
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

1-2021

Conversion of MultiCellDS Digital Snapshots to ISA-Tab format. Conversion of MultiCellDS Digital Snapshots to ISA-Tab format.

Corey P. Chitwood
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Other Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Chitwood, Corey P., "Conversion of MultiCellDS Digital Snapshots to ISA-Tab format." (2021). Electronic
Theses and Dissertations. Paper 3914.
https://doi.org/10.18297/etd/3914

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/239?utm_source=ir.library.louisville.edu%2Fetd%2F3914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3914
mailto:thinkir@louisville.edu

i

CONVERSION OF MULTICELLDS DIGITAL SNAPSHOTS TO ISA-TAB FORMAT

By

Corey Chitwood

B.S., University of Louisville, May 2020

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

as Partial Fulfillment of the Requirements

for the Professional Degree

MASTER OF ENGINEERING

Department of Bioengineering

July 2021

ii

iii

CONVERSION OF MULTICELLDS DIGITAL SNAPSHOTS TO ISA-TAB

STANDARD

Submitted by: __________________________________

Corey Chitwood

A Thesis Approved On

_________________July 19, 2021__________________

By the Following Reading and Examination Committee:

Dr. Hermann Frieboes, Thesis Director

Dr. Joseph Chen

Dr. Nihat Altiparmak

iv

ACKNOWLEDGEMENTS

This Thesis Project would not have been possible without several people who

helped me along the way, both during and prior to this project.

To Dr. Hermann Frieboes, for asking me to take on this project. While I had not

originally planned on completing a Thesis project, I am glad that I did, and feel that I

have gained a tremendous amount of experience and gained new skills. I also appreciate

you taking time out of your schedule to meet with Reid, Connor, and I every other week

for the past year. During the most chaotic of years, those meetings helped keep me on

track with my project and keep a positive outlook thanks to a laugh or two.

To Dr. Sam Friedman and Dr. Paul Aiyetan, for always being there to answer my

questions and keep me on the right track to completing the project.

To Dr. Joseph Chen and Dr. Nihat Altiparmak for serving on my Thesis

Examination Committee.

And to Sarah, for being there to support me and keep me on track

v

ABSTRACT

The MultiCellular Data Standard (MultiCellDS) is an interdisciplinary effort to

create a data standard for sharing multicellular experimental, simulation, and clinical

data. The ultimate goal of the overall project is to allow for data sharing that will lead to

better analyses and simulations for multicellular biology and predictive medicine in

association with the PhysiCell, a software that allows for simulations of large numbers of

cells in 3D tissues. Digital cell lines are files that contain a standardized representation of

a biological cell line and include phenotypic parameters as well as microenvironmental

conditions for use in simulations. A Digital Cell Line is a data model rather than a

computational model, meaning that it is based on curated measurements of specific cells

in certain conditions. A Digital Snapshot is a recording of the current state of an

experiment or simulation within the MultiCellDS software. A snapshot contains

metadata, which could include user information, software information, experimental

setup, and citation information, and a phenotype dataset, which creates mappings of

phenotypic measurements with the cellular microenvironment. Snapshots can also

reference digital cell being used to create snapshots that come from simulations.

This Master’s Thesis project is a subset of the larger MultiCellDS effort. The

results of this project allow for MultiCellDS Digital Snapshots to be converted to the

vi

ISA-Tab data standard, and ISA-Tab data files to be converted to MultiCellDS digital

snapshots. The project uses Python code to convert the digital snapshots, which are

produced as XML files, to ISA-Tab tab separated text files. All of the information from

each file, both data and metadata, is accounted for and transferred to the proper locations

in the other file type.

The Python scripts produced this project yield output files that have valid

formatting in each data standard and verified contents for all Digital Snapshots currently

available in the MultiCellDS Gitlab repository (currently 327 Digital Snapshots)

In the open-source nature of the MultiCellDS, all scripts, spreadsheets, and output

files created for this Thesis project will be available on GitHub. The conversion between

file types will allow for improved collaboration between researchers by allowing for

information to be used in a variety of software packages.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

