}.

As implied earlier, the power of Theorems 3.1 and 3.9 lies in converting the abstract

concept of the Freese-McKenzie commutator in loops into a problem of finding generators

for the total inner mapping group. In [40], the authors find several generating sets, and

are able to eliminate certain mappings in more specific varieties of loops such as inverse

property loops and commutative loops. For example, as previously noted, it can be shown

that the total inner mapping group in any loop is generated as follows:

TInn(Q) = ⟨Lx,y, Rx,y,Mx,y, Tx, Ux : x, y ∈ Q⟩

where Mx,y = M−1
y\xMxMy and Ux = R−1

x Mx. Thus, finding the commutator of two con-

gruences α and β reduces to finding the congruence generated by all pairs (Wū(a),Wv̄(a))

where W ∈ {Lx,y, Rx,y,Mx,y, Tx, Ux}, 1α a, and ū β v̄.

This characterization of the Freese-McKenzie commutator was used in [41] to prove

many things about abelianness and centrality, but may have its drawbacks when considering

the characterization of abelian normal subloops. Thus, the problem was presented in that

same paper as Problem 4.3, stated here:

Problem 3.1. Does Theorem 3.1 remain true if “tot-inner” and “TInn(Q)” are replaced by

“inner” and “Inn(Q)” in the condition imposed on the set W that is used for generating the

commutator?

To answer this problem, we first show that the mappings Lx,y and Fx,y are all that are

needed to generate the inner mapping group.
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Lemma 3.10. Let Q be a loop. Then

Inn(Q) = ⟨Lx,y, Fx,y : x, y ∈ Q⟩.

Proof. It is well known that the inner mapping group is generated by Lx,y, Rx,y, and Tx for

x, y ∈ Q. Thus, it suffices to show that each Rx,y and Tx can be written as a composition

of only La,b and Fc,d for some a, b, c, d ∈ Q. For any x, y ∈ Q we have:

Fx,y = L−1
xyRyLx = L−1

xyRxyR
−1
xyRyRxR

−1
x Lx = T−1

xy Ry,xTx

Letting x = 1, this shows that F1,y = T−1
y , so it follows that Ty = F−1

1,y for any y ∈ Q.

Further, the two identities above give us that Rx,y = TyxFy,xT
−1
y = F−1

1,yxFy,xF1,y for any

x, y ∈ Q. Since both Tx and Rx,y can be represented in terms of Fx,y, it follows that

Inn(Q) = ⟨Lx,y, Fx,y : x, y ∈ Q⟩.

We now answer Problem 3.1 in the affirmative, stated formally in the following two

corollaries.

Corollary 3.11. Let V be a variety of loops and W a set of words that generates inner

mapping groups in V . Then

[α, β] = Cg((Wū(a),Wv̄(a)) : W ∈ W , 1α a, ū β v̄)

for any congruences α, β of any Q ∈ V .

Proof. Consider W = {Lx,y, Fx,y}, and let α, β be congruences on Q ∈ V . Lemma 3.10

shows that certainly W generates inner mapping groups and Corollary 3.6 gives us that
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[α, β] = Cg((Wx1,x2(b),Wy1,y2(b)) : W ∈ W , xi α yi and b β 1). Now notice that, since the

commutator is symmetric, we have [α, β] = [β, α], so [α, β] = Cg((Wx1,x2(b),Wy1,y2(b)) :

W ∈ W , xi β yi and b α 1). Thus, the statement holds for a certain generating set.

Now Lemmas 3.13 and 4.2 in [40] give that for δ = Cg((Wū(a),Wv̄(a)) : W ∈

W , 1α a, ū β v̄) and V an inner word, (Vū(a), Vv̄(a)) ∈ δ for every aα 1, ū β v̄). Thus, it

follows that if the statement holds for a certain generating set, it holds for all generating

sets, which concludes the proof.

In the subloop case, the following corollary is a similar restatement of Corollary 3.8,

taking W = {Lx,y, Fx,y} as before. We note as well that while [41] defines the congruence

of two subloops using the right division, the definition here using left divisions is dual.

Corollary 3.12. Let W be a set of inner words such that for every loopQwe have Inn(Q) =

⟨Wū : W ∈ W , ui ∈ Q⟩. Let Q be a loop and A,B two normal subloops of Q. The

commutator [A,B]Q is the smallest normal subloop of Q containing the set

{Wū(a)\Wv̄(a) : W ∈ W , a ∈ A, ui, vi ∈ Q, ui\vi ∈ B}.

3.7 Questions for further study

With this new characterization of the commutator, the question arises whether or not

it simplifies the calculations necessary to prove other conjectures about abelianness and

centrality, particularly those posed in [41]. Moreover, does this new characterization of the

commutator help in answering problems about when classical and congruence solvability

coincide?
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Chapter 4: Quaternionic automorphic loops

4.1 Introduction

Recall that a loop is automorphic if all of its inner mappings are automorphisms of

the loop. That is, for a loop Q, Inn(Q) ≤ Aut(Q). Bruck and Paige pioneered the study

of automorphic loops in 1956. While proving important facts about automorphic loops

in general, they were mostly concerned with diassociative automorphic loops, or loops in

which every two-generated subloop is a group. The development of the general structure

theory for automorphic loops came later, first with commutative automorphic loops in [19]

and then for automorphic loops in general in [28]. We cite here only the essential results

from automorphic loop theory, and direct the reader to [28, 19, 7] for proofs and a more

thorough treatment of the topic.

It is perhaps important to note that commutative Moufang loops and groups are both

varieties of automorphic loops. Thus, many properties of automorphic loops are reminis-

cent of these two varieties.

Definition 4.1. Let Q be a loop. Q is power-associative if every one-generated subloop of

Q is a group.

Lemma 4.1. (Bruck, Paige [7]) Every automorphic loop is power-associative.

Since powers associate in an automorphic loop, we may use exponent notation unam-

biguously. That is, xn = x · x · · · · · x︸ ︷︷ ︸
n

and the usual multiplication rule for exponents holds:

xnxm = xn+m. Once we have exponents, we would like to be able to freely use the notation

x−1. In loops in general, we are not guaranteed that every element has a unique two-sided
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inverse, so this notation would be ambiguous. However, in automorphic loops, we may use

this notation. In fact, we get even more.

Definition 4.2. A loopQ has the antiautomorphic inverse property (AAIP) if every element

has a two-sided inverse and for every x, y ∈ Q,

(xy)−1 = y−1x−1.

Lemma 4.2. (Johnson, Kinyon, Nagy, Vojtěchovský [22]) Every automorphic loop has the

AAIP.

Lemma 4.3. (Kinyon, Kunen, Phillips, Vojtěchovský [28]) Let Q be an automorphic loop

and x, y ∈ Q. Then

Rx,y = Lx−1,y−1

T−1
x = Tx−1 .

In particular, this lemma implies that in any automorphic loop Q,

LInn(Q) = RInn(Q). (4.1)

Another consequence of Lemma 4.2 is the following:

Lemma 4.4. (Kinyon, Kunen, Phillips, Vojtěchovský [28]) Let Q be an automorphic loop.

Then

(i) Nλ(Q) = Nρ(Q) ⊆ Nµ(Q), and

(ii) each nucleus is normal in Q.

Since the focus of this chapter is on the nonassociative generalization of the generalized

quaternion groups, it may be helpful to begin with the group construction.
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4.1.1 Generalized quaternion groups. With the dihedral group, D8, of order 8, the only

other noncommutative group of order 8 is the quaternion group, Q8. It is classically con-

structed with two generators, i and j, such that jij−1 = i−1 and i2 = j2 = −1. Notice this

latter condition implies i4 = j4 = 1. We also recall the presentation of the dihedral group

D8 with two generators, r and s such that r4 = s2 = 1 and srs−1 = r−1, and note that these

two groups appear to have some similarities. In fact, they can both be constructed from a

semi-direct product in a similar way. For D8, take the semi-direct product H := Z4 ⋊ Z2,

where Z2 acts on Z4 by identity and negation. That is,

(a, b)(c, d) = (a+ (−1)bc, b+ d).

Then D8
∼= H .

While the quaternion group cannot be written as a semi-direct product (there are no two

proper, nontrivial subgroups with trivial intersection), it can be constructed as a quotient of

a semi-direct product. More specifically, take the group G := Z4 ⋊ Z4 with multiplication

given by

(a, b)(c, d) = (a+ (−1)bc, b+ d).

Then the element (2, 2) is in Z(G) and has order 2, so ⟨(2, 2)⟩⊴G. The result is then that

Q8
∼= G/⟨(2, 2)⟩. This is a known group theory fact, for a proof see [9].

This construction can be extended to higher orders as follows. Take the semidirect

product G := Z2n−1 ⋊ Z4 for n ≥ 3 with multiplication given by

(a, b)(c, d) = (a+ (−1)bc, b+ d).

Now the element (2n−2, 2) is in Z(G) and has order 2, so it makes sense to construct the

generalized quaternion group of order 2n by Q2n = G/⟨(2n−2, 2)⟩.
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We list here some known properties of these generalized quaternion groups as motiva-

tion and reference for their nonassociative analogs, and again direct the reader to [9] for

proofs.

Theorem 4.5. Let Q2n be a generalized quaternion group of order 2n and let x = (1, 0)

and y = (0, 1) in Q2n . Then:

1. Q2n = ⟨x, y⟩.

2. Every element of Q2n can be written in the form xa or xay for some a ∈ Z.

3. x2n−2
= y2 and is the unique element of order 2.

4. For every g ∈ Q2n such that g ̸∈ ⟨x⟩, gxg−1 = x−1.

5. The center of Q2n is {1, x2n−2} and Q2n/Z(Q2n) ∼= D2n−1 .

6. For n ≥ 3, let H := ⟨a, b⟩ such that a2n−1
= b4 = 1, bab−1 = a−1, and a2n−2

= b2.

There is a unique homomorphism ψ : Q2n → H such that x 7→ a, y 7→ b, and ψ is

onto. If |H| = 2n then ψ is an isomorphism.

7. The subgroup ⟨x⟩ has index 2 and every element outside of ⟨x⟩ has order 4.

8. For n ≥ 4, the noncyclic proper normal subgroups of Q2n are ⟨x2, y⟩ and ⟨x2, xy⟩,

both of which have index 2 and are isomorphic to Q2n−1 .

9. Every subgroup of Q2n is cyclic or generalized quaternion.

4.1.2 Dihedral-like automorphic loops. Since not many specific examples of automor-

phic loops are known, there is a desire to find constructions which produce automorphic

loops. One such effort was started by Kinyon, Kunon, Phillips, and Vojtěchovský, who did

an extensive study of automorphic loops in [28] and constructed what they call dihedral

automorphic loops. This work was generalized by Aboras in [1], who defined dihedral-like
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automorphic loops. Since dihedral automorphic loops are a special case of their dihedral-

like relatives, we present first the definition of a dihedral-like automorphic loop.

Definition 4.3. Let m be a positive even integer, G an abelian group, and φ an automor-

phism of G that satisfies φ2 = 1 if m > 2. Then the dihedral-like automorphic loop,

written Dih(m,G,φ) is defined on G× Zm by

(u, i)(v, j) = (φij(u+ (−1)iv), i+ j).

The special case when m = 2 is called a dihedral automorphic loop.

Notice if m = 2, G = Zn, and φ = 1, Dih(2,Zn, 1) is the dihedral group of order

2n, making this construction the “correct” generalization of the dihedral groups to the

automorphic loop setting.

4.2 Construction of quaternionic automorphic loops

Inspired by the construction of the generalized quaternion groups and the dihedral-like

automorphic loops, we construct the quaternionic automorphic loops of order 2n for n ≥ 3

as follows. Consider G := Z2n−1 ×Z4 for n ≥ 3 and let φ ∈ Aut(Z2n−1) such that φ2 = 1.

Build a loop D on the underlying set of G with multiplication given by:

(a, b)(c, d) = (φbd(a+ (−1)bc), b+ d).

By work done in [1], D is an automorphic loop of order 2n+1, i.e., a dihedral-like automor-

phic loop.

Lemma 4.6. Given the loop D of order 2n+1 constructed as above, the element (2n−2, 2)

has order 2 and is in the center of D.
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Proof. To show that (2n−2, 2) has order 2, we calculate, recalling that the first coordinate

is calculated in Z2n−1 and the second coordinate is calculated in Z4:

(2n−2, 2)(2n−2, 2) = (φ4(2n−2 + (−1)2 · 2n−2), 0) = (0, 0)

To show that (2n−2, 2) is in the commutant, take (a, b) ∈ D and calculate:

(2n−2, 2)(a, b) = (φ2b(2n−2 + (−1)2a), 2 + b) = (2n−2 + a, 2 + b)

and also:

(a, b)(2n−2, 2) = (φ2b(a+ (−1)b2n−2), b+ 2) = (a± 2n−2, b+ 2).

Since 2n−2 = −2n−2 we have (2n−2 + a, 2 + b) = (a + 2n−2, b + 2). It follows

that (2n−2, 2) ∈ C(D). Since D is a dihedral-like automorphic loop, we have from [1]

that Nλ(D) = Fix(φ) × ⟨2⟩, where Fix(φ) is the set of fixed points of φ. Now φ is

acting on Z2n−1 and 2n−2 is the unique element of order 2 in Z2n−1 , so it is fixed by all

automorphisms of Z2n−1 . Specifically, 2n−2 ∈ Fix(φ). Certainly 2 ∈ ⟨2⟩, so it follows that

(2n−2, 2) ∈ Nλ(D) = N(D) and thus, (2n−2, 2) ∈ Z(D).

Now, since (2n−2, 2) has order 2 and is in the center, ⟨(2n−2, 2)⟩ is a normal subloop

of D of order 2, so it makes sense to construct the factor loop Q = D/⟨(2n−2, 2)⟩. Since

automorphic loops form a variety, Q is an automorphic loop of order 2n+1/2 = 2n. We call

loops constructed in this way quaternionic automorphic loops.

There are three automorphisms of Z2n−1 of order 2 for n > 3 [12, Corollary 9.20].

Considered as invertible elements of the ring (Z2n−1 ,+·), these are ι := −1, α := 2n−2−1,

and β := 2n−2+1. We will thus interpret φ(a) as simply φ ·a mod 2n−1 for φ ∈ {α, β, ι}.
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4.2.1 Notation. Each of the three automorphisms of Z2n−1 produce a distinct quaternionic

automorphic loop of order 2n for n > 3, as we shall prove in §4.5. As such, we use the

following notation convention to distinguish which automorphism was used in the con-

struction.

Qι
2n is the loop of order 2n constructed with ι = −1.

Qα
2n is the loop of order 2n constructed with α = 2n−2 − 1.

Qβ
2n is the loop of order 2n constructed with β = 2n−2 + 1.

In what follows, it is always assumed that the automorphism φ used in the construction

is in Aut(Z2n−1) where n ≥ 3 and has order 2. When not specified to be α, β, or ι, Qφ
2n is

the quaternionic automorphic loop of order 2n constructed with any φ ∈ {α, β, ι}.

4.3 Precursory calculations

As we will show later, there are two important elements of any quaternionic automor-

phic loop and a third which will prove useful. We give them names here as follows:

x := (1, 0) and y := (0, 1) and z := (1, 1) .

For what follows in this chapter, it will be useful to state a few facts about parity in general

and also parity in the context of a quaternionic automorphic loop. These may be used in

later proofs without reference.

Lemma 4.7. Let Q = Qφ
2n be a quaternionic automorphic loop of order 2n.

1. For any a ∈ Z, a2 ≡ a mod 2 and −a ≡ a mod 2.

2. For any a ∈ Z, −a ≡ a mod 2n−1 if and only if (a ≡ 0 mod 2n−1 or a ≡ 2n−2

mod 2n−1).
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3. For any (a, b) ∈ Q, φ preserves the parity of a. Moreover, α acts as inversion on

even first coordinates and β acts as the identity on even first coordinates.

4. Let (a, b) · (c, d) = (k, b+ d) ∈ Q where k = φbd(a+ (−1)bc). If a, c are both even

or both odd, then k is even. If exactly one of a or c is even (and the other odd), then

k is odd.

Proof. Both (1) and (2) are modular arithmetic facts. For (3), we recall that calculations in

the first coordinate are taken modulo 2n−1, so we calculate:

α(2m) = (2n−2 − 1)(2m) = 2n−1m− 2m = −2m,

ι(2m) = −2m,

β(2m) = (2n−2 + 1)(2m) = 2n−1m+ 2m = 2m.

