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Thomas Riedel

Steven Seif

Lihui Bai

ii



DEDICATION

This thesis or dissertation is dedicated to my parents

iii



ACKNOWLEDGMENT
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ABSTRACT

DIMENSION AND RAMSEY RESULTS IN PARTIALLY ORDERED SETS

Sida Wan

April 12, 2022

In this dissertation, we have two major parts. One is the dimension results on different classes of

partially ordered sets. We developed new tools and theorems to solve the bounds on interval orders

using different number of lengths. We also discussed the dimension of interval orders that have a

representation with interval lengths in a certain range. We further discussed the interval dimension

and semi dimension for posets.

In the second part, we discussed several related results on the Ramsey theory of grids, the results

involve the application of Product Ramsey Theorem and Partition Ramsey Theorem.
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CHAPTER 1

INTRODUCTION

In the first chapter, we introduce the basic concepts and notations of graphs and partially ordered

sets. Further, related theorems that are used in the thesis will be provided. Some examples and

proofs will be given for a more detailed introduction.
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1.1. GRAPHS

1.1.1 Introduction

In mathematics, graph theory is the study of graphs, which are mathematical structures used to

model relations between objects.

Graph theory has many applications in different fields. In mathematics, graph theory can be

used in geometry topology. Algebraic graph theory has close relation with graph theory that can be

applied to many areas such as dynamic systems and complexity. In data science, graph structures

can be used to store data, allowing data in the storage to be linked together directly and, in many

cases, making the operation much more efficient. In statistics, graph theory is commonly used too.

For example, in exponential random graph modeling, the different structural features in the network

graph are studied to build the models for analysis and prediction.

Graph theory is also widely used in sociology for social network analysis because of its advantage

in representing the social network structure.

Other commonly used fields for graph theory would include physics and chemistry, where it’s an

excellent model to study the three-dimensional structures of complicated simulated atomic systems.

Statistics on graph-theoretic properties related to the topology of the atoms can be gathered and

analyzed quantitatively. It’s also commonly used in Linguistics and biology. [1]

1.1.2 Basic Notations

A graph is a pair G = (V,E), where V is the ground set of the vertices of G and E is the set of

edges. We can consider the elements of E to be 2-element subsets of V , therefore E ⊆ V × V . We

can denote (u, v) ∈ E if an edge exists between the two vertices u and v in the ground set V . We

also call u and v adjacent in such a case. A graph G is usually pictured by drawing a dot for each

vertex in V and a line connecting two vertices if there is an edge between them.

Here is an example. (see Figure 1.1). The graph in the figure has a ground set V = 1, 2, 3, 4 and

edge set E = {(1, 3), (2, 3), (2, 4)}.

1.1.3 Subgraphs and Induced Subgraphs

Let G = (V,E) and H = (V ′, E′) be two graphs. H is a subgraph of G if V ′ ⊂ V and E′ ⊂ E. If

G ̸= H, then H is a proper subgraph of G. Further, H is an induced subgraph of G if for any two

vertices x, y in V ′, x and y are adjacent in H if and only if they are adjacent in G.

2



1

4

2

3

Figure 1.1: Graph example

G H

Figure 1.2: Planar Graphs

1.1.4 Graph Isomorphism

Let G = (V1, E1) and H = (V2, E2) be two graphs. If there exits a bijection f : V1 → V2 such that

for any two vertices x and y in G, x and y are adjacent in G if and only if f(x) and f(y) are adjacent

in H.

1.1.5 Plane and Planar Graphs

A graph G = (V,E) is a plane graph if:

1: V is a set of points in the plane R2.

2. Every edge is a curve between two vertices, where the two points are the endpoints. Different

edges have different sets of endpoints.

3. The interior of an edge contains no vertex and no point of any other edge.

Further, a graph is called planar if it is isomorphic to a plane graph. Embedding a graph G in

a planar graph H is called planar embedding or drawing.

In Figure 1.2, Graph G is not a plane graph, but it is planar since it can be drawn as a plane

graph H as it is shown below.

1.1.6 Contractions and Minors

A subdivision of a graph G is a graph obtained from G by replacing some edges of G with new paths

between their ends, where none of these paths has an inner vertex in V (G) or on another new path.

3



G S

Figure 1.3: Subdivisions

u v uv

G G/{uv}

e

Figure 1.4: Contractions and minors

In the example in Fig 1.3, S is a subdivision of G.

Let S be a subdivision of graph G; if a graph H contains a S as a subgraph, then G is a topological

minor of H.

An edge contraction is an operation that removes an edge from a graph and, in the meantime,

merges the two vertices that were previously connected by that edge. Here is an example where

the edge e between the two vertices u and v in the graph G is contracted, resulting in a new graph

G/{uv} (see Figure 1.4).

A graph H is called a minor of graph G if H can be obtained from G by deleting edges and

vertices and contracting edges.

1.1.7 Kuratowski’s Throrem

Let G = (V,E) be a graph; if each pair of the vertices in V is connected by an edge, then G is a

complete graph. We use Kn to denote the complete graph with n vertices. For example, a triangle

would be a complete graph with three vertices; and can be denoted by K3. The graph shown in

Figure 1.2 is K4.

A bipartite graph, also called a bigraph, is a graph whose vertices can be decomposed into two

disjoint sets such that no two graph vertices within the same set are adjacent. Meanwhile, if every

vertex of the first set is connected to every vertex of the second set, we call such a graph a complete

bipartite graph. We use kn,m to denote a complete bipartite graph where one of the two sets contains

4



K1,3 K3,3 a non-complete bipartite graph

Figure 1.5: Bipartite posets

n vertices and the other set contains m vertices. Here are some examples of bipartite graphs. (see

Figure 1.5)

Kuratowski and Waquer proved the following theorem that characterized the planar graph. The

following statements are equivalent for a graph G:

(1) G is a planar;

(2) G contains neither K5 nor K3,3 as a minor;

(3) G contains neither K5 nor K3,3 as a topological minor;

5



1.2. PARTIALLY ORDERED SETS

1.2.1 Basic Notations

A partially ordered set P is a pair (X,P ) where X is a set, and P is a reflexive, asymmetric and

transitive binary relation on X. Here X is called the ground set, and P is the partial order on X.

For convenience, we usually call partially ordered sets posets. In this thesis, we will just consider

finite posets, where the number of elements in the ground set of the given poset is finite. To be more

specific on the order relations, for any x, y ∈ X, (x, x) ∈ P because P is reflexive. We write x ≤ y

in P when (x, y) ∈ P . The notation x < y is used when x ≤ y in P and x ̸= y.

1.2.2 Example

Here is an example. Let X = {∅, {a}, {b}, {c}, {a, c}, {a, b, c}}, and P = {(x, y) ∈ X ×X : x ⊆ y}.

P = (X,P ) is a partially ordered set where the ground set is X and is ordered by set inclusion.

1.2.3 Comparable and Incomparable

Let P = (X,P ) be a poset and x, y ∈ X where x ̸= y. We say x and y are comparable if either

x < y or y < x. Otherwise we say x and y are incomparable, denoted by x∥y. We say x is covered

by y in P if x < y in P and there is no vertex z ∈ X such that x < z in P and z < y in P .

1.2.4 Subposet

If Y is a nonempty subset of X, we denote the restriction of P to Y by P (Y ), which is a partial

order on Y and poset (Y, P (Y )) is called a subposet of P.

1.2.5 Upset and Downset

Let P = (X,P ) be a poset, and x ∈ X, the upset of x is U(x) = {y ∈ X : x < yinP}, similarly, the

downset of x is D(x) = {y ∈ X : y < x in P}

1.2.6 Chains and Antichains

Let P = (X,P ) be a poset. We call P a chain if every distinct pair of points in X is comparable.

We also call P to be a linear order or a total order on X if P is a chain. Similarly, we call P an

antichain if every distinct pair of points in X is incomparable. Let P′ = (Y, P (Y )) be a subposet of
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P. The subset Y is a chain if the subposet P′ is a chain, Y is an antichain if the subposet P ′ is an

antichain.

1.2.7 Height, Length, and Width of a Poset

The height of a poset is the number of vertices in a maximum chain, while the length of the poset

is one less than the height. The width of a poset is the number of vertices in a maximum antichain.

1.2.8 Minimal and Maximal, Minimum and Maximum

A point x ∈ X is a maximal point in P if there is no point y ∈ X, such that x < y in P . Similarly,

a point x ∈ is a minimal point if there is no point y ∈ X, such that y < x in P . An element x ∈ X

is a maximum (or greatest) element of P if for every y ∈ X, we have y ≤ x. Similarly, an element

x ∈ X is a minimum (or least) element of P if x ≤ y for every y ∈ X.

1.2.9 Dual of a Poset

We denote P d to be the dual of the partial order P . P d = (y, x) : (x, y) ∈ P . Pd = (X,P d) is the

dual of the poset P.

1.2.10 Poset Isomorphism

Let P = (X,P ) and Q = (Y,Q). If there exists a bijection f : X → Y , such that, x1 < x2 in

P if and only if f(x1) < f(x2) in Q. Then poset P is isomorphic to poset Q, we will write it as

(X,P ) ∼= (Y,Q).

1.2.11 Dilworth’s Chain Covering Theorem

Dilworth Characterized the width of any finite poset in terms of partition of such poset into a

minimum number of chains. It’s a fundamental tool to study the dimension of posets and many

other fields. Here is Dilworth’s chain covering theorem and its dual version for antichains.

Theorem 1.2.1. If P is a poset with width w, then there exists a partition X = C1 ∪C2 ∪ · · · ∪Cw,

where Ci is a chain for i = 1, 2, . . . w.

Proof. We proof the theorem by using induction on |x|.

If |X| = 1, the result is trivial. Assume validity for |X| < k and let P = (X,P ) be a poset with

k + 1 vertices. The case where width(X,P ) = 1 is trivial, hence let width(X,P ) > 1 without loss
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of generality. Let C be a chain in P, width(X − C,P (X − C)) = w < n, then by the assumption,

we can partition X − C into w chains. Then we can partition X into w + 1 chains since we simply

just need to add the chain C into that partition. Since w + 1 ≤ n, so we have a partition of X into

at most n chains. Meanwhile X can be partitioned into at least n chains since P has width n, this

complete the proof for the case when width(X − C,P (X − C)) < n.

When width(X − C,P (X − C)) = n. If there is a loose point x in P. Then there is a trivial

chain C = {x} and the width(X − C,P (X − C)) < n. So we might just assume that there is no

loose point in this case for when it happened; it belongs to the case above, which is already proven.

Choose a maximal point y and a minimal point x where x < y in P . Let C = {x, y}, hence by

our assumption, width(X − C,P (x − C)) = n. Hence the poset Q = (X − C,P (X − C)) contains

an antichain with n elements, name is A = {x1, x2, . . . , xn}. By the induction hypothesis, we can

partition each of U [A] and D[A] into n chains, and notice that U [A] ∩ D[A] = [A]. Let the two

partition to be U [A] = c1∪c2∪· · ·∪cn and D[A] = l1∪l2∪· · ·∪ln where xi ∈ ci∩li for i = 1, 2, . . . , n.

This gives us the partition X = (c1 ∪ l1) ∪ (c2 ∪ l2) ∩ · · · ∪ (cn ∩ ln) which is the desired chain and

completes the prove.

Here is the dual version for partitioning antichains.

Theorem 1.2.2. If P is a poset with height h, then there exists a partition X = A1 ∪A2 ∪ · · · ∪Ah,

where Ai is an antichain for i = 1, 2, . . . h.

1.2.12 Hasse Diagram

Let x, y be two vertices in a poset P = (X,P ), we say y covers x is x < y in P and there is no such

z ∈ X, such that x < z < y in P .

A Hasse diagram is a form of a drawing of a poset P. We usually choose an Euclidean plane for

each vertex x and y, where x < y in P , we put x below y in the plane, and we draw a line or curve

that goes upward from x to y whenever Y covers x.

Here is an example of Hasse diagram (see Figure 1.6) of a P = (X,P ) with X = {a, b, c, d, e, f, g}.

Observe that a < c in P ; b∥d in P . There is no minimum or maximum elements in poset P, but

we do have minimal elements a, b and d and maximal elements f and g.

1.2.13 Extensions and Realizers

Let P = (X,P ) be a poset, Q is an extension of partial order P if P ⊆ Q, that is x < y in P implies

x < y in Q for all x, y ∈ X. Q is a linear extension of P if Q is a total order.
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Figure 1.6: Poset Example
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Figure 1.7: Linear Extensions

It’s relatively easy to see that for every partial order P on X, there exists a linear extension of

P . Further, let x, y ∈ X and x∥y in P , there exists a linear extension L1 of P such that x < y in L1

and there exists a linear extension L2 of P such that y < x in L2.

1.2.14 Poset Dimension

For a poset P = (X,P ), Dushnik and Miller [12] introduced the concept of dimension for poset.

The dimension of poset P is denoted by dim(P), which is the least positive integer t for which there

exists a family of linear extensions R = {L1, L2, . . . , Lt} of P such that the intersection of the t

linear orders is p, i.e., P = ∩R =
t⋂

i=1

Li.

1.2.15 Example

Here is a simple poset P = (X,P ), where X = {a, b, c, d, e}. The Hasse diagram is drawn in the

figure (see Figure 1.7). There are 4 linear extensions of P : L1, L2, L3, L4. The dimension of P is

larger than 1 since it’s not a chain, and we can observe that L1, L4 forms a realizer of poset P since

all the incomparable pairs are reversed in the two linear extension. Hence poset P has dimension 2.
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1.2.16 Standard Example

Dushnik and Miller used Sn to denote the standard example with 2n vertices where Sn = (X,P ) is

a height two poset. X = {a1, a2, ..., an} ∪ {b1, b2, ..., bn}, and ai < bj in P if and only if i ̸= j, for

i, j = 1, 2, ..., n. Here is a picture of S4 below(see Figure 1.8).

a1 a2 a3 a4

b1 b2 b3 b4

Figure 1.8: S4

It is known that the dimension of a typical example Sn is n. Also, notice that the standard

example Sn is n-irreducible, which means removing any point of Sn will reduce the dimension of the

poset.

1.2.17 Alternating cycles

Let P = (X,P ) be a poset, and let inc(X,P ) = {(x, y) ∈ X × X : x∥y in P}. An alternating

cycle with length k in (X,P ) is a sequence of ordered pairs (xi, yi) : 1 ≤ i ≤ k from inc(X,P ) with

yi ≤ xi+1 in P (cyclically, i.e yi ≤ xi+1 in P for i = 1, 2, ..., k − 1 and yk ≤ x1 in P ). If yi ≤ xj if

and only if j = i+ 1 (cyclically), then we call it a strict alternating cycle.

Here is an example shown in Figure 1.9.

Observe that (x1, y1), (x2, y2), (x3, y3) is an alternating cycle but not a strict alternating cycle

since y1 < x2 but also y1 < x3.

Meanwhile we have a strict alternating cycle (x1, y1), (x2, y3).

y3 y1 y2

x1 x2 x3

Figure 1.9: Alternating cycle
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1.2.18 Transitive Closure

Let R be a binary relation on a set X. We use tr(R) to denote the transitive closure of R, where

tr(R) = {(x, y) ∈ X × X : there exist a sequence a0, a1, . . . , an such that (ai, ai+1) ∈ R for

i = 1, 2, . . . , n− 1 with a0 = x and an = y.

Here is an important lemma proved by Trotter and Moore in [50].

Lemma 1.2.3. Let P = (X,P ) be a poset and let S ⊆ inc(X,P ). The following three statements

are equivalent:

(1) tr(P ∪ S) is not a partial order on X.

(2)S contains an alternating cycle.

(3)S contains a strict alternating cycle.

Proof. To proof (2) → (1) first. Suppose S contains an alternating cycle {(xi, yi) : 1 ≤ i ≤ k}

(cyclically). Let Q = tr(P ∪ S). Suppose Q is a partial order on X, then Q is transitive. Since

(yi, xi+1) is in P , we have (xi, xi+1) ∈ Q, which implies x1 = x2 = . . . = xn. Meanwhile since

(xi, yi) ∈ Q and (yi, xi+1) ∈ Q implies xi = yi = xi+1 for i = 1, 2, . . . , k which is clearly a

contradiction. Hence (2) → (1)

Then, we shall prove (1) → (3). Let Q = tr(P ∪ S), since Q is not a partial order on X,

and Q is reflexive and transitive, Q must fail to be antisymmetric. Then there exists s sequence

a1, a2, . . . , an of points in X, not all of them are the same point, such that (ai, ai+1) ∈ S for

i = 1, 2, . . . , n(cyclically). Take a sequence b1, b2, . . . , bs which has minimal length. We will construct

a strict alternating cycle from the sequence.

Without loss of generality, assume (b1, b2) ∈ S. let x1 = b1 and x2 = b2. Suppose we have defined

(xi, ji) with yi = uj (2 ≤ j ≤ s). If (bj , bj+1) ∈ S, let xi+1 = yi = bj . If (bj , bj + 1) ∈ P, then

(bj+1, bj + 2) ∈ S, since otherwise it would violet the minimality. Let xi+1 = bj1 and yi+1 = bj+2,

this construction gives us a strict alternating cycle. Hence (1) → (3).

Since (3) → (2) is the trivial case, the proof of the lemma is complete.

1.2.19 Irreducible posets

A poset P is said ot be t− irreducible for some integer t ≥ 2, if dim(P) = t, and for every nonempty

proper subposet Q of P, dim(Q) < t.

A poset is irreducible if it is t− irreducible for some integer t > 2.

