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ABSTRACT

A NEW SIR MODEL WITH MOBILITY

Ciana Applegate

July 25, 2022

In this paper, a mobility-based SIR model is built to understand the spread of

the pandemic. A traditional SIR model used in epidemiology describes the transition

of particles among states, such as susceptible, infected, and recovered states. How-

ever, the traditional model has no movement of particles. There are many variations

of SIR models when it comes to the factor of mobility, the majority of studies use

mobility intensity or population density as a measure of mobility. In this paper, a

new dynamical SIR model, including the spatial motion of three-type particles, is

constructed and the long-time behavior of the first and second moments of this dy-

namical system are studied. The intermittency and Lyapunov exponents are derived

and analyzed as well.
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CHAPTER 1

LITERATURE REVIEW

The susceptible-infectious-recovered (SIR) model is a type of compartmental

model used in epidemiology, and it is one way to model infectious diseases. The

SIR model was developed by Ronald Ross, William Hamer, and others in the early

twentieth century [17]. The sizes of these sub-populations at time t are denoted by

S(t), I(t) and R(t). The traditional SIR model represents the number of particles in

each compartment at a particular time t. Wiess [17] proposed a simple use of ordinary

differential equations, instead of partial differential equations or agent based models,

where
dS

dt
= −βSI,

dI

dt
= βSI − νI and

dR

dt
= νI. The bi-linear incidence term βSI

for the number of new infected individuals per unit time corresponds to homogeneous

mixing of the infected and susceptible classes [17]. The model supposes each infected

individual has κ contacts, then κS/N of these contacts are susceptible individuals,

and if τ is the transmittability of the infected disease, then each infected individual

infects κτS/N susceptible individuals per unit of time [17]. The paper concludes that

it is easy to prove that the disease always dies out- I(∞) = 0 for all initial conditions-

without having a formula for I(t) [17]. This model is good, but somewhat basic. Not

all diseases die out, under some conditions the number of infected can go to infinity.

Linda Allen studies the continuous version of the SIR model, which behaves
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in the same manner as the discrete model. Given the total population N remains

constant, and initial conditions S(0), I(0), R(0) for the susceptible, infected, and

recovered groups respectively. For N = S(0) + I(0) + R(0), and transmission rate

α going from the susceptible group to the infected group, and transmission rate γ

going from the infected group to the recovered group. The reproductive rate in the

continuous case is R =
S(0)α

Nγ
. The value of R determines the global behavior of

the discrete SIR model [1]. If R ≤ 1, there is no epidemic, but if R > 1, there

is an epidemic [1]. The conclusion is that the infective class eventually decreases

and approaches zero. The model proposed is a model with K sub-populations,

but determining whether an epidemic occurs within a sub-population of the multi-

population SIR model is not as straightforward as in the single population case. This

model is effective, but is more fundamental and does not take into account migration.

Allen studies the differences between deterministic and stochastic epidemic

models, and one of the most important differences is the asymptotic dynamics [2]

[1]. Mathematical models of population dynamics, analysis of which is an essential

part of modern mathematical biology, have the important feature of birth and death

mechanisms. The main feature is that the parameters of mathematical models- rate

of jumps, birth and death rates, etc.- are constants and there is a local equilibrium

between the rate of production of new particles and their annihilation [8].

The famous stochastic epidemic model is proposed by Liggett, who studies a

contact process that is thought of as a model on d dimensional integer lattice Zd for

the spread of infection [11]. The collection of susceptible individuals that may be

infected at any given time is the set of vertices of a connected, undirected graph S.

2



The contact process on S with infection parameter λ ≥ 0 is a continuous time Markov

process ηt on {0, 1}S. This model differs from ours because it has one particle at one

site and it only allows change to the nearest neighbors, meaning healthy individuals

become infected at a rate that is proportional to the number of infected neighbors

[11]. Additionally, Liggett’s model does not have migration of the particles.

The model proposed by Kondratiev et. al. [8] introduced a contact model

with underlying random walk generated by a Markov process generator (LF )(γ) =∑
x∈γ

d(x, γ)(D−
x F )(γ) +

∫
Rd

b(x, γ)(D+
x F )(γ)dx. where (D−

x F )(γ) = F (γ\x) − F (γ),

and (D+
x F )(γ) = F (γ ∪ x) − F (γ) [9], where γ is the configuration space, d(x, γ)

is the rate at which particle x of the configuration γ dies, b(x, γ) is the rate at

which a new particle is born at x [8]. The main result proposed is that there is

no limiting distribution for the population dynamics models in a time independent

random environment. This model uses a generator L of the underlying Markov

process X(s), s ≥ 0, and V (x,wm) is a random potential. This model is similar to

the generator in our model, and the differential equation utilized for density is similar

to our general inhomogeneous equation. Kondratiev introduces a limit theorem for

the branching process with the random space evolution in the supercritical regime.

However, this model only allows one particle at each site. This model is built on

Rd instead of Zd, thus the techniques in this model are not applicable to discrete

Zd space, and only the offspring particles have mobility, the parent particles do not

move.

Molchanov et. al groups study a continuous time branching random walks

generated with non-local Laplacian operator on multidimensional lattice Zd. The

3



model uses a matrix A = (a(x, y))x,y∈Zd of transition intensities of random walk,

a(x, y) ≥ 0 for x ̸= y. There is the assumption that the branching mechanism in the

sources is independent of the walk and defined by an infinitesimal generating function

[19]. The Green function, Gλ(x, y), of the generator A of the symmetrical random

walk is the Laplace transform of the transition probability p(t, x, y), Gλ(x, y) =∫ ∞

0

e−λtp(t, x, y)dt. This is used in our model, as the Green function has a sense of

the mean number of hits of the particle at the point y for the process starting from the

point x, as t → ∞ [19]. The analysis of branching random walks depends on whether

G0(0, 0) is finite or infinite. The concept of weakly supercritical branching random

walks is defined and the asymptotic behavior of the Green function is analyzed

and the asymptotic behavior of the eigenvalue λ0(β) for the evolutionary operator

for β ↓ βc [19]. This paper relates to our model with spatial migration because

the general solution derived for inhomogeneous equations depends on the transition

probability p(t − s, 0, x − z), which relates to the Green function. However, they

only analyzed the single type branching random walk and there are no categories of

particles.

4



CHAPTER 2

INTRODUCTION

The susceptible-infectious-recovered (SIR) model is a type of compartmental

model used in epidemiology, and it is one way to model infectious diseases. The SIR

model was developed by Ronald Ross, William Hamer, and others in the early twen-

tieth century [1] [17]. They introduced and analyzed the most basic transmission

model for infectious diseases caused by bacteria, viruses, or fungi [2] [17]. The tra-

ditional SIR model only considers the transitions between susceptible, infected, and

recovered population groups. The traditional SIR model represents the number of

particles in each compartment at a particular time t, and the particles move between

the groups with transition rates β and γ (See Fig. 1 below). The traditional SIR

Model also has the assumption that once a particle is in the recovered group, it is

immune to the disease [2] [17].

Figure 2.1: Traditional SIR Model
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Mathematical models of population dynamics, which are an essential part of

mathematical biology, have important features- such as birth and death mechanisms

[6] [12] [8] [21]. Mathematical models can be considered to be part of the theory

of branching processes with random spatial dynamics [8] [15] [21]. Some previous

SIR models have looked at mobility intensity, which describes the area intensity or

the distribution of intensity [2] [6]. The new SIR model in this paper will introduce

spatial mobility within the model on Zd space.

This means that the new model with migration has the assumption that all

of the particles can have spatial motion, within the susceptible, infected, and recov-

ered groups (in addition to the inter-compartmental motion). We assume the total

population is fixed, i.e- N(t) = S(t) + I(t) + R(t) but N(t, x), the total population

at position x at time t, is varying. We define κ as the probability that a particle

will migrate. We define β as the transition rate from the susceptible group S to

the infected group I, and γ is the transition rate from infected group I to recovered

group R. Regarding the migration direction, it is determined by a(z) where a(z)

is the probability kernel of the Poisson process. Define the probability kernel as

a(z), where a(z) = a(−z). The movement of one particle moving from location x

to location x + z, (x → x + z), has probability a(z)dt during the infinitesimal time

period (t, t + dt). The movement of one particle going from location x + z to x,

(x + z −→ x), has probability a(−z)dt. There is the assumption that
∑
z∈Zd

a(z) = 0

and
∑
z ̸=0

a(z) = 1, which implies that a(0) = −1. Additionally, we assume that the

spatial motion of healthy particles is the same as the spatial motion of an infected

particle, and that the only one type of movement can happen at a time, meaning a

6



particle can jump to another location or they can jump states. The possible events

are:

1○ S : x −→ x+ z in S with probability κa(z)dt, ∀x, z ∈ Zd.

This is the event that in a short time period (t, t+ dt), a particle at location x

moves to location x+ z within the susceptible group.

2○ I : x −→ x+ z in I with probability κa(z)dt,∀x, z ∈ Zd.

This is the event that in a short time period (t, t+ dt), a particle at location x

moves to location x+ z within the infected group.

3○ R : x −→ x+ z in R with probability κa(z)dt,∀x, z ∈ Zd.

This is the event that in a short time period (t, t+ dt), a particle at location x

moves to location x+ z within the recovered group.

4○ S : x −→ x in I with probability βdt, ∀x, z ∈ Zd.

This is the event that a particle at location x in the susceptible group transitions to

the infected group.

5○ I : x −→ x in R with probability γdt, ∀x, z ∈ Zd.

This is the event that a particle at location x in the infected group transitions to

the recovered group.

7



CHAPTER 3

DERIVING THE DIFFERENTIAL EQUATIONS FOR THE FIRST MOMENTS

One of the goals of this paper is to find the first and second moments of S, I

and R and analyze the stability of the moments. The first step in doing this is to

derive the differential equations for the generating functions and find the solutions.

We derive the differential equations using the Kolmogorov Forward Equations.

Theorem 1 The differential equations for the first moment of the susceptible, in-

fected, and recovered groups are

∂E[S(t, x)]

∂t
= κLE[S(t, x)]− βE[I(t, x)] (1a)

∂E[I(t, x)]

∂t
= κLE[I(t, x)] + (β − γ)E[I(t, x)] (1b) (1)

∂E[R(t, x)]

∂t
= κLE[R(t, x)] + γE[I(t, x)] (1c)

Note that the discrete Laplace operator is defined to be L f(t, x) =
∑
z ̸=0

a(z)[f(t, x +

z)− f(t, x)].

Proof of Theorem 1: For the susceptible group: S(t+dt, x) = S(t, x)+ξ(dt)

where

ξ(dt) =



1 w.p
∑
z ̸=0

S(t, x+ z)κa(z)dt 1○

−1 w.p
∑
z ̸=0

S(t, x)κa(z)dt+ I(t, x)βdt 2○

0 w.p 1− 1○ − 2○

8



The case that ξ(dt) = 1 is the event that a particle at location x + z in

the susceptible group moves to location x, meaning location x gains a particle, and

thus the event has probability
∑
z ̸=0

S(t, x + z)κa(z)dt. The case that ξ(dt) = −1

is the event that either a particle at location x moves to location x + z (mean-

ing that location x loses a particle - which has probability
∑
z ̸=0

S(t, x)κa(z)dt), or a

particle at location x in the susceptible group becomes infected (which has prob-

ability I(t, x)βdt). The case that ξ(dt) = 0 is the event that there is no particle

moving to or away from location x in the susceptible group, so it has probability

1−
∑
z ̸=0

S(t, x+ z)κa(z)dt−
∑
z ̸=0

S(t, x)κa(z)dt− I(t, x)βdt.

E[S(t+ dt, x)] = E[E[S(t+ dt, x)|Ft]]

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that

E[S(t+ dt, x)] = E
[
(S(t, x) + 1)[

∑
z ̸=0

S(t, x+ z)κa(z)dt] + (S(t, x)− 1)·

[
∑
z ̸=0

S(t, x)κa(z)dt+I(t, x)βdt]+S(t, x)[1−
∑
z ̸=0

S(t, x+z)κa(z)dt−(
∑
z ̸=0

S(t, x)κa(z)dt+

I(t, x)βdt)]
]

Recall that we defined our Laplace operator as L f(t, x) =
∑
z ̸=0

a(z)[f(t, x +

z)− f(t, x)]. We can also distribute the expectation and divide both sides by dt and

we have that, as dt → 0

9



∂E[S(t, x)]

∂t
= κLE[S(t, x)]− βE[I(t, x)]

For the infected group: I(t+ dt, x) = I(t, x) + ξ(dt) where

ξ(dt) =



1 w.p I(t, x)βdt+
∑
z ̸=0

I(t, x+ z)κa(−z)dt 1○

−1 w.p I(t, x)γdt+
∑
z ̸=0

I(t, x)κa(z)dt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that a particle at location x + z in the

infected group moves to location x, meaning location x gains a particle (which has

probability
∑
z ̸=0

I(t, x+z)κa(z)dt), or a particle at location x in the susceptible group

becomes infected (which has probability I(t, x)βdt). The case that ξ(dt) = −1 is the

event that either a particle at location x in the infected group moves to location x+z

(meaning that location x loses a particle - which has probability
∑
z ̸=0

I(t, x)κa(z)dt),

or a particle at location x moves from the infected group to the recovered group

(which has probability I(t, x)γdt). The case that ξ(dt) = 0 is the event that there

is no particle moving to or away from location x in the infected group, so it has

probability 1− I(t, x)βdt−
∑
z ̸=0

I(t, x+ z)κa(−z)dt− I(t, x)γdt−
∑
z ̸=0

I(t, x)κa(z)dt.

E[I(t+ dt, x)] = E[E[I(t+ dt, x)|Ft]]

Similarly to the susceptible group, we use the Kolmogorov Forward Equa-

tions, and derive the following equation, as dt → 0
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∂E[I(t, x)]

∂t
= κLE[I(t, x)] + (β − γ)E[I(t, x)]

For the recovered group: R(t+ dt, x) = R(t, x) + ξ(dt) where

ξ(dt) =



1 w.p I(t, x)γdt+
∑
z ̸=0

R(t, x+ z)κa(−z)dt 1○

−1 w.p
∑
z ̸=0

R(t, x)κa(z)dt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that either a particle at location x + z

in the recovered group moves to location x (meaning location x gains a particle

(which has probability
∑
z ̸=0

R(t, x + z)κa(z)dt), or a particle at location x in the in-

fected group becomes recovered (which has probability I(t, x)γdt). The case that

ξ(dt) = −1 is the event that a particle at location x in the recovered group moves

to location x + z (meaning that location x loses a particle - which has probability∑
z ̸=0

R(t, x)κa(z)dt). The case that ξ(dt) = 0 is the event that there is no particle

moving to or away from location x in the recovered group, so it has probability

1− I(t, x)γdt−
∑
z ̸=0

R(t, x+ z)κa(−z)dt−
∑
z ̸=0

R(t, x)κa(z)dt.

E[R(t+ dt, x)] = E[E[R(t+ dt, x)|Ft]]

By the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we get that
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∂E[R(t, x)]

∂t
= κLE[R(t, x)] + γE[I(t, x)]
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CHAPTER 4

FIRST MOMENTS OF THE SIR MODEL

4.1 First Moments in Homogeneous Space

To solve the differential equations there are 2 cases- homogeneous space and

inhomogeneous space. The first is homogeneous space: Assume the space is homoge-

neous, then the spaces are equivalent, meaning x and x+ z are the same. Thus the

Laplace operator L f(t, x) =
∑
z ̸=0

a(z)[f(t, x+ z)− f(t, x)] = 0. Then the differential

equations from Chapter 3 Equation (1) now no longer have the Laplace operator and

the equations become:



∂E[S(t, x)]

∂t
= −βE[I(t, x)]

∂E[I(t, x)]

∂t
= (β − γ)E[I(t, x)] (2)

∂E[R(t, x)]

∂t
= γE[I(t, x)]

Theorem 2 In the homogeneous space, as t −→ ∞, with initial conditions S(0) =

ρ0 > 0, I(0) = 1, I(0, x) =


1 if x = y

0 if x ̸= y

,R(0) = 0, if β ̸= γ, the steady states

E[S(t, x)], E[I(t, x)], and E[R(t, x)] exist and the solutions are
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E[S(t, x)] =
−βe(β − γ)t + β + ρ0(β − γ)

β − γ

E[I(t, x)] = e(β − γ)t (3)

E[R(t, x)] =
γe(β − γ)t − γ

(β − γ)

.

If β = γ, the solutions are


E[S(t, x)] = ρ0 − βCt

E[I(t, x)] = C ∈ R

E[R(t, x)] = 1 + γCt

Proof of Theorem 2: Solving the ODE system (2) using regular ODE

methods, we get the solutions for the first moments of the SIR model.

4.2 First Moments in Inhomogeneous Space

Now we need to solve the differential equations given in Chapter 3 Equation

(1) in the inhomogeneous space. Assume the space is inhomogeneous, then the spaces

x and x+ z are not equivalent and L f(t, x) =
∑
z ̸=0

a(z)[f(t, x+ z)− f(t, x)] ̸= 0. To

solve the in-homogeneous equations, we need a few new definitions and theorems:

Definition 1 (Fourier Transform) f̂(k) =
∑
x∈Zd

f(x)eikx

Definition 2 (Inverse Fourier Transform) For the Fourier transform f̂(k) =∑
x∈Zd

eitxf(x), the inverse Fourier transform is f(x) =
1

(2π)d

∫
T d

f̂(k)e−ikxdk where

T d = [−π, π]d

Definition 3 (Intensity of Mobility Effect) Define κâ(k), where
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â(k) =
∑
z∈Zd

a(z)eikz, as a measure of the intensity of the dynamical movement of

particles/mobility effect.

Lemma 1 (Fourier Transform of function L f(k)) Define L̂ (k) as the fourier

symbol of the operator L , then L̂ (k) = â(k) ≤ 0 and L̂ f(k) = f̂(k)L̂ (k)

Proof of Lemma 1: Recall that L f(t, x) =
∑
z ̸=0

a(z)[f(t, x+ z)− f(t, x)]

Applying the Fourier transform from Definition 1 to the Laplace Operator,

we get:

L̂ f(k) =
∑
x∈Zd

eikx
∑
z ̸=0

a(z)[f(t, x+ z)− f(t, x)]

L̂ f(k) =
∑
z ̸=0

a(z)

[
e−ikz ∑

x∈Zd

eik(x+ z)f(x+ z)−
∑
x∈Zd

eikxf(x)

]

L̂ f(k) = f̂(k)
∑
z ̸=0

a(z) [cos(kz)− 1 + isin(−kz)]

Since it is on a symmetric Zd space, isin(−kz) = 0 thus,

L̂ f(k) = f̂(k)
∑
z ̸=0

a(z)(cos(kz)− 1)

â(k) =
∑
z∈Zd

a(z)(cos(kz) + isin(kz)) =
∑
z∈Zd

a(z)cos(kz)

â(k) =
∑
z ̸=0

a(z)cos(kz) +
∑
z=0

a(z)cos(kz)

Since a(z) = a(−z) and
∑
z ̸=0

a(z) = 1, we know a(0) = −1 and then
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â(k) =
∑
z ̸=0

a(z)cos(kz) + a(0)cos(0) =
∑
z ̸=0

a(z)cos(kz)− 1

â(k) + 1 =
∑
z ̸=0

a(z)cos(kz) and â(k) =
∑
z ̸=0

a(z)(cos(kz)− 1) ≤ 0

L̂ f(k) = f̂(k)
∑
z ̸=0

a(z)(cos(kz)− 1) = f̂(k)
[ ∑
z ̸=0

a(z)cos(kz)−
∑
z ̸=0

a(z)
]

L̂ f(k) = f̂(k)((â(k) + 1)− 1) = f̂(k)â(k) =⇒ L̂ (k) = â(k) ≤ 0

Thus, L̂ f(k) = f̂(k)L̂ (k).

Now we can use Definitions 1 and 2 to solve for the first moment of I(t, x) in

the inhomogeneous space. For the differential equation of E[I(t, x)] from Chapter 3

Equation (1b), we can apply the Fourier transform from Definition 1 to both sides

of the equation and get:

∂Ê[I(t, k)]

∂t
= κL̂ (k)Ê[I(t, k)] + (β − γ)Ê[I(t, k)]

Assume E[I(0, x)] =


1 if x = 0

0 if x ̸= 0

,

then Ê[I(0, k)] =
∑
x∈Zd

E[I(0, x)]eikx = 1

Ê[I(t, k)] = Ê[I(0, k)]e

[
κL̂ (k) + (β − γ)

]
t = e

[
κL̂ (k) + (β − γ)

]
t
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Using the Inverse Fourier formula from Definition 2, we have that

E[I(t, x)] =
1

(2π)d

∫
T d

Ê[I(t, k)]e−ikxdk =

E[I(t, x)] =
1

(2π)d

∫
T d

e[κL̂ (k) + (β − γ)]te−ikxdk

Now to solve for the first moments of the susceptible and recovered groups in

the in-homogeneous space we need a more general solution.

Lemma 2 The transition probability of the particles p(t, x, y) is the fundamental

solution to the following equation

∂p(t, x, y)

∂t
= κL p(t, x, y)

p(0, x, y) = δ(x− y) =


1 if x = y

0 if x ̸= y

and p(t, x, y) =
1

(2π)d

∫
T d

eik(x− y)eκL̂ (k)tdk

Proof of Lemma 2: Then the Fourier transform of
∂p(t, x, k)

∂t
becomes


∂p̂(t, x, k)

∂t
= κL̂ (k)p̂(t, x, k)

p̂(0, x, k) =
∑
y∈Zd

δ(x− y)eiky = eikx
=⇒ p̂(t, x, k) = p̂(0, x, k)eκL̂ (k)t

Thus we have p̂(t, x, k) = eikxeκL̂ (k)t

Using the inverse Fourier formula from Definition 2, we have that

p(t, x, y) =
1

(2π)d

∫
T d

[
eikxeκL̂ (k)t]e−ikydk =

1

(2π)d

∫
T d

eik(x− y)eκL̂ (k)tdk
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Meaning that the transition probability depends on the distance between lo-

cation x and location y. Then plugging x = 0 and t = t−s into p(t, x, y) we have that

p(t− s, 0, x− z) =
1

(2π)d

∫
T d

(eik(0)eκL̂ (k)(t− s))e−ik(x− z)dk

p(t− s, 0, x− z) =
1

(2π)d

∫
T d

eik(z − x)eκL̂ (k)(t− s)dk□

The transition probability is important because it also relates to the Green

function.

Gλ(x, y) =

∫ ∞

0

e−λtp(t, x, y)dt for λ ≥ 0

Gλ(x, y) =
1

(2π)d

∫
T d

eik(x− y)

λ− κL̂ (k)
dk then G0(x, y) =

1

(2π)d

∫
T d

eik(x− y)

−κL̂ (k)
dk

Where G0(x, y) is the expected value of the number of visits of susceptible,

infected, or recovered population to location y if the original location is x. The

random walk on Zd is on a symmetric space so each location is equivalent. Therefore

either all states are transient or all states are recurrent (either positive recurrent

or non-recurrent). G0(0, 0) =
1

(2π)d

∫
T d

1

−κL̂ (k)
dk and if G0(0, 0) < ∞ then the

random walk is transient (there is a positive probability to never return to the original

location) and ifG0(0, 0) = ∞ then the random walk is recurrent- meaning the random

walk will return to the original location infinitely many times.
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Theorem 3 (General Solution for Inhomogeneous Equation) The general so-

lution to the inhomogeneous equation
∂U(t, x)

∂t
= κLU(t, x) + V (t)U(t, x) + f(t, x)

U(0, x) = ρ0 > 0

is U(t, x) = ρ0Ex

[
e

∫ t

0

V (Xs)ds
]
+ e

∫ t

0

V (Xs)ds
∫ t

0

∑
z∈Zd

p(t − s, 0, x − z)f̃(s, z)ds

where Xs is the stochastic process random walk driven by κL f = κ
∑
z∈Zd

a(z)[f(x +

z)− f(x)] and V (Xs) is the potential of the equation.

Proof of Theorem 3: By Duhamel’s principle, we define the solution of
∂U(t, x)

∂t
= κLU(t, x) + V (t)U(t, x) + f(t, x)

U(0, x) = ρ0 > 0

to be U(t, x) = Uh(t, x)+w(t, x),

where Uh(t, x) is the corresponding homogeneous solution and w(t, x) is a particular

solution to the in-homogeneous equation, and we will solve for Uh(t, x) and w(t, x)

separately.

For Uh[(t, x)], we have


∂Uh(t, x)

∂t
= κLUh(t, x) + V (t)Uh(t, x)

Uh(0, x) = ρ0 > 0

and the solution to this differential equation is Uh(t, x) = ρ0Ex

[
e

∫ t

0

V (Xs)ds
]

by the Kac-Feyman Formula, where Xs is the stochastic process random walk driven

by κL f = κ
∑
z∈Zd

a(z)[f(x+ z)− f(x)].
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For w(t, x), we have


∂w(t, x)

∂t
= κLw(t, x) + V (t)w(t, x) + f(t, x)

w(0, x) = 0

and

the solution to this differential equation is w(t, x) = e

∫ t

0

V (Xs)ds
w̃(t, x), so now

we need to solve for w̃(t, x)

∂w(t, x)

∂t
=

∂

∂t

[
e

∫ s

0

V (s)ds
]
w̃(t, x) + e

∫ s

0

V (s)ds
[
∂w̃(t, x)

∂t

]

∂w(t, x)

∂t
=

(∫ t

0

V (s)ds
)
e

∫ t

0

V (s)ds
w̃(t, x) + e

∫ s

0

V (s)ds
[
∂w̃(t, x)

∂t

]

κLw(t, x)+V (t)w(t, x)+f(t, x) = V (t)e
∫ t
0 V (s)dsw̃(t, x)+e

∫ s
0 V (s)ds

[
∂w̃(t, x)

∂t

]

e

∫ t

0

V (s)ds [∂w̃(t, x)
∂t

]
= e

∫ t

0

V (s)ds
κL w̃(t, x) + f(t, x)

Then for w̃(t, x) we have


∂w̃(t, x)

∂t
= κL w̃(t, x) + f(t, x)e

−
∫ t

0

V (s)ds

w̃(0, x) = 0
∂w̃(t, x)

∂t
= κL w̃(t, x) + f̃(t, x)

w̃(0, x) = 0

and to solve this we need to use the Fourier

Transform and transition probability.

