
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2022

The on-line width of various classes of posets. The on-line width of various classes of posets.

Israel R. Curbelo
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation Recommended Citation
Curbelo, Israel R., "The on-line width of various classes of posets." (2022). Electronic Theses and
Dissertations. Paper 3974.
Retrieved from https://ir.library.louisville.edu/etd/3974

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=ir.library.louisville.edu%2Fetd%2F3974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3974?utm_source=ir.library.louisville.edu%2Fetd%2F3974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

THE ON-LINE WIDTH OF VARIOUS CLASSES OF POSETS

By

Israel R. Curbelo
B.A., The College of New Jersey, 2016

M.A., University of Louisville, 2018

A Dissertation
Submitted to the Faculty of the

College of Arts and Sciences of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy
in Applied and Industrial Mathematics

Department of Mathematics
University of Louisville

Louisville, Kentucky

August 2022

THE ON-LINE WIDTH OF VARIOUS CLASSES OF POSETS

Submitted by

Israel R. Curbelo

A Dissertation Approved on

April 19, 2022

by the following Dissertation Committee:

Dr. Csaba Biró,
Dissertation Director

Dr. André Kézdy

Dr. Grzegorz Kubicki

Dr. David Wildstrom

Dr. Hichem Frigui

ii

For my mother, my father and my wife

iii

ACKNOWLEDGMENTS

I would like to thank...

Judit for opening my eyes to the beauty of mathematics,

Csaba for providing invaluable guidance in research and in life,

Andrew, Sida and Matt for being the brothers I never had,

Kaori for being a continuous source of inspiration and for never allowing me to give up,

my father for teaching me to always follow my dreams and for instilling in me the courage to do so,

my mother for always being there for me and for raising me to be the person I am today, and

my wife for pushing me to apply to grad school and for being by my side throughout the journey.

iv

ABSTRACT

THE ON-LINE WIDTH OF VARIOUS CLASSES OF POSETS

Israel R. Curbelo

April 19, 2022

An on-line chain partitioning algorithm receives a poset, one element at a time, and irrevocably

assigns the element to one of the chains. Over 30 years ago, Szemerédi proved that any on-line

algorithm could be forced to use
(
w+1
2

)
chains to partition a poset of width w. The maximum

number of chains that can be forced on any on-line algorithm remains unknown. In the survey

paper by Bosek et al., variants of the problem were studied where the class is restricted to posets of

bounded dimension or where the poset is presented via a realizer of size d. We prove two results for

this problem. First, we prove that any on-line algorithm can be forced to use (2− o(1))
(
w+1
2

)
chains

to partition a 2-dimensional poset of width w. Second, we prove that any on-line algorithm can be

forced to use (2− 1
d−1 − o(1))

(
w+1
2

)
chains to partition a poset of width w presented via a realizer of

size d. Chrobak and Ślusarek considered variants of the on-line chain partitioning problem in which

the elements are presented as intervals and intersecting intervals are incomparable. They constructed

an on-line algorithm which uses at most 3w − 2 chains, where w is the width of the interval order,

and showed that this algorithm is optimal. They also considered the problem restricted to intervals

of unit-length and while they showed that first-fit needs at most 2w − 1 chains, over 30 years later,

it remains unknown whether a more optimal algorithm exists. We improve upon previously known

bounds and show that any on-line algorithm can be forced to use d 32we chains to partition a semi-

order presented in the form of its unit-interval representation. As a consequence, we completely

solve the problem for w = 3. We also consider entirely new variants and present the results for

those.

v

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGMENTS iv

ABSTRACT v

LIST OF FIGURES ix

1 OVERVIEW 1

2 INTRODUCTION 3

2.1 Motivation . 3

2.2 Introduction to Posets . 4

2.3 On-Line Width . 7

2.4 On-Line Height . 11

3 ON-LINE WIDTH OF D-DIMENSIONAL POSETS 13

3.1 Introduction to Dimension . 13

3.2 On-Line Width of d-Dimensional Posets . 17

3.3 On-Line Width of d-Dimensional Posets with Representation 17

3.4 Notation . 18

3.5 Algorithms for Constructing Linear Orders . 19

3.5.1 The First Linear Order Algorithm . 19

3.5.2 Stage 1 . 19

3.5.3 Stage 2 . 19

3.5.4 The Second Linear Order Algorithm . 19

3.5.5 Stage 1 . 19

3.5.6 Stage 2 . 20

3.5.7 A Strategy for Anna . 20

vi

3.6 Proof of Theorem 3.0.1 . 23

3.6.1 The Strategy for Anna . 23

3.6.2 Stage 1 . 23

3.6.3 Stage 2 . 23

3.6.4 Stage 3 . 23

3.6.5 The Result . 24

3.7 Proof of Theorem 3.0.2 . 24

3.7.1 The Strategy for Anna . 24

3.7.2 Stage 1 . 25

3.7.3 Stage 2 . 25

3.7.4 Stage 3 . 25

3.7.5 The Result . 25

4 ON-LINE WIDTH OF SEMI-ORDERS 27

4.1 Introduction to Interval Orders and Semi-orders . 27

4.2 On-Line Width of Interval Orders . 28

4.3 On-Line Width of Interval Orders with Representation 31

4.4 On-Line Width of Semi-Orders . 32

4.5 On-Line Width of Semi-Orders with Representation 33

4.6 Proof of Theorem . 34

4.6.1 Stage 1 . 34

4.6.2 Stage 2 . 34

4.6.3 Stage 3 . 34

4.6.4 Stage 4 . 35

4.6.5 Stage 5 . 36

4.6.6 Remarks . 36

5 ON-LINE WIDTH OF L-INTERVAL ORDERS 38

5.1 Introduction to L-Interval Orders . 38

5.2 On-Line Width of L-Interval Orders . 39

5.3 Proof of Theorem . 40

5.3.1 Stage 1 . 40

5.3.2 Stage 2 . 41

5.3.3 Stage 3 . 41

vii

5.3.4 Stage 4 . 42

6 GREEDY WIDTH 43

6.1 Greedy Width . 43

6.2 Greedy Width of Semi-Orders . 46

6.3 Greedy Width of Interval Orders . 47

6.4 Almost-Semiorders . 48

6.5 Greedy Width of Almost-Semiorders . 49

6.5.1 Proof of Theorem 6.0.1 (Lower Bound) . 49

6.5.2 Stage 1 . 49

6.5.3 Stage 2 . 49

6.5.4 Stage 3 . 50

6.5.5 Stage 4 . 50

6.5.6 Proof of Theorem 6.0.1 (Upper Bound) . 50

REFERENCES 52

CURRICULUM VITAE 55

viii

LIST OF FIGURES

2.1 Suboptimal assignment of tasks to processors. 3

2.2 Diagram of the partial order on the set of tasks. 4

2.3 An efficient assignment of tasks to processors following the rule. 4

2.4 Forcing 3 processors on a set of tasks which only need 2. 4

2.5 Diagram for Example 2.2.1 . 5

2.6 The strategy S(4). The number inside the circle represents the color and the super-

script represents the order in which the points were presented. 10

3.1 Example from Section 2.1 has 5 linear extensions. 14

3.2 The standard example S5 of a 5-dimensional poset. 14

3.3 R(k,w) on a greedy algorithm with colors as superscipts. 20

4.1 Stage 1 ends with subposets S1, S2, S3, S4 consisting of the same 3k − 2 colors. The

subposets are depicted left to right instead of bottom to top as if it were an interval

representation. 29

4.2 Here is what an interval representation may look like after introducing points xt and

xt1 during Stage 2. 29

4.3 The end game if Beth assigns xt+1 a new color. 30

4.4 The end game if Beth assigns xt+1 the color 3k − 1. 30

4.5 Interval representation of (X,P) partitioned into U and V 31

4.6 The co-compararability graph of the poset induced on V is a subgraph of a path. . . 31

4.7 Subposet induced by antichains A and B in S(7). 32

4.8 Antichain C with all of its comparabilities in S(7) with 5 chains in common between

A and B. 33

4.9 Stage 1: forcing the first k chains. 34

4.10 Stage 2: forcing k + 1 new chains. 35

4.11 Stage 3: forcing a chain b ∈ B on xB . 35

ix

4.12 Stage 4: forcing a new chain c on xC . 36

4.13 Stage 5: forcing the last k chains. 37

5.1 An interval representation of 1 + M′. 39

5.2 Stage 1: forcing the first k chains. 40

5.3 Stage 2: forcing k new chains. 41

5.4 Stage 3: forcing k more chains. 41

5.5 Stage 4: forcing the last w − k chains. 42

6.1 Strategy S(6) forces any greedy algorithm to use 6 chains on a poset of width 2. . . 45

6.2 The Strategy S(5). 47

6.3 The almost-semiorder 3 + 1 is not a semi-order. 48

6.4 An interval order that is not an almost-semiorder. 48

6.5 Strategy S(2) forcing 4 colors. 50

6.6 Every interval intersects at most 3w − 3 other intervals. 51

x

CHAPTER 1

OVERVIEW

This thesis focuses on the on-line width of various classes of posets. Dilworth’s theorem states

that an optimal off-line algorithm can partition any poset of width w into w chains. However, this

is not always the case when the poset is presented in an on-line manner. Therefore, our goal is to

find the efficiency of an optimal on-line algorithm given a class of posets with bounded width. We

refer to this value as the on-line width of that class of posets.

The on-line width olw(w) for the class of all posets was first considered in the 1970s, and it took

nearly 30 years to confirm that the value was even bounded. Researchers continue to make progress

to this day, and yet, the problem remains open. Meanwhile, researchers have studied many different

classes of posets, as well as considered variants of the problem where the poset is presented with

some form of geometric representation. To illustrate just how wide the field is, we provide all results

presented in a recent survey with updated knowledge in the table below.

The R column indicated variants which require the poset to be presented with representation.

The U column indicates variants which require the poset to be constructed in an upgrowing manner,

meaning that new elements must be maximal elements of the poset. A ? in the On-Line Width

column indicates that the problem remains open. On the right, we provide notation as well as the

best known bounds for each of the open variants.

In Chapter 2, we focus on the on-line width olw(w) of the class of all posets. In Chapter 3, we

focus on the on-line width olw(w, d) and olwR(w, d) of the class of d-dimensional posets without

and with representation respectively. We present new strategies which provide us with the currently

best lower bounds for each. In Chapter 4, we focus on the on-line width for classes of interval orders

both with and without representation. We finish by presenting a new strategy which provides us

with the currently best lower bound on the on-line width olwsR(w) of the class of semi-orders with

representation. In Chapter 5, we introduce new subclasses of interval orders which we call L-interval

orders. We prove properties of the classes and provide a non-trivial lower bound for the on-line width

olwi(L,w) for a specific set L. Lastly, in Chapter 6, we focus on the efficiency of greedy algorithms

1

for various classes of posets and refer to this value as the greedy width of that class of posets. We

prove that many of the results on First Fit transfer to all greedy algorithms. We end by showing

non-trivial bounds for the greedy width gwa(w) of the class of almost-semiorders.

Class R U On-Line Width

All Orders ? (2− o(1))
(
w+1
2

)
≤ olw(w) ≤ wO(log logw)

+
(
w+1
2

)
Interval Orders 3w − 2

+ 3w − 2

+ 2w − 1

+ + w

Semi-Orders 2w − 1

+ ? d 32we ≤ olwsR(w) ≤ 2w − 1

+ b 1+
√
5

2 wc

+ + w

2-Dimensional ? (2− o(1))
(
w+1
2

)
≤ olw(w, 2) ≤ wO(log logw)

+
(
w+1
2

)
+

(
w+1
2

)
+ +

(
w+1
2

)
d-Dimensional + ? (2− 1

d−1 − o(1))
(
w+1
2

)
≤ olwR(w, d) ≤

(
w+1
2

)d−1

2

CHAPTER 2

INTRODUCTION

2.1 Motivation

Suppose we have a multiprocessing machine with a set of tasks {t1, t2, t3, t4} of which some tasks

depend on the output of other tasks.

task dependencies
t1 -
t2 -
t3 t1, t2
t4 t2

Table 2.1: Dependencies between tasks t1, t2, t3, t4.

Our goal is to assign each task t to a processor p in an efficient way. Consider the following

example where we assign tasks t1 and t2 to processor p1, and tasks t1 and t4 to processor p2.

t1 t4p1

t2 t3p2

time

Figure 2.1: Suboptimal assignment of tasks to processors.

Notice that our first attempt results in task t4 unnecessarily waiting for task t1 to be completed

by processor p1. Furthermore, processor p2 waists time waiting to begin task t3 which depends on

the output of t1. We define a partial order on the set of tasks so that ti < tj if and only if ti depends

on the output of tj .

We avoid the issues from the first attempt by following the rule that tasks assigned to the same

processor must form a chain. Hence, in our second attempt we assign tasks t1 and t3 to processor

p1, and tasks t2 and t4 to processor p2.

Now suppose that a sequence tasks t1, . . . , tn are presented to the machine one at a time and

3

t1 t2

t3 t4

Figure 2.2: Diagram of the partial order on the set of tasks.

t1

t4

p1

t2

t3

p2

time

Figure 2.3: An efficient assignment of tasks to processors following the rule.

that we have no knowledge of the remaining tasks. We only know the dependencies between the

tasks which have already been presented. Furthermore, we must immediately and irrevocably assign

the tasks to a processor as they are presented. Then consider the following scenario. Tasks t1 and

t2 are presented and neither task depends on the other. By our rule, we must assign the tasks to

different processors p1 and p2 respectively. Next, a task t3 is presented which depends on the output

of both t1 and t2. At this point we essentially have the freedom to choose whether we assign task t3

to processor p1 or to processor p2. However, regardless of our decision, a fourth task t4 could always

be presented which forces us to use a third processor p3.

p1 p2

p2 p3

p2

x

p1p2

p1

p1

p3

Figure 2.4: Forcing 3 processors on a set of tasks which only need 2.

Moreover, we could have used just two processors if we had knowledge of all tasks from the

start. Thus our goal becomes finding the minimum number of processors needed to efficiently assign

tasks to processors, or more generally, finding the minimum number of chains needed to partition a

partially ordered set.

2.2 Introduction to Posets

A partially ordered set or poset is a pair (X,P) where X is a set and P is a reflexive, antisymmetric

and transitive relation on X, that is, P satisfies the following conditions:

1. (x, x) ∈ P for all x ∈ X (reflexive,)

4

2. (x, y) ∈ P and (y, x) ∈ P =⇒ x = P (antisymmetric,) and

3. (x, y) ∈ P and (y, z) ∈ P =⇒ (x, z) ∈ P (transitive.)

We call X the ground set and P a partial order on X. We often refer to elements of X as points.

Example 2.2.1. If X = {a, b, c, d} and P = {(a, b), (a, c), (b, d), (c, d), (a, d)}, then (X,P) is a poset.

Let (X,P) be a poset. For two points x and y, we write x ≤ y in P whenever (x, y) ∈ P and

omit the P whenever it is clear from context. We write x < y whenever x ≤ y and x 6= y. We say

that two distinct points x and y are comparable whenever x < y or y < x. Conversely, we say that x

and y are incomparable whenever x and y are not comparable. We use the notation x ⊥ y to denote

that x and y are comparable and use the notation x ‖ y to denote that x and y are incomparable.

For any two distinct points x and y, we say y covers x or x <: y if x < y and there is no other point

z such that x < z < y. It is often convenient to use a graphical representation of a poset.

a

b c

d

Figure 2.5: Diagram for Example 2.2.1

In Figure 2.2, we see an example of a Hasse diagram or simply diagram for Example 2.2.1. An

edge between two points implies that the vertically higher point covers the vertically lower point.

We see that a <: b, a <: c, b <: d and c <: d. Notice that there is no edge between a and d. While

a < d, it is not true that a <: d since a < b < d.