The only 2-irreducible poset is the 2-element antichain. Trotter and Moore gave a collection
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of all 3 − irreducible posets using Gallai’s list of forbidden subgraphs for comparability graphs

[48]. In contrast, Kalle and Rival used different approaches to determine all the 3-irreducible posets

[27]. However, it is hopeless to determine the lists of all 4-irreducible posets for how complex a

4-irreducible poset can get.

1.2.20 A/B

Let P = (X,P ) be a poset and let A and B be a subsets of X. Let L be a linear extension of P , we

say A is over B in L if a > b in L whenever a ∈ A, b ∈ B and a∥b in P , it’s usually denoted by A/B.

Here is an important lemma proved by Hiraguchi [25].

Lemma 1.2.4. Let P = (X,P ) be a poset and let C ⊂ X be a chain. Then there exists linear

extensions L1, L2 of P , such that:

(i) y < x in L1 for every x, y ∈ X with x ∈ C and x∥y in P .

(ii) y > x in L1 for every x, y ∈ X with x ∈ C and x∥y in P .

Proof. Let S1 = {(y, x) ∈ X × X : x ∈ C, x∥y in P}, it’s easy to see that there is no alternating

cycle in S1, hence by lemma 1.2.3, the transitive closure Q of (P ∪S1) is a partial order on X. Take

any linear extension of Q would give us a L1 that satisfy the conditions in (i). Similar way to find

an L2.

Lemma 1.2.5. Let P = (X,P ) be a poset. If x is a maximum (or minimum) element of the partially

ordered set (X,P ), then dim((X − x, P (X − x)) = dim(P)

Lemma 1.2.6. Let P = (X,P ) be a poset and there are subsets X1 and X2 of subsets of X

such that P = P (X1) ∪ P (X2), and elements in X1 are incomparable to elements in X2, then

dim(P) = max(dim(P1),dim(P2)).

Lemma 1.2.7. (Hiraguchi [25])Let P = (X,P ) be a poset and C1, C2 be disjoint chains in the

poset. If C1∥C2 in P, i.e., for all x ∈ C1 and all y ∈ C2, we have x∥y in P . Then there exist linear

extensions L1 abd L2 of P such that:

1. X/C1 and C2/X in L1, and

2. X/C2 and C1/X in L2.

The proof is relatively easy, for the first condition, observe that there is no such element s such

that x < s < y for some x ∈ C1 and y ∈ C2 since x∥y no matter which x, y we pick. No alternating

cycle will be formed; hence the linear extension L1 can be constructed. The same argument for L2.

There is an immediate consequence of the lemma.
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Theorem 1.2.8. Let P = (X,P ) be a poset and C1, C2 be disjoint chains and C1∥C2 in P . Then

dim(P) ≤ dim(X − (C1 ∪ C2), P (X − (C1 ∪ C2))) +2

Theorem 1.2.9. Interpolation Property Let P = (X,P ) be a poset, let Y be a subset of X, and Q

be an extension of P (Y ). Then there exists an extension R of P such that R(Y ) = Q.

Proof. Let S = inc(X,P )∩Q, since Q is an extension of P (Y ), then S contains no alternating cycle.

Let R = tr(P ∪ S), then R is a partial order on X by Lemma 1.2.3. Hence R is an extension of P

such that R(Y ) = Q.

When we have the linear extension of a subposet, it’s easy to apply the interpolation property

to extend the linear extension of the subposet to a linear extension of the parent poset.

Here is a theorem proved by Hiraguchi using interpolation property. It’s known as the continuity

property of regular dimension on posets.

Theorem 1.2.10. Let P = (X,P ) be a poset with at least 2 vertices, let x ∈ X. Then

dim(X,P ) ≤ 1 + dim(X − {x}, P (X − {x}))

Proof. Let Y = X − {x}, and Q = (Y, P (Y )). Assum dim(Q) = t. Let R = {L1, L2, . . . , Lt}

be a realizer of Q. Apply interpolation property to obtain linear extensions S1, S2, . . . , St−1 where

Si(Y ) = Li for i = 1, 2, . . . , t − 1. Let St = Lt(D(x)) < {x} < Mt(Y − D(x)) and let St+1 =

Mt(Y − U(x)) < {X} < Mt(U(x)) (see Figure 1.10. R′ = {S1, S2, . . . , St+1} is a realizer of P . To

prove this, take any pair (a, b) in P. If a < b in P , then a < b in each of L′
is, since we constructed

S′
is by interpolation lemma, it’s clear that a < b in each of S′

is. Now assume (a, b) ∈ inc(X,P ), if

x ∈ a, b, without loss of generality, say x = a, we can easily see that x < b in St, and x > b in St+1.

Assume that x /∈ a, b, if a, b got reversed in {L1, L2, . . . , Lt−1}, then it’s reversed in {S1, S2, . . . , st−1}

by interpolation property. Without loss of generality, the only case we need to consider about is

that when a < b in {L1, L2, . . . , Lt−1} and b < a in Lt. Hence we have a < b in {S1, S2, . . . , St−1}.

If a < b in St and St+1, then R′ would fail to be a realizer of P. But this requires a ∈ D(x) and

b ∈ U(x), which would implie that a < x < b, contradicts to the assumption that a∥b in P. Hence

every incomparable pair is reversed in R′, which completes the proof.

A similar technique, along with the interpolation property, can prove the continuity of interval

order dimension by W.T Trotter, as the reader will see in the future chapters.
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Figure 1.10: Continuity

Here is the removable conjecture for posets, one of the most well-known conjectures in the poset

field.

Conjecture 1.2.11. If P = (X,P ) is a poset with |X| ≥ 3. Then there exist distinct points x, y ∈ X

such that dim(P) ≤ dim(X − {x, y}, P (x− {x, y})).

Trotter proved the removable pair conjecture for interval order dimension, the proof will be

provided in chapter 3, Csaba Biro proved the removable pair conjecture for fractional dimension [4],

but the original conjecture remains open.

A couple of theorems were also proved that the removal of a pair for specific posets would decrease

the dimension of the poset by at most 1.

Lemma 1.2.12. Let P = (X,P ) be a poset, and let x1, x2 be distinct maximal elements in the poset.

If D(x1) ⊆ D(x2), then dim(X,P ) ≤ 1 + dim(X − {x1, x2}, P (X − {x1, x2}))

Proof. Let t = dim(X − {x1, x2}, P (X − {x1, x2}).

Take a realizer R = {L1, L2, . . . , Lt} of (X − {x1, x2}, P (X − {x1, x2})). Let Si = Li < {x2} <

{x1} for each i = 1, 2, . . . t, clearly S′
is are linear extensions of P . Then let St+1 = D(x1) < {x2} <

D(x2) −D(x1) < {x2} < X − (D(x1) ∪D(x2)), it’s easy to check that St+1 is a linear extension of

P and {S1, S − 2, . . . , St+1} is a realizer of P.

1.2.21 Hiraguchi’s Inequality

Dilworth [11] proved the following fundamental theorem on the dimension of posets.

Theorem 1.2.13. Let P = (X,P ) be a poset with width w. Then dim((P )) ≤ w.

Proof. By Dilworth’s antichain partitioning theorem, we can partition X into w antichains. Denoted

by X = C1 ∪ C2 ∪ · · · ∪ Cw. We will construc the realizer of P with w linear extensions of P . By
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lemma 1.2.4, we can take a linear extension Li of P such that Ci/X in Li for each i = 1, 2, . . . , w.

Observe that R = {L1, L2, . . . , Lw} is a realizer of P, since for each (x, y) ∈ inc(X,P ), there exists

an j ∈ [w] such that x ∈ Cj and then x < y in Lj by the construction of linear extensions. Hence

completed the proof.

Here is a fundamental theorem on the bound of a poset with relatively few vertices.

Theorem 1.2.14. Let P = (X,P ) be a poset. If the cardinal of the ground set |x| ≤ 5, then

dim(P) ≤ 2.

Proof. First, if |X| = 3, suppose the poset has dimension three, since dim(P < width(P ), the poset

has to be an antichain of three elements which would have dimension 2.

If |X| = 4. Suppose the poset has dimension three. There is a 3-element chain, and lemma1.2.6

implies that the poset has the fourth vertex as a minimum or maximum element, for otherwise, there

are disconnected points, and the maximal dimension would be the maximal dimension of a poset

with three elements, which would be two as it is proved above. However, lemma 1.2.5 told us that

the poset has dimension two if the poset has a maximum (or minimum) element.

If |X| = 5, by lemma 1.2.5, there is no such a maximum or minimum element. Otherwise, the

dimension of the poset would be two. If there is an antichain of four elements, the dimension of such

poset would be two followed by the similar argument as above. Hence, we might assume that there

is an antichain of three elements. Without loss of generality, we might assume that the poset has

three minimal elements and two maximal elements with a connected graph by lemma1.2.6. There

are only four posets up to isomorphism in this case. All of them are of dimension two.

1.2.22 Example

If P = (X,P ) is a poset with |X| ≤ 7, then dim(P) ≤ 4

The following are a couple of essential theorems proved by Hiraguchi.

Theorem 1.2.15. Let P = (X,P ) be a poset and let C ⊆ X be a chain with X − C ̸= ∅. Then:

dim(X,P ) ≤ dim(X − C,P (X − C)) + 2

Proof. The proof also applies interpolation lemma. Suppose dim(X − C,P (X − C)) = t, we shall

also build a realizer R = S1, S2, . . . , St for (X −C,P (X −C)) first. Then by interpolation property,

take a linear extension Li of Si for P for each i = 1, 2, . . . , t, where Li(X − C) = Mi. Then by
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Figure 1.11: (X,P ) and F

lemma 1.2.4, take linear extensions Lt+1 and Lt+2 where C/X in Lt+1 and X/C in Lt+2. it’s easy

to check that {L1, L2, . . . , Lt+1, Lt+2} is a realizer of P.

Before introducing the following dimension theorem on posets concerning the cardinality of the

vertices, we shall introduce the lexicographic sum and decomposable.

1.2.23 Lexicographic Sum

Let P = (X,P ) be a poset and let F = {(Yx, Qx : x ∈ X} be a family of posets indexed by the

points in (X,P ). Define the lexicographic sum of F over (X,P ), denoted by
∑

x∈(X,P )(Yx, Qx) as

the poset (Z,Pz) where Z = {(x, y) : x ∈ X, y ∈ Yx} and (x1, y1) < (x2, y2) in Pz if and only one of

the following two holds:

1. x1 < x2 in P .

2. x1 = x2 and y1 ≤ y2 in Qx

1.2.24 Example of Lexicographic Sum

This may look complicated in first glance, but it is actually straightforward like its name. Here

is a simple example (see Figure 1.11). We have a poset P whose ground set is {1, 2, 3}, and a

family of posets F = {(Yx, Qx : x ∈ X} indexed by the points in (X,P ), i.e., {1, 2, 3}. Where

(Y1, Q1), (Y2, Q2) and (Y3, Q3) is shown in the picture too and have gounnd sets {a}, {b, c} and

{d, e, f} respectively.

The lexicographic sum of F over (X,P ) is the poset P3 = (Z,Pz) in the picture (see Figure 1.12).

Notice that (1, a) < (3, d), (1, a) < (3, f) and (1, a) < (3, e) in the poset of the lexicographic sum

P3 because 1 < 3 in (X,P ). (3, d) < (3, f) since 3 = 3 in P and d < f in Q3.

The following lemma was proved by Hiraguchi [25].

Lemma 1.2.16. Let P = (X,P ) be a poset and let F = {(Yx, Qx : x ∈ X} be a family of posets

indexed by the points in (X,P ). Then

dim(
∑

x∈(X,P )(Yx, Qx)) = max{dim(X,P ),max{dim(Yx, Qx) : x ∈ X}}
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(1, a)

(2, b)

(2, c)

(3, d)

(3, f)

(3, e)

P3

Figure 1.12: Lexicographic Sum of F over (X,P )

Proof. Let t = max{dim(X,P ),max{dim(Yx, Qx) : x ∈ X}}. Let the poset (Z,Pz) =
∑

x∈(X,P )(Yx, Qx).

Take a realizer R = {L1, L2, . . . , Lt} of P . For each x ∈ X, let {Mx1,Mx2, . . . ,Mxt} be a re-

alizer of Qx. For each i in [t]. We have the linear extension Li for (X,P ), replace reach x in

the linear extension Li by the linear extension Mxi to gain a new linear extension Si on the set

Z = {(x, y) : x ∈ X, y ∈ Yx}, i.e., the ground set of the poset that denote the lexicographic sum.

Repeat this for all the pair (Li,Mi)
′s to build S′

is, where i ∈ [t]. It’s obvious that {S1, S2, . . . , St}

is a realizer for the lexicographic sum.

We call a lexicographic sum
∑

x∈(X,P )(Yx, Qx) trivial is |X| = 1 or |Yx| = 1 for all x ∈ X.

1.2.25 Decomposable

We say that a poset (Z,P ) is decomposable with respect to lexicographic sums if it is isomorphic to

a nontrivial lexicographic sum; otherwise, it is indecomposable with respect to lexicographic sums.

The following proposition is straightforward and fundamental.

Proposition 1.2.17. Let P be a t − irreducible poset for some t ≥ 2. Then P is indecomposable

with respect to lexicographic sums.

Here are some important observations on lexicographic sums. It’s easy to see that the only

indecomposable disconnected poset is the 2-element antichain trivial case.

The only indecomposable poset with a greatest (or least) element is a 1-element poset. Take

the poset with a greatest element case, use the notations mentioned above for lexicographic sum.

Suppose the poset has more than one element. In that case, it is isomorphic to a lexicographic sum

where |X| = 1 and Yx is the whole poset. Similar proof for the posets with a least element.
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1.2.26 Duplicated holdings

Let P = (X,P ) be a poset, x, y ∈ X. We say that x and y are duplicated holdings if U(x) = U(y)

and D(x) = D(y).

This group of vertices that have the same upset and downset is an equivalence relation on X. In

a poset with no duplicated holdings, all equivalence classes are singletons. It’s also easy to see that

the only irreducible poset with duplicated holdings is a 2-element antichain.

Theorem 1.2.18. Let P = (X,P ) be a poset with |X| ≥ 4. Then dim(P) ≤ |X|/2 [25].

Proof. The theorem was proved by contradiction. Suppose the theorem is not true, choose a poset

P = (X,P ) with |X| as small as possible where t = dim(P) > |X|/2. Hence the poset P is

t− irreducible by definition. From theorem 1.2.14 and exercise 1.2.22 , we know that t ≥ 4, since

t > 2, if t = 3, the smallest |x| has to be 6, but in this case dim(P) ≤ |X|/2, which is a contradiction.

So let’s assume that t ≥ 4. Thus, (X,P ) is a connected indecomposable poset. Hence there is no

maximum element if P.

Assume x1, x2 be two distinct maximal elements of P. Suppose that D(x1) ⊆ D(x2). By

lemma1.2.12 and the assumption, we have:

|X|/2 < t = dim(X,P ) ≤ dim(X − {x1, x2}, P (X − {x1, x2})) + 1 ≤ |X − {x1, x2}| + 1 = |X|/2

Which is clearly a contradiction. Which implies that D(x1) and D(x2) are not a subset of each

other by symmetry.

Hence there is an element a ∈ D(x1) −D(x2) and an element b ∈ D(x2) −D(x1). Then the two

chains C1 = {a, x1} and C2 = {b, x2} that are disjoint chains and C1∥C2. Hence by lemma 1.2.7 we

conclude that:

|X|/2 < t = dim(X,P ) ≤ dim(X − (C1 ∪ C2), P (X − (C1 ∪ C2))) + 2 ≤ |X|/2

Which is a contradiction that completes the proof.

Theorem 1.2.19. (Kimble [30], Trotter [47]) Let P = (X,P ) be a poset and let A ⊆ X be an

antichain. Then dim(P) ≤ max{2, |X −A|}.

Theorem 1.2.20. (Trotter [47]) Let P = (X,P ) be a poset and let A = max(X,P ). If X −A ̸= ∅.

Then dim(P) ≤ 1 + width(X −A,P (X −A)).

Theorem 1.2.21. (Trotter [47]) Let P = (X,P ) be a poset and let A ⊆ X be an antichain and

X −A ̸= ∅. Then dim(P) ≤ 1 + 2 width(X −A,P (X −A)).
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1.2.27 Critical pairs

Let P = (X,P ) be a poset, let (x, y) ∈ inc(X,P ). We call the ordered pair (x, y) a critical pair in

poset P if:

1. z < x in P implies z < y in P , and

2. y < w in P implies x < w in P .

for all z, w ∈ X − x, y.

Here is a proposition proved by Rabinovitch and Rival [39].

Proposition 1.2.22. Let P = (X,P ) be a poset and let R be a family of linear extensions of P .

Then the following statements are equivalent:

(1). R is a realizer of P .

(2). For every critical pair (x, y) in the poset P, there is a L ∈ R for which y < x in L.

Proof. (1) → (2) is trivial since every incomparable pair is reversed in some linear extension of a

realizer. Now suppose (2) hold, we want to show that R is a realizer of poset P. Take an arbitrary

incomparable pair (u, v). It is sufficient to show that v < u in some L ∈ R.

We do induction on n = f(u, v), where n = |[(D(u)∩ I(V )]∪ [U(v)∩ I(u)]|. If n = 0, then (u, v)

is a critical pair, we are good. Assume v > u in some L ∈ R when n ≤ k. Consider a pair (u, v)

with f(u, v) = k + 1. There is either a v1 where v1 > v and v1∥u or there exists an u1 such that

u1 < u and u1∥v. In the first case f(u1, v) ≤ k, then there is a linear extension L in R such that

v < u1 < u. Similarly, in the latter case, we have f(u, v1) ≤ k, then there is a linear extension L in

R such that v < v1 < u.
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1.3. INTERVAL ORDERS AND SEMIORDERS

1.3.1 Interval orders

A poset P = (X,P ) is an interval order if there is a function f which assigns each x ∈ X a closed

interval [lx, rx] of the real line R such that x < y in P if and only if rx < ly in R.

1.3.2 2+ 2 and 1+ 3

A 2+2 poset is a poset with two chains of length two that are incomparable. Similarly, a 1+3 is a

poset with a chain of length three and a vertex that is incomparable to all the vertices in the chain.

Below is the Hasse diagram of the two special posets (see Figure 1.13).

Clearly, if P is an interval order, then it does not contain a 2 + 2 as a subposet. Here is a short

proof. Suppose the 2+ 2 has four vertices a, b, c, d as the ground set like the picture in Figure 1.13.

then ra < lb. If we determine the interval for vertex c first, then lc < ra and rc > lb for c is

incomparable to both a and b. Since c < d in P , ld > rc, then ld > rc > lb > ra, hence we have

d > a in P by the definition of interval orders, which is a contradiction. Similarly, if we determine

the interval for vertex d first, we could not find an interval for c. Hence the proof is completed.

Further, Fishburn proved that a poset P is an interval order if and only if it does not contain a 2+2

as a subposet.

If there are duplicated holdings in an interval order, then we can assign the same intervals to the

duplicated holdings. Also, it is easy to prove that adding duplicated holdings to an interval order

with a dimension of at least two does not change the dimension of the interval order. Hence, we are

more interested in interval orders with no duplicated holdings in most cases.
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Figure 1.14: I4

1.3.3 Proposition

Let P be a poset. Recall that D(x) = {y ∈ X : y < x in P} and U(x) = {y ∈ X : y > x in P} The

following statements are equivalent.

(1). P is an interval order.

(2). D(P) = {D(x) : x ∈ X} is a chain in 2X .

(3). U(P) = {U(x) : x ∈ X} is a chain in 2X .

1.3.4 Canonical interval order

We use In to denote the canonical interval order determined by the set of all closed intervals with

distinct integer end points from [n]. Where [n] = 1, 2, · · · , n. Here is an example of I4 (see Fig-

ure 1.14):

Theorem 1.3.1. The dimension of canonical interval orders is unbounded.

Proof. We can apply Ramsey’s theorem for the proof.

Recall the following form of Ramsey’s theorem:

For integer s, l, m, there exists a number n0 = R(s, l,m) such that if n > n0, then no matter how

we partition the n elements into l(or fewer) parts, there is an s elements subset of the n elements,

where every m element subsets of the i elements are in the same part.

Assume that there is an upper bound k for canonical interval orders. For an interval order In,

let L1, · · · , Lk be a realizer of In. For each triple a, b, c with a < b < c, where a, b, c ∈ [n]. We assign

the set a, b, c to class i where Li is the first linear extension in which [b, c] is less that [a, b]. There

will be k(or fewer) classes.

Take m = 3, s = 4, l = k. By Ramsey’s theorem, there exists an no, for all n > n0, there is a set

with 4 elements say a, b, c, d with (a < b < c < d), such that every 3-elements subsets of it is in the
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same class say t. Hence for the subset a, b, c, [b, c] < [a, b] in Lt; for the subset b, c, d, [c, d] < [b, c]

in Lt. They would imply that [c, d] < [a, b] in Lt, which is a contradiction. Hence the dimension of

canonical interval orders is unbounded.

Furedi, Hajnal and Trotter gave an estimate of the canonical interval dimension in 1991, which

also provides an estimate of the growth rate of the dimension of canonical interval orders. The

theorem is shown below:

Theorem 1.3.2. dim{In} = lglgn+ ( 1
2 + o(1))lglglgn

The following result is immediate:

Proposition 1.3.3. Let P = (X,P ) be an interval order with |X| = n. Then P is isomorphic to a

subposet of the canonical interval order I2n.

Kierstead and Trotter proved the following theorem: if an interval order has a sufficiently large

dimension, then it contains any given interval order with a certain number of vertices.[29]

Theorem 1.3.4. Let P = (X,P ) be an interval order with |X| = n. If Q is an interval order with

dim(Q) ≥ 30n− 6, then Q contains a subposet isomorphic to P.

1.3.5 Semiorders

An interval order P = (X,P ) is called a semiorder if P has an interval representation where each

interval has the same length.

Usually, we denote the length by 1, which can be changed by scale. An immediate observation

is that any poset that contains a 1 + 3 as a subposet is not a semiorder.

See the graph in Figure 1.15, in any representation of the 1+ 3, the interval for d must properly

include the interval for b, which is impossible.

Further, Scott and Suppes [45] proved that an interval order P is a semiorder if and only if P

does not contain 1 + 3 as a subposet.
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Figure 1.16: Semiorder with dimension 3

1.3.6 dimension theory for semiorders and interval orders

Rabinovitch developed several tools for the dimension of interval orders, and he proved a couple of

important bounds on interval orders and semiorders. Let us first look at some of the fundamental

properties of interval orders.

Theorem 1.3.5. (Rabinovitch [38]) Let P = (X,P ) be an interval order and let A and B be 2

disjoint subsets of the ground set X. Then there exists a linear extension L of P with A/B in P .

Proof. Notice that if A and B are subsets of X and L is a linear extension ofP , we say A is over B

in L and denote it byA/B if a > b in L whenever a ∈ A, b ∈ B and a∥b in L.

To proof the theorem, let S = {(a, b) ∈ A × B : a∥b in P}. We claim that S does not contain

a strict alternating cycle. To show this, suppose to the contrary that there is a strict alternating

{(ai, bi) : 1 ≤ i ≤ k} in S. Then bi < aj in P if and only if j = i+ 1 cyclically. Then the subposet

of P with ground set {b1, a2, bk, a1} is a 2 + 2, which is a contradiction that proves the claim.

The by Lemma 1.2.3, take L as any linear extension of tr(P ∪ S).

Theorem 1.3.6. (Rabinovitch [38]) Let P be a semiorder. Then dim(P) ≤ 3

The theorem is a straightforward consequence of the Theorem 2.6.1 shown in the later section.

Further, Rabinovitch provided three 3-irreducible semiorders.

Theorem 1.3.7. (Rabinovitch [38]) Let P be a semiorder, then dim(P) ≤ 2 unless P contains one

or more of the following subposets (see Figure 1.16).

Although poset can have large dimensions with small height, for example, the standard example

can have an arbitrary large dimension with just a height of 2. The following theorem by Robinovitch

shows that it’s not the same case for interval orders.

Theorem 1.3.8. (Rabinovitch [38]) If P = (X,P ) is an interval order of height h, then dim(P) ≤

h+ 1.
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Proof. We will construct a realizer of size h + 1 for P. By the dual version of Dilworth’s theorem,

we can partition the poset into h antichains by successively removing the minimal elements, denoted

by X = A1 ∪A2 ∪ · · · ∪Ah, to be more specific, A1 is the set of minimal elements of X, A2 is the set

of minimal elements of X −A1,. . . so on and so forth. For each i = 1, 2, . . . , h, apply Theorem 1.3.5,

let Li be a linear extension of P with Ai/(X − Ai) in Li. Then let Lh+1 = Ld
1(A1) < Ld

1(A2) <

· · · < Ld
1(Ah), recall that Ld

1(A1) is the dual of Ld
1 that restricts on A1. Clearly, {L1, L2, . . . , Lh+1}

is a realizer of P.
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CHAPTER 2

A BOUND ON THE DIMENSION OF INTERVAL ORDERS

2.1. INTRODUCTION

Interval order and interval graphs are two widely studies classes of partially ordered sets and

undirected graphs. Researchers in diverse fields such as mathematics, computer science, engineer-

ing, and the social sciences have investigated in structural, algorithmic, combinatorial problems

associated with them. Semiorders are special interval orders we introduced in the first chapter.

Semiorders were introduced and applied in mathematical psychology by Duncan Luce.
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2.2. MOTIVATION

In a recent paper by Keller, Trenk, and Young [26], the authors proved that the dimension of

interval orders that have a representation with interval lengths 0 and 1 have dimension at most 3.

At the end of their paper, they proposed two problems. (1) Find a good bound on the dimension

of interval orders whose representation uses intervals of length r and s, where r, s > 0. (2) Find a

good bound on the dimension of interval orders that have a representation using at most r different

lengths.

The results of this chapter were by Csaba Biro and Sida Wan. [6]

Let f(r) denote the best bound in problem (2). In [26], the authors gave a simple upper bound

f(r) ≤ 3r +
(
r
2

)
. We provide a better bound; we also noticed that the bound is related to not just

the number of lengths but also the relation between the lengths, hence it is natural to discuss the

dimension of interval orders that have a representation with interval lengths in a certain range.

In this chapter, we use the function “lg” to denote the logarithm of base 2.

We start with several fundamental theorems for interval orders.

26



2.3. PROPOSITIONS FOR INTERVAL ORDERS

Lemma 2.3.1. Let mathbfP = (X,P ) be a poset, the following conditions are equivalent. [24]

(1) P has no subposet that is isomorphic to 2 + 2.

(2) For any elements a, b in P, either D(a) ⊆ D(b) or D(b) ⊆ D(a).

(3) For any elements a, b in P, either U(a) ⊆ U(b) or U(b) ⊆ U(a).

(4) P is an interval order.

Proof. Statement (3) and (4) are equivalent because of duality. Statement (1) and statement (2)

are immediate equivalents. We shall prove that statement (2) and statement (4) are equal.

First, suppose that (4) is true. Let x, y ∈ X. Let I be an interval order representation of P. For

every w ∈ X, let aw, bw be the left and right endpoints respectively. If ax < ay, then D(x) ⊆ D(y),

otherwise, D(y) ⊆ D(x).

Not suppose statement (2) holds for poset P. We want to show that P is an interval order. Let

Q = {D(x) : x ∈ X}, let |Q| = m. Define a linear order L on Q, such that D(a) < D(b) in L if

D(a) ⊊ D(b). Label the sets in Q so that D1 < D2 < · · · < Dm in L. For each x ∈ X, let [i, j] be

the interval that represent x, where D(x) = Di and j = m if x is a maximal element. Otherwise,

let Dj+1 = ∩{D(y) : x < y in P}.

Theorem 2.3.2. Let P be a poset of height h. Then there exists a partition

X = A1 ∪A2 ∪ · · · ∪Ah,

with Aj an antichain for every j ∈ [h]
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2.4. TWIN-FREE AND DISTINGUISHING REPRESENTATIONS

Let P be an interval order, and fix a representation for P. Let x, y ∈ X be such that the same

interval is assigned to both. We call x and y a twin (of points). If a representation does not have

any twins, we call it twin-free. A representation of an interval order is distinguishing, if every real

number occurs at most once as an endpoint of an interval of the representation, i.e. no two intervals

share an endpoint. A distinguishing representation is, of course, twin-free.

Let P = (X,P ) be a poset, and x, y ∈ X. We say x, y have duplicated holdings if {z ∈ X : z >

x} = {z ∈ X : z > y} and {z ∈ X : z < x} = {z ∈ X : z < y}; in other words, the upsets and the

downsets of x and y are the same. If P is an interval order with a representation in which x and y

are twins, then they have duplicated holdings. So if an interval order has no duplicated holdings,

then every representation is twin-free.

One important property of two elements with duplicated holdings is that we may discard one of

them without reducing the dimension (the dimension is at least 2). We will use this property later

by assuming that some poset, for which we are proving an upper bound for its dimension, has no

duplicated holdings.

Since this paper studies interval orders for which the lengths of the intervals are not arbitrary,

we introduce the following notations. Let S ⊆ R+ ∪ {0}, S ̸= ∅. An S-representation of a poset P

is an interval representation, in which every interval length is in S.

It is easy to see that every interval order has a distinguishing R+-representation. Things get

less obvious with restrictions introduced. A simple example would be a {0}-representation of an

antichain of size at least 2, which cannot be made distinguishing, or even twin-free. We will prove

that—essentially—this is the only problem case.

Following Fishburn and Graham [16], we will use the notation C(S) to denote the family of

posets that have an S-representation. As a special case, C([α, β]) denotes the family of posets for

which there is a representation with intervals of lengths between α and β (inclusive). We will use

the short hands C[α, β] = C([α, β]), and C(α) = C([1, α]).

The following observation is obvious due to the scalability of intervals in a representation.

Observation 2.4.1. C[α, β] = C[mα,mβ], for all m ∈ R.

With these notations, C(R+) is the family of interval orders, and for s ̸= 0, C({s}) = C({1}) =

C(1) is the family of semiorders.

Now we are ready to prove the theorem that shows that—in most cases—we can assume that a
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poset has a distinguishing representation.

Theorem 2.4.2. Let S ⊆ R+ ∪ {0}, S ̸= ∅.

1. Every poset P ∈ C(S) that has a twin-free free S-representation also has a distinguishing

S-representation.

2. If 0 ̸∈ S, then every poset P ∈ C(S) has a distinguishing S-representation.

Proof. Let S ⊆ R+ ∪ {0}, S ̸= ∅, and let P ∈ C(S). Consider an S-representation of P; with a

slight abuse of notation, the multiset of intervals in this representation will also be referred to as

P. We will define two symmetric operations that we will perform repeatedly. These will be used to

decrease the number of common endpoints of the intervals. After this, we enter a second phase, in

which we remove twins, if possible.

Left and right compression

Let c ∈ R, and ϵ > 0. Let L = {x ∈ P : lx < c}, and let R = P − L. Define L′ = {[lx + ϵ, rx + ϵ] :

x ∈ P}. Let P ′ = L′ ∪R, a multiset of intervals. The operation that creates P ′ from P is what we

call “left compression” with parameters c and ϵ.

We can similarly define right compressions. Let R = {x ∈ P : rx > c}, and let L = P − R.

Define R′ = {[lx − ϵ, rx − ϵ] : x ∈ P}. Let P ′ = L ∪R′ to define the operation of right compression.

Lemma 2.4.3. Let P be a poset (representation), c ∈ R, and let ϵ = 1
2 min{|a−b| : a and b are distinct endpoints}.

Let P′ be the left (right) compression of P with parameters c and ϵ. Then P and P′ represent iso-

morphic posets.

Proof of lemma. We will do the proof for left compressions. The argument for right compressions is

symmetric.

Notice that if a and b are two endpoints of intervals of P, then their relation won’t change, unless

a = b. More precisely, if a < b in P then the corresponding points in P′ will maintain this relation,

similarly for a > b.

So if x and y are two intervals in P with no common endpoints, then their (poset) relation is

maintained in P′.

Now suppose that x and y are intervals with some common endpoints. There are a few cases to

consider.

If lx = ly then either x, y ∈ L or x, y ∈ R, so either both are shifted, or neither. Therefore x∥y

both in P and in P′.

29



Now suppose lx ̸= ly; without loss of generality lx < ly. Also assume rx = ry. Then lx + ϵ < ly,

so x∥y both in P and in P′.

The remaining case is, without loss of generality, rx = ly. Then rx + ϵ < ry (unless ly = ry = rx,

which was covered in the second case), so, again x∥y both in P and in P′.

Now we return to the proof of the theorem. We will perform left and right compressions until

no common endpoints remain except for twins. Let x, y be two intervals with a common endpoint,

but x ̸= y. Let ϵ = 1
2 min{|a− b| : a and b are distinct endpoints}, as above.

• If lx = ly and rx ̸= ry, perform a right compression with c = min{rx, ry} and ϵ.

• If rx = ry and lx ̸= ly, perform a left compression with c = max{lx, ly} and ϵ.

• If lx < rx = ly < ry (or vice versa) either a left or a right shift will work with c = rx = ly.

Note that even though the definition of ϵ looks the same in every step, the actual value will

change as the representation changes. Indeed, it is easy to see that ϵ is getting halved in every step.

If P started with a twin-free representation, then we have arrived to a distinguishing represen-

tation, so part 1 is proven.

If P had twins, those are still present at the representation. Let x and y be identical intervals of

the representation, and let ϵ = 1
2 min{|a− b| : a and b are distinct endpoints} again. If 0 ̸∈ S, then

the length of x (and hence the length of y) is positive. Note that this length is at least ϵ. Move x

by ϵ to the right, that is, replace x with the interval [lx + ϵ, rx + ϵ]. The new representation will not

have the x,y twin and represents the same poset. Repeat this until all twins disappear.
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2.5. CHOICE FUNCTIONS

Let I be a representation of an interval order (X,P ). Kierstead and Trotter [28] defined choice

functions: a choice function f on I is an injection f : X → R such that lx ≤ f(x) ≤ rx in R.

For a given choice function f , define the linear order L(f) by setting x < y in L(f) if and only if

f(x) < f(y) in R. It is easy to see that for each choice function f on I, L(f) is a linear extension

of P . Indeed, for every x, y ∈ X, x < y in P , Ix always lies to the left of Iy, hence for any choice

function f , we have f(x) < f(y).

In [28], the following lemma is proven, which is specific to interval orders. We provide a different

proof here, which hopefully provides some more insight.

Lemma 2.5.1. Let (X,P ) be an interval order, X = X1 ∪X2 ∪ · · · ∪Xs be a partition. Let Li be

a linear extension of P (Xi) where i = 1, 2, . . . , s. Then there exists a linear extension L of P such

that L(Xi) = Li.

Proof. We will prove the lemma for s = 2; the case of s > 2 then follows by induction.

Let X1, X2, L1, L2 be defined as in the lemma. Define the relation E = L1 ∪ L2 ∪ P , and the

directed graph G = (X,E). It is sufficient to show that G has no directed closed walk; indeed, if

that is the case, the transitive closure T of G is an extension of the poset P, and any linear extension

L of T will satisfy the requirements of the conclusion of the lemma.

Suppose for a contradiction that G contains a directed closed walk. Since neither G[X1] nor

G[X2] contains a directed closed walk, every directed closed walk in G must have both an X1X2

and an X2X1 edge. We will call these edges cross-edges. Let C be a directed closed walk in G with

the minimum number of cross-edges.

As we noted, C contains at least one X1X2 edge; let (a, b) be such an edge. Let (c, d) be the first

X2X1 edge that follows (a, b) in C. Observe that c < d, a < b in P , and b ≤ c in L2. If d = a, then

c < d = a < b in P , which would contradict b ≤ c in L2. If d > a in L1, then we could eliminate the

path ab . . . cd in C, replacing it with the single-edge path ad, and thereby decreasing the number of

cross-edges in C, contradicting the minimality of C. (See Figure 2.1.)

So we concluded that d < a in L1, and recall that b ≤ c in L2. If b ≤ c in P , then a < b ≤ c < d

would contradict d < a in L1. (In particular, b ̸= c.) Obviously, b ̸> c in P , so b∥c in P . Similar

argument shows that d∥a in P . Hence the set {a, b, c, d} induces a 2 + 2 in P, a contradiction.

Let (X,P ) be a poset, and X = Y ∪ Z be a partition of X. We say that Y is over Z in an

linear extension L of P if y > z in L whenever y ∈ Y , z ∈ Z and y∥z in P . Using choice functions,
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Figure 2.1: Minimal oriented cycles

Kierstead and Trotter [28] provided a shorter proof of a lemma below due to Rabinovitch [36]. We

will include the proof for completeness.

Lemma 2.5.2. Let (X,P ) be an interval order, and X = X1 ∪ X2 be a partition of X, where

P1 = (X1, P (X1)), P2 = (X2, P (X2)). Then

dim(P) ≤ max{dim(P1),dim(P2)} + 2.

Proof. Consider a distinguishing representation of (X,P ), and let t = max{dim(P1),dim(P2)}. By

Lemma 2.5.1, there exists a family R of t linear extensions of P , such that the restriction of the

linear extensions in R to each Xi form a realizer of Pi, for i = 1, 2. Then define two choice functions

f1 and f2, where f1(x) = lx, f2(x) = rx for every x ∈ X1; f1(y) = ry, f2(y) = ly for every y ∈ X2.

Let L1 = L(f1), L2 = L(f2). Clearly, R∪ {L1, L2} is a realizer of P .

The following theorem is given by Kiestead and Trotter [28], the proof was done by induction

on the number of vertices in the paper. here we provide an alternative proof of the existence of a

choice function directly from the representation of the interval order.

Theorem 2.5.3. Let P = (X,P ) be an interval order with no duplicated holdings, let I be a distin-

guishing representation of P. If L is an arbitrary linear extension of P , then there exists a choice

function f on I, such that L(f) = L.

Proof. Without loss of generality, label the ground set X by the linear extension L = x1x2 . . . xn.

Let I be the function that maps each x ∈ X to a closed interval Ix in R. If Ix is an interval

with a positive length, then let lx be the left endpoint of I(x) and rx be the right endpoint of Ix.

Otherwise, we say Ix ∈ D if it is a zero length interval and let mx denote the real value of Ix in R.

Meanwhile, let ϵ be the smallest difference between any two endpoints in I. Since I is a distinguishing
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representation, we have ϵ > 0. Without further due, find a choice function for I that gives us L. For

convenience, let fi = f(xi) for i = 1, 2 · · ·n. First, define:

fi =


mx1

, Ix ∈ D

lx1
+ ϵ/2, Ix /∈ D

If x1 is a zero length interval in I, then f1 = mx1 ∈ [lx, rx], for lx1 = mx1 = rx1 in this case.

Otherwise, if x1 /∈ D, lx1
+ ϵ/2 < lx1

+ ϵ < rx1
by our definition. Then, for i = 2, 3, . . . n, define:

fi =


mxi

, Ixi
∈ D

max{f(i− 1) + ϵ/2i, lxi
+ ϵ/2i}, Ixi

/∈ D

We shall check if fi ∈ [lxi , rxi ] for every i = 1, 2, · · ·n. We call fi to be good if f1 ∈ [lxi , rxi ].

We have already shown that f1 is good. We will proceed by induction. We will first show that f(2)

is good. If one or both of Ix1
and Ix2

are zero length intervals, it is clear that f1 and f2 are good.

Assume that they are both intervals with positive length. If x2 > x1 in P , then f2 = lx2 + ϵ/4 <

lx2
+ ϵ ≤ rx2

, f2 is good. Otherwise, if x1∥x2 in P , there are 2 cases, either lx1
< lx2

< rx1
or

lx2
< lx1

< rx2
. In the first case, lx2

> lx1
+ ϵ/2 + ϵ/4, hence f2 = lx2

+ ϵ/4, f2 is good. In the

second case f2 = f1 + ϵ/4 = lx1 + ϵ/2 + ϵ/4 < lx1 + ϵ < rx2 , hence f2 is also good. Now, assume f ′is

are good for i = 1, 2, . . . , k − 1, (0 < k ≤ n), need to show that fk is also good. If Ixk−1
is a zero

length interval, either xk−1 < xk or xk−1∥xk in P , it’s clear that fk is good. Let’s assume Ixk−1
has

positive length. If after we take the maximum we obtain fk = lxn + ϵ/2n, then fk is good. The case

we need to check is the one that fk = fk−1 + ϵ/2k > lxk
+ ϵ/2k and meanwhile fk−1 + ϵ/2k is not

in [lxk
, rxk

], i.e. fk−1 + ϵ/2k > rxk
. But we will show that this is impossible. Since for fk−1 there

exists a interval Ixs
, 0 < s < k−1 (see Figure 2.2) , such that fk−1 < lxs

+ ϵ/2 + ϵ/22 + · · · < lxs
+ ϵ.

And we have xs < xk−1 < xk in L, hence xk∥xs. Then f(xk−1) − ϵ < l(xs) < r(xk) < fxk−1
, notice

that r(xk) = m(xk) if xk is a zero length interval, but both case give us r(xk) − l(xs) < ϵ which is

a contradiction. Hence fk is good, we have fi ∈ [lxi
, rxi

] for each i = 1, 2, . . . , n. For the rest of the

proof, it’s easy to see that fi ≥ fi−1 + ϵ/2i−1 > fi−1, hence L(f) = L.
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2.6. DIMENSION OF INTERVAL ORDERS USING TWO LENGTHS

In [26], the following theorem is proven.

Theorem 2.6.1. If P is an interval order that has representation such that every interval is of

length 0 or 1, then dim(P) ≤ 3.

In [26], the authors defined two disjoint sets of incomparable pairs neither of which contains an

alternating cycle, hence there exist linear extensions that reverse all the incomparable pairs in each

of the sets. The remaining incomparable pairs can be reversed in one extra linear extension. Here we

provide a shorter proof using a choice function, which gives the three linear extensions that realize

the interval order directly.

Proof. Let P be a twin-free interval order, and let I be a distinguishing representation of P which

only consist of length 0 and 1 intervals. Let poset U = (U,PU) be the subposet of P consisting of

all the points represented by intervals of length 1 in I, and D be the subposet of P consisting all

the points represented by intervals of length 0 in I. Let D be the ground set of D. For each element

x ∈ D, use Rx to denote the unique real number in the interval representing x. Partition U into

antichains A1, A2, . . . , At by taking the minimal elements successively. It is easy to see that x < y

in P for every x ∈ Ai, y ∈ Ai+2. Let Aodd = {x ∈ U : x ∈ Ai for some i ∈ [t] with i odd}, and

Aeven = U −Aodd.

Let f1, f2 be choice functions on I, defined as follows.

f1(x) =


lx, x ∈ Aodd

rx, x ∈ Aeven

Rx, x ∈ D

f2(x) =


rx, x ∈ Aodd

lx, x ∈ Aeven

Rx, x ∈ D

Then, let L1 = L(f1), L2 = L(f2), hence L1 and L2 are both linear extensions of P . It is

clear that each incomparable pair {x, y}, where x ∈ Aodd, y ∈ Aeven, is reversed in the two linear

extensions, as well as the incomparable pairs {x, y}, for which x ∈ U , y ∈ D. the only incomparable

pairs need to be reversed are the ones that both of the points are in the same Ai, we can reverse all
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of them in one linear extension, and finally we use interpolation lemma to interpolate all the points

in the set D to the last linear extension:

L3 = Ld
1(A1) < Ld

1(A2) < · · · < Ld
1(At) ∪D.

Hence, {L1, L2, L3} is a realizer of P.
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2.7. DIMENSION OF INTERVAL ORDERS WITH REPRESENTATION USING

MULTIPLE POSITIVE LENGTHS

Let r, s > 0. Recall that C({r, s}) denotes the class of interval orders that have a representation,

in which every interval is of length r or s. Rabinovitch [37] proved that the dimension of a semiorder

is at most 3. Here, we prove the following bound on the dimension of posets in C({r, s}).

Proposition 2.7.1. Let P ∈ C({r, s}). Then dim(P) ≤ 5.

Proof. Let P ∈ C({r, s}), and consider a representation of P. We can partition P into the union of

2 semiorders, Sr and Ss, which consist of intervals of length only r and s, respectively. Since the

dimension of a semiorder is at most 3, apply Lemma 2.5.2 to conclude

dim(P ) ≤ max{dim(Sr),dim(Ss)} ≤ 5.

Let f(r) be the maximum dimension of interval orders having a representation consisting of

intervals of at most r different positive lengths. By partitioning the interval orders into the union

of r different semiorders, then using similar techniques, we have the following bound for f(r).

Proposition 2.7.2. f(r) ≤ ⌈lg r⌉ + 3.

If these bounds are tight is not known.
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2.8. DIMENSION OF CLASSES OF INTERVAL ORDERS

Recall that C(α) is the family of posets that have a representation with intervals of lengths

between 1 and α.

Theorem 2.8.1. Let P = (X,P ) be a interval order with a representation such that each interval is

of length 1 except for one interval, which is of length between 0 and 2 (inclusive). Then dim(P) ≤ 3.

Proof. We may assume that P has no duplicated holdings. By Theorem 2.4.2, it has a distinguishing

representation; fix one of these. Let x0 be the interval whose length is not 1. Let m0 be the midpoint

of x0, and let A0 be the set of intervals that contain m0. (See Figure 3.)

Let U0 = {x ∈ X : lx > m0}, and let D0 = {x ∈ X : rx < m0}. Let A1 be the set of

minimal elements of U0, and let Ui = Ui−1 − Ai, where Ai is the set of minimal elements of Ui−1

for i = 1, 2, . . . , k. Similarly, let B1 be the set of maximal elements of D0, and let Di = Di−1 −Bi,

where Bi is the set of maximal elements of Di−1 for i = 1, 2, . . . , s. Hence we have a partition P1 of

P: Bs ∪ · · · ∪B1 ∪A0 ∪A1 ∪ · · · ∪Ak.

For any elements x and y, where x ∈ A0, y ∈ A2, we have x < y in P . Indeed, if y is in A2,

there must be an element w in A1, such that, m0 < lw < rw < ly. Since w has length 1, we have

ly > m0 + 1. And given that x0 has length between 0 and 2 inclusive with midpoint m0, we have

rx ≤ m0 + 1 < ly. By symmetry, it can be proved that x < y for every x ∈ B2, y ∈ A0. In addition,

from the property of semiorders, x < y for every x ∈ Ai, y ∈ Ai+2, and for every x ∈ Bj+2, y ∈ Bj ,

where i = 1, 2, . . . , k − 2, j = 1, 2, . . . , s − 2. Finally, for every x ∈ B1, y ∈ A1, clearly x < y since

rx < m0 < ly.

Hence if we relabel the partition P1 from left to right to be S1 ∪ · · · ∪ Sn, we have x < y for

every x ∈ Ai, y ∈ Ai+2, where i = 1, 2, . . . , n− 2. Meanwhile each Si is an antichain. Then, apply a

similar method as the one in the proof of Theorem 2.6.1. Let f1, f2 be choice functions on I, which

define as follows:

f1(x) =


lx, x ∈ Sodd

rx, x ∈ Seven

f2(x) =


rx, x ∈ Sodd

lx, x ∈ Seven

Let L1 = L(f1), L2 = L(f2), and let L3 = Ld
1(A1) < Ld

1(A2) < · · · < Ld
1(At). Clearly {L1, L2, L3}
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is a realizer of P.

Theorem 2.8.2. Let P ∈ C(2). Then dim(P) ≤ 4.

Proof. Let P ∈ C(2), where P = (X,P ). Fix a distinguishing representation of P. We will think

of the elements of P as intervals, and we will use the notation lx, rx to denote the left and right

endpoints of x in X, respectively.

We again apply the technique of partitioning the poset by successively removing minimal ele-

ments. To be precise, we let A1 be the set of minimal elements of X, and let P1 = P (X −A1). We

define Ai recursively as follows: assuming that Ai−1 and Pi−1 are defined, we let Ai be the set of

minimal elements of Xi−1, and we let Xi = Xi−1 −Ai.

We will show that for all i, Ai < Ai+3; that is, whenever x ∈ Ai and y ∈ Ai+3, we have x < y.

Let i be a positive integer, and let x ∈ Ai, y ∈ Ai+3. Since x ̸> y, we prove that x and y cannot

be incomparable. There exists z2 ∈ Ai+2 such that z2 < y; and so on, z1 ∈ Ai+1 with z1 < z2, and

z0 ∈ Ai with z0 < z1.

Note that

ly > rz2 ≥ lz2 + 1 > rz1 + 1 ≥ lz1 + 2 > rz0 + 2.

Since z0, x ∈ Ai, we have z0∥x, so lx ≤ rz0 . From these we conclude that ly > lx + 2. If x∥y, then

rx ≥ ly, which would make the length of x more than 2. So, we conclude x < y, as desired.

We define three linear extensions with choice functions that reverses most critical pairs. Let the

choice functions f0, f1, f2 be defined by

fi(x) =


rx, x ∈ Aj with j ≡ i mod 3

lx, otherwise.

Let L1, L2, L3 be the linear extensions defined by these choice functions.

If x∥y, and x ∈ Ai, y ∈ Aj with i ̸= j, then lx < ly ≤ rx, which means that they will appear in

both order in one of L1, L2, L3. So we only need to reverse critical pairs that appear in a single Ai.

This can be done with one extra linear extension:

L4 = Ld
1(A1) < Ld

1(A2) < · · · < Ld
1(At).

It is open whether there is a poset in C(2) that is actually four-dimensional. It feels unlikely that
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Figure 2.3: Proof illustration

the addition of all numbers between 1 and 2 as possible lengths would not increase the dimension

from semiorders, but finding a four dimensional poset in C(2) has resisted our efforts.

Recall C[α, β] denote the class of interval orders that can be represented with intervals of lengths

in the range [α, β]. Note that C(α) = C[1, α]. Use f(C[α, β]) to denote the least upper bound of

the dimension of posets in the class C[α, β]. We just proved that f(C[1, 2]) ≤ 4.

Theorem 2.8.3. For t ≥ 2, f(C(t)) = f(C[1, t]) ≤ 2⌈lg lg t⌉ + 4.

Proof. Let n = 22
⌈lg lg t⌉

. Since n ≥ t, it is clear that f(C[1, t]) ≤ f(C[1, n]). We will show by

induction that f(C[1, n]) ≤ 2⌈lg lg n⌉ + 4 = 2 lg lg n+ 4.

For n = 2, the statement reduces to Theorem 2.8.2. Let n > 2 be an integer. Note that in

this case ⌈lg lg t⌉ ≥ 1, so n ≥ 4 and a square. Let m =
√
n = 22

⌈lg lg t⌉−1

. If P ∈ C[1, n], then

we can partition intervals of a representation of P into “short” intervals of length at most m, and

“long” intervals of length at least m. (Intervals of length m, if any, can be placed arbitrarily.) By

Lemma 2.5.2, Observation 2.4.1, and the hypothesis,

f(C[1, n]) ≤ max{f(C[1,m]), f(C[m,n])} + 2 = f(C[1,m]) + 2 ≤

2(⌈lg lg t⌉ − 1) + 4 + 2 = 2⌈lg lg t⌉ + 4.
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2.9. CLASSIFICATION OF INTERVAL ORDERS

Another interesting topic is the classification of interval orders of class C(α) (α ≤ 1), where C(α)

denote the finite interval orders using interval length in [1, α].

41



Z(4)

H(3)
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Figure 2.5: Z(3) +H(3)

2.10. NOTATION

We shall define some notations that will be convenient for the next theorem.

2.10.1 Chains and Zig Chains

In this section let H(s) be a chain that has a vertices. Let Z(m) be a poset with b vertices, denoted

by {x1, x2, . . . , xm} such that xi∥xi+1 and ax < ax+1 for each i ∈ [1,m− 1] and xj < xj+2 for each

j ∈ [1,m− 2]. We call it zig chain.

2.10.2 Example

With slight abuse of notation, we also use H(s) to denote the representation of interval orders that

is a chain with s intervals. Here are some examples of chains and zig chains (see Figure 2.4).

We say a zig chain captures a chain if the leftmost interval of the zig chain is incomparable to the

left end interval of the chain and the rightmost end interval of the zig chain is incomparable to the

rightmost end interval of the chain. To be precise, let H(s) be a chain with s vertices {x1, x2, . . . , xs}

such that x1 < x2 < · · · < xs. Let I1 be the interval representation of H(s). Let Z(m) be a zig

chain with m vertices {y1, y2, . . . , ym} such that yi∥yi+1 and ay < ay+1 for each i ∈ [1,m − 1] and

yj < yj+2 for each j ∈ [1,m− 2]. We say Z(m) captures H(s) if a(y1) < b(x1) and b(ym) > a(xs).

Here is an example of a Z(3) captures H(3) (see Figure 2.5). We call such poset Z(3) +H(3).
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Figure 2.6: Zig chain example

Theorem 2.10.1. Let 1 < α1 < α2, where α1, α2 are rational numbers. Then there exists an

interval order that is in C(α2) but not in C(α1).

Proof. Let α1, α2 be rational numbers that are larger than 1 and α2 > α1. Here is how we found

the poset that is in C(α2) but not in C(α1).

Write α1 and α2 in fraction form. Take a common multiplier of the denominator of α1 and α2.

Without loss of generality, assume the commons multiplier is p, and α1 = a
p , α2 = b

p . a and b are

integers and a < b.

Take an interval order like the one in Figure 2.6.

First, We construct a zig chain with p intervals, denote it by Z(a) for convenience, and each

interval of Z(a) has length b
p . The total length of the zig chain is larger than b− u for some u > 0.

We can properly arrange the zig chain to make u as small as possible, let 0 < u < b − a. Then we

construct a chain with a + 2 unit intervals, denote it by H(a + 2) for convenience. We can make

the total length of a chain of a unit interval length as short as a+ ϵ, where ϵ < b− u− a. Then we

can make the zig chain Z(a) captures H(p+ 2). However, with an antichain consisting of p interval

of length a
p , the total length of such antichain is less than a, there is no way we can make such

antichain capture H(p+ 2). Hence the poset Z(a) +H(p+ 2) is the poset that is in C(α2) but not

in C(α1).

In the paper [16], Fishburn and Graham classified the interval graphs under expanding length

restrictions. They use C(α) to denote the finite interval graphs representable as intersection graphs

of closed real intervals with lengths in [1, α]. The points of increase for the class C are the rational

α ≥ 1. They also found the irreducible graphs for each rational α, with α = p/q where p and q are

relatively prime. Similar techniques can be used to classify the interval orders in C(α). And even

the classification of split semiorders that we are going to introduce in the next chapter.
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CHAPTER 3

INTERVAL DIMENSION AND SEMI DIMENSION

3.1. INTRODUCTION

3.1.1 Interval Dimension

Let P = (X,P ) be a poset, the interval dimension of P, denoted by Idim(P) = t, is the least t such

that there exists t interval orders {I1, I2, . . . , It}, where P = I1 ∩ I2 ∩ · · · ∩ It.

Notice that each interval order has interval dimension 1. And as we have proved in the previous

section by Ramsey theorem, interval order can have arbitrarily large regular dimensions. Hence the

gap between the interval dimension and regular dimension can be arbitrarily large.

3.1.2 Semi Dimension

Similarly, let P = (X,P ) be a poset, the semi-dimension of P, denoted by Sdim(P) = k, is the least

k such that there exists s interval orders {S1, S2, . . . , Sk}, where P = S1 ∩ S2 ∩ · · · ∩ Sk.

3.1.3 Observation

A couple of observations can be made immediately since a linear extensions can be considered as an

semiorder or an interval order. Meanwhile, semiorders are interval orders, hence for any poset P,

Idim(P ) ≤ Sdim(P ) ≤ dim(P ).

3.1.4 Properties

Here are several properties of the Interval dimension proved by Bogart and Trotter [49]. Let P =

(X,P ) be a poset, x ∈ X. Let A be an antichain and C be a chain of the poset. Let (u, v) be a

critical pair and Y ⊆ X, Q = P (Y ), then

1. Idim(Q) ≤ Idim(P).

2. Idim(P) ≤ 1 + Idim(X − x, P (X − x).
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Figure 3.1: Alternative proof

3. Idim(P) ≤ 1 + Idim(X − {u, v}, P (X − {u, v})).

4. Idim(P) ≤ 2 + Idim(X − C,P (X − C)).

5. Idim(P) ≤ max{2, |X −A|}.

6. Idim(P) ≤ 2 width(X −A) − 1 when X −A ̸= ∅.

7. Idim(P) ≤ width(X −A) if A = max(P) or A = min(P) and X −A ̸= ∅.

8. Idim(P) = Idim(Pd).

For the second property, we provide one easier proof using the properties of interval orders. Here

is how:

Proof. Let Idim(X − x, P (X − x)) = t, take a interval order realizer I ′ = {I ′1, I ′2, . . . , I ′t} of P. By

interpolation property, take an interval order I for X where Ii(X − x) = I ′i for each i = 1, 2, . . . , t.

Since for the interval order I ′t, there is an representation of it say I′t, where each vertex in y ∈ X−x

is represented by an interval [ay, by], ay, by are real numbers. Let a0 to be the least left end point

in the interval representation, and b0 the be the right most end point, and l0 = b0 − a0 + 1. Let

I(x) = {y ∈ X − x : y∥x in P}. Shift all interval representations for D(x) in I′t l0 units to the

left, we can do this because for each u ∈ D(x) and v ∈ I(x), either u∥v or u < v in P , otherwise

v < u < x, then v would be in the set D(x). Similarly, we can shift all interval representations for

U(x) in I′t l0 units to the right. Then Take such new representation and add the interval for x to be

[a0, b0] (see Figure 3.1). Call the new interval order representation It+1, where by definition, there

is an interval order for such representation, name it It+1. Clearly, {I1, I2, . . . , It, It+1} is an interval

order representation or (X,P ).

The third property, which is the removable conjecture for interval order dimension, is proved by

Trotter [49]. Here is the proof:

Proof. Take a critical pair u, v from the poset P = (X,P ), such that for every vertex w ∈ X, w > u

implies w > v; and w < v implies that w < u. Let Q = (X − {u, v}, P (X − {u, v}), and let
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Figure 3.2: Interpolation lemma problem

IdimQ = t. Choose an interval order realizer I ′ = {I ′1, I ′2, . . . , I ′t} for poset Q, where each I ′i is an

interval order representation for the extension of Q.

By interpolation property, choose interval order Ii for X where Ii(X − {u, v}) = I ′i for each

i = 1, 2, . . . , t. Define the function that maps the vertices from X to closed real intervals C. Partition

X into five subposets as the following:

X1 = {x ∈ X : x > u}, X2 = {x ∈ X : x∥v, x > v}, X3 = {x ∈ X : x∥u, x∥v}

X4 = {x ∈ X : x < u, x∥v}, X5 = {x ∈ X : x < b}.

Let |Xi| = ni for i = 1, 2, 3, 4, 5. Choose open intervals:

C1 = (2, 3), C2 = (1, 2), C3 = (−1, 1), C4 = (−2,−1), C5 = (−3,−2).

For ni vertices in Xi, take a linear extension for the subposet, and choose ni intervals from Ci

where In1
< In2

< · · · < Ini
to represent such linear order. Finally, take Iu = [−1, 2], Iv = [−2, 1].

Combine these intervals to be the representation It+1 of poset (X,P ). It’s easy to check that

I = {I1, I2, . . . , It+1} is a realizer of poset P = (X,P ).

However, such a method cannot be used to prove the removable conjecture of the semi dimension.

In fact, Trotter give the continuity theorem for semi dimension, where he stated that Sdim(X) ≤

1 + Sdim((X − x), P (X − x)) for a poset P = (X,P ) and any vertex x ∈ X. The proof used

interpolation property, which is not true for semiorders because of the unique feature of semiorders

that they all must have the same length. Here is an example.

3.1.5 Example

Take a simple 3 + 1 poset P = (X,P ) as below, where X = (a, b, c, d) as they are labeled in picture

3.2

For the subposet (Y, P (Y )), where Y = a, c, d. We find a representation I where the distance

between the right endpoint of a and left endpoint of c is less than 1. There is no way that we can

”fit” an interval to represent b that have the same unit length in I. Hence the interpolation lemma
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does not apply to semiorders.

Hence we cannot prove the continuity of the semi dimension. This problem is still open, and a

lot of dimension theorems concerning semi dimension have to be re-examined.
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3.2. SEMI DIMENSION RESULTS

In this part, we give some of the results on semi dimensions.

Theorem 3.2.1. Let P = (X,P ) be a poset with height 2. Then dim(P)+1 ≤ Idim(P) = Sdim(P).

Notice that for a height two poset, the regular dimension is not bounded, so as the interval and

semi dimension, one example would be the standard example. And the canonical interval orders also

have unbounded dimensions, which its interval order dimension is just 1. Hence the gap between

the interval order dimension and regular dimension is unbounded. Here is the proof of the theorem.

Proof. We will proof Idim(P) = Sdim(P) first.

We already know that Idim(P) ≤ Sdim(P). Here we just need to show that Sdim(P) ≤ Idim(P).

Assume that Idim(P) = t. Let A be the set of all minimal elements in X, and B = X/A. Take an

interval order realizer I for P. Where I = {I1, I2, . . . , It}, where I ′is are distinguishing representa-

tions. Without loss of generality, take an arbitrary Ii, let a be the real value of the least left end

point in Ii, and let b be the right most end point in Ii. For the intervals that represents vertex

x. If x ∈ A, then extend the left end point of x to a; if x is in B, extend the right end point of

x to b. Observe that the new interval representation is still an extension of P and it preserves all

the incomparabilities. And in this new representation there is no 3 + 1 in it, hence we can use a

semiorder Si to represent it. Further, for any incomparable pair (u, v), if they are ”overlapped” in

Ij , they are still ”overlapped” in Sj . If u < v in Is and v < u in Ik, then they will be ”overlapped”

in either Ss or Sk. Hence after we apply the transformation to all interval orders in I, {S1, . . . , St}

is clearly a semiorder realizer of poset P.

Then, it is sufficient to show that dim(P+1) ≤ Idim(P). Take a arbitrary interval order realizer I

for P as it was in the previous part, I = {I1, I2, . . . , It}, where I ′is are distinguishing representations.

A and B defined the same. For each Ii, where i = 1, 2, . . . , t, take a choice function fi: Ci → R,

where Ci is the set of closed intervals in Ii that represent the vertices in P. Let fi(x) = r(x) for

all x ∈ A; fi(x) = l(x) for all x ∈ B. Recall that r(x) is the right endpoint of the interval that

represents x, and l(x) is the left endpoint of the interval that represents x. Define Li = L(fi) as the

notation we used before, which is the linear extension which orders x ∈ X as the real value of each

fi(x). Take Lt+1 = L1
d(A) < L1

d(B). Clearly, {L1, L2, . . . , Lt+1} is a regular realizer for P.

In the last chapter, we proved that the bound of the regular dimension for the class of interval

order C[1, 2] is 4. Here we will give the semi dimension bound for the same class.
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B1A2 C1A3 B4A5 C4A6 B7A8 C7A9 · · ·

Figure 3.3: Block 1

A1 B2A3 C2A4 B5A6 C5A7 B8A9 · · ·

Figure 3.4: Block 2

Theorem 3.2.2. Let P = (X,P ) be a poset that is in class C[1, 2], then Sdim(P) ≤ 3

Proof. Partition P into n parts by recursively removing the minimal elements, i.e., X = A1 ∩ P1 ∩

· · · ∩An, where A1 = min(X), A2 = min(X/A1), A3 = min(X/A1/A2), . . ..

Observe that for any x ∈ Ai, y ∈ Ai+3, x < y in P . For if x| y, there must be a ∈ Ai+1 and

b ∈ Ai+2, such that lb > ra, and rb < ly. Also see that lx < la, since otherwise a would be in Ai.

Meanwhile rx > ly, then rx − lx > (rb − lb) + (ra − la) which is larger that 2, a contradiction.

Another observation would be that for every x ∈ Ai, y ∈ Ai+2 and z ∈ Ai+1, if x∥y, then x∥z.

For if x < z, lz > rx > ly for some y ∈ Ai+2, then z would be in Ai+2 which is a contradiction again.

We can now build the semiorder realizer for P.

For the first semiorder, partition Ai = Bi ∪ Ci for i = 1( mod 3), such that for all x ∈ Ci, x∥y

for some y ∈ A2, and Bi = Ai/Ci. Put the vertices into “blocks” like below (see Figure 3.3).

Since each block is an induced subposet of P with vertices in the corresponding partitions, and

it is also an interval order of height 2, then it can be represented by a semiorder, say S1.

Similarly, For the second semiorder, partition Ai = Bi ∪ Ci for i = 2(mod 3), such that for all

x ∈ Ci, x∥y for some y ∈ A2, and Bi = Ai/Ci. Put the vertices into ”blocks”.

Build corresponding S2 likewise.

For i = 0(mod 3), similarly, Ai = Bi ∪ Ci, for all x ∈ Ci, x∥y for some y ∈ A2, and Bi = Ai/Ci.

Put the vertices into ”blocks” as in Figure 3.5.

Build corresponding S3 from the block likewise. It’s clear that {S1, S2, S3} is a realizer of poset

P.

A1 A2 B3A4 C3A5 B6A7 C6A8 · · ·

Figure 3.5: Block 3
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We already know that there is a poset in the class C[1, 2] that has a semi dimension larger or

equal than 2. For example, the 1 + 3 poset. But whether the bound is 2 or 3 reminds open.

The same technique can be used to prove the following theorem.

Theorem 3.2.3. Let P = (X,P ) be a poset that is in class C[1, k], where k is a positive integer

that is larger than 1. Then Sdim(P) ≤ k + 1

We will leave the proof to the reader. The semi dimension bound for the poset class C[1, 2] is not

tight. If there is a poset in C[1, 2] that has semi dimension 3 reminds open. In the theorem above,

when k ≥ 4, the bound discovered by this method is less tight than the bound in theorem 2.8.3.

Hence we shall lower the bound of semiorder for posets in C[1, k] to such bound when k is larger

than 4.

The continuity of the semi dimension of a poset is still not clear because we cannot apply

interpolation lemma. Here is a theorem for a poset with semi dimension 1.

Recall the next lemma for the two-point removal theorem for regular dimension. The proof is

straightforward using interpolation property.

Lemma 3.2.4. Let x1, x2 be distinct elements in a poset P = (X,P ). If D(x1) ⊆ D(x2), then

dim(X,P ) ≤ dim(X − {x1, x2}, P (X − {x1, x2})) + 1.

Proof. Let t = dim(X − {x1, x2}, P (X − {x1, x2})), and let {L1, L2, . . . , Lt} be a realizer of poset

(X − x, P (X − x)). Let Mi = Li < {x2} < {x1}, for i = 1, 2, . . . , t. Let Mt+1 = D(x1) < {x1} <

D(x2) − D(x1) < {x2} < X − (D(x1) ∪ D(x2)). It’s easy to check that {M1,M2, . . . ,Mt+1} is a

realizer of P.

The following lemma for semi dimension is an immediate consequence.

Lemma 3.2.5. Let x1, x2 be distinct elements in a poset P = (X,P ). If D(x1) ⊆ D(x2), then

Sdim(X,P ) ≤ Sdim(X − {x1, x2}, P (X − {x1, x2})) + 1.

The proof is almost the same except here we construct a semi realizer, here we do not actually

use interpolation property, we just simply add the two maximal elements to the right end of each

semiorder representation. The additional semiorder is constructed in the same way.

Here is another removable conjecture on special a condition derived from the regular dimension.

Lemma 3.2.6. Let x be a minimal elements in a poset P = (X,P ), and y is a maximal element of

P. If x∥y, then Sdim(X,P ) ≤ Sdim(X − {x, y}, P (X − {x, y})).
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Proof. Let t = Sdim(X − {x, y}, P (X − {x, y})), and let {S1, S2, . . . , St} be a semi realizer of poset

(X−{x, y}, P (X−{x, y})). For each Si where i = 1, 2, . . . , t, take a semiorder Ii as a representation

of Si. Since P is a finite poset. We can find a unit interval representation for x and y, such that

x < Si < y, for each i = 1, 2, . . . , t. It’s clearly a semiorder since each interval is of length 1. Label

such new semiorder Mi. Repeat this for all Mis. Then, take the last semiorder Mt in the realizer, let

Mt+1 = D(y) < y < St −D(y)−U(x) < x < U(x). In the representation of St, we push all the unit

intervals in D(y) to the far left and the ones in U(x) to the far right, we then insert two unit intervals

for x and y. Hence Mt+1 is a semiorder by definition. Finally, it’s clear that {M1,M2, . . . ,Mt+1} is

a semi realizer of P.

Theorem 3.2.7. Let P = (X,P ) be a poset. let x ∈ X. If Sdim(X − x, P (X − x)) = 1, the

Sdim(P) ≤ 2.

Proof. Let S0 be one of the semiorder that represent (X − x, P (X − x)). Let [au, bu] be the unit

interval that represent u in the semiorder for all u ∈ X. Notice that au, bu are real numbers. Let

the most left endpoint to be a0, and the right most endpoint to be b0. Let l0 = b0 − a0. Let U(x)

and D(x) be upset and downset of x, let inc(x) be the set of vertices in X that are incompareble to

x.

We will build the two semi realizers from S0. In S1, for each u ∈ D(x), assign u an new semiorder

[au− l0− 3, bu− l0− 3] and assign [a0− 2, a0− 1] to x. We basically push all the downset the the far

left, this adds the the relation to the poset (u, i) where for all u in D(x) and for some i in inc(x).

Notice that this will not create any alternating cycles. Similarly, in S2, assign v an new semiorder

[av + l0 + 3, bv + l0 + 3] and assign [b0 + 1, b0 + 2] to x. It’s easy to check that {S1, S2} is a realizer

of P.

The technique is similar to the proof of continuity of regular dimension, where we break the last

linear extension into two. Here we break the semiorder representation into two semiorders. We used

”brute force” for the proof. However, we can build a more subtle realizer for the poset. Since we

have the representation for the poset with semi dimension 1. Without loss of generality, assume it’s

a distinguished representation. Take the rightmost unit interval [aw, bw] in the downset of x, all the

unit intervals have the right endpoint that is less than aw is in the downset. Hence we can just shift

the whole downset by 1 + ϵ, and then assign the interval [aw, bw] to x. This will be equivalent to the

S1 we build in the proof. Similarly proof can be done for S2 by symmetry.

The following is a straightforward consequence of the theorem above.
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Lemma 3.2.8. Let P = (X,P ) be a poset. If Sdim(X − x, P (X − x)) = t, then Sdim(X,P ) ≤ 2t.

This is a very weak bound when t is large. If we can ”fit” in x in every semiorder in the realizer

for the poset (X − x, P (X − x)), then the dimension of poset |mathbfP would be t+ 1. But in the

worst-case scenario, we can not interpolate x in any of the semiorders, so we would need to break

all of them into two from the method above. This is not ”semi-oeder” efficient at all, since we just

need one additional semiorder for all the relations between x and the other vertices, the purpose of

the rest semiorders are just to ”fit” in x without changing the relations between the other vertices.

Here is a theorem that can be potentially useful to solve the continuity of semi dimension.

We begin with an easy lemma.

Lemma 3.2.9. Let P = (X,P ) be a semiorder. Let I be a semiorder representation of P, such that

the interval represents x ∈ X is I(x) = [ax, ax + 1]. Let m > 0 and Im be an interval representation

of X such that Im(x) = [max,m(ax + 1)]. Then Im is a semiorder represetation of P.

Proof. Since I is a representation of P, then x < y in P if and only if ax + 1 < ay. Clearly,

m(ax + 1) < may if and only if ax + 1 < ay for any m > 0. And in the representation Im, each

interval has the same length m, hence Im is a semiorder representation of poset P.

Theorem 3.2.10. If P = (X,P ) is a semiorder. Then P has a representation I such that, for all

x ∈X, |I(x) − k| < ϵ for somt integer k and any ϵ > 0.

This theorem is basically saying that for any semiorder, we can have a representation of such

semiorder where all of the endpoints of the unit intervals are ”ϵ − close” to some integers. Here is

the proof.

Proof. Take a distinguished representation of poset P, fix an ϵ. PartitionX into antichainsA1, A2, . . . , Am

by taking the minimal elements successively. There is an interval [a1, b1] where a1 < b1, such that

ax < a1 and bx > b1 for each x ∈ A1, where [ax, bx] is the unit interval in the representation I

for x (see Figure 3.6. Let l = 1000n/ϵ. For all endpoint that are larger that b1, add l to the real

number that represent the endpoint. Hence each interval in the part A1 becomes [ax, bx + l], where

x ∈ A1. Meanwhile, for the interval that represents points in the other parts such as [ay, by] where

y ∈ A2 ∪ A3∪, . . . ,∪Am. It becomes [ay + l, by + l]. Similarly, we find the interval [a2, b2] in the

part A2, and add l the endpoints that have real value that is bigger than b2. After we do this for

all the parts, it’s easy to check that we did not change the relation P between the pair of vertices.

We will obtain a semiorder representation of P since each of the interval has length 1 + l. Finally,
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A1

A2, A3, . . . , An

a1 b1

Figure 3.6: Stretch the intervals

divide the endpoints by l + 1. By Lemma 3.2.9, the new interval representation is a semiorder

representation of P with unit length, let the most left endpoint to be 0, it’s easy to check that for

all x ∈X, |I(x) − k| < ϵ for some integer k.

The following is another interesting topic, split orders and split semiorders.
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x1

x2

x3

x4

P

Figure 3.7: Split semiorder example

3.3. SPLIT ORDERS AND SPLIT SEMIORDERS

3.3.1 Introduction

We call a poset P a split interval order if there exists a function I that assigns a closed interval

Ix = [ax, bx] and a set F = {fx : x ∈ X} of real numbers to each x ∈ X, we will just call this set

middle points, such that:

1. x ∈ X, ax < fx < bx for all x ∈ X, and

2. For all x, y ∈ X, x < y in P if and only if fx < ay and bx < fy in R.

We call (I, F ) a representation of P

3.3.2 Example

Here are some examples of split semiorders. (see Figure 3.7)

In the split semiorder representation of P = (X,P ), there are 4 vertices {x1, x2, x3, x4}, the

middle points of the interval represent the fxi
for each xi. By the definition of the relation of split

semiorders, x4 < x3 since ax3
> fx4

and fx3
> bx4

. x2 ≮ x1 since bx2
≮ fx1

even though fx2
< ax1

;

and clearly x1 ≮ x2, hence we have x1∥x2 in P .

3.3.3 Split Semiorders

A poset P = (X,P ) is a split semiorder when there exists a function U that assigns a closed real

interval U(x) = [ax, ax + 1] and a set F = {fx : x ∈ X} of real numbers to each x ∈ X, such that:

1. x ∈ X, ax < fx < ax + 1 for all x ∈ X, and

2. For all x, y ∈ X, x < y in P if and only if fx < ay and ax + 1 < fy in R.

It is a special case of interval orders where the length of the interval is unit length.

54



There are also bitolerance orders and tolerance orders that are also special poset classes. But

here, we will try to focus on split interval orders and split semiorders.

Here are several useful theorems proved by Fishburn, Trotter in [18].

Theorem 3.3.1. Every split semiorder and split interval order has a distinguishing representation.

We say a poset P = (X,P ) has a distinguishing representation (I, F ) is |{ax : x ∈ X} ∪ {bx :

x ∈ X} ∪ {fx : x ∈ X}| = 3|X|. Which just means that all the end point and the middle point has

different real values.

The other theorem in the same paper gives the forbidden structures for split interval orders and

split semiorders.

Theorem 3.3.2. m + n is minimally forbidden for split semiorders if and only if it is 2 + 3 or

1 + 4; m + n is minimally forbidden for split interval orders if and onlu if it is 3 + 3.

In the paper, the authors ask the open question for the characterization of split semiorders that

have (U,F ) representations in which all splitting points lie in a central range of their interval’s

midpoints such as |f(x) − a(x) − 1
2 | ≤ λ for fixed λ in [0, 1/2).

The λ = 0 case is trivial. Since in that case, all interval representation would have unit interval

length and the middle point would be exactly the midpoint. This gives us a semiorder.

In fact, for each rational number λ1 and λ2, where λ1 < λ2, let Q1 and Q2 be the class of poset

where all splitting points lie inside [m − λ1,m + λ1] and [m − λ2,m + λ2] respectively. No matter

how close λ1 and λ2 is, we can give a split semiorder that is in the class Q2 but not in the class Q1.

[todo]

In [17], Fishburn and Trotter proved the following theorem.

Theorem 3.3.3. If P is a split semiorder, then dim(P) ≤ 6

Robinovitch gives examples of semiorders of linear dimension 3 [38], but we don’t know whether

there are split orders with dimension 6.

The authors also mentioned the following theorem in the paper.

Theorem 3.3.4. If P = (X,P ) is a split semiorder, then Idim(P) ≤ 2

Proof. The proof is straightforward. We take a distinguishing split semiorder representation I.

Where each x ∈ X is represented by a close interval [ax, bx] and a point fx, where ax < fx < bx.

Let I1 be an interval order represent P, wherer I1x = [ax, fx]. Let I2 be an interval order represent

P, wherer I2x = [fX , bX ]. Clearly {I1, I2} is a interval realizer of split semiorder P.
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From Theorem 3.3.3 we know that split semiorder has semi dimension less or equal than 6. But

can we improve it? Or can we find a split semiorder that has semi dimension 6? In fact, the split

semiorder with the largest semi dimension we could find is 3 so far, hence:

3 ≤ max{Sdim(P : P is a split semiorder} ≤ 6
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CHAPTER 4

RAMSEY RESULTS ON POSETS

4.1. INTRODUCTION

Ramsey theory is a branch of mathematics that focuses on the appearance of order in a sub-

structure given a structure of a known size. Problems in Ramsey theory usually ask: is there exists

a large enough structure to guarantee a particular one? If there is, how large does the structure

need to be?

Ramsey theory is very interesting. It also has real applications in the fields of communications,

information retrieval in computer science, and decision making. [8]

Here is the Ramsey’s original version concerning complete graphs.

4.1.1 Ramsey’ original theorem

Theorem 4.1.1. For every r ∈ Z there exists an n ∈ Z such that every graph with at least n vertices

contains either Kr or K̄r as an induced subgraph.

4.1.2 An alternative statement and Ramsey number

Usually, we demonstrate the theorem for two colors, say blue and red, let r and s be two positive

integers. Ramsey’s theorem states that there exists a least positive integer, denoted by R(r, s), such

that for any complete graph Kn where n > R(r, s), if we color all the edge of Kn by red or blue,

there is a monochromatic read Kr or a blue Ks as an induced subgraph of Kn. Here R(r, s) is the

Ramsey number.

4.1.3 Example

Here are some examples.

Take a complete graph with six vertices (see Figure 4.1). No matter how you color the graph

with red or blue, there will always be a monochromatic triangle (K3). In fact, 6 is the least number
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Figure 4.1: K6

of vertices for a complete graph to guarantee that, hence the Ramsey number R(3, 3) = 6.

A summary of known results of R(r, s) can be found online, such as R(3, 4) = 9, R(4, 4) = 18.

In fact, there are not too many of them are known, instead, when s and r get large, we might only

be able to find a bounds for the Ramsey numbers so far. Such as R(3, 10) is in [40, 43], R(5, 5) is in

[43, 49], R(10, 10) is in [798, 23556]. As you can see, the bound of Ramsey number became hopelessly

large even when r = s = 10.

In this article, we focus more on Ramsey problems concerning existence. However, the Ramsey

number is convenient for proving the Ramsey’s original theorem. Here is the proof of the theorem

for the 2-color case.

Proof. We proceed by induction. From the definition of Ramsey number, it’s clear that R(n, 2) = n,

since K2 is just an edge. We then prove that R(s, r) (there is a red Ks or a blue Kr as an induced

subposet) exists by finding an explicit bound for it by the inductive assumption that R(r−1, s) and

R(r, s− 1) exits. It would be sufficient to prove that:

R(r, s) ≤ R(r − 1, s) +R(r, s− 1)

Consider the complete graph with R(r− 1, s) +R(r, s− 1) vertices and color all it’s edges by red

or blue randomly. Pick a vertex x from it, partition other vertices into 2 sets A and B. where (x, v)

is blue for all v ∈ A and (x, u) is red for all u ∈ B. Since |A| + |B| + 1 = R(r − 1, s) + R(r, s− 1),

then |A| > R(r − 1, s) or |B| > R(r, s− 1). In the first case, if there is a red Ks in A, then we are

done; if there is a blue Kr−1 in A, then |A| ∪ x has a blue Kr. Similarly, for the later case, if there

is a blue Kr in B, then we are done. Otherwise, there is a red Kr−1 in B, hence B ∪ x is a red Kr.

This completes the proof.
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4.2. RAMSEY THEOREM WITH MULTI-COLOR

A multi-color Ramsey number is a Ramsey number using three or more colors, The only two

non-trivial Ramsey numbers for which the exact value is known, which are R(3, 3, 3) = 17 and

R(3, 3, 4) = 30. The existence of R(m,n, s) for any positive integer m,n, s is an easy consequence

of the Lemma 4.7.1 in the Section 4.5.
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4.3. PRODUCT RAMSEY THEOREM

Here is the original product Ramsey theorem by Graham, Rothschild and Spencer [22].

Theorem 4.3.1. Let k1, k2, . . . , kt be nonegative integers. Let r and t be positive integers. Let

m1,m2, . . . ,mt be integers with mi ≥ Ki for i = 1, 2, . . . , t. Then there exists and integer R =

R(r, t; k1, k2, . . . , kt;m1,m2, . . . ,mt) so that if X1, X2, . . . , Xt are sets and |Xi| ≥ R for i = 1, 2, . . . , t,

then for every function f :
(
X1

k1

)
×
(
X2

k2

)
× · · · ×

(
Xt

kt

)
→ [r], there exist an element α ∈ [r] and subsets

Y1, Y2, . . . , Yt of X1, X2, . . . , Xt, respectively, so that |Yi| ≥ mi for i = 1, 2, . . . , t and f maps every

elements of
(
Y1

k1

)
×
(
Y2

k2

)
× · · · ×

(
Yt

kt

)
to α.

Here is an alternative statement [23] that is equal to the theorem above but in a grid perspective.

Theorem 4.3.2. For all k > 0, s1, s2, . . . , sk > 0, a1, a2, . . . , al > 0, and all r > 0, there exist

n1, n2, . . . , nk > 0 so that, if |Bi| ≥ ni and 1 ≤ i ≤ k, and [B1]
s1 × [B2]

s2 ×· · ·× [Bk]
sk is r−colored,

then there exist Ai ⊂ Bi and |Ai| = ai so that [A1]
s1 × [A2]

s2 × · · · × [Ak]
sk is monochromatic.

Notice here, [Bi] is a set with Bi elements, and [Bi]
si is the subset of [Bi] that has si elements.

[B1]
s1 × [B2]

s2 × · · · × [Bk]
sk is a k dimensional grid.

Proof. We proceed by induction on k. When k = 1, the theorem is equivalent to Ramsey’s original

theorem, which is proven. Fix s1, s2, . . . , sk > 0, a1, a2, . . . , al > 0, r and define correspondent

n1, n2, . . . , nk−1 to meet the condition of the theorem. Then define nk,M , where M = rT , and

T =
(
n1

s1

)
· · ·

(
nk−1

sk−1

)
. such that if |B| ≥ nk, for every M coloring of subset of [nk] with sk elements,

there is a subset A of B, so that every [A]
sk is of the same color.

Then let |Bi| = ni, if |Bi| > ni, take a subset as the new Bi with ni elements. Let χ be an

r-coloring of [B1]
s1 × [B2]

s2 × · · · × [Bk]
sk . Let χ′ be a coloring on [Bk]

sk by χ′(E) = χ′(E′) if and

only if

χ(S1, S2, . . . , Sk−1, E) = χ(S1, S2, . . . , Sk−1, E
′) for all Si ∈ [Bi]

sk .

Observe that χ′ is an M − coloring, then there is an Ak ⊂ Bk, where |Ak| = ak, such that [Ak]
sk

is monochromatic under χ′. Hence there is an χ′′ for Si ∈ [Bi]
si , such that

χ′′(S1, S2, . . . , Sk−1) = χ(S1, S2, . . . , Sk−1, E) for all E ∈ [Ak]
sk .

Then by induction, there exist A1, A2, . . . , Ak−1 so that [A1]
s1 × [A2]

s2 × · · · × [Ak−1]
sk−1 is

monochromatic under the color χ′′, since χ is a r − color, hence [A1]
s1 × [A2]

s2 × · · · × [Ak]
sk is

monochromatic under χ.
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4.3.1 Boolean Dimension

Boolean dimension is another interesting topic, it was first introduced by Gamnosi, Nešetřil and

Talamo [19]. Here is an introduction.

From the previous chapters, we know that any poset can be expressed as an intersection of linear

orders. Let P = (X,P ) be a poset. For a positive integer d, let 2d denote the set of all possible 0−1

strings of length d. We also call such string bit strings. Let B = {O1, O2, . . . , Od} be a family of

linear orders on the ground set of P. One thing that needs to be noticed is that those linear orders

need not to be linear extensions of P . We define a function ϕ : 2d → {0, 1}. We form a bit string

b(x, y,B) of length d which has value 1 in the ith coordinate if and only if x < y in Oi. The pair

(B, ϕ) is a Boolean realizer when for each distinct vertices x, y of poset P, x < y in P if and only of

ϕ(b(x, y,B)) = 1. The Boolean dimension of poset P is the least positive integer d for which P has a

Boolean realizer (B, ϕ) with |B| = d. We denote the Boolean dimension of any poset P by bdimP .

It is clear that for any poset P, bdim(P) ≤ dim(P). To prove this, simplit take a realizer

R = {L1, L2, . . . , Ld} of poset P, which is also a family of linear orders by the definition. Take

function ϕ where ϕ only maps the bit string with length d: {1, 1, . . . , 1} to 1, and other bit strings

to 0.

It is trivially to see that bdim(P) = 1 if and only if P is a chain. It is an easy exercise to

show that bdim(P) = 2 implies that dim(P) = 2. Gambosi, Nešetřil and Talamo [20] showed that

dim(P) = 3 if and only if bdim(P) = 3.

We know that the dimension of standard example Sn is n. Here is an interesting theorem of the

Boolean dimension of the standard example.

Theorem 4.3.3. Let Sn be the standard example with 2n vertices. Then bdim(Sn) = n when

2 ≤ n ≤ 4 and bdim(Sn) = 4 when n ≥ 4.
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4.4. MOTIVATION

The original motivation of this paper was two questions of Nešetřil and Pudlák from 1986. In

their paper [33], they introduced the notion of the Boolean dimension of partially ordered sets (see

the first paragraphs of Section 4.6). They proved an upper and a lower bound based on the number

of points of the poset. At the end of their note they asked two questions. They did not voice

their thoughts about which way the questions would go; nevertheless we rephrase the questions as

“statements” for easier discussion.

Statement 4.4.1. The Boolean dimension of planar posets is unbounded.

Note that this is the opposite of what many researchers, possibly including Nešetřil and Pudlák,

conjectured. For example in [7], the authors state that it is clear from the presentation of the

question in [33] that they believed the answer should be “no”.

We will say that a class C of posets has the Ramsey-property, if for all r and P ∈ C, there is a

poset Q ∈ C, such that for every r-coloring of the comparabilities of Q, there is a subposet Q′ of Q

that is isomorphic to P such that every comparability of Q′ is of the same color.

Nešetřil and Rödl [34] proved that the class of all posets has the Ramsey property. (In fact,

this is just a consequence of their much stronger theorem.) Later we will show that this special

consequence is also a rather direct consequence of the so-called Product Ramsey Theorem.

Nešetřil and Pudlák asked a second question in their paper, which we also phrase as a statement.

Statement 4.4.2. The class of planar posets has the Ramsey property.

Nešetřil and Pudlák pointed out that Statement 4.4.2 implies Statement 4.4.1, though they did

not include the proof in their short article. We provide a proof of this implication in Section 4.6.

We do this, after we set up the basic framework of the Ramsey-property for relational sets, and we

prove a useful general lemma in Section 4.5.

We take a slight detour in Section 4.7 to discuss some related statements for planar graphs.

When we started to work on present research, we guessed both Statement 4.4.1 and 4.4.2 are

false. Since we did not know how to approach the more general question, we decided we would

attempt to disprove Statement 4.4.2. One natural way to do that would be to construct a planar

poset P for which there is not an appropriate Q required by the Ramsey-property. A simple choice

for a planar poset would be a 2-dimensional grid. However, we quickly realized that that is not a

good example. In fact, we proved the following.
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Proposition. For each t positive integer, the class of t-dimensional grids have the Ramsey Property.

As we will see in Section 4.8, this proposition is a relatively simple consequence of the Product

Ramsey Theorem, and easily implies that the class of all posets has the Ramsey-property.

We considered developing a tool that would be more powerful than the Product Ramsey Theorem.

The result of this attempt is the following conjecture.

Conjecture. For all t, r, m, and l there exists an n such that for all r-colorings of the mt subposets

of nt, there is a monochromatic lt subposet L. That is, every mt subposet of L receives the same

color.

In Section 4.9, we prove the conjecture for the special case t = 2.

Theorem. For all r, m, and l there exists an n such that for all r-colorings of the m2 subposets

of n2, there is a monochromatic l2 subposet P . That is, every m2 subposet of P receives the same

color.

In Section 4.10 we, again, use the Product Ramsey Theorem to prove the following, somewhat

counterintuitive result. This is a generalization of a classical result by Paoli, Trotter, and Walker

[35].

Theorem. Let X be a poset and let M be a linear extension of X. Furthermore, let k be a positive

integer. Then there exists a grid Y ∼= nt such that for all L1, L2, . . . , Lk linear extensions of Y ,

there is a subposet X ′ of Y such that

• X ′ ∼= X, evidenced by the embedding f : X → Y ;

• for all i = 1, . . . , k, and for all a, b ∈ X, we have a < b in M if and only if f(a) < f(b) in Li.

We note that, although some of the problems studied may be interesting for infinite posets, in

this paper every poset is finite. In fact, we will omit the word finite, and even when we say, for

example “class of all posets”, we mean “class of all finite posets”.
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4.5. RELATIONAL SETS

First, we define the Ramsey property of general classes of sets with relations to prove a general

lemma that shows that the number of colors (as long as it is at least 2) does not matter.

Let X be a set, and r a positive integer. An r-coloring of X is a function c : X → [r], where

[r] = {1, . . . , r}. The elements of [r] are called colors. Indeed, any function g : X → S where |S| = r

can be considered an r-coloring. A relation R on X is a subset R ⊆ X ×X. If X ′ ⊆ X, we use the

usual notation c|X′ and R|X′ for the restriction of c and R (respectively) to the subset X ′.

Let C be a class of ordered pairs (X,R), where X is a set, and R is a relation on X. We say that

C has the Ramsey Property, if for all (X,R) ∈ C and for all r positive integer, there exists (Y, S) ∈ C

such that for every r-coloring c of S, there exists a subset Y ′ ⊆ Y such that if S′ = S|Y ′ , then

(Y ′, S′) ∼= (X,R), and for all a, b ∈ S′, we have c|S′(a) = c|S′(b). Less formally C has the Ramsey

property, if for all X ∈ C there is a (larger) Y ∈ C, such that if we r-color the relations of Y, we

will find a monochromatic subrelation X′ of Y that is isomorphic to X. Monochromatic means that

every relation of X′ is assigned the same color. The set (with the relation) Y is called the Ramsey

set of X.

With a slight abuse of notation, we will often write X for the pair X = (X,R).

After this definition one might think that the classical theorem of Ramsey could be rephrased

by perhaps saying that the set of (complete) graphs have the Ramsey Property, using the usual

definition of a graph as an irreflexive, symmetric relation. This is, however, not the case. Clearly,

one can 2-color the relations of a graph by coloring the two directions of an edge opposite colors for

each edge, and then no monochromatic edge will even be found.

On the other hand, it is possible to state Ramsey’s Theorem with this terminology: it is the

statement that the class of linear orders has the Ramsey Property. This will be a special case of our

Proposition 4.8.2.

The following lemma is often useful when one is trying to prove that a class has the Ramsey

Property.

Lemma 4.5.1. Suppose C has the following property: for all X ∈ C there is a Y ∈ C and a positive

integer r0 ≥ 2, such that if we r0-color the relations of Y , we will find a monochromatic subrelation

X ′ of Y that is isomorphic to X. Then C has the Ramsey Property.

Proof. Let C be a class, X ∈ C, and r a positive integer; we need to show that a Ramsey set Y can

be found. We will do that by induction on r. If r ≤ 2, then by the conditions there exists Y and
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r0 ≥ 2. Since r ≤ r0, an r-coloring is a special r0-coloring, so the statement follows.

Now let r > 2, and assume the statement is true for r− 1. So there exists Y ∈ C, such that if we

r − 1-color the relations of Y , there is a monochromatic subrelation X ′ of Y that is isomorphic to

X.

We can use the hypothesis again for Y ∈ C and 2-colors. There exists a Z ∈ C such that any

2-coloring of the relations of Z yields a monochromatic copy of Y . We claim that Z is a correct

choice for the original set X and r colors.

To see this, consider an r-coloring c of the relations of Z. Now recolor Z with only 2 colors

based on the c: if c(x) = 1, use the color blue; otherwise use the color red. We know Z yields

a monochromatic Y . If Y is blue, then we notice that X is a subrelation of Y , so we found a

monochromatic X. If Y is red, then we revert to c to color the relations of Y with r− 1 colors, and

we find the monochromatic X this way.

We assume the readers are already familiar with basic notions of partially ordered sets and graph

theory. We refer the reader to the monograph of Trotter [48], and the textbook of Diestel [10].
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4.6. TWO QUESTIONS OF NEŠETŘIL AND PUDLÁK

Recall that the Iverson bracket is a notation that converts a logical proposition to 0 or 1: [P ] = 1

if P is true, and [P ] = 0, if P is false.

Let P be a poset, and let (L, S) be a pair where L = {L1, . . . , Ld}, (d ≥ 1) is a set of linear orders

of the elements of P , and S is a set of binary (0–1) strings of length d. For two distinct elements

x, y ∈ P , let Pi(x, y) be the proposition that x < y in Li. We call (L, S) a Boolean realizer, if for

any two distinct elements x, y, we have x < y in P if and only if [P1(x, y)][P2(x, y)] . . . [Pd(x, y)] ∈ S.

We call this binary string the signature of the pair (x, y). The number d is the cardinality or size

of the Boolean realizer. The minimum cardinality of a Boolean realizer is the Boolean dimension of

P , denoted by dimB(P ).

We note that there are minor variations in the the definition of Boolean realizers in the literature.

(See next paragraph for citations.) With our definition, antichains are of Boolean dimension 1 (one

can take S = ∅), chains are of Boolean dimension 1, and in general, dimB(P ) ≤ dim(P ), because a

Dushnik–Miller realizer P can be easily converted into a Boolean realizer of the same size by taking

S = {11 . . . 1}.

Boolean dimension and structural properties of posets have seen an increased interest in recent

years, e.g. in [14], the authors showed that posets with cover graphs of bounded tree-width have

bounded Boolean dimension. Further, in [3], the authors compared the Dushnik–Miller dimension,

Boolean dimension, and local dimension in terms of tree-width of its cover graph, and in [31], the

authors studied the behavior of Boolean dimension with respect to components and blocks.

As mentioned earlier, the following statement appeared without proof in [33]. We include a proof

for completeness.

Proposition 4.6.1. Statement 4.4.2 implies Statement 4.4.1.

Proof. Assume that Statement 4.4.2 is true, but the Boolean dimension of planar posets is at most

k. Let P be a planar poset whose Dushnik–Miller dimension is greater than k (such a poset is

well-known to exist). By Statement 4.4.2, there is a planar poset Q such that any 2k-coloring of the

comparabilities of Q yields a monochromatic P .

Let (L, S) be a Boolean realizer of size k ofQ, and let L = {L1, . . . , Lk}. Color the comparabilities

of Q with binary strings of length k as colors: if x < y in Q, let the color of (x, y) be the signature

of (x, y).

Now let P ′ be a subposet of Q such that P ′ ∼= P and every comparable pair of P ′ is of the same
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color, say d1d2 . . . dk (where di is the ith digit of the binary string). Let Mi = Li if di = 1, and let

Mi = Ld
i (the dual of Li), if di = 0. It is routine to verify that {M1, . . . ,Mk} is a realizer of P ,

contradicting dim(P ) > k.
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4.7. RAMSEY PROPERTY OF PLANAR GRAPHS

We noted earlier that our general notion of Ramsey Property is not very natural for studying

graphs, because we can color the two directions of an edge with different colors. So it is natural to

redefine the Ramsey Property specifically for classes of graphs.

We say that a class of graphs C has the Ramsey Property, if for all G ∈ C and for all r pos-

itive integers, there exists H ∈ C such that for every r-coloring of E(H), there exists an induced

subgraph G′ of H such that G′ ∼= G, and every edge of G′ is of the same color. We use the term

“monochromatic” as before, and we call the graph H the Ramsey graph of G.

Ramsey’s Theorem can be restated by saying the class of complete graphs has the Ramsey

Property. The fact that the class of all graphs has the Ramsey Property is a more difficult statement,

and it was proven around 1973 independently by Deuber [9], by Erdős, Hajnal and Pósa [13], and

by Rödl [41].

We note that as for general relations, the analogous lemma is true and can be proven exactly the

same way.

Lemma 4.7.1. Suppose C, a class of graphs, has the following property: for all G ∈ C there

is a H ∈ C and a positive integer r0 ≥ 2, such that if we r0-color the edges of H, we will find a

monochromatic induced subgraph G′ of H that is isomorphic to G. Then C has the Ramsey Property.

Motivated by our problem on planar posets, we were curious whether the class of planar graphs

has the Ramsey Property. This is not the case. In fact, as Axenovich et al. [2] pointed out, a result

of Gonçalves [21] and the Four Color Theorem imply that if G has an appropriate H as in the

definition, then G must be planar bipartite. But to just prove that the class of planar graphs does

not have the Ramsey Property, we only need elementary tools.

Proposition 4.7.2. The class of planar graphs do not have the Ramsey Property.

Proof. Let G be a planar graph that is not bipartite. Now suppose that the class of planar graphs

has the Ramsey Property. Then there exists a planar Ramsey graph H for G. Since χ(H) ≤ 6,

one can decompose the edge set of H into
(
6
2

)
bipartite graphs. (These numbers can obviously be

improved.) Color the edges of H based on which of these bipartite graphs they are in. Let G′ ∼= G

be a monochromatic induced subgraph of H. Since the edges of G′ use a single color, G′ is bipartite,

a contradiction.
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4.8. RAMSEY PROPERTY OF GRIDS

We will use k to denote the k-element chain, and kt for the poset that is the product of the k-

element chain by itself t times. In more details, suppose the ground set of k is X = {x1, x2, . . . , xk}

with x1 < x2 < · · · < xk. Then the elements of kt are t-tuples (xi1 , xi2 , . . . , xit) with 1 ≤ il ≤ k for

all l, and (xi1 , . . . , xit) ≤ (xj1 , . . . , xjt) in kt if and only if il ≤ jl for all l.

This poset will be called the kt grid. The number t is called the dimension of the grid. This

coincides with the Dushnik–Miller dimension of the poset for k ≥ 2, so it will not cause confusion.

Let the ground set of the poset nt be the set of t-tuples of numbers from [n]. Let S1, S2, . . . , St

be nonempty subsets of [n]. The subposet induced by the elements of S1×· · ·×St is called a subgrid

of nt. Of course, every subgrid is a subposet that is a grid, but the converse is not true.

We will use the Product Ramsey Theorem, which can be phrased with our terminology as follows.

Theorem 4.8.1 (Product Ramsey Theorem [23]). For all t, r, m, and l there exists an n such that

for all r-colorings of the mt subgrids of nt, there is a monochromatic lt subgrid L. That is, every

mt subgrid of L receives the same color.

A relatively easy consequence is the following proposition.

Proposition 4.8.2. For each t positive integer, the class of t-dimensional grids have the Ramsey

Property.

Before we present a proof, let us recall some classical results of poset theory. An st grid P has

Dushnik–Miller dimension at most t. As such, it has a realizer {L1, . . . , Lt}, which can be used to

embed P into Nt: indeed, the ith coordinate of the element x can be chosen to be the position of x

in Li (that is, the size of the closed downset of x in Li). In fact, this is an embedding into lt, where

l = st. It also has the property that for each pair of integers i, j with 1 ≤ i ≤ t and 1 ≤ j ≤ l, there

is exactly one x ∈ P such that the ith coordinate of x in the embedding is j.

Such embeddings will be called “casual”. Here is the precise definition. Let t, s be positive

integers, and let l = st. Let P = st, and Q = lt. We define the usual projection functions: for

x ∈ Q and 1 ≤ i ≤ t, the positive integer Proji(x) is the position (size of closed downset) of the ith

coordinate of x in l. An embedding f : P → Q is called casual, if for all i, j with 1 ≤ i ≤ t and

1 ≤ j ≤ l, there is exactly one x ∈ P such that Proji(f(x)) = j.

So in a casual embedding there are no ties in coordinates. Note that we also require that there

are no “unused” coordinates. So, a casual embedding of st into a grid lt always has the property

that l = st.
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The existence of a casual embedding is typically proven non-constructively, though it is not

difficult to construct one.

Now we are ready to prove Proposition 4.8.2.

Proof. Let t, r be positive integers. Let s be a positive integer, and P be an st grid. We will show

that a Ramsey poset Q exists for P .

If s = 1, the theorem is trivial, so we assume s ≥ 2.

We invoke the Product Ramsey Theorem for t and r as fixed above, for m = 2, and l = st, to

get a number n. We claim that Q = nt is a Ramsey poset for P .

To show this, we consider a coloring c : C(Q) → [r] of the comparabilities of Q; here C(Q)

denotes the set {(a, b) ∈ Q : a and b are comparable}. We will use this to define an r-coloring of

the 2t subgrids of Q as follows. Let M be a 2t subgrid, with the least element a, and the greatest

element b. Then we assign the color c(a, b) to this subgrid.

By the Product Ramsey Theorem, a monochromatic lt subgrid exists; let this be called R. Let

P ′ be a casually embedded copy of P into R; we claim P ′ is monochromatic. To see this, let a < b

in P ′. Since a and b have distinct ith coordinates for each i = 1, . . . , t in R (and Q), they determine

an M(a, b) 2t subgrid of R (and Q). Due to the choice of R by the Product Ramsey Theorem, each

M(a, b) has the same color r0, which, in turn, implies c(a, b) = r0.

We would like to note that Ramsey’s classical theorem is a special case of Proposition 4.8.2 when

t = 1.

The special case of the theorem of Nešetřil and Rödl now follows easily.

Corollary 4.8.3. The class of all posets has the Ramsey Property.

Proof. Let P be a poset. It is well-know that every poset is a subposet of a large enough Boolean

lattice. The Boolean lattice of dimension d is the grid 2d.

So first find a Boolean lattice B such that P is a subposet of B. Then use Proposition 4.8.2 to find

a grid Q, a Ramsey Poset for B. A monochromatic subposet B clearly contains a monochromatic

P , so the theorem follows.

Furthermore, since every poset of Dushnik–Miller dimension d can be embedded into kd for

sufficiently large k, the following corollary is immediate.

Corollary 4.8.4. The class of posets of dimension at most d has the Ramsey Property.
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(Of course, the corollary remains true if one replaces “at most” with “exactly”.)

Unfortunately, none of the tools used here seem to be capable of grasping the complexities of

planar posets, so the truth value of Statement 4.4.2 remains open.
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4.9. RAMSEY THEORY OF GRID SUBPOSETS

During this research, we found a statement that would have powerful consequences. It is not a

straight generalization of the Product Ramsey Theorem, but it seems to be more useful in many

cases. Although the authors disagree on the truth value, for easier discussion we state it as a

conjecture.

Conjecture 4.9.1. For all t, r, m, and l there exists an n such that for all r-colorings of the mt

subposets of nt, there is a monochromatic lt subposet L. That is, every mt subposet of L receives

the same color.

Note that the difference between the Product Ramsey Theorem and this conjecture is that this

conjecture replaces “subgrids” in the Product Ramsey Theorem with the more general “subposets”.

We were able prove this conjecture for t = 2.

Theorem 4.9.2. For all r, m, and l there exists an n such that for all r-colorings of the m2

subposets of n2, there is a monochromatic l2 subposet P . That is, every m2 subposet of P receives

the same color.

We break up the proof into smaller parts. The following lemma is interesting in its own right.

Lemma 4.9.3. Let P be an s2 grid, whose ground set is represented by ordered pairs (i, j), with 0 ≤

i, j ≤ s− 1. Then P has only one realizer with two linear extensions. Namely, one linear extension

of this realizer is the lexicographic order on the pairs of P , and the other is the colexicographic order

(the coordinates are considered right-to-left).

Proof. Define the following two sets of ordered pairs of incomparable elements in P .

I1 =
{(

(1, 0), (0, s− 1)
)
,
(
(2, 0), (1, s− 1)

)
, . . . ,

(
(s− 1, 0), (s− 2, s− 1)

)}
I2 =

{(
(0, 1), (s− 1, 0)

)
,
(
(0, 2), (s− 1, 1)

)
, . . . ,

(
(0, s− 1), (s− 1, s− 2)

)}
Now let (x1, y1) ∈ I1 and (x2, y2) ∈ I2 be two arbitrary elements of these sets. With appropriate

choices of i, j ∈ {0, . . . , s− 1}, we have

x1 = (i+ 1, 0), y1 = (i, s− 1),

x2 = (0, j + 1), y2 = (s− 1, j).
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Notice (x1, y1) and (x2, y2) cannot be reversed at the same time in a linear extension: indeed,

they form an alternating cycle, because x1 ≤ y2, and x2 ≤ y1. So every pair in I1 must be reversed

in a single linear extension, and the same is true for I2. There is only one linear extension that

reverses every pair in I1, and there is only one for I2.

The linear extension that reverses all of I1 is the lexicographic order of the pairs, and the one

that reverses I2 is the colexicographic order.

The key observation to the proof of Theorem 4.9.2 is the following.

Lemma 4.9.4. Let P be an s2 grid, and let Q be an l2 grid with l = s2. There is (up to automor-

phism) only one casual embedding of P into Q. That is, if f, g : P → Q are two casual embeddings,

then f(P ) = g(P ), and f ◦ g−1 (and g ◦ f−1) are automorphisms of P .

Proof. We can think of Q as consisting of pairs (i, j) with 0 ≤ i, j ≤ l − 1 with the natural order.

We will use the usual projection functions Proj1((i, j)) = i, and Proj2((i, j)) = j.

Let f be a casual embedding of P into Q. Let k ∈ {1, 2}, and hk = Projk ◦f . The definition of

a casual embedding exactly means that hk is a bijection from P to {0, . . . , l− 1}. Now consider the

following linear order of the elements of P .

Lk = (h−1
k (0), h−1

k (1), . . . , h−1
k (l − 1))

First note that Lk is a linear extension of P , because f is an embedding. Due to the same reason, any

pair of incomparable elements will be ordered opposite in L1 and L2, so {L1, L2} is a realizer of P .

It is also important to recall that the ordered pair of linear extensions (L1, L2) uniquely determines

the casual embedding f . (See discussion after the statement of Proposition 4.8.2.)

Now let g be another casual embedding of P into Q, and let M1,M2 be the linear extensions

determined by g, similarly as above. Since {M1,M2} is also a realizer of P , Lemma 4.9.3 implies

that either L1 = M1 and L2 = M2, or L1 = M2 and L2 = M1.

The former case is simple: since (L1, L2) uniquely determines f , and (M1,M2) uniquely deter-

mines g, the fact (L1, L2) = (M1,M2) implies that f = g.

So now assume that L1 = M2, and L2 = M1. By Lemma 4.9.3, L1 is either the lexicographic

order, or the colexicographic order of P . By possibly swapping the roles of f and g, we may assume

it is the former. With these assumptions, f and g are completely determined. It is easy to see that

f((i, j)) = (si+ j, sj + i) and g((i, j)) = (sj + i, si+ j).
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Figure 4.2: For the proof of Theorem 4.9.2. In this figure, m = 2, l = 3. The 9 × 9 grid is Q′, the
core P ′ is red. The points of the subposet D are marked by black dots. The blue grid is S.

If (a, b) ∈ f(P ), say (a, b) = f((i, j)), then (a, b) = g((j, i)), so (a, b) ∈ g(P ), and the converse

follows the same way. This shows f(P ) = g(P ). The last part of the statement follows from the fact

that composition of isomorphisms is an isomorphism.

If the conditions of Lemma 4.9.4 are satisfied, then the subposet induced by the image f(P )

under a casual embedding of P into Q will be called the core of Q. Lemma 4.9.4 shows that the

core of Q is uniquely determined by Q, so the usage of the definite article is justified.

Proof of Theorem 4.9.2. Let M = m2, and L = l2. By the Product Ramsey Theorem, there exists

a positive integer n such that for all r-colorings of the M2 subgrids of n2, there is a monochromatic

L2 subgrid. We claim that n satisfies the requirements of our theorem.

To see this, let c1 be an r-coloring of the m2 subposets of n2. We will define an r-coloring c2 on

the M2 subgrids of n2. For each Q ∼= M2 subgrid, let P be the core of Q. Let c2(Q) = c1(P ).

As noted earlier, the n2 grid has a monochromatic L2 subgrid under the coloring c2; call this Q′.

Here, monochromatic means that there exists a color r0, such that for every M2 subgrid G of Q′,

we have c2(G) = r0. Let P ′ be the core of Q′ (see Figure 4.2).

Clearly, P ′ ∼= l2. It remains to be seen that every m2 subposet of P ′ received the same color

under c1.

Let D be an arbitrary m2 subposet in P ′. Let

S1 = {Proj1(x) : x ∈ D} S2 = {Proj2(x) : x ∈ D}.

where Proji(x) is the ith coordinate of x in n2. Let S = S1 × S2. Since P ′ is a casually embedded

copy, |Si| = |D| = m2 = M , so S ∼= M2, a subgrid of Q′. Therefore c2(S) = r0. On the other hand,
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D is the core of S, so c1(D) = r0, which finishes the proof.

Clearly, the techniques used here heavily rely on the fact that t = 2. E.g. Lemma 4.9.3 and

Lemma 4.9.4 are not true for t > 3. But the conjecture may still be correct.

Trotter [46] suggested that the conjecture is false for t = 3, offering the following idea for a

counterexample. Let t = 3, r = 2, m = 2, and l = 8. Suppose the conjecture is true, and there is an

appropriate n. Now color the mt = 23 subposets of n3 as follows. For a subposet P , consider the

coordinates of the points in the n3. If there is no tie, then the coordinates define a realizer of P .

There are multiple fundamentally different realizers of 23, so color P based on what kind of realizer

its embedding defines. It does not matter how we group the realizer types into the two color groups,

only that there exist two fundamentally different realizers that are colored different. If there is a tie

in the coordinates, color P arbitrarily.

Now suppose we have a monochromatic l3 = 83. Within this 83, we can find both types of

realizers, so it cannot be monochromatic.

However, it is not clear that this counterexample works. We conflate the embeddings into the 83

with the embedding into the n3. For any given 23, these two embeddings could be fundamentally

different in terms of the realizers they generate. It may be possible to find a weird 83 such that every

23 subposet of that one has the same type of realizer generated, when we consider their embedding

into the n3. Indeed, this is another interesting Ramsey-theoretical question.
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4.10. MATCHING LINEAR EXTENSIONS

As evidenced in Section 4.9, it is interesting to consider linear extensions of posets, and how they

behave in Ramsey-theoretical questions.

Theorem 4.10.1. Let X be a poset and let M be a linear extension of X. Furthermore, let k be a

positive integer. Then there exists a grid Y ∼= nt such that for all L1, L2, . . . , Lk linear extensions

of Y , there is a subposet X ′ of Y such that

• X ′ ∼= X, evidenced by the embedding f : X → Y ;

• for all i = 1, . . . , k, and for all a, b ∈ X, we have a < b in M if and only if f(a) < f(b) in Li.

Loosely speaking, for any poset X and its linear extension M , one can find a large enough grid,

so that no matter how we pick a fixed number of linear extensions of that grid, it has an X-subposet

on which each linear extension conforms with M .

A special case of this theorem for k = 1 was proven by Paoli, Trotter and Walker [35]. The

proof written in [35] contains an error: it attempts to use the infinite version of the Product Ramsey

Theorem, which is false. However, the error is easily correctable by just using the finite version,

and choosing appropriately large numbers. Our arguments follow their ideas with the necessary

correction and generalizations. One can also prove this result using results of Rödl and Arman [42],

but we believe that the proof provided here is more insightful.

We will need the following classical theorem by Rothschild [43] about partitions. To state this

theorem, we will call a partition of a set into t parts, a t-partition.

Theorem 4.10.2. Let s ≤ t be positive integers, and r a positive integer. Then there exists a

positive integer k0 such that for all k ≥ k0, no matter how one colors the s-partitions of [k] with

r colors, there exists a monochromatic t-partition in the following sense: any s-partition generated

from that t-partition by unifying parts will have the same color.

Now we are ready to prove Theorem 4.10.1.

Proof of Theorem 4.10.1. To start the proof, we pick X and M , although we will not use them at

all in the first part of the proof. Let s = dim(X). We may assume that s ≥ 3, for otherwise X can

be embedded into a 3-dimensional poset, and apply the theorem to that.

We need to show that for large enough n and large enough t, the poset nt has the prescribed

property. We will determine the exact value of n and t later. For now, just let Y = [n]t for

undetermined, but large n and t. Then let L1, . . . , Lk be linear extensions of Y .
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In the next steps, we will apply the Product Ramsey Theorem repeatedly to cut down Y . To do

this, we will color the 2t subgrids (referred to as hypercubes) of Y with 2k colors in each step.

Let H be a hypercube of Y . Then H = C1 × · · · × Ct, where Ci = {ai, bi}, and ai < bi. Every

point of H is of the form (c1, . . . , ct), where ci = ai or ci = bi. Once we fix an H hypercube in Y ,

we can identify the points with 0–1 strings (bit strings) of length t: we write 0 if ci = ai, and we

write 1, if ci = bi.

We call two incomparable points antipodal, if they differ in every bit. So the pair 00 . . . 0, 11 . . . 1,

is not antipodal, but every other pair with differing bits is. We can call the bit strings corresponding

to these pairs of antipodal points, antipodal bit strings. There are 2t−1 − 1 pairs of antipodal bit

strings.

It will be important later that antipodal bit strings bijectively correspond to 2-partitions of [t].

Indeed, for i ∈ [t], we can place i into the first or second part based on the ith bit.

Enumerate every pair of antipodal bit strings one by one. In each step, we will define a coloring

of the hypercubes of Y with 2k colors, then use the Product Ramsey Theorem to cut down Y to a

smaller grid.

Let A be the current antipodal pair of bit strings. We define a coloring of the hypercubes of

Y as follows. Let H be a hypercube. Recall that A identifies a pair of antipodal points AH in H.

For i = 1, . . . , k, write ‘G’ (good), if Li orders the points of AH as it would be natural by the ith

coordinate of the corresponding bit strings, write ‘B’ (bad) otherwise. We will have constructed a

string of length k consisting of G’s and B’s. This is the “color” of H for the antipodal pair A.

As an example: suppose the current antipodal pair is 001101, 110010, and the color of the

hypercube H is GBG. The antipodal pair 001101, 110010 determines a pair of points a, b of H,

respectively. The color GBG means that a < b in L1, and b < a in L2, and L3. In this example,

t = 6 and k = 3.

The careful reader may get worried about the case when k > t. However, this is not a concern.

We will see later that we can always choose a larger t, so we can ensure that t ≥ k.

Now we have defined a coloring of the hypercubes of H for A. By the Product Ramsey Theorem,

if n is large enough, there is a monochromatic grid, as large as we need. For now, let us just prescribe

a very large grid, and we will determine that size later.

We will replace Y with this monochromatic grid, and we note the color of it. We will assign this

color to the 2-partition that corresponds to the antipodal pair A. Then we move on to the next

antipodal pair, do the coloring of the hypercubes of (the reduced) Y , apply the Product Ramsey

Theorem, and produce a large monochromatic subgrid. Reduce Y again to this, and move on.
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After going through every antipodal pair, we arrive at a final grid Y . This has the property that

every hypercube in it is uniform with respect to the order of their antipodal points in the linear

extensions Li. We also colored every 2-partition of [t] with 2k colors.

Now we apply Theorem 4.10.2 to get t0 such that if t ≥ t0, and if we 2k-color the 2-partitions of

[t], then we can find a monochromatic (s+ k)-partition. (Recall that s = dim(X).) The usage of t

here is no accident: indeed, our original t was to be determined this way. Note that t only depends

on k and s.

We do have a 2k coloring defined on the 2-partitions of [t], so now we determine the (s + k)-

partition ψ, whose existence was guaranteed above. Recall that no matter how we unify parts in ψ

to get a 2-partition, it will always have the same color r0, which is a string of G’s and B’s of length

k. Somewhat magically, it turns out that we can guarantee that r0 is GG. . . G.

To see this, suppose that the ith digit of r0 is B. Let A ∈ ψ be the part for which i ∈ A, and let

B and C be two other parts (recall s ≥ 3, so s+ k ≥ 3). The partitions {B, [t] \B} and {C, [t] \C}

are both colored r0. Let the corresponding antipodal pairs of bit strings be b–b′, and c–c′: let b be

the bit string that has 1’s for indices in B, and 0’s for the rest, and c be the bit string that has 1’s

for indices in C, and 0’s for the rest.

Let H be a hypercube in the final, uniformized Y . Carry over the notation b, b′, c, c′ to denote

the points of H corresponding to these bit strings. Then b∥b′, c∥c′, b < c′, and c < b′. In other

words, {(b, b′), (c, c′)} is an alternating cycle. Yet, in Li, the order of these pairs are “bad”, and by

the choice i ∈ A, the ith digit of the bit string b is 0, as well as the ith digit of the bit string c. So

in Li, we have b > b′, and c > c′, a contradiction. In other words, every digit of the color r0 must

be G.

We will use the monochromatic, and all-good partition ψ to embed X into Y . The parts of ψ

are going to be groups of coordinates that are handled together. To do this, we will need Y to be

large enough to accommodate the embedding. So, it is time to determine n. We must have chosen

n to be large enough, so that after 2t−1 − 1 repeated applications of the Product Ramsey Theorem,

the remaining Y is isomorphic to [n0]t with n0 ≥ |X|. Note that n only depends on k and t, and

since t itself only depends on k and s, at the end n also only depends on k and s.

Let M1 = M2 = · · · = Mk = M , and let {Mk+1, . . . ,Mk+s} be a realizer of X. Clearly, each Mi

is a linear extension of X, and ∩Mi = X. Also, label the parts of ψ with A1, . . . , Ak+s in such a way

that [k] ⊆ A1∪· · ·∪Ak. For each x ∈ X, find the position of x in Mi (from below). Let this number

be hi (for height). Then we map x to the element (χ1, . . . , χt), where χj = hl if j ∈ Al. When

we specifically want to emphasize the coordinates of the element x, we will write χj(x). Clearly,
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1 ≤ χj(x) ≤ |X|, so this is a mapping from X to Y . As we promised, coordinates with indices in

the same part of ψ are grouped together so that they all get same value. It is also clear that this is

an embedding.

It remains to be seen that for each i, Li conforms M . Fix i ∈ [k], and let a∥b be elements of X

so that a < b in M . Consider the hypercube

H = {χ1(a), χ1(b)} × · · · × {χt(a), χt(b)},

and the bit string

d = [χ1(a) > χ1(b)] . . . [χt(a) > χt(b)].

(Here we used the Iverson bracket notation.)

We know that at least the first k digits of d are 0, in particular the ith digit is 0. Since the

antipodal points corresponding to d and d′ (the complement of d) in H are a and b, respectively, and

since H was colored GG. . . G, it shows that a < b in each of L1, . . . , Lk. This finishes the proof.

It may be tempting to attempt to generalize this theorem further. After all, it may seem that

if we have k linear extensions of X, say M1, . . . ,Mk, most of the proof still goes through. One may

think that if we perform the embedding at the end carefully, we could make Li conform with Mi for

all i = 1, . . . , k.

This, however, is not the case, and there is a very simple counterexample. Just choose any poset

X that has at least two fundamentally different linear extensions M1,M2; we will make k = 2. Then,

if an appropriate Y exists, we pick L1 = L2. Clearly, we cannot have both L1 conforming with M1,

and L2 conforming with M2.
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CHAPTER 5

CONCLUSION AND OPEN QUESTIONS

In this thesis, we provided many results on the dimension and Ramsey aspect of posets. We

developed new tools and new theorems for the dimension of interval orders and semiorders and

improved a couple of bounds on the dimension of classes of interval orders. We proved several

results concerning semi dimensions for different classes of posets. In chapter 4, we proved Ramsey

property of grids and Ramsey theory of grid subposets in dimension 2. And in the last part, we

considered linear extensions of posets and how they behave in Ramsey questions.

We left several open questions that are interesting.

1. Is there interval orders with a representation that consists of intervals of two lengths that has

dimension 4?

For updates. André Kézdy solved the problem with computer search. There exists a poset in

C(1, 8) that has dimension 4.

2. Is there an interval order in C[1, 2] that has semi dimension 3?

3. Is there a split semiorder that has dimension 4?

4. Does semi dimension has continuity property?

5. Let P = (X,P ) be a poset. Let x ∈ X. If Sdim(X − x, P (X − x)) = 2, is the semi dimension

of P = 3?

6. Is the Ramsey property true for grid subposets when t = 3?
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(Fertőd, 1986), volume 8 of Algorithms Combin. Study Res. Texts, pages 137–140. Springer,

Berlin, 1989.
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