Moreover, for an odd number 2m+ 1 in the first coordinate, the result is also odd:

α(2m+ 1) = (2n−2 − 1)(2m+ 1) = 2n−1m− 2m+ 2n−2 − 1 = 2(2n−3 −m)− 1 ,

ι(2m+ 1) = −2m− 1 ,

β(2m+ 1) = (2n−2 + 1)(2m+ 1) = 2n−1m+ 2m+ 2n−2 + 1 = 2(2n−3 +m) + 1 .

Lastly, for part (4), we have from part (3) that φ preserves parity. Thus, if both a and c

share the same parity, then their sum (or difference) is even so φ(a+ (−1)bc) is also even.

Similarly, if a and c have different parities, then their sum (or difference) is odd, giving that

k is also odd, as desired.

Whenever a new multiplication is defined, it is helpful to see how each of the other loop

operations as well as the inner mappings are affected. We present here some of these cal-
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culations which will be used extensively and not necessarily with reference in later proofs.

Note that the following calculations hold in any dihedral-like automorphic loop constructed

as in §4.2. Since automorphic loops form a variety, then these equations also hold in the

corresponding quaternionic automorphic loop.

Lemma 4.8. For any automorphism φ of order 2 used in the construction of a quaternionic

automorphic loop of order 2n, the following identities hold:

(c, d)/(u, v) = (φdv+v(c) + (−1)d−v+1u, d− v) (4.2)

(c, d)\(u, v) = ((−1)dφdv+d(u) + (−1)d+1c, v − d) (4.3)

T(u,v)(a, b) = ((1 + (−1)b+1)u+ (−1)va, b) (4.4)

Tx(a, b) = ((1 + (−1)b+1) + a, b) (4.5)

T u
x (a, b) = ((1 + (−1)b+1)u+ a, b) (4.6)

Ty(a, b) = (−a, b) (4.7)

T v
y (a, b) = ((−1)va, b) (4.8)

T−1
(u,v)(a, b) = (((−1)v+b + (−1)v+1)u+ (−1)va, b) (4.9)
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T−1
x (a, b) = (((−1)b + (−1)) + a, b) (4.10)

R(x1,y1),(x2,y2)(a, b) = ((−1)b+y2φy2y1(φby2(x1)− x1) + φy2y1(a), b). (4.11)

Rx,(x2,y2)(a, b) = ((−1)b+y2(φby2(1)− 1) + a, b) (4.12)

Rx1

x,(x2,y2)
(a, b) = ((−1)b+y2(φby2(1)− 1)x1 + a, b) (4.13)

Rx,z(a, b) = ((−1)b+1(φb(1)− 1) + a, b) (4.14)

Rx1
x,z(a, b) = ((−1)b+1(φb(x1)− x1) + a, b) (4.15)

Ry,(x2,y2)(a, b) = (φy2(a), b) (4.16)

Ry1
y,(x2,y2)

(a, b) = (φy1y2(a), b) (4.17)

Ry,z(a, b) = (φ(a), b) (4.18)

Ry1
y,z(a, b) = (φy1a, b) (4.19)
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Proof. For (4.2), let (c, d)/(u, v) = (a, b), then (a, b)(u, v) = (c, d). Calculating the left

side of this equation gives us (φbv(a+ (−1)bu), b+ v). Setting b+ v = d, we see first that

b = d− v. Thus, φ(d−v)v(a+ (−1)d−vu) = c. Since φ has order 2, φ(d−v)v = φdv+v, so we

rewrite φdv+v(a+ (−1)d−vu) = c. Solving for a gives a = φdv+v(c) + (−1)d−v+1u. Thus,

(c, d)/(u, v) = (φdv+v(c) + (−1)d−v+1u, d− v), as desired.

For (4.3), let (c, d)\(u, v) = (a, b), then (c, d)(a, b) = (u, v). So u = φdb(c+ (−1)da)

and v = d + b. Thus, b = v − d so substituting and using the fact that φ has order 2,

u = φdv+d(c+ (−1)da). Solving for a yields a = (−1)dφdv+d(u) + (−1)d+1c, as desired.

For (4.4) we have

T(u,v)(a, b) = [(u, v)(a, b)]/(u, v) = (φvb(u+ (−1)va), v + b)/(u, v).

Using (4.2), this is equal to

(φ(v+b)v+v(φvb(u+ (−1)va)) + (−1)v+b−v+1u, v + b− v).

Since φ has order 2, this reduces to (φv2+v(u+(−1)va)+(−1)b+1u, b). We notice v2+v =

v(v + 1) which is an odd times an even, making v2 + v an even number. Again, since φ

has order 2, φv2+v then reduces to the identity, so we have (u + (−1)va + (−1)b+1u, b) or

equivalently ((1 + (−1)b+1)u+ (−1)va, b), as desired.

It is straightforward to see that (4.5) and (4.7) are just applications of (4.4). For (4.6),

we proceed by induction on u. The case where u = 1 is just (4.5), so suppose the equality

holds for all positive integers less than u. Then

T u
x (a, b) = T u−1

x Tx(a, b)

= T u−1
x ((1 + (−1)b+1) + a, b)
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= ((1 + (−1)b+1)(u− 1) + (1 + (−1)b+1) + a, b)

= ((1 + (−1)b+1)u+ a, b).

Similarly for (4.8), we proceed by induction on v. The case where v = 1 is given by (4.7),

so suppose that the equality holds for all positive integers less than v. Then

T v
y (a, b) = T v−1

y Ty(a, b) = T v−1
y (−a, b) = ((−1)v−1(−a), b) = ((−1)va, b).

For (4.9), we have

T−1
(u,v)(a, b) = L−1

(u,v)R(u,v)(a, b) = (u, v)\[(a, b)(u, v)] = (u, v)\(φbv(a+ (−1)bu), b+ v).

Using (4.3), this is equal to

((−1)vφv(b+v)+v(φbv(a+ (−1)bu)) + (−1)v+1u, b+ v − v).

Simplifying using the fact that φ has order 2, we get ((−1)va+ (−1)v+bu+ (−1)v+1u, b),

as desired. Then (4.10) is simply an application of this equality.

For (4.11), we calculate:

R(x1,y1),(x2,y2)(a, b)

= [(a, b)(x2, y2) · (x1, y1)]/[(x2, y2)(x1, y1)]

= [(φby2(a+ (−1)bx2), b+ y2)(x1, y1)]/(φ
y2y1(x2 + (−1)y2x1), y2 + y1)

= (φby1+y1y2(φby2(a+ (−1)bx2) + (−1)b+y2x1), b+ y2 + y1)/(φ
y2y1(x2 + (−1)y2x1),

, y2 + y1)

= (φ(y2+y1)(b+y2+y1+1)(φby1+y1y2(φby2(a+ (−1)bx2) + (−1)b+y2x1))+
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+ (−1)b+y2+y1−y2−y1+1φy2y1(x2 + (−1)y2x1), b)

= (φy2b+y2+y2y1+y2+y1b+y1y2+y1+y1(φby1+y1y2(φby2(a+ (−1)bx2) + (−1)b+y2x1))+

+ (−1)b+1φy2y1(x2 + (−1)y2x1), b)

= (φy2b+y1b(φby1+y1y2(φby2(a+ (−1)bx2) + (−1)b+y2x1))+

+ (−1)b+1φy2y1(x2 + (−1)y2x1), b)

= (φy2b+y1b+y1b+y1y2+by2(a+ (−1)bx2) + (−1)b+y2φy2b+y1b+y1b+y1y2(x1)+

+ (−1)b+1φy1y2(x2 + (−1)y2x1), b)

= (φy1y2(a) + (−1)bφy1y2(x2) + (−1)b+y2φy2b+y1y2(x1) + (−1)b+1φy1y2(x2)+

+ (−1)b+1+y2φy1y2(x1), b)

= (φy1y2(a) + (−1)b+y2φy1y2(φy2b(x1)− x1), b).

It follows that (4.12), (4.14), (4.16), and (4.18) are then special cases of this equation.

We calculate (4.13) by induction on x1, noting that the case where x1 = 1 is given by

(4.12). Suppose the equality holds for all positive integers less than x1. Then

Rx1

x,(x2,y2)
(a, b) = Rx1−1

x,(x2,y2)
Rx,(x2,y2)(a, b)

= Rx1−1
x,(x2,y2)

((−1)b+y2(φby2(1)− 1) + a, b)

= ((−1)b+y2(φby2(1)− 1)(x1 − 1) + (−1)b+y2(φby2(1)− 1) + a, b)

= ((−1)b+y2(φby2(1)− 1)x1 + a, b).

Then (4.15) is a special case of (4.13).

Similarly, we calculate (4.17) by induction on y1. The case where y1 = 1 is (4.16), so

suppose the the equality holds for all positive integers less than y1. Then

Ry1
y,(x2,y2)

(a, b) = Ry1−1
y,(x2,y2)

Ry,(x2,y2)(a, b)
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= Ry1−1
y,(x2,y2)

(φy2(a), b)

= (φ(y1−1)y2(φy2(a)), b)

= (φy1y2(a), b).

Lastly, (4.19) is a special case of (4.17).

While the equivalence classes were not explicitly used in the last proof, we present

here the necessary and sufficient conditions for when two equivalence classes are equal in

any quaternionic automorphic loop.

Lemma 4.9. For any quaternionic automorphic loop Qφ
2n , (a, b) = (c, d) if and only if

either (a = c and b = d) or (c = a+ 2n−2 and d = b+ 2).

Proof. Suppose first that (a, b) = (c, d). Then it follows that {(a, b) , (a, b)(2n−2, 2)} =

{(c, d) , (c, d)(2n−2, 2)}, so either (a, b) = (c, d) or (a, b)(2n−2, 2) = (c, d). The latter

implies (φ2b(a + (−1)b2n−2), b + 2) = (c, d). Since |φ| = 2, this holds if and only if

c = a+(−1)b2n−2 = a+2n−2 and d = b+2. Thus, either (a = c and b = d) or (c = a+2n−2

and d = b + 2). Alternatively, suppose that a = c and b = d. Then it is immediate that

(a, b) = (c, d). In addition, if c = a + 2n−2 and d = b + 2 then (c, d) = (a, b)(2n−2, 2),

so (c, d) ∈ (a, b). Since (2n−2, 2) has order 2 in D, (c, d) = (a, b)(2n−2, 2) if and only if

(c, d)(2n−2, 2) = (a, b), so we also have that (a, b) ∈ (c, d) and the equality of equivalence

classes follows.

We will use this fact also without reference when discussing equality. Specifically, we

note that the above lemma implies if (a, b) = (c, b) then it must be true that a = c. That is,

we will reduce many questions of equality of equivalence classes to a question of equality

of coordinates if the second coordinates are equal.

Since we are working in a nonassociative structure, it will be useful to have a condition

for when three elements of a quaternionic automorphic loop associate.
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Lemma 4.10. Let Q = Qφ
2n be a quaternionic automorphic loop of order 2n and let

(a, l) , (b,m) , (c, p) ∈ Q. Then (a, l) · (b,m)(c, p) = (a, l)(b,m) · (c, p) if and only if

φlm(a) + (−1)m+lφlm+mp(c) = φmp+lm(a) + (−1)m+lφmp(c). (4.20)

Proof. Using the results from Lemma 4.9 we calculate to get:

(a, l) · (b,m)(c, p) = (a, l)(b,m) · (c, p)

⇔ (φl(m+p)(a+ (−1)lφmp(b+ (−1)mc)), l +m+ p)

= (φ(l+m)p(φlm(a+ (−1)lb) + (−1)l+mc), l +m+ p)

⇔ φlm+lp(a) + (−1)lφmp+lm+lp(b) + (−1)m+lφmp+lm+lp(c)

= φlp+mp+lm(a) + (−1)lφlp+mp+lm(b) + (−1)l+mφlp+mp(c)

⇔ φlm+lp(a) + (−1)m+lφmp+lm+lp(c) = φlp+mp+lm(a) + (−1)l+mφlp+mp(c)

⇔ φlm(a) + (−1)m+lφlm+mp(c) = φmp+lm(a) + (−1)m+lφmp(c).

4.4 The quaternionic automorphic loop of order 8

To give the reader an idea of the structure of the quaternionic automorphic loops, we

present here the example of order 8. While there are three distinct quaternionic automor-

phic loops of order 2n for n > 3, the three automorphisms collapse when n = 3. More

specifically, in the order 8 case, α = 2n−2 − 1 = 1, β = 2n−2 + 1 = 3, and ι = −1.

The first coordinate is taken modulo 2n−1 = 4. So α is the identity (making Qα
8
∼= Q8, the

quaternion group) and β = ι = −1.

The following are the equivalence classes of Qι
8, labeled in a way which mimics the

quaternion group of order 8:
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⟨(2, 2)⟩ = {(0, 0), (2, 2)} → 1

(1, 0) = {(3, 2), (1, 0)} → i

(0, 1) = {(0, 1), (2, 3)} → j

(1, 1) = {(1, 1), (3, 3)} → k

(0, 2) = {(0, 2), (2, 0)} → −1

(1, 2) = {(1, 2), (3, 0)} → −i

(0, 3) = {(0, 3), (2, 1)} → −j

(1, 3) = {(1, 3), (3, 1)} → −k

Then the multiplication table of Qι
8 is:

· 1 −1 i j k −i −j −k
1 1 −1 i j k −i −j −k
−1 −1 1 −i −j −k i j k
i i −i −1 k −j 1 −k j
j j −j −k −1 −i k 1 i
k k −k j i −1 −j −i 1
−i −i i 1 −k j −1 k −j
−j −j j k 1 i −k −1 −i
−k −k k −j −i 1 j i −1

Notice first that there is a unique element of order 2: −1 = (0, 2), and that every

element a ̸∈ {1,−1} squares to this −1. This is a property of the quaternion group of order

8 as well, and we will show in §4.5 that this holds in a general way for the quaternionic

automorphic loops of higher orders. We also note that the element −1 is in the center, as it

is in the group case, and we will show that it is the only non-identity element in the center

for all quaternionic loops. Lastly, we note here that Qι
8 is, indeed, non-associative. Take,

for example: ij · k = −1 and i · jk = 1.

4.5 Main results

There are many properties of quaternionic automorphic loops which are reminiscent

of their group analogs. While the three quaternionic automorphic loops of a certain order

share many of these properties such as being 2-generated, having a unique element of order

2, having a 2-element center, and others, there are some quaternion group-like proper-
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ties which are disbursed between the three, and other properties which come strictly from

nonassociativity. This section will act as an exposition of these loops with a collection of

results that is by no means exhaustive, but hopefully acts as a first attempt to understand

their structure.

Proposition 4.11. Let D be the dihedral-like loop of order 2n+1 constructed in Section 4.2.

Then D is generated by x = (1, 0) and y = (0, 1). Specifically, for (a, b) ∈ D, (a, b) =

xayb. Consequently, Qφ
2n is generated by x = (1, 0) and y = (0, 1) and (a, b) = xayb.

Proof. Let (a, b) ∈ D and consider (1, 0)a = (1, 0) · · · (1, 0). It is our goal to show

(1, 0)a = (a, 0). We proceed by induction on a. The case where a = 1 holds, as certainly

(1, 0) = (1, 0). Now suppose (1, 0)u = (u, 0) for every u < a. Then, since automorphic

loops are power-associative:

(1, 0)a = (1, 0)a−1(1, 0)

= (a− 1, 0)(1, 0)

= (φ0(a− 1 + (−1)01), 0)

= (a, 0).

Now consider (0, 1)b. It is our goal to show (0, 1)b = (0, b). We proceed by induction

on b. The case where b = 1 holds trivially, so suppose that (0, 1)u = (0, u) for every u < b.

Again, since automorphic loops are power-associative, we have:

(0, 1)b = (0, 1)b−1(0, 1)

= (0, b− 1)(0, 1)

= (φb−1(0 + (−1)b−10), b− 1 + 1)

= (0, b).
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Thus, xayb = (1, 0)a(0, 1)b = (a, 0)(0, b) = (φ0(a + (−1)00), 0 + b) = (a, b), so

x and y generate D, as desired. It then follows immediately that for any (a, b) ∈ Qφ
2n ,

(a, b) = xayb as well.

Since the first coordinate is taken modulo Z2n−1 and the second coordinate modulo Z4,

the following is a direct result of Proposition 4.11.

Corollary 4.12. In any Qφ
2n , x has order 2n−1 and y has order 4.

The following properties are analogs to the properties found in the generalized quater-

nion groups which were listed in Theorem 4.5.