A poset (X,P) is called a chain if every pair of distinct elements in X is comparable in P . A

poset (X,P) is called an antichain if every pair of elements in X is incomparable in P . The size of a

poset (X,P) is the cardinality of X. A point x ∈ X is called a maximal point if for any point y ∈ X,

y ≤ x or y ‖ x. A point x ∈ X is called a greatest point if for any point y ∈ X, y ≤ x. Similarly, a

point x ∈ X is called a minimal point if for any point y ∈ X, y ≥ x or y ‖ x, and a point x ∈ X is

called a least point if for any point y ∈ X, y ≤ x. The set of all chains of a poset (X,P) is partially

ordered by set inclusion and a maximal chain is a chain that is maximal in this poset. A chain C

5

is a maximum chain if there is no chain with more points than C. Similarly, an antichain A is a

maximum antichain if there is no antichain with more points than A. The height of a poset (X,P)

is the size of a maximum chain. The width of a poset (X,P) is the size of a maximum antichain.

Example 2.2.1 (continued). Since {a, b, c} induces a maximum chain of size 3, the height of (X,P)

is 3. Since {b, c} induces a maximum antichain of size 2, the width of (X,P) is 2.

For every point x ∈ X, the downset D(x) of x is defined by D(x) = {y ∈ X : y < x in P}. We

call D[x] = {y ∈ X : y ≤ x in P} the closed downset of x. Conversely, the upset U(x) of x is defined

by U(x) = {y ∈ X : x < y in P}, and we call U [x] = {y ∈ X : x ≤ y in P} the closed upset of x.

When Y is a nonempty subset of X, the restriction of P to Y , denoted by P |Y is a partial order on

Y and we call (Y, P |Y) a subposet of (X,P). The dual of a partial order P is denoted P ∗ and is

defined by P ∗ = {(y, x) : (x, y) ∈ P}. The dual of a poset (X,P) is (X,P ∗).

The following theorem is fundamental for the study of on-line chain partitioning of posets, and

the reason for the terminology on-line width.

Theorem 2.2.1 (Dilworth [7]). If (X,P) is a poset of width w, then there exists a partition X =

C1 ∪ . . . ∪ Cw, where Ci is a chain for i ∈ {1, . . . , w}.

Proof. Let (X,P) be a poset of width w. We argue by induction on |X|. If |X| = 1, then the result

is trivial. Assume that any poset (X0, P0) of width w with |X0| ≤ k can be partitioned into w chains

and suppose |X| = k + 1. We may assume that w > 1 since otherwise the trivial partition X = C1

would satisfy the conclusion. Let C be a nonempty chain in (X,P). If (X \ C,P |X\C) has width

less than w, then X \ C can be partitioned into k chains C1, . . . , Ck with k < w and C,C1, . . . , Ck

would be a valid partition of X. Hence, we may assume that if C is a nonempty chain in (X,P),

then (X \ C,P |X\C) also has width w.

Let x and y be a maximal point and a minimal point respectively with y < x in P . Since

C = x, y is a nonempty chain, we may assume that (X \ C,P |X\C) also has width w and has an

antichain A = {a1, . . . , aw}. Since y /∈ U [A], U [A] 6= X. Since x /∈ D[A], D[A] 6= X. Also, note that

U [A] ∩D[A] = A.

By the induction hypothesis, we can partition U [A] into w chains U1, . . . , Uw. Similarly, we

can partition D[A] into w chains D1, . . . , Dw. Without loss of generality, we may assume that

Ui ∩Di = ai for i ∈ {1, . . . , w}. Thus, C1, . . . , Cw is the desired partition where Ci = Ui ∪Di for

i ∈ {1, . . . , w}.

6

2.3 On-Line Width

An on-line chain partitioning algorithm receives a poset (X,P) in the order of its elements x1, . . . , xn

and constructs an on-line chain partition X = C1∪. . .∪Ct. This means that whenever a new element

xi is introduced, the chain to which it is assigned to depends solely on the poset (X,P) restricted to

{x1, . . . , xn} and on the chains to which x1, . . . , xi−1 were assigned to. The efficiency or performance

of an on-line chain partitioning algorithm is measured in terms of the number of chains needed by

an optimal off-line algorithm. By Theorem 2.2.1, every poset of width w can be partitioned into

w chains by an optimal off-line chain partitioning algorithm. However, it is not always possible to

partition posets of width w into w chains when the poset is presented in an on-line manner (as we

saw in Section 2.1.)

We may consider each problem as a two-player coloring game. We call the first player Anna

and the second player Beth. In this game, Anna constructs a poset one point at a time and Beth

constructs a chain partition in an on-line manner. During round i, Anna introduces a new point xi

to the poset and describes the subposet (Xi, P |Xi
) induced by the subset Xi = {x1, . . . , xi}. Beth

responds by assigning xi to one of the chains in the chain partition. We often consider the chains

C1, . . . , Ct as being different colors 1, . . . , t and say that Beth assigns xi the color t whenever xi is

assigned the chain Ct.

Therefore, the on-line width olw(w) of the class of posets of width at most w is the largest integer

k for which there exists a strategy for Anna that forces any on-line chain partitioning algorithm to

use k chains on a poset of width at most w. It is sometimes defined as the least integer k for which

there exists an on-line chain partitioning algorithm which partitions posets of width at most w into

at most k chains. It is easy to see that these definitions are equivalent.

Since a poset of width 1 is a chain, olw(1) = 1. In 1981, Kierstead [13] proved that 5 ≤ olw(2) ≤ 6.

Sixteen years later, Felsner [9] constructed an on-line chain partitioning algorithm which uses at most

5 chains.

Theorem 2.3.1 (Kierstead [13], Felsner [9]). olw(2) = 5.

The exact value of olw(w) remains unknown for w ≥ 3. In the 1970’s, Schmerl asked the question

of whether olw(w) was bounded for all w ∈ N. We see in Chapter 5 that this is not a naive question.

Kierstead [13] was the first to answer the question in the affirmative.

Theorem 2.3.2 (Kierstead [13]). For every w ≥ 1, olw(w) ≤ (5w − 1)/4

Proof. We argue inductively on the width w that Beth has a strategy S(w) which uses at most

7

(5w−1)/4 colors. If w = 1, then Beth simply assigns every element to the same color. We first show

that S(2) uses at most 6 colors and extend the argument to prove the theorem. The strategy S(2)

consists of two stages.

Stage 1. In Stage 1, Beth constructs a greedy chain C. Suppose that Anna introduces a new point

x. Then Beth inserts it into C if C ∪ {x} is a chain. For each x ∈ X \ C, let ‖(C,x) denote the set

of elements from C which are incomparable to x. Notice that the set ‖(C,x) consists of consecutive

points in C.

Suppose that x ‖ y. Then it must be the case that ‖(C,x) ∩ ‖(C,y)= ∅, otherwise, {x, y, z}

would form an antichain of size 3 where z ∈‖(C,x) ∩ ‖(C,y). Hence, if x ‖ y, either ‖(C,x)<‖(C,y) or

‖(C,y)<‖(C,x).

Next, Beth defines a partial order R on X \ C as follows so that x < y in R if

(1) x < y in P , or

(2) x ‖ y and I(x) < I(y),

and, y < x in R if

(3) y < x in P , or

(4) x ‖ y and I(y) < I(x).

Since for any distinct x and y in X \ C, either x < y, y < x or x ‖ y, and x ‖ y implies that

‖(C,x)<‖(C,y) or ‖(C,y)<‖(C,x), R is a linear extension of P .

Lastly, Beth defines an equivalence relation on X \ C so that

(a) each equivalence class is a set of consecutive elements of (X \ C,R), and

(b) if x y and (x <: y or y <: x), then ‖(C,x) ∩ ‖(C,y) 6= ∅

Whenever Beth inserts a new point x into X \ C, Beth puts x in the same equivalence class as

y if x <: y in R and ‖(C,x) ∩ ‖(C,y) 6= ∅. If no such y exists, Beth puts x in the same class as z if

z <: x in R and ‖(C,x) ∩ ‖(C,y) 6= ∅. Otherwise, Beth assigns x to its own equivalence class.

With some effort, one can verify that if S1 and S2 are equivalence classes of X \ C, and there

are at least two other equivalence classes between them in R, then S1 ∪ S2 is a chain in P .

Stage 2. In Stage 2, Beth constructs an on-line partition of X \ C into 5 chains C1, . . . , C5. Each

chain is the union of equivalence classes, and any two classes which are subsets of the same chain

have at least two other classes between them in R. When Beth assigns a point x to an entirely new

class, Beth assigns it to a chain which does not contain the two classes above x nor the two classes

below x. Next we generalize to S(w) for w ≥ 3.

Stage 1’. Beth begins by constructing a greedy chain C just like before. Instead of a linear

extension, Beth defines an extension R of P on X \ C so that (X \ C,R) is a poset of width w − 1.

8

When a new point x is inserted into X \ C, Beth defines R so that x < y in R if (1), (2),

(1’) there exists u ∈ X \ C so that x < u in P and u < y in R, or

(2’) there exists v ∈ X \ C so that x < v in R and v < y in P ,

and, y < x in R if (3), (4),

(3’) there exists u ∈ X \ C so that y < u in P and u < x in R, and

(4’) there exists v ∈ X \ C so that y < v in R and v < x in P .

Beth adds conditions (1’),(2’),(3’),(4’) in order to insure that R maintains transitivity.

Stage 2’. Hence, the width of (X \ C,R) is at most w − 1, for if A = a1, . . . , am is an antichain in

(X \C,R), then
⋂m
i=1 ‖(C,ai) 6= ∅. If x ∈ C and x ‖ ai for i = 1, . . . ,m, then {x} ∪A is an antichain

in P . By the induction hypothesis, S(w− 1) partitions X \C into (5w−1 − 1) subsets each of which

is a chain in R. The strategy S(2) will then partition a chain in R into 5 chains in P . Then Beth

needs at most (5w − 1)/4 = 1 + 5(5w−1 − 1)/4 colors.

Nearly 30 years later, Bosek and Krawcyk [1] presented the first subexponential upper bound.

Theorem 2.3.3 (Bosek and Krawcyk [1]). For every w ≥ 1, olw(w) ≤ w13 logw

This algorithm was quite involved. Bosek, Kierstead, Krawcyk, Matecki, and Smith [2] presented

another subexponential bound which was easier to both implement and analyze. Moreover, it was

slightly better than the previous bound.

Theorem 2.3.4 (Bosek,Kierstead,Matecki and Smith [2]). For every w ≥ 1, olw(w) ≤ w6.5 logw+7

Currently, the best upper bound came in 2021 by Bosek and Krawcyk [3].

Theorem 2.3.5 (Bosek and Krawcyk [3]). For every w ≥ 1, olw(w) ≤ wO(log logw).

It remains unknown if there exists a polynomial bound, specifically, a k ∈ N such that olw(w) ≤

wk eventually.

On the other hand, Kierstead [13] also provided the first non-trivial lower bound.

Theorem 2.3.6 (Kierstead [13]). For every w ≥ 1, olw(w) ≥ 4w − 3.

An unpublished argument by Szemerédi (See [14]) showed that olw(w) is not linear.

Theorem 2.3.7 (Szemerédi). For every w ≥ 1, olw(w) ≥
(
w+1
2

)
Proof. We prove that any on-line algorithm can be forced to use

(
w+1
2

)
chains to partition a poset

of width w inductively on w. If w = 1, then we simply introduce a single point. If w > 1, then the

strategy S(w) consists of two stages.

9

Stage 1

We initialize a chain C with a point x0. Now suppose in round i− 1, we introduced a point xi−1

and the algorithm assigns it the color ci−1. Let c(C) denote the set of colors used to color elements

of C. If ci−1 ∈ c(C), then in round i, we introduce a new point xi so that xi is greater than every

element in C but incomparable to every element not in C. If ci−1 /∈ c(C), then we update C to

include ci−1. If |C| = w, then we move onto Stage 2. Otherwise, in round i, we introduce a new

point xi so that xi is greater than every element in C but incomparable to every element not in C,

and repeat Stage 1.

Stage 2

Let S1 denote the set of points introduced in Stage 1. In Stage 2 we play S(w− 1) so that every

point introduced in Stage 2 is less than every point in S1 \C and incomparable to every point in C.

This is possible since every element introduced during Stage 1 was a maximal point the turn that

it was introduced. By the inductive hypothesis, S(w − 1) forces
(
w
2

)
colors on a poset of width at

most w − 1, and hence, (X,P) is a poset of width at most w. All that is left to show is that Stage

1 concludes with C being a rainbow chain, i.e. a chain with all distinct colors, of size w.

1

2

3

41 2 3

S(3)
1

2

3

4

5 6 7

Figure 2.6: The strategy S(4). The number inside the circle represents the color and the superscript
represents the order in which the points were presented.

Result

Points only get added to C given that they were assigned a color not previously in C. Since

the points not in C form an antichain, a new point will eventually get added to C. Hence, Stage 1

ends once C is a chain of size w where every point in C is assigned a distinct color. The width of

(S1, P |S1
) is at most w since if it contained an antichain of size w + 1, the antichain would contain

a point colored w + 1 and that point would have been added to C. Since the subposet (S2, P |S2
)

constructed in Stage 2 by S(w − 1) is of width at most w − 1 and is comparable to every element

of S1 except for a chain, (X,P) is a poset of width at most w. Since points in S2 are incomparable

with points in C, the strategy S(w) forces a total of
(
w
2

)
+ w =

(
w+1
2

)
colors.

10

Szemerédi’s arguement remained best for over 30 years until it was improved by Bosek, Felsner,

Kloch, Krawczyk, Matecki and Micek [4] to achieve a bound almost twice as good.

Theorem 2.3.8 (Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek [4]). For sufficiently large

w, olw(w) ≥ (2− o(1))
(
w+1
2

)
.

In Chapter 3, we prove Theorem 2.3.8 while simultaneously proving that the resulting poset

always has dimension at most 2. This improves the lower bound for a seemingly just as difficult

problem of finding the on-line width for posets of bounded dimension.

2.4 On-Line Height

Before moving on, we present the dual problem of finding the on-line height. Analogously, we define

the on-line height olh(h) of the class of posets of height at most h in terms of a two-player game

between Alice and Bob, where Alice presents a poset of height at most h and Bob constructs an

on-line antichain partition of X. First, we must justify the terminology by proving the dual of

Theorem 2.2.1.

Theorem 2.4.1 (Dilworth [7]). If (X,P) is a poset of height h, then there exists a partition X =

A1 ∪ . . . ∪Ah, where Ai is an antichain for i ∈ {1, . . . , h}.

Proof. Let (X,P) be a poset of height h. Then we prove the theorem inductively on h with the

case h = 1 being trivial. Let Max(X,P) denote the set of maximal elements in (X,P). If two

elements in Max(X,P) were comparable this would contradict that they are maximal. Hence,

A = Max(X,P) is an antichain. Moreover, (X \ A,P |X \A) is a subposet of height h− 1. By the

induction hypothesis, X \A can be partitioned into antichains A1, . . . , Ah−1. Then A1, . . . , Ah−1, A

is the partition we want.

Like the off-line version, the dual problem of finding an optimal on-line antichain partition was

found to be much easier than finding an optimal on-line chain partition. In fact, the antichain

problem was solved by Schmerl. The proof of the lower bound is basically identical to that of

Theorem 2.3.7, so we only prove the upper bound below.

Theorem 2.4.2. Every poset of height at most h can be partitioned on-line into
(
h+1
2

)
antichains.

Proof. Bob will maintain an antichain partition using a set of antichains A(a,b) indexed by pairs

(a, b) of numbers 1 ≤ a, b and a + b ≤ h + 1. Since there are exactly
(
h+1
2

)
such pairs, this suffices

to prove the theorem.

11

When Alice presents a new point x, Beth determines the size a of the longest chain in the already

presented poset that has x as its maximum element and the size b of the longest chain that has x as

its minimum element. As the size of any chain in the already presented order is at most h, we get

a+ b ≤ h+ 1.

Now, Bob inserts x into A(a,b). It has to be shown that A(a,b) remains an antichain. Indeed,

suppose that x is comparable with some y that was previously put into A(a,b), and say y < x.

Membership of y in A(a,b) is certified by chain C of size a with maximum y. Since C ∪{x} is a chain

of size a + 1 with maximal element x, we have contradicted x ∈ A(a,b). In the case where x < y,

argue with a chain of size b having y as minimum to obtain a similar contradiction.

Corollary 2.4.3. For every h ≥ 1, olh(h) =
(
h+1
2

)
.

12

CHAPTER 3

ON-LINE WIDTH OF D-DIMENSIONAL POSETS

In this chapter, we focus on variants of the game where not only is the width of the poset

bounded but also the dimension of the poset. Let olw(w, d) denote the on-line width of the class

of d-dimensional posets of width at most d. The analysis of olw(w, d) appears to be as hard as the

general problem. However, we show that the lower bound for posets of dimension d ≥ 2 matches

that of the general problem.

Theorem 3.0.1 (Biró and Curbelo (Submitted)). For every pair of integers (w, d) such that 2 ≤

d ≤ w, olw(w, d) ≤ (2− o(1))
(
w+1
2

)
.

Let olwR(w, d) denote the on-line width with representation of d-dimensional posets of width at

most w. We provide the first lower bound which increases as a function of the dimension d.

Theorem 3.0.2 (Biró and Curbelo (Submitted)). olwR(w, d) ≥ (2− 1
d−1 − o(1))

(
w+1
2

)
.

In Section 3.1, we provide the necessary background in the theory of dimension. In Sections

3.2 and 3.3, we define olw(w, d) and olwR(w, d) respectively, and provide a brief history of previous

work. In Section 3.4, we provide some useful notation. In Section 3.5, we define a strategy for

constructing linear orders which will serve as the main building blocks for constructing the posets

necessary to prove our results. Finally, in Sections 3.6 and 3.7 we prove Theorem 3.0.1 and Theorem

3.0.2 respectively.

3.1 Introduction to Dimension

When P and Q are partial orders on the same set X, we call Q an extension of P if P ⊂ Q. We

call Q a linear extension of P when Q is an extension of P and (X,Q) is a chain. The set of all

extensions of P is partially ordered by inclusion with P as the unique minimal element and the

maximal elements being linear extensions of P . If {L1, . . . , Lt} is the set of all linear extensions of

P , then
⋂t
i=1 Li = P .

13

c d

a b

d

c

b

a

c

d

b

a

d

c

a

b

c

d

a

b

d

b

c

a

L1 L2 L3 L4 L5

Figure 3.1: Example from Section 2.1 has 5 linear extensions.

Let (X,P) be a poset. A set {L1, . . . , Lt} of linear extensions of P is called a realizer of (X,P) if

it satisfies
⋂t
i=1 Li = P . Equivalently, a set {L1, . . . , Lt} of linear extensions of P is called a realizer

of (X,P) if it satisfies x < y in P if and only if x < y in Li for i ∈ {1, . . . , t}. The dimension of

(X,P) is the least positive integer t for which there exists a set {L1, . . . , Lt} of linear extensions of

P such that
⋂t
i=1 Li = P . In other words, the dimension of a poset is the least integer t for which

(X,P) has a realizer of cardinality t.

It is natural to ask if a poset can have arbitrarily large dimension. The answer to that is answered

in the affirmative in the following example from Dushnik and Miller.

Example 3.1.1. For n ≥ 3, let Sn = (X,P) be the height 2 poset with X = {a1, . . . , an} ∪

{b1, . . . , bn}, {a1, . . . , an} = min(X,P), {b1, . . . , bn} = max(X,P), and ai < bj in P if and only if

i 6= j, for i, j = 1, . . . , n. The poset Sn is called the standard example of an n-dimensional poset. A

diagram of S5 is given below.

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Figure 3.2: The standard example S5 of a 5-dimensional poset.

Proof. For each i = 1, . . . , n define a linear order Li on X by

Li = [ai, . . . , ai−1, ai+1, . . . , an, bi, ai, b1, . . . , bi−1, bi+1, . . . , bn].

14

Then {L1, . . . , Ln} is a realizer, so dim(Sn) ≤ n. On the other hand, we claim that dim(Sn) ≥ n.

Define a function f : [n]→ [t] as follows. For each i ∈ [n], note that ai ‖ bi in Sn. So we may choose

f(i) as some j ∈ [t] for which bi < ai in Lj .

We now show that f is an injection. Suppose on the contrary that there exists a pair i1, i2 with

1 ≤ i1 < i2 ≤ n and f(i1) = f(i2) = j. Then bi1 < ai1 in Lj and bi2 < ai2 in Lj . However, aa2 < bi1

in P and aa1 < bi2 in P , so ai2 < bi1 in Lj and ai1 < bi2 in Lj . Thus, ai2 < bi1 < ai1 < bi2 < ai2 in

Lj which is clearly false. Since f is an injection, we conclude that dim(X,P) = t ≥ n as claimed.

Our goal now is to show that dimension is well defined, and to show the connection between

dimension and width. Before doing so, we prove an admittedly elementary result which turns out

to be quite useful.

When (X,P) is a poset, we let inc(X,P) = {(x, y) ∈ X ×X : x ‖ y in P}. An alternating cycle

in (X,P) is a sequence {(xi, yi) : i ∈ [k]} of ordered pairs from inc(X,P) with yi ≤ xi+1 in P for

i ∈ [k − 1] and yk ≤ x1 in P . The integer k is called the length of the cycle. A strict alternating

cycle is an alternating cycle if yi ≤ xj in P if and only if j = i+ 1, or i = k and j = 1. For a binary

relation R on a set X, let tr(R) denote the transitive closure of R. Then tr(R) = {(x, y) ∈ X ×X :

there exists a sequence u1, . . . , un so that (ui, ui+1) ∈ R for i ∈ [n− 1], u1 = x, un = y}.

Lemma 3.1.1 (Trotter and Moore [19]). Let (X,P) be a poset and let S ⊆ inc(X,P). Then the

following statements are equivalent:

1. tr(P ∪ S) is not a partial order on X.

2. S contains an alternating cycle.

3. S contains a strict alternating cycle.

Proof. To prove the theorem, we show that (3) =⇒ (2), (2) =⇒ (1), and (1) =⇒ (3). Since

every strict alternating cycle is an alternating cycle, (3) =⇒ (2).

(2) =⇒ (1) Let T = tr(P ∪ S). Suppose that (x1, y1), . . . , (xk, yk) is an alternating cycle in

(X,P) of length k. Since (yi, xi+1) ∈ P for i ∈ [k − 1], (xi, xi+1) in T for i ∈ [k]. Suppose on the

contrary T is a partial order on X. Then Q is antisymmetric, so x1 = . . . = xk. However (xi, yi) ∈ T

and (yi, xi+1) ∈ T implies xi = yi = xi+1 for i ∈ [k]. This contradicts xi ‖ yi in P for i ∈ [k]. Thus

(2) =⇒ (1).

(1) =⇒ (3) Since T is reflexive and transitive, but not a partial order, it must not be antisym-

metric. Hence, we may choose a sequence u1, . . . , un of points in X with minimal n of which not all

15

are equal and (ui, ui+1) ∈ P ∪S for i ∈ [n]. Since P is antisymmetric and P ∩S = ∅, we may assume

that (u1, u2) ∈ S. Then set x1 = u1 and y1 = u2. Suppose we define a pair (xi, yi) with yi = uj

for some j ∈ {2, . . . , k}. If (uj , uj+1) ∈ S, set xi+1 = yi = uj and yi+1 = uj+1. If (uj , uj+1) ∈ P ,

then (uj+1, uj+2) ∈ S, otherwise we contradict minimality of n. In this case, set xi+1 = uj+1 and

yi+1 = uj+2. It is easy to verify that this yields a strict alternating cycle.

We may now achieve our goals for this section. First we show that every poset has a linear

extension.

Proposition 3.1.2 (Szpilrajn). Let (X,P) be a poset. Then P has a linear extension.

Proof. Let (E,R) be the poset of all extensions of P ordered by inclusion. Let M be a maximal

element in (E,R). IfM is not a linear extension, then choose (x, y) ∈ inc(X,M) and set S = {(x, y)}.

S does not contain an alternating cycle since |S| = 1. So P ⊆M ⊂ tr(M ∪ S). This contradicts M

being maximal and thus M must be a linear extension of P .

Next we show every poset has a realizer, and thus, that the concept of dimension is well defined.

Theorem 3.1.3. Let (X,P) be a poset and let E be the set of all linear extensions of P . Then

P = ∩E

Proof. If (X,P) is a chain, then E = {P} and so P = ∩E. So we may assume (X,P) is not

a chain. For each (x, y) ∈ inc(X,P), let S(x, y) = {(x, y)} Then S(x, y) does not contain an

alternating cycle since |S| = 1. Let L(x, y) be any linear extension of tr(P ∪ S(x, y)). Then

P ⊆ ∩E ⊆ ∩(x,y)∈inc(X,P)L(x, y) ⊆ P .

Theorem 2.2.1 is often referred to as Dilworth’s Theorem. However, Theorem 2.2.1 was in fact

presented as a lemma which was used to prove Dilworth’s main theorem. In particular, Dilworth’s

Theorem shows that the width of a poset cannot exceed its dimension. Before we prove the theorem,

we prove a lemma by Hiraguchi.

Lemma 3.1.4 (Hiraguchi [10]). Let (X,P) be a poset and let C ⊆ X be a chain. Then there exist

linear extensions L1 and L2 of P so that:

1. y < x in L1 for every x, y ∈ X with x ∈ C and x ‖ y in P , and

2. x < y in L2 for every x, y ∈ X with x ∈ C and x ‖ y in P .

Proof. Let S1 = {(y, x) ∈ X ×X : x ∈ C, x ‖ y in P} and S2 = {(x, y) ∈ X ×X : x ∈ C, x ‖ yinP}.

Neither S1 nor S2 contain a strict alternating cycle. So Q1 = tr(P ∪ S1) and Q2 = tr(P ∪ S2) are

partial orders on X. Take L1 and L2 as linear extensions of Q1 and Q2 respectively.

16

We can now prove Dilworth’s Theorem.

Theorem 3.1.5 (Dilworth [7]). Let (X,P) be a poset. Then

dim(X,P) ≤ width(X,P)

.

Proof. Let (X,P) be a poset and let w be the width of (X,P). By Dilworth’s chain partitioning

theorem, X can be partitioned into w chains C1, . . . , Cw. For each chain Ci we use Lemma 3.1.4 to

choose a linear extension Li in P so that x < c in Li whenever c ∈ C and c ‖ x in P . In order to

show that {Li, . . . , Lw} is a realizer of P , it suffices to show that for every (x, y) ∈ inc(X,P), there

exists a j ∈ [w] with y < x in Lj . Let (x, y) ∈ inc(X,P). Then x ∈ Cj for some j ∈ [w]. By Lemma

3.1.4, y < x in Lj .

3.2 On-Line Width of d-Dimensional Posets

The on-line width olw(w, d) of the class of d-dimensional posets of width at most w is the largest

integer k for which there is a strategy that forces any on-line algorithm to use k chains to partition a

poset of this class. Researchers have found the analysis of the on-line chain partition game restricted

to d-dimensional posets to be as hard as the general problem and no better upper bound is known

for this class (even for d = 2). In [4], a strategy that forces
(
w+1
2

)
chains is provided. However, they

include the restriction that the poset must also be contructed in an upgrowing manner. It can be

shown that the poset construct using Szemeredi’s argument in Theorem 2.3.7 has dimension at most

2. In Section 3.6, we prove Theorem 3.0.1 improves the lower bound to match that of the general

problem.

3.3 On-Line Width of d-Dimensional Posets with Representation

The on-line width olwR(w, d) of the class of d-dimensional posets of width at most w with represen-

tation is the largest integer k for which there is a strategy that forces any algorithm to use k chains

to partition a poset of this class presented via its embedding in Rd or equivalently, by providing

on-line a realizer of size d. This variant was first analyzed by Kierstead, McNulty and Trotter [15].

They constructed an on-line algorithm which uses at most
(
w+1
2

)d−1
chains.

Theorem 3.3.1 (Kierstead, McNulty and Trotter [15]). For every pair of integers (w, d) such that

1 ≤ d ≤ w, olwR(w, d) ≤
(
w+1
2

)d−1
17

Proof. To prove the theorem, we show that Beth has a strategy which uses at most
(
w+1
2

)d−1
chains

to partition a poset of width at most w and dimension d inductively on d. If d = 1, then Anna

presents a chain and Beth colors every point the same color.

Let (X,P) be the presented poset of width w and dimension d > 1, and let {L1, . . . , Ld} be the

presented realizer. Define the partial order P 2 on X by P ∗ = L1 ∩ . . . ∩ L∗d. Note that every chain

in P ∗ is an antichain in P and so height(X,P) ≤ width(X,P) ≤ w. If Y induces an antichain in

P ∗, then the poset induced by Y in P is (Y,L1 ∩ . . . ∩ Ld−1|Y). Therefore, Y induces a subposet of

(X,P) with dimension at most d− 1.

During the game, Beth uses Schmerl’s algorithm to provide an on-line antichain partition of

(X,P ∗) of size at most
(
h+1
2

)
≤
(
w+1
2

)
where h is the height of (X,P ∗). Each antichain A in the

antichain partition induces a subposet (A,P |A) which has width at most w and L1|A, . . . , Ld−1|A

is a realizer of size d − 1. Thus, it can be partitioned recursively into
(
w+1
2

)d−2
chains. Altogether

Beth uses at most
(
w+1
2

)d−2
chains.

Until recently, the best strategy forced only
(
w+1
2

)
chains. In Section 3.7, we construct a strategy

for every integer d > 1 and provide the first lower bound which depends on the dimension of the

poset constructed. More importantly, it provides the best known lower bound for olwR(w, d)

3.4 Notation

Let (X,P) be a poset. If R ⊂ X, then D[R] is the union of the down-sets of each point in R. Let

U and V be disjoint subsets of X. We say that U < V if for any point u ∈ U and any point v ∈ V ,

u < v. We say that U and V are completely comparable if for any point u ∈ U and any point v ∈ V ,

u and v are comparable. Similarly, we say that U and V are completely incomparable if for any

point u ∈ U and any point v ∈ V , u and v are incomparable.

Suppose Anna has constructed the poset (X,P) and Beth has assigned every point x ∈ X a

color of a chain in the partition. Let x be an arbitrary point in X. We let φ(x) denote the round

that x was introduced and c(x) denote the color or chain to which x was assigned to. That is, if

x was introduced in round i and was assigned the color j, then we say φ(x) = i and c(x) = j. If

U is a subset of X, then we let ‖U‖ denote the number of distinct colors in U . More specifically,

‖U‖ = |{k : c(u) = k for some u ∈ U}|. Finally we call U a rainbow set if all points in U were

assigned a different color, that is, if ‖U‖ = |U |.

18

3.5 Algorithms for Constructing Linear Orders

We present two algorithms Lα(k,w) and Lβ(k,w). On their own, each one merely constructs a chain.

However, together they provide a realizer of cardinality 2 forcing
(
w+1
2

)
colors. More importantly,

they later serve as key building blocks for proving Theorems 3.0.1 and 3.0.2.

3.5.1 The First Linear Order Algorithm

Let w and k be positive integers such that k ≤ w. We define the algorithm Lα(k,w) in two stages.

For the entirety of this Chapter, we use the notation Si to denote the set of points introduced in

Stage i.

3.5.2 Stage 1

Suppose that during round i−1, Anna has constructed a chain Lα on the set of points {x1, . . . , xi−1}

and every point has been assigned a color from {1, . . . , c} with c < w. If k < w, then in round i,

Anna introduces a new point xi and places it at the top of Lα. If k = w, then in round i, Anna

traverses up Lα and inserts a new point xi immediately below the first point y such that c(y) = c(z)

for some point z < y. (If no such point exists, Anna traverses all the way up Lα and the new point

will be placed at the top.)

If Beth declares c(xi) = w, then Anna moves onto Stage 2. Otherwise, Anna repeats Stage 1.

3.5.3 Stage 2

Suppose Stage 1 ends in round N . If k < w, Anna plays Lα(k,w − 1) completely under x1 so

that S2 < S1. If k = w, there are two cases. If xN is the top element in Lα, then Anna plays

Lα(w−1, w−1) completely above xN . Otherwise, if xN <: y in Lα, then Anna plays Lα(w−1, w−1)

completely above xN and completely below y so that xN < S2 < y.

3.5.4 The Second Linear Order Algorithm

Let w and k be positive integers such that k ≤ w. We define the algorithm Lβ(k,w) in two stages.

3.5.5 Stage 1

Suppose that during round i−1, Anna has constructed a chain Lβ on the set of points {x1, . . . , xi−1}

and every point has been assigned a chain from {1, . . . , c} with c < w. If k < w, then in round

19

i, Anna traverses up Lβ and inserts a new point xi immediately below the first point y such that

c(y) = c(z) for some point z < y (or at the top, if no such point exists). If k = w, then in round i,

Anna introduces a new point xi and places it at the top of Lβ .

If Beth declares c(xi) = w, then Anna moves onto Stage 2. Otherwise, Anna repeats Stage 1.

3.5.6 Stage 2

Suppose Stage 1 ends in round N . If k < w there are two cases. If xN is the top element in Lβ ,

then Anna plays Lβ(k,w − 1) completely above xN . Otherwise, if xN <: y in Lβ , then Anna plays

Lβ(k,w − 1) completely above xN and completely below y so that xN < S2 < y in Lα. If k = w,

Anna plays Lβ(w − 1, w − 1) completely below x1 so that S2 < S1.

k = w k < w

Lα

Lβ
xwNxw−1N−1x24x23x12x11

Lβ(w − 1, w − 1)

xwNxw−1N−1x24x23x12x11
Lα(k,w − 1)

x11 x
2
3

xwN
Lα(w − 1, w − 1)

x12x24xw−1N−1

x11 x
2
3

xwN
Lβ(k,w − 1)

x12x24xw−1N−1

Figure 3.3: R(k,w) on a greedy algorithm with colors as superscipts.

3.5.7 A Strategy for Anna

We now define a strategy R(k,w) which constructs a poset (X,Lα ∩ Lβ) by using Lα(k,w) to

construct Lα and Lβ(k,w) to construct Lβ . The following property is elementary to check but is

stated for emphasis.

Proposition 3.5.1. Let w, k1 and k2 be positive integers such that k1 < k2 ≤ w. The strategies

R(k1, w) and R(k2, w) construct the same poset for any on-line chain partitioning algorithm.

In the case when k = w, we write R(w), Lα(w), and Lβ(w) instead of R(w,w), Lα(w,w), and

Lβ(w,w) for convenience. We prove the following theorem for completeness, and to illustrate our

terminology. We use the term rainbow chain for a chain in the poset in which every element received

different color.

Theorem 3.5.2 (Szemerédi). The strategy R(w) forces
(
w+1
2

)
colors on a poset (X,P) of width w.

Proof. We argue by induction on the positive integer w. If w = 1, then R(1) simply introduces a

single point. Suppose w > 1. Let x, y and z be three distinct points introduced in Stage 1. Suppose

20

that c(x) = c(y) = c(z). Without loss of generality, we may assume that x < y < z in P and hence

in both Lα and Lβ . The algorithm Lβ(k) guarantees that φ(x) < φ(y) < φ(z) but the round z was

introduced, it would have been inserted below y in Lα which is a contradiction. Hence, there are at

most two points in S1 assigned the same color. This implies that Stage 1 ends with Anna forcing w

colors.

Suppose in round i − 1, the point xi−1 was introduced and assigned the color a. Now suppose

that in round i, the point xi is introduced. If a is a new color, then clearly xi must be placed

immediately above xi−1 in Lα. If a is an old color, then there exists a unique point y such that

c(y) = a. Since φ(y) < φ(xi−1), y < xi−1 in Lβ and consequentially in Lα. Hence, xi must be

placed immediately below xi−1 in Lα. It is easy to see that if z is the last point introduced in Stage

1, then the down-set D[z] of z induces a rainbow chain of size w and S1 \D[z] induces an anti-chain

of size at most w − 1. Since every point introduced in Stage 2 is incomparable to D[z], and by the

induction hypothesis, Stage 2 forces
(
w
2

)
colors on the poset (S2, P |S2

) of width w − 1, the strategy

R(w) forces
(
w+1
2

)
colors on a poset of width w.

The previous proof highlights the rainbow chain induced by the down-set D[z] of the last point

z introduced in Stage 1. By the recursive nature of R(k,w), we are actually always guaranteed a

sequence of rainbow chains C1, . . . , Cw satisfying the following property.

We say that a sequence of chains C1, . . . , Cw has the Rainbow Property if it satisfies the following

conditions:

1. If x ∈ Ci and y ∈ Cj for i 6= j, then x‖y.

2. If x and y are distinct points in
⋃w
i=1 Ci, then c(x) 6= c(y).

3. |Ci| = i for every 1 ≤ i ≤ w.

4. If x ∈
⋃w
i=1 Ci and y < x in P , then y ∈

⋃w
i=1 Ci.

In other words, C1, . . . , Cw induce incomparable rainbow chains of size 1, . . . , w respectively whose

union is a rainbow set, and if C =
⋃w
i=1 Ci, then D[C] = C.

We state and prove the following lemma for completeness.

Lemma 3.5.3. Let w be a fixed positive integer. The strategy R(k,w) constructs a poset (X,P) in

such a way that X contains a sequence of chains C1, ..., Cw which has the Rainbow Property.

Proof. It suffices to show that the strategy R(w) constructs the desired poset. We argue by induction

on the positive integer w. If w = 1, then Anna only introduces a single point x and X = {x} = C1.

21

Suppose w > 1 and Anna plays the strategy R(w) which results in the poset (X,P).

By the induction hypothesis, the set X|S2
contains a sequence of chains

C1, . . . Cw−1 with the Rainbow Property. Let z denote the last point introduced in Stage 1 of R(w)

and let Cw = D[z]. We show that C1, . . . , Cw satisfies each condition.

(1) Let x and y be distinct points such that x ∈ Ci and y ∈ Cj for i 6= j. If i 6= w and j 6= w, then

by the induction hypothesis, x and y are incomparable in P . Without loss of generality, suppose

j = w. Since y ≤ z < x in Lα and x < y in Lβ , x and y are incomparable in P .

(2) Let x and y be distinct points in
⋃w
i=1 Ci. If x and y are in distinct chains, then by (1), x

and y are incomparable and hence c(x) 6= c(y). Suppose x and y are points in the same chain Ci

for some positive integer i ≤ w. If i < w, then by the induction hypothesis, c(x) 6= c(y). Suppose

i = w. Without loss of generality, we may assume x < y < z in Lα. Since z was introduced after x

and y, c(x) 6= c(y).

(3) From Lemma 3.2, we know that |Cw| = w. By the induction hypothesis, |Ci| = i for

1 ≤ i ≤ w − 1.

(4) Let C =
⋃w
i=1 Ci. By definition, D[Cw] = D[z] = Cw. By the the induction hypothesis,

D[C ∩ S2] = C ∩ S2. Since Cw = C ∩ S1, D[C] = C.

Thus, C1, . . . , Cw has the Rainbow Property and the proof is complete.

While the proof to the following lemma is not hard, everything up to this point was set up so

that it would hold true as it is the key to proving Theorems 3.0.1 and 3.0.2.

Lemma 3.5.4. Let (X,P) be a poset constructed by R(k,w) with representation {Lα, Lβ}. Suppose

C1, . . . , Cw is the sequence of chains in X that has the Rainbow Property. If u and v are distinct

points such that u ∈ Ck and v ∈ X \ Ck, then u < v in Lα.

Proof. Let u and v be distinct points such that u ∈ Ck and v ∈ X \ Ck. We argue by induction

on the positive integer w. If w = 1, then R(k,w) ends after introducing a single point x so that

X = {x} = C1.

Suppose w > 1 and k ≤ w. If k < w, then in Stage 2, Anna plays Lα(k,w− 1) completely below

S1 in Lα. By the induction hypothesis, u < v′ in Lα for v′ ∈ S2 \ Ck. Since S2 < S1 in Lα, u < v

in Lα. If k = w, then in Stage 2, Anna plays Lα(w − 1, w − 1) completely above Cw in Lα. Thus

u < v in Lα.

22

3.6 Proof of Theorem 3.0.1

Taking inspiration from the techniques used in [4], we modify the strategy R(k,w) to obtain a new

strategy S(w) for Anna which will force Beth to use (2− o(1))
(
w+1
2

)
colors on a 2-dimensional poset

(X,P) of width w.

3.6.1 The Strategy for Anna

We define the strategy S(w) for Anna recursively on the positive integer w. The strategy S(w)

is completed in three stages. Anna constructs a realizer R of size 2w during the first two stages

but only presents the poset (X,P) where P = ∩R. In Stage 3, Anna finishes the game by playing

S(w − 1) on the remaining points in a specific way. After the game is over, we show that only two

linear extensions in R are needed to realize (X,P). Let w > N for some sufficiently large N .

3.6.2 Stage 1

For each positive integer k ≤ w, Anna constructs two linear orders Ak and Bk by following the

algorithms Lα(k,w) and Lβ(k,w) respectively.

Notice that Ak ∩Bk = P for every k ≤ w. The set S1 contains a sequence of chains C1, . . . , Cw

with the Rainbow Property. Moreover, if u ∈ Ck and v ∈ S1 \Ck, then u < v in Ak for every k ≤ w.

3.6.3 Stage 2

For every positive integer k ≤ w, Anna updates Ak and Bk by applying the dual algorithms L∗β(w,w)

and L∗α(w,w) completely under S1 in Ak and Bk respectively so that S2 < S1 in both Ak and Bk.

The set S2 contains a sequence of chains D1, . . . , Dw with the Rainbow Property with respect to the

dual P ∗ of P . Moreover, if u ∈ Dw and v ∈ S2 \Dw, then v < u in Bk for every k ≤ w.

3.6.4 Stage 3

We let t denote an integer such that ‖Ct ∪Dw‖ > 2w −
√

2w = (2 − o(1))w. (A routine counting

argument shows that such t always exists.) Anna plays S(w − 1) for the remainder of the game in

such a way that S2 \Dw < S3 < S1 \ Ct but S3 and Ct ∪Dw are completely incomparable in P .

23

3.6.5 The Result

Let C be a maximal chain containing Ct ∪Dw. It is easy to see that (S1 ∪S2) \C induces a poset of

width w − 1. By the induction hypothesis, S(w − 1) forces (2− o(1))
(
w
2

)
colors on a poset of width

w − 1. Since S3 and X \ C are completely comparable, X \ C induces a poset of width w − 1, and

thus, (X,P) is a poset of width w. Moreover, since S3 and Ct ∪Dw are completely incomparable,

S(w) forces (2− o(1))
(
w+1
2

)
colors on (X,P).

We claim that (X,P) is 2-dimensional. Notice that At ∩ Bt = P |S1∪S2
. By the induction

hypothesis, the poset (S3, P |S3
) is 2-dimensional. Let A and B be linear extensions of P |S3

such

that A ∩B = P |S3 . We define a linear extension L1 of P in such a way that At ∪A ⊂ L1 and

S2 < Ct < S3 < S1 \ Ct in L1.

We define a second linear extension L2 of P in such a way that Bt ∪B ⊂ L2 and

S2 \Dw < S3 < Dw < S1 in L2.

Thus R = {L1, L2} is a realizer of P of cardinality 2. This completes the proof.

3.7 Proof of Theorem 3.0.2

In this variant of the game, Anna does not have the luxury of hiding the realizer from Beth. Each

round, Anna must present a poset (X,P) with representation in the form of a realizer R of size d.

Hence, we must be more selective when constructing the linear extensions. We modify the strategy

R(k,w) again to obtain a new strategy S(d,w) for Anna which will force Beth to use (2 − 1
d−1 −

o(1))
(
w+1
2

)
colors on an d-dimensional poset (X,P) of width w presented with representation.

3.7.1 The Strategy for Anna

We fix the positive integer d and define the strategy S(d,w) for Anna recursively on the positive

integer w. Anna constructs a poset (X,P) by presenting a realizer R of size d. Let d and w be

positive integers. Anna constructs R by constructing d linear extensions Lw−d+2, . . . , Lw, Lw+1. In

order to handle the case when w < d− 1, we extend the algorithm Lα(k,w) to be defined for k < 1

as follows: If k < 1, then Lα(k,w) = Lα(w,w). The strategy S(d,w) is completed in three stages.

24

3.7.2 Stage 1

For each integer i such that w− d+ 2 ≤ i ≤ w, Anna constructs the linear extension Li by following

the algorithm Lα(i, w). Anna simultaneously constructs Lw+1 by following the algorithm Lβ(w,w).

Notice that Lw ∩ Lw+1 = P |S1 . The set S1 contains a sequence of chains C1, . . . , Cw with the

Rainbow Property with respect to P |S1
. Moreover, if u ∈ Ci and v ∈ S1 \ Ci, then u < v in Li for

w − d+ 2 ≤ i ≤ w.

3.7.3 Stage 2

For each integer i such that w − d + 2 ≤ i ≤ w, Anna updates Li by following the dual algorithm

L∗β(w,w) completely under S1 in Li. Anna simultaneously updates Lw+1 by following the dual

algorithm L∗α(w,w) completely under S1 in Lw+1.

The dual S2 contains a sequence of chains D1, . . . , Dw with the Rainbow Property with respect

to the dual P ∗ of P . Moreover, if u ∈ Dw and v ∈ S2 \Dw, then v < u in Lw+1.

3.7.4 Stage 3

We let t denote an integer such that w − d + 2 ≤ t ≤ w and ‖Ct ∪Dw‖ ≥ 2w − w
d−1 −

d−2
2 . (The

existence of such t will be shown later.) For each integer i such that w − d + 2 ≤ i ≤ w + 1, Anna

plays the points S3 of Stage 3 in Li in such a way that the following inequalities hold:

1. S2 < Ct < S3 < S1 \ Ct in Lt

2. S2 \Dw < S3 < Dw < S1 in Lw+1

3. S2 < S3 < S1 in Li for i /∈ {t, w + 1}.

It remains to be defined the linear extension on S3 that Anna uses in Li. Anna will play

Lα(i− 1, w− 1) for each integer i such that w = d+ 2 ≤ i < w, and Lβ(w− 1, w− 1) for i = w+ 1.

3.7.5 The Result

Let C be a maximal chain containing Ct ∪ Dw. It is easy to see that (S1 ∪ S2) \ C induces a

poset of width w − 1. By the induction hypothesis, S3 induces a poset of width w − 1. Since

S2 \Dw < S3 < S1 \ Ct in every linear extension, S3 and X \ C are completely comparable. Since

S3 and X \ C are completely comparable, X \ C induces a poset of width w − 1, and thus, (X,P)

is a poset of width w.

25

Since Dw < Ct < S3 in Lt and S3 < Dw < Ct in Lw+1, S3 and Ct ∪ Dw are completely

incomparable. Thus, if there exists a t as defined in Stage 3, then S(d,w) forces at least

w∑
i=1

(
2i− i

d− 1
− d− 2

2

)
=

(
2− 1

d− 1
− o(1)

)(
w + 1

2

)

colors on a poset (X,P) of width at most w. Therefore, all that is left to show is that such a t exists.