NOMENCLATURE .. xi

I. INTRODUCTION ... 1

II. PROCEDURE .. 6

A. MCDS TO ISA-TAB CONVERSION .. 6

1. MCDS ENTITY TO ISA-TAB ENTITY MAPPING .. 6

2. DEVELOPMENT OF MCDS TO ISA-TAB CONVERSION SCRIPT 16

3. ISA-TAB FILE VALIDATION ... 21

B. ISA-TAB TO MCDS CONVERSION... 24

1. ISA-TAB ENTITY TO MCDS ENTITY MAPPING .. 24

2. DEVELOPMENT OF ISA-TAB TO MCDS CONVERSION SCRIPT 29

3. CONVERTED MCDS DSS VALIDATION .. 34

III. RESULTS AND DISCUSSION ... 38

viii

IV. CONCLUSIONS AND RECOMMENDATIONS ... 43

REFERENCES CITED ... 46

APPENDIX I. ... 48

APPENDIX II. .. 50

APPENDIX III. ... 67

VITA ... 102

ix

LIST OF TABLES

TABLE I. ‘GENERATE_MCDS_ENTITY_LIST.PY’ SCRIPT SAMPLE OUTPUT ... 10

TABLE II. PYTHON PACKAGES USED IN MCDS TO ISA CONVERSION 16

TABLE III. PYTHON PACKAGES USED IN ISA TO MCDS CONVERSION 31

TABLE IV. PYTHON PACKAGES USED IN CONVERTED SNAPSHOT

VALIDATION SCRIPT ... 34

TABLE V. SCRIPT RUN TIMES .. 38

TABLE VI. ISA-TAB FILE VALIDATION ... 39

TABLE VII. SAMPLE OF ‘CONVERTED_SNAPSHOT_VALIDATION.PY’ SCRIPT

OUTPUT ... 41

TABLE VIII. PROJECT FILES AND LOCATIONS .. 48

TABLE IX. FULL MCDS VALIDATION SCRIPT OUTPUT 50

x

LIST OF FIGURES

FIGURE 1. ELEMENTS OF A DIGITAL SNAPSHOT ... 3

FIGURE 2. GENERAL PROJECT WORKFLOW .. 8

FIGURE 3. MCDS TO ISA CONVERSION SCRIPT FLOW CHART 17

FIGURE 4. ISA FILES PASSING VALIDATION ... 22

FIGURE 5. ISA FILES FAILING VALIDATION .. 22

FIGURE 6. MCDS DSS TEMPLATE GENERATION WORKFLOW 25

FIGURE 7. MCDS_S_0000000089 PRIOR TO DATA CLEANING 26

FIGURE 8. MCDS_S_0000000089 FOLLOWING DATA CLEANING 27

FIGURE 9. ISA TO MCDS CONVERSION SCRIPT FLOW CHART 30

FIGURE 10. TQDM PROGRESS BAR ... 31

FIGURE 11. ‘CONVERTED_SNAPSHOT_VALIDATION.PY’ WORKFLOW 35

FIGURE 12. DEVICE SPECIFICATIONS OF PC USED TO EXECUTE SCRIPTS 39

xi

NOMENCLATURE

MultiCellDS/MCDS – MultiCellular Data Standard

ISA-Tab Format/ISA – Investigation/Study/Assay tab-delimited format

DSS – Digital Snapshot

DCL – Digital Cell Line

XML – eXtensible Markup Language

XML Element – Data field in XML file that can contain text or attributes

MCDS Entity – Refers to data field in MCDS file, either an attribute or element, that may

be converted to an ISA-Tab Entity

1

csI. INTRODUCTION

With technological improvements in computing, in silico experimentation has

become an increasingly viable option for researchers, rather than solely using in vivo and

in vitro models for experimentation (Palsson, 2000). This in silico approach can allow for

study of the behavior individual cells, as well as study of tissues and organs. This can

allow for cells to be understood as a system that can be described quantitatively.

PhysiCell Simulation is one example of the results of increased viability of in

silico experimentation. PhysiCell is an open-source framework that can allow for

physics-based, 3D multicellular experimentation (Ghaffarizadeh et al, 2018). The

simulation includes models for cell cycling, apoptosis, necrosis, volume exchanges,

mechanics, and motility and can feasibly allow for simulation of thousands of cells.