Lemma 4.13. Let Q = Qφ
2n . Then:

(a) x2n−2
= y2 in Q

(b) Every element of Q can be written in the form xa or xay for some a ∈ Z.

(c) Every element g of Q outside of ⟨x⟩ has order 4 and g2 = y2.

(d) The element x2n−2
= y2 = (0, 2) of Q is the unique element of order 2.

(e) For each g ∈ Q such that g ̸∈ ⟨x⟩, Tg(x) = x−1.

Proof. For (a), notice

(2n−2, 0)(2n−2, 2) = (φ0(2n−2 + (−1)0 · 2n−2), 0 + 2) = (0, 2),

so

x2n−2

= (2n−2, 0) = (0, 2) = y2.

For (b), Proposition 4.11 gives that every element can be written in the form xayb for

some a, b ∈ Z. By (a), we have that even powers of y can be written as powers of x. Thus,
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for b even, the result follows from Lemma 4.1. If b is odd, then b = 1 or b = 3. However,

(a, 3)(2n−2, 2) = (φ6(a+ (−1)3 · 2n−2), 1) = (a− 2n−2, 1)

so (a, 3) = (a′, 1) for some a′ ∈ Z2n−1 . Thus, xayb = xa′y in this case and the result

follows.

For (c), let g ∈ Q such that g ̸∈ ⟨x⟩. Then g = y or g = xay for some a. We have

already shown that y has order 4 and certainly y2 = y2, so consider g = xay. Then

g2 = (xay)2 = (a, 1) · (a, 1) = (φ(a+ (−1)a), 2) = (0, 2) = y2.

Since y has order 4, y2 has order 2. Thus, g2 has order 2, implying that g has order 4.

For (d), we see that by (c), every element which is not a power of x has order 4, thus,

any element with order 2 must be a power of x. However, the only element of ⟨x⟩ with

order 2 is x2n−2 , as desired.

For (e), we see that by (b), any element g outside of ⟨x⟩ has form g = xay for some

a. Then Tg(x) = T(a,1)(1, 0) = ((1 + (−1)0+1)a+ (−1)11, 0) = (−1, 0) = x−1, as

desired.

Corollary 4.14. Let Q = Qφ
2n and 1 ̸= H ≤ Q. Then ⟨x2n−2⟩ ≤ H .

Proof. From the above argument, we may conclude that for any 1 ̸= H ≤ Q such that

g = xay ∈ H ̸⊂ ⟨x⟩, g2 = y2 = x2n−2 ∈ H . Suppose then that 1 ̸= H ≤ ⟨x⟩. This means

H is cyclic of even order, and hence contains an element of order 2, which must be x2n−2

by Lemma 4.13(d).

Corollary 4.15. Quaternionic automorphic loops cannot be constructed from a semidirect

product.
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Proof. By Corollary 4.14, no two proper, nontrivial subloops have trivial intersection, and

so Q cannot be constructed from a loop semidirect product.

4.5.1 Nuclei and Center.

Proposition 4.16. For Q = Qφ
2n , the middle nucleus of Q is isomorphic to Z2n−1 and

generated by x.

Proof. Let (b,m) ∈ Q. Then (b,m) ∈ Nµ(Q) if and only if for every (a, l) , (c, p) ∈ Q,

(a, l)(b,m) · (c, p) = (a, l) · (b,m)(c, p) .

From Lemma 4.10, this holds if and only if (4.20) holds for every (a, l) , (c, p) ∈ Q:

φlm(a) + (−1)m+lφlm+mp(c) = φmp+lm(a) + (−1)m+lφmp(c) .

It is clear that, being the neutral element, (0, 0) ∈ Nµ(Q). Moreover, we note that

(4.20) does not depend on b. Thus, ⟨x⟩ ≤ Nµ(Q).

Now to see that there are no other elements besides powers of x, suppose (b,m) ∈

Nµ(Q). Then (4.20) holds for every (a, l) , (c, p) ∈ Q, so take (a, l) = (0, 1) and (c, p) =

(c, 0) in particular. Then (b,m) ∈ Nµ(Q) implies that

0 + (−1)1+mφm(c) = 0 + (−1)m+1c.

Simplifying, this gives

φm(c) = c.

Since φ is not the identity, it follows that if (b,m) ∈ Nµ(Q) then m = 0 or m = 2.
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However,

(b, 2)(2n−2, 2) = (φ4(b+ (−1)2 · 2n−2), 4) = (b+ 2n−2, 0).

So (b, 2) = (d, 0) for some (d, 0) ∈ Q. Thus, (b,m) ∈ Nµ(Q) if and only if m = 0. That

is, Nµ(Q) = ⟨x⟩ ∼= Z2n−1 .

While all three quaternionic automorphic loops of the same order share the same mid-

dle nucleus, there is some distinction in their left nuclei, as detailed by the following lem-

mas.

Lemma 4.17. For Q = Qφ
2n , if (a, l) ∈ Nλ(Q) then a = φ(a) and l ∈ {0, 2}.

Proof. Let (a, l) ∈ Qφ
2n . Then (a, l) ∈ Nλ(Q

φ
2n) if and only if for every (b,m) , (c, p) ∈

Qφ
2n ,

(a, l)(b,m) · (c, p) = (a, l) · (b,m)(c, p) .

We again remind the reader of the associativity condition from (4.20), so the above is

equivalent to the following for every (b,m) , (c, p) ∈ Qφ
2n:

φlm(a) + (−1)m+lφlm+mp(c) = φmp+lm(a) + (−1)m+lφmp(c) .

If (a, l) ∈ Nλ(Q
φ
2n), then (4.20) must hold for any choice of (b,m) and (c, p), so let c = 0

and m = p = 1. Then the associativity condition reduces to φl(a) = φl+1(a), or

a = φ(a) .
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Moreover, by letting c = m = 1 and p = 0 in (4.20), the associativity condition becomes

φl(a) + (−1)1+lφl(1) = φl(a) + (−1)l+1 · 1 which reduces to

φl(1) = 1 .

Since φ ̸= id, it follows that l is even. However, l is taken modulo 4, so l = 0 or l = 2.

Lemma 4.18. Nλ(Q
ι
2n) = ⟨x2n−2⟩ ∼= Z2.

Proof. We first calculate using (4.20) with (a, l) = (2n−2, 0) and φ = ι = −1 to see that

x2n−2 ∈ Nλ(Q
ι
2n) if and only if for every (b,m), (c, p) ∈ Qι

2n:

(−1)0(2n−2) + (−1)m(−1)mp(c) = (−1)mp(2n−2) + (−1)m(−1)mpc

⇔ 2n−2 = (−1)mp2n−2.

Since 2n−2 = −2n−2 mod 2n−1, the equation above is an identity, so x2n−2 ∈ Nλ(Q
ι
2n).

Now Lemma 4.17 with φ = ι = −1 implies that if (a, l) ∈ Nλ(Q
ι
2n), then a = −a.

This only holds for a = 0 or a = 2n−2. Moreover, Lemma 4.17 also gives that if (a, l) ∈

Nλ(Q
ι
2n) then l = 0 or l = 2. However, (a, 0) = (a′, 2) for some a′, so it follows that if

(a, l) ∈ Nλ(Q
ι
2n), then (a, l) ∈ {(0, 0), (2n−2, 0)} = ⟨x2n−2⟩.

Lastly, the map from ⟨x2n−2⟩ → Z2 sending x2n−2 7→ 1 gives the desired isomorphism.

Lemma 4.19. Nλ(Q
α
2n) = ⟨x2n−2⟩ ∼= Z2.

Proof. Again, we use (4.20) with (a, l) = (2n−2, 0) and φ = α to see that x2n−2 ∈ Nλ(Q
α
2n)

if and only if for every (b,m), (c, p) ∈ Qα
2n:

α0(2n−2) + (−1)mαmp(c) = αmp(2n−2) + (−1)mαmp(c)
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⇔ 2n−2 = αmp(2n−2).

If mp is even, then the result follows immediately, so suppose mp is odd. From Lemma

4.7 we have that α acts as negation on even inputs, so the equation above is equivalent to

saying 2n−2 = −2n−2, which holds. Thus, x2n−2 ∈ Nλ(Q
α
2n).

Now Lemma 4.17 with φ = α = 2n−2 − 1 implies that if (a, l) ∈ Nλ(Q
α
2n), then

a = (2n−2 − 1)a, or a = 2n−2a − a, or again equivalently a(2n−2 − 2) = 0. The only

solutions to this equation in Z2n−1 are a = 0 or a = 2n−2. Moreover, in a similar way to

Lemma 4.18, we have that l = 0, so Nλ(Q
α
2n) = ⟨x2n−2⟩ as well, and the same map as

above will give the desired isomorphism.

Lemma 4.20. Nλ(Q
β
2n) = ⟨x2⟩ ∼= Z2n−2 .

Proof. Here we use (4.20) with (a, l) = (2, 0) and φ = β = 2n−2 + 1 to see that x2 ∈

Nλ(Q
β
2n) if and only if for every (b,m), (c, p) ∈ Qβ

2n:

β02 + (−1)mβmp(c) = βmp(2) + (−1)mβmp(c)

⇔ 2 = βmp(2).

From Lemma 4.7, we have that β acts as the identity on even inputs, so the above holds

giving that x2 ∈ Nλ(Q
β
2n).

Now Lemma 4.17 with φ = β implies that if (a, l) ∈ Nλ(Q
β
2n), then a = β(a). Since

β only acts as the identity on even inputs, it follows that a must be even. By Lemma 4.17,

l = 0, so Nλ(Q
β
2n) = ⟨x2⟩.

The map from ⟨x2⟩ → Z2n−2 sending x2 7→ 1 gives the desired isomorphism.

Lemma 4.21. For Q = Qφ
2n , C(Q) = ⟨x2n−2⟩ and C(Q) ∼= Z2.
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Proof. By Lemma 4.13, we see that (0, 2) = x2n−2
= y2 is the unique element of Q of

order 2, thus it must be preserved by all inner mappings. In particular, Ta(x2n−2
) = x2n−2

for every a ∈ Q, so x2n−2 ∈ C(Q).

To see that (0, 2) is the only non-identity element in the commutant, we calculate the

following. For (a, b) ∈ Q, (a, b) ∈ C(Q) if and only if (x, y) · (a, b) = (a, b) · (x, y) for

every (x, y) ∈ Q, or equivalently, (φyb(x+ (−1)ya), y + b) = (φby(a+ (−1)bx), b+ y).

This identity holds if and only if for every x ∈ Z2n−1 and for every y ∈ Z4,

x+ (−1)ya = a+ (−1)bx. (∗)

Letting y = 0 in (∗) yields x + a = a + (−1)bx or x = (−1)bx. This implies that if

(a, b) ∈ C(Q), then b = 0 or b = 2.

Moreover, letting x = 0 and y = 1 in (∗) yields −a = a, which implies that if

(a, b) ∈ C(Q), then a = 0 or a = 2n−2. Thus, (a, b) ∈ {(0, 0), (0, 2), (2n−2, 0), (2n−2, 2)}.

Noticing that {(0, 0), (2n−2, 2)} = (0, 0) and {(0, 2), (2n−2, 0)} = (0, 2), it follows that the

commutant of Q is equal to C(Q) := {(0, 0),x2n−2} = ⟨x2n−2⟩ ∼= Z2, as desired.

Proposition 4.22. For Q = Qφ
2n , Z(Q) = ⟨x2n−2⟩ and Z(Q) ∼= Z2.

Proof. By Lemma 4.13 again, x2n−2 is the unique element of Q of order 2, thus it must

be preserved by all inner mappings. This shows that x2n−2 ∈ Z(Q). Since Z(Q) =

C(Q) ∩N(Q), Lemma 4.21 gives us that C(Q) = Z(Q) = ⟨x2n−2⟩.

This proposition in combination with Corollary 4.14 shows that the pairwise intersec-

tion of two nontrivial subloops contains the center of the loop, a fact which we make explicit

in the following corollary. This is also the case in the generalized quaternion groups.

Corollary 4.23. For Q = Qφ
2n and any two nontrivial subloops H,K ≤ Q, Z(Q) ≤

H ∩K = ⟨x2n−2⟩.
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4.5.2 Inner mapping groups.

Lemma 4.24. For Q = Qφ
2n , RInn(Q) = ⟨Ry,(x2,y2)

, Rx,(x2,y2)
: (x2, y2) ∈ Q⟩. In fact,

Ry1

y,(x2,y2)
Rx1

x,(x2,y2)
= R(x1,y1),(x2,y2)

.

Proof. Recall RInn(Q) = ⟨Ru,v : u, v ∈ Q⟩. Let x1, y1, x2, y2, a, b ∈ Q. It suffices to show

that the generator of RInn(Q), R(x1,y1),(x2,y2)
can be written as a composition of powers of

Ry,(x2,y2)
and Rx,(x2,y2)

. Recall, from (4.11):

R(x1,y1),(x2,y2)(a, b) = ((−1)b+y2φy2y1(φby2(x1)− x1) + φy2y1(a), b).

Now using (4.13) and (4.17), we have:

Ry1
y,(x2,y2)

Rx1

x,(x2,y2)
(a, b) = Ry1

y,(x2,y2)
((−1)b+y2(φby2(x1)− x1) + a, b)

= (φy1y2((−1)b+y2(φby2(x1)− x1) + a), b)

= ((−1)b+y2φy1y2(φby2(x1)− x1) + φy1y2(a), b)

= R(x1,y1),(x2,y2)(a, b).

Thus, Ry,(x2,y2)
and Rx,(x2,y2)

generate RInn(Q).

Lemma 4.25. Recall z = (1, 1). In Qφ
2n , Rx,(x2,y2) = R

(y2 mod 2)
x,z and Ry,(x2,y2) = Ry2

y,z.

Proof. That Ry,(x2,y2) = Ry2
y,z follows immediately from (4.19) and (4.16). Now,

R(y2 mod 2)
x,z (a, b) = ((−1)b+1(φb(1)− 1)(y2 mod 2) + a, b)

and

Rx,(x2,y2)(a, b) = ((−1)b+y2(φby2(1)− 1) + a, b).
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For y2 even we have

R(y2 mod 2)
x,z (a, b) = (a, b) = Rx,(x2,y2)(a, b).

For y2 odd, we have

R(y2 mod 2)
x,z (a, b) = ((−1)b+1(φb(1)− 1) + a, b) = Rx,(x2,y2)(a, b).

Therefore, Rx,(x2,y2) = R
(y2 mod 2)
x,z , as desired.

Lemma 4.24 can thus be rewritten using these new generators as follows.

Corollary 4.26. For Q = Qφ
2n ,

RInn(Q) = ⟨Rx,z, Ry,z⟩.

Proposition 4.27. For Q = Qφ
2n , let s := Ty and r := Tx. Then s2 = r2

n−2
= 1,

srs−1 = r−1, and ⟨s, r⟩ = MInn(Q). In particular, T(u,v) = T u
xT

v
y for (u, v) ∈ Q.

Proof. Recall Ty(a, b) = (−a, b), so Ty maps the first coordinate of an ordered pair to its

inverse. This clearly has order 2. Moreover, recall Tx(a, b) = (1 + (−1)b+1 + a, b). For b

even, this reduces to (a, b), and for b odd, this reduces to (2 + a, b).

When b is even, Tx is the identity map, in which case all the identities in the proposition

hold trivially. So suppose b is odd. Then T u
x (a, b) = (2u + a, b). Since the first coordinate

is taken modulo 2n−1, (2u+ a, b) = (a, b) whenever u ≡ 0 or u ≡ 2n−2. Thus, r has order

2n−2.
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To show srs−1 = r−1, it suffices to show srs = r−1, so we calculate, making use of

(4.5), (4.6), and (4.7):

TyTxTy(a, b) = TyTx(−a, b)

= Ty(1 + (−1)b+1 − a, b)

= (−(1 + (−1)b+1 − a), b)

= (−1 + (−1)b + a, b)

= T−1
x (a, b).

Lastly, we show that s and r generate MInn(Q). It suffices to show that

T(u,v)(a, b) = T u
xT

v
y (a, b).

Calculating using (4.4), (4.6), and (4.8) it follows immediately:

T u
xT

v
y (a, b) = T u

x ((−1)va, b) = ((1 + (−1)b+1)u+ (−1)va, b) = T(u,v)(a, b).

Corollary 4.28. MInn(Qφ
2n)

∼= D2n−1 .

Theorem 4.29. For Q = Qι
2n , Inn(Q) ∼= D2n−1 .