The Fourier transform of
∂w̃(t, x)

∂t
is

∂ ˆ̃w(t, k)

∂t
= κL̂ (k) ˆ̃w(t, k) + ˆ̃f(t, k) and
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solving this differential equation we have that

ˆ̃w(t, k) = C(t)eκL̂ (k)t =⇒ C ′(t)eκL̂ (k)t = ˆ̃f(t, k)

=⇒ C ′(t) = ˆ̃f(t, k)e−κL̂ (k)t

Plugging this C ′(t) into ˆ̃w(t, k) =

∫ t

0

ˆ̃f(t, k)e−κL̂ (k)sds(eκL̂ (k)t)

ˆ̃w(t, k) =

∫ t

0

ˆ̃f(s, k)eκL̂ (k)(t− s)ds

Now plugging in p̂(t − s, 0, k) = eκL̂ (k)(t− s) into the equation for ˆ̃w(t, k)

we have that ˆ̃w(t, k) =

∫ t

0

ˆ̃f(t, k)eκL̂ (k)(t− s)ds we have that

ˆ̃w(t, k) =

∫ t

0

ˆ̃f(s, k)p̂(t− s, 0, k)ds =

∫ t

0

∑
z∈Zd

f̃(s, x)eikx
∑
y∈Zd

p(t− s, 0, y)eiky

Now applying the Inverse Fourier Transform from Definition 2 we have that

w̃(t, x) =

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)f̃(s, z)ds

Plugging w̃(t, x) into w(t, x) = e

∫ t

0

V (Xs)ds
w̃(t, x) we get that

w(t, x) = e

∫ t

0

V (Xs)ds
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)f̃(s, z)ds
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Now we have the solution to the general differential equation to be U(t, x) =

Uh(t, x) + w(t, x)

Plugging in what we have for Uh(t, x) and w(t, x) we get that

U(t, x) = ρ0Ex

e
∫ t

0

V (Xs)ds

+e

∫ t

0

V (s)ds ∫ t

0

∑
z∈Zd

p(t−s, 0, x−z)f̃(s, z)ds□

Now let us study the susceptible group, where Equation (1a) gives the dif-

ferential equation for S(t, x) in the inhomogeneous space. To solve for E[S(t, x)] in

the inhomogeneous space we want to apply Theorem 3, where f(t, x) = −βE[I(t, x)]

but there is no potential V (t) in these equations so then we have the solution to be

E[S(t, x)] = Eh[S(t, x)] + w(t, x) where


∂Eh[S(t, x)]

∂t
= κLEh[S(t, x)] + V (t)Eh[S(t, x)] = κLEh[S(t, x)]

Eh[S(0, x)] = ρ0δ0(x)
∂w(t, x)

∂t
= κLw(t, x) + V (t)w(t, x) + f(t, x) = κLw(t, x) + f(t, x)

w(0, x) = 0

To solve the differential equation of the homogeneous equation Eh[S(t, x)] we

will use Definitions 1 and 2:

∂Êh[S(t, k)]

∂t
= κL̂ (k)Êh[S(t, k)] =⇒ Êh[S(t, k)] = Êh[S(0, k)]eκL̂ (k)t
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Êh[S(t, k)] = ρ0e
κL̂ (k)t =⇒ Eh[S(t, x)] =

1

(2π)d

∫
T d

ρ0e
κL̂ (k)te−ikxdk

To solve the differential equation of w(t, x) we will use the Fourier transform

and Inverse Fourier transform formula to get:

Note that since we have potential V (u) = 0, we have that

f(t, x) = e

∫ t

0

V (s)ds
f̃(t, x) = f̃(t, x) and

w(t, x) = e

∫ t

0

V (s)ds
w̃(t, x) = e

∫ t

0

0ds
w̃(t, x) = w̃(t, x)

=⇒ w(t, x) = w̃(t, x) and f(t, x) = f̃(t, x)

w(t, x) =

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)f(s, z)ds

w(t, x) =

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)(−β)E[I(s, z)]ds

Then for E[S(t, x)] = Eh[S(t, x)] + w(t, x) we have

E[S(t, x)] = 1
(2π)d

∫
T d ρ0e

κL̂ (k)te−ikxdk−β
∫ t

0

∑
z∈Zd

p(t−s, 0, x−z)E[I(s, z)]ds

E[S(t, x)] =
1

(2π)d

∫
T d

ρ0e
κL̂ (k)te−ikxdk−

β

(2π)d

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)

(∫
T d

e[κL̂ (k) + (β − γ)]se−ikzdk

)
ds

Recall that the differential equation for R(t, x) in the inhomogeneous space
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is Equation (1c). To solve for E[R(t, x)] in the inhomogeneous space, we want to

again apply Theorem 3, where f(t, x) = γE[I(t, x)] but there is no potential V (t) in

these equations so we have the solution to be E[R(t, x)] = Eh[R(t, x)]+w(t, x) where


∂Eh[R(t, x)]

∂t
= κLEh[R(t, x)] + V (t)Eh[R(t, x)] = κLEh[R(t, x)]

Eh[R(0, x)] = 0

and


∂w(t, x)

∂t
= κLw(t, x) + V (t)w(t, x) + f(t, x) = κLw(t, x) + f(t, x)

w(0, x) = 0

To solve the differential equation of the homogeneous equation Eh[R(t, x)]

using Definitions 1 and 2:

∂Êh[R(t, k)]

∂t
= κL̂ (k)Êh[R(t, k)] =⇒ Êh[R(t, k)] = Êh[R(0, k)]eκL̂ (k)t =

0

Êh[R(t, x)] =
1

(2π)d

∫
T d

Êh[R(t, k)]e−ikxdk =⇒ Êh[R(t, x)] = 0

Similarly to the susceptible group, to solve the differential equation of w(t, x)

we will use the Fourier transform, Inverse Fourier transform formula, and the tran-

sition probability to get:

Note that since we have potential V (u) = 0, we have that f̃(t, x) = f(t, x),

w(t, x) = w̃(t, x), and w(t, x) =

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)f(s, z)ds
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w(t, x) = γ

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)E[I(s, z)]ds

Then for E[R(t, x)] = Eh[R(t, x)] + w(t, x) we have

E[R(t, x)] = 0 + γ

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)E[I(s, z)]ds

E[R(t, x)] = γ 1
(2π)d

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
(∫

T d e
[κL̂ (k)+(β−γ)]se−ikzdk

)
ds

Therefore the final solutions for the first moments in inhomogeneous space are:

E[I(t, x)] =
1

(2π)d

∫
T d

e[κL̂ (k) + (β − γ)]te−ikxdk (4a)

E[S(t, x)] =
1

(2π)d

[∫
T d

ρ0e
κL̂ (k)te−ikxdk − (4b)

β

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)

(∫
T d

e[κL̂ (k) + (β − γ)]se−ikzdk

)]
ds (4)

E[R(t, x)] =
γ

(2π)d

∫ t

0

∑
z∈Zd

p(t− s, 0, x− z) · (4c)(∫
T d

e[κL̂ (k) + (β − γ)]se−ikzdk

)
ds

4.3 First Moments in Inhomogeneous Space using matrices

The homogeneous space equations uses simple ODE methods to solve for the

first moments, but the inhomogeneous space solutions are more complicated and the

first moments written in solution (4) are not as straightforward, making it difficult

to analyze the asymptotics. Thus to make the solutions more clear we are going to

25



use the matrix format. Let U(t, x) =


S(t, x)

I(t, x)

R(t, x)

 and then mU
1 (t, x) =


mS

1 (t, x)

mI
1(t, x)

mR
1 (t, x)

.
The Fourier transform of equation (1) from Chapter 3 is

∂m̂U
1 (t, k)

∂t
= Â1m̂

U
1 (t, k),

where the matrix Â1 =


κâ(k) −β 0

0 κâ(k) + β − γ 0

0 γ κâ(k)

 has eigenvalues are λ1 =

λ2 = κâ(k) and λ3 = κâ(k) + β − γ.

Case 1: β = γ

Then λ1 = λ2 = λ3 = κâ(k) multiplicity 3 and (Â1 − κâ(k)I)3 = 0.

eÂ1t =


eκâ(k)t −βteκâ(k)t 0

0 eκâ(k)t 0

0 γteκâ(k)t eκâ(k)t

 with initial conditions x0 =

[
ρ0 1 0

]T

m̂U
1 (t, k) = eÂ1tx0 =


ρ0e

κâ(k)t − βteκâ(k)t

eκâ(k)t

γteκâ(k)t

 =


m̂S

1 (t, k)

m̂I
1(t, k)

m̂R
1 (t, k)

 =⇒

mU
1 (t, x) =


mS

1 (t, x)

mI
1(t, x)

mR
1 (t, x)

 =



( 1

2π

)d
∫
T d

(
ρ0e

κâ(k)t − βteκâ(k)t
)
e−ikxdk( 1

2π

)d
∫
T d

(
eκâ(k)t

)
e−ikxdk( 1

2π

)d
∫
T d

(
γteκâ(k)t

)
e−ikxdk

 (5)

Case 2: β ̸= γ
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λ1 = λ2 = κâ(k) has multiplicity 2 and λ3 = κâ(k) + β − γ has multiplicity

1. Then X(t) =


eκâ(k)t 0

(
β

γ−β

)
e(κâ(k) + β − γ)t

0 0 e(κâ(k) + β − γ)t

0 eκâ(k)t
(

γ
β−γ

)
e(κâ(k) + β − γ)t



and X(0) =


1 0

(
β

γ−β

)
0 0 1

0 1
(

γ
β−γ

)
, X−1(0) =


1

(
β

β−γ

)
0

0
(

γ
γ−β

)
1

0 1 0


eÂ1t = X(t)X−1(0)

eÂ1t =


eκâ(k)t

(
β

β−γ

)
eκâ(k)t +

(
β

γ−β

)
e(κâ(k) + β − γ)t 0

0 e(κâ(k) + β − γ)t 0

0
(

γ
γ−β

)
eκâ(k)t +

(
γ

β−γ

)
e(κâ(k) + β − γ)t eκâ(k)t

 with initial

conditions x0 = [ρ0 1 0]T

m̂U
1 (t, k) =


ρ0e

κâ(k)t +
( β

β − γ

)
eκâ(k)t −

( β

β − γ

)
e(κâ(k) + β − γ)t

e(κâ(k) + β − γ)t( γ

γ − β

)
eκâ(k)t −

( γ

γ − β

)
e(κâ(k) + β − γ)t



mU
1 (t, x) =


(

1
2π

)d ∫
T d

[
ρ0e

κâ(k)t +
(

β
β−γ

)
eκâ(k)t −

(
β

β−γ

)
e(κâ(k)+β−γ)t

]
e−ikxdk(

1
2π

)d ∫
T d

(
e(κâ(k)+β−γ)t

)
e−ikxdk(

1
2π

)d ∫
T d

[(
γ

γ−β

)
eκâ(k)t −

(
γ

γ−β

)
e(κâ(k)+β−γ)t

]
e−ikxdk

 (6)

The representation here in equation (6) is equivalent to the solutions in (4) on

page 21 and we will show the proof for the recovered group as an example, since the

proofs are similar for the susceptible, infected, and recovered groups. The solution
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(4c) can be rewritten as

mR
1 (t, x) =

γ

(2π)d

∑
z∈Zd

∫
T d

∫ t

0

p(t− s, 0, x− z)e(κâ(k) + β − γ)se−ikzdsdk

p(t− s, 0, x− z) =
1

(2π)d

∫
T d

eik(z − x)eκâ(k)(t− s)dk

mR
1 (t, x) =

γ

(2π)d

∑
z∈Zd

∫
T d

∫ t

0

1

(2π)d

∫
T d

e−ikxeκâ(k)t+ (β − γ)sdkdsdk

=
γ

(2π)d

∑
z∈Zd

∫
T d

1

(2π)d

∫
T d

e−ikxeκâ(k)t
∫ t

0

e(β − γ)sdsdkdk

=
γ

(2π)d

∑
z∈Zd

∫
T d

[ 1

(2π)d

∫
T d

e−ikxeκâ(k)tdk
][( 1

γ − β

)(
1− e(β − γ)t

)]
dk

=
γ

(2π)d

∫
T d

∑
z∈Zd

p(t, 0, x)
[( 1

γ − β

)(
1− e(β − γ)t

)]
dk

=
1

(2π)d

∫
T d

(
eκâ(k)te−ikx

)[( γ

γ − β

)(
1− e(β − γ)t

)]
dk

=
1

(2π)d

∫
T d

[( γ

γ − β

)(
eκâ(k)t−e(κâ(k) + β − γ)t

)]
e−ikxdk, which is equiv-

alent to row 3 in (6).
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CHAPTER 5

ANALYZING THE BEHAVIOR OF THE FIRST MOMENTS OF THE SIR
MODEL

5.1 Analyzing the behavior of the first moments in Homogeneous Space

As t → ∞ mS
1 (t, x) → mI

1(t, x) → mR
1 (t, x) →

Subcritical: β < γ → β+ρ0(β−γ)
β−γ

→ 0 → −γ
β−γ

Critical: β = γ → 0 → C ∈ R → ∞

Supercritical: β > γ → 0 → ∞ → ∞

Table 5.1: Asymptotic Behavior of the First Moments in Homogeneous Space

We can see in Figure 5.1 that while both E[(I(t, x)] and E[R(t, x)] go to

infinity, the graph shows that E[I(t, x)] (the blue line) goes to infinity at a faster

rate than E[R(t, x)] (the green line).
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Figure 5.1: Expected Value when β > γ

5.2 Analyzing the behavior of the first moments in Inhomogeneous Space

A summary of the asymptotic behavior of the first moments of the susceptible,

infected, and recovered groups as t −→ ∞ can be found in Table 7.1. Let θ =

κâ(k) + β − γ, α = κâ(k), C1 =
1

(2π)d

∫
T d

e−ikxdk, C2 =
1

(2π)d

∫
T d

βe−ikx

β − γ
dk, and

C3 =
1

(2π)d

∫
T d

γe−ikx

β − γ
dk.
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As t → ∞ mS
1 (t, x) → mI

1(t, x) → mR
1 (t, x) →

β = γ, α < 0, θ < 0, → 0 → 0 → 0

β = γ, α = 0, θ = 0, → 0 → C1 → ∞

β < γ, α < 0, θ < 0, → 0 → 0 → 0

β < γ, α = 0, θ < 0, → C2 → 0 → C3

β > γ, α < 0, θ < 0 → 0 → 0 → 0

β > γ, α < 0, θ > 0, → ∞ → ∞ → ∞

β > γ, α = 0, θ > 0, → 0 → ∞ → 0

Table 5.2: Asymptotic Behavior of the First Moments in Inhomogeneous Space

When β > γ, α < 0 and θ = κâ(k) + β − γ < 0, we have the event that

the infection rate is higher than the recovery rate, but the infection rate minus the

recovery rate (β− γ) is smaller than the mobility effect κâ(k), meaning the mobility

effect is stronger. The result is that the expected value of the susceptible, infected,

and recovered populations goes to 0 as time t goes to infinity. If the first moment

decreases to negative infinity simply from the mathematical expression view, as t

goes to infinity, in this case, once the first moment hits the state 0, it will stay in

state 0 forever. Another noteworthy event is when β = γ, meaning the infection rate

is equal to the recovery rate, and the mobility effect κâ(k) < 0, then the expected

value of the infected population at location x goes to 0 as time t goes to infinity.

The event where β = γ and the mobility effect κâ(k) = 0, we have that the expected

value of the infected population at location x goes to a finite constant C1 as t goes

to infinity. This means that the expected value of the infected population goes to
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a steady state, rather than going to 0. This makes our model different from the

classical SIR model because the infected population does not always go to 0 when

the infection rate is equal to the recovery rate because we have active movement to

and from outside location x.
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CHAPTER 6

DERIVING THE DIFFERENTIAL EQUATIONS FOR THE SECOND
MOMENTS

Now we want to find the differential equations for the second moments for the

S(t, x), I(t, x), R(t, x), S(t, x)I(t, x), and R(t, x)I(t, x) groups, where each group has

2 cases: when the locations x = y and when the locations x ̸= y. The differential

equations for the second moments will then be solved to find the second moments,

which will be used in determining the variance and the long term behavior of the

susceptible, infected, and recovered groups. Note a few operator definitions:

L f(t, x) =
∑
z ̸=0

a(z)(f(t, x+ z)− f(t, x))

Lxf(t, x, y) =
∑
z ̸=0

a(z)(f(t, x+ z, y)− f(t, x, y))

Lyf(t, x, y) =
∑
z ̸=0

a(z)(f(t, x, y + z)− f(t, x, y))

LSxE[S(t, x)I(t, x)] =
∑
z ̸=0

a(z)E[I(t, x)S(t, x+ z)− I(t, x)S(t, x)]

LIxE[S(t, x)I(t, x)] =
∑
z ̸=0

a(z)E[S(t, x)I(t, x+ z)− S(t, x)I(t, x)]

and let v = ||y − x||

Theorem 4 The differential equations for the second moment of the susceptible

group are
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Susceptible when x = y :

∂mS
2 (t, x, x)

∂t
= 2κLxm

S
2 (t, x, x) + κLmS

1 (t, x)− 2βmSI
2 (t, x, x) + 2κmS

1 (t, x)

+βmI
1(t, x) (7a)

Susceptible when x ̸= y :

∂mS
2 (t, v)

∂t
= κLxm

S
2 (t, v) + κLym

S
2 (t, v)− 2βmSI

2 (t, v)− κa(v)mS
1 (t, x)

−κa(v)mS
1 (t, y) (7b)

Theorem 5 The differential equations for second moment of the infected group are

Infected when x = y :

∂mI
2(t, x, x)

∂t
= 2κLxm

I
2(t, x, x) + κLmI

1(t, x) + 2(β − γ)mI
2(t, x, x) + 2κmI

1(t, x)

+(β + γ)mI
1(t, x) (8a)

Infected when x ̸= y :

∂mI
2(t, v)

∂t
= κLxm

I
2(t, v) + κLym

I
2(t, v) + 2(β − γ)mI

2(t, v)− κa(v)mI
1(t, x)

−κa(v)mI
1(t, y) (8b)

Theorem 6 The differential equations for the second moment of the recovered group

are
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Recovered when x = y :

∂mR
2 (t, x, x)

∂t
= 2κLxm

R
2 (t, x, x) + κLmR

1 (t, x) + 2γmRI
2 (t, x, x) + 2κmR

1 (t, x)

+γmI
1(t, x) (9a)

Recovered when x ̸= y :

∂mR
2 (t, v)

∂t
= κLxm

R
2 (t, v) + κLym

R
2 (t, v) + 2γmRI

2 (t, v)− κa(v)mR
1 (t, x)

−κa(v)mR
1 (t, y) (9b)

Theorem 7 The differential equations for the second moment of the susceptible-

infected groups are

Susceptible-Infected when x = y

∂mSI
2 (t, x, x)

∂t
= κLSxm

SI
2 (t, x, x) + κLIxm

SI
2 (t, x, x) + (β − γ)mSI

2 (t, x, x)

−βmI
2(t, x, x)− βmI

1(t, x) (10a)

Susceptible-Infected when x ̸= y

∂mSI
2 (t, v)

∂t
= κLxm

SI
2 (t, v) + κLym

SI
2 (t, v) + (β − γ)mSI

2 (t, v)− βmI
2(t, v)(10b)

Note that
∂mIS

2 (t, v)

∂t
=

∂mSI
2 (t, v)

∂t
and

∂mIS
2 (t, x, x)

∂t
=

∂mSI
2 (t, x, x)

∂t

Theorem 8 The differential equations for the second moment of the recovered-infected

groups are
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Recovered-Infected when x = y

∂mRI
2 (t, x, x)

∂t
= κLRxm

RI
2 (t, x, x) + κLIxm

RI
2 (t, x, x) + (β − γ)mRI

2 (t, x, x)

+γmI
2(t, x, x)− γmI

1(t, x) (11a)

Recovered-Infected when x ̸= y

∂mRI
2 (t, v)

∂t
= κLxm

RI
2 (t, v) + κLym

RI
2 (t, v) + (β − γ)mRI

2 (t, v) + γmI
2(t, v) (11b)

Note that
∂mRI

2 (t, v)

∂t
=

∂mIR
2 (t, v)

∂t
and

∂mRI
2 (t, x, x)

∂t
=

∂mIR
2 (t, x, x)

∂t

Proof of Theorem 4: For the susceptible group, when deriving the differ-

ential equations for the second moment, we are going to use a similar method to

the one used for the first moment- the Kolmogorov Forward Equations. There are

2 cases: when the locations are equivalent and x = y, and when the locations are

different and x ̸= y:

Case 1: S(t+ dt, x) when x = y, then m2(t+ dt, x, y) = E[S2(t+ dt, x, x)]

For the second moment when x = y we have that E[S2(t + dt, x)] = E[(S(t, x) +

ξ(dt))2] where

ξ(dt) =



1 w.p
∑
z ̸=0

S(t, x+ z)κa(z)dt 1○

−1 w.p
∑
z ̸=0

S(t, x)κa(z)dt+ I(t, x)βdt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that a particle at location x + z in

the susceptible group moves to location x, meaning location x gains a particle, and
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thus the event has probability
∑
z ̸=0

S(t, x + z)κa(z)dt. The case that ξ(dt) = −1

is the event that either a particle at location x moves to location x + z (mean-

ing that location x loses a particle - which has probability
∑
z ̸=0

S(t, x)κa(z)dt), or a

particle at location x in the susceptible group becomes infected (which has prob-

ability I(t, x)βdt). The case that ξ(dt) = 0 is the event that there is no particle

moving to or away from location x in the susceptible group, so it has probability

1−
∑
z ̸=0

S(t, x+ z)κa(z)dt−
∑
z ̸=0

S(t, x)κa(z)dt− I(t, x)βdt.

E[S2(t+ dt, x)] = E[E[S2(t+ dt, x)|F (t)]] = E[S2(t, x)] + E[2S(t, x)ξ(dt)] +

E[ξ2(dt)]

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that

E[S2(t+ dt, x)] = E[S2(t, x)] + 2E
[
S(t, x)(1)(

∑
z ̸=0

S(t, x+ z)κa(z)dt) +

S(t, x)(−1)(
∑
z ̸=0

S(t, x)κa(z)dt + I(t, x)βdt) + S(t, x)(0)[1 −
∑
z ̸=0

S(t, x + z)κa(z)dt −

(
∑
z ̸=0

S(t, x)κa(z)dt+I(t, x)βdt)]
]
+E

[
(1)2(

∑
z ̸=0

S(t, x+z)κa(z)dt)+(−1)2(
∑
z ̸=0

S(t, x) ·

κa(z)dt+I(t, x)βdt)+(0)2[1−
∑
z ̸=0

S(t, x+z)κa(z)dt−(
∑
z ̸=0

S(t, x)κa(z)dt+I(t, x)βdt)]
]

When we multiply out the quantities and cancel terms, re-write sums in terms

of our Laplace operators defined in the beginning of the chapter, distribute the ex-

pectation and divide both sides by dt, we get that
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∂mS
2 (t, x, x)

∂t
= 2κLxm

S
2 (t, x, x)+κLmS

1 (t, x)−2βmSI
2 (t, x, x)+2κmS

1 (t, x)+

βmI
1(t, x)

Case 2: S(t+dt, x) when x ̸= y, thenm2(t+dt, x, y) = E[S(t+dt, x)S(t+dt, y)]

For the second moment when x ̸= y we have that,

E[S(t+ dt, x)S(t+ dt, y)] = E[(S(t, x) + ξ(dt, x))(S(t, y) + ξ(dt, y))]

Recall that during (t, t+dt) only one event can happen, either a particle can move or

it can jump states, therefore there are several combinations for x and y. For example,

(x = 1, y = −1), (x = 1, y = 0), so on and so forth. The probabilities for the various

combinations of ξ(dt, x) and ξ(dt, y) are:

The event that a particle in the susceptible group goes from y to x:

P (ξ(dt, x) = 1, ξ(dt, y) = −1) = κa(x− y)S(t, y)dt

The event that a particle in the susceptible group goes from x+ z to x but not to y:

P (ξ(dt, x) = 1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)S(t, x+ z)dt− κa(x− y)S(t, y)dt

The event that a particle in the susceptible group goes from x to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 1) = κa(x− y)S(t, x)dt

The event that a particle in the susceptible group goes from x to x+ z but not to y

or a particle at location x transitions S → I:

P (ξ(dt, x) = −1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)S(t, x)dt− κa(x− y)S(t, x)dt+ βI(t, x)dt

The event that a particle in the susceptible group goes from y+ z to y but not to x:

P (ξ(dt, x) = 0, ξ(dt, y) = 1) = κ
∑
z ̸=0

a(z)S(t, y + z)dt− κa(x− y)S(t, x)dt

The event that a particle in the susceptible group goes from y to y + z but not to x

or a particle at location y transitions S → I:
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P (ξ(dt, x) = 0, ξ(dt, y) = −1) = κ
∑
z ̸=0

a(−z)S(t, y)dt−κa(x−y)S(t, y)dt+βI(t, y)dt

The event that no particle moves in the susceptible group:

P (ξ(dt, x) = 0, ξ(dt, y) = 0) = 1 − κ
∑
z ̸=0

a(z)S(t, y + z)dt − κ
∑
z ̸=0

a(z)S(t, y)dt −

κ
∑
z ̸=0

a(z)S(t, x+z)dt−κ
∑
z ̸=0

a(z)S(t, x)dt+κa(x−y)S(t, y)dt+κa(x−y)S(t, x)dt−

βI(t, x)dt− βI(t, y)dt

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event for all combinations of ξ(dt, x) and

ξ(dt, y), and we have that

E[S(t+ dt, x)S(t+ dt, y)] = E[(S(t, x) + ξ(dt, x))(S(t, y) + ξ(dt, y))]

When we multiply out the quantities and cancel terms, re-write sums in terms

of our Laplace operators defined in the beginning of the chapter, distribute the ex-

pectation and divide both sides by dt, and let v = ||y − x|| we get that

∂mS
2 (t, v)

∂t
= κLxm

S
2 (t, v) + κLym

S
2 (t, v) − 2βmSI

2 (t, v) − κa(v)mS
1 (t, x) −

κa(v)mS
1 (t, y)

Proof of Theorem 5: For the infected group, when deriving the differential

equations of the second moment, it is a very similar process to the one used for the

susceptible group. There are 2 cases: when x = y and when x ̸= y:

Case 1: I(t+ dt, x) when x = y, then m2(t+ dt, x, y) = E[I2(t+ dt, x, x)]
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For the second moment when x = y we have that,

E[I2(t+ dt, x)] = E[(I(t, x) + ξ(dt))2] where

ξ(dt) =



1 w.p βI(t, x)dt+
∑
z ̸=0

I(t, x+ z)κa(−z)dt 1○

−1 w.p γI(t, x)dt+
∑
z ̸=0

I(t, x)κa(z)dt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that a particle at location x + z in the

infected group moves to location x, meaning location x gains a particle (which has

probability
∑
z ̸=0

I(t, x+z)κa(z)dt), or a particle at location x in the susceptible group

becomes infected (which has probability I(t, x)βdt). The case that ξ(dt) = −1 is the

event that either a particle at location x in the infected group moves to location x+z

(meaning that location x loses a particle - which has probability
∑
z ̸=0

I(t, x)κa(z)dt),

or a particle at location x moves from the infected group to the recovered group

(which has probability I(t, x)γdt). The case that ξ(dt) = 0 is the event that there

is no particle moving to or away from location x in the infected group, so it has

probability 1− I(t, x)βdt−
∑
z ̸=0

I(t, x+ z)κa(−z)dt− I(t, x)γdt−
∑
z ̸=0

I(t, x)κa(z)dt.

E[I2(t + dt, x)] = E[E[I2(t + dt, x)|F (t)]] = E[I2(t, x)] + E[2I(t, x)ξ(dt)] +

E[ξ2(dt)]

∂mI
2(t, x, x)

∂t
= 2κLxm

I
2(t, x, x) + κLmI

1(t, x) + 2(β − γ)mI
2(t, x, x) + (β +

γ)mI
1(t, x) + 2κmI

1(t, x)
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Case 2: I(t+dt, x) when x ̸= y, thenm2(t+dt, x, y) = E[I(t+dt, x)I(t+dt, y)]

For the second moment when x ̸= y we have that,

E[I(t+ dt, x)I(t+ dt, y)] = E[(I(t, x) + ξ(dt, x))(I(t, y) + ξ(dt, y))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can transition states, therefore the probabilities for the various combinations of

ξ(dt, x) and ξ(dt, y) are:

The event that a particle in the infected group goes from y to x:

P (ξ(dt, x) = 1, ξ(dt, y) = −1) = κa(x− y)I(t, y)dt

The event that a particle in the infected group goes from x+ z to x but not from y

or a particle at location x transitions S → I:

P (ξ(dt, x) = 1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)I(t, x+ z)dt− κa(x− y)I(t, y)dt+ βI(t, x)dt

The event that a particle in the infected group goes from x to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 1) = κa(x− y)I(t, x)dt

The event that a particle in the infected group goes from x to x+ z but not to y or

a particle at location x transitions I → R:

P (ξ(dt, x) = −1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)I(t, x)dt− κa(x− y)I(t, x)dt+ γI(t, x)dt

The event that a particle in the infected group goes from y + z to y but not from x

or a particle at location y transitions S → I:

P (ξ(dt, x) = 0, ξ(dt, y) = 1) = κ
∑
z ̸=0

a(z)I(t, y+ z)dt− κa(x− y)I(t, x)dt+ βI(t, y)dt

The event that a particle in the infected group goes from y to y + z but not to x or

a particle at location y transitions I → R:

P (ξ(dt, x) = 0, ξ(dt, y) = −1) = κ
∑
z ̸=0

a(−z)I(t, y)dt− κa(x− y)I(t, y)dt+ γI(t, y)dt

The event that no particle moves in the infected group:

41



P (ξ(dt, x) = 0, ξ(dt, y) = 0) = 1 − κ
∑
z ̸=0

a(z)I(t, y + z)dt − κ
∑
z ̸=0

a(z)I(t, y)dt −

κ
∑
z ̸=0

a(z)I(t, x+ z)dt− κ
∑
z ̸=0

a(z)I(t, x)dt+ κa(x− y)I(t, y)dt+ κa(x− y)I(t, x)dt−

βI(t, y)dt− βI(t, x)dt− γI(t, y)dt− γI(t, x)dt

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that

E[I(t+ dt, x)I(t+ dt, y)] = E[(I(t, x) + ξ(dt, x))(I(t, y) + ξ(dt, y))]

∂mI
2(t, v)

∂t
= κLxm

I
2(t, v) + κLym

I
2(t, v) + 2(β − γ)mI

2(t, v)− κa(v)mI
1(t, x)−

κa(v)mI
1(t, y)

Proof of Theorem 6: For the recovered group, when deriving the differen-

tial equations of the second moment, it is a very similar process to the one used for

the susceptible and infected groups and there are 2 cases- when x = y and when

x ̸= y:

Case 1: R(t+ dt, x) when x = y, then m2(t+ dt, x, y) = E[R2(t+ dt, x, x)]

For the second moment when x = y we have that,

E[R2(t+ dt, x)] = E[(R(t, x) + ξ(dt))2] where

ξ(dt) =



1 w.p I(t, x)γdt+
∑
z ̸=0

R(t, x+ z)κa(−z)dt 1○

−1 w.p
∑
z ̸=0

R(t, x)κa(z)dt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that either a particle at location x + z
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in the recovered group moves to location x (meaning location x gains a particle

(which has probability
∑
z ̸=0

R(t, x + z)κa(z)dt), or a particle at location x in the in-

fected group becomes recovered (which has probability I(t, x)γdt). The case that

ξ(dt) = −1 is the event that a particle at location x in the recovered group moves

to location x + z (meaning that location x loses a particle - which has probability∑
z ̸=0

R(t, x)κa(z)dt). The case that ξ(dt) = 0 is the event that there is no particle

moving to or away from location x in the recovered group, so it has probability

1− I(t, x)γdt−
∑
z ̸=0

R(t, x+ z)κa(−z)dt−
∑
z ̸=0

R(t, x)κa(z)dt.