Along with simulations of thousands of cells comes the challenge of capturing, storing,

and sharing the associated data, as many research groups work with their own data

sources, models, and analyses (Macklin, 2019). This can prevent cooperative research

between groups, and limit replication studies to verify simulated outcomes. Additionally,

much data is not shared between researchers at all (Friedman et al, 2016). The

MultiCellular Data Standard attempts to resolve some of these issues.

The MultiCellular Data Standard (MultiCellDS, or MCDS) project aims to create

a versatile data standard that allows for the sharing of multicellular experimental,

2

simulation, and clinical data. A common standard can allow for more universal software

tools that can be cooperatively developed and used between researchers. MCDS solves

issues with storing and sharing data in three main ways – Digital Cell Lines (DCLs),

Digital Snapshots (DSSs), and publicly available collectuions of DCLs and DSSs.

Digital Cell Lines focus on the measurements associated with a single cell type,

creating phenotype datasets “allowing systematic recording of cell behavior in a single

microenvironmental context” (Friedman et al, 2016). The DCL also contains metadata –

the information assiciated with who generated the data, and the tools they used to

generate the data.

Digital Snapshots focus on storing data with a group of cells at a specific time.

Snapshots also contain metadata, but it also contains the data of all cells involved in the

simulation (rather than data associated with one cell type). This data can include cell

positions, phenotype, and cell types. These data elements are also used for in vivo and in

vitro systems, so snapshots can allow for data of many experimental conditions to be

shared (Friedman et al, 2016).

The general format of a Digital Snapshot is shown in FIGURE 1 below. As

previously mentioned, DSSs contain metadata regarding who generated the data and how

they did so. This can include contact information of researchers, citations of relavant

studies, and descriptions of the study and data. The bulk of the data contained in the file

appears in the Cellular Information and Microenvironment sections of the file. This

includes data about the individual cells within a simulation, their properties,

characteristics of the environment of the cell, cell locations, and much more.

3

FIGURE 1. ELEMENTS OF A DIGITAL SNAPSHOT

 Both Snapshots and Cell Lines are created as eXtensible Markup Language

(XML) files that allows for data to be more easily read and understood by humans. XML

files have a hierarchical structure, consisting of elements, tags, and attributes. The

structure and data types within an XML file are governed by a schema, and the ‘address’

of data within the file is given by an xPath. Understanding of the structure of an XML file

is vital to understanding this project.

 In addition to MultiCellDS, Investigation/Study/Assay Tab-Delimited Format, or

ISA-Tab format, is a file formatting system that is used to demonstrate all relevant

information to multicellular experiments. Like MCDS, ISA-Tab Format defines the

formatting of metadata and data that is vital to understanding an experiment and its

4

methods (Rocca-Serra et al, 2009). ISA format dictates that data is stored within three

separate text files, an Investigation file, a Study file, and an Assay file. An Investigation

file records metadata relating to an institution/researchers and links related Studies under

one overall Investigation. A Study file should contain information on the subject that is

under study, design of the study, and protocols of the study, as well as give

contextualization to Assays within the Study. An Assay file contains information about

the tests performed during the Study that produce either qualitative or quantitative data

(ISA Abstract Model, n.d.).

 Data is aranged hierarchically in ISA-Tab format, but not in the same way as

MultiCellDS indicates. Within the ISA files, data is a tab-delimited text file, which is

very similar to a CSV file. Files can be opened in Microsoft Excel, and appear essentially

as a spreadsheet. However, ISA files do follow a hierarchy of workflow, as well as

having a ‘nested’ structure, where the Investigation file is the ‘parent’ file to one or more

Study files, and the Study file is the ‘parent’ to one or more Assay files.

 While both ISA-Tab and MCDS files contain very similar information, they are

formatted in such a way that was previously incompatible. For example, PhysiCell

simulation requires input files that are formatted as MCDS XML files. A method to

translate the data and formatting of MCDS files to ISA-Tab files, and vice versa. Solving

this issue of compatibility would allow for further study of experimental data, and could

allow for new knowledge in the area of multicellular biology research.

Adding a layer of complexity, MCDS Digital Cell Lines and Digital Snapshots

contain substantially different information. As such, different methods were required for

translating their respective data into the ISA format, and vice versa.

5

Prior to 2020, some previous work had been completed in developing a Python

script to convert Digital Cell Lines to the ISA format. However, this script was not fully

completed, and did not transfer all of the data contained within Digital Cell Lines to ISA

files. The script was also written in Python 2, which is no longer supported in many

applications with the development of Python 3. Improvement on this script was needed,

and was completed by Connor Burns in April of 2021 (Burns, 2021).