Proof. By Lemma 4.3, it suffices to show that RInn(Q) = MInn(Q), that is, that the

generators of one can be written in terms of the generators of the other. We start with:

Rx,z(a, b) = ((−1)b+1((−1)b − 1) + a, b) = ((−1) + (−1)b + a, b) = T−1
x (a, b).
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Moreover,

Ry,z(a, b) = ((−1)a, b) = (−a, b) = Ty(a, b).

Thus, LInn(Q) = RInn(Q) = MInn(Q) = Inn(Q). An application of Proposition

4.27 finishes the proof.

Lemma 4.30. In Qα
2n , Rx,z = T 2n−3−1

x

Proof. In Qα
2n , we have that

Rx,z(a, b) = ((−1)b+1((2n−2 − 1)b − 1) + a, b)

and

T 2n−3−1
x (a, b) = ((1 + (−1)b+1)(2n−3 − 1) + a, b).

For b odd, the first reduces to (2n−2 − 1 − 1 + a, b) = (2n−2 − 2 + a, b) and the second

simplifies to (2(2n−3−1)+a, b) = (2n−2−2+a, b), as desired. For b even, the first reduces

to ((1− 1) + a, b) = (a, b) and the second becomes ((1− 1)(2n−3 − 1) + a, b) = (a, b) as

well. Thus, we have equality in all cases.

Theorem 4.31. Inn(Qα
2n)

∼= Z2 ×D2n−1 .

Proof. Let H := ⟨TyRy,z⟩ and K := ⟨Tx, Ty⟩ be subgroups of Inn(Qα
2n). We have shown

in Proposition 4.27 that Tx and Ty generate a group isomorphic to D2n−1 . We claim now

the following:

TyRy,z = Ry,zTy and |TyRy,z| = 2.

To see the first, we calculate

TyRy,z(a, b) = Ty((2
n−2 − 1)a, b) = (−(2n−2 − 1)a, b)
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and also

Ry,zTy(a, b) = Ry,z(−a, b) = ((2n−2 − 1)(−a), b) = (−(2n−2 − 1)a, b) ,

as desired. To show |TyRy,z| = 2, we first note that since Ry,z = (α(a), b) and |α| = 2,

then |Ry,z| = 2. Moreover, since |Ty| = 2, it follows that:

(TyRy,z)
2 = T 2

yR
2
y,z = 1.

Thus, ⟨TyRy,z⟩ ∼= Z2.

We claim now that Inn(Qα
2n) = H × K. To see that the intersection of H and

K is trivial, let γ ∈ H ∩ K and suppose by way of contradiction that γ ̸= 1. Since

|H| = 2, and γ ∈ H , γ then must be equal to TyRy,z and so |γ| = 2. It is well known

that the only elements of order 2 in the dihedral group of order 2n−1 are the reflections

s, rs, r2s, . . . , r2
n−2−1s and the rotation by π: r2n−3 . Thus, for γ ∈ K, γ = Tm

x Ty for some

0 ≤ m < 2n−2 or γ = T 2n−3

x . For the first case, this would imply

TyRy,z = Tm
x Ty

⇔ Ry,zTy = Tm
x Ty

⇔ Ry,z = Tm
x

If m = 0, this then implies that Ry,z = 1, which is a contradiction since α ̸= 1. So

suppose that m ̸= 0. Then Ry,z((a, b)) = Tm
x ((a, b)) implies

(α(a), b) = ((1 + (−1)b+1)m+ a, b).
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Since the second coordinates are equal, we must then have equality in the first coordinates,

so

(2n−2 − 1)a = (1 + (−1)b+1)m+ a.

Since this must hold for every (a, b), take b = 0. Then this implies that (2n−2−1)a = a and

thus 2n−2 − 1 = 1, which again is a contradiction. So it cannot be the case that γ = Tm
x Ty.

For the second case, we suppose γ = T 2n−3

x . This implies that TyRy,z((a, b)) =

T 2n−3

x ((a, b)) for every (a, b) ∈ Qα
2n , or equivalently

(−α(a), b) = ((1 + (−1)b+1)2n−3 + a, b).

Since we have equality in the second coordinates, this implies

(−2n−1 + 1)a = (1 + (−1)b+1)2n−3 + a.

Again, this must hold for any choice of (a, b), so let b = 0. This implies that −2n−2+1 = 1,

which is a contradiction. Thus, γ ̸= T 2n−3

x , so it must be the case that γ = 1, giving that

H ∩K = {1}.

From Lemma 4.30 and Corollary 4.26, it follows that Inn(Qα
2n) = ⟨Tx, Ty, TyRy,z⟩, so

H and K generate the entire inner mapping group.

Lastly, we show that both H and K are normal in Inn(Qα
2n). Since Qα

2n is an automor-

phic loop, it follows that for any γ ∈ Inn(Qα
2n), γTuγ

−1 = Tγ(u) and γRu,vγ
−1 = Rγ(u),γ(v).

Since ⟨Tx, Ty⟩ = MInn(Qα
2n), we have that

γTxγ
−1 = Tγ(x) ∈ ⟨Tx, Ty⟩
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and similarly,

γTyγ
−1 = Tγ(y) ∈ ⟨Tx, Ty⟩.

Thus, K is normal in Inn(Qα
2n).

To see that H is normal we note as well that for any γ in the inner mapping group,

γRy,zγ
−1 = Rγ(y),γ(z).

Moreover, for γ ∈ Inn(Qφ
2n), γ(a, b) = (a′, b) for some a′. That is, any inner mapping

preserves the second coordinate. We claim now that the inner mappings preserve evenness

in the first coordinate when the second coordinate is equal to 1. To illustrate this, we

calculate on the generators:

Ry,z((2k, 1)) = (α(2k), 1) = (−2k, 1)

Ty((2k, 1)) = (−2k, 1)

Rx,z((2k, 1)) = ((−1)2(α(1)− 1) + 2k, 1) = (2n−2 − 2 + 2k, 1)

Tx((2k, 1)) = ((1 + (−1)2) + 2k, 1) = (2 + 2k, 1)

Now, notice

T(u,1)R(u,1),(v,1)((a, b)) = T(u,1)(((−1)b+1α(αb(u)− u) + α(a), b))

= ((1 + (−1)b+1)u+ (−1)[(−1)b+1α(αb(u)− u) + α(a)], b)

= ((1 + (−1)b+1)u+ (−1)bα(αb(u)− u)− α(a), b)
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For b even, the above becomes (−α(a), b) = TyRy,z((a, b)). For b odd and u even, we

have (2u− α(−u− u)− α(a), b) = (2u− 2u− α(a), b) = (−α(a), b) = TyRy,z((a, b))

as well. Thus, it suffices to show that γ(y) = (2k, 1) for some k. However, since y = (0, 1)

and each generator of Inn(Qα
2n) preserves evenness in the first coordinate when the second

is equal to 1, it follows that γ(y) = (u, 1) with u is even, so

γTyRy,zγ
−1 = Tγ(y)Rγ(y),γ(z) = TyRy,z.

So H is normal as well.

Thus, Inn(Qα
2n) = H ×K ∼= Z2 ×D2n−1 .

Theorem 4.32. Inn(Qβ
2n)

∼= Z2 ×D2n−1

Proof. Let H := ⟨Ry,z⟩ and K := ⟨Tx, Ty⟩. We claim that Inn(Qβ
2n) = H × K. First

recall that in Qβ
2n ,

Rx,z(a, b) = ((−1)b(βb(1)− 1) + a, b).

For b even, Rx,z(a, b) = (a, b) and for b odd, Rx,z(a, b) = (2n−2 + a, b). Thus,

Rx,z(a, b) = T 2n−3

x (a, b)

so Inn(Qβ
2n) = ⟨Ry,z, Tx, Ty⟩.

To see that the intersection of H and K is trivial, let γ ∈ H ∩K such that γ ̸= 1. Since

γ ∈ H , |γ| = 2 (again, |Ry,z| = 2) and because it is not the identity, γ = Ry,z. Since

γ ∈ K, it can be written as T s
xT

r
y . Using the same argument as the previous proof, since γ

has order 2, γ must be either Tm
x Ty for 0 ≤ m < 2n−2 or γ = T 2n−3

x . In the first case, this

implies, for every (a, b) ∈ Qβ
2n ,

(β(a), b) = ((1 + (−1)b+1)m+ (−1)a, b).
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Taking b = 0, this means (2n−2+1)a = (−1)a or 2n−2+1 = −1, which is a contradiction,

so γ ̸= Tm
x Ty. For the second case, this would imply

(β(a), b) = ((1 + (−1)b+1)2n−3 + a, b).

Again, this must hold for any (a, b) ∈ Qβ
2n , so take b = 0. This gives 2n−2 + 1 = 1, which

is also a contradiction. Thus, γ ̸= T 2n−3

x . Since these are the only possibilities for γ, we

then conclude that for γ ∈ H ∩K, γ = 1. Thus, H ∩K = {1}.

For the normality of H and K, we use the same argument as the previous proof to

conclude that K ⊴ Inn(Qβ
2n). To see that H ⊴ Inn(Qβ

2n), we again note that for γ ∈

Inn(Qβ
2n), γRy,zγ

−1 = Rγ(y),γ(z). Using Lemma 4.7, the following identities hold for any

k ∈ Z2n−1:

Ry,z((2k, 1)) = (β(2k), 1) = (2k, 1)

Ty((2k, 1)) = (−2k, 1)

Rx,z((2k, 1)) = ((−1)2(β(1)− 1) + 2k, 1) = (2k, 1)

Tx((2k, 1)) = (2 + 2k, 1)

Thus, just as in the previous proof, φ ∈ Inn(Qβ
2n) preserves evenness in the first coor-

dinate when the second coordinate is 1. Moreover,

R(u,1),(v,1)((a, b)) = ((−1)b+1β(βb(u)− u) + β(a), b).
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For u even, this reduces to (β(a), b) = Ry,z((a, b)). Since y = (0, 1) is in the form (even,

1), it then follows that γ(y) = (2k, 1) for some k. Thus, Rγ(y),γ(z) = Ry,z, so H is normal

in Inn(Qβ
2n). This shows that Inn(Qβ

2n) = H ×K ∼= Z2 ×D2n−1 .

4.5.3 Quaternionic automorphic loops modulo their centers. Just as the structure of

the inner mapping group of a loop is important, the structure of the loop modulo its center

can sometimes tell us about the structure of the original loop. In this section, we explore

each of the three quaternionic automorphic loops modulo their centers and prove that they

are isomorphic to a generalized dihedral group (in the case of β), or a dihedral automorphic

loop. The immediate consequence of these theorems is then that quaternionic automorphic

loops of order 2n are nilpotent of class n− 1. Moreover, these results in combination with

the results from §4.5.2 allow us to finally prove that each of the automorphisms α, β, ι

produce a distinct quaternionic automorphic loop.

Theorem 4.33. Given Q = Qβ
2n , the map from Q to Inn(Q) sending x 7→ Tx is a homo-

morphism.

Proof. Let (a, b), (c, d), (u, v) ∈ Q. Then

T(a,b)·(c,d)((u, v))

= T
(βbd(a+(−1)bc),b+d)

((u, v))

= ((1 + (−1)v+1)βbd(a+ (−1)bc) + (−1)b+du, v)

= (βbd(a) + (−1)bβbd(c) + (−1)v+1βbd(a) + (−1)v+1+bβbd(c) + (−1)b+du, v). (∗∗)

Also,

T(a,b)T(c,d)((u, v))

= T(a,b)(((1 + (−1)v+1)c+ (−1)du, v))
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= ((1 + (−1)v+1)a+ (−1)b[(1 + (−1)v+1)c+ (−1)du], v)

= (a+ (−1)v+1a+ (−1)bc+ (−1)b+v+1c+ (−1)b+du, v). (∗ ∗ ∗)

Since the second coordinates in (∗∗) and (∗ ∗ ∗) are equal, it follows that

T(a,b)·(c,d)(u, v) = T(a,b)T(c,d)(u, v)

⇔

βbd(a) + (−1)bβbd(c) + (−1)v+1βbd(a) + (−1)v+1+bβbd(c) + (−1)b+du

= a+ (−1)v+1a+ (−1)bc+ (−1)b+v+1c+ (−1)b+du.

Canceling (−1)b+du on both sides yields the equivalent condition

βbd(a) + (−1)bβbd(c) + (−1)v+1βbd(a) + (−1)v+1+bβbd(c)

= a+ (−1)v+1a+ (−1)bc+ (−1)b+v+1c.

Moving all terms with a to the left and all terms with c to the right gives equivalently:

T(a,b)·(c,d)(u, v) = T(a,b)T(c,d)(u, v)

⇔

βbd(a) + (−1)a+(−1)va+ (−1)v+1βbd(a)

= (−1)b+1βbd(c) + (−1)v+bβbd(c) + (−1)bc+ (−1)b+v+1c.

Suppose first that bd is even. Then βbd is the identity and the equation above reduces

to 0 = 0, which is certainly true. So T(a,b)·(c,d)(u, v) = T(a,b)T(c,d)(u, v) in this case.
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Now suppose bd is odd and recall that β = 2n−2+1. Then the equation above becomes

(2n−2 + 1)a+ (−1)a+(−1)va+ (−1)v+1(2n−2 + 1)a

= (−1)b+1(2n−2 + 1)c+ (−1)v+b(2n−2 + 1)c+ (−1)bc+ (−1)b+v+1c,

or, equivalently,

2n−2a+ a+ (−1)a+ (−1)va+ (−1)v+12n−2a+ (−1)v+1a

= (−1)b+12n−2c+ (−1)b+1c+ (−1)v+b2n−2c+ (−1)v+bc+ (−1)bc+ (−1)b+v+1c.

This then reduces to

2n−2a+ (−1)v+12n−2a = (−1)b+12n−2c+ (−1)v+b2n−2c.

Again, we have two cases. In the first case, if v is even, the equation above reduces to

0 = 0, which is true. In the second case, if v is odd, the equation above becomes

2 · 2n−2a = (−1)b+12 · 2n−2c.

Since 2 · 2n−2 = 2n−1 ≡ 0 in Z2n−1 , this also reduces to 0 = 0. Thus, T(a,b)·(c,d)(u, v) =

T(a,b)T(c,d)(u, v), as desired.

Corollary 4.34. For Q = Qβ
2n , Q/Z(Q) ∼= MInn(Q) ∼= D2n−1 .

Proof. Using the onto homomorphism ψ : Q→ MInn(Q) sending x 7→ Tx from Theorem

4.33, all that is left to show is that ker(ψ) = Z(Q). We have that ker(ψ) = C(Q), and then

an application of Proposition 4.22 gives the rest.
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Theorem 4.35. For Q = Qι
2n and D the dihedral automorphic loop constructed with G =

Z2n−2 , m = 2, and φ = −1, Q/Z(Q) ∼= D.

Proof. Consider the map ψ : (Q, ·) → (D, ∗) given by ψ((a, b)) = (a mod 2n−2, b

mod 2). To show this map is well-defined, suppose (a, b) = (c, d). If (a, b) = (c, d) then

we are done, so suppose that (a, b) ̸= (c, d). Since they have the same equivalence classes,

then it must be that (c, d) = (a, b) · (2n−2, 2). However, (a, b) · (2n−2, 2) = ((−1)2b(a +

(−1)b2n−2), b+ 2) ≡ (a, b) in D. Thus, ψ((a, b)) = (a, b) ≡D (c, d) = ψ((c, d)).

Now to show ψ is a homomorphism, let (a, b), (c, d) ∈ Q. Then

ψ((a, b) · (c, d)) = ψ(((−1)bd(a+ (−1)bc), b+ d))

= ((−1)bd(a+ (−1)bc) mod 2n−2, b+ d mod 2)

= (a, b) ∗ (c, d)

= ψ((a, b)) ∗ ψ((c, d)).

Lastly, we notice that the kernel of ψ is:

kerψ = {(u, v) ∈ Q : ψ((u, v)) = (0, 0)}

= {(u, v) ∈ Q : (u, v) ≡D (0, 0)}

= {(0, 0), (0, 2), (2n−2, 0), (2n−2, 2)}

= Z(Q).

Thus, Q/Z(Q) ∼= D, as desired.

Theorem 4.36. For Q = Qα
2n and D the dihedral automorphic loop constructed with G =

Z2n−2 , m = 2, and φ = −1, Q/Z(Q) ∼= D.
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Proof. Same proof as above, but we notice instead:

ψ((a, b)(c, d)) = ψ(((2n−2 − 1)bd(a+ (−1)bc), b+ d)) = ((2n−2−1)bd(a+(−1)bc), b+d).