Let C ′ =
⋃w
i=w−d+2 Ci. Each color from Dw may only be used once in C ′ and |C ′| = w(d −

1) − 1
2 (d − 1)(d − 2). If we let C ′′ denote the set of points not colored with colors from Dw, then

|C ′′| ≥ w(d − 1) − 1
2 (d − 1)(d − 2) − w. On average each chain has w − 1

2 (d − 2) − w
d−1 colors

distinct from those in Dw. Thus there must exist an integer t such that w − d + 2 ≤ t ≤ w and

‖Ct ∪Dw‖ ≥ 2w − w
d−1 −

d−2
2 .

26

CHAPTER 4

ON-LINE WIDTH OF SEMI-ORDERS

In this chapter, we focus on the on-line width olwsR(w) of the class of semi-orders presented in

the form of an interval representation and improve upon previously known bounds by proving the

following result.

Theorem 4.0.1. For every w ≥ 2, olwsR(w) ≥ d 32we.

In Section 4.1, we provide the necessary background on interval orders and semi-orders. In Section

4.2, 4.3, 4.4 and 4.5, we define the on-line width of interval orders, interval orders with representation,

semi-orders and semi-orders with represention respectively, and provide a brief summary of previous

results for each. Finally in Section 4.6, we prove Theorem 4.0.1.

4.1 Introduction to Interval Orders and Semi-orders

A poset (X,P) is an interval order if there is a function I which assigns to each element x ∈ X a

closed interval I(x) = [lx, rx] on the real line so that for all x1, x2 ∈ X we have x1 < x2 if and only

if rx1
< lx2

. We call I an interval representation of (X,P). Of course, the interval representation is

not unique.

c d

a b

I(d) I(b)

I(c) I(a)

Interval orders have a characterization in terms of forbidden subposets. The following theorem

was first given explicitly by Fishburn.

Theorem 4.1.1. A poset (X,P) is an interval order if and only if it does not contain the subposet

2 + 2 below.

This immediately implies the following.

Corollary 4.1.2. If n ≥ 2, then Sn is not an interval order.

27

c d

a b

While the theory of interval orders is rich, we do not need more than this for our studies.

An interval order (X,P) is a semi-order if there is an interval representation I assigning to each

element x ∈ X a closed unit-length interval I(x) = [rx − 1, rx] on the real number line so that for

all x1, x2 ∈ X we have x1 < x2 if and only if rx1 < rx2 − 1.

Similarly, semi-orders have a characterization in terms of forbidden subposets. Clearly, semi-

orders cannot contain a 2 + 2.

Theorem 4.1.3. An interval order (X,P) is a semi-order if and only if it does not contain the

subposet 3 + 1 below.

a b

a

c

It is important to point out that the restriction on the intervals in the representation can be

weakened and still define the same class of semi-orders.

Proposition 4.1.4. An interval order (X,P) is a semi-order if there is an interval representation

I assigning to each element x ∈ X a closed interval I(x) = [lx, rx] on the real number line so that

for all x1, x2 ∈ X we have x1 < x2 if and only if rx1 < rx2 − 1, and neither I(x1) nor I(x2) is

contained in the interior of the other. We call the representation a proper representation of (X,P)

and refer to the intervals as proper intervals.

4.2 On-Line Width of Interval Orders

The on-line width olwi(w) of the class of interval orders of width at most w is the largest integer k

for which there exists a strategy that forces any algorithm to use k chains to partition an interval

order of width w. This variant was solved by Kierstead and Trotter in the early 80’s.

28

Theorem 4.2.1 (Kierstead and Trotter [16]). For every w ≥ 1, olwi(w) = 3w − 2.

Proof. We argue by induction on the width w of the poset (X,P). If w = 1, then the result is trivial.

Assume that there exists a strategy S(w) that forces 3w− 2 chains for w ≤ k and suppose (X,P) is

a poset of width w = k + 1. The strategy consists of two stages.

Stage 1

We begin by playing the strategy S(k) enough times in such a way that each subsequent S(k)

is completely above the previous one. We stop once we have 4 sets of points S1, S2, S3, S4 with

S1 < S2 < S3 < S4 with each having forced the same 3k − 2 chains. We can guarantee this by the

pigeonhole principle.

S1 S2 S3 S4

Figure 4.1: Stage 1 ends with subposets S1, S2, S3, S4 consisting of the same 3k − 2 colors. The
subposets are depicted left to right instead of bottom to top as if it were an interval representation.

Stage 2

Suppose Stage 1 ends in round t− 1. In round t, Anna introduces a point xt so that a ‖ S1 and

xt < S2. Since xt is incomparable with every point in S1, without loss of generality, xt must be

assigned a new color 3k − 1. Anna then introduces a point xt+1 so that xt+1 ‖ S4 and xt+1 > S3.

At this point there are two possibilities. Beth can either assign xt+1 a new color 3k or Beth can

assign xt+1 the color 3k − 1.

S1 S2 S3 S4

xt xt+1

Figure 4.2: Here is what an interval representation may look like after introducing points xt and xt1
during Stage 2.

If Beth assigns xt+1 a new color, then we introduce a point xt+2 so that S1 < xt+2 < S4 and

xt+2 ‖ ({xt, xt+1} ∪ S2 ∪ S3). Beth cannot assign xt+2 a color from [k] since xt+2 ‖ S2. Beth also

cannot assign xt+2 the color 3k − 1 or the color 3k since xk+2 ‖ {xt, xt+1}. Thus Beth must assign

xt+2 a new color 3k + 1.

If Beth assigns xt+1 the color 3k − 1, then Anna introduces two more points xt+2 and xt+3 so

that

S1 < xt+2 < S3

29

S1 S2 S3 S4

xt xt+1
xt+2

Figure 4.3: The end game if Beth assigns xt+1 a new color.

xt+2 ‖< xt ∪ S2

S2 < xt+3 < S4

xt+3 ‖ {xt+2, xt+1} ∪ S3.

S1 S2 S3 S4

xt xt+1
xt+2

xt+3

Figure 4.4: The end game if Beth assigns xt+1 the color 3k − 1.

Beth is forced to assign xt+2 a new color 3k. Finally Beth is forced to assign xt+3 a new color

3k + 1. Since 3w − 2 = 3(k + 1)− 2 = 3k + 1, this concludes the proof of the lower bound.

Proof of upper bound. In order to prove the upper bound, we present the following algorithm

A(w) and argue inductively that it needs at most 3w − 2 chains. If w = 1, Beth colors every point

with 1 color.

Beth maintains a partition of the elements of the ground set X into two sets U and V so that

U induces a poset of width at most w− 1. When Anna presents a new point x, Beth adds x to U if

adding x to U does not increase the width of U to w, otherwise, x is added to V . Beth partitions

U recursively by using the algorithm A(w− 1). By the induction hypothesis, at most 3w− 5 colors

are used in U . Hence, it suffices to show that at most 3 colors are used in V .

Let v′ ∈ V . Then v′ is part of an antichain v′, u1, . . . , uw−1 where ui ∈ U otherwise v would

have been added to U instead of V . Now fix an interval representation I of (X,P). We know that

I(u1) ∩ . . . ∩ I(uw−1) 6= ∅. Let r ∈ R be any real number in the intersection. Notice that no other

interval I(v) can contain r, otherwise (X,P) would contain an antichain of size w+1. Hence, no two

intervals in {I(v) : v ∈ V } contain each other. Moreover, no interval I(v) with v ∈ V is contained in

the union of all other intervals in {I(v) : v ∈ V }. Then, the co-compararability graph of the poset

induced on V is a subgraph of a path. Thus, Beth can use any greedy algorithm such as First Fit

to color points in V . In total, Beth uses 3w − 5 + 3 = 3w − 2 colors to partition (X,P).

30

v′

U

V

I(u1) ∩ . . . ∩ I(uw−1)

Figure 4.5: Interval representation of (X,P) partitioned into U and V .

Figure 4.6: The co-compararability graph of the poset induced on V is a subgraph of a path.

4.3 On-Line Width of Interval Orders with Representation

The on-line width olwiR(w) of the class of interval orders of width at most w with representation is

the largest integer k for which there exists a strategy that forces any algorithm to use k chains to

partition an interval order of width w presented as intervals. This means that instead of presenting

the elements of the interval order as points, the elements are presented as intervals. These intervals

provide an interval representation for a unique poset (X,P). This variant of the problem was solved

by Chrobak and Ślusarek.

Theorem 4.3.1 (Chrobak and Ślusarek [5]). For every w ≥ 1, olwiR(w) = 3w − 2.

Proof. Presenting the interval order (X,P) as intervals instead of points only makes Beth stronger.

Therefore, the upper bound of 3w − 2 comes directly from the variant without representation.

For the lower bound, the exact strategy from the variant without representation works. Only

difference is that the elements are presented as intervals instead of points.

After the last result, one may wonder if presented an interval order as intervals instead of points

makes any difference. While in the general case, it did not, restricting the lengths of the intervals

seems to potentially change the result depending on if the elements are presented as intervals or not.

31

4.4 On-Line Width of Semi-Orders

The on-line width olws(w) of the class of semi-orders of width at most w is the largest integer k for

which there exists a strategy that forces any algorithm to use k chains to partition a semi-order of

width w. Chrobak and Ślusarek showed that first-fit needs at most 2w− 1 chains, and over 20 years

later, Bosek, Felsner, Kloch, Krawczyk, Matecki and Micek showed that any on-line algorithm can

be forced to use 2w − 1 chains.

Theorem 4.4.1 (Chrobak and Ślusarek [5], Bosek et al. [4]). For every w ≥ 1, olws(w) = 2w − 1.

Proof. In order to prove the upper bound, we show that First Fit uses at most 2w − 1 chains to

partition any poset of width at most w. To see that, simply consider an element x introduced by

Anna. Now let I be any interval representation of (X,P). Since no other interval can be contained

in the interior of I(x), any interval intersecting I(x) must contain one of the endpoints of I(x).

Hence, I(x) can intersect at most 2(w− 1) intervals. This concludes the proof for the upper bound.

In order to prove the lower bound we construct a strategy S(w) for Anna which forces Beth to

use 2w− 1 chains on a poset of width w. We begin by introducing an antichain A = a1, . . . , aw and

a second antichain B = b1, . . . , bw so that ai < bj for all i ∈ [w] and j ∈ [w]. Let B′ = bi1 , . . . , bik

with 2 ≤ k ≤ w denote the elements in B which were assigned chains already used in A. Notice that

if k = 0 or k = 1, then we are done. Hence we may assume k ≥ 2. Now let A′ = ai1 , . . . , aik denote

the elements in A such that aij and bij were assigned the same chain for j ∈ [k].

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

Figure 4.7: Subposet induced by antichains A and B in S(7).

Now, we introduce an antichain c1, . . . , ck−1 so that for each h ∈ [k − 1] (1) aij ≤ ch for j ∈ [h],

and

(2) ch ≤ bij fo h+ 1 ≤ j ≤ k − 1.

It is easy to verify that the width of the poset is w, the poset does not contain a 2 + 2 nor a

3 + 1, and in total, Beth must use 2(w − k) + k + (k − 1) = 2w − 1 chains.

32

ai1

bi1

c1

ai1

bi1

c2

ai1

bi1

c3

ai1

bi1

c4

ai1

bi2

c1

ai1

bi2

c2

ai1

bi2

c3

ai1

bi2

c4

ai1

bi3

c1

ai1

bi3

c2

ai1

bi3

c3

ai1

bi3

c4

ai1

bi4

c1

ai1

bi4

c2

ai1

bi4

c3

ai1

bi4

c4

ai1

bi5

c1

ai1

bi5

c2

ai1

bi5

c3

ai1

bi5

c4

ai1

bi6

c1

ai1

bi6

c2

ai1

bi6

c3

ai1

bi6

c4

ai1

bi7

c1

ai1

bi7

c2

ai1

bi7

c3

ai1

bi7

c4

ai2

bi1

c1

ai2

bi1

c2

ai2

bi1

c3

ai2

bi1

c4

ai2

bi2

c1

ai2

bi2

c2

ai2

bi2

c3

ai2

bi2

c4

ai2

bi3

c1

ai2

bi3

c2

ai2

bi3

c3

ai2

bi3

c4

ai2

bi4

c1

ai2

bi4

c2

ai2

bi4

c3

ai2

bi4

c4

ai2

bi5

c1

ai2

bi5

c2

ai2

bi5

c3

ai2

bi5

c4

ai2

bi6

c1

ai2

bi6

c2

ai2

bi6

c3

ai2

bi6

c4

ai2

bi7

c1

ai2

bi7

c2

ai2

bi7

c3

ai2

bi7

c4

ai3

bi1

c1

ai3

bi1

c2

ai3

bi1

c3

ai3

bi1

c4

ai3

bi2

c1

ai3

bi2

c2

ai3

bi2

c3

ai3

bi2

c4

ai3

bi3

c1

ai3

bi3

c2

ai3

bi3

c3

ai3

bi3

c4

ai3

bi4

c1

ai3

bi4

c2

ai3

bi4

c3

ai3

bi4

c4

ai3

bi5

c1

ai3

bi5

c2

ai3

bi5

c3

ai3

bi5

c4

ai3

bi6

c1

ai3

bi6

c2

ai3

bi6

c3

ai3

bi6

c4

ai3

bi7

c1

ai3

bi7

c2

ai3

bi7

c3

ai3

bi7

c4

ai4

bi1

c1

ai4

bi1

c2

ai4

bi1

c3

ai4

bi1

c4

ai4

bi2

c1

ai4

bi2

c2

ai4

bi2

c3

ai4

bi2

c4

ai4

bi3

c1

ai4

bi3

c2

ai4

bi3

c3

ai4

bi3

c4

ai4

bi4

c1

ai4

bi4

c2

ai4

bi4

c3

ai4

bi4

c4

ai4

bi5

c1

ai4

bi5

c2

ai4

bi5

c3

ai4

bi5

c4

ai4

bi6

c1

ai4

bi6

c2

ai4

bi6

c3

ai4

bi6

c4

ai4

bi7

c1

ai4

bi7

c2

ai4

bi7

c3

ai4

bi7

c4

ai5

bi1

c1

ai5

bi1

c2

ai5

bi1

c3

ai5

bi1

c4

ai5

bi2

c1

ai5

bi2

c2

ai5

bi2

c3

ai5

bi2

c4

ai5

bi3

c1

ai5

bi3

c2

ai5

bi3

c3

ai5

bi3

c4

ai5

bi4

c1

ai5

bi4

c2

ai5

bi4

c3

ai5

bi4

c4

ai5

bi5

c1

ai5

bi5

c2

ai5

bi5

c3

ai5

bi5

c4

ai5

bi6

c1

ai5

bi6

c2

ai5

bi6

c3

ai5

bi6

c4

ai5

bi7

c1

ai5

bi7

c2

ai5

bi7

c3

ai5

bi7

c4

ai6

bi1

c1

ai6

bi1

c2

ai6

bi1

c3

ai6

bi1

c4

ai6

bi2

c1

ai6

bi2

c2

ai6

bi2

c3

ai6

bi2

c4

ai6

bi3

c1

ai6

bi3

c2

ai6

bi3

c3

ai6

bi3

c4

ai6

bi4

c1

ai6

bi4

c2

ai6

bi4

c3

ai6

bi4

c4

ai6

bi5

c1

ai6

bi5

c2

ai6

bi5

c3

ai6

bi5

c4

ai6

bi6

c1

ai6

bi6

c2

ai6

bi6

c3

ai6

bi6

c4

ai6

bi7

c1

ai6

bi7

c2

ai6

bi7

c3

ai6

bi7

c4

ai7

bi1

c1

ai7

bi1

c2

ai7

bi1

c3

ai7

bi1

c4

ai7

bi2

c1

ai7

bi2

c2

ai7

bi2

c3

ai7

bi2

c4

ai7

bi3

c1

ai7

bi3

c2

ai7

bi3

c3

ai7

bi3

c4

ai7

bi4

c1

ai7

bi4

c2

ai7

bi4

c3

ai7

bi4

c4

ai7

bi5

c1

ai7

bi5

c2

ai7

bi5

c3

ai7

bi5

c4

ai7

bi6

c1

ai7

bi6

c2

ai7

bi6

c3

ai7

bi6

c4

ai7

bi7

c1

ai7

bi7

c2

ai7

bi7

c3

ai7

bi7

c4

ai1

bi1

c1

ai1

bi1

c2

ai1

bi1

c3

ai1

bi1

c4

ai1

bi2

c1

ai1

bi2

c2

ai1

bi2

c3

ai1

bi2

c4

ai1

bi3

c1

ai1

bi3

c2

ai1

bi3

c3

ai1

bi3

c4

ai1

bi4

c1

ai1

bi4

c2

ai1

bi4

c3

ai1

bi4

c4

ai1

bi5

c1

ai1

bi5

c2

ai1

bi5

c3

ai1

bi5

c4

ai1

bi6

c1

ai1

bi6

c2

ai1

bi6

c3

ai1

bi6

c4

ai1

bi7

c1

ai1

bi7

c2

ai1

bi7

c3

ai1

bi7

c4

ai2

bi1

c1

ai2

bi1

c2

ai2

bi1

c3

ai2

bi1

c4

ai2

bi2

c1

ai2

bi2

c2

ai2

bi2

c3

ai2

bi2

c4

ai2

bi3

c1

ai2

bi3

c2

ai2

bi3

c3

ai2

bi3

c4

ai2

bi4

c1

ai2

bi4

c2

ai2

bi4

c3

ai2

bi4

c4

ai2

bi5

c1

ai2

bi5

c2

ai2

bi5

c3

ai2

bi5

c4

ai2

bi6

c1

ai2

bi6

c2

ai2

bi6

c3

ai2

bi6

c4

ai2

bi7

c1

ai2

bi7

c2

ai2

bi7

c3

ai2

bi7

c4

ai3

bi1

c1

ai3

bi1

c2

ai3

bi1

c3

ai3

bi1

c4

ai3

bi2

c1

ai3

bi2

c2

ai3

bi2

c3

ai3

bi2

c4

ai3

bi3

c1

ai3

bi3

c2

ai3

bi3

c3

ai3

bi3

c4

ai3

bi4

c1

ai3

bi4

c2

ai3

bi4

c3

ai3

bi4

c4

ai3

bi5

c1

ai3

bi5

c2

ai3

bi5

c3

ai3

bi5

c4

ai3

bi6

c1

ai3

bi6

c2

ai3

bi6

c3

ai3

bi6

c4

ai3

bi7

c1

ai3

bi7

c2

ai3

bi7

c3

ai3

bi7

c4

ai4

bi1

c1

ai4

bi1

c2

ai4

bi1

c3

ai4

bi1

c4

ai4

bi2

c1

ai4

bi2

c2

ai4

bi2

c3

ai4

bi2

c4

ai4

bi3

c1

ai4

bi3

c2

ai4

bi3

c3

ai4

bi3

c4

ai4

bi4

c1

ai4

bi4

c2

ai4

bi4

c3

ai4

bi4

c4

ai4

bi5

c1

ai4

bi5

c2

ai4

bi5

c3

ai4

bi5

c4

ai4

bi6

c1

ai4

bi6

c2

ai4

bi6

c3

ai4

bi6

c4

ai4

bi7

c1

ai4

bi7

c2

ai4

bi7

c3

ai4

bi7

c4

ai5

bi1

c1

ai5

bi1

c2

ai5

bi1

c3

ai5

bi1

c4

ai5

bi2

c1

ai5

bi2

c2

ai5

bi2

c3

ai5

bi2

c4

ai5

bi3

c1

ai5

bi3

c2

ai5

bi3

c3

ai5

bi3

c4

ai5

bi4

c1

ai5

bi4

c2

ai5

bi4

c3

ai5

bi4

c4

ai5

bi5

c1

ai5

bi5

c2

ai5

bi5

c3

ai5

bi5

c4

ai5

bi6

c1

ai5

bi6

c2

ai5

bi6

c3

ai5

bi6

c4

ai5

bi7

c1

ai5

bi7

c2

ai5

bi7

c3

ai5

bi7

c4

ai6

bi1

c1

ai6

bi1

c2

ai6

bi1

c3

ai6

bi1

c4

ai6

bi2

c1

ai6

bi2

c2

ai6

bi2

c3

ai6

bi2

c4

ai6

bi3

c1

ai6

bi3

c2

ai6

bi3

c3

ai6

bi3

c4

ai6

bi4

c1

ai6

bi4

c2

ai6

bi4

c3

ai6

bi4

c4

ai6

bi5

c1

ai6

bi5

c2

ai6

bi5

c3

ai6

bi5

c4

ai6

bi6

c1

ai6

bi6

c2

ai6

bi6

c3

ai6

bi6

c4

ai6

bi7

c1

ai6

bi7

c2

ai6

bi7

c3

ai6

bi7

c4

ai7

bi1

c1

ai7

bi1

c2

ai7

bi1

c3

ai7

bi1

c4

ai7

bi2

c1

ai7

bi2

c2

ai7

bi2

c3

ai7

bi2

c4

ai7

bi3

c1

ai7

bi3

c2

ai7

bi3

c3

ai7

bi3

c4

ai7

bi4

c1

ai7

bi4

c2

ai7

bi4

c3

ai7

bi4

c4

ai7

bi5

c1

ai7

bi5

c2

ai7

bi5

c3

ai7

bi5

c4

ai7

bi6

c1

ai7

bi6

c2

ai7

bi6

c3

ai7

bi6

c4

ai7

bi7

c1

ai7

bi7

c2

ai7

bi7

c3

ai7

bi7

c4

bi1 bi2 bi3 bi4 bi5 bi6 bi7

Figure 4.8: Antichain C with all of its comparabilities in S(7) with 5 chains in common between A
and B.

4.5 On-Line Width of Semi-Orders with Representation

The on-line width olwsR(w) of the class of semi-orders of width at most w with representation is

the largest integer k for which there exists a strategy that forces any algorithm to use k chains to

partition a semi-order of width w presented as unit-intervals. The semi-order is presented in the

form of intervals instead of points, however, the intervals in this variant must all have length 1.

This problem was first considered by Chrobak and Ślusarek [5]. They showed that first-fit needs

at most 2w − 1 chains to partition a semi-order with representation. They also showed that any

greedy algorithm can be forced to use 2w− 1 chains. However, it remained unkown whether a more

optimal algorithm exists. Epstein and Levy [8] constructed a strategy which forces 3k chains on a

semi-order of width 2k presented with representation for any positive integer k. This provides the

following previously best known bounds.

b3
2
wc ≤ olwsR(w) ≤ 2w − 1

While progress continues to be made for the general problem, as well as other variants, no improve-

ments have been made to these bounds for almost 20 years. In this chapter, we improve the lower

bound slightly by presenting a strategy which forces 3k + 2 chains on a semi-order of width 2k + 1

presented with representation for any positive integer k.

Remark. Recall that there are in fact two choices of representation for the class of semi-

orders. In particular, we could have gone with a proper representation instead of the unit-interval

representation. Let olwsRP
(w) denote the on-line width of the class of semi-orders with proper

representation. It may be the case that olwsR(w) 6= olwsRP
(w). Moreover, since any set of unit-

intervals are proper and a proper representation may contain intervals of different lengths, we only

know that

olwsR(w) ≤ olwsRP
(w) ≤ olws(w) = 2w − 1.

33

Therefore, our result is stronger than proving the same result for proper representations.

4.6 Proof of Theorem

Since in this variant, we introduce the elements of the poset (X,P) as unit-intervals, we may define

each element by a real number ri. More specifically, we define each element introduced by the right

endpoint of the interval in the representation so that if we introduce the element xi as the unit-

interval [ri−1, ri], we simply define xi by xi = ri. Assume that w = 2k+ 1 for some positive integer

k. The strategy consists of 5 stages.

4.6.1 Stage 1

We begin by introducing a stack of intervals x1, . . . , xk so that xi = 0 for i ∈ {1, . . . , k}. Notice that

the intervals in Stage 1 form an antichain, and hence, must each be assigned a distinct chain. Let

A denote the set of chains {a1, . . . , ak} used in Stage 1.

A
k

a1

a2

ak

Figure 4.9: Stage 1: forcing the first k chains.

4.6.2 Stage 2

Initialize l2 = 1 and h2 = 2. In round i, we introduce the interval xi so that xi = (l2 + h2)/2.

Suppose that the algorithm assigns the interval to chain j. If j ∈ A, then we update h2 so that

h2 = xi. Otherwise, if j /∈ A, then we update l2 so that l2 = xi. Let B denote the set of new chains

used in Stage 2. If |B| = k + 1, we move onto Stage 3. Otherwise, if |B| < k + 1, then we repeat

Stage 2 in round i+ 1.

Since 1 < xi < 2 for every interval xi introduced in Stage 2, the intervals presented in Stage 2

form an antichain of size at most w. Therefore, every interval is assigned to a different chain by the

algorithm of which at most k are in A. Hence, Stage 2 ends forcing k + 1 new chains.

4.6.3 Stage 3

Initialize l3 = l2−3 and h3 = h2−3. In round i, we introduce a new interval xi so that xi = (l3+h3)/2.

Suppose that the algorithm assigns the interval to chain j. If j ∈ B, then we update h3 so that

34

A B

⊆ A

l2 − 1 h2 − 1

k + 1

Figure 4.10: Stage 2: forcing k + 1 new chains.

h3 = xi and move onto Stage 4. Otherwise, if j /∈ B, then we update l3 so that l3 = xi and we

repeat Stage 3 in round i+ 1

Since −2 < xi < −1 for every interval xi introduced in Stage 3, the intervals presented in Stage

3 form an antichain of size at most w. Therefore, every interval is assigned to a different chain by

the algorithm of which at most k are in A. If k + 1 intervals are assigned entirely new chains, then

the proof is complete. Hence, we may assume that Stage 3 ends with the algorithm assigning an

interval xB to a chain b ∈ B. Note that in this case, xB = h3

A/∈ B

b

l3 h3

Figure 4.11: Stage 3: forcing a chain b ∈ B on xB .

4.6.4 Stage 4

Initialize l4 = l3+1 and h4 = h3+1. In round i, we introduce a new interval xi so that xi = (l4+h4)/2.

Suppose that the algorithm assigns the interval to chain j. Since −1 < xi < xb + 1 < 0, j /∈ A and

j 6= b. We update l4 so that l4 = xi. If j /∈ B, then we move onto Stage 5. Otherwise, if j ∈ B, we

repeat Stage 4 in round i+ 1.

The intervals introduced in Stage 4 form an antichain of size at most k + 1. Therefore, every

interval is assigned to a distinct chain of which no chain is in A ∪ {b} and at most k chains are in

B \ {b}. Hence, Stage 4 ends with the algorithm assigning an interval xC to an entirely new chain c.

35

A/∈ B

b

⊆ B \ {b}

c

l3 h3 l4

Figure 4.12: Stage 4: forcing a new chain c on xC .

4.6.5 Stage 5

Finally, for each i ∈ {c+ 1, . . . , c+k}, we introduce an interval xi so that xi = xC + 1. The intervals

introduced in Stage 5 form an antichain of size k of which each interval cannot be assigned to any

chain in A ∪ B ∪ {c}. All that is left to show is that we have not exceeded the width w. Let x be

any interval introduced in Stage 5. It is trivial to check that the only interval from Stages 3 and

Stage 4 which is incomparable to xi is xC . Moreover, solving for the following:

l2 − 3 < xB < h2 − 3

l2 − 2 < xC < xB + 1

xi = xC + 1

we get that l2 − 1 < xi < h2 − 1 which implies that the only intervals from Stage 2 that are

incomparable to xi are exactly the k + 1 intervals which were assigned to chains from B. Let D

denote the set of new chains forced in Stage 5. Thus, the total number of chains forced on this poset

of width w is

|A|+ |B|+ |{c}|+ |D| = k + (k + 1) + 1 + k = 3k + 2.

This concludes the proof.

4.6.6 Remarks

We proved that if w = 2k+ 1, then our strategy will force any on-line algorithm to use 3k+ 2 chains

for any positive integer k. Moreover, we know that any greedy algorithm uses at most 2w−1 chains.

Thus, we get the answer to the previously open problem of finding the on-line width of the class of

36

A B

⊂ A

/∈ B

b

⊆ B \ {b}

c
D

l3 h3 l4 l2 − 1 h2 − 1

k k + 1

k

Figure 4.13: Stage 5: forcing the last k chains.

semi-orders of width 3 with representation.

Corollary 4.6.1. olwsR(3) = 5.

37

CHAPTER 5

ON-LINE WIDTH OF L-INTERVAL ORDERS

In this chapter, we consider classes of posets strictly between the class of semi-orders and the

class of interval orders. We refer to posets in these classes as L-Interval orders. For T ∈ R+, let

olwiR(L,w) denote the on-line width of L-Interval Orders of width at most w with representation.

Then we provide a non-trivial bound for olwiR({1, 1 + ε}, w).

Theorem 5.0.1 (Biró and Curbelo (Unpublished)). For every w ≥ 1, olwiR({1, 1 + ε}, w) ≥ b 53wc

for every ε > 0.

In Section 5.1, we define L-Interval orders and show that for almost all R, the class of L-Interval

orders is strictly between that of semi-orders and interval orders. In Section 5.2, we define olwi(L,w)

and olwiR(L,w). Finally, in Section 5.3, we prove Theorem 5.0.1.

5.1 Introduction to L-Interval Orders

For any subset L ⊆ R+ of real numbers greater than 0, we define an L-Interval order as follows. We

call an interval order (X,P) an L-Interval order if there is an interval representation I assigning to

each x ∈ X, a closed interval I(x) = [lx, rx] with leqrx − lx ∈ R so that for all x1, x2 ∈ X we have

x1 < x2 if and only if rx1 < lx2 . We call I an L-Interval representation of (X,P). Clearly, if |L| = 1,

then the class of L-Interval orders is the same as the class of semi-orders, and if R = R+, then the

class of L-Interval orders is the same as the class of interval orders. Hence, we are interested in cases

when

1. |L| > 1, and

2. 1 ≤ l ≤ m for every l ∈ L for some upper bound m.

So we will assume such from this point on.

Proposition 5.1.1. Let I be the class of interval orders, S be the class of semi-orders, and let L

be the class of L-Interval orders where L ⊆ R+ satisfying the following conditions.

38

1. |L| > 1.

2. 1 ≤ l ≤ m for every l ∈ L for some upper bound m.

Then,

S ⊂ R ⊂ I.

Proof. By definition, S ⊆ L ⊆ I. Hence it suffices to show that for any L satisfying the conditions,

there exists an interval order that is not an L-Interval order, and an L-Interval order that is not a

semi-order. Let L be a subset of real numbers satisfying conditions 1 and 2.

In order to prove the latter, let m = inf(L) and M = sup(L). Then the poset 1 + 3 has

L-Interval representation

{[0,M], [(M −m)/2, (M +m)/2], [−M, 0], [M, 2M]}

and thus is an L-Interval order but not a semiorder.

Now we constuct an interval order which cannot have an L-Interval representation. As before,

let M = sup(L). Now let 1 + M′ denote the poset consisting of a chain M ′ of size M + 2 and

an isolated point. Then, the poset 1 + M′ is an interval order since it does not contain a 2 + 2.

. . .
IM IM+1 IM+2I3I2I1

Figure 5.1: An interval representation of 1 + M′.

However, 1 + M′ is not an L-Interval order since one interval of length at most M would have to

intersect M + 2 intervals of length at least 1 which is impossible. This concludes the proof.

We now know that we are dealing with entirely new classes of posets. Not much is known about

these classes of posets. However, we study their on-line widths with representation which means no

information on the class is needed.

5.2 On-Line Width of L-Interval Orders

Let L ⊆ R+. Then the on-line width olwiR(L,w) of the class of L-interval orders of width w with

representation is the largest integer k for which there exists a strategy that forces any algorithm to

39

use k chains to partition a L-interval order of width w presented as intervals with length in L. We

show that allowing intervals of one more length, even with the lengths arbitrarily close, we achieve

a significantly better result.

Remark. After writing up the proof of our results, we found a recent paper by Chybowska-Sokól,

Gutowski, Junosza-Szaniawski, Mikos, and Polak [6] where they study this in a graph-theoretic

setting. Admittingly, their paper goes more in depth on the subject and they even prove the

following.

Theorem 5.2.1 (Chybowska-Sokól, et al. [6]). olwiR([1, 1 + ε], w) ≥ b 53wc for every ε > 0.

However, it is important to note that what we prove is in fact stronger, as we only allow intervals

of exactly two lengths as opposed to allowing intervals of any length between 1 and 1 + ε. For that

reason, we still present our proof.

5.3 Proof of Theorem

Since in this variant, we introduce the elements of the poset (X,P) as unit-intervals and intervals

of length 1 + ε, we may define each element by a real number ri. More specifically, we define

each element introduced by the right endpoint of the interval in the representation so that if we

introduce the element xi as the unit-interval [ri − 1, ri], we simply define xi by xi = ri. Moreover,

we superscript the number by ε for intervals of length 1 + ε, i.e., defining xi by xi = rεi means we are

introducing the interval [ri − 1 − ε, ri]. Assume that k = bw/3c where w is the width of the poset

(X,P). The strategy consists of 4 stages.

5.3.1 Stage 1

We begin by introducing a stack of intervals x1, . . . , xk so that xi = 0 for i ∈ {1, . . . , k}. Notice that

the intervals in Stage 1 form an antichain, and hence, must each be assigned a distinct chain. Let

A denote the set of chains {a1, . . . , ak} used in Stage 1.

A
k

a1

a2

ak

Figure 5.2: Stage 1: forcing the first k chains.

40

5.3.2 Stage 2

Initialize l2 = 1 and h2 = 1 + ε/2. In round i, we introduce the interval xi so that xi = (l2 + h2)/2.

Suppose that the algorithm assigns the interval to chain j. If j ∈ A, then we update h2 so that

h2 = xi. Otherwise, if j /∈ A, then we update l2 so that l2 = xi. Let B denote the set of new chains

used in Stage 2. If |B| = k, we move onto Stage 3. Otherwise, if |B| < k, then we repeat Stage 2 in

round i+ 1.

Since 1 < xi < 2 for every interval xi introduced in Stage 2, the intervals presented in Stage 2

form an antichain of size at most w. Therefore, every interval is assigned to a different chain by the

algorithm of which at most k are in A. Hence, Stage 2 ends forcing k new chains.

A B

⊆ A

l2 − 1 h2 − 1

k

Figure 5.3: Stage 2: forcing k new chains.

5.3.3 Stage 3

Initialize l3 = l2 − 2 − ε and h3 = h2 − 2 − ε. In round i, we introduce the interval xi so that

xi = (l2 + h2)/2. Suppose that the algorithm assigns the interval to chain j. If j ∈ A ∪B, then we

update l3 so that l3 = xi. Otherwise, if j /∈ A∪B, then we update h3 so that h3 = xi. Let C denote

the set of new chains used in Stage 2. If |C| = k, we move onto Stage 4. Otherwise, if |C| < k, then

we repeat Stage 3 in round i+ 1.

Since l3 < xi < h3 for every interval xi introduced in Stage 3, the intervals presented in Stage 3

form an antichain of size at most w. Therefore, every interval is assigned to a different chain by the

algorithm of which at most 2k are in A ∪B. Hence, Stage 3 ends forcing k new chains.

A B

⊆ A

C

⊆ A ∪B

1 + ε

1 + ε

Figure 5.4: Stage 3: forcing k more chains.

41

5.3.4 Stage 4

Finally, suppose Stage 3 ends in round c. for each i ∈ {c+1, . . . , c+w−k}, we introduce an interval

xi so that xi = (xc + 1 + ε)ε. The intervals introduced in Stage 4 form an antichain of size w− k of

which each interval cannot be assigned to any chain in A ∪ B ∪ C. All that is left to show is that

we have not exceeded the width w. Let x be any interval introduced in Stage 4. Solving for the

following:

l2 − 2− ε < xc < h2 − 2− ε

x = xc + 1 + ε

we get that l2 − 1 < x < h2 − 1 which implies that the only intervals from Stage 2 that are

incomparable to x are exactly the w− k intervals which were assigned to chains in B. Let D denote

the set of new chains forced in Stage 4. Thus, the total number of chains forced on this poset of

width w is

|A|+ |B|+ |C|+ |D| = k + k + k + (w − k) = w + 2k ≥ b5
3
wc.

A B

⊆ A

C

⊆ A ∪B D

kkk

w − k

Figure 5.5: Stage 4: forcing the last w − k chains.

This concludes the proof.

42

CHAPTER 6

GREEDY WIDTH

In this Chapter, instead of restricting Anna, we replace Beth with an easier opponent who we

call Bertha. Bertha is greedy which means that Bertha never uses a new color unless she absolutely

has to. Then, we refer to the maximum number of colors that Anna can force Bertha to use on a

class of posets as the greedy width. One very popular example of a greedy algorithm is First Fit.

In Section 6.1, we consider the greedy width gw(w) of the class of posets and show that the value

is unbounded. In Section 6.2, we analyze the greedy width gws(w) of the class of semi-orders of

width at most w which was solved by Chrobak and Ślusarek. In Section 6.3, we consider the greedy

width gwi(w) of the class of interval orders of width at most w and give a brief summary of the rich

history of research on First Fit along with its implication for gwi(w).

In Section 6.4, we define a new class A of posets called almost-semiorders which is strictly

between that of semi-orders and interval orders. Finally, in Section 6.5, we prove that the greedy

width gwa(w) of posets in A of width at most w is strictly between the values for that of semi-orders

and interval orders.

Theorem 6.0.1 (Biró and Curbelo (Unpublished)). For every w ≥ 1, 2w ≤ gwa(w) ≤ 3w − 3.

6.1 Greedy Width

We are also interested in knowing the performance of specific algorithms. Probably the simplest

and most popular on-line partitioning algorithm is First Fit. First Fit maintains a chain partition

X = C1 ∪ . . .∪Ck and when a new element x is introduced, places the element in the chain Ci with

the smallest i such that Ci ∪ {x} induces a chain in (X,P). If no such chain Ci exists, then First

Fit introduces a new chain Ck+1 to the partition and adds x to it. The performance of First Fit

is similarly measured with respect to the width w of the poset. Problems on finding the efficiency

of First Fit have a very rich history. However, we would like to allow slightly more freedom to the

algorithm than that. We consider all greedy algorithms. Greedy algorithms, like First Fit, only

43

introduce a new chain to the partition if and only if a new element is presented which does not

induce a chain with any of the chains in the current partition.

The greedy width gw(w) of the class of posets of width at most w is the largest integer k for

which there exists a strategy that forces any greedy algorithm to use k chains to partition a poset of

width w. If no such k exists, we say that the greedy width is infinite and write gw(w) =∞. It has

been shown that that there exists a strategy that forces First Fit to use an arbitrarily large number

of chains to partition of poset of width 2. However, a different greedy algorithm could partition

the same poset using just 2 chains constructed with that strategy. We present a new strategy

constructing the same poset of width 2 which forces any greedy algorithm to use an arbitrarily large

number of chains.

Lemma 6.1.1. For every n ∈ N, there is a strategy which forces any greedy algorithm to use n

chains to partition a poset of width 2.

Proof. We construct a poset (X,P) so that X = A ∪ B, A ∩ B = ∅ and A and B induce chains in

P . By Dilworth’s chain partitioning theorem, the result will be a poset of width at most 2. The

strategy S(n) constructs the poset (X,P) in n stages.

We begin in Stage 1 by presenting a chain C1 = x11, . . . , x
1
n+1. Clearly, any greedy algorithm

would color C1 using only the color 1.

In Stage k for k ∈ {2, . . . , n− 1}, we construct a chain Ck = xk1 , . . . , x
k
n−k+2 in increasing order

so that for each i ∈ {1, . . . , n− k + 2} so that the following conditions are satisfied.

1. x1i+k−3 < xki < xk−1i+1 .

2. xki ‖ x
k−j
i+j−1 for j ∈ {1, . . . , k − 1}.

Furthermore, xki is added to A if k and i are both odd or k and i are both even, otherwise xki is

added to B.

Finally in stage n, we introduce single element, xn1 so that xn1 ‖ xlj if j+ l = n, otherwise xlj < xn1 .

We claim that every point introduced in Stage k for k ∈ [n] is assigned the color k. We prove our

claim inductively on k knowing that the claim holds for k = 1.

Assume that the claim holds for k ∈ [m− 1] and suppose we introduce the point xmi in Stage m.

By the second condition, we know that if the second condition is met that a new color would have

to be used. It is easy to verify that condition 2 is still satisfied after taking the transitive closure.

In order to show that (X,P) has width 2, it suffices to show that A and B are chains. Suppose

A and B have been maintained as chains in round r − 1. Now suppose in round r we introduce the

44

point xki between consecutive points x1i+k−3 and xk−1i+1 . Suppose k is odd and i is odd. Then xki is

added to A. Since i+ k − 3 is odd and 1 is odd, x1i+k−3 ∈ A. Since i+ 1 is even and k − 1 is even,

xk−1i+1 ∈ A. Now suppose k is even and i is even. Then xki is added to A. Since i+ k − 3 is odd and

1 is odd, x1i+k−3 ∈ A. Since i+ 1 is odd and k− 1 is odd, xk−1i+1 ∈ A. Now suppose k is even and i is

odd. Then xki is added to B. Since i+ k − 3 is even and 1 is odd, x1i+k−3 ∈ B. Since i+ 1 is even

and k − 1 is odd, xk−1i+1 ∈ B. Lastly, suppose k is odd and i is even. Then xki is added to B. Since

i + k − 3 is even and 1 is odd, x1i+k−3 ∈ B. Since i + 1 is odd and k − 1 is even, xk−1i+1 ∈ B. This

concludes the proof.

A B
x11

x12

x13

x14

x15

x21

x22

x23

x24

x31

x32

x33

x41

x42

x51

x61

Figure 6.1: Strategy S(6) forces any greedy algorithm to use 6 chains on a poset of width 2.

Theorem 6.1.2. For every w ≥ 2, gw(w) =∞.

Proof. The result is a consequence of the previous Lemma.

In the previous result, we were able to prove to prove a stronger result by simply changing the

order by which the elements were introduced. One may wonder if this could always be done. We

answer this question in the affirmative below.

45

Theorem 6.1.3. Let S(w) be a strategy which forces First Fit to use N chains to partition a poset

(X,P) of width w. Then there exists a strategy S′(w) which forces any greedy algorithm to use N

chains to partition the same poset (X,P) of width w.

Proof. Suppose there exists a strategy S(w) which forces First Fit to use N chains to partition a

poset (X,P) of width w. For every k ∈ [N], let xk1 , . . . , x
k
nk

denote the elements that First Fit

assigned to chain k. Now define the strategy S′(w) so that it constructs (X,P) in the following

order.

x11, . . . , x
1
n1
, x21, . . . , x

2
n2
, . . . , xN1 , . . . , x

N
nN

We prove inductively on the round r that any greedy algorithm assigns xki the color k for every

k ∈ [N] and every i ∈ [nk]. In round 1, x11 gets assigned the first color 1.

Assume that in round r − 1, it holds that all points have been assigned the correct color. Now

suppose in round r, the point xki is introduced. Suppose on the contrary that xki gets assigned a

color other than k. There are at most k colors used in the partition at this point, and so xki either

is assigned a color in [k − 1] or a new color k + 1. However, it cannot be assigned k + 1 since we

know that xk1 , . . . , x
k
i−1 are exactly the points colored k and xk1 , . . . , x

k
i−1, x

k
i forms a chain. So we

may assume that xki was assigned a color in c ∈ [k− 1]. This would imply that First Fit assigned xki

to chain k when it could have assigned it to chain c with c < k which is a contradiction. Therefore,

xki must be assigned the color k.

6.2 Greedy Width of Semi-Orders

Naturally, we would like to know how greedy algorithms perform for more restricted classes of posets

as well. The greedy width gws(w) of the class of semi-orders of width at most w is the largest integer

k for which there exists a strategy that forces any greedy algorithm to use k chains to partition a

poset of width w. Chrobak and Ślusarek completely solved this variant over 30 years ago.

Theorem 6.2.1 (Chrobak and Ślusarek [5]). For every w ≥ 1, gws(w) = 2w − 1

Proof. We know from Chapter 3 that First Fit needs at most 2w − 1 chains to partition any poset

of width at most w. Hence, it suffices to show that we can force First Fit to use 2w − 1 colors.

As in Chapter 3, we introduce intervals by their right endpoint. The strategy S(w) involves

constructing 3 stacks of intervals A, B and C.

To construct A, for i ∈ [w], we introduce an interval ai = 1+(i−1)/2w. This forms an antichain

of size w and therefore, ai gets assigned the color i by First Fit.

46

To construct B, for i ∈ [w], we introduce an interval bi = 3 + i/2w. This forms an antichain of

size w and therefore, bi gets assigned the color i by First Fit.

Lastly, to construct C, for i ∈ [w], we introduce an interval ci = 2+i/2w. This forms an antichain

of size w. Moreover, ci intersects aj if and only if j > i, and ci intersects bj if and only if j ≤ i for all

i ∈ [w − 1]. Therefore, every interval in C gets assigned a new color. In particular, ci gets assigned

the color w + i for i ∈ [w − 1]. Thus, in totol First Fit is forced to use w + (w − 1) = 2w − 1 colors

to partition a semi-order of width w.

Figure 6.2: The Strategy S(5).

This concludes the proof.

6.3 Greedy Width of Interval Orders

The greedy width gwi(w) of the class of interval orders of width at most w is the largest integer

k for which there exists a strategy that forces any greedy algorithm to use k chains to partition

a poset of width w. Theorem 6.1.3 says that we simply have to prove that we can force First Fit

to use k colors in order to prove gwi(k) ≥ k. Luckily for us, there is a rich history of finding the

performance of first coloring of interval graphs. Let FF (w) be the largest integer for which First

Fit can be forced to use t chains on an interval order with width at most w. In 1976, Woodall [20]

showed that FF (w) = O(w logw). In 1988, Kierstead [11] showed that FF (w) ≤ 40w, and Kierstead

and Qin [12] improved this in 1995 to FF (w) ≤ 25.8w. From below, it follows from the work of

Kierstead and Trotter [16] on on-line coloring of interval graphs that so that FF (w) ≥ 3w − 2.

In 1990, Chrobak and Ślusarek [5] proved that FF (w) ≥ 4w − 9 when w ≥ 4, and they later

improved the lower bound to 4.4w − C, where C is a large constant. In 2003, Pemmaraju, Raman

and Varadarajan [18] made a major breakthrough by showing that FF (w) ≤ 10w and commented

that their upper bound might be improved but that the technique wouldn’t yield a result better

than FF (w)/w ≤ 8, when w is large. Later in 2003, their predictions were confirmed, and their

technique was refined by Brightwell, Kierstead and Trotter (unpublished) to obtain an upper bound

of 8w on FF (w). In 2004, Narayansamy and Babu [17] found an even cleaner argument for this

bound that actually yields the slightly stronger result: FF (w) ≤ 8w − 3. Howard has recently

47

pointed out that one can actually show that FF (w) ≤ 8w− 4. Later in 2004, Kierstead and Trotter

gave a computer proof that FF (w) >= 4.99w − C. This technique was subsequently refined to

show that FF (w) >= 4.99999w − C. Kierstead, Smith and Trotter showed that for every e > 0,

FF (w) > (5− e)w, when w is sufficiently large. Again, all of the bounds above on FF (w) also hold

for gwi(w) by Theorem 6.1.3 and by the fact that First Fit is a greedy algorithm.

Theorem 6.3.1 (Narayansamy and Babu [17], Kierstead, Smith and Trotter). For every w ≥ 1,

8w − 4 ≤ gwi(w) ≤ 5w − ε for every ε > 0.

6.4 Almost-Semiorders

We consider a class that is ”almost” a semi-order. In particular, we consider the class of posets that

have an interval representation where the intervals all have unit-length. Though unlike semi-orders,

the intervals can be either closed or open. Ingeniously, we refer to posets in this class as almost-

semiorders. A nearly identical argument as the one we use in Proposition 5.1.1 proves that this class

of posets is strickly between that of semi-orders and that of interval orders.

Proposition 6.4.1. Let S denote the class of semi-orders, A denote the class of almost-semiorders

and I denote the class of interval orders. Then S ⊂ A ⊂ I.

Proof. Clearly, S ⊂ A. The fact that A ⊂ I is not immediate considering that open intervals are

not allowed in the interval representation of interval orders. However, by Theorem 4.1.1, it suffices

to see that an almost-semiorder does not contain a 2 + 2.

To show that S 6= A, it suffices to see that the poset 3 + 1 is an almost-semiorder.

Figure 6.3: The almost-semiorder 3 + 1 is not a semi-order.

To show that A ⊂ I, consider the interval order below.

Figure 6.4: An interval order that is not an almost-semiorder.

For obvious reasons, we may refer to this interval order as 4 + 1. It is clear that A does not

contain 4 + 1 since Figure 6.4, shows the only way an interval can intersect three disjoint intervals

in an almost-semiorder representation. This concludes the proof.

48

6.5 Greedy Width of Almost-Semiorders

The greedy width gwa(w) of the class of almost-semiorders of width at most w is the largest integer

k for which there exists a strategy that forces any greedy algorithm to use k chains to partition an

almost-semiorder of width w. Theorems 6.2.1 and 6.3.1 imply that 2w − 1 ≤ gwa(w) ≥ 8w − 4. We

show that neither of these bounds are tight. In fact, we show that

gws(w) < gwa(w) < gwi(w).

6.5.1 Proof of Theorem 6.0.1 (Lower Bound)

Since in this variant, we introduce the elements of the poset (X,P) as unit-intervals of which are

either open or closed, we may define each element by a real number ri. More specifically, we define

each element introduced by the right endpoint of the interval in the representation so that if we

introduce the element xi as the closed interval [ri − 1, ri], we simply define xi by xi = [ri] and if

we introduce the element xi as the open interval (ri − 1, ri), we simply define xi by xi = (ri). Let

k = bw/2c. The strategy consists of 4 stages. By Theorem 6.1.3, we may assume that Bertha uses

First Fit to partition the poset. Then in each stage, First Fit will use k new colors.

6.5.2 Stage 1

In Stage 1, Anna constructs 4 disjoint stacks A1, A2, A3, A4 of k intervals each as follows. In order

to construct Ai, Anna presents intervals ai1, . . . , a
i
k so that aij = i0 for j ∈ [k]. Hence, Bertha assigns

the color j to interval aij for every j ∈ [k] and i ∈ {1, 2, 3, 4}.

Suppose w = 2k for some positive integer k. We begin by introducing a stack of intervals

x1, . . . , xk so that xi = 0O for i ∈ {1, . . . , k}. Notice that the intervals in Stage 1 form an antichain,

and hence, must each be assigned a distinct chain. Let A denote the set of chains {a1, . . . , ak} used

in Stage 1.

6.5.3 Stage 2

In stage 2, Anna introduces 2 disjoint stacks of intervals of intervals B1, B2 of k intervals each. To

construct B1, Anna introduces intervals b11, . . . , b
1
k so that b1i = [1] for i ∈ [k]. To construct B2, Anna

introduces intervals b21, . . . , b
2
k so that b2i = [4]. Since every interval presented in Stage 2 intersects a

stack from Stage 1, Bertha must assign the color k + i to interval aji for i ∈ [k] and j ∈ {1, 2}.

49

6.5.4 Stage 3

In Stage 3, Anna introduces a stack C of k intervals. To construct C, Anna introduces intervals

c1, . . . , ck so that ci = [3] for i ∈ [k]. For every i ∈ [k] and j ∈ [k], ci ∩ a3j = (2, 3) and ci ∩ b2j = {3}.

Hence, Bertha must assign the color 2k + i to ci for every i ∈ [k].

6.5.5 Stage 4

Finally, in Stage 4, Anna introduces a stack D of k intervals. To construct D, Anna introduces

intervals d1, . . . , dk so that di = [2] for i ∈ [k]. For every i ∈ [k] and j ∈ [k],

ci ∩ a2j = (1, 2),

ci ∩ b1j = {1},

and

ci ∩ cj = {2}.

Hence, Bertha must assign the color 3k + i to ci for every i ∈ [k]. Thus Bertha is forces to use

4k = 2w colors on an almost-semiorder of width w.

0 1 2 3 4

1

2

3

4

Stage

Figure 6.5: Strategy S(2) forcing 4 colors.

6.5.6 Proof of Theorem 6.0.1 (Upper Bound)

First we prove that gwa(w) ≤ 3w−2. To show this, consider the greedy algorithm First Fit. Suppose

First Fit has successfully partitioned the almost semiorder (X,P) up to round i−1. Now suppose in

round i, Anna introduces a new point x. Consider any interval representation I of the poset (X,P).

Then the only way that First Fit assigns x the color 3w−1 is if I(x) intersects 3w−2 other intervals

of all different colors. However, it is easy to see that I(x) can intersect at most 3w−3. In particular

50

if I(x) intersects 3w − 2 other intervals, then it must be in the way shown below.

x

Figure 6.6: Every interval intersects at most 3w − 3 other intervals.

This proves that gwa(w) ≤ 3w − 2. It is unlikely that First Fit needs this many colors. In fact,

consider the scenario where x intersects 3w− 3 other intervals of all colors in [3w− 3]. Let y be the

point that was assigned the color 3w − 3. Then I(y) must intersect 3w − 4 intervals but as we can

see in the figure above, y intersects w−2 other intervals already and could at most intersect another

2. Hence, I(y) intersects no more than w other intervals. This improves the upper bound to 3w− 3.

It is easy to see that with some work, this argument can be extended to improve the upper bound

even more. In particular, gwa(w) ≤ 3w − f(w) for some function f which increases with w.

51

REFERENCES

[1] Bart l omiej Bosek and Tomasz Krawczyk. “A subexponential upper bound for the on-line

chain partitioning problem”. In: Combinatorica 35.1 (2015), pp. 1–38. issn: 0209-9683. doi:

10.1007/s00493-014-2908-7. url: https://doi-org.echo.louisville.edu/10.1007/

s00493-014-2908-7.

[2] Bart l omiej Bosek et al. “An easy subexponential bound for online chain partitioning”. In:

Electron. J. Combin. 25.2 (2018), Paper No. 2.28, 23. doi: 10.37236/7231. url: https:

//doi-org.echo.louisville.edu/10.37236/7231.

[3] Bart lomiej Bosek and Tomasz Krawczyk. “On-line partitioning of width w posets into wO(log logw)

chains”. In: European J. Combin. 91 (2021), Paper No. 103202, 17. issn: 0195-6698. doi:

10.1016/j.ejc.2020.103202. url: https://doi.org/10.1016/j.ejc.2020.103202.

[4] Bart lomiej Bosek et al. “On-line chain partitions of orders: a survey”. In: Order 29.1 (2012),

pp. 49–73. issn: 0167-8094. doi: 10.1007/s11083-011-9197-1. url: https://doi.org/10.

1007/s11083-011-9197-1.

[5] Marek Chrobak and Maciej Ślusarek. “On some packing problem related to dynamic storage

allocation”. In: RAIRO Inform. Théor. Appl. 22.4 (1988), pp. 487–499. issn: 0296-1598.

[6] Joanna Chybowska-Sokó l et al. “Online coloring of short intervals”. In: Approximation, ran-

domization, and combinatorial optimization. Algorithms and techniques. Vol. 176. LIPIcs. Leib-

niz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020, Art. No. 52, 18.

[7] R. P. Dilworth. “A decomposition theorem for partially ordered sets”. In: Ann. of Math.

(2) 51 (1950), pp. 161–166. issn: 0003-486X. doi: 10.2307/1969503. url: https://doi-

org.echo.louisville.edu/10.2307/1969503.

[8] Leah Epstein and Meital Levy. “Online interval coloring and variants”. In: Automata, lan-

guages and programming. Vol. 3580. Lecture Notes in Comput. Sci. Springer, Berlin, 2005,

pp. 602–613. doi: 10.1007/11523468_49. url: https://doi.org/10.1007/11523468_49.

52

[9] Stefan Felsner. “On-line chain partitions of orders”. In: Theoret. Comput. Sci. 175.2 (1997).

Orders, algorithms and applications (Lyon, 1994), pp. 283–292. issn: 0304-3975. doi: 10.1016/

S0304-3975(96)00204-6. url: https://doi.org/10.1016/S0304-3975(96)00204-6.

[10] Tosio Hiraguti. “On the dimension of orders”. In: Sci. Rep. Kanazawa Univ. 4.1 (1955), pp. 1–

20. issn: 0022-8338.

[11] H. A. Kierstead. “The linearity of first-fit coloring of interval graphs”. In: SIAM J. Discrete

Math. 1.4 (1988), pp. 526–530. issn: 0895-4801. doi: 10.1137/0401048. url: https://doi-

org.echo.louisville.edu/10.1137/0401048.

[12] H. A. Kierstead and Jun Qin. “Coloring interval graphs with First-Fit”. In: vol. 144. 1-3.

Combinatorics of ordered sets (Oberwolfach, 1991). 1995, pp. 47–57. doi: 10.1016/0012-

365X(94) 00285 - Q. url: https : / / doi - org . echo . louisville . edu / 10 . 1016 / 0012 -

365X(94)00285-Q.

[13] Henry A. Kierstead. “An effective version of Dilworth’s theorem”. In: Trans. Amer. Math. Soc.

268.1 (1981), pp. 63–77. issn: 0002-9947. doi: 10.2307/1998337. url: https://doi.org/

10.2307/1998337.

[14] Henry A. Kierstead. “Recursive ordered sets”. In: Combinatorics and ordered sets (Arcata,

Calif., 1985). Vol. 57. Contemp. Math. Amer. Math. Soc., Providence, RI, 1986, pp. 75–102.

doi: 10.1090/conm/057/856233. url: https://doi.org/10.1090/conm/057/856233.

[15] Henry A. Kierstead, George F. McNulty, and William T. Trotter Jr. “A theory of recursive

dimension for ordered sets”. In: Order 1.1 (1984), pp. 67–82. issn: 0167-8094. doi: 10.1007/

BF00396274. url: https://doi.org/10.1007/BF00396274.

[16] Henry A. Kierstead and William T. Trotter Jr. “An extremal problem in recursive combina-

torics”. In: Congr. Numer. 33 (1981), pp. 143–153. issn: 0384-9864.

[17] N. S. Narayanaswamy and R. Subhash Babu. “A note on first-fit coloring of interval graphs”.

In: Order 25.1 (2008), pp. 49–53. issn: 0167-8094. doi: 10.1007/s11083-008-9076-6. url:

https://doi-org.echo.louisville.edu/10.1007/s11083-008-9076-6.

[18] Sriram V. Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. “Buffer minimization using

max-coloring”. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete

Algorithms. ACM, New York, 2004, pp. 562–571.

53

[19] William T. Trotter Jr. and John I. Moore Jr. “The dimension of planar posets”. In: J. Combi-

natorial Theory Ser. B 22.1 (1977), pp. 54–67. issn: 0095-8956. doi: 10.1016/0095-8956(77)

90048-x. url: https://doi-org.echo.louisville.edu/10.1016/0095-8956(77)90048-x.

[20] D. R. Woodall. “Applications of polymatroids and linear programming to transversals and

graphs”. In: Combinatorics (Proc. British Combinatorial Conf., Univ. Coll. Wales, Aberyst-

wyth, 1973). London Math. Soc. Lecture Note Ser., No. 13. Cambridge Univ. Press, London,

1974, pp. 195–200.

54

CURRICULUM VITAE

Israel R. Curbelo

Department of Mathematics (917)385-6703

University of Louisville israel.curbelo@louisville.edu

Louisville, Kentucky 40292 USA github.com/OnlineDimension

EDUCATION 2018 – 2022 Ph.D. in Applied Mathematics, University of Louisville

2021 – 2022 Graduate Certificate in Data Science, University of Louisville

2016 – 2018 Master of Arts in Mathematics, University of Louisville

2012 – 2016 Bachelor of Arts in Mathematics, The College of New Jersey

PUBLICATIONS Csaba Biró and Israel R. Curbelo, On-line partioning of d-dimensional posets,
Submitted. arXiv:2111.04802

Csaba Biró and Israel R. Curbelo, On-line partioning of semi-orders with unit-
interval representation, Submitted. arXiv:2111.04790

Csaba Biró and Israel R. Curbelo, Weak independence of events and the con-
verse of the Borel–Cantelli lemma, to appear in Expositiones Mathematicae.
arXiv:2004.11324

TALKS Feb. 2021 On-Line Chain Partition Game, AMS Student Chapter,

University of Louisville, Louisville, Kentucky.

Mar. 2020 On-line Dimension of Posets, AMS Student Chapter,

University of Louisville, Louisville, Kentucky.

Mar. 2019 Markov Chains on General State Spaces, AMS Student Chapter,

University of Louisville, Louiville, Kentucky.

Feb. 2018 Space-Filling Curves 4 Dummies, AMS Student Chapter,

University of Louisville, Louisville, Kentucky.

May 2016 Space-Filling Curves, Celebration of Student Achievement,

The College of New Jersey, Ewing, New Jersey.

55

RESEARCH 2020 – 2022 Borel–Cantelli extensions, and on-line algorithms.

EXPERIENCE with Csaba Biró, University of Louisville.

2020 Sperner’s lemma, Brouwer fixed point theorem, KKM lemma.

with Jenő Lehel, University of Louisville.

2018 – 2019 Markov chains and change–point asymptotics.

with Ryan Gill, University of Louisville.

2018 Ergodic theory & rank 1 transformations .

with Aaron Hill, University of Louisville.

2015 – 2016 Conditions for space-filling curves.

with Judit Kardos, The College of New Jersey.

TEACHING 2021 Fall Teaching Assistant College Algebra (2)

EXPERIENCE Summer Instructor Calculus I

Spring Teaching Assistant College Algebra

Spring Teaching Assistant Elements of Calculus

Spring Teaching Assistant College Algebra

2020 Fall Instructor Precalculus

Summer Instructor College Algebra

Spring Teaching Assistant Elements of Calculus

2019 Fall Teaching Assistant Elementary Statistics (2)

Fall Teaching Assistant Elements of Calculus

Summer Instructor Precalculus

2018 Fall Teaching Assistant Elementary Statistics (2)

Fall Teaching Assistant Elements of Calculus

Summer Instructor Quantitative Reasoning

Spring Teaching Assistant College Algebra (2)

2017 Fall Teaching Assistant College Algebra (3)

Spring Teaching Assistant Elements of Calculus

2016 Fall Teaching Assistant College Algebra (2)

Spring Teaching Assistant Real Analysis II

2015 Fall Teaching Assistant Real Analysis

Spring Teaching Assistant Real Analysis

WORK 2022 – Assistant Professor

EXPERIENCE Kean University, Union Township, New Jersey

2016 – 2022 Graduate Teaching & Research Assistant

University of Louisville, Louisville, Kentucky

2020 – 2021 President of the Graduate Student Council

University of Louisville, Louisville, Kentucky

2015 – 2016 Undergraduate Teaching Assistant

The College of New Jersey, Ewing, New Jersey

56

	The on-line width of various classes of posets.
	Recommended Citation

	tmp.1660181566.pdf.IE6Mc