However, prior to 2020, no previous work had been completed on developing a

Python script to convert Digital Snapshots to the ISA format. As such, hundreds of

Snapshots were stored in a repository without any feasible use in applications where ISA-

Tab Format would be required. This Thesis project sought to understand and solve the

challenges of conversion of MultiCell Digital Snapshots between data standards and

develop a Python script to convert all data contained in the Snapshots between formats.

This project also sought to advance the knowledge of convesion of any ISA-Tab

file to the MCDS standard. Currently, the scripts developed can convert the hierarchically

structured data of MCDS files between formats. However, major challenges exist to fully

automate conversion between ISA-Tab format and MCDS. While the data of the ISA-Tab

files is structured, the data contained within the files can vary significantly, depending on

the subject, methods, and results of a given Investigation. MCDS files, on the other hand,

only contain data that is defined by the MCDS Schema. Because of this issue, this Thesis

project was limited in scope. Only files that had been previously converted from MCDS

to ISA-Tab format could be translated back to MCDS Digital Snapshots. While all ISA-

Tab files cannot be converted to MCDS files yet, this project could serve as a foundation

for future steps in solving the challenges of the ISA to MCDS conversion.

6

II. PROCEDURE

A. MCDS TO ISA-TAB CONVERSION

1. MCDS ENTITY TO ISA-TAB ENTITY MAPPING

As mentioned in the Introduction, some previous work had been completed in

converting MCDS DCLs to ISA-Tab format, but it was not completed, and needed

updates. To start this project in converting MCDS DSSs to ISA-Tab format, this script

was analyzed. The first issue with the original script was that the programming language

used to develop the script, Python 2, was outdated. While Python 2, was out of date,

Python 3 was a language that is well supported and easy to understand. Python is also a

very popular language for data science uses. Additionally, Python has many publicly

available libraries that allow for reading and writing to XML and text file formats. As

such, it was the language of choice to develop the MCDS DSS to ISA-Tab conversion

script. Pycharm Community Edition was chosen as the Python IDE for the project, as it

easily allows for pushing script updates to GitHub, package installations, and debugging.

 The original script operated by mapping data from a location in the MCDS DCL

file to a location in the ISA file within the script. To do this, the script searched for data

in the MCDS file by using an xPath for the expected location of the data, and then writing

that data to the ISA text file with a corresponding ISA entity. While this original script

was incomplete, the method of finding data in the MCDS file and assigning it a location

7

in the ISA file was a method that showed promise. However, individually mapping every

possible location within the text of the script seemed an inefficient method. This method

could make any future updates to the script much more difficult than necessary.

 In order to improve the mapping process, and allow for future updates to the

mapping, a method using an Excel database as a mapping reference was proposed. This

method would allow for iteration within the script to read the contents of the Excel file

and the corresponding mapping. After this initial concept for the script was proposed,

further work to plan out the process of developing the scripts was completed.

 The general workflow of the project can be seen in FIGURE 2 below, and each

step of the chart will be examined throughout the remainder of the METHODS section of

this paper.

8

FIGURE 2. GENERAL PROJECT WORKFLOW

 After the original script was examined, and a general method for the new script

was proposed, gathering data from the repository of existing Digital Snapshots was

essential. In order to convert all of the data from one format to the other, a fundamental

understanding of the data contained in the files was required. While there are thousands

of possible data locations in a MCDS XML file, not all of these are commonly used in

MCDS DSS files. Some data locations may be commonly used in only Digital Cell Lines,

while others may only be commonly used in DSS files. In order to determine which

MCDS data locations were relevant to DSSs, an additional Python script was developed

to find the element name of all tags and attributes in the DSS files that currently existed.

This script, ‘Generate_MCDS_Entity_List.py’, used a folder containing all current

MCDS DSS files (MCDS_S_0000000001 through MCDS_S_0000000327 at time of

9

writing) as an input, and output an Excel file containing the entity name, xPath, and data

type of all data contained within every file.