Now, since |α | = 2, either ((2n−2 − 1)bd(a+(−1)bc), b+ d) = (a+(−1)bc, b+ d) if bd is

even, or ((2n−2 − 1)bd(a+ (−1)bc), b+ d) = ((2n−2 − 1)(a+ (−1)bc), b+ d) if bd is odd.

In the former case, we see that ((2n−2 − 1)bd(a+ (−1)bc), b+ d) = (a+ (−1)bc, b+ d) =

((−1)bd(a + (−1)bc), b + d) = (a, b)(c, d) = ψ((a, b))ψ((c, d)). In the latter case, we

have ((2n−2 − 1)bd(a + (−1)bc), b + d) = ((2n−2 − 1)(a + (−1)bc), b + d) = ((−1)(a +

(−1)bc), b + d) = ((−1)bd(a + (−1)bc), b + d) = (a, b)(b, d) = ψ((a, b))ψ((c, d)). Thus,

ψ is a homomorphism here as well, and the isomorphism follows as above.

Corollary 4.37. Qα
2n/Z(Q

α
2n)

∼= Qι
2n/Z(Q

ι
2n).

With the description of the inner mapping groups given in the previous subsection and

the structure of the quotient loops proved in this subsection, we are now able to show that

each distinct automorphism produces a distinct quaternionic automorphic loop. We state

this more precisely in the following theorem.

Theorem 4.38. Each distinct φ ∈ Aut(Z2n−1) with |φ| = 2 produces a distinct (up to

isomorphism) quaternionic automorphic loop of order 2n.

Proof. While there are several differences between the loops to point to, we limit our atten-

tion to their inner mapping groups and the quotient of the loops by their centers. First,

Qα
2n ̸∼= Qβ

2n since Qα
2n/Z(Q

α
2n) ̸∼= Qβ

2n/Z(Q
β
2n) and Qι

2n ̸∼= Qβ
2n since Qι

2n/Z(Q
ι
2n) ̸∼=

Qβ
2n/Z(Q

β
2n) by Theorems 4.36 and 4.35 and Corollary 4.34. Moreover, Qα

2n ̸∼= Qι
2n since

Inn(Qα
2n) ̸∼= Inn(Qι

2n) by Theorems 4.31 and 4.29.

4.5.4 Nilpotency.
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Theorem 4.39. For Q = Qφ
2n , Q is nilpotent of class n− 1.

Proof. By Corollary 4.34, Qβ
2n/Z(Q

β
2n)

∼= D2n−1 . It is well known [12] that the dihedral

group of order 2n−1 is nilpotent of class n−2, thusQβ
2n is nilpotent of class n−1. Moreover,

we have by Theorems 4.36 and 4.35 that Qα
2n/Z(Q

α
2n)

∼= Qι
2n/Z(Q

ι
2n)

∼= D where D is

the dihedral-like automorphic loop constructed with G = Z2n−2 , m = 2, and φ = −1.

Aboras shows in [1] that D has nilpotency class n − 2. Again, this implies Qι
2n and Qα

2n

have nilpotency class n− 1.

4.5.5 Subloop structure of Qβ
2n . Before understanding the subloop structure, we make a

note here that, while loops (even automorphic loops) do not in general satisfy the Lagrange

Property, it follows from the fact that automorphic 2-loops are solvable [17] that quater-

nionic automorphic loops in particular do have the Lagrange Property [10]. Thus, in the

discussion which follows, we may make the usual order considerations.

Lemma 4.40. In Qβ
2n , the subloops ⟨x2,y⟩ and ⟨x2,xy⟩ are associative, of order 2n−1, and

normal in Qβ
2n .

Proof. Recall that the condition on associativity given by (4.20) is

(a, l) · (b,m)(c, k) = (a, l)(b,m) · (c, k)

⇔

φlm(a) + (−1)m+lφlm+mk(c) = φmk+lm(a) + (−1)m+lφmk(c).

Let (a, l), (b,m), (c, k) ∈ ⟨x2,y⟩. By Lemma 4.7 we have that a, b, and c are even

and so β(a) = a and β(c) = c. Thus, the associativity condition reduces to the identity

a+ (−1)m+lc = a+ (−1)m+lc, so ⟨x2,y⟩ is associative.
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Now suppose (a, l), (b,m), (c, k) ∈ ⟨x2,xy⟩. Lemma 4.7 gives that for any (a, l) ∈

⟨x2,xy⟩, either a is even and l = 0, i.e. (a, l) ∈ ⟨x2⟩, or a is odd and l = 1. If

(a, l), (b,m), (c, k) ∈ ⟨x2⟩, then (a, l), (b,m), and (c, k) associate since automorphic loops

are power associative. Moreover, if (b,m) ∈ ⟨x2⟩, we have from Proposition 4.16 that

(a, l) · (b,m)(c, k) = (a, l)(b,m) · (c, k).

So suppose that (b,m) ̸∈ ⟨x2⟩. Then by the discussion above, b is odd and m = 1. In this

case, (4.20) holds if and only if

βl(a) + (−1)l+1βl+k(c) = βk+l(a) + (−1)1+lβk(c).

We now have three cases: a is even and c is odd, a is odd and c is even, or both a and c are

odd.

For the first case, if a is even and c is odd, then l = 0 and k = 1. So (4.20) holds if and

only if

a+ (−1)β(c) = β(a) + (−1)β(c).

Since a is even, Lemma 4.7 gives β(a) = a, so (4.20) holds in this case.

For the second case, if a is odd and c is even, then l = 1 and k = 0, so the associativity

condition gives

β(a) + β(c) = β(a) + c.

Again, since c is even, β(c) = c, so this is an identity as well.

For the third case, if a and c are odd, then l = k = 1, so (4.20) holds if and only if

β(a) + c = a+ β(c).
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From the proof of Lemma 4.7, we see that β(a) = a + 2n−2 when a is odd, so the above

holds if and only if

a+ 2n−2 + c = a+ c+ 2n−2,

which holds as well. These are all the cases, so we have for every (a, l), (b,m), (c, k) ∈

⟨x2,xy⟩, (a, l) · (b,m)(c, k) = (a, l)(b,m) · (c, k), as desired.

Now, since |x2| = 2n−2 and ⟨x2⟩ < ⟨x2,y⟩ , ⟨x2,xy⟩ < Qβ
2n , we have that |⟨x2,y⟩| =

2n−1 and |⟨x2,xy⟩| = 2n−1.

Since each subgroup has index 2 in Qβ
2n , it follows that they are both normal in Qβ

2n .

Lemma 4.41. For any noncyclic N ⊴Qβ
2n , x2 ∈ N .

Proof. Let N ⊴Qβ
2n such that N is not cyclic. In particular, N ̸⊆ ⟨x⟩, so there is some g ∈

N so that g = xay = (a, 1). Since N is normal, it is fixed by all the inner mappings. Thus,

g · Tx(g−1) ∈ N . We note here that g−1 ∈ Qβ
2n = (c, d) such that (a, 1) · (c, d) = (0, 0),

or (βd(a+ (−1)c), 1 + d) = (0, 0). Solving for c and d, we get that g−1 = (a,−1). So,

calculating:

g · Tx(g−1) = (a, 1) · Tx(a,−1)

= (a, 1) · ((1 + (−1)0) + a,−1)

= (a, 1) · (2 + a,−1)

= (β−1(a+ (−1)(2 + a)), 0)

= (β(−2), 0)

= (−2, 0)

= x−2.

Since x−2 ∈ N , so is x2. Thus, if N is normal in Qβ
2n and noncyclic, x2 ∈ N .
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Corollary 4.42. The only proper, noncyclic, normal subloops of Qβ
2n are ⟨x2,y⟩ and

⟨x2,xy⟩.

Proof. Let N be a proper, noncylic, normal subloop of Qβ
2n . By Lemma 4.41, ⟨x2⟩ ≤ N .

Let k ∈ Z2n−1 . Since x ∈ Nµ, Rx,z((2k, 0)) = Ry,z((2k, 0)) = (2k, 0). Moreover, since

Qβ
2n is power associative, Tx((2k, 0)) = (2k, 0). Lastly, we note Ty((2k, 0)) = (−2k, 0), so

all inner mappings preserve evenness in the first coordinate when the second coordinate is

0. Thus, ⟨x2⟩ is normal in Qβ
2n , with index [Qβ

2n : ⟨x2⟩] = 2n

2n−2 = 4. So ⟨x2⟩ splits Qβ
2n into

4 cosets, we claim with representatives {(0, 0),x,y,xy}. To see this, let g ∈ Qβ
2n . Then

g = xa or g = xay for some a, by Lemma 4.13. If g = xa with a odd, then g ∈ ⟨x2⟩x. If

g = xa with a even, then g ∈ ⟨x2⟩. In the case where g = xay, if a is odd then g ∈ ⟨x2⟩xy,

and if a is even, then g ∈ ⟨x2⟩y.

Since N ̸= ⟨x2⟩, it follows that ⟨x2⟩ < N < Qβ
2n , so |⟨x2⟩| = 2n−2 < |N | <

2n = Qβ
2n . We may conclude that |N | = 2n−1 and [N : ⟨x2⟩] = 2. Thus, N is ⟨x,x2⟩,

⟨x2,y⟩, or ⟨x2,xy⟩. However, ⟨x,x2⟩ = ⟨x⟩ is cyclic, leaving us with only N = ⟨x2,y⟩

or N = ⟨x2,xy⟩.

It is a fact from group theory that if Q is a 2-group, then it has a unique element of

order 2 if and only if it is cyclic or generalized quaternion. For a proof, see [35]. Thus, we

have the following corollary.

Corollary 4.43. For Qβ
2n , the subloops ⟨x2,y⟩ and ⟨x2,xy⟩ are isomorphic to the general-

ized quaternion group of order 2n−1.

Proof. We note that since x2n−2 ∈ ⟨x2⟩, which is the unique element of order 2 in Qβ
2n ,

and since ⟨x2,y⟩ and ⟨x2,xy⟩ are noncyclic and associative, then the comment above

immediately gives that they are both isomorphic to a generalized quaternion group. Lemma

4.40 gives that their order is 2n−1, and the result follows.
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Lemma 4.44. Let Q be a quaternionic automorphic loop of order 2n and let H < Q. Then

there exists a subnormal chain of subloops

H = H0 ◁H1 ◁ · · ·◁Hr = Q

such that |Hi+1/Hi| = 2.

Proof. We proceed by induction on n. For n = 1, |Q| = 2, so H is trivial. Take H0 = H

and Hr = Q to satisfy the statement. Suppose the statement holds for all orders 2m with

m < n and let |Q| = 2n with H < Q. Since Z(Q) is contained in every subloop of Q

by Corollary 4.15 and Z(Q) ̸= 1 by Proposition 4.22, H/Z(Q) and Q/Z(Q) have order

strictly less than H and Q, respectively. By the induction hypothesis, there is a subnormal

chain

H/Z(Q) = H0 ◁H1 ◁ · · ·◁Hr = Q/Z(Q)

such that |Hi+1/Hi| = 2 for every i < r. The isomorphism theorems for loops then give

some Hi < Q such that Hi/Z(Q) = Hi, Hi ◁ Hi+1, and [Hi+1 : Hi] = [Hi+1 : Hi] = 2,

which yields the desired chain.

In particular, Lemma 4.44 says that given any H < Q, H ≤ Hr−1 such that [Q :

Hr−1] = 2. We formalize this in the following corollary.

Corollary 4.45. Every proper subloop of a quaternionic automorphic loop is contained in

a subloop of index 2.

Now, since every proper subloop is contained in a subloop of index 2, and since any

subloop of index 2 must be normal, and since the only noncyclic proper normal subloops

of Qβ
2n are ⟨x2,y⟩ and ⟨x2,xy⟩, it follows immediately that:

Corollary 4.46. Every proper noncyclic subloop ofQβ
2n is contained in ⟨x2,y⟩ or ⟨x2,xy⟩.
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Theorem 4.47. All proper subloops of Qβ
2n are either cyclic groups or generalized quater-

nion groups.

Proof. LetH < Qβ
2n . IfH is cyclic then it is associative since automorphic loops are power

associative. So H is a cyclic group in this case. Suppose that H is not cyclic. Corollary

4.46 gives that H ≤ ⟨x2,y⟩ or H ≤ ⟨x2,xy⟩. However, Corollary 4.43 gives that ⟨x2,y⟩

and ⟨x2,xy⟩ are isomorphic to the generalized quaternion group of order 2n−1. Since

every subgroup of a generalized quaternion group is either a cyclic group or a generalized

quaternion group, the result follows immediately.

Since α(2k) = ι(2k) = −2k for any integer k, we can easily modify the proof of

Lemma 4.41 to show that x2 ∈ N for any normal, noncyclic subloop N of any quater-

nionic automorphic loop. Since Lemma 4.44 is also done in general for any quaternionic

automorphic loop, we have that every subloop of any quaternionic automorphic loop is

contained in an index 2 subloop. These facts combined with some GAP calculations, give

us that the subloop lattice of all three quaternionic automorphic loops of order 32 are iso-

morphic. That is, the following lattice applies to any Qφ
32.

Moreover, one may note that in the lattice of congruences ofQφ
32, ⟨x8⟩ = Z(Qφ

32) is the

unique smallest nontrivial congruence, which in universal algebra is termed the monolith.

This implies that Qφ
32 is subdirectly irreducible, a fact which extends to any order 2n.
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Subloop Lattice of Qφ
32

Qφ
32

⟨x2,y⟩ ⟨x⟩ ⟨x2,xy⟩

⟨x4,y⟩ ⟨x4,x2y⟩ ⟨x2⟩ ⟨x4,xy⟩ ⟨x4,x3y⟩

⟨y⟩ ⟨x4y⟩ ⟨x2y⟩ ⟨x6y⟩ ⟨x4⟩ ⟨xy⟩ ⟨x5y⟩ ⟨x3y⟩ ⟨x7y⟩

⟨x8⟩

1

4.6 Further Study

With the dihedral groups and the generalized quaternion groups generalized to the

automorphic loop case, the natural question now arises as to whether a similar construction

can produce the automorphic loop generalization of the dicyclic groups.
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Chapter 5: Quasigroups isotopic to commutative Moufang loops

5.1 Introduction

The contents of this chapter are from work done in collaboration with Michael Kinyon and

make use of [29].

Throughout the course of this dissertation, we have been studying loops, whose iden-

tity element give them slightly more structure than quasigroups. In general, quasigroups

can be difficult to work with and thus, one of the important ways in which quasigroups are

studied is through their loop isotopes. For some interesting varieties of quasigroups, their

loop isotopes live in some highly structured class of loops in such a way that the quasi-

groups themselves can be represented in terms of those loops. For instance, sometimes the

quasigroups isotopic to some particular class of loops can be characterized in terms of nice

identities. An example of this is the following characterization of quasigroups isotopic to

abelian groups often attributed to Belousov [4] (see also [11]), who proved the equivalence

of parts (1) and (2). The equivalence of (1) and (3) follows by symmetry.

Proposition 5.1. Let (Q, ·) be a quasigroup. The following are equivalent.

1. (Q, ·) is isotopic to an abelian group;

2. For all x, y, z, u ∈ Q, the identity x(y\(zu)) = z(y\(xu)) holds;

3. For all x, y, z, u ∈ Q, the identity ((xy)/z)u = ((xu)/z)y holds.

Throughout this chapter we will be looking at loops isotopic to quasigroups, so we

will often have both a loop and a quasigroup structure on the same underlying set. Thus,

we will distinguish between the operations by using multiplicative notation such as ·, ∗,
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or juxtaposition for quasigroups, and additive notation + with neutral element 0 for loops,

even if they are not necessarily commutative. We will denote the left and right translations

by x in a loop (Q,+) by L+
x and R+

x , respectively.

As mentioned, we are looking for quasigroups which are isotopic to highly structured

classes of loops. One could make the argument that without the full power of associativity,

commutative Moufang loops, or CMLs, are the most structured variety of loops. However,

there are several varieties which are similar to CMLs which we will explore in this chapter.

We define them here as follows.

Definition 5.1. A loop (Q,+) is a left Bol loop if it satisfies the identity (x+(y+x))+z =

x+ (y + (x+ z)) for all x, y, z ∈ Q. Right Bol loops are defined dually, and a loop which

is both left Bol and right Bol is said to be a Moufang loop.

It is perhaps necessary to note that this is just one of the many equivalent definitions of

a Moufang loop, but it is the one which will serve our purposes best here.

Our primary interest in this chapter is in quasigroups isotopic to commutative Moufang

loops. We will first find it useful to characterize quasigroups isotopic to left Bol loops and

to Moufang loops. Left Bol loops form an isotopically invariant variety, that is, any loop

isotopic to a left Bol loop is a left Bol loop. The same isotopism invariance holds for

Moufang loops. For such varieties, it is straightforward to write down a characterization

using the method first discussed by Falconer [13]. However, in Theorems 5.7 and 5.10 in

§5.2, we will find more conceptual characterizations which are better suited to our purposes

and which we have not been able to find in the literature.

Abelian groups also form an isotopically invariant variety, so in Proposition 5.1, it was

not necessary to specify which loop isotope is an abelian group because in fact, they all

are. Commutative Moufang loops, however, require more care because they do not form an

isotopically invariant variety. In fact, if every loop isotopic to a given loop is a commutative

Moufang loop, then the loop itself is an abelian group [33, III.6.4 and IV.5.6]. Thus, we
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will look specifically at a particular form of loop isotope. That is, for a quasigroup (Q, ·)

and some u ∈ Q, let the principal loop isotope (Q,+u) be of the form

x+u y = (x/u)(u\y) . (5.1)

For the motivating varieties of quasigroups (Q, ·) discussed below, it turns out that

every principal loop isotope of this form is a commutative Moufang loop, which we will

prove in §5.3. In general, the class of quasigroups (Q, ·) such that each (Q,+u) is a com-

mutative Moufang loop has a characterization which nicely generalizes Proposition 5.1.

Theorem 5.2. Let (Q, ·) be a quasigroup. The following are equivalent:

1. Each loop isotope (Q,+u) is a commutative Moufang loop.

2. For all x, y, z ∈ Q, the following identity holds:

x(y\(zz)) = z(y\(xz)) . (Q1)

3. For all x, y, z ∈ Q, the following identity holds:

((zz)/y)x = ((zx)/y)z . (Q2)

Isotopy only guarantees that the mappings (α, β, γ) are bijections on Q. Thus, the

notion of “affine” gives a stronger relationship between quasigroups and loops.

Definition 5.2. A quasigroup (Q, ·) is said to be affine over a commutative Moufang loop

(Q,+) if there exist c ∈ Q and φ, ψ ∈ Aut(Q) such that xy = (φ(x) + ψ(y)) + c for all

x, y ∈ Q. If c = 0, then (Q, ·) is said to be linear over (Q,+). The quintuple (Q,+, φ, ψ, c)

is said to be an affine form of (Q, ·).
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We should mention that in the literature, the definition of “affine” varies a bit from

author to author; some allow more general classes of loops (Q,+), some restrict c ∈ Q to

lie in the center of the loop (Q,+), etc. In addition, the quintuples we are calling affine

forms are also called “arithmetic forms”.

Quasigroups which are affine over abelian groups are known as central quasigroups

(formerly “T -quasigroups”). (This is not the definition of central quasigroup [38] but it

will suffice for our purposes.) Central quasigroups form a variety and can be equationally

axiomatized in various ways. For instance, one can combine Proposition 5.1(2) or (3) with

a couple of other short identities [11].

In §5.4 we consider a new variety of quasigroups which we call “semiparamedial”

quasigroups. Along with semimedial quasigroups (both defined below), semiparamedial

quasigroups are affine over commutative Moufang loops. But first a few historical remarks

are in order.

The two most well-studied varieties of central quasigroups are medial quasigroups

(also known as entropic, formerly “abelian”) which are defined by the identity xy · uv =

xu · yv, and paramedial quasigroups, which are defined by the identity xy · uv = vy · ux.

Part (1) of the following is the Toyoda-Bruck-Murdoch Theorem, the earliest example of an

affine representation theorem for a variety of quasigroups.

Proposition 5.3. Let (Q, ·) be a quasigroup.

1. (Q, ·) is medial if and only if it has an affine form (Q,+, φ, ψ, c) where (Q,+) is an

abelian group and φψ = ψφ [42, 5, 31].

2. (Q, ·) is paramedial if and only if it has an affine form (Q,+, φ, ψ, c) where (Q,+)

is an abelian group and φ2 = ψ2 [27].

Thus in some sense, the study of medial or paramedial quasigroups “reduces” to the study

of abelian groups and their automorphisms.
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Proposition 5.3(1) has been generalized in various ways, notably to trimedial (or teren-

tropic, formerly tri-abelian) quasigroups [23], which also includes the case of distribu-

tive quasigroups [3, 39]. The affine representation of trimedial quasigroups turns out

to be crucial to their enumeration [20]. The trimedial case was, in turn, generalized to

F -quasigroups [24, 26] and semimedial quasigroups (formerly “weakly abelian” or just

“WA”) [25], and it is to this latter generalization we now turn. We also introduce (for what

we believe to be the first time) the “para-analog” of semimedial quasigroups.

Definition 5.3. A quasigroup (Q, ·) is semimedial if the following identities hold for all

x, y, z ∈ Q:

xx · yz = xy · xz , (S1)

xy · zz = xz · yz . (S2)

A quasigroup (Q, ·) is semiparamedial if the following identities hold for all x, y, z ∈ Q:

xx · yz = zx · yx , (P1)

xy · zz = zy · zx . (P2)

In 1978, Kepka proved the following affine representation theorem for semimedial

quasigroups [25], which we present here as motivation for what follows.

Theorem 5.4. (Q, ·) is semimedial if and only if it has an affine form (Q,+, φ, ψ, c) where

(Q,+) is an abelian group and φψ = ψφ.

Motivated by this theorem, we prove in §5.4 that a quasigroup is semiparamedial if

and only if it has a specific affine form where φ2 = ψ2. More specifically, we prove the

following theorem.

87



Theorem 5.5. Let (Q, ·) be a quasigroup. Then (Q, ·) is semiparamedial if and only if

(Q, ·) has affine form (Q,+, ψ, φ, g) where (Q,+) is a commutative Moufang loop, φ2 =

ψ2, and ψφ−1 is a nuclear automorphism of (Q,+).

5.2 Quasigroups isotopic to Bol and Moufang loops

In this section we will find a useful characterization of quasigroups isotopic to left

Bol loops and thus of quasigroups isotopic to Moufang loops. Since left Bol loops form

an isotopically invariant variety, there is a standard method of writing an identity which

characterizes a quasigroup Q isotopic to a left Bol loop: fix e ∈ Q, consider the principal

loop isotope (Q,+e), write the left Bol identity in terms of the quasigroup operations. That

is, for x, y, z ∈ Q,

(((x/e)(e\((y/e)(e\x))))/e)(e\z) = (x/e)(e\((y/e)(e\((x/e)(e\z))))) .

Then treat e as being universally quantified so that we have an identity in 4 variables. This

idea goes back to Falconer [13]. This identity can certainly be simplified (and can also

be used to prove the results below), but even in a simplified form, it does not seem to be

particularly elegant. The main result of this section, Theorem 5.7, seems to be both more

elegant and more useful.

A quasigroup Q is said to have the left inverse property (LIP) if for each x ∈ Q, there

exists xλ ∈ Q such that xλ · xy = y for all y ∈ Q. Taking, say, y = x\x, we see that

xλ = (x\x)/x, and so LIP quasigroups form a variety. The right inverse property (RIP) is

defined dually in the obvious way, and a quasigroup with both the LIP and the RIP is said

to have the inverse property (IP).

In an additively written loop (Q,+), the LIP can be written as (−)λx + (x + y) = y

where (−)λx denotes the left inverse of x, that is, (−)λx + x = 0. (In fact, in LIP loops,
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(−)λx turns out to be a two-sided inverse for x.) The LIP can be usefully expressed in

terms of left translations by (L+
x )

−1 = L+
(−)λx

for all x ∈ Q.

As discussed in §5.1, for a quasigroup (Q, ·), we are particularly interested in the loop

isotopes (Q,+u) where for each x, y, u ∈ Q, x +u y = (x/u)(u\y). Here the identity

element is 0 = uu and for x ∈ Q, the left inverse of x is −x = (0/(u\x))u. Left and right

translations in (Q,+u) are, respectively, L+
x = Lx/uL

−1
u and R+

x = Ru\xR
−1
u , x ∈ Q.

Lemma 5.6. Let (Q, ·) be a quasigroup and fix e ∈ Q. The following are equivalent.

1. (Q,+e) is an LIP loop;

2. For all x ∈ Q, LeL
−1
x Le is a left translation;

3. For all x, y, z ∈ Q, (e(x\(ey)))/y = (e(x\(ez)))/z;

4. For all x, y ∈ Q, e(x\(ey)) = ((e(x\e))/(e\e))y.

Proof. (1) =⇒ (2): We have (L+
x )

−1 = LeL
−1
x/e and L+

−x = L0/(x\e)L
−1
e . Thus if (Q,+e)

has the LIP, then LeL
−1
x/e = L0/(x\e)L

−1
e . Multiplying on the right by Le we get LeL

−1
x/eLe =

L0/(x\e). Replacing x with xe, we obtain LeL
−1
x Le = L0/((xe)\e). Thus for each x ∈ Q,

LeL
−1
x Le is a left translation, and so (2) holds.

(2) =⇒ (1): Since LeL
−1
x/eLe is a left translation, say, Lw for some w ∈ Q, we therefore

have L−1
e Lx/eL

−1
e = L−1

w . Apply both sides to 0 = ee. The left side is e\((x/e)(e\(ee))) =

e\x. The right side is w\0. Thus w\0 = e\x and solving this for w yields w = 0/(e\x).

Now we compute

L+
(−)λx

L+
x = L0/(x\e)L

−1
e Lx/eL

−1
e = L0/(x\e)L

−1
0/(x\e) = id ,

that is, (Q,+e) has the LIP. This proves (1).
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(2) =⇒ (3): We have LeL
−1
x/eLe = Lw for some w ∈ Q depending only on e and

x. Thus for all y, e(x\(ey)) = wy. Therefore (e(x\(ey)))/y is independent of y, which

proves (3).

(3) =⇒ (4): This follows by taking z = e\e and then multiplying both sides on the

right by y.

(4) =⇒ (2): The follows from writing (4) as LeL
−1
x Le = L(e(x\e))/(e\e) for all x ∈

Q.

Left Bol loops have the LIP. On the other hand, if (Q,+) is a loop such that every

loop isotope has the LIP, then (Q,+) is a left Bol loop. Left Bol loops are also nicely

characterized by their left translations: a loop (Q,+) is a left Bol loop if and only if, for all

x, y ∈ Q, L+
xL

+
y L

+
x is a left translation.

Theorem 5.7. Let (Q, ·) be a quasigroup. The following are equivalent.

1. (Q, ·) is isotopic to a left Bol loop;

2. For each u ∈ Q, (Q,+u) has the LIP;

3. For all x, y ∈ Q, LxL
−1
y Lx is a left translation;

4. For all x, y, z, v ∈ Q, x(y\(xz)) = ((x(y\(xv)))/v)z;

5. For all x, y, z ∈ Q, x(y\(xz)) = ((x(y\x))/(x\x))z.

Proof. (1) =⇒ (2): By the discussion above, every loop isotopic to a left Bol loop has the

LIP.

The equivalence of (2), (3), (4), (5) follows from Lemma 5.6.

(3) =⇒ (1): Fix u ∈ Q and consider the loop (Q,+u). For x, y ∈ Q, we compute

L+
xL

+
y L

+
x = Lx/uL

−1
u Ly/uL

−1
u Lx/uL

−1
u ,
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= Lx/u(LuL
−1
y/uLu)

−1Lx/uL
−1
u ,

= Lx/uL
−1
z Lx/uL

−1
u for some z ∈ Q ,

= LwL
−1
u for some w ∈ Q ,

= L+
wu .

Thus (Q,+u) is a left Bol loop.

Remark 5.8. It is tempting to refer to the variety of quasigroups with left Bol loop isotopes

as simply being “left Bol quasigroups”, and define them by, say, Theorem 5.7(4) or (5) or

some other equivalent identity. However, the term “left Bol quasigroup” has already been

used in at least two distinct ways in the literature.

D. Robinson [34] defined a right Bol quasigroup to be one which satisfies the right Bol

identity and so by duality, a quasigroup (Q, ·) is a left Bol quasigroup in Robinson’s sense

if it satisfies x(y · xz) = (x · yx)z for all x, y, z ∈ Q.

Florja [14] defined a quasigroup (Q, ·) to be a left Bol quasigroup if it satisfies the

identity

x(y(xz)) = ((x(yx))/(x\x))z (5.2)

for all x, y, z ∈ Q (see also [36], p. 109). Compare this with Theorem 5.7(5) which char-

acterizes quasigroups with left Bol loop isotopes. It is easy to see that (5.2) is equivalent to

the condition that for all x, y ∈ Q, LxLyLx is a left translation.

It is not difficult to show that a left Bol quasigroup in Robinson’s sense is precisely the

same as a left Bol quasigroup in Florja’s sense with a right identity element. In addition, a

left Bol quasigroup in Florja’s sense is precisely the same as an LIP quasigroup with a left

Bol loop isotope.
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Lemma 5.6 and Theorem 5.7 have obvious right-handed duals which we will not state

explicitly. Instead we pass directly to the two-sided case, which follows immediately. We

will not use these results in the remainder of this chapter.

Lemma 5.9. Let (Q, ·) be a quasigroup and fix e ∈ Q. The following are equivalent.

1. (Q,+e) is an IP loop;

2. For all x ∈ Q, LeL
−1
x Le is a left translation and ReR

−1
x Re is a right translation;

3. For all x, y, z ∈ Q,

(e(x\(ey)))/y = (e(x\(ez)))/z and y\(((ye)/x)e) = z\(((ze)/x)e) ;

4. For all x, y ∈ Q,

e(x\(ey)) = ((e(x\e))/(e\e))y and ((ye)/x)e = y((e/e)\((e/x)e)) .

Theorem 5.10. Let (Q, ·) be a quasigroup. The following are equivalent.

1. (Q, ·) is isotopic to a Moufang loop;

2. For each u ∈ Q, (Q,+u) has the IP;

3. For all x, y ∈ Q, LxL
−1
y Lx is a left translation and RxR

−1
y Rx is a right translation;

4. For all x, y, z, v ∈ Q,

x(y\(xz)) = ((x(y\(xv)))/v)z and ((zx)/y)x = z(v\(((vx)/y)x)) ;
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5. For all x, y, z ∈ Q,

x(y\(xz)) = ((x(y\x))/(x\x))z and ((zx)/y)x = z((x/x)\((x/y)x)) .

5.3 Quasigroups isotopic to commutative Moufang loops

Our goal in this section is prove Theorem 5.2. We start by characterizing when the

loop isotopes (Q,+e), e ∈ Q, are commutative.

Lemma 5.11. Let (Q, ·) be a quasigroup and fix e ∈ Q. The following are equivalent.

1. (Q,+e) is commutative;

2. For all x, y ∈ Q, x(e\(ye)) = y(e\(xe));

3. For all x, y ∈ Q, ((ey)/e)x = ((ex)/e)y.

Proof. In terms of the quasigroup operations, commutativity of +e is given by

(x/e)(e\y) = (y/e)(e\x) .

Set z = x/e so that x = ze, and set v = y/e so that y = ve. Then z(e\(ve)) = v(e\(ze)).

The steps are reversible, so (1) and (2) are equivalent. The equivalence of (1) and (3) is

proved similarly.

A loop (Q,+) is said to have the crossed inverse property (CIP) if it satisfies either,

and hence both, of the following identities for all x, y ∈ Q [33]:

(−)λx+ (y + x) = y and (x+ y) + (−)ρx = y . (CIP)

Here (−)λx and (−)ρx denote, respectively, the left and right inverses of x ∈ (Q,+).
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Lemma 5.12. Let (Q, ·) be a quasigroup and fix e ∈ Q. The following are equivalent.

1. (Q,+e) has the CIP;

2. For all x, y ∈ Q, ((ee)/x)y = ((ey)/x)e;

3. For all x, y ∈ Q, x(y\(ee)) = e(y\(xe)).

Proof. We write the leftmost identity in (CIP) in terms of the quasigroup operations:

[(ee)/(e\x)][e\((y/e)(e\x))] = y . (5.3)

Set v = e\x so that x = ev, and set w = e\((y/e)v) so that y = ((ew)/v)e. Then (5.3) is

equivalent to

((ee)/v)w = ((ew)/v)e . (5.4)

Thus parts (1) and (2) are equivalent. A dual argument using the rightmost identity of (CIP)

yields the equivalence of (1) and (3).

Corollary 5.13. The identities (Q1) and (Q2) are equivalent in quasigroups.

Lemma 5.14. Let (Q, ·) be a quasigroup satisfying (Q1) and (Q2). Then for each x, y, z, u

in Q, the following identities hold:

((xy)/x)z = ((xz)/x)y , (5.5)

z(x\(yx)) = y(x\(zx)) . (5.6)

Proof. Starting with the left side of 5.5, we compute

((xy)/x)z = ((xy)/x)[((xx)/z)\(xx)]

= x[((xx)/z)\ (((xy)/x)x)︸ ︷︷ ︸] (Q1)
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= x[((xx)/z)\(xy)]

= x{y\(y[((xx)/z)\(xy)]︸ ︷︷ ︸)}
= x{y\(x[((xx)/z)\ (yy)︸︷︷︸])} (Q1)

= x{y\(x[((xx)/z)\(((yy)/x)x)]︸ ︷︷ ︸)}
= x{y\(((yy)/x)[((xx)/z)\(xx)︸ ︷︷ ︸])} (Q1)

= x{y\(((yy)/x)z)} .

Reversing the roles of y and z in this calculation, we see that (5.5) is equivalent to the

identity x{y\(((yy)/x)z)} = x{z\(((zz)/x)y)}, or just

y\(((yy)/x)z) = z\(((zz)/x)y) . (5.7)

To prove (5.7), we start with its left side and compute

y\(((yy)/x)z) = z\{z[y\(((yy)/x)z)]︸ ︷︷ ︸}
= z\{((yy)/x)[y\(zz)]︸ ︷︷ ︸} (Q1)

= z\{((y(y\(zz))︸ ︷︷ ︸)/x)y} (Q2)

= z\(((zz)/x)y) .

This completes the proof of (5.5) and the proof of (5.6) is dual to this.

Corollary 5.15. If (Q, ·) is a quasigroup satisfying (Q1) and (Q2), then for each u ∈ Q,

(Q,+u) is commutative.

Proof. This follows immediately from Lemmas 5.14 and 5.11.

We are now equipped to prove Theorem 5.2, which for convenience is restated here.
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Theorem 5.2. Let (Q, ·) be a quasigroup. The following are equivalent:

1. Each loop isotope (Q,+u) is a commutative Moufang loop.

2. For all x, y, z ∈ Q, the following identity holds:

x(y\(zz)) = z(y\(xz)) . (Q1)

3. For all x, y, z ∈ Q, the following identity holds:

((zz)/y)x = ((zx)/y)z . (Q2)

Proof. Commutative Moufang loops have the CIP, so if part (1) of the theorem holds, then

every (Q,+u) has the CIP, and so Lemma 5.12 implies parts (2) and (3).

By Corollary 5.13, (Q1) and (Q2) are equivalent, so we may assume both parts (2)

and (3) hold. By Corollary 5.15, each (Q,+u) is commutative. What remains is to show

that each (Q,+u) is a Moufang loop. By commutativity, it is sufficient to show that each

(Q,+u) is a left Bol loop. Thus for x, y, z ∈ Q, we compute

LxL
−1
y Lx(z) = x(y\(xz))

= x(y\([(xz)/x]x))

= [(xz)/x](y\(xx)) (Q1)

= [(x(y\(xx)))/x]z (5.6)

= L(x(y\(xx)))/x(z) .

Thus for all x, y ∈ Q, LxL
−1
y Lx is a left translation. An application of Theorem 5.7

completes the proof.
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5.4 Semiparamedial quasigroups

Having an understanding of the loop isotopes of a quasigroup can be helpful, but being

able to represent a variety of quasigroups as affine over a structured class of loops is better.

Thus, in this section, our goal is to prove Theorem 5.5. We begin by showing that both

semimedial and semiparamedial quasigroups satisfy (Q1).

Recall that a semiparamedial quasigroup (Q, ·) is a quasigroup satisfying the following

for all x, y, z ∈ Q:

xx · yz = zx · yx , (P1)

xy · zz = zy · zx . (P2)

We introduce one more identity in a quasigroup (Q, ·): for every x, y, z ∈ Q:

xy · yz = zy · yx . (P3)

Lemma 5.16. Let (Q, ·) be a quasigroup. If (Q, ·) is semimedial or semiparamedial, then

(Q, ·) satisfies (Q1).

Proof. Assume first that (Q, ·) is semimedial and fix x, y, z ∈ Q. Then:

yy · x(y\(zz)) = yx · y(y\(zz)) (S1)

= yx · zz

= yz · xz (S2)

= yz · y(y\(xz))

= yy · z(y\(xz)) . (S1)

Canceling yy, we have (Q1).
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Next assume (Q, ·) is semiparamedial and fix x, y, z ∈ Q. Then:

x(y\(zz)) · yy = y(y\(zz)) · yx (P2)

= zz · yx

= xz · yz (P1)

= y(y\(xz)) · yz

= z(y\(xz)) · yy . (P2)

Canceling yy, we have (Q1).

We will need part of the following result in our affine characterization of semiparame-

dial quasigroups.

Proposition 5.17. In a cancellative magma (Q, ·), any two of (P1), (P2), or (P3) together

imply the third.

Proof. We show first that (P1) and (P2) together imply (P3). For x, y, z ∈ Q, we have:

(xy · xy)(zz · xz) · (xx · xy)(zx · xy)︸ ︷︷ ︸ = (xy · xy)(zz · xz) · (xy · xy) (zx · xx)︸ ︷︷ ︸ (P1)

= (xy · xy)(zz · xz) · (xy · xy)(xx · xz) (P2)

= (xx · xz)(zz · xz)︸ ︷︷ ︸ ·(xy · xy)(xy · xy) (P2)

= (xz · xz) (zz · xx)︸ ︷︷ ︸ ·(xy · xy)(xy · xy) (P1)

= (xz · xz)(xz · xz) · (xy · xy)︸ ︷︷ ︸ (xy · xy)︸ ︷︷ ︸ (P1)

= (xz · xz)(xz · xz) · (yy · xx)(yy · xx)︸ ︷︷ ︸ (P1)

= (xz · xz)(xz · xz) · (xx · xx)(yy · yy) (P1)

= (yy · yy)(xz · xz)︸ ︷︷ ︸ · (xx · xx)(xz · xz)︸ ︷︷ ︸ (P1)
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= (xz · yy)︸ ︷︷ ︸ (xz · yy)︸ ︷︷ ︸ ·(xz · xx)(xz · xx) (P1)

= (yz · yx)(yz · yx)︸ ︷︷ ︸ ·(xz · xx)(xz · xx) (P2)

= (yx · yx)(yz · yz) · (xz · xx)(xz · xx) (P1)

= (xz · xx)(yz · yz)︸ ︷︷ ︸ · (xz · xx)(yx · yx)︸ ︷︷ ︸ (P2)

= (yz · xx)︸ ︷︷ ︸(yz · xz) · (yx · xx)︸ ︷︷ ︸(yx · xz) (P2)

= (xz · xy) (yz · xz)︸ ︷︷ ︸ ·(xx · xy)(yx · xz) (P2)

= (xz · xy)(zz · xy)︸ ︷︷ ︸ ·(xx · xy)(yx · xz) (P1)

= (xy · xy)(zz · xz) · (xx · xy)(yx · xz) . (P1)

Thus (xy ·xy)(zz ·xz) ·(xx ·xy)(zx ·xy) = (xy ·xy)(zz ·xz) ·(xx ·xy)(yx ·xz). Canceling

(xy · xy)(zz · xz) on the left, we get (xx · xy)(zx · xy) = (xx · xy)(yx · xz), and then

canceling xx · xy, we obtain the desired result: zx · xy = yx · xz.

Next assume (P1) and (P3) hold. Then for all x, y, z ∈ Q,

(xy · zz)(zz · zz)︸ ︷︷ ︸ ·(zx · zz)(zz · xz) = (zz · zz) (zz · xy)︸ ︷︷ ︸ ·(zx · zz)(zz · xz) (P3)

= (zz · zz)(yz · xz)︸ ︷︷ ︸ ·(zx · zz)(zz · xz) (P1)

= (xz · zz) (yz · zz)︸ ︷︷ ︸ ·(zx · zz)(zz · xz) (P1)

= (xz · zz)(zz · zy)︸ ︷︷ ︸ ·(zx · zz)(zz · xz) (P3)

= (zy · zz)(zz · xz) · (zx · zz)(zz · xz) (P3)

= (zz · xz)(zz · xz)︸ ︷︷ ︸ · (zx · zz)(zy · zz)︸ ︷︷ ︸ (P1)

= (xz · xz)(zz · zz) · (zz · zz)(zy · zx) (P1)

= (zy · zx)(zz · zz) · (zz · zz)(xz · xz)︸ ︷︷ ︸ (P3)
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= (zy · zx)(zz · zz) · (xz · zz) (xz · zz)︸ ︷︷ ︸ (P1)

= (zy · zx)(zz · zz) · (xz · zz)(zz · zx)︸ ︷︷ ︸ (P3)

= (zy · zx)(zz · zz) · (zx · zz)(zz · xz) . (P3)

Thus, (xy · zz)(zz · zz) · (zx · zz)(zz ·xz) = (zy · zx)(zz · zz) · (zx · zz)(zz ·xz). Applying

cancellation twice yields the desired result, xy · zz = zy · zx.

Finally, if (P2) and (P3) hold in (Q, ·), then (P1) and (P3) hold in the opposite cancella-

tive magma (Q, ∗) where x ∗ y = y · x. By the preceding case, (P2) holds in (Q, ∗), which

is equivalent to (P1) holding in (Q, ·). This completes the proof.

It can be useful at times to think of the quasigroup operations in terms of its left and

right translation maps, which is why we state and prove the following.

Lemma 5.18. For a semiparamedial quasigroup (Q, ·) and for all x, y, a, b ∈ Q:

(i) LxxRy = LyxRx, RyyLx = RyxLy, LxxLx = RxxRx, and LxyLy = RyxRy;

(ii) Lxx(ab) = Rx(b)Rx(a), and L−1
xx (ab) = R−1

x (b)R−1
x (a).

Proof. Let x, y, z, a, b ∈ Q. For (i), we have LxxRy(z) = (xx)(zy) = (yx)(zx) by (P1).

Notice (yx)(zx) = LyxRx(z). Further, RyyLx(z) = (xz)(yy) = (yz)(yx) by (P2). Notice

(yz)(yx) = RyxLy(z). Moreover, LxxLx(z) = (xx)(xz) = (zx)(xx) by (P1). Notice

(zx)(xx) = RxxRx(z). Lastly, LxyLy(z) = (xy)(yz) = (zy)(yx) by Lemma 5.17. Notice

(zy)(yx) = RyxRy(z).

Now for (ii), we have Lxx(ab) = (xx)(ab) = (bx)(ax) by (P1), and (bx)(ax) =

Rx(b)·Rx(a). In addition, L−1
xx (ab) = R−1

x (b)·R−1
x (a) if and only if (xx)\(ab) = b/x·a/x.

Multiplying both sides by xx, we see this is equivalent to ab = (xx)(b/x · a/x). Then an

application of (P1) gives that this is true if and only if ab = ((a/x) ·x)((b/x) ·x). Reducing
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we see that L−1
xx (ab) = R−1

x (b) · R−1
x (a) holds if and only if ab = ab, which is certainly

true.

Thus, all of the equations in Lemma 5.18 hold.

Before the proof of Theorem 5.5, it is necessary to define some terms and set up a few

more preliminary results, which is what we will do now. Let (Q, ·) be a quasigroup and fix

e ∈ Q. We define a new map on Q by α := Re · L−1
e . Let + = +e be defined as usual.

We will say (Q,+) has the property (A1) if, for every x, y, z ∈ Q, the following equation

holds:

(α(x) + x) + (y + z) = (α(x) + y) + (x+ z). (A1)

It is our goal now to show that if (Q, ·) is a semiparamedial quasigroup, thenQ satisfies

(A1). To do this, we will use the following fact about commutative Moufang loops, stated

as Lemma VII.5.7. in [6].

Lemma 5.19. Let (Q,+) be a commutative Moufang loop and x ∈ Q. Then 3x ∈ Z(Q).

Theorem 5.20. Let Q be a quasigroup satisfying (Q1), fix e ∈ Q, and let (Q,+) be the

associated commutative Moufang loop where + = +e. Then (A1) holds.

Proof. First observe that

α(x) + x = (e\x)2 (5.8)

for all x ∈ Q, as is immediate from the definition of α.

We will also need the following:

x+−y = (x/(e\y))e (5.9)

for all x, y ∈ Q. Indeed, the right inverse property is x = (x+−y)+y = (x+−y)/e ·e\y,

and solving this for x+−y gives (5.9).

101



Similarly, we have

e\(x+ y) = (−x/e)\y (5.10)

for all x, y ∈ Q, which follows from the left inverse property.

Now we prove

((α(x) + x) + y) + z = α(x) + (y + (x+ z)) (5.11)

for all x, y, z ∈ Q. We compute

((α(x) + x) + y) + z = ((z + x) +−x) + (y + (α(x) + x))

= ((z + x)/(e\x))e · (e\(y + (e\x)2)) (5.9), (5.8)

= ((z + x)/(e\x))e · ((−y/e)\(e\x)2) (5.10)

= (e\x) · ((−y/e)\[((z + x)/(e\x))(e\x)]) (Q2)

= (e\x) · ((−y/e)\(z + x))

= (α(x)/e)(e\(y + (z + x))) (5.10)

= α(x) + (y + (x+ z)) .

Next, we add y to both sides of (5.11). On the left side, we get

(((α(x) + x) + y) + z) + y = (α(x) + x) + (y + z + y) = (α(x) + x) + (2y + z) ,

using a Moufang identity. On the right side, we similarly compute

y + (α(x) + (y + (x+ z))) = (y + α(x) + y) + (x+ z) = (α(x) + 2y) + (x+ z) .
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Putting these together and replacing y with −y, we have

(α(x) + x) + (−2y + z) = (α(x) +−2y) + (x+ z) (5.12)

for all x, y, z ∈ Q. Now in (5.12), rewrite −2y = y + −3y. By Lemma 5.19, −3y is in

the center of (Q,+). Thus we may cancel −3y from both sides of the rewritten (5.12) to

obtain

(α(x) + x) + (y + z) = (α(x) + y) + (x+ z)

for all x, y, z ∈ Q. Therefore (A1) holds as claimed.

The following is an immediate consequence of Corollary 5.13, Lemma 5.16, and The-

orem 5.20.

Corollary 5.21. Let (Q, ·) be a semiparamedial quasigroup. Fix x ∈ Q. Let (Q,+) be the

CML defined by + = +xx and let e = xx in the definition of α. Then (Q,+) satisfies (A1).

Lemma 5.22. Let (Q, ·) be a semiparamedial quasigroup and let a, b ∈ Q. Then α is an

automorphism of the CML isotope (Q,+), with + = +xx, as defined above.

Proof. Let (Q, ·), α, and + be as defined, and let a, b ∈ Q. Then:

α(a+ b) = RxxL
−1
xx (a+ b)

= RxxL
−1
xx (R

−1
xx (a) · L−1

xx (b))

= Rxx(R
−1
x L−1

xx (b) ·R−1
x R−1

xx (a)) 5.18

= LxR
−1
x R−1

xx (a) · LxR
−1
x L−1

xx (b) 5.18

= LxL
−1
x L−1

xx (a) · LxR
−1
x L−1

xx (b) 5.18

= L−1
xx (a) · LxR

−1
x L−1

xx (b)

= L−1
xx (a) · L−1

xxRxxRxR
−1
x L−1

xx (b) 5.18
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= L−1
xx (a) · L−1

xxRxxL
−1
xx (b)

= R−1
xxRxxL

−1
xx (a) · L−1

xxRxxL
−1
xx (b)

= R−1
xx (α(a)) · L−1

xx (α(b))

= α(a) + α(b).

Thus, α is an automorphism of (Q,+).

Sometimes automorphisms of loops can have special properties which lend to the struc-

ture of the loop. One such we define below.

Definition 5.4. Let α be a map on a loop (Q,+). Then α is called nuclear if, for every

x ∈ Q, −x+ α(x) ∈ N(Q).

Analogous to Kepka’s result in the semimedial case, we can now formulate and prove

the following theorem for semiparamedial quasigroups.

Theorem 5.5. Let (Q, ·) be a quasigroup. Then (Q, ·) is semiparamedial if and only if

(Q, ·) has affine form (Q,+, ψ, φ, g) where (Q,+) is a commutative Moufang loop, φ2 =

ψ2, and ψφ−1 is a nuclear automorphism of (Q,+).

Proof. (⇒) Fix x ∈ Q. Let y := xx and 0 := yy. Define a + b = R−1
y (a)L−1

y (b). By

Lemma 5.16 together with Theorem 5.2, (Q,+) is a commutative Moufang loop with unit

0 satisfying (A1) for α = RyL
−1
y . Moreover, by Proposition 4.2 in [21], α is a nuclear

mapping of (Q,+).

By Lemma 5.18, we can write:

Ly(a+ b) = Ly(R
−1
y (a) · L−1

y (b))

= RxR
−1
y (a) ·RxL

−1
y (b)

= R−1
y RyRxR

−1
y (a) · L−1

y LyRxL
−1
y (b)
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= RyRxR
−1
y (a) + LyRxL

−1
y (b).

Now consider Ly(a) = Ly(a + 0) = RyRxR
−1
y (a) + LyRxL

−1
y (0) and Ly(b) =

Ly(0 + b) = RyRxR
−1
y (0) + LyRxL

−1
y (b). Since (Q,+) is commutative and has the

inverse property, we may then write Ly(a+ b) = RyRxR
−1
y (a)+LyRxL

−1
y (b) = (Ly(a)+

−LyRxL
−1
y (0)) + (Ly(b) +−RyRxR

−1
y (0)).

Notice α(LyRxL
−1
y (0)) = RyL

−1
y LyRxL

−1
y (0) = RyRx(y) = RyRxR

−1
y (0), and since

α is an automorphism of (Q,+), it follows that α(−LyRxL
−1
y (0)) = −RyRxR

−1
y (0). Thus,

Ly(a+ b)

= (Ly(a) +−LyRxL
−1
y (0)) + (Ly(b) +−RyRxR

−1
y (0))

= (Ly(a) +−LyRxL
−1
y (0)) + (Ly(b) + α(−LyRxL

−1
y (0))

= (α(−LyRxL
−1
y (0)) + Ly(b)) + (−LyRxL

−1
y (0) + Ly(a)) (commutativity)

= (α(−LyRxL
−1
y (0)) +−LyRxL

−1
y (0)) + (Ly(b) + Ly(a)) (A1)

= (Ly(b) + Ly(a)) + (−RyRxR
−1
y (0) +−LyRxL

−1
y (0)) (commutativity).

Define k := LyRxL
−1
y (0) +RyRxR

−1
y (0) and φ(a) := Ly(a) +−k.

We claim now that φ is an automorphism of (Q,+). To see this, let a, b ∈ Q. Then we

have the following:

φ(a+ b) = Ly(a+ b) +−k

= ((Ly(a) + Ly(b)) +−k) +−k

= (Ly(a) + Ly(b)) + (−k +−k) (Moufang)

= (Ly(a) +−k) + (Ly(b) +−k) (CML)

= φ(a) + φ(b).
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Moreover, we have that Ly(0) = Ly(0 + 0) = (Ly(0) + Ly(0)) +−k. Since Moufang

loops have the inverse property, we may use this along with cancellation to obtain k =

Ly(0). Thus, φ(a) = Ly(a) +−Ly(0).

Similarly, using the right translation map and by Lemma 5.18, we may write:

Ry(a+ b) = Ry(R
−1
y (a) · L−1

y (b))

= LxR
−1
y (a) · LxL

−1
y (b)

= R−1
y RyLxR

−1
y (a) · L−1

y LyLxL
−1
y (b)

= RyLxR
−1
y (a) + LyLxL

−1
y (b).

Now considerRy(a) = Ry(a+0) = RyLxR
−1
y (a)+LyLxL

−1
y (0) andRy(b) = Ry(0+

b) = RyLxR
−1
y (0) + LyLxL

−1
y (b). Again, because (Q,+) is commutative and has the

inverse property, we may write Ry(a + b) = RyLxR
−1
y (a) + LyLxL

−1
y (b) = (Ry(a) +

−LyLxL
−1
y (0)) + (Ry(b) +−RyLxR

−1
y (0)).

Notice

α(LyLxL
−1
y (0)) = RyL

−1
y LyLxL

−1
y (0) = RyLxL

−1
y (0) = RyLx(y) = RyLxR

−1
y (0)

and since α is an automorphism of (Q,+), it follows that

α(−LyLxL
−1
y (0)) = −RyLxR

−1
y (0) .

Thus,

Ry(a+ b)

= (Ry(a) +−LyLxL
−1
y (0)) + (Ry(b) +−RyLxR

−1
y (0))
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= (Ry(a) +−LyLxL
−1
y (0)) + (Ry(b) + α(−LyLxL

−1
y (0)))

= (α(−LyLxL
−1
y (0)) +Ry(b)) + (−LyLxL

−1
y (0) +Ry(a)) (commutativity)

= (α(−LyLxL
−1
y (0)) +−LyLxL

−1
y (0)) + (Ry(b) +Ry(a)) (A1)

= (Ry(a) +Ry(b)) + (−RyLxR
−1
y (0) +−LyLxL

−1
y (0)) . (commutativity)

Define l := LyLxL
−1
y (0) +RyLxR

−1
y (0) and ψ(a) := Ry(a) +−l.

We claim that ψ is an automorphism of (Q,+). Let a, b ∈ Q, then

ψ(a+ b) = Ry(a+ b) +−l

= ((Ry(a) +Ry(b)) +−l) +−l

= (Ry(a) +Ry(b)) + (−l +−l) (Moufang)

= (Ry(a) +−l) + (Ry(b) +−l) (CML)

= ψ(a) + ψ(b) .

Notice Ry(0) = Ry(0 + 0) = (Ry(0) + Ry(0)) + −l. Again, the inverse property

and cancellation give that l = Ry(0), so ψ(a) = Ry(a) + −Ry(0). Moreover, α(k) =

RyL
−1
y Ly(0) = Ry(0) = l.

So we have

a · b = Ry(a) + Ly(b)

= (ψ(a) + l) + (φ(b) + k)

= (ψ(a) + α(k)) + (φ(b) + k)

= (ψ(a) + φ(b)) + (α(k) + k) .

By letting g := α(k) + k, we have the property desired.
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Since φ(a) = Ly(a) +−k for every a ∈ Q, we have that φ−1(a) = L−1
y (a+ k), so

ψφ−1(a) = ψL−1
y (a+ k)

= RyL
−1
y (a+ k) +−l

= RyL
−1
y (a+ k) +−α(k)

= α(a+ k) +−α(k)

= (α(a) + α(k)) +−α(k)

= α(a) .

Since this is true for every a ∈ Q, we have that ψφ−1 = α, and since α is a nuclear

mapping of (Q,+), so is ψφ−1.

Lastly, we show that φ2 = ψ2. First we will need the following lemmas.

Lemma 5.23. In this setting and for every a ∈ Q, ψ(a) = a · (0\0).

Proof. First, note the following:

0/(e\ψ(e)) = 0/(e\(0 +−(0 · e)))

= 0/(e\ − (0 · e))

= ((0 · e) +−(0 · e))/(e\ − (0 · e))

= (((0 · e)/e)(e\ − (0 · e)))/(e\ − (0 · e))

= (0 · e)/e

= 0 .

Thus, it follows that e\ψ(e) = 0\0, so we have ψ(a) = (ae) + −(0e) = (ae) + (0 +

−(0e)) = (ae) + ψ(e) = a(e\ψ(e)) = a(0\0) by the argument above.
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Similarly, we have the following result for φ:

Lemma 5.24. In this setting and for every a ∈ Q, φ(a) = (0/0) · a.

Proof. First, note the following:

(φ(e)/e)\0 = (−(e · 0)/e)\0

= (−(e · 0)/e)\(−(e · 0) + (e · 0))

= (−(e · 0)/e)\((−(e · 0)/e)(e\(e · 0)))

= e\(e · 0) .

So it follows that φ(e)/e = 0/0, and thus we have φ(a) = (ea)+−(e0) = (ea)+(0+

−(e0)) = (ea) + φ(e) = φ(e) + (ea) = (φ(e)/e)a = (0/0)a.

A result that will be useful is as follows:

Lemma 5.25. In this setting and for every a, b ∈ Q, the identity 0 · (a+ (0\b)) = (b/0) · a

holds.

Proof. Let a, b ∈ Q. Then calculating, we have:

(b/0) · a = [(0 · (0\b))/0] · a

= [(0 · (e · (e\(0\b))))/0] · a

= [((e · e) · (e · (e\(0\b))))/0] · a

= [(((e\(0\b)) · e) · 0)/0] · a (P1)

= [(e\(0\b)) · e] · a

= [(e\(0\b)) · e] · [(a/e) · e]

= 0 · [(a/e) · (e\(0\b))] (P1)

= 0 · (a+ (0\b)) .
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As a final lemma, we have the following:

Lemma 5.26. In this setting and for every x, y ∈ Q, the following identity holds: 0 ·

(φ(x) + y) = ψ(x) · y.

Proof. Notice first that

((e\φ(x)) · e) · 0 = 0 · (e · (e\φ(x))) (P2)

= 0 · φ(x)

= 0 · ((e · x) +−(e · 0))

= 0 · (−(e · 0) + (e · x))

= 0 · [(−(e · 0)/e) · (e\(e · x))]

= 0 · [(−(e · 0)/e) · x]

= (x · e) · ((−(e · 0)/e) · e) (P1)

= (x · e) · (−(e · 0))

= (x · e) · (0 +−(e · 0))

= (x · e) · φ(e)

= (x · e) · (e · (e\φ(e)))

= ((e\φ(e)) · e) · (e · x) . (P3)

Now 0 = x + −x holds if and only if 0 = (x/e) · (e\ − x), which is true if and only if

(x/e)\0 = e\ − x. Moreover, 0 · x = (e · e) · (y · (y\x)) = ((y\x) · e) · (y · e) by (P1).

Thus, (0 · x)/(y · e) = (y\x) · e. These together give us that (e\− x) · e = ((x/e)\0) · e =
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(0 · 0)/((x/e) · e) = (0 · 0)/x. So

(e\ − x) · e = (0 · 0)/x. (5.13)

Moreover, we have that (x · 0)/− φ(e) = ((0 · (0\x)) · (e · e))/(e · 0) = ((e · (0\x)) · (e ·

0))/(e · 0) = e · (0\x). Thus, for any x,

(x · 0)/− φ(e) = e · (0\x). (5.14)

By the above arguments, we have

((e\φ(x)) · e) · 0 = ((e\φ(e)) · e) · (e · x)

= ((0 · 0)/− φ(e)) · (e · x) (5.13)

= (e · (0\0)) · (e · x) (5.14)

= (x · (0\0)) · 0 (P2)

= ψ(x) · 0. 5.23

Thus,

(e\φ(x)) · e = ψ(x). (5.15)

Now,

ψ(x) · y = ((e\φ(x)) · e) · y (5.15)

= ((e\φ(x)) · e) · ((y/e) · e)

= (e · e) · ((y/e) · (e\φ(x))) (P1)

= 0 · (y + φ(x))
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= 0 · (φ(x) + y).

We are now equipped to finish the proof of the claim that φ2 = ψ2. Let x ∈ Q, then:

ψ(ψ(x)) = ψ(x · (0\0)) 5.23

= (x · (0\0)) · (0\0) 5.23

= 0 · (φ(x) + (0\0)) 5.26

= (0\0) · φ(x) 5.25

= φ(φ(x)). 5.24

This concludes the proof for the sufficiency of Theorem 5.5, and next we will show the

necessity.

(⇐) First note that since (Q,+) is a commutative Moufang loop and ψφ−1 is a nuclear

mapping, we have the following:

(ψφ−1(a) + a) + (b+ c) = ((a+ ψφ−1(a)) + (−a+ a)) + (b+ c)

= ((a+ (ψφ−1(a) +−a)) + a) + (b+ c) CML

= ((a+ (−a+ ψφ−1(a))) + a) + (b+ c)

= (((−a+ ψφ−1(a)) + a) + a) + (b+ c)

= ((−a+ ψφ−1(a)) + (a+ a)) + (b+ c) ψφ−1 nuclear

= ((a+ a) + (−a+ ψφ−1(a))) + (b+ c)

= (a+ a) + ((−a+ ψφ−1(a)) + (b+ c)) ψφ−1 nuclear

= (a+ a) + (((−a+ ψφ−1(a)) + b) + c) ψφ−1 nuclear

= a+ (a+ (((−a+ ψφ−1(a)) + b) + c)) Moufang
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= a+ ((((−a+ ψφ−1(a)) + b) + c) + a)

= (a+ ((−a+ ψφ−1(a)) + b)) + (c+ a) Moufang

= ((a+ (−a+ ψφ−1(a))) + b) + (c+ a) ψφ−1 nuclear

= (ψφ−1(a) + b) + (c+ a) Inverse property

Thus, ψφ−1 satisfies (A1).

Now, using that a · b = (ψ(a) + φ(b)) + g, φ and ψ are automorphisms of (Q,+),

(Q,+) is a commutative Moufang loop, ψ2 = φ2, and ψφ−1 satisfies (A1) in (Q,+), we

have the following for every a, b, c ∈ Q:

aa · bc = ((ψ(a) + φ(a)) + g) · ((ψ(b) + φ(c)) + g)

= (ψ((ψ(a) + φ(a)) + g) + φ((ψ(b) + φ(c)) + g)) + g

= (((ψ2(a) + ψφ(a)) + ψ(g)) + ((φψ(b) + φ2(c)) + φ(g))) + g

Since φ, ψ ∈ Aut(Q,+).

= (((ψ2(a) + ψφ(a)) + ψφ−1φ(g)) + ((φψ(b) + φ2(c)) + φ(g))) + g

= (((ψ2(a) + ψφ(a)) + (φψ(b) + φ2(c))) + (ψφ−1φ(g) + φ(g))) + g

Since (Q,+) is commutative and by (A1).

= (((φ2(a) + ψφ(a)) + (φψ(b) + φ2(c))) + (ψφ−1φ(g) + φ(g))) + g

Since φ2 = ψ2.

= (((φ2(a) + ψφ−1φ2(a)) + (φψ(b) + φ2(c))) + (ψφ−1φ(g) + φ(g))) + g

= (((φ2(c) + ψφ−1φ2(a)) + (φψ(b) + φ2(a))) + (ψφ−1φ(g) + φ(g))) + g

Since (Q,+) is commutative and by (A1).

= (((φ2(c) + ψφ(a)) + ψφ−1φ(g)) + ((φψ(b) + φ2(a)) + φ(g))) + g

Again, since (Q,+) is commutative and by (A1).
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= (((ψ2(c) + ψφ(a)) + ψ(g)) + ((φψ(b) + φ2(a)) + φ(g))) + g

Since φ2 = ψ2.

= (ψ((ψ(c) + φ(a)) + g) + φ((ψ(b) + φ(a)) + g)) + g

Since φ, ψ ∈ Aut(Q,+).

= ((ψ(c) + φ(a)) + g) · ((ψ(b) + φ(a)) + g)

= ca · ba.

Similarly, we can show ab·cc = cb·ca, thus (Q, ·) is a semiparamedial quasigroup.
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Appendix A. GAP Code

The following is the GAP code used to construct quaternionic automorphic loops. The

function takes as its input a number n such that n = 2k and an automorphism a of Z2k−1 ,

where a is an invertible element of the ring with order 2. As discussed in Chapter 4, there

are only three for any given 2k: −1, 2k−2−1, and 2k−2+1. Then the code returns the quater-

nionic automorphic loop of order n = 2k constructed on Z2k−1 × Z4 with multiplication

given by (i, u)(j, v) = (auv(i+ (−1)uv), v + v). This code requires the RightQuasigroups

package developed by Gábor P. Nagy and Petr Vojtěchovský [32].

QuaternionAutomorphicLoop := function( n, a )

local m, el, ct, r, s, i, j, u, v, k, w, q;

if IsOddInt(n) or not IsPrimePowerInt(n) then

Error("The order must be a power of 2.");

fi;

m:=n/2;

el := Cartesian([0..(m-1)], [0..3]); \# |q|=4m=2n

ct := List([1..2*n],r-> List([1..2*n],s-> []));

for r in [1..2*n] do

for s in [1..2*n] do

i:=el[r][1]; j:=el[s][1];

u:=el[r][2]; v:=el[s][2];

k := ((i + (-1)\ˆ{}u * j)*(a\ˆ{}(u*v))) mod m;

w := (u + v) mod 4;

ct[r][s] := [k,w];

od;

od;
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q := LoopByCayleyTable(ct);

return FactorLoop(q,Subloop(q,[[m/2,2]]));

end;
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