E[R2(t+ dt, x)] = E[R2(t, x)] + 2E[R(t, x)ξ(dt)] + E[ξ2(dt)]

∂mR
2 (t, x, x)

∂t
= 2κLxm

R
2 (t, x, x) + κLmR

1 (t, x) + 2γmRI
2 (t, x, x) + γmI

1(t, x) +

2κmR
1 (t, x)

Case 2: R(t+ dt, x) when x ̸= y, then m2(t+ dt, x, y) = E[R(t+ dt, x)R(t+

dt, y)]

For the second moment when x ̸= y we have that,

E[R(t+ dt, x)R(t+ dt, y)] = E[(R(t, x) + ξ(dt, x))(R(t, y) + ξ(dt, y))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for the various combinations of x

and y for ξ(dt, x) and ξ(dt, y) are:

The event that a particle in the recovered group goes from y to x:

P (ξ(dt, x) = 1, ξ(dt, y) = −1) = κa(x− y)R(t, y)dt
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The event that a particle in the recovered group goes from x + z to x but not to y

or a particle at location x transitions I → R:

P (ξ(dt, x) = 1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)R(t, x+z)dt−κa(x−y)R(t, y)dt+γI(t, x)dt

The event that a particle in the recovered group goes from x to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 1) = κa(x− y)R(t, x)dt

The event that a particle in the recovered group goes from x to x+ z but not to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)R(t, x)dt− κa(x− y)R(t, x)dt

The event that a particle in the recovered group goes from y + z to y but not to x

or a particle at location y transitions I → R:

P (ξ(dt, x) = 0, ξ(dt, y) = 1) = κ
∑
z ̸=0

a(z)R(t, y+z)dt−κa(x−y)R(t, x)dt+γI(t, y)dt

The event that a particle in the recovered group goes from y to y + z but not to x:

P (ξ(dt, x) = 0, ξ(dt, y) = −1) = κ
∑
z ̸=0

a(−z)R(t, y)dt− κa(x− y)R(t, y)dt

The event that no particle moves in the recovered group:

P (ξ(dt, x) = 0, ξ(dt, y) = 0) = 1− κ
∑
z ̸=0

a(z)R(t, y + z)dt− κ
∑
z ̸=0

a(z)R(t, y)dt−

κ
∑
z ̸=0

a(z)R(t, x+z)dt−κ
∑
z ̸=0

a(z)R(t, x)dt+κa(x−y)R(t, y)dt+κa(x−y)R(t, x)dt−

γI(t, y)dt− γI(t, x)dt

E[R(t+ dt, x)R(t+ dt, y)] = E[(R(t, x) + ξ(dt, x))(R(t, y) + ξ(dt, y))]

∂mR
2 (t, v)

∂t
= κLxm

R
2 (t, v) + κLym

R
2 (t, v) + 2γmRI

2 (t, v) − κa(v)mR
1 (t, x) −

κa(v)mR
1 (t, y)

Proof of Theorem 7: For the susceptible-infected group, there are 2 cases
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(x = y and x ̸= y) and there are several combinations for each case:

Case 1: when x = y, then we have

E[S(t+dt, x)I(t+dt, y)] = E[S(t+dt, x)I(t+dt, x)] = E[E[S(t+dt, x)I(t+dt, x)|Ft]]

E[S(t+ dt, x)I(t+ dt, x)] = E[(S(t, x) + ξS(dt, x))(I(t, x) + ξI(dt, x))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for ξS(dt, x) and ξI(dt, x) are:

The event that a particle goes from x+ z to x in S but x doesn’t move within I:

P (ξS(dt, x) = 1, ξI(dt, x) = 0) = κ
∑
z ̸=0

a(z)S(t, x+ z)dt

The event that a particle at location x transitions S → I:

P (ξS(dt, x) = −1, ξI(dt, x) = 1) = βI(t, x)dt

The event that a particle goes from x to x+ z in S but x doesn’t move within I:

P (ξS(dt, x) = −1, ξI(dt, x) = 0) = κ
∑
z ̸=0

a(z)S(t, x)dt

The event that a particle doesn’t move in S but x+ z goes to x in I:

P (ξS(dt, x) = 0, ξI(dt, x) = 1) = κ
∑
z ̸=0

a(z)I(t, x+ z)dt

The event that a particle doesn’t move in S but x goes to x+ z in I or a particle at

x transitions from I → R:

P (ξS(dt, x) = 0, ξI(dt, x) = −1) = κ
∑
z ̸=0

a(z)I(t, x)dt+ γI(t, x)dt

The event that a particle doesn’t move:

P (ξS(dt, x) = 0, ξI(dt, x) = 0) = 1 − κ
∑
z ̸=0

a(z)S(t, x + z)dt − κ
∑
z ̸=0

a(z)S(t, x)dt −

κ
∑
z ̸=0

a(z)I(t, x+ z)dt− κ
∑
z ̸=0

a(z)I(t, x)dt− βI(t, x)dt− γI(t, x)dt

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that
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E[S(t+ dt, x)I(t+ dt, x)] = E[(S(t, x) + ξS(dt, x))(I(t, x) + ξI(dt, x))]

∂mSI
2 (t, x, x)

∂t
= κLSxm

SI
2 (t, x, x) + κLIxm

SI
2 (t, x, x) + (β − γ)mSI

2 (t, x, x) −

βmI
2(t, x, x)− βmI

1(t, x)

Case 2: when x ̸= y, we have that:

E[S(t+ dt, x)I(t+ dt, y)] = E[E[S(t+ dt, x)I(t+ dt, y)|Ft]]

E[S(t+ dt, x)I(t+ dt, y)] = E[(S(t, x) + ξS(dt, x))(I(t, y) + ξI(dt, y))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for ξS(dt, x) and ξI(dt, y) are:

The event that a particle goes from x+ z to x in S but y doesn’t move within I:

P (ξS(dt, x) = 1, ξI(dt, y) = 0) = κ
∑
z ̸=0

a(z)S(t, x+ z)dt

The event that a particle goes from x to x+ z in S or a particle at location x tran-

sitions S → I:

P (ξS(dt, x) = −1, ξI(dt, y) = 0) = κ
∑
z ̸=0

a(z)S(t, x)dt+ βI(t, x)dt

The event that a particle doesn’t move in S but y + z goes to y in I or a particle at

location y transitions S → I:

P (ξS(dt, x) = 0, ξI(dt, y) = 1) = κ
∑
z ̸=0

a(z)I(t, y + z)dt+ βI(t, y)dt

The event that a particle at location x doesn’t move in S but y goes to y+ z in I or

I → R at y:

P (ξS(dt, x) = 0, ξI(dt, y) = −1) = κ
∑
z ̸=0

a(z)I(t, y)dt+ γI(t, y)dt

The event that a particle doesn’t move:
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P (ξS(dt, x) = 0, ξI(dt, y) = 0) = 1− κ
∑
z ̸=0

a(z)S(t, x+ z)dt− κ
∑
z ̸=0

a(z)S(t, x)dt−

κ
∑
z ̸=0

a(z)I(t, y + z)dt− κ
∑
z ̸=0

a(z)I(t, y)dt− βI(t, x)dt− βI(t, y)dt− γI(t, x)dt

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that

E[S(t+ dt, x)I(t+ dt, y)] = E[(S(t, x) + ξS(dt, x))(I(t, y) + ξI(dt, x))]

∂mSI
2 (t, v)

∂t
= κLxm

SI
2 (t, v) + κLym

SI
2 (t, v) + (β − γ)mSI

2 (t, v)− βmI
2(t, v)

Proof of Theorem 8: For the recovered-infected group, there are 2 cases

(x = y and x ̸= y) and there are several combinations for each case:

Case 1: when x = y, then we have

E[R(t+dt, x)I(t+dt, y)] = E[R(t+dt, x)I(t+dt, x)] = E[E[R(t+dt, x)I(t+dt, x)|Ft]]

E[R(t+ dt, x)I(t+ dt, x)] = E[(R(t, x) + ξR(dt, x))(I(t, x) + ξI(dt, x))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for ξR(dt, x) and ξI(dt, x) are:

The event that a particle at location x goes from I −→ R:

P (ξR(dt, x) = 1, ξI(dt, x) = −1) = γI(t, x)dt

The event that a particle goes from x+ z to x in R but x doesn’t move within I:

P (ξR(dt, x) = 1, ξI(dt, x) = 0) = κ
∑
z ̸=0

a(z)R(t, x+ z)dt

The event that a particle goes from x to x+ z in R but x doesn’t move within I:

P (ξR(dt, x) = −1, ξI(dt, x) = 0) = κ
∑
z ̸=0

a(z)R(t, x)dt
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The event that a particle doesn’t move in R but x+ z goes to x in I or a particle at

location x transitions S −→ I:

P (ξR(dt, x) = 0, ξI(dt, x) = 1) = κ
∑
z ̸=0

a(z)I(t, x+ z)dt+ βI(t, x)dt

The event that a particle doesn’t move in R but x goes to x+ z in I:

P (ξR(dt, x) = 0, ξI(dt, x) = −1) = κ
∑
z ̸=0

a(z)I(t, x)dt

The event that a particle doesn’t move:

P (ξR(dt, x) = 0, ξI(dt, x) = 0) = 1− γI(t, x)dt− κ
∑
z ̸=0

a(z)R(t, x+ z)dt

− κ
∑
z ̸=0

a(z)R(t, x)dt− κ
∑
z ̸=0

a(z)I(t, x+ z)dt− βI(t, x)dt− κ
∑
z ̸=0

a(z)I(t, x)dt

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that

E[R(t+ dt, x)I(t+ dt, x)] = E[(R(t, x) + ξR(dt, x))(I(t, x) + ξI(dt, x))]

∂mRI
2 (t, x, x)

∂t
= κLRxm

RI
2 (t, x, x) + κLIxm

RI
2 (t, x, x) + (β − γ)mRI

2 (t, x, x) +

γmI
2(t, x, x)− γmI

1(t, x)

Case 2: when x ̸= y, we have that:

E[R(t+ dt, x)I(t+ dt, y)] = E[E[R(t+ dt, x)I(t+ dt, y)|Ft]]

E[R(t+ dt, x)I(t+ dt, y)] = E[(R(t, x) + ξR(dt, x))(I(t, y) + ξI(dt, y))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for ξR(dt, x) and ξI(dt, y) are:

The event that a particle goes from x+ z to x in R or a particle at location x tran-

48



sitions I −→ R but y doesn’t move within I:

P (ξR(dt, x) = 1, ξI(dt, y) = 0) = κ
∑
z ̸=0

a(z)R(t, x+ z)dt+ γI(t, x)dt

The event that a particle goes from x to x+ z in R but y doesn’t move within I:

P (ξR(dt, x) = −1, ξI(dt, y) = 0) = κ
∑
z ̸=0

a(z)R(t, x)dt

The event that a particle at x doesn’t move in R but y+z goes to y in I or a particle

at location y transitions S → I:

P (ξR(dt, x) = 0, ξI(dt, y) = 1) = κ
∑
z ̸=0

a(z)I(t, y + z)dt+ βI(t, y)dt

The event that a particle at location x doesn’t move in R but a particle at y goes to

y + z in I or I → R at y:

P (ξR(dt, x) = 0, ξI(dt, y) = −1) = κ
∑
z ̸=0

a(z)I(t, y)dt+ γI(t, y)dt

The event that a particle doesn’t move:

P (ξR(dt, x) = 0, ξI(dt, y) = 0) = 1− κ
∑
z ̸=0

a(z)R(t, x+ z)dt− κ
∑
z ̸=0

a(z)R(t, x)dt−

κ
∑
z ̸=0

a(z)I(t, y + z)dt− κ
∑
z ̸=0

a(z)I(t, y)dt− βI(t, y)dt− γI(t, x)dt− γI(t, y)dt

Using the Kolmogorov Forward Equations, we take the expected value of the

event multiplied by the probability of the event, and we have that

E[R(t+ dt, x)I(t+ dt, y)] = E[(R(t, x) + ξR(dt, x))(I(t, y) + ξI(dt, x))]

∂mRI
2 (t, v)

∂t
= κLxm

RI
2 (t, v) + κLym

RI
2 (t, v) + (β − γ)mRI

2 (t, v) + γmI
2(t, v)
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CHAPTER 7

SECOND MOMENTS OF THE SIR MODEL

Now we want to solve the differential equations for the second moments for

the S(t, x), I(t, x), R(t, x), S(t, x)I(t, x), and R(t, x)I(t, x) groups, where each group

has 2 cases: when the locations x = y and when the locations x ̸= y and each case

has 2 subcases: homogeneous space and inhomogeneous space.

Theorem 9 The second moments for the infected groups when x = y and x ̸= y are:
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Homogeneous space:

mI
2(t, x, x) = ρ0e

2(β − γ)t +
(β + γ + 2κ

−β + γ

)[
e(β − γ)t − e2(β − γ)t

]
(12a)

Inhomogeneous space:

mI
2(t, x, x) =

1

(2π)d

∫
T d

ρ0e
[2κL̂x(k) + 2(β − γ)]te−ikxdk+

e2(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
κLmI

1(s, z) + (β + γ + 2κ)mI
1(s, z)

]
· (12b)

(
e2(β − γ)s

)
ds

Homogeneous space:

mI
2(t, v) = ρ0e

2(β − γ)t +
( 2κa(v)

(β − γ)

)[
e(β − γ)t − e2(β − γ)t

]
(12c)

Inhomogeneous space:

mI
2(t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂x(k) + κL̂y(k) + 2(β − γ)]te−ikvdk + (12d)

e2(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
− 2κa(v)mI

1(s, z)
](

e2(β − γ)s
)
ds
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Theorem 10 The second moments of the susceptible-infected group when x = y and

x ̸= y are:

Homogeneous space:

mSI
2 (t, x, x) = ρ0e

(β − γ)t +
(−βρ0(γ − β) + β(β + γ + 2κ)

(β − γ)(γ − β)

)[
e2(β − γ)t

−e(β − γ)t
]
+
(β(β + γ + 2κ)− β(β − γ)

β − γ

)
te(β − γ)t

Inhomogeneous space:

mSI
2 (t, x, x) =

1

(2π)d

∫
T d

ρ0e
[κL̂Sx(k) + κL̂Ix(k) + (β − γ)]te−ikxdk−

βe(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
mI

2(s, z, z) +mI
1(s, z)

](
e(β − γ)s

)
ds

Homogeneous space:

mSI
2 (t, v) = ρ0e

(β − γ)t +
(2βκa(v)− ρ0β(β − γ)

(β − γ)2

)[
e2(β − γ)t − e(β − γ)t

]
+(−2βκa(v)

(β − γ)

)[
te(β − γ)t

]
Inhomogeneous space:

mSI
2 (t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂x(k) + κL̂y(k) + (β − γ)]te−ikvdk

−βe(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)e(β − γ)s
(
mI

2(s, z)
)
ds
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Theorem 11 The second moments of the susceptible group when x = y and x ̸= y

are:

Homogeneous space:

mS
2 (t, x, x) = ρ0 +

(−2β2(β + γ + 2κ) + 2β2(β − γ)

(β − γ)

)[(βt− γt− 1)e(β − γ)t + 1

(β − γ)2

]
+
2κ[β + (β − γ)(N − 1)]t

(β − γ)
+
(2βρ0(β − γ) + 2β2(β + γ + 2κ)

2(β − γ)3

)[
e2(β − γ)t − 1

]
+(−2βρ0(β − γ)2 − 2β2ρ0(β − γ)− 2β2(β + γ + 2κ) + β(β − γ)2 − 2κβ(β − γ)

(β − γ)3

)
·[

e(β − γ)t − 1
]

Inhomogeneous space:

mS
2 (t, x, x) =

1

(2π)d

∫
T d

ρ0e
2κL̂x(k)te−ikxdk+∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
κLmS

1 (s, z)− 2βmSI
2 (s, z, z) + βmI

1(s, z) + 2κmS
1 (s, z)

]
ds

Homogeneous space:

mS
2 (t, v) = ρ0 +

(4β2κa(v)

(β − γ)

)[(βt− γt− 1)e(β − γ)t + 1

(β − γ)2

]
−

2κa(v)[β + (β − γ)(N − 1)]t

(β − γ)
+
(2β2ρ0(β − γ)− 4β2κa(v)

2(β − γ)3

)[
e2(β − γ)t − 1

]
+(−2βρ0(β − γ)2 + 4β2κa(v)− 2β2ρ0(β − γ) + 2βκa(v)(β − γ)2

(β − γ)3

)[
e(β − γ)t − 1

]
Inhomogeneous space:

mS
2 (t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂x(k) + κL̂y(k)]te−ikvdk+∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
− 2βmSI

2 (s, z, z)− 2κa(v)mS
1 (s, z)

]
ds
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Theorem 12 The second moments of the recovered-infected group when x = y and

x ̸= y are:

Homogeneous space:

mRI
2 (t, x, x) = ρ0e

(β − γ)t +
(γρ0(γ − β)− γ(β + γ + 2κ)

(β − γ)(γ − β)

)[
e2(β − γ)t−

e(β − γ)t
]
+
(γ(β + γ + 2κ)− γ(γ − β)

γ − β

)
te(β − γ)t

Inhomogeneous space:

mRI
2 (t, x, x) =

1

(2π)d

∫
T d

ρ0e
[κL̂Rx(k) + κL̂Ix(k) + (β − γ)]te−ikxdk+

γe(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
mI

2(s, z, z)−mI
1(s, z)

](
e(β − γ)s

)
ds

Homogeneous space:

mRI
2 (t, v) = ρ0e

(β − γ)t +
(γρ0(β − γ)− 2γκa(v)

(β − γ)2

)[
e2(β − γ)t − e(β − γ)t

]
+(2γκa(v)

(β − γ)

)[
te(β − γ)t

]
Inhomogeneous space:

mRI
2 (t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂x(k) + κL̂y(k) + (β − γ)]te−ikvdk

+γe(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)e(β − γ)s
(
mI

2(s, z)
)
ds
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Theorem 13 The second moments of the recovered group are:

Homogeneous space:

mR
2 (t, x, x) =

(−2γκ

β − γ

)
t+

(2γ2(β + γ + 2κ)− 2γ2(γ − β)

(γ − β)

)
·[(βt− γt− 1)e(β − γ)t + 1

(β − γ)2

]
+
(γ(γ − β)(β − γ) + 2κγ(γ − β)

(γ − β)(β − γ)2
+

2γ2(γ − β)− 2γ2(β + γ + 2κ) + 2γρ0(γ − β)(β − γ)

(γ − β)(β − γ)2

)
·[

e(β − γ)t − 1
]
+
(2γ2(γ − β)− 2γ2(β + γ + 2κ)

2(γ − β)(β − γ)2

)[
e2(β − γ)t − 1

]
Inhomogeneous space:

mR
2 (t, x, x) =

1

(2π)d

∫
T d

ρ0e
2κL̂x(k)te−ikxdk+∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
κLmR

1 (s, z) + 2γmRI
2 (s, z, z) + γmI

1(s, z)

+2κmR
1 (s, z)

]
ds

Homogeneous space:

mR
2 (t, v) =

(2γκa(v)
β − γ

)
t++

(2γ2ρ0(β − γ)− 4γ2κa(v)

2(β − γ)3

)[
e2(β − γ)t − 1

]
+(2γρ0(γ − β)2 − 2γκa(v)(β − γ) + 2γ2ρ0(β − γ)− 4γ2κa(v)

(β − γ)3

)[
e(β − γ)t − 1

]
+(4γ2κa(v)

(β − γ)

)[(βt− γt− 1)e(β − γ)t + 1

(β − γ)2

]
Inhomogeneous space:

mR
2 (t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂x(k) + κL̂y(k)]te−ikvdk+∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
2γmRI

2 (s, z)− 2κa(v)mR
1 (s, z)

]
ds
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7.1 Second Moments in Homogeneous Space

Proof of Theorem 9: Recall from Chapter 6 Equations (8a) and (8b) and

for each equation x = y and x ̸= y there are 2 cases: homogeneous space and inho-

mogeneous space

Case 1: Homogeneous space when x = y (then the spaces x and x + z are

equivalent and Lxm
I
2(t, x, x) = 0 = LmI

1(t, x))

Then
∂mI

2(t, x, x)

∂t
= 2(β − γ)mI

2(t, x, x) + (β + γ + 2κ)e(β − γ)t with initial

condition mI
2(0, x, x) = ρ0 > 0

Thus, mI
2(t, x, x) = ρ0e

2(β − γ)t +
(β + γ + 2κ

−β + γ

)[
e(β − γ)t − e2(β − γ)t

]
.

Case 2: Homogeneous space when x ̸= y (then Lxm
I
2(t, v) = 0 and mI

1(t, x) =

mI
1(t, y) = e(β − γ)t)

Then
∂mI

2(t, v)

∂t
= 2(β − γ)mI

2(t, v) − 2κa(v)e(β − γ)t with initial condition

mI
2(0, x, x) = ρ0 > 0

By solving this ODE, we getmI
2(t, v) = ρ0e

2(β − γ)t+
( 2κa(v)

(β − γ)

)[
e(β − γ)t−

e2(β − γ)t
]
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7.2 Second Moments in Inhomogeneous Space

Case 1: In-homogeneous space when x = y (then the spaces x and x + z are

not equivalent and Lxm
I
2(t, x, x) ̸= 0)

∂mI
2(t, x, x)

∂t
= 2κLxm

I
2(t, x, x)+κLmI

1(t, x)+ 2(β− γ)mI
2(t, x, x)+ (β+ γ+

2κ)mI
1(t, x) with initial condition mI

2(0, x, x) = ρ0 > 0

Utilizing the general solution for inhomogeneous equations from Theorem 3

we have that mI
2(t, x, x) = mIh

2 (t, x, x) + w(t, x, x)

mI
2(t, x, x) =

1

(2π)d

∫
T d

ρ0e
[2κL̂x(k) + 2(β − γ)]te−ikxdk +

e2(β − γ)t
∫ t

0

∑
z∈Zd

p(t−s, 0, x−z)
[
κLmI

1(s, z)+(β+γ+2κ)mI
1(s, z)

](
e2(β − γ)s

)
ds

Case 2: Inhomogeneous space when x ̸= y (then Lxm
I
2(t, v) ̸= 0)

∂mI
2(t, v)

∂t
= κLxm

I
2(t, v) + κLym

I
2(t, v) + 2(β − γ)mI

2(t, v)− κa(v)mI
1(t, x)−

κa(v)mI
1(t, y) with initial condition mI

2(0, x, x) = ρ0 > 0

mI
2(t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂x(k) + κL̂y(k) + 2(β − γ)]te−ikvdk +

e2(β − γ)t
∫ t

0

∑
z∈Zd

p(t− s, 0, x− z)
[
− 2κa(v)mI

1(s, z)
](

e2(β − γ)s
)
ds

Note that solving the differential equations for the second moments of the
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susceptible, recovered, susceptible-infected, and recovered-infected groups follows the

same procedure as solving for the second moment of the infected group.

7.3 Second Moments in Inhomogeneous Space using matrices

When x = y:

For the second moments of the susceptible, infected, recovered, susceptible-

infected, and recovered-infected groups we are going to let

D(t, x, x) =



S(t, x, x)

I(t, x, x)

R(t, x, x)

S(t, x)I(t, x)

R(t, x)I(t, x)


and then mD

2 (t, x, x) =



mS
2 (t, x, x)

mI
2(t, x, x)

mR
2 (t, x, x)

mSI
2 (t, x, x)

mRI
2 (t, x, x)


The differential equations for the second moments of the S, I, R, SI and RI

groups are given in Chapter 6 Equations (7a) − (11a). For the matrix format we

have that
∂m̂D

2 (t, x, k)

∂t
= Â2m̂

D
2 (t, x, k) + B̂2m̂1(t, k) where

Â2 =



2κâ(k) 0 0 −2β 0

0 2κâ(k) + 2(β − γ) 0 0 0

0 0 2κâ(k) 0 2γ

0 −β 0 2κâ(k) + β − γ 0

0 γ 0 0 2κâ(k) + β − γ
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and B̂2 =



κâ(k) + 2κ β 0

0 κâ(k) + 2κ+ β + γ 0

0 γ κâ(k) + 2κ

0 −β 0

0 −γ 0


For matrix Â2 we have eigenvalues λ1 = 2κâ(k), λ2 = 2κâ(k), λ3 = 2(κâ(k)+β− γ),

λ4 = 2κâ(k) + β − γ, λ5 = 2κâ(k) + β − γ and the eigenvectors are

v1 =

[
0 0 1 0 0

]
, v2 =

[
1 0 0 0 0

]
,

v3 =

[
β2

(β − γ)γ

β − γ

γ

γ

β − γ

−β

γ
1

]
, v4 =

[
0 0

2γ

β − γ
0 1

]
,

v5 =

[
2β

γ − β
0 0 1 0

]

Case 1: β = γ

Then λ1 = λ2 = λ3 = λ4 = λ5 = 2κâ(k) multiplicity 5 and (Â2 − 2κâ(k)I)5 =

0.

eÂ2t =



e2κâ(k)t β2t2e2κâ(k)t 0 −2βte2κâ(k)t 0

0 e2κâ(k)t 0 0 0

0 γ2t2e2κâ(k)t e2κâ(k)t 0 2γte2κâ(k)t

0 −βte2κâ(k)t 0 e2κâ(k)t 0

0 γte2κâ(k)t 0 0 e2κâ(k)t


with ini-

tial conditions x0 =

[
ρ20 1 0 ρ0 0

]T
.
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We have the solution m̂D
2 (t, x, k) = eÂ2tx0 + eÂ2t

∫ t

0

e−Â2sB̂2m̂
U
1 (s, k)ds

where

B̂2 =



κâ(k) + 2κ β 0

0 κâ(k) + 2κ+ β + γ 0

0 γ κâ(k) + 2κ

0 −β 0

0 −γ 0


,

m̂U
1 (t, k) =


ρ0e

κâ(k)t − βteκâ(k)t

eκâ(k)t

γteκâ(k)t


e−Â2s =

e−2κâ(k)s β2s2e−2κâ(k)s 0 2βse−2κâ(k)s 0

0 e−2κâ(k)s 0 0 0

0 γ2s2e−2κâ(k)s e−2κâ(k)s 0 −2γse2κâ(k)s

0 βse−2κâ(k)s 0 e−2κâ(k)s 0

0 −γse−2κâ(k)s 0 0 e−2κâ(k)s



We have that eÂ2tx0 =



ρ20e
2κâ(k)t + β2t2e2κâ(k)t − 2ρ0βte

2κâ(k)t

e2κâ(k)t

γ2t2e2κâ(k)t

−βte2κâ(k)t + ρ0e
2κâ(k)t

γte2κâ(k)t


m̂D

2 (t, x, k) = eÂ2tx0 + eÂ2t
∫ t

0

e−Â2sB̂2m̂
U
1 (s, k)ds
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ρ20e
2κâ(k)t + β2t2e2κâ(k)t − 2ρ0βte

2κâ(k)t

−
(ρ0(κâ(k) + 2κ)

κâ(k)

)[
eκâ(k) − e2κâ(k)t

]
−

(β(κâ(k) + 2κ) + 2β2

(κâ(k))2

)[
e2κâ(k)t

−eκâ(k)t(κâ(k)t+ 1)
]
+
(β2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
eκâ(k)t

(
− (κâ(k))2

−2κâ(k)t− 2
)
+ 2e2κâ(k)t

]
−
(β2(κâ(k) + 2κ+ β + γ)

κâ(k)

)
·[

t2eκâ(k)t − t2e2κâ(k)t
]
−

(2β2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
te2κâ(k)t−

teκâ(k)t(κâ(k)t+ 1)
]
−
( 2β2

κâ(k)

)[
teκâ(k)t − te2κâ(k)t

]
e2κâ(k)t −

(κâ(k) + 2κ+ β + γ

κâ(k)

)[
eκâ(k)t − e2κâ(k)t

]
γ2t2e2κâ(k)t −

(γ2(κâ(k) + 2κ+ β + γ)

κâ(k)

)[
t2eκâ(k)t − t2e2κâ(k)t

]
−
(γ + κâ(k)γ + 2κγ

κâ(k)

)[
eκâ(k)t − e2κâ(k)t

]
+
( 2γ2

(κâ(k))2

)
·[

e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)
]
+
(γ2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
eκâ(k)t·

(−(κâ(k)t)2 − 2κâ(k)t− 2) + 2e2κâ(k)t
]
−
(2γ2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)
·[

te2κâ(k)t − teκâ(k)t(κâ(k)t+ 1)
]
+
( 2γ2

κâ(k)

)[
teκâ(k)t − te2κâ(k)t

]
−βte2κâ(k)t + ρ0e

2κâ(k)t +
(β(κâ(k) + 2κ+ β + γ) + β

κâ(k)

)[
eκâ(k)t−

e2κâ(k)t
]
+
(β(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
γte2κâ(k)t −

(γ(κâ(k) + 2κ+ β + γ) + γ

κâ(k)

)[
teκâ(k)t − te2κâ(k)t

]
−(γ(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
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When β = γ, mD
2 (t, x, x) =



mS
2 (t, x, x)

mI
2(t, x, x)

mR
2 (t, x, x)

mSI
2 (t, x, x)

mRI
2 (t, x, x)


=
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( 1

2π

)d
∫
T d

{
ρ20e

2κâ(k)t + β2t2e2κâ(k)t − 2ρ0βte
2κâ(k)t

−
(ρ0(κâ(k) + 2κ)

κâ(k)

)[
eκâ(k) − e2κâ(k)t

]
−
(β(κâ(k) + 2κ) + 2β2

(κâ(k))2

)[
e2κâ(k)t

−eκâ(k)t(κâ(k)t+ 1)
]
+
(β2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
eκâ(k)t

(
− (κâ(k))2−

2κâ(k)t− 2
)
+ 2e2κâ(k)t

]
−

(β2(κâ(k) + 2κ+ β + γ)

κâ(k)

)[
t2eκâ(k)t−

t2e2κâ(k)t
]
−

(2β2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
te2κâ(k)t

−teκâ(k)t(κâ(k)t+ 1)
]
−

( 2β2

κâ(k)

)[
teκâ(k)t − te2κâ(k)t

]}
e−ikxdk( 1

2π

)d
∫
T d

{
e2κâ(k)t −

(κâ(k) + 2κ+ β + γ

κâ(k)

)[
eκâ(k)t − e2κâ(k)t

]}
e−ikxdk( 1

2π

)d
∫
T d

{
γ2t2e2κâ(k)t −

(γ2(κâ(k) + 2κ+ β + γ)

κâ(k)

)[
t2eκâ(k)t − t2e2κâ(k)t

]
−
(γ + κâ(k)γ + 2κγ

κâ(k)

)[
eκâ(k)t − e2κâ(k)t

]
+
( 2γ2

(κâ(k))2

)[
e2κâ(k)t

−eκâ(k)t(κâ(k)t+ 1)
]
+
(γ2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
eκâ(k)t(−(κâ(k)t)2−

2κâ(k)t− 2) + 2e2κâ(k)t
]
−
(2γ2(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
te2κâ(k)t

−teκâ(k)t(κâ(k)t+ 1)
]
+
( 2γ2

κâ(k)

)[
teκâ(k)t − te2κâ(k)t

]}
e−ikxdk( 1

2π

)d
∫
T d

{
− βte2κâ(k)t + ρ0e

2κâ(k)t +
(β(κâ(k) + 2κ+ β + γ) + β

κâ(k)

)
·[

eκâ(k)t − e2κâ(k)t
]
+
(β(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
e2κâ(k)t−

eκâ(k)t(κâ(k)t+ 1)
]}

e−ikxdk( 1

2π

)d
∫
T d

{
γte2κâ(k)t −

(γ(κâ(k) + 2κ+ β + γ) + γ

κâ(k)

)[
teκâ(k)t − te2κâ(k)t

]
−
(γ(κâ(k) + 2κ+ β + γ)

(κâ(k))2

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]}
e−ikxdk
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Case 2: β ̸= γ

For matrix Â2 we have eigenvalues λ1 = 2κâ(k), λ2 = 2κâ(k), λ3 = 2(κâ(k) +

β − γ), λ4 = 2κâ(k) + β − γ, λ5 = 2κâ(k) + β − γ and the eigenvectors are

v1 =

[
1 0 0 0 0

]
, v2 =

[
0 0 1 0 0

]
,

v3 =

[
β2

(β − γ)γ

β − γ

γ

γ

β − γ

−β

γ
1

]
, v4 =

[
0 0

2γ

β − γ
0 1

]
,

v5 =

[
2β

γ − β
0 0 1 0

]
and X1(t) =

[
e2κâ(k)t 0 0 0 0

]T
, X2(t) =

[
0 0 e2κâ(k)t 0 0

]T
,

X3(t) =

[(
β2

(β−γ)γ

)
C

(
β−γ
γ

)
C

(
γ

β−γ

)
C

(
−β
γ

)
C C

]T
where C = e2(κâ(k) + β + γ)t,

X4(t) =

[( 2β

γ − β

)
e(2κâ(k)t+ β + γ)t 0 0 e(2κâ(k)t+ β + γ)t 0

]T
,

X5(t) =

[
0 0

( −2γ

γ − β

)
e(2κâ(k)t+ β + γ)t 0 e(2κâ(k)t+ β + γ)t

]T
Aligning the Xi(t) vectors we have

X(t) =



e2κâ(k)t 0
(

β2

(β−γ)γ

)
e2(κâ(k)+β+γ)t

(
2β
γ−β

)
C 0

0 0
(

β−γ
γ

)
C 0 0

0 e2κâ(k)t
(

γ
β−γ

)
C 0

(
−2γ
γ−β

)
C

0 0
(

−β
γ

)
C C 0

0 0 C 0 C
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X(0) =



1 0
(

β2

(β−γ)γ

) (
−2β
β−γ

)
0

0 0
(

β−γ
γ

)
0 0

0 1
(

γ
β−γ

)
0

(
−2γ
γ−β

)
0 0

(
−β
γ

)
1 0

0 0 1 0 1



X−1(0) =



1
(

β2

(β−γ)2

)
0

(
−2β
γ−β

)
0

0
(

γ2

(β−γ)2

)
1 0

(
2γ
γ−β

)
0

(
γ

β−γ

)
0 0 0

0
(

β
β−γ

)
0 1 0

0
(

−γ
β−γ

)
0 0 1


eÂ2t = X(t)X−1(0) =

e2κâ(k)t
(

β2

(β−γ)2

)
e2(β+γ)t −

(
2β2

(β−γ)2

)
e(β+γ)t 0

(
−2β
β−γ

)
e(β+γ)t 0

0 e2(κâ(k)+β+γ)t 0 0 0

0
(

−γ2

(β−γ)2

)
e2(β+γ)t e2κâ(k)t 0

(
2γ
β−γ

)
e(β+γ)t

0
(

−β
β−γ

)
e2(β+γ)t +

(
β

β−γ

)
e(β+γ)t 0 e(2κâ(k)+β+γ)t 0

0
(

γ
β−γ

)
e2(β+γ)t −

(
γ

β−γ

)
e(β+γ)t 0 0 e(2κâ(k)+β+γ)t


with initial conditions x0 =

[
ρ20 1 0 ρ0 0

]T
.

We have the solution m̂D
2 (t, x, k) = eÂ2tx0 + eÂ2t

∫ t

0

e−Â2sB̂2m̂
U
1 (s, k)ds

where
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B̂2 =



κâ(k) + 2κ β 0

0 κâ(k) + 2κ+ β + γ 0

0 γ κâ(k) + 2κ

0 −β 0

0 −γ 0


,

m̂U
1 (t, k) =


ρ0e

κâ(k) − βteκâ(k)t

eκâ(k)t

γteκâ(k)t
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m̂D
2 (t, x, k) = eÂ2tx0 + eÂ2t

∫ t

0

e−Â2sB̂2m̂
U
1 (s, k)ds =
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ρ20e
2κâ(k)t +

(
β2

(β−γ)2

)
e2(β+γ)t −

(
2β2

(β−γ)2

)
e(β+γ)t − ρ0

(
2β
β−γ

)
e(β+γ)t(

−ρ0(κâ(k)+2κ)−β
κâ(k)

)[
eκâ(k)t − e2κâ(k)t

]
+
(

β(κâ(k)+2κ)
(κâ(k))2

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
+
(

2β2(β−γ)+β2(κâ(k)+2κ+β+γ)
3κâ(k)(β−γ)

)[
e−κâ(k)t − e2κâ(k)t

]
−
(

2β2(κâ(k)+2κ+β+γ)
5κâ(k)(β−γ)2

)
·[

e−3κâ(k)t − e2κâ(k)t
]
−

(
2β2(κâ(k)+2κ+β+γ)
(3κâ(k)+β+γ)(β−γ)2

)[
e−(κâ(k)+β+γ)t − e2κâ(k)t

]
+
(

2β2(κâ(k)+2κ+β+γ)
(5κâ(k)+β+γ)(β−γ)2

)[
e−(3κâ(k)+β+γ)t − e2κâ(k)t

]
−
(

β2(κâ(k)+2κ+β+γ)
(κâ(k)+2β+2γ)(β−γ)2

)
·[

e−κâ(k)t − e2(β+γ)t
]
+
(

2β2(κâ(k)+2κ+β+γ)
(κâ(k)+2β+2γ)(β−γ)2

)[
e−(κâ(k)+β+γ)t − e(β+γ)t

]
+(

2β2(κâ(k)+2κ+β+γ)
(3κâ(k)+β+γ)(β−γ)2

)[
e−3κâ(k)t − e(β+γ)t

]
−
(

2β2(κâ(k)+2κ+β+γ)
(3κâ(k)+2β+2γ)(β−γ)2

)
·[

e−(3κâ(k)+β+γ)t − e(β+γ)t
]
−
(

2β2

(κâ(k)+β+γ)(β−γ)

)[
e−κâ(k)t − e(β+γ)t

]
e2(κâ(k)t+β+γ)t −

(
κâ(k)+2κ+β+γ
κâ(k)+2β+2γ

)[
eκâ(k)t − e2(κâ(k)+β+γ)t

]
(

−γ2

(β−γ)2

)
e2(β+γ)t +

(
γ2(κâ(k)+2κ+β+γ)

(κâ(k)+2β+2γ)(β−γ)2

)[
e−κâ(k)t − e2(β+γ)t

]
−
(

γ2(κâ(k)+2κ+β+γ)
(3κâ(k))(β−γ)2

)
·[

e−κâ(k)t − e2κâ(k)t
]
−

(
2γ2(κâ(k)+2κ+β+γ)

5κâ(k)(β−γ)2

)[
e−3κâ(k)t − e2κâ(k)t

]
−
(

2γ2

3κâ(k)(β−γ)

)
·[

e−κâ(k)t − e2κâ(k)t
]
+
(

2γ2(κâ(k)+2κ+β+γ)
(5κâ(k)+β+γ)(β−γ)2

)[
e−(3κâ(k)+β+γ)t − e2κâ(k)t

]
−
(

γ
κâ(k)

)[
eκâ(k)t − e2κâ(k)t

]
+
(

γ(κâ(k)+2κ)
(κâ(k))2

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
−
(

2γ2(κâ(k)+2κ+β+γ)
(3κâ(k)+β+γ)(β−γ)2

)[
e−3κâ(k)t − e(β+γ)t

]
+
(

2γ2(κâ(k)+2κ+β+γ)
(3κâ(k)+2β+2γ)(β−γ)2

)
·[

e−(3κâ(k)+β+γ)t − e(β+γ)t
]
+
(

2γ2

(κâ(k)+β+γ)(β−γ)

)[
e−κâ(k)t − e(β+γ)t

]
(

−β
β−γ

)
e2(β+γ)t +

(
β

β−γ

)
e(β+γ)t + ρ0e

(2κâ(k)+β+γ)t+(
β(κâ(k)+2κ+β+γ)

(κâ(k)+2β+2γ)(β−γ)

)[
e−κâ(k)t − e2(β+γ)t

]
−
(

β(κâ(k)+2κ+β+γ)
(κâ(k)+2β+2γ)(β−γ)

)
·[

e−(κâ(k)+β+γ)t − e(β+γ)t
]
−

(
β(κâ(k)+2κ+β+γ)
(3κâ(k)+β+γ)(β−γ)

)[
e−κâ(k)t − e(2κâ(k)+β+γ)t

]
+
(

β(κâ(k)+2κ+β+γ)
(3κâ(k)+2β+2γ)(β−γ)

)[
e−(κâ(k)+β+γ)t − e(2κâ(k)+β+γ)t

]
+
(

β
(κâ(k)+β+γ)

)[
eκâ(k)t − e(2κâ(k)+β+γ)t

]
(

γ
β−γ

)
e2(β+γ)t −

(
γ

β−γ

)
e(β+γ)t

−
(

γ(κâ(k)+2κ+β+γ)
(κâ(k)+2β+2γ)(β−γ)

)[
e−κâ(k)t − e2(β+γ)t

]
+
(

γ(κâ(k)+2κ+β+γ)
(κâ(k)+2β+2γ)(β−γ)

)
·[

e−(κâ(k)+β+γ)t − e(β+γ)t
]
−
(

γ(κâ(k)+2κ+β+γ)
(3κâ(k)+β+γ)(β−γ)

)[
e−κâ(k)t − e(2κâ(k)+β+γ)t

]
+
(

γ(κâ(k)+2κ+β+γ)
(3κâ(k)+2β+2γ)(β−γ)

)[
e−(κâ(k)+β+γ)t − e(2κâ(k)+β+γ)t

]
+
(

γ
(κâ(k)+β+γ)

)[
eκâ(k)t − e(2κâ(k)+β+γ)t

]
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When β ̸= γ, mD
2 (t, x, x) =

( 1

2π

)d
∫
T d

m̂D
2 (t, x, k)e

−ikxdk =

(
1
2π

)d ∫
T d

{
m̂S

2 (t, x, k)
}
e−ikxdk(

1
2π

)d ∫
T d

{
m̂I

2(t, x, k)
}
e−ikxdk(

1
2π

)d ∫
T d

{
m̂R

2 (t, x, k)
}
e−ikxdk(

1
2π

)d ∫
T d

{
m̂SI

2 (t, x, k)
}
e−ikxdk(

1
2π

)d ∫
T d

{
m̂RI

2 (t, x, k)
}
e−ikxdk


When x ̸= y:

The differential equations for the second moments of the S, I, R, SI and RI

groups when x ̸= y are given in Chapter 6 Equations (7b) − (11b). For the matrix

format we have that
∂m̂D

2 (t, k)

∂t
= Â3m̂

D
2 (t, k) + B̂3P⃗ where

Â3 =



2κâ(k) 0 0 −2β 0

0 2κâ(k) + 2(β − γ) 0 0 0

0 0 2κâ(k) 0 2γ

0 −β 0 2κâ(k) + β − γ 0

0 γ 0 0 2κâ(k) + β − γ


and

B̂3 =



−2κâ(k) 0 0 0 0

0 −2κâ(k) 0 0 0

0 0 −2κâ(k) 0 0

0 0 0 0 0

0 0 0 0 0


P⃗ where P⃗ =



m̂S
1 (t, k)

m̂I
1(t, k)

m̂R
1 (t, k)

0

0
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For matrix Â3 we have eigenvalues λ1 = 2κâ(k), λ2 = 2κâ(k), λ3 = 2(κâ(k) +

β − γ), λ4 = 2κâ(k) + β − γ, λ5 = 2κâ(k) + β − γ

and the eigenvectors are v1 =

[
0 0 1 0 0

]
, v2 =

[
1 0 0 0 0

]
,

v3 =

[
β2

(β − γ)γ

β − γ

γ

γ

β − γ

−β

γ
1

]
, v4 =

[
0 0

2γ

β − γ
0 1

]
,

v5 =

[
2β

γ − β
0 0 1 0

]

Case 1: β = γ

*Note that the Â2 = Â3 matrix for mD
2 (t, v) is the same as for mD

2 (t, x, x).

Then λ1 = λ2 = λ3 = λ4 = λ5 = 2κâ(k) multiplicity 5 and (Â3 − 2κâ(k)I)5 = 0.

eÂ3t =



e2κâ(k)t β2t2e2κâ(k)t 0 −2βte2κâ(k)t 0

0 e2κâ(k)t 0 0 0

0 γ2t2e2κâ(k)t e2κâ(k)t 0 2γte2κâ(k)t

0 −βte2κâ(k)t 0 e2κâ(k)t 0

0 γte2κâ(k)t 0 0 e2κâ(k)t


with ini-

tial conditions x0 =

[
ρ20 1 0 ρ0 0

]T
.

We have the solution m̂D
2 (t, k) = eÂ3tx0 + eÂ3t

∫ t

0

e−Â3sB̂3P⃗ ds where
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B̂3 =



−2κâ(k) 0 0 0 0

0 −2κâ(k) 0 0 0

0 0 −2κâ(k) 0 0

0 0 0 0 0

0 0 0 0 0


, P⃗ =



ρ0e
κâ(k)t − βteκâ(k)t

eκâ(k)t

γteκâ(k)t

0

0


e−Â3s =

e−2κâ(k)s β2s2e−2κâ(k)s 0 2βse−2κâ(k)s 0

0 e−2κâ(k)s 0 0 0

0 γ2s2e−2κâ(k)s e−2κâ(k)s 0 −2γse2κâ(k)s

0 βse−2κâ(k)s 0 e−2κâ(k)s 0

0 −γse−2κâ(k)s 0 0 e−2κâ(k)s
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m̂D
2 (t, k) = eÂ3tx0 + eÂ3t

∫ t

0

e−Â3sB̂3P⃗ ds

ρ20e
2κâ(k)t + β2t2e2κâ(k)t − 2ρ0βte

2κâ(k)t+(
2ρ0

)[
eκâ(k) − e2κâ(k)t

]
+
( 2β

κâ(k)

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
+
( 4β2

(κâ(k))2

)
·
[
eκâ(k)t

(
− (κâ(k))2 − 2κâ(k)t− 2

)
+ 2e2κâ(k)t

]
+
(
2β2

)
·[

t2eκâ(k)t − t2e2κâ(k)t
]
+
( 4β2

κâ(k)

)[
te2κâ(k)t − teκâ(k)t(κâ(k)t+ 1)

]
e2κâ(k)t + 2

[
eκâ(k)t − e2κâ(k)t

]
γ2t2e2κâ(k)t +

(
2γ2

)[
t2eκâ(k)t − t2e2κâ(k)t

]
+
( 2γ2

κâ(k)

)[
te2κâ(k)t

−teκâ(k)t(κâ(k)t+ 1)
]
−
( 2γ2

(κâ(k))2

)[
eκâ(k)t(−(κâ(k)t)2

−2κâ(k)t− 2) + 2e2κâ(k)t
]
−
( 2γ

κâ(k)

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
−βte2κâ(k)t + ρ0e

2κâ(k)t−(
2β

)[
teκâ(k)t − te2κâ(k)t

]
−

( 2β

κâ(k)

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
γte2κâ(k)t +

(
2γ

)[
teκâ(k)t − te2κâ(k)t

]
+
( 2γ

κâ(k)

)[
e2κâ(k)t − eκâ(k)t·

(κâ(k)t+ 1)
]


When β = γ, mD

2 (t, v) =
( 1

2π

)d
∫
T d

m̂D
2 (t, k)e

−ikvdk

Case 2: β ̸= γ

For matrix Â3, we have eigenvalues λ1 = 2κâ(k), λ2 = 2κâ(k), λ3 = 2(κâ(k)+

β − γ), λ4 = 2κâ(k) + β − γ, λ5 = 2κâ(k) + β − γ and the eigenvectors are v1 =[
1 0 0 0 0

]
, v2 =

[
0 0 1 0 0

]
, v3 =

[
β2

(β − γ)γ

β − γ

γ

γ

β − γ

−β

γ
1

]
,
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v4 =

[
0 0

2γ

β − γ
0 1

]
, v5 =

[
2β

γ − β
0 0 1 0

]

Aligning the Xi(t) vectors we have X(t) =

e2κâ(k)t 0
(

β2

(β−γ)γ

)
e2(κâ(k)+β+γ)t

(
2β
γ−β

)
e(2κâ(k)+β+γ)t 0

0 0
(

β−γ
γ

)
e2(κâ(k)+β+γ)t 0 0

0 e2κâ(k)t
(

γ
β−γ

)
e2(κâ(k)+β+γ)t 0

(
−2γ
γ−β

)
e(2κâ(k)t+β+γ)t

0 0
(

−β
γ

)
e2(κâ(k)+β+γ)t e(2κâ(k)+β−γ)t 0

0 0 e2(κâ(k)+β+γ)t 0 e(2κâ(k)+β−γ)t



X(0) =



1 0
(

β2

(β−γ)γ

) (
−2β
β−γ

)
0

0 0
(

β−γ
γ

)
0 0

0 1
(

γ
β−γ

)
0

(
−2γ
γ−β

)
0 0

(
−β
γ

)
1 0

0 0 1 0 1



X−1(0) =



1
(

β2

(β−γ)2

)
0

(
−2β
γ−β

)
0

0
(

γ2

(β−γ)2

)
1 0

(
2γ
γ−β

)
0

(
γ

β−γ

)
0 0 0

0
(

β
β−γ

)
0 1 0

0
(

−γ
β−γ

)
0 0 1


eÂ3t = X(t)X−1(0) =
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e2κâ(k)t
(

β2

(β−γ)2

)
e2(β+γ)t −

(
2β2

(β−γ)2

)
e(β+γ)t 0

(
−2β
β−γ

)
e(β+γ)t 0

0 e2(κâ(k)+β+γ)t 0 0 0

0
(

−γ2

(β−γ)2

)
e2(β+γ)t e2κâ(k)t 0

(
2γ
β−γ

)
e(β+γ)t

0
(

−β
β−γ

)
e2(β+γ)t +

(
β

β−γ

)
e(β+γ)t 0 e(2κâ(k)+β+γ)t 0

0
(

γ
β−γ

)
e2(β+γ)t −

(
γ

β−γ

)
e(β+γ)t 0 0 e(2κâ(k)+β+γ)t


with initial conditions x0 =

[
ρ20 1 0 ρ0 0

]T
.
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m̂D
2 (t, k) = eÂ3tx0 + eÂ3t

∫ t

0

e−Â3sB̂3P⃗ ds =
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ρ20e
2κâ(k)t +

(
β2

(β−γ)2

)
e2(β + γ)t −

(
2β2

(β−γ)2

)
e(β + γ)t + ρ0

(
−2β
β−γ

)
e(β + γ)t+(

2ρ0

)[
eκâ(k)t − e2κâ(k)t

]
+
(
2β

)[
eκâ(k)t − e2κâ(k)t

]
−
(

2β2κâ(k)
3κâ(k)(β−γ)2

)[
e−κâ(k)t − e2κâ(k)t

]
+
(

4β2κâ(k)
5κâ(k)(β−γ)2

)
·[

e−3κâ(k)t − e2κâ(k)t
]
+
(

4β2κâ(k)
(3κâ(k)+β+γ)(β−γ)2

)[
e−(κâ(k) + β + γ)t

−e2κâ(k)t
]
−

(
4β2κâ(k)

(5κâ(k)+β+γ)(β−γ)2

)
·
[
e−(3κâ(k) + β + γ)t − e2κâ(k)t

]
+
(

2β2κâ(k)
(κâ(k)+2β+2γ)(β−γ)2

)[
e−κâ(k)t − e2(β + γ)t

]
−
(

4β2κâ(k)
(κâ(k)+2β+2γ)(β−γ)2

)
·[

e−(κâ(k) + β + γ)t − e(β + γ)t
]
−

(
4β2κâ(k)

(3κâ(k)+β+γ)(β−γ)2

)
·[

e−3κâ(k)t − e(β + γ)t
]
−

(
4β2κâ(k)

(3κâ(k)+2β+2γ)(β−γ)2

)[
e−(3κâ(k) + β + γ)t−

e(β + γ)t
]

e2(κâ(k)t+ β + γ)t +
(

2κâ(k)
κâ(k)+2β+2γ

)[
eκâ(k)t − e2(κâ(k) + β + γ)t

]
(

−γ2

(β−γ)2

)
e2(β + γ)t +

(
−2γ2κâ(k)

(κâ(k)+2β+2γ)(β−γ)2

)[
e−κâ(k)t − e2(β + γ)t

]
+
(

2γ2κâ(k)
3κâ(k)(β−γ)2

)[
e−κâ(k)t − e2κâ(k)t

]
+
(

4γ2κâ(k)
5κâ(k)(β−γ)2

)
·[

e−3κâ(k)t − e2κâ(k)t
]
−

(
4γ2κâ(k)

(5κâ(k)+β+γ)(β−γ)2

)[
e−(3κâ(k) + β + γ)t

−e2κâ(k)t
]
−

(
2γκâ(k)
(κâ(k))2

)[
e2κâ(k)t − eκâ(k)t(κâ(k)t+ 1)

]
+
(

4γ2κâ(k)
(3κâ(k)+β+γ)(β−γ)2

)[
e−3κâ(k)t − e(β + γ)t

]
+
(

4γ2κâ(k)
(3κâ(k)+2(β+γ))(β−γ)2

)[
e−(3κâ(k) + β + γ)t − e(β + γ)t

]
(

−β
β−γ

)
e2(β + γ)t +

(
β

β−γ

)
e(β + γ)t + ρ0e

(2κâ(k) + β + γ)t+(
−2βκâ(k)

(κâ(k)+2β+2γ)(β−γ)

)[
e−κâ(k)t − e2(β + γ)t

]
+
(

2βκâ(k)
(κâ(k)+2β+2γ)(β−γ)

)
·[

e−(κâ(k) + β + γ)t − e(β + γ)t
]
+
(

2βκâ(k)
(3κâ(k)+β+γ)(β−γ)

)[
e−κâ(k)t

−e(2κâ(k) + β + γ)t
]
+
(

2βκâ(k)
(3κâ(k)+2β+2γ)(β−γ)

)[
e−(κâ(k) + β + γ)t

−e(2κâ(k) + β + γ)t
]

(
γ

β−γ

)
e2(β + γ)t −

(
γ

β−γ

)
e(β + γ)t +

(
2γκâ(k)

(κâ(k)+2β+2γ)(β−γ)

)
·[

e−κâ(k)t − e2(β + γ)t
]
−

(
2γκâ(k)

(κâ(k)+2β+2γ)(β−γ)

)[
e−(κâ(k) + β + γ)t−

e(β + γ)t
]
+
(

2γκâ(k)
(3κâ(k)+β+γ)(β−γ)

)[
e−κâ(k)t − e(2κâ(k) + β + γ)t

]
+
(

2γκâ(k)
(3κâ(k)+2β+2γ)(β−γ)

)[
e−(κâ(k) + β + γ)t − e(2κâ(k) + β + γ)t

]
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CHAPTER 8

ANALYZING THE BEHAVIOR OF THE SECOND MOMENTS OF THE SIR
MODEL

8.1 Analyzing the behavior of the second moments in Homogeneous Space

The behavior of the second moments of the susceptible, infected, recovered,

susceptible-infected, recovered-infected groups in the homogeneous space as t −→ ∞

can be broken up in 3 cases: β < γ, β = γ, β > γ. The asymptotic behavior

of mS
2 (t, x, x), m

I
2(t, x, x), m

R
2 (t, x, x), m

SI
2 (t, x, x), and mRI

2 (t, x, x) in homogeneous

space as t −→ ∞ is summarized in the Table 8.1 below.

As t → ∞ mS
2 (t, x, x) mI

2(t, x, x) mR
2 (t, x, x) mSI

2 (t, x, x) mRI
2 (t, x, x)

β > γ → ∞ → ∞ → ∞ → ∞ → ∞

β < γ → ∞ → 0 → ∞ → 0 → 0

β = γ → ∞ → ∞ → ∞ → 0 → ∞

Table 8.1: Asymptotic Behavior of the Second Moments in Homogeneous Space when

x = y
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The asymptotic behavior of the second moments in homogeneous space when

x ̸= y and v = ||y = x|| as t −→ ∞ is summarized in Table 8.2

As t → ∞ mS
2 (t, v) mI

2(t, v) mR
2 (t, v) mSI

2 (t, v) mRI
2 (t, v)

β > γ → ∞ → ∞ → ∞ → ∞ → ∞

β < γ → ∞ → 0 → ∞ → 0 → 0

β = γ → 0 → 0 → ∞ → 0 → ∞

Table 8.2: Asymptotic Behavior of the Second Moments in Homogeneous Space when

x ̸= y

8.2 Analyzing the behavior of the second moments in Inhomogeneous Space

The long term behavior ofmS
2 (t, x, x),m

I
2(t, x, x),m

R
2 (t, x, x),m

SI
2 (t, x, x), and

mRI
2 (t, x, x) then follows from the long term behavior of mI

2(t, x, x). The asymptotic

behavior of the second moments of the susceptible, infected, recovered, susceptible-

infected, and recovered-infected groups in inhomogeneous space when x = y as

t −→ ∞ is summarized in Table 8.3 below. The asymptotic behavior of the second

moments of the susceptible, infected, recovered, susceptible-infected, and recovered-

infected groups in inhomogeneous space when x ̸= y as t −→ ∞ is summarized in

Table 8.4 below.

Let α = κâ(k), θ = κâ(k)+β−γ, µ = κâ(k)+β+γ, C1 =
1

(2π)d

∫
T d

e−ikxdk,
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C2 =
1

(2π)d

∫
T d

(κ+ β + γ

2β + 2γ

)
e−ikxdk, and C3 =

1

(2π)d

∫
T d

e−ikvdk
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When β + γ > 0, α < 0 and µ = κâ(k) + β + γ < 0, we have the infection

rate plus the recovery rate (β + γ) is positive but smaller than the mobility effect

κâ(k), meaning the mobility effect is stronger. The result is that the second moment

of the infected population goes to 0 as time t goes to infinity. Another notable event

is when β = γ, meaning the infection rate is equal to the recovery rate. When β = γ

and the mobility effect κâ(k) < 0, the second moment of the infected population

at location x goes to 0 as time t goes to infinity. The event where β = γ and the

mobility effect κâ(k) = 0, we have that the second moment of the infected population

at location x goes to a finite constant C3 as t goes to infinity. This means that the

second moment of the infected population goes to a steady state. This makes our

model different from the classical SIR model because the infected population does

not always go to 0 when the infection rate is equal to the recovery rate because we

have active movement to and from outside location x.
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As t → ∞ mS
2 (t, x, x) mI

2(t, x, x) mR
2 (t, x, x) mSI

2 (t, x, x) mRI
2 (t, x, x)

β − γ = 0,

α < 0, θ < 0
→ 0 → 0 → 0 → 0 → 0

β − γ = 0,

α = 0, θ = 0
→ ∞ → C1 → ∞ → ∞ → ∞

β + γ < 0,

α < 0, µ <

0

→ ∞ → 0 → ∞ → ∞ → ∞

β + γ < 0,

α = 0, µ <

0

→ ∞ → C2 → ∞ → ∞ → ∞

β + γ > 0,

α < 0, µ <

0

→ ∞ → 0 → ∞ → ∞ → ∞

β + γ > 0,

α < 0, µ >

0

→ ∞ → ∞ → ∞ → ∞ → ∞

β + γ > 0,

α = 0, µ >

0

→ ∞ → ∞ → ∞ → ∞ → ∞

Table 8.3: Asymptotic Behavior of the Second Moments in Inhomogeneous Space

when x = y
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As t → ∞ mS
2 (t, v) mI

2(t, v) mR
2 (t, v) mSI

2 (t, v) mRI
2 (t, v)

β − γ = 0,

α < 0, θ < 0
→ 0 → 0 → 0 → 0 → 0

β − γ = 0,

α = 0, θ = 0
→ ∞ → C3 → ∞ → ∞ → ∞

β + γ < 0,

α < 0, µ <

0

→ ∞ → 0 → ∞ → ∞ → ∞

β + γ < 0,

α = 0, µ <

0

→ ∞ → 0 → ∞ → ∞ → ∞

β + γ > 0,

α < 0, µ <

0

→ ∞ → 0 → ∞ → ∞ → ∞

β + γ > 0,

α < 0, µ >

0

→ ∞ → ∞ → ∞ → ∞ → ∞

β + γ > 0,

α = 0, µ >

0

→ ∞ → ∞ → ∞ → ∞ → ∞

Table 8.4: Asymptotic Behavior of the Second Moments in Inhomogeneous Space

when x ̸= y
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CHAPTER 9

INTRODUCTION TO INTERMITTENCY AND LYAPUNOV EXPONENTS
FOR THE SIR MODEL

Now we will study the intermittency effect in our model. A random field u

has intermittency effect if u(t, ·) develops high peaks on few, small, remote islands-

the intermittent islands, which carry most of the total mass U(t) =
∑
z∈Z

u(t, z) [10]

[3] [5]. Molchanov defines intermittency as: a field n(t, x), x ∈ Zd is intermittent as

t → ∞ on a non-decreasing family of sets D(t) if lim
En2(t, x)

(En(t, x))2
= ∞ uniformly in

x ∈ D(t) [5].

König [10] studies intermittency in terms of the Lyapunov exponents. They

state that intermittency refers to unusually large fluctuations of the field, such that

for large values of time t there exists spots (or clusters) where the concentration

of particles is very high, the distances between these clusters being very high, and

most of the mass of the particles is concentrated in these clusters [3]. The Lyapunov

exponent is defined as γp = lim
t→∞

1

t
log mp(t), where mp(t) is the pth moment of the

solution. The Lyapunov exponents have the follow convexity property:
γp(κ)

p
≤

γp+1(κ)

p+ 1
, p ≥ 0, κ > 0. The convex property of the Lyapunov exponent influences

the intermittency phenomena. Carmona and Molchanov [3] state that the family

of homogeneous fields {u(t, x);x ∈ Zd} is intermittent when t → ∞ if one has
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γ1 ≤
γ2
2

≤ ... ≤ γp
p

≤ γp+1

p+ 1
≤ ....

For the epidemic model, it is interesting to study if the infected population will

form clusters, or if the infected population will mix with the susceptible population.

For our SIR model with mobility, intermittency in the infected group means that

the model forms clusters of infected people. For our model, we define m2(t, x, y) =

E[u(t, x)u(t, y)], and for the infected group we have mI
2(t, x, y) = E[I(t, x)I(t, y)].

When x = y, if lim
t→∞

mI
2(t, x, x)

mI
1(t, x)

2
= ∞, then it implies that the infected group will form

clusters. When x ̸= y, we have that if lim
t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

= ∞, then it will have

clusterization of the infected population. The Lyapunov exponent tells us how the

population will increase or decrease. For Lyapunov exponent λ1, we have m
I
1(t, x) =

eλ1t. If λ1 > 0, the population will increase exponentially. If λ1 < 0, the population

will decrease exponentially. For the Lyapunov exponents of the first moments of

our model, we have that λ1 = lim
t→∞

ln(mI
1(t, x))

t
. For the Lyapunov exponents of

the second moments of our model, we have that λ2,x,x = lim
t→∞

ln(mI
2(t, x, x))

t
and

λ2,x,y = lim
t→∞

ln(mI
2(t, x, y))

t
.
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CHAPTER 10

INTERMITTENCY ANALYSIS FOR THE SIR MODEL

When x = y in Homogeneous Space:

lim
t→∞

mI
2(t, x, x)

mI
1(t, x)

2
where mI

1(t, x) = e(β − γ)t and

mI
2(t, x, x) = ρ0e

2(β − γ)t +
(β + γ + 2κ

−β + γ

)[
e(β − γ)t − e2(β − γ)t

]
mI

2(t, x, x)

(mI
1(t, x))

2
= ρ0 +

(β + γ + 2κ

−β + γ

)[
e−(β − γ)t − 1

]

If β < γ, lim
t→∞

e−(β − γ)t − 1 → ∞, thus lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
→ ∞

Let C1 = ρ0 −
(β + γ + 2κ

−β + γ

)

If β > γ, lim
t→∞

e−(β − γ)t − 1 → 0, thus lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
→ C1

If β = γ and C ∈ R, lim
t→∞

ρ0
C2

+
(β + γ + 2κ)t

C
→ ∞
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As t → ∞ lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
Result

β < γ → ∞ Intermittency

β > γ → C1 < ∞ No intermittency

β = γ → ∞ Intermittency

Table 10.1: Intermittency Analysis when x = y in Homogeneous Space

When x ̸= y in Homogeneous Space:

lim
t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

where mI
1(t, x) = mI

1(t, y) = e(β − γ)t

mI
2(t, x, y) = ρ0e

2(β − γ)t +
(2κa(v)
β − γ

)[
e(β − γ)t − e2(β − γ)t

]
mI

2(t, x, y)

mI
1(t, x)m

I
1(t, y)

= ρ0 +
(2κa(v)
β − γ

)[
e−(β − γ)t − 1

]

Let C2 = ρ0 −
(2κa(v)
β − γ

)
As t → ∞ lim

t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

Result

β < γ → ∞ Intermittency

β > γ → C2 < ∞ No intermittency

β = γ → −∞ Intermittency

Table 10.2: Intermittency Analysis when x ̸= y in Homogeneous Space

When x = y in Inhomogeneous Space:
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Since mI
1(t, x) =

1

(2π)d

∫
T d

e[κL̂ (k) + (β − γ)]te−ikxdk = e(β − γ)tp(t, 0, x)

and plugging in (12b) from Chapter 7, we get

mI
2(t, x, x)

(mI
1(t, x))

2
=

ρ0
p(t, 0, x)

+
( κ

3(β − γ)(p(t, 0, x))2

)[
e3(β−γ)t−1

]
+
( β + γ + 2κ

3(β − γ)p(t, 0, x)

)
·[

e3(β−γ)t − 1
]

Since p(t, x, y) =
1

(2π)d

∫
T d

eik(x−y)eκL̂ (k)t =
1

(2π)d

∫
T d

cos(x− y)p̂(t, 0, k)dk ≤
1

(2π)d

∫
T d

p̂(t, 0, k)dk = p(t, 0, 0), we have p(t, x, y) ≤ p(t, 0, 0) and as t → ∞, p(t, 0, 0) =

C

td/2
+ o(t−d/2) [13]. Thus lim

t→∞

C

td/2
+ o(t−d/2) = 0.

Thus ρ0
p(t,0,x)

+
(

κ
3(β−γ)(p(t,0,x))2

)[
e3(β−γ)t − 1

]
+

(
β+γ+2κ

3(β−γ)p(t,0,x)

)
·
[
e3(β−γ)t − 1

]
≥ ρ0

p(t,0,0)
+
(

κ
3(β−γ)(p(t,0,0))2

)[
e3(β−γ)t − 1

]
+
(

β+γ+2κ
3(β−γ)p(t,0,0)

)
·
[
e3(β−γ)t − 1

]

Case 1: β < γ,C ̸= 0

lim
t→∞

ρ0
p(t, 0, 0)

−
( κ

3(β − γ)(p(t, 0, 0))2

)
−
( β + γ + 2κ

3(β − γ)p(t, 0, 0)

)
= ∞

Case 2: β > γ

lim
t→∞

ρ0
p(t, 0, 0)

+
( κ

3(β − γ)(p(t, 0, 0))2

)[
e3(β−γ)t−1

]
+
( β + γ + 2κ

3(β − γ)p(t, 0, 0)

)
·
[
e3(β−γ)t−

1
]
= ∞

Case 3: β = γ
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lim
t→∞

ρ0
p(t, 0, 0)

+
( κt

(p(t, 0, 0))2

)
−
((β + γ + 2κ)t

p(t, 0, 0)

)
= ∞

As t → ∞ lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
Result

β < γ → ∞ Intermittency

β > γ → ∞ Intermittency

β = γ → ∞ Intermittency

Table 10.3: Intermittency Analysis when x = y in Inhomogeneous Space

When x ̸= y in Inhomogeneous Space:

Using the solutions mI
1(t, x) = e(β − γ)tp(t, 0, x)

and mI
1(t, y) = e(β − γ)tp(t, 0, y) and (12d) from Chapter 7, we have that

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

=
ρ0

p(t, 0, y)
−
( 2κa(v)

3(β − γ)p(t, 0, y)

)[
e3(β − γ)t − 1

]

We have p(t, x, y) ≤ p(t, 0, 0) and as t → ∞, p(t, 0, 0) =
C

td/2
+ o(t−d/2) [13]

and lim
t→∞

C

td/2
+ o(t−d/2) = 0.

Case 1: β < γ,C ̸= 0

lim
t→∞

ρ0
p(t, 0, 0)

−
( 2κa(v)

3(β − γ)p(t, 0, 0)

)
= ∞

Case 2: β > γ

lim
t→∞

ρ0
p(t, 0, 0)

+
( 2κa(v)

3(β − γ)p(t, 0, 0)

)[
e3(β−γ)t − 1

]
= ∞
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Case 3: β = γ

lim
t→∞

ρ0
p(t, 0, 0)

−
( 2κa(v)t

p(t, 0, 0)

)
= ∞

As t → ∞ lim
t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

Result

β < γ → ∞ Intermittency

β > γ → ∞ Intermittency

β = γ → ∞ Intermittency

Table 10.4: Intermittency Analysis when x ̸= y in Inhomogeneous Space

In homogeneous space, when β > γ, we have the event that the infection rate

is higher than the recovery rate and there is no intermittency phenomenon. This

means that the infection is so widespread that as t → ∞ and it does not matter

where the location is, everywhere will have the infection. This is compared to the

case where β < γ, meaning the infection rate is less than the recovery rate, or when

β = γ and the infection rate is equal to the recovery rate, and the result is that there

will be peaks/clusters with a higher concentration of infection population in some

locations, and thus there is the intermittency phenomenon.

In inhomogeneous space, when β < γ (meaning the infection rate is less than

the recovery rate), β > γ (meaning the infection rate is greater than the infection

rate), and when β = γ (meaning the infection rate is equal to the recovery rate),

the result is that the infection will form spots/groups with a higher concentration

of infection in some locations and the intermittency phenomenon appears in the

configuration space.

89



CHAPTER 11

LYAPUNOV ANALYSIS FOR THE SIR MODEL

Homogeneous Space:

Theorem 14 For the first moment of the infected group in homogeneous space, the

Lyapunov Exponents are λ1,1 = β − γ when β − γ < 0, λ1,2 = β − γ when β − γ > 0,

and λ1,3 = 0 when β − γ = 0

Proof of Theorem 14:

Lyapunov Exponent λ1,i = lim
t→∞

ln(mI
1(t, x))

t
where mI

1(t, x) = e(β − γ)t

Case 1: β − γ < 0, lim
t→∞

ln
(
e(β − γ)t

)
t

= β − γ

Case 2: β − γ > 0, lim
t→∞

ln
(
e(β − γ)t

)
t

= β − γ

Case 3: β − γ = 0, mI
1(t, x) = C1 ∈ R, lim

t→∞

ln(C1)

t
= 0

For case 1, β − γ is negative, so the Lyapunov exponent λ1,1 is negative, and

mI
1(t, x) is decreasing. For case 2, λ1,2 is positive, and thus mI

1(t, x) is increasing.

For case 3, λ1,3 is 0 and mI
1(t, x) is neither increasing nor decreasing.
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Theorem 15 For the second moment of the infected group in homogeneous space,

when x = y, the Lyapunov Exponents are λ2,1 = β − γ when β − γ < 0, λ2,2 =

2(β − γ)ρ0 + 2(β + γ + 2κ)

ρ0 +
(β + γ + 2κ

β − γ

) when β − γ > 0, and λ2,3 = 0 when β − γ = 0

Proof of Theorem 15:

Lyapunov Exponent λ2,i = lim
t→∞

ln(mI
2(t, x, x))

t
where mI

2(t, x, x) is given by

(12a) in Chapter 7 Theorem 9

Case 1: β − γ < 0, using L’Hôpital’s Rule we get that:

lim
t→∞

2(β − γ)ρ0e
(β − γ)t − (β + γ + 2κ)

[
1− 2e(β − γ)t

]
ρ0e

(β − γ)t +
(β + γ + 2κ

γ − β

)[
1− e(β − γ)t

] = β − γ

Case 2: β − γ > 0, lim
t→∞

2(β − γ)ρ0 − (β + γ + 2κ)
[
e−(β − γ)t − 2

]
ρ0 +

(β + γ + 2κ

γ − β

)[
e−(β − γ)t − 1

]
λ2,2 =

2(β − γ)ρ0 + 2(β + γ + 2κ)

ρ0 +
(β + γ + 2κ

β − γ

)
Case 3: β − γ = 0, mI

2(t, x, x) = ρ0 + (β + γ + 2κ)Ct where C ∈ R

lim
t→∞

ln(mI
2(t, x, x))

t
= lim

t→∞

(β + γ + 2κ)C

ρ0 + (β + γ + 2κ)Ct
= 0

For case 1, β − γ is negative, so the Lyapunov exponent λ2,1 = β − γ is

negative, and the second moment of the infected group when x = y is decreasing.

For case 2, λ2,2 is positive, and thus mI
2(t, x, x) is increasing. For case 3, λ2,3 is 0 and
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mI
2(t, x, x) is neither increasing nor decreasing.

Theorem 16 For the second moment of the infected group in homogeneous space,

when x ̸= y, the Lyapunov Exponents are λ3,1 = β − γ when β − γ < 0, λ3,2 =

2(β − γ)ρ0 − 4κa(v)

ρ0 −
(2κa(v)
β − γ

) when β − γ > 0, and λ3,3 = 0 when β − γ = 0

Proof of Theorem 16: Lyapunov Exponent λ3,i = lim
t→∞

ln(mI
2(t, v))

t
where

mI
2(t, v) is given by (12c) in Chapter 7 Theorem 9

Case 1: β − γ < 0, using L’Hôpital’s Rule we get that:

lim
t→∞

2(β − γ)ρ0e
(β − γ)t + (2κa(v))

[
1− 2e(β − γ)t

]
ρ0e

(β − γ)t +
(2κa(v)
β − γ

)[
1− e(β − γ)t

] = β − γ

Case 2: β − γ > 0, lim
t→∞

2(β − γ)ρ0 + (2κa(v))
[
e−(β − γ)t − 2

]
ρ0 +

(2κa(v)
β − γ

)[
e−(β − γ)t − 1

]
λ3,2 =

2(β − γ)ρ0 − 4κa(v)

ρ0 −
(2κa(v)
β − γ

)
Case 3: β − γ = 0, mI

2(t, v) = ρ0 − 2κa(v)Ct where C ∈ R

lim
t→∞

ln(mI
2(t, v))

t
= lim

t→∞

−2κa(v)C

ρ0 − 2κa(v)Ct
= 0

For case 1, β − γ is negative, so the Lyapunov exponent λ3,1 = β − γ is

negative, and the second moment of the infected group when x ̸= y is decreasing.

For case 2, if β − γ > 2κa(v), then λ3,2 is positive, and thus mI
2(t, v) is increasing.
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For case 2, if β − γ < 2κa(v), then λ3,2 is negative and the second moment of the

infected group is decreasing. For case 3, λ3,3 is 0 and mI
2(t, v) is neither increasing

nor decreasing.

As t → ∞ lim
t→∞

lnmI
1(t, x)

t
lim
t→∞

lnmI
2(t, x, x)

t
lim
t→∞

lnmI
2(t, v)

t

β < γ < ∞ < ∞ < ∞

β > γ < ∞ < ∞ < ∞

β = γ < ∞ < ∞ < ∞

Table 11.1: Lyapunov Exponents in Homogeneous Space

Inhomogeneous Space:

Theorem 17 For the first moment of the infected group in inhomogeneous space,

when x = y, the Lyapunov Exponents are λ4,1 = β − γ + κL̂ (k) when β − γ < 0,

λ4,2 = β − γ + κL̂ (k), and λ4,3 = κL̂ (k) when β − γ = 0

Note that
d

dt
p(t, 0, x) = κL̂ (k)p(t, 0, x)

Proof of Theorem 17: Lyapunov Exponent λ4,i = lim
t→∞

ln(mI
1(t, x))

t
where

mI
1(t, x) = e(β − γ)tp(t, 0, x)

Case 1: β − γ < 0, lim
t→∞

(β − γ)t+ ln(p(t, 0, x))

t
= β − γ + lim

t→∞

d
dt
p(t, 0, x)

p(t, 0, x)

λ4,1 = β − γ + κL̂ (k)
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Case 2: β − γ > 0, lim
t→∞

ln(mI
1(t, x))

t
= β − γ + κL̂ (k)

Case 3: β − γ = 0, mI
1(t, x) = p(t, 0, x), lim

t→∞

ln(mI
1(t, x))

t
= κL̂ (k)

For case 1, β − γ is negative and κL̂ (k) is negative, thus λ4,1 < 0 and the

first moment of the infected group is decreasing. For case 2, if β − γ > L̂ (k), then

λ4,2 > 0 and the first moment of the infected group is increasing. For case 2, if

β − γ < L̂ (k), then λ4,2 < 0 and then mI
1(t, x) is decreasing. For case 3, λ4,3 is

negative and mI
1(t, x) is decreasing.

Theorem 18 For the second moment of the infected group in inhomogeneous space,

when x = y, the Lyapunov Exponents are λ5,1 = 2(β − γ) when β − γ < 0, λ5,2 =

5(β − γ) when β − γ > 0, and λ5,3 = 0 when β − γ = 0

Proof of Theorem 18: Lyapunov Exponent λ5,i = lim
t→∞

ln(mI
2(t, x, x))

t
where

mI
2(t, x, x) is given by (12b) in Chapter 7 Theorem 9

Case 1: β − γ < 0, using L’Hôpital’s Rule and note that p(t, x, y) < p(t, 0, 0)

and as t → ∞, p(t, 0, 0) =
C

td/2
+ o(t−d/2) < ∞, C1 =

C

td/2
+ o(t−d/2) and lim

t→∞
C1 = 0

lim
t→∞

ln(mI
2(t, x, x))

t
=

ρ0κL̂ (k)C1 + 2(β − γ)ρ0C1 −
(2κ
3

)
−

(β + γ + 2κ

3(β − γ)

)
κL̂ (k)C1 −

(2(β + γ + 2κ)

3

)
C1

ρ0C1 −
( κ

3(β − γ)

)
−

(β + γ + 2κ

3(β − γ)

)
C1
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Thus lim
ln(mI

2(t, x, x))

t
= 2(β − γ)

Case 2: β − γ > 0

lim
t→∞

ln(mI
2(t, x, x))

t
=

(5κ
3

)
+
(β + γ + 2κ

3(β − γ)

)
κL̂ (k)C1 +

(5(β + γ + 2κ)

3

)
C1( κ

3(β − γ)

)
+
(β + γ + 2κ

3(β − γ)

)
C1

Thus lim
ln(mI

2(t, x, x))

t
= 5(β − γ)

Case 3: β − γ = 0, mI
2(t, x, x) = ρ0p(t, 0, x) + κt+ (β + γ + 2κ)tp(t, 0, x)

lim
t→∞

ln(mI
2(t, x, x))

t
= lim

t→∞

(β + γ + 2κ)κL̂ (k)p(t, 0, x)

κ+ (β + γ + 2κ)p(t, 0, x)

lim
t→∞

ln(mI
2(t, x, x))

t
=

(β + γ + 2κ)κL̂ (k)
( C

td/2
+ o(t−d/2)

)
κ+ (β + γ + 2κ)

( C

td/2
+ o(t−d/2)

) =
0

κ
= 0

For case 1, β− γ is negative and therefore the second moment of the infected

group when x = y is decreasing. For case 2, β−γ is positive, then the second moment

of the infected group is increasing. For case 3, λ5,3 = 0 and the second moment of

the infected group is neither increasing nor decreasing.

Theorem 19 For the second moment of the infected group in inhomogeneous space,

when x ̸= y, the Lyapunov Exponents are

λ6,1 =

ρ0κL̂ (k) + 2(β − γ)ρ0 +
( 2κa(v)

3(β − γ)

)
κL̂ (k) +

(4κa(v)
3

)
ρ0 +

2κa(v)

3(β − γ)

when β − γ < 0,

λ6,2 = κL̂ (k) + 5(β − γ) when β − γ > 0, and λ6,3 = κL̂ (k) when β − γ = 0
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Proof of Theorem 19: Lyapunov Exponent λ6,i = lim
t→∞

ln(mI
2(t, v))

t
where

mI
2(t, v) is given by (12d) in Chapter 7 Theorem 9

Case 1: β − γ < 0

lim
t→∞

ln(mI
2(t, v))

t
=

ρ0κL̂ (k) + 2(β − γ)ρ0 +
( 2κa(v)

3(β − γ)

)
κL̂ (k) +

(4κa(v)
3

)
ρ0 +

2κa(v)

3(β − γ)

Case 2: β − γ > 0

lim
t→∞

ln(mI
2(t, v))

t
= lim

t→∞

−
( 2κa(v)

3(β − γ)

)
κL̂ (k)p(t, 0, x)−

(10κa(v)
3

)
p(t, 0, x)

−
( 2κa(v)

3(β − γ)

)
p(t, 0, x)

lim
t→∞

ln(mI
2(t, v))

t
= κL̂ (k) + 5(β − γ)

Case 3: β − γ = 0, mI
2(t, v) = ρ0p(t, 0, x)− 2κa(v)tp(t, 0, x)

lim
t→∞

ln(mI
2(t, v))

t
=

ρ0κL̂ (k)1
t
− 2κa(v)κL̂ (k)− 2κa(v)1

t

ρ0
1
t
− 2κa(v)

= κL̂ (k)

For case 1, β−γ is negative and if ρ0(β−γ)+2a(v) < 0, then λ6,1 > 0 and the

second moment of the infected group when x ̸= y is increasing. For case 1, β − γ if

ρ0(β − γ) + 2a(v) > 0, then λ6,1 is negative and therefore mI
2(t, v) is decreasing. For

case 2, β− γ is positive and κL̂ (k) < 0, if 5(β− γ) > κL̂ (k), then λ6,2 > 0 and the

second moment of the infected group is increasing. For case 2, if 5(β − γ) < κL̂ (k),
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then λ6,2 < 0 and thus mI
2(t, v) is decreasing. For case 3, λ6,3 < 0 and the second

moment of the infected group is decreasing.

As t → ∞ lim
t→∞

lnmI
1(t, x)

t
lim
t→∞

lnmI
2(t, x, x)

t
lim
t→∞

lnmI
2(t, v)

t

β < γ < ∞ < ∞ < ∞

β > γ < ∞ < ∞ < ∞

β = γ < ∞ < ∞ < ∞

Table 11.2: Lyapunov Exponents in Inhomogeneous Space

For our SIR model, the homogeneous space we have that the Lyapunov ex-

ponents for the first and second moments are finite for all three cases, when β < γ,

β > γ, and β = γ. For the inhomogeneous space we have that the Lyapunov ex-

ponents for the first and second moments are finite for all three cases, when β < γ,

β > γ, and β = γ. If λ1,i or λ4,i is positive, then the first moment of the infected

group is increasing. If λ1,i or λ4,i is negative, then the first moment of the infected

group is decreasing. If the Lyapunov exponent is 0, then the mI
1(t, x) is neither

increasing nor decreasing.
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CHAPTER 12

INTRODUCTION TO THE SI MODEL

The set up for the new susceptible-infected (SI) model with migration has the

assumption that all of the particles can have spatial motion, within the susceptible

and infected groups (in addition to the inter-compartmental motion). We are as-

suming the total population is fixed, i.e- N(t) = S(t) + I(t) but N(t, x), the total

population at position x at time t, is varying. We are now assuming that the spa-

tial motion of healthy particles is not the same as the spatial motion of an infected

particle, and now there are two probability kernels- a(z) and b(z). Define κ as the

probability of a jump during the time period (t, t + dt) and β is the transition rate

from S to I. Define a(z) is the probability kernel of the Poisson process (or the

process intensity) and it determines the direction of a jump in the infected group,

b(z) is the probability kernel of the susceptible group, where a(z) = a(−z) and

b(z) = b(−z). The movement of one particle from location x to location x + z has

probability kernels a(z)dt or b(z)dt. The movement from location x + z to location

x has probability a(−z)dt or b(−z)dt. Assume that
∑
z∈Zd

a(z) = 0 and
∑
z ̸=0

a(z) = 1,

which implies that a(0) = −1, and similarly for b(z). However, we keep the assump-

tion that the only one type of movement can happen at a time, meaning a particle

can jump to another location or they can jump states. The possible events are:
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1○ S : x −→ x+ z in S with probability κb(z)dt.

This is the event that in a short time period (t, t+ dt), a particle at location x

moves to location x+ z within the susceptible group.

2○ I : x −→ x+ z in I with probability κa(z)dt.

This is the event that in a short time period (t, t+ dt), a particle at location x

moves to location x+ z within the infected group.

3○ S : x −→ x in I with probability βdt.

This is the event that a particle at location x in the susceptible group transitions to

the infected group.
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CHAPTER 13

DERIVING THE DIFFERENTIAL EQUATIONS FOR THE SI MODEL

We first want to determine the stability of E[S(t, x)] and E[I(t, x)] as t −→ ∞.

The first step in doing this is to derive the differential equations for the generating

functions and find the solutions. We derive the differential equations using the Kol-

mogorov Forward Equations.

Theorem 20 (Differential equations of the first moments) The differential

equations for the first moment of the susceptible and infected groups are
∂E[S(t, x)]

∂t
= κLb(z)E[S(t, x)]− βE[I(t, x)] (13a)

∂E[I(t, x)]

∂t
= κLa(z)E[I(t, x)] + βE[I(t, x)] (13b)

Note that the discrete Laplace operator is defined to be La(z)f(t, x) =
∑
z ̸=0

a(z)[f(t, x+

z)− f(t, x)] and Lb(z)f(t, x) =
∑
z ̸=0

b(z)[f(t, x+ z)− f(t, x)].

Proof :

For the susceptible group: S(t+ dt, x) = S(t, x) + ξ(dt) where

ξ(dt) =



1 w.p
∑
z ̸=0

κb(z)S(t, x+ z)dt 1○

−1 w.p
∑
z ̸=0

κb(z)S(t, x)dt+ βI(t, x)dt 2○

0 w.p 1− 1○ − 2○
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The case that ξ(dt) = 1 is the event that a particle at location x + z in

the susceptible group moves to location x, meaning location x gains a particle, and

thus the event has probability
∑
z ̸=0

S(t, x + z)κb(z)dt. The case that ξ(dt) = −1

is the event that either a particle at location x moves to location x + z (mean-

ing that location x loses a particle - which has probability
∑
z ̸=0

S(t, x)κb(z)dt), or a

particle at location x in the susceptible group becomes infected (which has prob-

ability I(t, x)βdt). The case that ξ(dt) = 0 is the event that there is no particle

moving to or away from location x in the susceptible group, so it has probability

1−
∑
z ̸=0

S(t, x+ z)κb(z)dt−
∑
z ̸=0

S(t, x)κb(z)dt− I(t, x)βdt.

E[S(t+ dt, x)] = E[E[S(t+ dt, x)|Ft]]

Using the Kolmogorov Forward Equations, following the same process used for

the SIR model, and our Laplace operator defined as Lb(z)f(t, x) =
∑
z ̸=0

b(z)[f(t, x +

z)− f(t, x)] and note that mS
1 (t, x) = E[S(t, x)] we have that

As dt −→ 0 ,
∂E[S(t, x)]

∂t
=

∂mS
1 (t, x)

∂t
= κLb(z)m

S
1 (t, x)− βmI

1(t, x).

For the infected group: I(t+ dt, x) = I(t, x) + ξ(dt) where

ξ(dt) =



1 w.p βI(t, x)dt+
∑
z ̸=0

κa(−z)I(t, x+ z)dt 1○

−1 w.p
∑
z ̸=0

κa(z)I(t, x)dt 2○

0 w.p 1− 1○ − 2○
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The case that ξ(dt) = 1 is the event that a particle at location x + z in

the infected group moves to location x, meaning location x gains a particle (which

has probability
∑
z ̸=0

I(t, x + z)κa(z)dt), or a particle at location x in the suscep-

tible group becomes infected (which has probability I(t, x)βdt). The case that

ξ(dt) = −1 is the event that a particle at location x in the infected group moves

to location x + z (meaning that location x loses a particle - which has probability∑
z ̸=0

I(t, x)κa(z)dt). The case that ξ(dt) = 0 is the event that there is no parti-

cle moving to or away from location x in the infected group, so it has probability

1− I(t, x)βdt−
∑
z ̸=0

I(t, x+ z)κa(−z)dt−
∑
z ̸=0

I(t, x)κa(z)dt.

E[I(t+ dt, x)] = E[E[I(t+ dt, x)|Ft]]

Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that

As dt −→ 0 ,
∂mI

1(t, x)

∂t
= κLa(z)m

I
1(t, x) + βmI

1(t, x)

□

Now that we have the differential equations for the first moments of the sus-

ceptible and infected groups, we can solve for the first moments.
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CHAPTER 14

FIRST MOMENTS OF THE SI MODEL

When solving for the first moments of the susceptible and infected groups

there are two sub-cases: homogeneous space and inhomogeneous space. For the

homogeneous space there is the assumption the the spaces are equivalent, meaning x

and x+z are the same. Thus the Laplace operator La(z)f(t, x) =
∑
z ̸=0

a(z)[f(t, x+z)−

f(t, x)] = 0, Lb(z)f(t, x) =
∑
z ̸=0

b(z)[f(t, x + z) − f(t, x)] = 0 and La(z)+b(z)f(t, x) =∑
z ̸=0

(a(z) + b(z))[f(t, x + z) − f(t, x)]. For the inhomogeneous space there is the

assumption that the spaces are not equivalent, so the Laplace operator Lif(t, x) ̸= 0

where i = a, b

14.1 First Moments in Homogeneous space

The Laplace operator Laf(t, x) =
∑
z ̸=0

a(z)[f(t, x + z) − f(t, x)] = 0 and

Lbf(t, x) =
∑
z ̸=0

b(z)[f(t, x + z) − f(t, x)] = 0. Then the differential equations from

Chapter 13 Equation (13a) and (13b) no longer have the Laplace operator and we

can rewrite the expectations as the first moments and so the equations become:
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∂mS

1 (t, x)

∂t
= −βmI

1(t, x) (14)

∂mI
1(t, x)

∂t
= βmI

1(t, x)

Theorem 21 In the homogeneous space, as t increases, 0 ≤ t ≤ ln(ρ0+1)
β

, with initial

conditions S(0) = ρ0 > 0, I(0) = 1, I(0, x) =


1 if x = y

0 if x ̸= y

, the steady states

E[S(t, x)] and E[I(t, x)] exist and, when β ̸= 0,


E[S(t, x)] = ρ0 + 1− eβt

E[I(t, x)] = eβt

Proof of Theorem 21: Solving the ODE system (14) using regular ODE

methods, we get the solutions for the first moments of the SI model.

14.2 First Moments in Inhomogeneous space

The Laplace operator La(z)f(t, x) =
∑
z ̸=0

a(z)[f(t, x + z) − f(t, x)] ̸= 0 and

Lb(z)f(t, x) =
∑
z ̸=0

b(z)[f(t, x+ z)− f(t, x)] ̸= 0 so we have the differential equations

(13a) and (13b). In order to solve the inhomogeneous equations, we are going to use

the definitions, lemmas, and theorems from Section 4.2 in Chapter 4.

Applying the Fourier transform from Definition 2 to the differential equation

of E[I(t, x)] to solve for the first moment of the infected group, and following the

same process we used for the SIR model, we get that:

mI
1(t, x) =

1

(2π)d

∫
T d

m̂I
1(t, k)e

−ikxdk =
1

(2π)d

∫
T d

e[κL̂a(z)(k) + β]te−ikxdk
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Now to solve for the first moments of the susceptible group in the inhomoge-

neous space we use the general solution from Theorem 3, where f(t, x) = −βE[I(t, x)]

but there is no potential V (t) in these equations so then we have the solution to be

E[S(t, x)] = Eh[S(t, x)] + w(t, x) where


∂mSh

1 (t, x)

∂t
= κLb(z)m

Sh

1 (t, x) + V (t)mSh

1 (t, x) = κLb(z)m
Sh

1 (t, x)

mSh

1 (0, x) = ρ0δ0(x)
∂w(t, x)

∂t
= κLb(z)w(t, x) + V (t)w(t, x) + f(t, x) = κLb(z)w(t, x) + f(t, x)

w(0, x) = 0

mS
1 (t, x) =

1

(2π)d

∫
T d

ρ0e
κL̂b(z)(k)te−ikxdk

− β

∫ t

0

∑
z∈Zd

pb(t− s, 0, x− z)mI
1(s, z)ds

14.3 First Moments in Inhomogeneous Space using matrices

To write the first moments of the susceptible and infected groups in matrix

format we are going to let F (t, x) =

S(t, x)
I(t, x)

 and then mF
1 (t, x) =

mS
1 (t, x)

mI
1(t, x)

. The
Fourier transform of the matrix format of Equation (13a) and (13b) from Chapter 13

Theorem 20, is
∂m̂F

1 (t, k)

∂t
= Â4m̂

F
1 (t, k), where the matrix Â4 =

κb̂(k) −β

0 κâ(k) + β


the eigenvalues are λ1 = κâ(k) + β and λ2 = κb̂(k).

Case 1: κâ(k) + β = κb̂(k)
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Then λ1 = λ2 = κb̂(k) multiplicity 2 and (Â4 − κâ(k)I)2 = 0.

eÂ4t =

eκb̂(k)t −βteκb̂(k)t

0 eκb̂(k)t

 with initial conditions x0 =

[
ρ0 1

]T

m̂F
1 (t, k) =

m̂S
1 (t, k)

m̂I
1(t, k)

 = eÂ4txo =

ρ0eκb̂(k)t − βteκb̂(k)t

eκb̂(k)t

 =⇒

mF
1 (t, x) =

mS
1 (t, x)

mI
1(t, x)

 =


( 1

2π

)d
∫
T d

(
ρ0e

κb̂(k)t − βteκb̂(k)t
)
e−ikxdk( 1

2π

)d
∫
T d

(
eκb̂(k)t

)
e−ikxdk


Case 2: κâ(k) + β ̸= κb̂(k)

λ1 = κb̂(k) has multiplicity 1 and λ2 = κâ(k) + β has multiplicity 1. Then

X(t) =

 e(κâ(k) + β)t eκb̂(k)t(κb̂(k)− κâ(k)− β

β

)
e(κâ(k) + β)t 0



and X(0) =

 1 1(κb̂(k)− κâ(k)− β

β

)
0

, X−1(0) =

0
( −β

κâ(k) + β − κb̂(k)

)
1

( β

κâ(k) + β − κb̂(k)

)


eÂ4t = X(t)X−1(0) =

eκb̂(k)t
−βe(κâ(k) + β)t

κâ(k) + β − κb̂(k)
+

βe(κb̂(k))t

κâ(k) + β − κb̂(k)

0 −e(κâ(k) + β)t

 with ini-

tial conditions x0 = [ρ0 1 0]T

m̂F
1 (t, k) =

ρ0eκb̂(k)t +
( −β

κâ(k) + β − κb̂(k)

)[
e(κâ(k) + β)t − eκb̂(k)t

]
−e(κâ(k) + β)t
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mF
1 (t, x) =


(

1
2π

)d ∫
T d

(
ρ0e

κb̂(k)t +
(

−β

κâ(k)+β−κb̂(k)

)[
e(κâ(k)+β)t − eκb̂(k)t

])
e−ikxdk(

1
2π

)d ∫
T d

(
− e(κâ(k)+β)t

)
e−ikxdk
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CHAPTER 15

ANALYZING THE BEHAVIOR OF THE FIRST MOMENTS OF THE SI
MODEL

Now that we have solved for the first moments of the susceptible and infected

groups, we want to analyze the long term behavior of the first moments and there

are 2 cases: homogeneous space and inhomogeneous space.

15.1 Analyzing the behavior of the first moments in Homogeneous Space

The behavior of the susceptible and infected groups in the homogeneous space

as t −→ ∞ can be broken up in 2 cases: β = 0, β > 0

As t → ∞ mS
1 (t, x) → mI

1(t, x) →

β = 0 → 0 → C1 ∈ R

β > 0 → 0 → ∞

Table 15.1: Asymptotic Behavior of the First Moments in Homogeneous Space
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As t → ∞ mS
1 (t, x) → mI

1(t, x) →

β ≥ 0, α = 0, ϕ < 0 → 0 → 0

β = 0, α = 0, ϕ = 0 → C2 → C2

β > 0, α = 0, ϕ = 0 → 0 → C2

α < 0, θ < 0, ϕ < 0 → 0 → 0

α < 0, θ < 0, ϕ = 0 → C3 → 0

α < 0, θ > 0, ϕ < 0 → 0 → 0

α > 0, θ > 0, ϕ = 0 → 0 → 0

α > 0, θ > 0, ϕ < 0 → 0 → 0

Table 15.2: Asymptotic Behavior of the First Moments in Inhomogeneous Space

15.2 Analyzing the behavior of the first moments in Inhomogeneous Space

Now we want to analyze the long term behavior as t −→ ∞, with κ >

0, L̂ (k) ≤ 0. Table 15.2 summarizes the asymptotic behavior of the first moments

of the susceptible and infected groups as t −→ ∞. Let α = κâ(k) + β − κb̂(k),

θ = κâ(k) + β, ϕ = κb̂(k), C2 =
1

(2π)d

∫
T d

e−ikxdk and

C3 =
1

(2π)d

∫
T d

(
ρ0 +

β

κâ(k) + β − κb̂(k)

)
e−ikxdk .

When β ≥ 0, α = 0 and ϕ = κb̂(k) < 0, we have the event that the mobility

effect for the infected group plus the infection rate is equal to the mobility effect of

the susceptible group, but the mobility effect of the susceptible group is negative.

The result is that the expected value of the susceptible and infected populations goes
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to 0 as time t goes to infinity. If the first moment decreases to negative infinity, as

t goes to infinity, in this case, once the first moment hits the state 0, it will stay in

state 0 forever. Another interesting event is when α > 0 (meaning the mobility effect

of the infected group plus the infection rate is greater than the mobility effect of the

susceptible group) but θ > 0 and ϕ = 0 (meaning the mobility effect of the infected

group plus the infection rate is positive, and the mobility effect of the susceptible

group is 0), then the expected value of the infected population at location x goes to

0 as time t goes to infinity.
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CHAPTER 16

DERIVING THE DIFFERENTIAL EQUATIONS OF THE SECOND MOMENTS
OF THE SI MODEL

Now we want to find the differential equations for the second moments for

the S(t, x), I(t, x), and S(t, x)I(t, x), groups, where each group has 2 cases: when

the locations x = y and when the locations x ̸= y. The differential equations for

the second moments will then be solved to find the second moments, which will be

used in determining the variance and the long term behavior of the susceptible, and

infected groups. Note a few operator definitions:

La(z)f(t, x) =
∑
z ̸=0

a(z)(f(t, x+ z)− f(t, x))

Lb(z)f(t, x) =
∑
z ̸=0

b(z)(f(t, x+ z)− f(t, x))

La(z)+b(z)f(t, x) =
∑
z ̸=0

(a(z) + b(z))(f(t, x+ z)− f(t, x))

La(z),xf(t, x, y) =
∑
z ̸=0

a(z)(f(t, x+ z, y)− f(t, x, y))

Lb(z),xf(t, x, y) =
∑
z ̸=0

b(z)(f(t, x+ z, y)− f(t, x, y))

La(z),yf(t, x, y) =
∑
z ̸=0

a(z)(f(t, x, y + z)− f(t, x, y))

Lb(z),yf(t, x, y) =
∑
z ̸=0

b(z)(f(t, x, y + z)− f(t, x, y))

La(z),SE[S(t, x)I(t, x)] =
∑
z ̸=0

a(z)E[I(t, x)S(t, x+ z)− I(t, x)S(t, x)]

Lb(z),SE[S(t, x)I(t, x)] =
∑
z ̸=0

b(z)E[I(t, x)S(t, x+ z)− I(t, x)S(t, x)]

La(z),IE[S(t, x)I(t, x)] =
∑
z ̸=0

a(z)E[S(t, x)I(t, x+ z)− S(t, x)I(t, x)]
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Lb(z),IE[S(t, x)I(t, x)] =
∑
z ̸=0

b(z)E[S(t, x)I(t, x+ z)− S(t, x)I(t, x)]

v = ||y − x||

Theorem 22 The differential equations for the second moment of the susceptible

group are

Susceptible when x = y :

∂mS
2 (t, x, x)

∂t
= 2κLb(z),xm

S
2 (t, x, x) + κLmS

1 (t, x)− 2βmSI
2 (t, x, x) + 2κmS

1 (t, x)

+βmI
1(t, x) (15a)

Susceptible when x ̸= y :

∂mS
2 (t, v)

∂t
= κLb(z),xm

S
2 (t, v) + κLb(z),ym

S
2 (t, v)− 2βmSI

2 (t, v)

−κb(v)mS
1 (t, x)− κb(v)mS

1 (t, y) (15b)

Proof of Theorem 22: For the susceptible group, when deriving the dif-

ferential equations for the second moment, we are going to use a similar method to

the one used for the first moment- the Kolmogorov Forward Equations. There are

2 cases: when the locations are equivalent and x = y, and when the locations are

different and x ̸= y:

Case 1: S(t+ dt, x) when x = y, then m2(t+ dt, x, y) = E[S2(t+ dt, x, x)]

For the second moment when x = y we have that E[S2(t + dt, x)] = E[(S(t, x) +

ξ(dt))2] where
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ξ(dt) =



1 w.p
∑
z ̸=0

S(t, x+ z)κb(z)dt 1○

−1 w.p
∑
z ̸=0

S(t, x)κb(z)dt+ I(t, x)βdt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that a particle at location x + z in

the susceptible group moves to location x, meaning location x gains a particle, and

thus the event has probability
∑
z ̸=0

S(t, x + z)κb(z)dt. The case that ξ(dt) = −1

is the event that either a particle at location x moves to location x + z (mean-

ing that location x loses a particle - which has probability
∑
z ̸=0

S(t, x)κb(z)dt), or a

particle at location x in the susceptible group becomes infected (which has prob-

ability I(t, x)βdt). The case that ξ(dt) = 0 is the event that there is no particle

moving to or away from location x in the susceptible group, so it has probability

1−
∑
z ̸=0

S(t, x+ z)κb(z)dt−
∑
z ̸=0

S(t, x)κb(z)dt− I(t, x)βdt.

E[S2(t+ dt, x)] = E[E[S2(t+ dt, x)|F (t)]] = E[S2(t, x)] + E[2S(t, x)ξ(dt)] +

E[ξ2(dt)]

Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that

∂mS
2 (t, x, x)

∂t
= 2κLb(z)m

S
2 (t, x, x)+κLmS

1 (t, x)−2βmSI
2 (t, x, x)+2κmS

1 (t, x)+

βmI
1(t, x)
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Case 2: S(t+dt, x) when x ̸= y, thenm2(t+dt, x, y) = E[S(t+dt, x)S(t+dt, y)]

Recall that during (t, t+ dt) only one event can happen, either a particle can

move or it can jump states, therefore there are seven combinations for x and y. For

example, (x = 1, y = −1), (x = 1, y = 0), so on and so forth. The probabilities for

the various combinations of ξ(dt, x) and ξ(dt, y) are:

The event that a particle in the susceptible group goes from y to x:

P (ξ(dt, x) = 1, ξ(dt, y) = −1) = κb(x− y)S(t, y)dt

The event that a particle in the susceptible group goes from x+ z to x but not to y:

P (ξ(dt, x) = 1, ξ(dt, y) = 0) = κ
∑
z ̸=0

b(z)S(t, x+ z)dt− κb(x− y)S(t, y)dt

The event that a particle in the susceptible group goes from x to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 1) = κb(x− y)S(t, x)dt

The event that a particle in the susceptible group goes from x to x+ z but not to y

or a particle at location x transitions S → I:

P (ξ(dt, x) = −1, ξ(dt, y) = 0) = κ
∑
z ̸=0

b(z)S(t, x)dt− κb(x− y)S(t, x)dt+ βI(t, x)dt

The event that a particle in the susceptible group goes from y+ z to y but not to x:

P (ξ(dt, x) = 0, ξ(dt, y) = 1) = κ
∑
z ̸=0

b(z)S(t, y + z)dt− κb(x− y)S(t, x)dt

The event that a particle in the susceptible group goes from y to y + z but not to x

or a particle at location y transitions S → I:

P (ξ(dt, x) = 0, ξ(dt, y) = −1) = κ
∑
z ̸=0

b(−z)S(t, y)dt− κb(x− y)S(t, y)dt+ βI(t, y)dt

The event that no particle moves:

P (ξ(dt, x) = 0, ξ(dt, y) = 0) = 1 − κ
∑
z ̸=0

b(z)S(t, y + z)dt − κ
∑
z ̸=0

b(z)S(t, y)dt −

κ
∑
z ̸=0

b(z)S(t, x+ z)dt−κ
∑
z ̸=0

b(z)S(t, x)dt+κb(x− y)S(t, y)dt+κb(x− y)S(t, x)dt−
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βI(t, x)dt− βI(t, y)dt

Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that as dt −→ 0,

∂mS
2 (t, v)

∂t
= κLb(z),xm

S
2 (t, v)+κLb(z),ym

S
2 (t, v)−2βmSI

2 (t, v)−κb(v)mS
1 (t, x)−

κb(v)mS
1 (t, y)

Theorem 23 The differential equations for second moment of the infected group are

Infected when x = y :

∂mI
2(t, x, x)

∂t
= 2κLa(z)m

I
2(t, x, x) + κLmI

1(t, x) + 2βmI
2(t, x, x) + 2κmI

1(t, x)

+βmI
1(t, x) (16a)

Infected when x ̸= y :

∂mI
2(t, v)

∂t
= κLa(z),xm

I
2(t, v) + κLa(z),ym

I
2(t, v) + 2βmI

2(t, v)

−κa(v)mI
1(t, x)− κa(v)mI

1(t, y) (16b)

Proof of Theorem 23: For the infected group, when deriving the differen-

tial equations of the second moment, it is a very similar process to the one used for

the susceptible group. There are 2 cases: when x = y and when x ̸= y:

Case 1: I(t+ dt, x) when x = y, then m2(t+ dt, x, y) = E[I2(t+ dt, x, x)]

For the second moment when x = y we have that,

E[I2(t+ dt, x)] = E[(I(t, x) + ξ(dt))2] where
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ξ(dt) =



1 w.p βI(t, x)dt+
∑
z ̸=0

I(t, x+ z)κa(−z)dt 1○

−1 w.p
∑
z ̸=0

I(t, x)κa(z)dt 2○

0 w.p 1− 1○ − 2○

The case that ξ(dt) = 1 is the event that a particle at location x + z in the

infected group moves to location x, meaning location x gains a particle (which has

probability
∑
z ̸=0

I(t, x+z)κa(z)dt), or a particle at location x in the susceptible group

becomes infected (which has probability I(t, x)βdt). The case that ξ(dt) = −1

is the event that either a particle at location x in the infected group moves to

location x + z (meaning that location x loses a particle - which has probability∑
z ̸=0

I(t, x)κa(z)dt). The case that ξ(dt) = 0 is the event that there is no parti-

cle moving to or away from location x in the infected group, so it has probability

1− I(t, x)βdt−
∑
z ̸=0

I(t, x+ z)κa(−z)dt−
∑
z ̸=0

I(t, x)κa(z)dt.

E[I2(t + dt, x)] = E[E[I2(t + dt, x)|F (t)]] = E[I2(t, x)] + E[2I(t, x)ξ(dt)] +

E[ξ2(dt)]

Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that

As dt −→ 0,
∂mI

2(t, x, x)

∂t
= 2κLa(z),xm

I
2(t, x, x)+κLmI

1(t, x)+2βmI
2(t, x, x)+

βmI
1(t, x) + 2κmI

1(t, x)
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Case 2: I(t+dt, x) when x ̸= y, thenm2(t+dt, x, y) = E[I(t+dt, x)I(t+dt, y)]

Recall that during (t, t+ dt) only one event can happen, either a particle can

move or it can transition states, therefore the probabilities for the various combina-

tions of ξ(dt, x) and ξ(dt, y) are:

The event that a particle in the infected group goes from y to x:

P (ξ(dt, x) = 1, ξ(dt, y) = −1) = κa(x− y)I(t, y)dt

The event that a particle in the infected group goes from x+ z to x but not from y

or a particle at location x transitions S → I:

P (ξ(dt, x) = 1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)I(t, x+ z)dt− κa(x− y)I(t, y)dt+ βI(t, x)dt

The event that a particle in the infected group goes from x to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 1) = κa(x− y)I(t, x)dt

The event that a particle in the infected group goes from x to x+ z but not to y:

P (ξ(dt, x) = −1, ξ(dt, y) = 0) = κ
∑
z ̸=0

a(z)I(t, x)dt− κa(x− y)I(t, x)dt

The event that a particle in the infected group goes from y + z to y but not from x

or a particle at location y transitions S → I:

P (ξ(dt, x) = 0, ξ(dt, y) = 1) = κ
∑
z ̸=0

a(z)I(t, y+ z)dt− κa(x− y)I(t, x)dt+ βI(t, y)dt

The event that a particle in the infected group goes from y to y + z but not to x:

P (ξ(dt, x) = 0, ξ(dt, y) = −1) = κ
∑
z ̸=0

a(−z)I(t, y)dt− κa(x− y)I(t, y)dt

The event that no particle moves in the infected group:

P (ξ(dt, x) = 0, ξ(dt, y) = 0) = 1 − κ
∑
z ̸=0

a(z)I(t, y + z)dt − κ
∑
z ̸=0

a(z)I(t, y)dt −

κ
∑
z ̸=0

a(z)I(t, x+ z)dt− κ
∑
z ̸=0

a(z)I(t, x)dt+ κa(x− y)I(t, y)dt+ κa(x− y)I(t, x)dt−

βI(t, y)dt− βI(t, x)dt
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Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that as dt −→ 0,
∂mI

2(t, v)

∂t
= κLa(z),xm

I
2(t, v) +

κLa(z),ym
I
2(t, v) + 2βmI

2(t, v)− κa(v)mI
1(t, x)− κa(v)mI

1(t, y)

Theorem 24 The differential equations for the second moment of the susceptible-

infected groups are

Susceptible-Infected when x = y

∂mSI
2 (t, x, x)

∂t
= κLa(z)+b(z)m

SI
2 (t, x, x) + βmSI

2 (t, x, x)− βmI
2(t, x, x)

−βmI
1(t, x) (17a)

Susceptible-Infected when x ̸= y

∂mSI
2 (t, v)

∂t
= κLa(z)+b(z)m

SI
2 (t, v) + βmSI

2 (t, v)− βmI
2(t, v) (17b)

Note that
∂mIS

2 (t, v)

∂t
=

∂mSI
2 (t, v)

∂t
and

∂mIS
2 (t, x, x)

∂t
=

∂mSI
2 (t, x, x)

∂t

Proof of Theorem 24: For the susceptible-infected group, there are 2 cases

(x = y and x ̸= y) and there are several combinations for each case:

Case 1: when x = y, then we have

E[S(t+dt, x)I(t+dt, y)] = E[S(t+dt, x)I(t+dt, x)] = E[E[S(t+dt, x)I(t+dt, x)|Ft]]

E[S(t+ dt, x)I(t+ dt, x)] = E[(S(t, x) + ξS(dt, x))(I(t, x) + ξI(dt, x))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for ξS(dt, x) and ξI(dt, x) are:

The event that a particle goes from x+ z to x in S but x doesn’t move within I:
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P (ξS(dt, x) = 1, ξI(dt, x) = 0) = κ
∑
z ̸=0

b(z)S(t, x+ z)dt

The event that a particle at location x transitions S → I:

P (ξS(dt, x) = −1, ξI(dt, x) = 1) = βI(t, x)dt

The event that a particle goes from x to x+ z in S but x doesn’t move within I:

P (ξS(dt, x) = −1, ξI(dt, x) = 0) = κ
∑
z ̸=0

b(z)S(t, x)dt

The event that a particle doesn’t move in S but x+ z goes to x in I:

P (ξS(dt, x) = 0, ξI(dt, x) = 1) = κ
∑
z ̸=0

a(z)I(t, x+ z)dt

The event that a particle doesn’t move in S but x goes to x+ z in I:

P (ξS(dt, x) = 0, ξI(dt, x) = −1) = κ
∑
z ̸=0

a(z)I(t, x)dt

The event that a particle doesn’t move:

P (ξS(dt, x) = 0, ξI(dt, x) = 0) = 1 − κ
∑
z ̸=0

b(z)S(t, x + z)dt − κ
∑
z ̸=0

b(z)S(t, x)dt −

κ
∑
z ̸=0

a(z)I(t, x+ z)dt− κ
∑
z ̸=0

a(z)I(t, x)dt− βI(t, x)dt

Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that as dt −→ 0,

∂mSI
2 (t, x, x)

∂t
= κLb(z)Sx

mSI
2 (t, x, x) + κLa(z)Ix

mSI
2 (t, x, x) + βmSI

2 (t, x, x) −

βmI
2(t, x, x)− βmI

1(t, x)

Case 2: when x ̸= y, we have that:

E[S(t+ dt, x)I(t+ dt, y)] = E[E[S(t+ dt, x)I(t+ dt, y)|Ft]]

E[S(t+ dt, x)I(t+ dt, y)] = E[(S(t, x) + ξS(dt, x))(I(t, y) + ξI(dt, y))]

Recall that during (t, t + dt) only one event can happen, either a particle can move

or it can jump states, therefore the probabilities for ξS(dt, x) and ξI(dt, y) are:
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The event that a particle goes from x+ z to x in S but y doesn’t move within I:

P (ξS(dt, x) = 1, ξI(dt, y) = 0) = κ
∑
z ̸=0

b(z)S(t, x+ z)dt

The event that a particle goes from x to x+ z in S or a particle at location x tran-

sitions S → I:

P (ξS(dt, x) = −1, ξI(dt, y) = 0) = κ
∑
z ̸=0

b(z)S(t, x)dt+ βI(t, x)dt

The event that a particle x doesn’t move in S but y + z goes to y in I or a particle

at location y transitions S → I:

P (ξS(dt, x) = 0, ξI(dt, y) = 1) = κ
∑
z ̸=0

a(z)I(t, y + z)dt+ βI(t, y)dt

The event that a particle at location x doesn’t move in S but y goes to y + z in I:

P (ξS(dt, x) = 0, ξI(dt, y) = −1) = κ
∑
z ̸=0

a(z)I(t, y)dtdt

The event that a particle doesn’t move:

P (ξS(dt, x) = 0, ξI(dt, y) = 0) = 1 − κ
∑
z ̸=0

b(z)S(t, x + z)dt − κ
∑
z ̸=0

b(z)S(t, x)dt −

κ
∑
z ̸=0

a(z)I(t, y + z)dt− κ
∑
z ̸=0

a(z)I(t, y)dt− βI(t, x)dt− βI(t, y)dt

Using the Kolmogorov Forward Equations, following the same process used

for the SIR model, and we have that as dt −→ 0,

∂mSI
2 (t, v)

∂t
= κLb(z)Sx

mSI
2 (t, v) + κLa(z)Iy

mSI
2 (t, v) + βmSI

2 (t, v)− βmI
2(t, v)
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CHAPTER 17

SECOND MOMENTS OF THE SI MODEL

Now we want to solve the differential equations for the second moments for

the S(t, x), I(t, x), and S(t, x)I(t, x) groups, where each group has 2 cases: when

the locations x = y and when the locations x ̸= y and each case has 2 subcases:

homogeneous space and inhomogeneous space.

Theorem 25 The second moments for the infected groups when x = y and x ̸= y

are:
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Homogeneous space:

mI
2(t, x, x) = ρ0e

2βt +
(β + 2κ

−β

)[
eβt − e2βt

]
(18a)

Inhomogeneous space:

mI
2(t, x, x) =

1

(2π)d

∫
T d

ρ0e
[2κL̂a(z)(k) + 2β]te−ikxdk + e2βt·∫ t

0

∑
z∈Zd

pa(t− s, 0, x− z)
[
κLa(z)m

I
1(s, z) + (β + 2κ)mI

1(s, z)
](

e2βs
)
ds (18b)

Homogeneous space:

mI
2(t, v) = ρ0e

2βt +
(2κa(v)

β

)[
eβt − e2βt

]
(18c)

Inhomogeneous space:

mI
2(t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂a(z)x(k) + κL̂a(z)y(k) + 2β]te−ikvdk+

e2βt
∫ t

0

∑
z∈Zd

pa(t− s, 0, x− z)
[
− 2κa(v)mI

1(s, z)
](

e2βs
)
ds (18d)
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Theorem 26 The second moments of the susceptible-infected group when x = y and

x ̸= y are:

Homogeneous space:

mSI
2 (t, x, x) = (ρ0 + 1)eβt − e2βt + 2κteβt −

(β + 2κ

β

)[
e2βt − eβt

]
(19a)

Inhomogeneous space:

mSI
2 (t, x, x) =

1

(2π)d

∫
T d

ρ0e
[κL̂a(z)+b(z)(k) + β]te−ikxdk−

βeβt
∫ t

0

∑
z∈Zd

p(a+b)(t− s, 0, x− z)
[
mI

2(s, z, z) +mI
1(s, z)

](
eβs

)
ds (19b)

Homogeneous space:

mSI
2 (t, v) = ρ0e

βt − 2κa(v)teβt +
(2κa(v)− βρ0

β

)[
e2βt − eβt

]
(19c)

Inhomogeneous space:

mSI
2 (t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂a(z)+b(z)(k) + β]te−ikvdk

−βeβt
∫ t

0

∑
z∈Zd

pa+b(t− s, 0, x− z)eβs
(
mI

2(s, z, z)
)
ds (19d)
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Theorem 27 The second moments of the susceptible group are:

Homogeneous space:

mS
2 (t, x, x) = ρ0 −

(4κ
β

)[
eβt(βt− 1) + 1

]
+ 2κNt+

(−2βρ0 − 3β − 6κ

β

)
·[

eβt − 1
]
+
(2β + 2κ

β

)[
e2βt − 1

]
Inhomogeneous space:

mS
2 (t, x, x) =

1

(2π)d

∫
T d

ρ0e
2κL̂b(z)(k)te−ikxdk+∫ t

0

∑
z∈Zd

pb(t− s, 0, x− z)
[
− 2βmSI

2 (s, z, z) + βmI
1(s, z) + κLmS

1 (s, z)+

2κmS
1 (s, z)

]
ds

Homogeneous space:

mS
2 (t, v) = ρ0 +

(4κa(v)
β

)[
eβt(βt− 1) + 1

]
− 2b(v)ρ0t+

(−2κa(v) + βρ0
β

)
·[

e2βt − 1
]
+
(4κa(v) + 2b(v)− 4βρ0

β

)[
eβt − 1

]
Inhomogeneous space:

mS
2 (t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂b(z)x(k) + κL̂b(z)y(k)]te−ikvdk+∫ t

0

∑
z∈Zd

pb(t− s, 0, x− z)
[
− 2βmSI

2 (s, z, z)− 2κb(v)mS
1 (s, z)

]
ds

17.1 Second Moments in Homogeneous space

Proof of Theorem 25: Recall from Chapter 16 Equation (16a) and (16b)

and for each equation x = y and x ̸= y there are 2 cases: homeogeneous and inho-

mogeneous space:
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Case 1: Homogeneous space when x = y (then the spaces x and x + z are

equivalent and Lxm
I
2(t, x, x) = 0 = LmI

1(t, x))

Then
∂mI

2(t, x, x)

∂t
= 2βmI

2(t, x, x)+(β+2κ)eβt with initial conditionsmI
2(0, x, x) =

ρ0 > 0, and following the same process used for the SIR model.

mI
2(t, x, x) = ρ0e

2βt +
(β + 2κ

−β

)[
eβt − e2βt

]

Case 2: Homogeneous space when x ̸= y (then Lxm
I
2(t, v) = 0 and mI

1(t, x) =

mI
1(t, y) = eβt)

Then
∂mI

2(t, v)

∂t
= 2βmI

2(t, v) − 2κa(v)eβt with initial conditions mI
2(0, v) =

ρ0 > 0, and following the same procedure used for the SIR model.

mI
2(t, v) = ρ0e

2βt +
(2κa(v)

β

)[
eβt − e2βt

]

17.2 Second Moments in Inhomogeneous space

Case 1: In-homogeneous space when x = y (then the spaces x and x + z are

not equivalent and Lxm
I
2(t, x, x) ̸= 0)

∂mI
2(t, x, x)

∂t
= 2κLa(z)m

I
2(t, x, x) + κLa(z)m

I
1(t, x) + 2βmI

2(t, x, x) + (2κ +
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β)mI
1(t, x) with initial conditions mI

2(0, x, x) = ρ0 > 0

Utilizing the general solution for inhomogeneous equations from Theorem 3

and following the same procedure used for the SIR model, we have that mI
2(t, x, x) =

mIh

2 (t, x, x) + w(t, x, x)

mI
2(t, x, x) =

1

(2π)d

∫
T d

ρ0e
[2κL̂a(z)x(k) + 2β]te−ikxdk + e2βt

∫ t

0

∑
z∈Zd

pa(t −

s, 0, x− z)
[
κLmI

1(s, z) + (β + 2κ)mI
1(s, z)

](
e2βs

)
ds

Case 2: Inhomogeneous space when x ̸= y (then La(z)xm
I
2(t, v) ̸= 0)

∂mI
2(t, v)

∂t
= κLa(z)xm

I
2(t, v) + κLa(z)ym

I
2(t, v) + 2βmI

2(t, v)− κa(v)mI
1(t, x)−

κa(v)mI
1(t, y) with initial conditions mI

2(0, v) = ρ0 > 0

Thus following the same procedure used for the SIR model, we have that

mI
2(t, v) = mIh

2 (t, v) + w(t, v)

mI
2(t, v) =

1

(2π)d

∫
T d

ρ0e
[κL̂a(z)(k) + κL̂a(z)(k) + 2β]te−ikvdk +

e2βt
∫ t

0

∑
z∈Zd

pa(t− s, 0, x− z)
[
− 2κa(v)mI

1(s, z)
](

e2βs
)
ds

Note that solving the differential equations for the second moments of the

susceptible and susceptible-infected groups follows the same procedure as for the

second moment of the infected group.
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17.3 Second Moments in Inhomogeneous space using matrices

When x = y:

For the second moments of the susceptible, infected, and susceptible-infected

groups we are going to let G(t, x, x) =


S(t, x, x)

I(t, x, x)

S(t, x)I(t, x)

 and then mG
2 (t, x, x) =


mS

2 (t, x, x)

mI
2(t, x, x)

mSI
2 (t, x, x)


Because our differential equations for the second moments of the S, I and SI

groups are given in Chapter 16 Equations (15a), (16a), (17a). The Fourier transform

of the matrix format is

∂m̂G
2 (t, x, k)

∂t
= Â5m̂

G
2 (t, x, k) + B̂5Q⃗ where

Â5 =


2κb̂(k) 0 −2β

0 2κâ(k) + 2β 0

0 −β κâ(k) + κb̂(k) + β

,

B̂5 =


κb̂(k) + 2κ β 0

0 κâ(k) + 2κ+ β 0

0 −β 0

 and Q⃗ =

[
m̂S

1 (t, x) m̂I
1(t, x) 0

]

For matrix Â5 we have eigenvalues λ1 = 2(κâ(k) + β), λ2 = 2κb̂(k), λ3 =

κâ(k) + β + κb̂(k) and the eigenvectors are
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v1 =

[
−β

κâ(k) + β − κb̂(k)
−κâ(k) + β − κb̂(k)

β
1

]
, v2 =

[
1 0 0

]
,

v3 =

[ −2β

κâ(k) + β − κb̂(k)
0 1

]

Case 1: κâ(k) + β − κb̂(k) = 0

Then λ1 = λ2 = λ3 = 2κb̂(k) multiplicity 3 and (Â5 − 2κb̂(k)I)3 = 0.

eÂ5t =


e2κb̂(k)t β2t2e2κb̂(k)t −2βte2κb̂(k)t

0 e2κb̂(k)t 0

0 −βte2κb̂(k)t e2κb̂(k)t


with initial conditions x0 =

[
ρ20 1 ρ0

]T
.

We have the solution m̂G
2 (t, x, k) = eÂ5tx0 + eÂ5t

∫ t

0

e−Â5sB̂5Q⃗ds where

B̂5 =


κb̂(k) + 2κ β 0

0 κâ(k) + 2κ+ β 0

0 −β 0

, Q⃗ =


ρ0e

κb̂(k)t − βteκb̂(k)t

eκb̂(k)t

0



and e−Â5s =


e−2κb̂(k)s β2s2e−2κb̂(k)s 2βse−2κb̂(k)s

0 e−2κb̂(k)s 0

0 βse−2κb̂(k)s e−2κb̂(k)s


m̂G

2 (t, x, k) = eÂ5tx0 + eÂ5t
∫ t

0

e−Â5sB̂5Q⃗ds
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ρ20e
2κb̂(k)t + β2t2e2κb̂(k)t − 2ρ0βte

2κb̂(k)t(−ρ0(κb̂(k) + 2κ)− β

κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]
−
(β(κb̂(k) + 2κ)− 2β2

(κb̂(k))2

)
·[

e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)
]
+
(κâ(k)β2 + 2β2 + β3

(κb̂(k))3

)
·[

eκb̂(k)t(−(κb̂(k)t)2 − 2κb̂(k)t− 2) + 2e2κb̂(k)t
]
−
(β2(κâ(k) + 2κ+ β)

κb̂(k)

)
·[

t2eκb̂(k)t − t2e2κb̂(k)t
]
−

(2β(κâ(k) + 2κβ + β2)

(κb̂(k))2

)[
te2κb̂(k)t−

teκb̂(k)t(κb̂(k)t+ 1)
]
−
( 2β2

κb̂(k)

)[
teκb̂(k)t − te2κb̂(k)t

]
e2κâ(k)t −

(κâ(k) + 2κ+ β

κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]
−βte2κb̂(k)t + ρ0e

2κb̂(k)t +
(β(κâ(k) + 2κ+ β)

κb̂(k)

)[
teκb̂(k)t−

te2κb̂(k)t
]
+
(β(κâ(k) + 2κ+ β)

(κb̂(k))2

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)

]
+( β

κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]
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When κâ(k) + β − κb̂(k) = 0, mG
2 (t, x, x) =


mS

2 (t, x, x)

mI
2(t, x, x)

mSI
2 (t, x, x)

 =



( 1

2π

)d
∫
T d

{
ρ20e

2κb̂(k)t + β2t2e2κb̂(k)t − 2ρ0βte
2κb̂(k)t(−ρ0(κb̂(k) + 2κ)− β

κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]
−
(β(κb̂(k) + 2κ)− 2β2

(κb̂(k))2

)
·[

e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)
]
+
(κâ(k)β2 + 2β2 + β3

(κb̂(k))3

)
·[

eκb̂(k)t(−(κb̂(k)t)2 − 2κb̂(k)t− 2) + 2e2κb̂(k)t
]
−
(β2(κâ(k) + 2κ+ β)

κb̂(k)

)
·[

t2eκb̂(k)t − t2e2κb̂(k)t
]
−

(2β(κâ(k) + 2κβ + β2)

(κb̂(k))2

)[
te2κb̂(k)t−

teκb̂(k)t(κb̂(k)t+ 1)
]
−

( 2β2

κb̂(k)

)[
teκb̂(k)t − te2κb̂(k)t

]}
e−ikxdk( 1

2π

)d
∫
T d

{
e2κâ(k)t −

(κâ(k) + 2κ+ β

κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]}
e−ikxdk( 1

2π

)d
∫
T d

{
− βte2κb̂(k)t + ρ0e

2κb̂(k)t +
(β(κâ(k) + 2κ+ β)

κb̂(k)

)[
teκb̂(k)t

−te2κb̂(k)t
]
+
(β(κâ(k) + 2κ+ β)

(κb̂(k))2

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)

]
+( β

κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]}
e−ikxdk


Case 2: κâ(k) + β ̸= κb̂(k)

For matrix Â5 the eigenvectors are

v1 =

[
−β

κâ(k) + β − κb̂(k)
−κâ(k) + β − κb̂(k)

β
1

]
, v2 =

[
1 0 0

]
,

v3 =

[ −2β

κâ(k) + β − κb̂(k)
0 1

]
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We have X(t) =
(

−β

κâ(k)+β−κb̂(k)

)
e2(κâ(k)+β)t e2κb̂(k)t

(
−2β

(κâ(k)+β−κb̂(k)

)
e(κâ(k)+β+κb̂(k))t(

−(κâ(k)+β−κb̂(k))
β

)
e2(κâ(k)+β)t 0 0

e2(κâ(k)+β)t 0 e(κâ(k)+β+κb̂(k))t



X(0) =



( −β

κâ(k) + β − κb̂(k)

)
1

( −2β

κâ(k) + β − κb̂(k)

)
(−(κâ(k) + β − κb̂(k))

β

)
0 0

1 0 1

 and

X−1(0) =


0

( −β

κâ(k) + β − κb̂(k)

)
0

1
( β

κâ(k) + β − κb̂(k)

)2 ( 2β

κâ(k) + β − κb̂(k)

)
0

( β

κâ(k) + β − κb̂(k)

)
1


eÂ5t = X(t)X−1(0) =

e2κb̂(k)t β2e2(κâ(k)+β)t+β2e2κb̂(k)t−2β2e(κâ(k)+β+κb̂(k))t

(κâ(k)+β−κb̂(k))2
2βe2κb̂(k)t−2βe(κâ(k)+β+κb̂(k))t

κâ(k)+β−κb̂(k)

0 e2(κâ(k)+β)t 0

0 −βe2(κâ(k)+β)t+βe(κâ(k)+β+κb̂(k))t

κâ(k)+β−κb̂(k)
e(κâ(k)+β+κb̂(k))t


with initial conditions x0 =

[
ρ20 1 ρ0

]T
.

We have the solution m̂G
2 (t, x, k) = eÂ5tx0 + eÂ5t

∫ t

0

e−Â5sB̂5Q⃗ds where

B̂5 =


κb̂(k) + 2κ β 0

0 κâ(k) + 2κ+ β 0

0 −β 0

, Q⃗ =


ρ0e

κb̂(k)t − βteκb̂(k)t

eκb̂(k)t

0


m̂G

2 (t, x, k) = eÂ5tx0 + eÂ5t
∫ t

0

e−Â5sB̂5Q⃗ds =
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ρ20e
2κb̂(k)t +

(
β2

(κâ(k)+β−κb̂(k))2

)[
e2(κâ(k) + β)t + e2κb̂(k)t−

2e(κâ(k) + β + κb̂(k))t
]
+
(

ρ0β

κâ(k)+β−κb̂(k)

)[
e2κb̂(k)t−

e(κâ(k) + β + κb̂(k))t
]
+
(

−ρ0(κb̂(k)+2κ)−β

κb̂(k)

)[
eκâ(k)t − e2κâ(k)t

]
−(

β

(κb̂(k))2

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t− 1)

]
+
(

2β2

κb̂(k)(κâ(k)+β−κb̂(k))

)[
eκâ(k)t

−e2κâ(k)t
]
−

(
β2

κb̂(k)(κâ(k)+β−κb̂(k))2

)[
e−κâ(k)t − e2κâ(k)t

]
−
(

β2(κâ(k)+2κ+β)

(κâ(k)+β−κb̂(k))2(2κâ(k)+2β−κb̂(k))

)[
eκb̂(k)t − e2(κâ(k) + β)t

]
+
(

2β2(κâ(k)+2κ+β)

(κâ(k)+β−κb̂(k))2(2κâ(k)+2β−κb̂(k))

)[
e−(2κâ(k) + 2β − 3κb̂(k))t − e2κb̂(k)t

]
+
(

2β2(κâ(k)+2κ+β)

(κâ(k)+β−κb̂(k))2(κâ(k)+β)

)[
eκb̂(k))t − e(κâ(k) + β + κb̂(k))t

]
−
(

2β2

(κâ(k)+β−κb̂(k))(κâ(k)+β)

)[
eκb̂(k))t − e(κâ(k) + β + κb̂(k))t

]
e2(κâ(k) + β)t −

(
κâ(k)+2κ+β

2κâ(k)+2β−κb̂(k)

)[
eκb̂(k)t − e2(κâ(k) + β)t

]
−βe2(κâ(k) + β)t+βe(κâ(k) + β + κb̂(k))t

κâ(k)+β−κb̂(k)
+ ρ0e

(κâ(k) + β + κb̂(k))t+(
β(κâ(k)+2κ+β)

(κâ(k)+β−κb̂(k))(2κâ(k)+2β−κb̂(k))

)[
eκb̂(k)t − e2(κâ(k) + β)t

]
−
(

β(κâ(k)+2κ+β)

(κâ(k)+β)(κâ(k)+β−κb̂(k))

)[
eκb̂(k)t − e(κâ(k) + β + κb̂(k))t

]
+
(

β
κâ(k)+β

)[
eκb̂(k)t − e(κâ(k) + β + κb̂(k))t

]


When x ̸= y:

The differential equations are given in Chapter 16 Equations (15b), (16b), (17b).

The Fourier transform of the matrix format is
∂m̂G

2 (t, k)

∂t
= Â6m̂

G
2 (t, k)+ B̂6Q⃗ where

Â6 =


2κb̂(k) 0 −2β

0 2κâ(k) + 2β 0

0 −β κâ(k) + κb̂(k) + β

,
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B̂6 =


−2κb̂(k) 0 0

0 −2κâ(k) 0

0 0 0

, and Q⃗ =


ρ0e

κb̂(k)t − βteκb̂(k)t

eκb̂(k)t

0


For matrix Â6 the eigenvectors are

v1 =

[
−β

κâ(k) + β − κb̂(k)
−κâ(k) + β − κb̂(k)

β
1

]
, v2 =

[
1 0 0

]
,

v3 =

[ −2β

κâ(k) + β − κb̂(k)
0 1

]

Case 1: κâ(k) + β − κb̂(k) = 0

Then λ1 = λ2 = λ3 = 2κb̂(k) multiplicity 3 and (Â6 − 2κb̂(k)I)3 = 0.

eÂ6t =


e2κb̂(k)t β2t2e2κb̂(k)t −2βte2κb̂(k)t

0 e2κb̂(k)t 0

0 −βte2κb̂(k)t e2κb̂(k)t


with initial conditions x0 =

[
ρ20 1 ρ0

]T
.

We have the solution m̂G
2 (t, k) = eÂ6tx0 + eÂ6t

∫ t

0

e−Â6sB̂6Q⃗ds where

B̂6 =


−2κb̂(k) 0 0

0 −2κâ(k) 0

0 0 0

, Q⃗ =


ρ0e

κb̂(k)t − βteκb̂(k)t

eκb̂(k)t

0



and e−Â6s =


e−2κb̂(k)s β2s2e−2κb̂(k)s 2βse−2κb̂(k)s

0 e−2κb̂(k)s 0

0 βse−2κb̂(k)s e−2κb̂(k)s
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m̂G
2 (t, k) = eÂ6tx0 + eÂ6t

∫ t

0

e−Â6sB̂6Q⃗ds

ρ20e
2κb̂(k)t + β2t2e2κb̂(k)t − 2ρ0βte

2κb̂(k)t+(
2ρ0

)[
eκb̂(k)t − e2κb̂(k)t

]
+
( 2β

κb̂(k)

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)

]
−
(2κâ(k)β2

(κb̂(k))3

)[
eκb̂(k)t(−(κb̂(k)t)2 − 2κb̂(k)t− 2) + 2e2κb̂(k)t

]
+
(2β2κâ(k)

κb̂(k)

)[
t2eκb̂(k)t − t2e2κb̂(k)t

]
+
(4β2κâ(k)

(κb̂(k))2

)[
te2κb̂(k)t − teκb̂(k)t(κb̂(k)t+ 1)

]
e2κb̂(k)t +

(2κâ(k)
κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]
−βte2κb̂(k)t + ρ0e

2κb̂(k)t −
(2βκâ(k)

κb̂(k)

)[
teκb̂(k)t − te2κb̂(k)t

]
−
(2βκâ(k)
(κb̂(k))2

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)

]



When κâ(k) + β − κb̂(k) = 0, mG
2 (t, v) =


mS

2 (t, v)

mI
2(t, v)

mSI
2 (t, v)

 =
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( 1

2π

)d
∫
T d

{
ρ20e

2κb̂(k)t + β2t2e2κb̂(k)t − 2ρ0βte
2κb̂(k)t+(

2ρ0

)[
eκb̂(k)t − e2κb̂(k)t

]
+
( 2β

κb̂(k))

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)

]
−
(2κâ(k)β2

(κb̂(k))3

)[
eκb̂(k)t(−(κb̂(k)t)2 − 2κb̂(k)t− 2) + 2e2κb̂(k)t

]
+
(2β2κâ(k)

κb̂(k)

)[
t2eκb̂(k)t − t2e2κb̂(k)t

]
+
(4β2κâ(k)

(κb̂(k))2

)[
te2κb̂(k)t − teκb̂(k)t(κb̂(k)t+ 1)

]}
e−ikvdk( 1

2π

)d
∫
T d

{
e2κâ(k)t +

(2κâ(k)
κb̂(k)

)[
eκb̂(k)t − e2κb̂(k)t

]}
e−ikvdk( 1

2π

)d
∫
T d

{
− βte2κb̂(k)t + ρ0e

2κb̂(k)t −
(2βκâ(k)

κb̂(k)

)[
teκb̂(k)t − te2κb̂(k)t

]
−
(2βκâ(k)
(κb̂(k))2

)[
e2κb̂(k)t − eκb̂(k)t(κb̂(k)t+ 1)

]}
e−ikvdk


Case 2: κâ(k) + β ̸= κb̂(k)

For matrix Â6 the eigenvectors are

v1 =

[
−β

κâ(k) + β − κb̂(k)
−κâ(k) + β − κb̂(k)

β
1

]
, v2 =

[
1 0 0

]
,

v3 =

[ −2β

κâ(k) + β − κb̂(k)
0 1

]

We have X(t) =
(

−β

κâ(k)+β−κb̂(k)

)
e2(κâ(k) + β)t e2κb̂(k)t

(
−2β

κâ(k)+β−κb̂(k)

)
e(κâ(k) + β + κb̂(k)t(

−(κâ(k)+β−κb̂(k))
β

)
e2(κâ(k) + β)t 0 0

e2(κâ(k) + β)t 0 e(κâ(k) + β + κb̂(k)t
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X(0) =



( −β

κâ(k) + β − κb̂(k)

)
1

( −2β

κâ(k) + β − κb̂(k)

)
(−(κâ(k) + β − κb̂(k))

β

)
0 0

1 0 1

 and

X−1(0) =


0

( −β

κâ(k) + β − κb̂(k)

)
0

1
( β

κâ(k) + β − κb̂(k)

)2 ( 2β

κâ(k) + β − κb̂(k)

)
0

( β

κâ(k) + β − κb̂(k)

)
1


eÂ6t = X(t)X−1(0) =

e2κb̂(k)t β2e2(κâ(k)+β)t+β2e2κb̂(k)t−2β2e(κâ(k)+β+κb̂(k))t

(κâ(k)+β−κb̂(k))2
2βe2κb̂(k)t−2βe(κâ(k)+β+κb̂(k))t

κâ(k)+β−κb̂(k)

0 e2(κâ(k)+β)t 0

0 −βe2(κâ(k)+β)t+βe(κâ(k)+β+κb̂(k))t

κâ(k)+β−κb̂(k)
e(κâ(k)+β+κb̂(k))t


with initial conditions x0 =

[
ρ20 1 ρ0

]T
.

We have the solution m̂G
2 (t, k) = eÂ6tx0 + eÂ6t

∫ t

0

e−Â6sB̂6Q⃗ds where

B̂6 =


−2κb̂(k) 0 0

0 −2κâ(k) 0

0 0 0

, Q⃗ =


ρ0e

κb̂(k)t − βteκb̂(k)t

eκb̂(k)t

0
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m̂G
2 (t, k) = eÂ6tx0 + eÂ6t

∫ t

0

e−Â6sB̂6Q⃗ds =

ρ20e
2κb̂(k)t +

(
β2

(κâ(k)+β−κb̂(k))2

)[
e2(κâ(k) + β)t + e2κb̂(k)t

−2e(κâ(k) + β + κb̂(k))t
]
+
(

2ρ0β

κâ(k)+β−κb̂(k)

)[
e2κb̂(k)t−

e(κâ(k) + β + κb̂(k))t
]
+
(
2ρ0

)[
eκb̂(k)t − e2κb̂(k)t

]
+
(

2β

(κb̂(k))

)
·[

e2κb̂(k)t − eκb̂(k)t(κb̂(k)t− 1)
]
+
(

2βκâ(k)

(2κâ(k)+2β−κb̂(k))(κâ(k)+β−κb̂(k))2

)
·[

e−(2κâ(k) + 2β − 3κb̂(k))t − e2κb̂(k)t
]
+
(

2κâ(k)β

κb̂(k)(κâ(k)+β−κb̂(k))2

)
·[

eκb̂(k)t − e2κb̂(k)t
]
+
(

2κâ(k)β

(κâ(k)+β−κb̂(k))2(κâ(k)+β)

)
·[

e−(κâ(k) + β − 2κb̂(k))t − e2κb̂(k)t
]
+
(

2β2κâ(k)

(κâ(k)+β−κb̂(k))2(2κâ(k)+2β−κb̂(k))

)
·[

eκb̂(k)t + e−(2κâ(k) + 2β − 3κb̂(k))t − 2e−(κâ(k) + β + 2κb̂(k))t

−e2(κâ(k) + β)t − e2κb̂(k)t + 2e(κâ(k) + β + κb̂(k))t
]

+
(

4β2κâ(k)

(κâ(k)+β−κb̂(k))2(κâ(k)+β)2

)[
e−(κâ(k) + β − 2κb̂(k))t − eκb̂(k))t

−e2κb̂(k)t + e(κâ(k) + β + κb̂(k))t
]
−
(

4κâ(k)β2

(κâ(k)+β−κb̂(k))2(2κâ(k)+2β−κb̂(k))

)
·[

e−(2κâ(k) + 2β − 3κb̂(k))t − e−(κâ(k) + β − 2κb̂(k))t

−e2κb̂(k))t + e(κâ(k) + β + κb̂(k))t
]

e2(κâ(k) + β)t +
(

2κâ(k)

2κâ(k)+2β−κb̂(k)

)[
eκb̂(k)t − e2(κâ(k) + β)t

]
(

β

κâ(k)+β−κb̂(k)

)[
− e2(κâ(k) + β)t + e(κâ(k) + β + κb̂(k))t

]
+ρ0e

(κâ(k) + β + κb̂(k))t +
(

2βκâ(k)

(κâ(k)+β−κb̂(k))(2κâ(k)+2β−κb̂(k))

)
·[

− eκb̂(k)t + e−(κâ(k) + β + 2κb̂(k))t + e2(κâ(k) + β)t

−eκâ(k) + β + κb̂(k))t
]
+
(

2βκâ(k)

(κâ(k)+β)(κâ(k)+β−κb̂(k))

)
·[

eκb̂(k)t − e(κâ(k) + β + κb̂(k))t
]
−
(

2βκâ(k)

(κâ(k)+β−κb̂(k))(2κâ(k)+2β−κb̂(k))

)
·[

e−(κb̂(k) + β − 2κb̂(k))t − e(κâ(k) + β + κb̂(k))t
]


When κâ(k) + β ̸= b̂(k), mG

2 (t, v) =
( 1

2π

)d
∫
T d

m̂G
2 (t, k)e

−ikvdk =
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( 1

2π

)d
∫
T d

m̂S
2 (t, k)e

−ikvdk( 1

2π

)d
∫
T d

m̂I
2(t, k)e

−ikvdk( 1

2π

)d
∫
T d

m̂SI
2 (t, k)e−ikvdk
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CHAPTER 18

ANALYZING THE BEHAVIOR OF THE SECOND MOMENTS OF THE SI
MODEL

18.1 Analyzing the behavior of the second moments in homogeneous space

The long term behavior of the second moments of the infected, susceptible-

infected, and susceptible groups in the homogeneous space as t −→ ∞ can be broken

up in 2 cases: β > 0 and β = 0. Tables 18.1 and 18.2 below summarizes the

asymptotic behavior of the second moments of the susceptible, infected, susceptible-

infected groups in homogeneous space as t −→ ∞.

As t → ∞ mS
2 (t, x, x) mI

2(t, x, x) mSI
2 (t, x, x)

β > 0 → ∞ → ∞ → ∞

β = 0 → ∞ → ∞ → C ∈ R

Table 18.1: Asymptotic Behavior of the Second Moments in Homogeneous Space

when x = y
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As t → ∞ mS
2 (t, v) mI

2(t, v) mSI
2 (t, v)

β > 0 → ∞ → ∞ → ∞

β = 0 → ∞ → ∞ → C ∈ R

Table 18.2: Asymptotic Behavior of the Second Moments in Homogeneous Space

when x ̸= y

18.2 Analyzing the behavior of the second moments in inhomogeneous space

The behavior of the second moments of the infected, susceptible-infected,

and susceptible groups in the inhomogeneous space as t −→ ∞ can be broken up

into 8 cases for the susceptible, infected and the susceptible-infected groups and is

summarized in Tables 18.3 and 18.4.

Let α = κâ(k)+β−κb̂(k), θ = â(k)+β, ϕ = κb̂(k), C4 =
1

(2π)d

∫
T d

e−ikxdk,

C5 =
1

(2π)d

∫
T d

e−ikvdk, C6 =
1

(2π)d

∫
T d

( κâ(k) + 2κ+ β

2κâ(k) + 2β − κb̂(k)

)
e−ikxdk, and C7 =

1

(2π)d

∫
T d

( 2κâ(k)

2κâ(k) + 2β − κb̂(k)

)
e−ikvdk.
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As t → ∞ mS
2 (t, x, x) → mI

2(t, x, x) → mSI
2 (t, x, x) →

α = 0, ϕ < 0, β ≥ 0 → 0 → 0 → 0

α = 0, ϕ = 0, β ≥ 0 → ∞ → C4 → ∞

α < 0, θ < 0, ϕ < 0 → ∞ → 0 → ∞

α < 0, θ < 0, ϕ = 0 → ∞ → C6 → ∞

α < 0, θ > 0, ϕ < 0 → ∞ → ∞ → ∞

α > 0, θ > 0, ϕ = 0 → ∞ → ∞ → ∞

α > 0, θ > 0, ϕ < 0 → ∞ → ∞ → ∞

Table 18.3: Asymptotic Behavior of the Second Moments in Inhomogeneous Space

when x = y

When β ≥ 0, α = 0 and ϕ = κb̂(k) < 0, we have the event that the mobility

effect for the infected group plus the infection rate is equal to the mobility effect of

the susceptible group, but the mobility effect of the susceptible group is negative.

The result is that the second moment of the susceptible and infected populations

goes to 0 as time t goes to infinity. The event that α > 0 means that the infection

rate plus the mobility effect of the infected group is larger than the mobility effect

of the susceptible group, and for ϕ ≤ 0, the second moment of the susceptible group

goes to infinity. This means that E[S2(t, x)] = var[S(t, x)] + E[S(t, x)]2 → ∞, and

if E[S(t, x)] is finite then the variance of the susceptible group goes to infinity and

the field will form the clusters/high peaks.
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As t → ∞ mS
2 (t, v) → mI

2(t, v) → mSI
2 (t, v) →

α = 0, ϕ < 0, β ≥ 0 → 0 → 0 → 0

α = 0, ϕ = 0, β ≥ 0 → ∞ → C5 → ∞

α < 0, θ < 0, ϕ < 0 → ∞ → 0 → ∞

α < 0, θ < 0, ϕ = 0 → ∞ → C7 → ∞

α < 0, θ > 0, ϕ < 0 → ∞ → ∞ → ∞

α > 0, θ > 0, ϕ = 0 → ∞ → ∞ → ∞

α > 0, θ > 0, ϕ < 0 → ∞ → ∞ → ∞

Table 18.4: Asymptotic Behavior of the Second Moments in Inhomogeneous Space

when x ̸= y

Another significant event is when α < 0 (meaning the mobility effect of the

infected group plus the infection rate is less than the mobility effect of the susceptible

group) but θ < 0 and ϕ = 0 (meaning the mobility effect of the infected group plus

the infection rate is negative, and the mobility effect of the susceptible group is 0)

then the second moment of the infected population at location x goes to a steady

state C7 as time t goes to infinity. The event that α < 0 (meaning the mobility effect

of the infected group plus the infection rate is less than the mobility effect of the

susceptible group) but θ < 0 and ϕ < 0 (meaning the mobility effect of the infected

group plus the infection rate is negative, and the mobility effect of the susceptible

group is negative) then the second moment of the infected population at location x

goes to 0 as time t goes to infinity, instead of a steady state. Comparing these two

events shows that the mobility effect of the susceptible group being negative, rather
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than 0, causes the second moment of the infected population to go to 0, rather than

to a steady state.
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CHAPTER 19

INTERMITTENCY ANALYSIS FOR THE SI MODEL

When x = y in Homogeneous Space:

lim
t→∞

mI
2(t, x, x)

mI
1(t, x)

2
where mI

1(t, x) = eβt and

mI
2(t, x, x) = ρ0e

2βt +
(β + 2κ

−β

)[
eβt − e2βt

]
mI

2(t, x, x)

(mI
1(t, x))

2
= ρ0 −

(β + 2κ

β

)[
e−βt − 1

]

Let C1 = ρ0 +
(β + 2κ

β

)

If β > 0, lim
t→∞

e−βt − 1 → 0, thus lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
→ C1

If β = 0 and C ∈ R, lim
t→∞

ρ0
C2

+
2κt

C
→ ∞
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As t → ∞ lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
Result

β > 0 → C1 < ∞ No intermittency

β = 0 → ∞ Intermittency

Table 19.1: Intermittency Analysis when x = y in Homogeneous Space

When x ̸= y in Homogeneous Space:

lim
t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

where mI
1(t, x) = mI

1(t, y) = eβt and

mI
2(t, x, y) = ρ0e

2βt +
(2κa(v)

β

)[
eβt − e2βt

]
mI

2(t, x, y)

mI
1(t, x)m

I
1(t, y)

= ρ0 +
(2κa(v)

β

)[
e−βt − 1

]

Let C2 = ρ0 −
(2κa(v)

β

)
As t → ∞ lim

t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

Result

β > 0 → C2 < ∞ No intermittency

β = 0 → −∞ Intermittency

Table 19.2: Intermittency Analysis when x ̸= y in Homogeneous Space

When x = y in Inhomogeneous Space:

Since mI
1(t, x) =

1

(2π)d

∫
T d

e[κL̂ (k) + β]te−ikxdk = eβtp(t, 0, x) and plug-
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ging in (18b) from Chapter 17, we get

mI
2(t, x, x)

(mI
1(t, x))

2
=

ρ0
p(t, 0, x)

+
( κ

3β(p(t, 0, x))2

)[
e3βt−1

]
+
( β + 2κ

3βp(t, 0, x)

)[
e3βt−1

]

Since p(t, x, y) =
1

(2π)d

∫
T d

eik(x−y)eκL̂ (k)t =
1

(2π)d

∫
T d

cos(x− y)p̂(t, 0, k)dk ≤
1

(2π)d

∫
T d

p̂(t, 0, k)dk = p(t, 0, 0), we have p(t, x, y) ≤ p(t, 0, 0) and as t → ∞,

p(t, 0, 0) =
C

td/2
+ o(t−d/2) [13]. Thus lim

t→∞

C

td/2
+ o(t−d/2) = 0+.

Thus
ρ0

p(t, 0, x)
+

( κ

3β(p(t, 0, x))2

)[
e3βt − 1

]
+

( β + 2κ

3βp(t, 0, x)

)[
e3βt − 1

]
≥

ρ0
p(t, 0, 0)

+
( κ

3β(p(t, 0, 0))2

)[
e3βt − 1

]
+
( β + 2κ

3βp(t, 0, 0)

)[
e3βt − 1

]

Case 1: β > 0

lim
t→∞

ρ0
p(t, 0, 0)

+
( κ

3β(p(t, 0, 0))2

)[
e3βt − 1

]
+
( β + 2κ

3βp(t, 0, 0)

)[
e3βt − 1

]
=

∞
0+

= ∞

Case 2: β = 0

lim
t→∞

ρ0
p(t, 0, 0)

+
( κt

(p(t, 0, 0))2

)
−
( 2κt

p(t, 0, 0)

)
=

∞
0+

= ∞

As t → ∞ lim
t→∞

mI
2(t, x, x)

(mI
1(t, x))

2
Result

β > 0 → ∞ Intermittency

β = 0 → ∞ Intermittency

Table 19.3: Intermittency Analysis when x = y in Inhomogeneous Space

When x ̸= y in Inhomogeneous Space:
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Using the solutions mI
1(t, x) = eβtp(t, 0, x), mI

1(t, y) = eβtp(t, 0, y) and (18d)

from Chapter 17, we have that

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

=
ρ0

p(t, 0, y)
−
( 2κa(v)

3βp(t, 0, y)

)[
e3βt − 1

]

We have p(t, x, y) ≤ p(t, 0, 0) and as t → ∞, p(t, 0, 0) =
C

td/2
+ o(t−d/2) [13].

Thus lim
t→∞

C

td/2
+ o(t−d/2) = 0+.

Case 1: β > 0

lim
t→∞

ρ0
p(t, 0, 0)

+
( 2κa(v)

3βp(t, 0, 0)

)[
e3βt − 1

]
=

∞
0+

= ∞

Case 2: β = 0

lim
t→∞

ρ0
p(t, 0, 0)

+
( 2κa(v)t

p(t, 0, 0)

)
=

∞
0+

= ∞

As t → ∞ lim
t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

Result

β > 0 → ∞ Intermittency

β = 0 → ∞ Intermittency

Table 19.4: Intermittency Analysis when x ̸= y in Inhomogeneous Space

In homogeneous space, when β > 0, we have the event that the infection

rate is positive and there is no intermittency phenomenon. This means that the

infection is so widespread that as t → ∞ and it does not matter where the location

is, everywhere will have the infection. This is compared to the case where β =
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0, meaning the infection rate is equal to 0, and the result is that there will be

peaks/clusters with a higher concentration of infection in some locations, and thus

there is the intermittency phenomenon.

In inhomogeneous space, we have the intermittency phenomenon for both

cases. This means that, when the infection rate β is greater than and equal to 0, the

infection will form clusters with a higher concentration of infection in some locations

and the intermittency phenomenon appears in the field.
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CHAPTER 20

LYAPUNOV ANALYSIS FOR THE SI MODEL

Homogeneous Space:

Theorem 28 For the first moment of the infected group in homogeneous space, the

Lyapunov Exponents are λ7,1 = β when β > 0, and λ7,2 = 0 when β = 0

Proof of Theorem 28: Lyapunov Exponent λ7,i = lim
t→∞

ln(mI
1(t, x))

t
where

mI
1(t, x) = eβt

Case 1: β > 0, lim
t→∞

ln(mI
1(t, x))

t
= lim

t→∞

ln
(
eβt

)
t

= β

Case 2: β = 0, mI
1(t, x) = C1 ∈ R, lim

t→∞

ln(C1)

t
= 0

For case 1, β > 0, the Lyapunov exponent is positive and therefore mI
1(t, x)

is increasing. For case 2, the Lyapunov exponent is 0 and the first moment of the

infected group is neither increasing nor decreasing.

Theorem 29 For the second moment of the infected group in homogeneous space,

when x = y, the Lyapunov Exponents are λ8,1 =
2βρ0 + 2(β + 2κ)

ρ0 +
(β + 2κ

β

) when β > 0, and

λ8,2 = 0 when β = 0
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Proof of Theorem 29: Lyapunov Exponent λ8,i = lim
t→∞

ln(mI
2(t, x, x))

t
where

mI
2(t, x, x) is given by (18a) in Chapter 17 Theorem 25

Case 1: β > 0

lim
t→∞

ln(mI
2(t, x, x))

t
= lim

t→∞

2βρ0 − (β + 2κ)
[
e−βt − 2

]
ρ0eβt +

(β + 2κ

−β

)[
e−βt − 1

]
lim
t→∞

ln(mI
2(t, x, x))

t
=

2βρ0 + 2(β + 2κ)

ρ0 +
(β + 2κ

β

)
Case 2: β = 0, mI

2(t, x, x) = ρ0 + (β + 2κ)Ct where C ∈ R

lim
t→∞

ln(mI
2(t, x, x))

t
= lim

t→∞

(β + 2κ)C

ρ0 + (β + 2κ)Ct
= 0

For case 1, β > 0 and λ8,2 > 0 and therefore mI
2(t, x, x) is increasing. For

case 2, the Lyapunov exponent is 0 and the second moment of the infected group is

neither increasing nor decreasing.

Theorem 30 For the second moment of the infected group in homogeneous space,

when x ̸= y, the Lyapunov Exponents are λ9,1 =
2βρ0 − 4κa(v)

ρ0 −
(2κa(v)

β

) when β > 0, and

λ9,2 = 0 when β = 0

Proof of Theorem 30: Lyapunov Exponent λ9,i = lim
t→∞

ln(mI
2(t, v))

t
where

mI
2(t, v) is given by (18c) in Chapter 17 Theorem 25
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Case 1: β > 0

lim
t→∞

ln(mI
2(t, v))

t
= lim

t→∞

2βρ0 + (2κa(v))
[
e−βt − 2

]
ρ0 +

(2κa(v)
β

)[
e−βt − 1

]
lim
t→∞

ln(mI
2(t, v))

t
=

2βρ0 − 4κa(v)

ρ0 −
(2κa(v)

β

)
Case 2: β = 0, mI

2(t, v) = ρ0 + 2κa(v)Ct where C ∈ R

lim
t→∞

ln(mI
2(t, v))

t
= lim

t→∞

2κa(v)C

ρ0 + 2κa(v)Ct
= 0

For case 1, β > 0, if 2βρ0 > 4κa(v), then λ9,1 > 0 and mI
2(t, v) is increasing.

For case 1, if 2βρ0 < 4κa(v), then λ9,1 < 0 and mI
2(t, v) is decreasing. For case 2,

the Lyapunov exponent is 0 and the second moment of the infected group is neither

increasing nor decreasing.

As t → ∞ lim
t→∞

lnmI
1(t, x)

t
lim
t→∞

lnmI
2(t, x, x)

t
lim
t→∞

lnmI
2(t, v)

t

β > 0 < ∞ < ∞ < ∞

β = 0 < ∞ < ∞ < ∞

Table 20.1: Lyapunov Exponents in Homogeneous Space

Inhomogeneous Space:

Theorem 31 For the first moment of the infected group in inhomogeneous space,

the Lyapunov Exponents are λ10,1 = β + κL̂a(k) when β > 0, and λ10,2 = κL̂a(k)
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when β = 0

Proof of Theorem 31: Lyapunov Exponent λ10,i = lim
t→∞

ln(mI
1(t, x))

t
where

mI
1(t, x) =

1

(2π)d

∫
T d

e[κL̂ (k) + β]te−ikxdk = eβtp(t, 0, x)

Case 1: β > 0, lim
t→∞

ln(mI
1(t, x))

t
= lim

t→∞

ln
(
eβtp(t, 0, x)

)
t

lim
t→∞

ln(mI
1(t, x))

t
= β + κL̂a(k)

Case 2: β = 0, mI
1(t, x) = p(t, 0, x)

lim
t→∞

ln(mI
1(t, x))

t
=

d
dt
p(t, 0, x)

p(t, 0, x)
= κL̂a(k)

For case 1, β > 0, L̂ (k) < 0 and if β + κL̂ (k) > 0, then λ10,1 > 0 and the

first moment of the infected group is increasing. For case 1, if β + κL̂ (k) < 0, then

λ10,1 < 0 and mI
1(t, x) is decreasing. For case 2, the Lyapunov exponent is negative

and the first moment of the infected group is decreasing.

Theorem 32 For the second moment of the infected group in inhomogeneous space,

when x = y, the Lyapunov Exponents are λ11,1 = 5β when β > 0, and λ11,2 = 0 when

β = 0

Proof of Theorem 32: Lyapunov Exponent λ11,i = lim
t→∞

ln(mI
2(t, x, x))

t

where mI
2(t, x, x) is given by (18b) in Chapter 17 Theorem 25
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Case 1: β > 0, using L’Hôpital’s Rule we get that and note that p(t, x, y) <

p(t, 0, 0) and as t → ∞, p(t, 0, 0) =
C

td/2
+ o(t−d/2) < ∞. Let C1 =

C

td/2
+ o(t−d/2),

then lim
t→∞

C1 = 0

lim
t→∞

ln(mI
2(t, x, x))

t
=

(5κ
3

)
+
(β + 2κ

3β

)
κL̂a(k)C1 +

(5(β + 2κ)

3

)
C1( κ

3β

)
+
(β + 2κ

3β

)
C1

lim
t→∞

ln(mI
2(t, x, x))

t
= 5β

Case 2: β = 0, mI
2(t, x, x) = ρ0p(t, 0, x) + κt+ (+2κ)tp(t, 0, x)

lim
t→∞

ln(mI
2(t, x, x))

t
=

(2κ)κL̂a(k)
( C

td/2
+ o(t−d/2)

)
κ+ 2κ

( C

td/2
+ o(t−d/2)

) =
0

κ
= 0

For case 1, β > 0, and the second moment of the infected group is increas-

ing. For case 2, the Lyapunov exponent is 0 and mI
2(t, x, x) is neither increasing or

decreasing.

Theorem 33 For the second moment of the infected group in inhomogeneous space,

when x ̸= y, the Lyapunov Exponents are λ12,1 = κL̂a(k) + 5β when β > 0, and

λ12,2 = κL̂a(k) when β = 0

Proof of Theorem 33: Lyapunov Exponent λ12,i = lim
t→∞

ln(mI
2(t, v)

t
where

mI
2(t, v) is given by (18d) in Chapter 17 Theorem 25
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Case 1: β > 0

lim
t→∞

ln(mI
2(t, v))

t
= lim

t→∞

−
(2κa(v)

3β

)
κL̂a(k)p(t, 0, x)−

(10κa(v)
3

)
p(t, 0, x)

−
(2κa(v)

3β

)
p(t, 0, x)

lim
t→∞

ln(mI
2(t, v))

t
= κL̂a(k) + 5β

Case 2: β = 0, mI
2(t, v) = ρ0p(t, 0, x)− 2κa(v)tp(t, 0, x)

lim
t→∞

ln(mI
2(t, v))

t
= lim

t→∞

ρ0κL̂a(k)
1
t
− 2κa(v)L̂ (k)− 2κa(v)1

t

ρ0
1
t
− 2κa(v)

= κL̂a(k)

For case 1, β is positive and κL̂ (k) < 0, if 5β > κL̂ (k), then λ12,1 > 0 and

the second moment of the infected group is increasing. For case 1, if 5β < κL̂ (k),

then λ12,1 < 0 and thus mI
2(t, v) is decreasing. For case 2, λ12,2 < 0 and the second

moment of the infected group is decreasing.

As t → ∞ lim
t→∞

lnmI
1(t, x)

t
lim
t→∞

lnmI
2(t, x, x)

t
lim
t→∞

lnmI
2(t, v)

t

β > 0 < ∞ < ∞ < ∞

β = 0 < ∞ < ∞ < ∞

Table 20.2: Lyapunov Exponents in Inhomogeneous Space
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For our SI model, the homogeneous space we have that the Lyapunov expo-

nents for the first and second moments are finite for both cases, when β > 0, and

β = 0. For the inhomogeneous space we have that the Lyapunov exponents for the

first and second moments are finite for both cases, when β > 0, and β = 0. If λ7,i

or λ10,i is positive, then the first moment of the infected group is increasing. If λ7,i

or λ10,i is negative, then the first moment of the infected group is decreasing. If the

Lyapunov exponent is 0, then the mI
1(t, x) is neither increasing nor decreasing.
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CHAPTER 21

CONCLUSIONS

In this dissertation, a new SIR model with mobility is developed. The new

model with migration has the assumption that all of the particles can have spatial

motion, within the susceptible, infected, and recovered groups (in addition to the

inter-compartmental motion). Additionally, for the SIR model, we assume that the

spatial motion of healthy particles is the same as the spatial motion of an infected

particle, and that the only one type of movement can happen at a time, meaning a

particle can jump to another location or they can jump states.

In Chapter 3, we derived the differential equations for the first moments of

the susceptible, infected and recovered groups using the Kolmogorov Forward Equa-

tions. In Chapter 4, we solved for the first moments of the susceptible, infected,

and recovered groups in the homogeneous space, the inhomogeneous space, and in

inhomogeneous space using matrices. In the homogeneous space we used regular

ODE methods to solve for the first moments of S, I and R. In the inhomogeneous

space, we used Fourier transforms, inverse Fourier transforms, and transition prob-

abilities to derive a general solutions to the inhomogeneous equations based on the

Kac-Feyman formula and the Duhamel’s principle.

In Chapter 5, we analyzed the long term behavior of the first moments as
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t → ∞.When β > γ, α < 0 and θ = κâ(k) + β − γ < 0, we have the event that

the infection rate is higher than the recovery rate, but the infection rate minus the

recovery rate (β− γ) is smaller than the mobility effect κâ(k), meaning the mobility

effect is stronger. The result is that the expected value of the susceptible, infected,

and recovered populations goes to 0 as time t goes to infinity. Another noteworthy

event is when β = γ, meaning the infection rate is equal to the recovery rate. When

β = γ and the mobility effect κâ(k) < 0, the expected value of the infected population

at location x goes to 0 as time t goes to infinity. The event where β = γ and the

mobility effect κâ(k) = 0, we have that the expected value of the infected population

at location x goes to a finite constant C1 as t goes to infinity. This means that the

expected value of the infected population goes to a steady state, rather than going to

0. This makes our model different from the classical SIR model because the infected

population does not always go to 0 when the infection rate is equal to the recovery

rate because we have active movement to and from outside location x.

In Chapters 6, 7 and 8 we used the same procedure to derive, solve for,

and analyze the second moments of the SIR model, where the second moments

E[S(t, x, x)], E[I(t, x, x)], E[R(t, x, x)], E[S(t, x)I(t, x)], and E[R(t, x)I(t, x)] groups,

where each group has 2 cases: when the locations x = y and when the locations

x ̸= y. In Chapters 9, 10 and 11, we analyzed the intermittency and Lyapunov

exponents of the infected group of the SIR model. For the SIR model with mo-

bility, intermittency in the infected group means that the model forms clusters of

infected people. For our model, we define m2(t, x, y) = E[u(t, x)u(t, y)], and for

the infected group we have mI
2(t, x, y) = E[I(t, x)I(t, y)]. When x = y, we have
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that if lim
t→∞

mI
2(t, x, x)

mI
1(t, x)

2
= ∞, then it has the intermittency phenomenon. When

x ̸= y, we have that if lim
t→∞

mI
2(t, x, y)

mI
1(t, x)m

I
1(t, y)

= ∞, then it has the intermittency phe-

nomenon. For the Lyapunov exponents of the first moments of our model, we have

that λ1 = lim
t→∞

ln(mI
1(t, x))

t
. For the Lyapunov exponents of the second moments of

our model, we have that λ2,x,x = lim
t→∞

ln(mI
2(t, x, x))

t
and λ2,x,y = lim

t→∞

ln(mI
2(t, x, y))

t
.

In Chapters 12 through 20, we introduced the SI model where the suscep-

tible and infected groups have different probability kernels. The set up for the

new SI model with migration has the assumption that all of the particles can have

spatial motion, within the susceptible and infected groups (in addition to the inter-

compartmental motion). We are assuming the total population is fixed, i.e- N(t) =

S(t) + I(t) but N(t, x), the total population at position x at time t, is varying. We

are now assuming that the spatial motion of healthy particles is not the same as the

spatial motion of an infected particle, and now there are two probability kernels- a(z)

and b(z). Following the same procedure that we used for the SIR model, we derived

the differential equations for the first and second moments, solved for the first and

second moments, and analyzed the first and second moments of the SI model. Lastly,

we analyzed the intermittency and Lyapunov exponents of the infected group of the

SI model.

Now let us compare SIR model and SI model. The SIR model has the as-

sumption that the mobility a(z) of the susceptible and the infected groups are equal.

The SI model has assumption that the susceptible and infected groups have different

probability kernels, b(z) and a(z) respectively. In the SIR model, there is the event
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that β − γ > 0, α < 0, meaning the mobility effect of the infected group is not 0,

and θ = κâ(k)+β−γ > 0, meaning κ times the Fourier transform of mobility kernel

a(z) plus the infection rate β is more than the recovery rate γ, and we have that

the first moment of the infected group goes to infinity and the steady state does

not exist. The comparable event in the SI model, is the event that α > 0 (meaning

the mobility effect of the infected group plus the infection rate is greater than the

mobility effect of the susceptible group) but θ > 0 and ϕ = 0 (meaning the mobility

effect of the infected group plus the infection rate is positive, and the mobility effect

of the susceptible group is 0) then the expected value of the infected population at

location x goes to 0 as time t goes to infinity. This shows that the mobility rates for

the susceptible and infected groups being different does effect the expected value of

the infected group.
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