 The script began by iterating through every DSS in the ‘All_Digital_Snapshots’

folder. Within each file, the script then iterated through every element contained in the

file. At each data entity in the file, the data type was determined. Possible data types

included text elements, which contain only text, attribute elements, which contain text

and have attributes, parent elements, which contain no data but have child elements, and

attributes, which are contained within a given element and contain additional information

about the element. Entries could also appear as closed tags, which do not contain any

data, attributes, or child elements. While iterating this data type was appended to a

Pandas DataFrame, along with the DSS file name and name of the entity. After iterating

through every file and entity, the DataFrame was written to the Excel file. A sample of

data contained within the Excel file can be seen in TABLE I below. This sample contains

only the first nine MCDS entities, their xPaths, the file name they correspond to, and the

type of entity.

10

TABLE I.

'GENERATE_MCDS_ENTITY_LIST.PY' SCRIPT SAMPLE OUTPUT

MCDS

Entity

xPath File Name Entity Type

MultiCellDS /MultiCellDS <DirEntry

'MCDS_S_0000000001.xml'>

Attribute

Element

type /MultiCellDS[@type] <DirEntry

'MCDS_S_0000000001.xml'>

Attribute

version /MultiCellDS[@version] <DirEntry

'MCDS_S_0000000001.xml'>

Attribute

metadata /MultiCellDS/metadata <DirEntry

'MCDS_S_0000000001.xml'>

Parent Element

MultiCellDB /MultiCellDS/metadata/MultiCellDB <DirEntry

'MCDS_S_0000000001.xml'>

Parent Element

ID /MultiCellDS/metadata/MultiCellDB/ID <DirEntry

'MCDS_S_0000000001.xml'>

Text Element

name /MultiCellDS/metadata/MultiCellDB/name <DirEntry

'MCDS_S_0000000001.xml'>

Text Element

description /MultiCellDS/metadata/description <DirEntry

'MCDS_S_0000000001.xml'>

Text Element

citation /MultiCellDS/metadata/citation <DirEntry

'MCDS_S_0000000001.xml'>

Parent Element

11

 From here, duplicate xPaths were removed from the list in Excel, and every

unique xPath found in DSSs was determined. In all, there were 135 unique entities found,

with 32 entities being parent elements that contained no data. This left 103 entities, both

attributes and text elements, that needed to be mapped to an ISA file location. Not all of

these entities appeared in every DSS file. Specifically, the ‘receptor’ element and its

attributes only appeared in a few of the 327 files. Additionally, the ‘diagnosis’ tag

appeared in every file, but data was only present in some of the elements. To explain, the

‘diagnosis’ element appears 4 times in every file, each with the attribute ‘type’ present.

The first occurrence is the primary diagnosis, then secondary, tertiary, and final

diagnosis. In all files, a diagnosis, type final, was present. However, the other types of

diagnoses occurred inconsistently throughout the files. These differences in the

‘diagnosis’ entity needed to be accounted for in the conversion script.

 Once all of the entities appearing in DSSs were determined, it could then be

determined where those entities should appear in the ISA format. This proved to be the

most time-consuming aspect of the project, as each individual MCDS entity had to be

analyzed and categorized based on the information contained.

 The Investigation file is grouped into blocks corresponding to the Ontology

Source Reference, Investigation, Investigation Publications, Investigation Contacts,

Study, Study Design Descriptors, Study Publications, Study Factors, Study Assays, Study

Protocols, and Study Contacts (ISA-Tab Format, n.d.). Each of these blocks contains

entities that correspond to information about the experiment, and the data contained

within each entity is entered into columns to the right of the entity name. In general, most

of this Investigation information corresponds to the metadata section of the DSSs. Many

12

of these entities directly correspond to data contained within MCDS files but are given

different names. For example, under the ‘Study Contacts’ block, the ISA entity for the

institution of the researcher is referred to as ‘Study Person Affiliation’, whereas in MCDS

the same data is grouped under the ‘organization-name’ entity. Because of these

differences in names, each MCDS entity name had to be compared to existing ISA

entities, and the relationship determined.

 While each block of data had established entities corresponding to data commonly

used in each block, ISA format also allows for comments to be added to the block. These

comments must contain data, however, or the file is invalid. The comments allowed for

additional information contained within MCDS files to be added to the ISA files. For

example, the website of each Study Contact is an entity in MCDS, but not a standard

entity in ISA format, so it is mapped to the ISA format as ‘Comment[Study Person

URL]’. Conversely, there are several ISA entities that do not have a corresponding

MCDS entity, but they are required to create a valid Investigation file. This includes the

entire ‘Ontology Source Reference’ block. To resolve this issue, some entities would

need to be manually defined in the Excel reference file as ‘Text Entry’ or ‘Script

Variables’ that would be defined within the script based on other information in the

MCDS file.

 There were a few other discrepancies between MCDS entities and ISA-Tab

entities that had to be accounted for in the Investigation file mapping. One issue that

occurred in several instances involved data from multiple MCDS entities being required

for a single ISA entity. This required additional descriptors for these elements in the

relationship mapping Excel document. The ‘contacts’ descriptor was added to the

13

mapping spreadsheet to indicate that multiple MCDS file locations associated with

individuals involved in the study should be searched to add data to the ISA entity. Each

contact was added to a new column within that entity. Similarly, some other entities

needed to be combined, but rather than having their own column, they needed to be

added to the same ‘cell’ in the Investigation file. For these, an ‘&’ was used to indicate

that data needed to be merged. Finally, some ISA data appeared as the name of an

element in the MCDS file. This occurred when mapping the roles for each contact. For

example, the role of current contact for the study is found as the name of the ‘current-

contact’ entity in MCDS. These additional descriptors in the mapping Excel file later

made writing the conversion script much easier.

Once the mapping for the Investigation file was complete, MCDS entities that had

been mapped to ISA entities were marked off, and the remaining entities were examined

to determine whether they belonged in the Study file or the Assay file. While the contents

of each of these files were different, the structure of the Study and Assay files was similar

to each other, but different than the structure of the Investigation file. Rather than having

blocks of data, with a header in the first column, the Study and Assay files were arranged

much like a standard table of data, with ISA entities in the first row of the file serving as

headers for their respective columns of data.

 The Study file is intended to give additional context for the Assay file. This

means that the Study file would provide the source of the data in the Assay file, shown as

the ‘Source Name’ ISA-Tab entity. Characteristics of the source of data were then given

to additionally contextualize the Assay data. This included the location of the study,

patient information, and clinical diagnoses for the cells used in the study. Like the

14

Investigation file, many of the equivalent MultiCellDS entities were located within the

metadata section of the Snapshots. However, most of the information for the Study file

was located specifically within the ‘cell_origin’ element within the metadata section.

Following the characteristics was a ‘Protocol REF’ entity, which shows the protocol used

to generate the data in the Assay file. The protocol must also be referenced in the

Investigation file in order to create a valid Assay file. The ‘Protocol REF’ was then

followed by a ‘Sample Name’, which was used to identify each cell associated with the

study. In order to create a valid Study file, there must be a valid ‘Source Name’,

‘Protocol REF’, and ‘Sample Name’ that show the workflow associated with the Study.

 The Assay file then contains the information associated with each individual cell

from the Snapshots. In the Snapshots this information was located within the

‘cellular_information’ section of the file rather than the ‘metadata’ section. Much like the

Study file, the headers of the Assay file show the workflow associated with each cell. The

file begins with the ‘Sample Name’ and is followed by a ‘Protocol REF’ defined in the

Investigation file. The Assay file is then composed of a few Characteristics that further

contextualize the samples, such as the ‘Cell Part’ Characteristic that defines which

component of the cell is being analyzed in the experiment. These headers are then

followed by Parameters, which contain the quantitative data from measurements. This is

where MCDS entities such as ‘orientation’, ‘position’, ‘diameter’, and other

measurement-based entities could be mapped. Each Parameter can be further described

by additional Characteristics that describe the measurement. Each measurement also had

a header to describe the units used for the measurement. Concluding the Assay file and

15

following the Parameters and Characteristics is the name of the Assay and the Snapshot

filename.

 The Excel file resulting from the mapping of MCDS entities to ISA-Tab entities is

too large to copy into the text of this paper. A link to the completed

‘MCDS_DSS_2_ISA_Relationships.xlsx’ file is found in of APPENDIX I.

 After the mapping process was completed, a Python script could then be

produced.

16

2. DEVELOPMENT OF MCDS TO ISA-TAB CONVERSION SCRIPT

 As previously mentioned, Pycharm Community Edition was the IDE used for the

development of the conversion script. This IDE allowed for multiple Python libraries to

be imported with relative ease. The specific packages that were imported for the first

conversion script, outside of standard Python libraries, can be found in TABLE II below.

TABLE II.

PYTHON PACKAGES USED IN MCDS TO ISA CONVERSION SCRIPT

Package Description of Use in Script

Pandas Reads Excel as a DataFrame

LXML XML data parsing

NumPy Creation of 2 dimensional arrays for

temporary data storage

 The MCDS to ISA-Tab conversion script uses the completed mapping Excel

document to convert each MCDS DSS from the repository into an Investigation, Study,

and Assay file. The outputs will be added to the ‘ISATabOutput’ folder, with a sub-folder

containing the ISA files of each individual DSS. In order for the script to function, the

mapping document and input folder must be located in the same file path as the

conversion script. A general overview of the script can be found in FIGURE 3 below.

17

FIGURE 3. MCDS TO ISA CONVERSION SCRIPT FLOW CHART

 After establishing the file paths of the relevant folders and files, the script begins

by iterating through each MCDS DSS in the ‘All_Digital_Snapshots’ folder. Each file is

first checked that it is an XML file, or it is skipped in the iteration. If the file is an XML

file, it is parsed using the LXML submodule called ‘ElementTree’ or ‘etree.’ Parsing with

this module allows for data to be found from a given xPath within the file, or by finding

the name of an element. The XML file is then checked for its version and type, ensuring

that the file is a Snapshot (rather than a Digital Cell Line or another type of XML file)

and is version ‘1.0.0’, which is the Snapshot version supported by the conversion script.

 After the initial setup and verification that the file is a DSS, variables are

initialized to pull the name of the DSS and create filenames for the I, S, and A files. An

output folder for the given DSS is made within the ‘ISATabOutput’ folder, if it does not

18

already exist. A dictionary is then initialized for each of the ‘script variables,’ and the

filenames and other known data is appended to the dictionary.

 After these initial steps are completed, data can begin to be read from the DSS

and written to ISA files. While the Investigation file is the ‘parent’ of the Study and

Assay files in the ISA-Tab standard, data that belongs in the Assay file is found and

written first. This is necessary for the conversion script because the Investigation file

contains references to the completed Study and Assay files. If the Investigation file was

completed first, it would later have to be modified after the completion of the other files,

so writing the files in reverse order created a more efficient script.

 In the script, the Assay file mapping was read from the Excel relationships

document and imported as a Pandas DataFrame. An empty NumPy array was then

created to temporarily store collected data. The width of this array was determined by the

number of ISA headers in the DataFrame, and the length of the array was determined by

counting the number of cells present in the DSS, as the Assay file includes the

quantitative data from each cell.

 Data from the DSS is then found by iterating through the rows of the DataFrame,

where each row of the DataFrame contains the header name and xPath of the

corresponding data. All occurrences of the given xPath are found within the ElementTree

of the DSS, and the data from each occurrence is transferred to the corresponding array

row. If/elif/else statements are used while iterating through each row of the DataFrame to

satisfy differences in the locations of the data within the ElementTree. For example, if the

xPath contains an ‘@,’ the corresponding data is found as an attribute in the XML file, so

a different function within the LXML module must be used to locate the correct data. In

19

the case of the entities that are attributes, the element containing the attribute must first be

found using the ‘findall()’ function, and then the attribute accessed using the ‘get()’

function. Whereas if the xPath of the data does not contain an ‘@’, it is found in the text

of an element in the XML file. That data is found in one less step by using the

‘findall().text’ or ‘iter().text’ LXML function.

 After iteration through each row of the DataFrame was complete, the array was

filled with all of the Assay data contained in the DSS. The script would then iterate

through each column and row of the array, writing existing data to the Assay file,

separating each data entry by a tab character, and writing a newline character after the

last column in each row. While writing the Assay file, all Parameters and Components

containing data in the file were appended to a dictionary for later use in the Investigation

file.

 The Study file was written in a very similar manner as the Assay file. The Study

file mapping was read as a Pandas DataFrame that contained the header names and

xPaths. Like the assay file, the script iterated through each row of the DataFrame,

gathering data from the DSS file. However, the process for writing the Study file differed

from the Assay file. Because each cell in every DSS came from the same source, the data

contained in each row of the Study file was the same, apart from the Sample Name at the

end of each row. Also, the Study file contained fewer entities than the Investigation and

Assay files. This meant that an array was not needed to temporarily store data, and a list

was used instead. Each entity was searched for in the same manner as the Assay file, and

the data found was appended to this list. The data and header for each entity was then

written to the Study file line by line, provided that the data existed. Characteristics that

20

contained data were appended to a dictionary for later use in the Investigation file. In

each new line, only the Sample Name was changed, and the number of lines in the file

corresponded to the number of cells found in the DSS.

 Finally, data for the Investigation file was found and written in a similar manner

as the previous two files. As mentioned while explaining the mapping process, there were

several different ways data was searched for in the DSS XML file. The method of

searching for the data, along with the entity name, xPath, and entity type, was read from

the mapping Excel file as a Pandas DataFrame. As in the Assay file, an array was used to

temporarily store data before writing it to an Excel file. The script then iterated through

each row of the DataFrame. There were several layers of if/elif/else statements to

determine where to search for the data in the DSS file, and what to do with the data

found. As mentioned in the mapping process, some data needed to be merged from

multiple places to be converted to one ISA-Tab entity. The logic statements also

determined how many columns of data to write to each ISA block of entities. This section

of the script also accounted for all of the ‘script variables’ that had been assigned to

dictionaries, including merging all of the Characteristics and Parameters from the Study

and Assay files into a single ISA entity. After all of the data was added to the array, the

script iterated through each row of the array, writing the associated headers and data on

each new line of the Investigation final.

 After the Investigation file was written, the script moved onto the next file in the

‘All_Digital_Snapshots’ folder until all available MCDS DSSs were converted to ISA-

Tab format.

21

3. ISA-TAB FILE VALIDATION

 After the conversion script was completed, the ISA-Tab output files needed to be

validated. The files were validated using the Center for Strategic Scientific Initiatives

(CSSI) Metadata Utility application. This software was obtained by permission of the

National Cancer Institute of the National Institute of Health (NIH/NCI). The software

was accessed through the CSSI Portal (CSSI Portal, 2020).

 For ISA-Tab Format validation, the Investigation file imported in the Metadata

Utility, and the software automatically loaded the Study and Assay files associated with

the given Snapshot. The filenames of the Study and Assay files had to be correctly listed

within the Investigation file for this to work. After the ISA files are loaded, the ‘Validate’

button was clicked. The software then displayed ‘No Validation Issues’, as seen in

FIGURE 4, if the ISA files were valid, or displayed any errors found in the files, as seen

in FIGURE 5.

22

FIGURE 4. ISA FILES PASSING VALIDATION

FIGURE 5. ISA FILES FAILING VALIDATION

23

 As the validation process required manually loading each file, and only one set of

ISA-Tab files could be loaded at one time, validating all 327 sets of ISA-Tab files was

not reasonable. To minimize the time required for file validation, while still validating a

representative sample of the files, every tenth set of converted ISA-Tab files was

validated using the process described above. This sample of files represented all mapped

MCDS and ISA-Tab entities. Given that each entity was mapped in the same way, these

validated files should represent effectiveness in converting existing MCDS DSS XML

files to ISA-Tab text files. A screen clip of the validation of each ISA-Tab file set in the

sample is included in APPENDIX III.

24

B. ISA-TAB TO MCDS CONVERSION

1. ISA-TAB ENTITY TO MCDS ENTITY MAPPING

 The process for mapping ISA-Tab entities back to MCDS entities took

considerably less time to complete than MCDS to ISA-Tab conversion. This process was

much shorter because the ISA-Tab to MCDS mapping was essentially the reverse of the

existing mapping, with some minor modifications. The most difficult part of this process

was determining a method for creating a converted DSS XML file.

 While no previous work for converting DSS files existed, creating a template

MCDS XML file proved to be an effective method for ISA-Tab to MCDS Digital Cell

Line conversion (Burns, 2021). Rather than producing an XML file from scratch, a more

efficient strategy involved removing all of the data from an existing MCDS DSS

containing all possible entities. The general process for creating a DSS template can be

seen in FIGURE 6 below.

25

FIGURE 6. MCDS DSS TEMPLATE GENERATION WORKFLOW

 The ