
Andrews University Andrews University 

Digital Commons @ Andrews University Digital Commons @ Andrews University 

Master's Theses Graduate Research 

2022 

A Comparison of IMPA2 & ISYNA1 Gene Expression and A Comparison of IMPA2 & ISYNA1 Gene Expression and 

Intracelular Myo-Inositol Levels in Bipolar and Non-bipolar Intracelular Myo-Inositol Levels in Bipolar and Non-bipolar 

Disorder Derived Human Lymphoblasts Disorder Derived Human Lymphoblasts 

Christina Rosette 
rosette@andrews.edu 

Follow this and additional works at: https://digitalcommons.andrews.edu/theses 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Rosette, Christina, "A Comparison of IMPA2 & ISYNA1 Gene Expression and Intracelular Myo-Inositol 
Levels in Bipolar and Non-bipolar Disorder Derived Human Lymphoblasts" (2022). Master's Theses. 200. 
https://digitalcommons.andrews.edu/theses/200 

This Thesis is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews 
University. It has been accepted for inclusion in Master's Theses by an authorized administrator of Digital 
Commons @ Andrews University. For more information, please contact repository@andrews.edu. 

https://digitalcommons.andrews.edu/
https://digitalcommons.andrews.edu/theses
https://digitalcommons.andrews.edu/graduate
https://digitalcommons.andrews.edu/theses?utm_source=digitalcommons.andrews.edu%2Ftheses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.andrews.edu%2Ftheses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.andrews.edu/theses/200?utm_source=digitalcommons.andrews.edu%2Ftheses%2F200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@andrews.edu


 
 

 

 

 

 

 

 

 

ABSTRACT 

 

 

A COMPARISON OF IMPA2 & ISYNA1 GENE 

EXPRESSION AND INTRACELLULAR MYO-

INOSITOL LEVELS IN BIPOLAR AND NON-BIPOLAR 

DISORDER DERIVED HUMAN LYMPHOBLASTS 

 

 

 

 

 

By 

CHRISTINA ROSETTE 

 

Chair: Marlene Murray, Ph.D. 

  



 
 

 

 

 

 

ABSTRACT OF GRADUATE STUDENT RESEARCH  

THESIS 

 

 

Andrews University 

 

College of Arts and Sciences 

 

 

 

Title: A COMPARISON OF IMPA2 & ISYNA1 GENE EXPRESSION 

AND INTRACELLULAR MYO-INOSITOL LEVELS IN BIPOLAR 

AND NON-BIPOLAR DISORDER DERIVED HUMAN 

LYMPHOBLASTS 
 

Name of Researcher: Christina Rosette 

 

Name and Degree of Faculty Chair: Marlene Murray, Ph.D. 

 

Date Completed: June 2022 

 

The thesis objective was to determine if myo-inositol concentration levels and the gene 

expression of IMPA2 & ISYNA1 differ among bipolar disorder types 1 and 2 compared to healthy 

controls (non-bipolar disorder). Previous studies have correlated different myo-inositol 

concentration levels with specific phases of bipolar and pharmaceutical treatments. Two genes, 

inositol monophosphatase 2 (IMPA2) and inositol-3-phosphate synthase 1 (ISYNA1), involved in 

de novo myo-inositol biosynthesis have been implicated in the pathophysiology of bipolar. In this 

study, differences in myo-inositol concentration and IMPA2 & ISYNA1 gene expression in 

lymphoblasts derived from subjects with bipolar types 1, 2, and healthy control were measured 

spectrophotometrically and by RT-qPCR respectively. Myo-inositol concentration assay results 

showed statistically significant differences in myo-inositol concentration in bipolar type 1 

compared to type 2 and non-bipolar disorder. The relative gene expression of IMPA2 was twofold 

higher in both types of bipolar compared to healthy controls. The relative gene expression of 

ISYNA1 was 0.47-fold higher in bipolar 1; and 0.76-fold higher in bipolar 2 compared to healthy 

control. This study found both ISYNA1 and IMPA2 expressed relatively higher in bipolar compared 

to non-bipolar; and bipolar type 1 had significantly higher concentrations of myo-inositol compared 

to type 2 and non-bipolar disorder.  
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CHAPTER 1:  INTRODUCTION 

 

 
Characterized by a high-energy manic phase and a low-energy depressive phase, bipolar 

disorder affects more than 45 million people globally. Bipolar is a complex multigenic disorder 

with an etiology that is still being defined (Ghadiri et al., 2016). For example, pharmaceutical 

therapies primarily used to treat bipolar are still being elucidated (Coyle and Duman, 2003). In 

theory, according to the myo-inositol depletion hypothesis, these drugs appear to work in part by 

decreasing the myo-inositol levels of the phosphatidyl-inositol (PI) signaling pathway (Harwood, 

2004). This suggests individuals with bipolar may have higher concentrations of myo-inositol 

compared to a healthy neurotypical (or non-bipolar disorder). One possible reason for the increase 

in available myo-inositol could be the expression of mRNA for enzymes responsible for myo-

inositol synthesis are upregulated in individuals with bipolar. 

  

Shedding additional light on underlying genetic factors predisposing people to develop 

bipolar disorder may provide novel therapeutic targets. Current therapies have a range of efficacy, 

each laden with a variety of negative side effects such as nausea, diarrhea, excessive urination, 

cognitive impairment, and tremors (Stoll et al., 1999, Coyle and Duman, 2003). These may include 

Lithium, Valproate, and/or Carbamazepine, which are consistently used in the clinical setting, 

although their modes of action remain unclear. For that matter, details of bipolar pathophysiology 

itself are uncertain. Further study on bipolar-associated genes may provide a deeper understanding 

of bipolar pathophysiology and perhaps lead to the development of novel therapies with fewer 

negative side effects.   

 

Bipolar is “a ‘cyclic’ or ‘periodic’ illness, with patients cycling ‘up’ into a manic or mixed-

manic episode, then returning to normal, and cycling ‘down’ into a depressive episode from which 
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they likewise eventually more or less recover” (Association, 2000). Bipolar is characterized by 

extremes. For example, in her book “An Unquiet Mind: A Memoir of Moods & Madness,” Kay 

Redfield Jamison, Professor of Psychiatry at Johns Hopkins University School of Medicine, 

described her experience with bipolar:  

“When you’re high it’s tremendous. The ideas and feelings are fast and 

frequent like shooting stars, and you follow them until you find better and 

brighter ones. Shyness goes, the right words and gestures are suddenly there, 

the power to captivate others a felt certainty…Feelings of ease, intensity, 

power, well-being, financial omnipotence, and euphoria pervade one’s 

marrow. But, somewhere, this changes. The fast ideas are far too fast, and 

there are far too many; overwhelming confusion replaces clarity. Memory 

goes. Humor and absorption on friends’ faces are replaced by fear and 

concern. Everything previously moving with the grain is now against – you 

are irritable, angry, frightened, uncontrollable, and enmeshed totally in the 

blackest caves of the mind” – pg. 67 (Jamison 1995).  

 

While the manic phase may last several days or a couple of weeks, the depressive phase 

may last a few weeks or several months. A person may also experience going through rapid cycles 

of mania and depression. There are primarily three types of bipolar disorder: type 1, type 2, and 

cyclothymia (or cyclothymic disorder).  Type 1 is characterized by a manic phase lasting for at 

least seven days (or severe enough to warrant a hospital admittance) along with a depressive 

episode lasting at least two weeks. Individuals with type 2 experience fewer extreme symptoms of 

mania (hypomania) and longer depressive episodes. Individuals with cyclothymia cycle through 

phases of hypomania and depression that are not as severe as type 1 and 2 (Goodwin and Jamison, 

2007).  

The symptoms associated with the highs (mania or hypomania) and lows (depression) of 

bipolar are evidence of changes in emotion regulation. These include learning, memory, cognitive 

control processes, executive function, and behavior. Previous studies have observed various 

abnormalities in volume, metabolism, and number of oligodendrocytes in between the prefrontal 
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cortex and limbic system of individuals with bipolar disorder (Mahon et al., 2010). Such differences 

have been observed  specifically in the orbitofrontal cortex, dorsomedial prefrontal cortex, anterior 

cingulate cortex, and ventrolateral prefrontal cortex (Phillips et al., 2008). Similar differences have 

been found in regions within the limbic system including the limbic cortex, cingulate gyrus, 

striatum, parahippocampal gyrus, dentate gyrus, hippocampus, subicular complex, amygdala and 

hypothalamus ((Phillips et al., 2008, Mahon et al., 2010). These areas of the prefrontal cortex and 

limbic system work together in regulating emotions, making decisions, and cognitive processes 

through tracts of white matter connecting them. 

 

A. Bipolar Disorder Pathophysiology  

 

Previous studies have found damaged superficial white matter tracts connecting various 

parts of the prefrontal cortex with centers of the limbic system processing emotion in patients with 

bipolar disorder (Versace et al., 2008, Zhang et al., 2018) (Rajmohan and Mohandas, 2007). Such 

damage can be caused by modulations to intracellular communications in oligodendrocytes and/or 

neurons that make up these superficial white matter tracts. For example, the higher myo-inositol 

concentration the myo-inositol depletion hypothesis suggests changes in the phosphatidylinositol 

biphosphate signaling pathway (PIP2) pathway may damage these superficial white matter tracks. 

The affected communication between these specific parts of the brain leads to disruptions in 

emotional regulation, executive functions, self-control, memory formation, etc. (Cendra et al., 

2013).  

Substantial evidence of structural differences including atrophy within the frontal lobe and 

increased incidence of signal hyperintensities on diffusion-weighted magnetic resonance imaging 

(MRI) in white matter tracks connecting the frontal lobe with the limbic system were found to be 
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more common in the brain of unipolar and bipolar depressed patients (Videbech, 1997). White 

matter lesions or damaged white matter appear as signal hyperintensities on MRI images. Damaged 

white matter can be detected using diffusion-weighted MRI, which uses fractional anisotropy to 

measure the restriction of diffusion of water molecules (Zhang et al., 2018).  A fractional anisotropy 

value of 0 indicates unrestricted diffusion of water molecules in all directions and a value of 1 

signals diffusion occurs along one axis and is fully restricted along other directions. This allows 

scientists to distinguish axons from surrounding tissue. Water molecules with fractional anisotropy 

values closer to 1 indicate regions where water is confined within cell membranes and can only 

diffuse along one axis. Within the brain, this occurs in axons. Whereas an area of water molecules 

with a fractional anisotropy value closer to 0 is not restricted by cell membranes.  These reduced 

fractional anisotropy values have been associated with cerebrospinal fluid, local edema, changes in 

axonal morphologic structure and compromised myelin structure (Versace et al., 2008). One bipolar 

disorder study comparing the fractional anisotropy of white matter tracks connecting the prefrontal 

cortex and limbic system, found subjects with bipolar had aberrant fractional anisotropy, a 

significant negative correlation between age and fractional anisotropy, along with a significant 

negative correlation between medication load and fractional anisotropy (Versace et al., 2008). 

Another study found reduced fractional anisotropy in the superficial white matter in the bipolar 

patients compared to the healthy controls in various areas of the prefrontal cortex (Zhang et al., 

2018). 

One of the causes of reduced fractional anisotropy is aberrant myelin sheaths – a type of 

white matter damage (Phillips et al., 2008). The myelin sheaths of oligodendrocytes are the defining 

feature of white matter.  By wrapping axons that connect neurons between regions of the prefrontal 

cortex and limbic system, oligodendrocytes provide protection from the surrounding extracellular 

environment. They also increase the speed of action potentials traveling down the axon by forcing 

the signal to “jump” between each myelin sheath. Damage to myelin sheaths of oligodendrocytes 
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can expose the axon, cause localized inflammation, and interfere with signal transduction down the 

axon. The evidence presented by the fractional anisotropy studies points to abnormal myelin 

sheaths (Phillips et al., 2008).  Damaged myelin sheaths are the hallmark of multiple sclerosis, but 

are associated with brain cancers, spinal injury, major depressive disorder, and bipolar disorder 

(Mahon et al., 2010).  

Glial reduction, signs of apoptosis, increased inflammation, decreased numerical density 

of grey matter, oligodendrocyte abnormalities, myelin pallor in the prefrontal cortex, anterior 

cingulate cortex and deep white matter have been associated with bipolar disorder (Mahon et al., 

2010). One study found statistically significant lower myelin staining in major depressive disorder 

and bipolar depression compared to healthy control (Regenold et al., 2007).  Disruptions to the 

cytoarchitecture of oligodendrocytes and neurons cause a fundamental alteration in cell resiliency 

and plasticity in these regions involved in emotion generation and regulation. 

These previous studies support a hypothesis that oligodendrocyte myelin and neural axon 

cell damage localized to white matter connections between cognitive and emotional areas of the 

brain may be correlated with bipolar disorder (Mahon et al., 2010). The myo-inositol depletion 

hypothesis connects observations made on the modes of action of various bipolar therapies with 

observed anatomical differences in bipolar patients. Previous studies also reported observable 

differences in myo-inositol concentrations in the frontal lobes of people with bipolar, suicide 

victims and Major Depressive Disorder (Shimon et al., 1997).  As myo-inositol is a precursor for 

the PIP2 pathway, it provides a possible explanation (or at least a contributing factor) to the 

observed white matter lesions within the brain of individuals with bipolar. 

 

i. Cellular-neurology pathophysiology  
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The PIP2 cascade, in concert with other protein pathways, regulates cytoskeletal 

construction, Ca2+cytosol levels, cell membrane integrity, apoptosis, ATP production, etc. 

Alterations of the PIP2 cascade likely contribute to drastic changes in cell growth, morphology, 

function, and survival, as the cascade is integral to so many vital cell functions. If this occurs in 

developing neurons, it can stunt the progress of axon growth cones as neurons search for new 

synaptic connections. To that end, one study found lithium, VPA and carbamazepine blocked the 

collapse of sensory neuron growth cones and expanded the growth cone area. These effects were 

reversed when myo-inositol was added to the medium (Ohnishi et al., 2007a). 

While alterations to the PIP2 pathway are more likely to affect a neuron while it is growing 

than a mature neuron, the story is different for oligodendrocytes. A PIP2 cascade glitch could cause 

any number of problems during the lifecycle of the oligodendrocyte, because of its involvement in 

cytoskeletal construction and influence on mitochondria (Streck et al., 2014). The function of 

oligodendrocytes is wrapped up in their ability to maintain healthy myelin sheaths (Regenold et al., 

2007). If the myelin sheath degrades, signal propagation down the axon is directly affected (Mahon 

et al., 2010). The signal may take longer, get disconnected by the immune system's inflammatory 

response to myelin degradation, or be confused because areas along the axon are exposed to 

neurotransmitters in the surrounding extracellular matrix due to myelin degradation. By a wide 

range of means, the signal is affected (Zhang et al., 2018).  

 

ii. PIP2 pathway 

 

Malfunctions of the PIP2 pathway, vital to maintaining a healthy cell, can contribute to the 

development of white matter tract lesions between the cognitive and emotional centers of the brain. 
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The PIP2 cascade is activated by G protein-coupled receptor (GPCR) that need to translate an 

extracellular signal to an intracellular signal.  

 

Figure 1. The PIP2 Cascade: Activated by certain GPCR receptors, the PIP2 Cascade begins when PLC cleaves PIP2 

producing IP3 and DAG. IP3 signals the release of Calcium ions from the ER. DAG activates PKC. These second 

messengers regulate cytoskeletal construction, cytosol levels of Ca2+, cell membrane integrity, apoptosis, etc.(the myo-

inositol synthetic pathway is pictured on the left) (made with biorender.com) 

 

When a GPCR linked to the phosphatidylinositol (PIP2) system is activated by the 

appropriate ligand the alpha subunit (alpha q) dissociates from the GPCR complex and activates 

phospholipase C (PLC) which in turn hydrolyses phosphatidylinositol into inositol-1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG). IP3 activates IP3 receptors in the endoplasmic 

reticulum membrane releasing Ca2+ into the cytosol from the endoplasmic reticulum.  

Released Ca2+from the endoplasmic reticulum is a 2nd messenger participating in several 

pathways as well.  Ca2+ ions can activate caspase-mediated apoptosis, activate Ca2+ dependent 

proteins, and increase mitochondria membrane permeability. Consequently, releasing reactive 

oxygen species, reducing mitochondrial ATP synthesis, modulating cytoskeletal construction 

and/or cell membrane integrity. Increased intracellular Ca2+ has been described in bipolar disorder 
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(Machado-Vieira et al., 2009). Treatment with Li+ increases Bcl-2, a neuroprotective protein that 

downregulates endoplasmic reticulum calcium release (Machado-Vieira et al., 2009). 

DAG activates protein kinase C (PKC) enzymes (Bronson and Konradi, 2010). PKC enzymes 

are kinases which phosphorylate other proteins, and therefore are integral to several intracellular 

pathways. PKC family enzymes modulate neuronal development, excitability, death, and 

consequently learning and memory. This is because PKC enzymes are involved in most neuronal 

processes such as neurotransmitter release and uptake, cytoskeletal construction, cell membrane 

integrity, regulating gene expression, and receptor and ion channel function (Bronson and Konradi, 

2010).  

B. Myo-inositol Depletion Hypothesis  
 

 

The availability of the PIP2 precursor, myo-inositol, influences how active the PIP2 pathway 

can be. Several studies have begun to create a picture of the PIP2 pathway’s role in maintaining cell 

homeostasis . Previous studies have provided evidence to support that Lithium and VPA can affect 

how much myo-inositol is available to the cell (Ohnishi et al., 2007a, Dixon and Hokin, 1997, Coyle 

and Duman, 2003). According to the myo-inositol depletion hypothesis, Lithium and VPA 

depletion of intracellular myo-inositol reduces symptoms of mania (Harwood, 2004).  

Previous studies have supported the myo-inositol depletion hypothesis in that the amount 

of available myo-inositol may be correlated with symptoms and treatment of bipolar disorder 

(Chengappa et al., 2000). In an animal model study, treatment with Lithium lowered intracellular 

myo-inositol concentration by 30% in rat cerebral cortex (Harwood, 2004). The preferred therapies, 

Lithium and VPA reduce symptoms of the manic phase, and lower intracellular myo-inositol levels. 

(Machado-Vieira et al., 2009); (Coyle and Duman, 2003). 
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i. Myo-inositol Biosynthesis 

 

Myo-inositol is a precursor of the membrane phospholipid, phosphatidylinositol (PI), and 

its phosphorylated derivatives phosphatidylinositol phosphates (PIP) (Ohnishi et al., 2007a). The 

cell has 3 sources of myo-inositol: it can snag some floating by in the extracellular space, it can 

synthesize some de novo from glucose-6-phosphate, or it can recycle the 2nd messenger IP3 back 

into myo-inositol (Figure 2).  

 

Figure 2: Sources of Myo-inositol: The cell has three sources of myo-inositol: De novo synthesis, recycling from IP3, 

and extracellular capture. The Enzyme MIPs (ISYNA1) converts Glucose-6-phosphate to InsP1, beginning de novo 

synthesis. The Enzyme IMPase2 (IMPA2) begins the conversion of  new and recycled InsP1 to myo-inositol. (made with 

biorender.com) 

 

The de novo synthesis of myo-inositol begins as the enzyme myo-inositol 1-Phosphate 

Synthase (MIPS) converts glucose-6-phosphate to myo-inositol 1 phosphate (InsP1) (Stoll et al., 

1999). The cell can also recycle the 2nd messenger inositol (1,4,5) triphosphate (IP3) back into 
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InsP1. The enzymes myo-inositol monophosphatase 1 & 2  (IMPase1 & IMPase2) then catalyze 

the dephosphorylation of InsP1 to myo-inositol (Coyle and Duman, 2003) (Figure 2).  

Out of the genes involved in the synthesis of myo-inositol, the genes coding for MIPs 

(ISYNA1) and IMPase2 (IMPA2) were selected for this study (Coyle and Duman, 2003, Stoll et al., 

1999). Previous studies provide evidence Lithium and VPA interact with these proteins. The 

resulting changing concentrations of myo-inositol may correlate with observed differences: include 

single nucleotide polymorphisms, location within a bipolar susceptibility locus on chromosome 18, 

in each gene  (Dimitrova et al., 2005); (Agam et al., 2009). There may be genetic variation in these 

genes in people with bipolar disorder.  

The homolog to ISYNA1 in yeast (INO1) is commonly used to study the function of 

ISYNA1.  The transcription of INO1 is regulated by extracellular myo-inositol levels, when levels 

are high transcription of INO1 is repressed (Yu et al., 2017).  In one study using yeast as a model 

organism, human MIPs (isolated from post-mortem brain tissue) synthesis activity was reduced 

by 35%, while intracellular myo-inositol concentration was reduced by 25% in cells grown in 

therapeutically relevant concentrations of VPA (0.6mM) (Ju et al., 2004). MIPs requires a metal 

ion, typically Mg2+, as a coenzyme. Lithium noncompetitively inhibits the activity of MIPS by 

displacing Mg2+ (York et al., 1995).   

Two single nucleotide polymorphisms  (SNP) in the IMPA2 promoter sequence were found 

preferentially transmitted to affected offspring (Sjøholt et al., 2000). One study correlated specific 

IMPA2 SNPs unique to better Lithium treatment responders than non-responders, even though there 

was not a significant difference specific to bipolar disorder(Dimitrova et al., 2005). One study 

tested specific SNPs of IMPA2 in individuals with bipolar disorder and found the patients who had 

the SNPs benefited more from Lithium treatment than other bipolar individuals(Sjøholt et al., 

2000). Lithium proposed mechanism of action is noncompetitive inhibition of the enzyme IMPase 

which recycles myo-inositol (Coyle and Duman, 2003); (Machado-Vieira et al., 2009). Lithium 
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inhibits IMPase under therapeutic concentrations (~1 mM) (Ohnishi et al., 2007a).  IMPA2 is 

located within a susceptibility locus for bipolar on chromosome 18p11.2 (Dimitrova et al., 2005).  

MIPs and IMPase2 are of interest because not only do they make myo-inositol, but they also interact 

with Lithium and VPA. Even more interesting is how each interacts because each gene seems to 

act differently with each drug. This suggests that genetic mutations in ISYNA1 & IMPA2 may be 

contributing subtly to the development of bipolar and may also influence the efficacy of VPA 

treatments.  

The hypothesis of this study was bipolar patients express IMPA2 & ISYNA1 differently and 

have different myo-inositol concentration levels as compared to neurotypical. This study did not 

take into consideration possible causes for differences in gene expression and myo-inositol. The 

difference between cyclothymia and the other two types of bipolar disorder is the shorter cycles 

and was not evaluated in this study. This study aims to provide evidence of existing differences, 

correlated with bipolar disorder types one and two, worth studying in more detail to better 

understand the pathophysiology of bipolar.   
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CHAPTER 2:  METHODS 

A.   Cell Culture 

This study was conducted using three immortalized lymphoblasts cell lines (LCLs) 

obtained from the National Institute of General Medical Sciences (NIGMS) Human Genetic Cell 

Repository at the Coriell Institute for Medical Research. These included bipolar 1 cells (GM07263), 

bipolar 2 cells (GM05236, later replaced by GM04952) and cells from an individual not diagnosed 

with bipolar (GM06138).   

Each of the three lymphoblast cell lines were maintained according to NIGMS guidelines. 

Cell lines were incubated at 37° C and 5% CO2, suspended in 10 – 20ml of growth media. The 

RPMI 1640 growth media was supplemented with 1% pen-strep, 1% Glutamax, and 15% FBS. 

During each passage, cell culture flasks were inspected visually for contamination and cell viability 

densities were calculated via a hemocytometer. Each hemocytometer count was prepared as 

follows: 10ul of cell culture was diluted with 10ul Trypan Blue.  

Cell flasks were passaged every two to five days to maintain a live cell concentration 

between 200,000 viable cells/ml - and 500,000 viable cells/ml. non-viable cell densities were not 

considered in downstream cell density calculations. Cells were stored long-term in liquid nitrogen. 

To prepare cells for storage, 5,000,000 live cells were pelleted via centrifugation at 100 xg for 10 

minutes at 4-10°C, resuspended in freezing media (RPMI 1640, 30% FBS, 5% DMSO), then frozen 

overnight in an isopropanol bath before being transferred to long-term storage.   
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B.  Myo-inositol Concentration Assay  

 

Quantifying differences in myo-inositol concentration between the bipolar type 1, type 2, 

and non-bipolar cell lines was another aim of this study. To that end, an initial attempt to measure 

intracellular myo-inositol concentration was conducted using the PicoProbe fluorometric assay. 

This approach was eventually replaced by the more cost-effective and efficient spectrophotometric 

assay by Megazyme.   

 

i. Fluorometric Assay 

 

This assay indirectly quantifies the amount of myo-inositol by measuring a fluorescent 

product resulting from a two-step reaction. The myo-inositol concentration in each reaction is 

then determined from a myo-inositol concentration standard curve.   

 

The standard curve was generated using varying concentrations from 0-500pmol: 0, 100, 

200, 300, 400, and 500pmol of myo-inositol. The assay was conducted in duplicates using 96 well 

plates.  Since the concentration of myo-inositol in each sample is determined from the myo-inositol 

standard curve, before conducting sample trials, the myo-inositol standard curve first needed to be 

generated. To each well was added: 50µl of a specific concentration of myo-inositol (diluted in 

assay buffer), 43µl kit assay buffer, 2µl kit enzyme mix, 2µl kit developer, 3µl and PicoProbe™ 

(in DMSO). After a 30-minute incubation at 37°C, the plate is loaded into the spectrofluorometer 



14 
 

and the fluorescence within each well of the plate was measured at Excitation = 535 nm and 

Emission = 545/650 nm; with a 10nm excitation slit and 5nm emission slit; using Cary Eclipse 

software and spectrofluorometer. To generate the standard curve, the 0 myo-inositol reading is 

subtracted from each myo-inositol standard reading. The corrected RFU (relative fluorescence unit) 

(isolated sample reading) is then applied to the myo-inositol standard curve to get nmol myo-inositol 

in the well.  The range of emissions was expanded to include more wavelengths of light. This was 

done to document at what wavelength the fluorescent signal was strongest. Fluorescent signals 

were reported at 587nm.  

 

ii. Spectrophotometry 

 

The myo-inositol enzyme assay, Megazyme, was more efficient than the PicoProbe 

fluorometric assay and therefore was used to generate the reported sample myo-inositol data. The 

myo-inositol enzyme assay is based on two enzyme-facilitated reactions. Myo-inositol 

dehydrogenase oxidizes myo-inositol using the enzyme cofactor NAD+ producing 2,4,6/3,5-

pentahydroxycyclohexanone, NADH , and H+.  In the second reaction, catalyzed by diaphorase, 

NADH reduces iodonitrotetrazolium chloride (INT) to an INT-formazan product. The amount of 

INT-formazan, determined by the increase of absorbance at 492nm, is stoichiometric with the 

amount of myo-inositol.  
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The samples were derived from homogenized cell pellets normalized by weight. For two 

of the three replicates 14ml cell culture was collected from each cell line. For one of the three 

replicates, 10ml cell culture was collected from each cell line. Cells from each cell line were spun 

at the highest speed in 50mL tubes for 15 minutes at ambient temperature. The supernatant was 

disposed of and 5mL distilled water was added to each cell pellet. After rinsing the cells via vortex, 

the cells were spun a second time at the highest speed for 15 minutes at ambient temperature. 

Without disturbing the pellet, the supernatant was discarded, and each cell pellet was weighed.  Cell 

sample concentrations were normalized by weight. To determine the cell pellet weight, the weight 

of the empty 50mL tube was subtracted from the total weight of the cell pellet in the tube. Cell 

pellets were used immediately downstream or were stored at -20°C. Cell extracts were prepared by 

resuspending each cell pellet with 5mL distilled water. Each resuspended pellet was mixed by 

vortex. Each cell sample was then sonicated to lyse the cells. Then 1mL of the lysed homogenized 

cell sample was centrifuged at 13,000g for three minutes. 100µl of the extract was used per reaction.  

To prepare the time-sensitive assay, the reactants for each reaction were prepared in 

disposable 1 cm light path cuvettes. Each assay had a blank cuvette prepared along with the various 

sample cuvettes. Each cell line was represented by one sample reaction cuvette. Each cuvette 

received 500µl distilled water, 100µl pH7.4 kit buffer, 20µl hexokinase (which removes any 

glucose present), 100µl sample, and 100µl reconstituted ATP. Each cuvette was covered with 

parafilm, mixed gently, and allowed to incubate at ambient temperature for 15 minutes. The blank 

cuvette contained no cell extract.  
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Figure 3. Spectrophotometric Assay Layout: A negative and positive control cuvette were measured alongside the 

myo-inositol assay reaction cuvettes. (n=3) The formazan color shift in the reaction cuvettes before and after 

absorbance readings is visible to the naked eye.  

 

After incubating at ambient temperature for 15 minutes, each cuvette received 1ml pH 9.5 

kit buffer, 20µl diaphorase suspension, and 500µl (light-sensitive) kit NAD+/INT. Each cuvette 

was mixed gently, protected from light until reading, and the absorbance (A1) was recorded at 492 

nm after approximately three minutes. After recording the absorbance (A1) of every cuvette, 20µl 

myo-inositol dehydrogenase suspension was added to each cuvette to start the reaction. After gently 

mixing each cuvette, the cuvettes were protected from light and incubated for about 15 minutes at 

ambient temperature. The absorbance (A2) was recorded for each cuvette in the same order as 

before. The recorded absorbance values and weight of the cell pellet for each cell line were used to 

calculate the concentration of myo-inositol in each sample.   

The amount of INT-formazan, determined by the increase of absorbance at 492nm, is 

stoichiometric with the amount of myo-inositol. The increase in INT-formazan absorbance (ΔA) 

was calculated by subtracting (A1) from (A2) for each cuvette.  The ΔA of myo-inositol was found 

by subtracting the blank ΔA from the sample ΔA. The ΔA of myo-inositol was then used to 

calculate the concentration of myo-inositol.  



17 
 

 

 

Once the concentration of myo-inositol in each sample cuvette was determined using the 

equations provided by Megazyme, it was used to find the content of myo-inositol in each sample. 

The concentration of myo-inositol was normalized by weight using the content of myo-inositol 

formula: The content of myo-inositol (mg myo-inositiol/g total cells) was calculated by dividing 

myo-inositol concentration by total cells weight, using the following formula: 
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C. Gene Expression Assay  
 

i. mRNA Extraction & Quantification 

 

The RNA in each sample pellet was extracted using Bio-Rad’s Aurum Total RNA Mini 

Kit.  To prepare cell samples, 2 million live cells from each cell line were pelleted by centrifugation 

at 12,5000g at ambient temperature for two minutes to collect cells from multiple cell culture flasks. 

The cell pellet was centrifuged twice. The supernatant was discarded, and the pellet was 

resuspended in 250 µl PBS and was either stored in the freezer at -20°C or used immediately for 

RNA extraction. According to the Bio-Rad Total RNA min Kit Spin Protocol, each subsequent 

centrifugation was done at 12,500g at ambient temperature. The sample pellets were centrifuged, 

and the supernatant discarded. The cells were lysed and homogenized with 350µl lysis 

(supplemented with 1% guanidine thiocyanate in β-mercaptoethanol) solution. 70% ethanol was 

added to the cell lysate and the cell lysate was filtered through an RNA binding column by 

centrifugation for one minute. The filtrate was discarded, and the column washed with 700µl low 

stringency wash via centrifuging for one minute. To remove genomic DNA, the column was 

incubated at ambient temperature with 80µl DNase (RNase free DNase reconstituted in 250 μl 10 

mM Tris, pH 7.5) for 20 minutes. The column was then washed first with 700µl high stringency 

(guanidinium chloride) buffer by centrifugation for one minute, then 700µl low stringency buffer 

by centrifugation for one minute. This was followed by an additional centrifugation for two minutes 

to remove the residual wash solution. The column was transferred to capped microcentrifuge tubes 

and treated with 80µl elution solution for one minute at ambient temperature. The column was then 

centrifuged for two minutes to elute the total RNA. The RNA elutes for each cell line sample were 

used immediately or stored at -80°C. The mRNA concentration was determined using UV 

spectroscopy. Each eluant was diluted with nuclease-free water and absorbance was measured at 
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260nm.  The absorbance values were multiplied by the dilution factor (3.3) and the RNA standard 

of 40µg/ml to determine RNA concentrations.  

 

ii. cDNA Synthesis 

 

 

The eluted RNA was reverse transcribed using Bio-Rad’s iScript Reverse Transcription 

Supermix for RT-qPCR kit. A 96-well assay plate was prepared, on ice, for reverse transcription 

as follows: a reverse transcriptase (RT) reaction and no-RT reaction for each sample elute. Each 

20µl reaction received nuclease-free water, mRNA elute, and either 4µl RT supermix or no-RT 

supermix. The amount of mRNA elute (and nuclease free water) in each reaction was based on 

RNA concentration and qPCR template calculations. The sealed plate was placed in a Bio-Rad RT 

quantitative thermocycler and cDNA was synthesized using the following protocol: priming for 

five minutes at 25°C, Reverse transcription for 20-minute 46°C, RT inactivation for one minute at 

95°C. After reverse transcription the cDNA was used immediately or stored at -20°C for future use.  

 

iii. Quantitative PCR  

 

 

The relative gene expression of IMPA2 & ISYNA1 in bipolar 1 and 2 was measured using 

the Bio-Rad SYBR Green PCR system: commercially available PrimePCR™ SYBR® Green 

Primer assays (primers), PrimePCR™ SYBR® Green assays (commercial templates), 

SsoAdvanced Universal™ Supermix, and nuclease-free water. For each qPCR assay, a 96 well 

assay plate was prepared to amplify each GOI from each of the three cell lines along with the 

following controls. For each SYBR Green reaction with RT sample product, a corresponding SYBR 
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Green reaction with noRT sample product was included as a negative control.  Each qPCR assay 

included reactions with commercial templates for each primer as a positive control and reactions 

without templates as a negative control.  Each qPCR assay also included supermix and nuclease-

free water reactions, and nuclease-free water only reactions contamination controls. Each step of 

the workflow included controls for genomic DNA contamination. Each RNA elute was incubated 

and rinsed with DNase before reverse transcription.  To detect genomic DNA, each qPCR assay 

included a Bio-Rad designed DNA contamination control assay (gDNA) primer that amplifies non-

coding DNA. The gDNA assay CT values were used to compare relative levels of gDNA 

contamination present in different samples to determine if the qPCR assay results may be affected. 

For each SYBR Green qPCR assay, the reaction wells of the 96 well plate were prepared, 

on ice, as follows: nuclease-free water (volume based on template volume), 10µl SsoAdvanced 

Universal Supermix, 1µl primer, and appropriate volume of (commercial or sample) template was 

added to each well. The volume of template added to each reaction was calculated from RNA 

concentration and qPCR calculations. The qPCR assay was conducted using the following protocol: 

after two minutes at 95°C for template denaturation, the temperature was raised from 65°C to 95°C 

in 5°C increments for five seconds, and the melting points were recorded. Immediately thereafter, 

40 PCR cycles were performed by repeating the following thermocycling profile: denaturation at 

95°C for five seconds, then annealing and extension at 62°C for 30 seconds. At the end of the PCR 

amplification, a second melt curve was obtained, the temperature was raised from 65°C to 95°C in 

5°C increments for five seconds, and the melting points were recorded. After completing the PCR 

amplification, the 96 well PCR plate was stored at -20°C for use in gel electrophoresis. To visualize 

the qPCR assay product lengths, samples from the qPCR amplicon were run on a 5% agarose gel 

containing 0.006% ethidium bromide, using Tris/Borate/EDTA (TBE) as the running buffer. The 

Ultra-Low Range DNA Ladder (Invitrogen) was used to determine product length in base pairs.  

The DNA was electrophoresed at 100V for 30 minutes and imaged under UV light. 
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iv. Relative Gene Expression Determination 

 

 

Relative gene expression of ISYNA1 & IMPA2 was determined using the amplification 

curve CT values by the ΔΔ CT calculation method. Also known as the Livak method, it is used to 

determine the relative difference in the expression level of a target gene in test samples compared 

to a calibrator sample. The non-bipolar samples served as the calibrator to measure relative gene 

expression in bipolar 1 and 2 samples. The ΔΔ CT assumes that both target and reference genes are 

amplified with efficiencies near 100% and within 5% of each other.  The percent efficiency of the 

PrimePCR SYBR Green assay primers are as follows: ISYNA1 = 99%, IMPA2 = 96%, and ACTG1 

= 99% (Bio-Rad). Using the ΔΔ CT method, first, the relative difference in CT was calculated 

between each GOI - ISYNA1 & IMPA2 - and the average expression of the reference gene - ACTG1. 

This Δ CT for each gene was then used to calculate ΔΔ CT (for bipolar 1 and 2) using the non-bipolar 

samples as the calibrator.  
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CHAPTER 3:  RESULTS 
 

For this study, a myo-inositol concentration assay was used to measure intracellular myo-

inositol.  In addition, Real-Time quantitative PCR (RT-qPCR) was done to measure relative IMPA2 

& ISYNA1 gene expression. Both assays were done using immortalized lymphoblast cell lines 

initially derived from three different individuals: an individual with bipolar type 1, one with type 

2, and a non-bipolar (healthy control). Lymphoblasts were chosen as the model since several 

previous studies have already used them and the cell lines tend to be more robust in cell culture 

(Milanesi et al., 2017); (Walss-Bass and Fries, 2018); (Fries et al., 2017).  Myo-inositol 

concentrations within the same three cell lines were measured using a myo-inositol assay kit. For 

each experiment, the mean from multiple assay replicates was used to represent the results for 

relative gene expression and myo-inositol concentration respectively. 

 

A. Myo-inositol Concentration  

i. Fluorometric Assay 

 

For the fluorometric assay, the myo-inositol concentration in each reaction is determined 

from a myo-inositol concentration standard curve. Initial standard curve generation trials produced 

inconsistent data. The assay methodology finally produced a standard curve (in triplicate) after a 

few optimization (5) trials. Due to the extensive optimization involved in the fluorometric assay, 

the spectrophotometric assay was used instead.  
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Figure 4: Myo-inositol Standard Curve Initial Trial: Standard Curve of myo-inositol (n=3). 

 

 

Figure 5: Myo-inositol Standard Curve Fifth Trial: Standard Curve (n=3) 

 

ii. Spectrophotometric Assay 

 

The average myo-inositol concentration from bipolar type 1, type 2, and non-bipolar did 

show a statistically significant difference. While myo-inositol concentrations were similar 

between bipolar 2 and non-bipolar samples (1.8 and 1.7 myo-inositol g/l / sample g/l 
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respectively); the concentration of myo-inositol in the bipolar 1 sample (4.7 myo-inositol g/l / 

sample g/l) was almost three times as high (F = 12.5, p < 0.05).  On average, the bipolar 1 sample 

had a higher concentration of myo-inositol than bipolar 2 or non-bipolar samples. 

 

 

Figure 6: Mean myo-inositol concentration: in bipolar type 1, type 2, and non-bipolar cell extracts, n= 3 (F = 12.5, p 

< 0.05 by ANOVA). 

 

B. Relative Gene Expression  
 

 

Measuring the relative gene expression differences of IMPA2 & ISYNA1, between the 

bipolar type 1, type 2, and non-bipolar cell lines was another aim of this study. The two genes of 

interest (GOI), IMPA2 & ISYNA1, code for enzymes that are responsible for catalyzing specific 

steps within the myo-inositol biosynthesis pathway.  They interact with Lithium and VPA in unique 
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ways. Previous studies have documented differences in each correlated with bipolar. Detecting 

whether either is expressed differently in bipolar provides further information on the 

pathophysiology of bipolar disorder. Relative IMPA2 & ISYNA1 gene expression was determined 

by quantitative PCR using RNA extracted from the three cell lines.  

Figure 7 shows the relative gene expression of ISYNA1 mRNA by RT-qPCR. Relative 

ISYNA1 expression in the bipolar 2 cells was 0.47-fold higher than the non-bipolar control. Relative 

ISYNA1 expression in the bipolar 1 cells was 0.76-fold higher than the non-bipolar control. 

 

Figure 7:ISYNA1 gene expression in bipolar type 1 and type 2 relative to non-bipolar, n=3. 

. 

Figure 8 shows the amplification curves of ACTG1 RT, ISYNA1 RT, and gDNA RT RT-

qPCR reactions in triplicate.  ISYNA1 cDNA had CT values ranging between 20 and 22 across 

bipolar type 1, type 2, and non-bipolar cell lines as expected. The reference gene ACTG1 had CT 

values between 13 and 15 across type 1 and 2, and non-bipolar cell lines as expected. The CT values 

for the gDNA contamination assay were > 31 and therefore considered negligible.  
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Figure 8: Amplification Curves: ACTG1, ISYNA1 and gDNA RT-qPCR reaction wells show the thresh hold cycle (Ct) 

for each primer assay 

 

Figure 9 shows the relative gene expression of IMPA2 mRNA by RT-qPCR. Relative 

IMPA2 expression in the bipolar type 2 cells was 2-fold higher than non-bipolar IMPA2 

expression, and bipolar type 1 lymphoblasts had 2.1-fold higher IMPA2 expression compared to 

the non-bipolar control.  

 

 

Figure 9:  IMPA2 gene expression in bipolar 1 and bipolar 2 disorder relative to non-bipolar disorder, n=3. 
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Figure 10 shows the amplification curves of ACTG1 RT, IMPA2 RT, and gDNA RT RT-

qPCR reactions in triplicate. IMPA2 cDNA had CT values ranging between 21 and 28 across bipolar 

type 1, type 2 and non-bipolar cell lines. The reference gene ACTG1 had CT values between 13 and 

15 across bipolar type 1, type 2, and non-bipolar cell lines. The CT values for the gDNA 

contamination assay were > 31 and therefore considered negligible.  

 

 

Figure 10: Amplification curves: The amplification curves of ACTG1, IMPA2 and gDNA RT-qPCR reaction wells 

show the thresh hold cycle (Ct) for each primer assay. 

 

i. Genomic DNA Contamination Quantification 

 

 

Genomic DNA present, and potentially amplified, during qPCR may contribute to SYBR 

Green reaction signals. This begs the question of how much of the total reaction signal reflects the 

target sequence.  Relative genomic contamination was determined to be negligible using the gDNA 

Contamination Control Assay provided by Bio-Rad. A gDNA CT values > 35 indicates below single 

copy detection (no gDNA present). For gDNA CT values < 35, the following formula, | (GOI CT) 

– (gDNA CT) | = Δ Cq, determines the relative contribution of gDNA to the sample signal. Each Δ 

CT value corresponds with a percent genomic contribution to the sample signal. For this study, any 

genomic contamination < 12.5% genomic contribution was considered negligible.  
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ii. Melt Curve Analysis Results 

 

According to the melt curve analysis (figure 11) performed at the end of the qPCR, the 

melt peaks were approximately: ISYNA1 - 88 Tm C°, IMPA2 - 84.5 Tm C°, and ACTG1 - 85 

Tm C° According to primer assay validation reports, each amplicon Tm C° was: ISYNA1 = 88, 

IMPA2 = 84.5, ACTG1 = 85.5. Because the melt curve analysis closely matched the expected 

Tm, it is likely that each primer assay amplicon was the expected length. The lack of melt peaks 

below 80 Tm C° in the melt curve analysis showed no primer dimers contributed to qPCR 

signals.  

 

 

Figure 11: Melt Curve Analysis: melt peaks for each primer assay were (A) IMPA2 = 84.5 Tm C° , (B) ISYNA1 = 88 

Tm C°, (C) ACTG1= 85 Tm C°  and (D) gDNA = 81 Tm C°. 
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iii. Gel Electrophoresis Results 

 

The results of running representative samples of each primer assay on a 5% agarose gel 

stained with EtBr also supported the expected product was obtained. Figure 12 shows, from left to 

right, the two control templates (CT); gDNA from a no RT well & RT well; and a sample from 

ACTG1, IMPA2, and ISYNA1 RT wells.  The two CT and the IMPA2 amplicons are between 50 

and 75 base pairs; the gDNA amplicons and the ISYNA1 amplicons are close to 150 base pairs; and 

the ACTG1 amplicon is close to 200 base pairs. As evident by the location of the bands in the gel 

in figure 13, the cDNA samples and commercial templates amplified were the expected amplicon 

lengths.  

 

 

Figure 12: 5% agarose gel dyed with EtBr. From left, well 1: Ladder 300-10 bp; well 2: ISYNA1 CT; well 3: IMPA2 

CT; well 4: gDNA from bipolar 2 no RT; well 5: gDNA from bipolar 2 RT; well 6: ACTG1 of bipolar 1 RT; well 7: 

IMPA2 of BD2 RT well 8: ISYNA1 of BD2 RT. 

The results of the genomic contamination control assay (gDNA), melt curve analysis, and 

5% agarose gel validate that the sample signal CT values represent the target amplicons. The 

genomic contamination control assay did detect some genomic contamination contributing to 

sample signals, which was considered negligible. The melt curve analysis showed no evidence of 

primer dimers and confirmed the amplicons for each primer assay were the expected length. The 

clear banding pattern in the 5% agarose gel shows each amplicon at its expected length. The results 
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of the genomic contamination control assay, melt curve analysis, and 5% agarose gel, validate the 

sample signals CT values. 

The major objective of this study was to measure possible differences in myo-inositol 

concentration and ISYNA1 and IMPA2 gene expression between each type of bipolar compared to 

healthy control. The relative gene expression of ISYNA1 was found to be 0.47-fold (bipolar 2) 

and 0.76-fold (bipolar 1) higher compared to non-bipolar control. The relative gene expression of 

IMPA2 was 2-fold (bipolar 2) and 2.1-fold higher compared to non-bipolar control. The 

concentration of myo-inositol was 13.5 g/100g in non-bipolar, 14.5 g/100g in bipolar 2, and 48.2 

g/100g. 
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CHAPTER 4:  DISCUSSION 
 

Measuring possible differences in myo-inositol concentration and ISYNA1 and IMPA2 gene 

expression between each type of bipolar disorder compared to neurotypical were the major 

objectives of this study. The results of this study show both ISYNA1 and IMPA2 are expressed 

relatively higher in bipolar disorder, further their expression is even higher in bipolar type 1 

compared to type 2. Simultaneously, the myo-inositol concentration is significantly higher in type 

1 compared to type 2 and non-bipolar disorder. This is one of the first studies to measure relative 

differences in myo-inositol concentration and gene expression between the different types of 

bipolar. This and previous studies from a broader body of literature demonstrate differences 

associated with bipolar at the genetic, molecular, cellular, and neural circuitry levels.   A population 

study comparing the expression of these genes between different types of bipolar could shed light 

on how the expression of these genes contribute to the severity of bipolar symptoms.  

The focus of this study was to see if bipolar disorder patients express IMPA2 & ISYNA1 

differently and have different myo-inositol concentration levels. This study found both ISYNA1 and 

IMPA2 expressed relatively higher in bipolar compared to non-bipolar; and bipolar type 1 had 

significantly higher concentrations of myo-inositol compared to type 2 and non-bipolar disorder.  

Not only were both genes expressed higher in bipolar compared to non-bipolar, but each gene was 

also expressed slightly higher in bipolar type 1 and 2. Interestingly, the results showed the 

expression of IMPA2 was more than twice as high as ISYNA1 in both types of bipolar compared to 

non-bipolar. The concentration of myo-inositol in bipolar1 was significantly higher than either type 

2 or non-bipolar disorder.  

These results support the hypothesis that increased available myo-inositol maybe directly 

contributing to bipolar symptoms. The relatively higher expression of IMPA2 and ISYNA1 in both 

types of bipolar compared to non-bipolar supports this hypothesis because more Impase2 and MIPs 
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could be making more myo-inositol available to the cell to use in the PIP2 network. Similarly, a 

postmortem study found frontal brain region IMPA1 expression levels were not different, but 

IMPA2 transcription was significantly upregulated in bipolar compared to non-bipolar (Ohnishi et 

al., 2007b). However, a different study measuring relative gene expression in lymphoblasts 

exhibiting high calcium ion levels in bipolar compared to healthy control found lower IMPA2 

expression in the type 1 cells (Yoon et al., 2001). Another study also found IMPase (not specifically 

IMPA1 or IMPA2) mRNA was downregulated in bipolar  lymphoblasts and Lithium responders 

had even lower expression (Agam et al., 2009). Expression of IMPA2 in bipolar requires more 

attention considering the conflicting results of this and previous studies. Additional studies 

comparing the expression of IMPA1 to IMPA2 specifically will provide a clearer understanding of 

each gene’s involvement.  Relative gene expression of IMPA2 studies, using large population sizes, 

could provide clarifying results.  

It would be interesting to compare how the cells regulate the expression of either ISYNA1 

and/or IMPA2 in response to Lithium and/or VPA treatment in a larger population study. Previous 

studies have demonstrated Lithium and VPA interactions with MIP1 (ISYNA1) and IMPA1, and 

their fungal counterparts (Murray and Greenberg, 2000); (Dimitrova et al., 2005).  This study did 

not consider what phase the lymphoblast donors were in nor what treatments they were on at the 

time of donation. Measuring differences in myo-inositol concentration and ISYNA1 & IMPA2 gene 

expression between the manic and depressive phases will help us fine tune treatment methods for 

each phase of the disorder.  

The observed statistically significant difference in myo-inositol concentration in bipolar 

type 1 compared to type 2 and non-bipolar may also correlate with the more extreme symptoms of 

the in type 1 bipolar disorder. The results of this and previous studies suggest that the availability 

of myo-inositol may contribute to the severity of the symptoms of bipolar  (Vaden et al., 2001). 

Additionally, studies have found reduced inositol levels in the brain of suicide victims and bipolar 
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patients (Shimon et al., 1997). During clinical trials, bipolar patients who were treated with inositol 

saw improvements in depressive symptoms (Chengappa et al., 2000). After all, the longer and more 

intense phases of bipolar type 1 is what differentiates type 1 from type 2 bipolar disorder 

(Association, 2000).  

A future comparison study of individuals during the different phases of bipolar disorder 

could provide a clearer picture. It would be interesting to find out if cells change the expression of 

either ISYNA1 or IMPA2 in response to changes in myo-inositol concentration. The results of these 

studies may provide insight into biochemical differences between the two phases of bipolar. This 

may provide a basis for personalized treatment specific to the manic phase or the depressive phase.  

The existing evidence points to several intracellular factors all of which affect the white 

matter connecting the prefrontal cortex and limbic system (Phillips et al., 2008). As stated 

previously, bipolar is a multi-genic disorder with several genes contributing in subtle yet critical 

ways to the pathophysiology of the disorder. IMPase and MIPs are not the only enzymes involved 

in myo-inositol synthesis (Harwood, 2004).  Conducting future studies on each enzyme (and 

respective gene) related to myo-inositol metabolism is crucial to creating a more comprehensive 

picture of the PIP2 intracellular pathway and its relationship with bipolar disorder. 

Furthermore, evidence indicates genes related to oligodendrocytes and myelin appear to be 

abnormally expressed in schizophrenia and bipolar (Mahon et al., 2010).  One study found the 

expression of 26 genes involved in apoptosis signaling pathways were modulated by Lithium 

therapy (Fries et al., 2017). Several studies have observed a variety of genetic differences between 

Lithium responders and non-responders (Walss-Bass and Fries, 2018). Due to myo-inositol’s 

integral role in maintaining cell integrity of white matter tracts connecting the frontal lobe and 

limbic system, abnormalities in genes responsible for making myo-inositol may be contributing to 

bipolar.  
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Shedding light on myo-inositol’s integral role in maintaining cell integrity of white matter 

tracts connecting the frontal lobe and limbic system, and possible abnormalities in genes 

responsible for making myo-inositol can provide novel therapeutic targets for bipolar disorder. 

Elucidating possible genetic differences unique to bipolar may help us better understand bipolar 

pathophysiology which helps improve the treatment of bipolar disorder. It would be interesting to 

further investigate the potential causes for the observed higher mRNA expression of ISYNA1 and 

IMPA2 in bipolar.  
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APPENDIX  
  

 

Figure 13: myo-inositol concentration graph for each of the three myo-inositol assays 

 

A: Each of the myo-inositol concentration assay results 

 

content of myo-inositol [g/100g]  
bipolar 

disorder1 

bipolar 

disorder2 

non-

bipolar 

disorder 

A 67.18 16.11 15.52 

B 41.89 9.48 15.04 

C 35.4 17.92 9.93 

Mean 48.16 14.5 13.5 
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Prime PCR Assay Info (from Validation Reports) 

 
Amplicon length 

(Bipolar) assay design cDNA Cq gDNA Cq cDNA Tm (C) 

ISYNA1 131 exonic 21.17 26.37 88 

IMPA2 64 exonic 21.11 25 84.5 

ACTG1 191 N/A 14.02 20.54 85.5 

gDNA 60     

 

Validation Cq values based on threshold at 300 RFU  

All commercial templates are synthetic DNA, length = 60 bp  

 

 

Figure 14: Genomic Contamination Determination Table (provided by Bio-Rad) 

(PrimePCR TM Assays, Panels, and Controls for Real-Time PCR Instruction Manual pg. 21)  
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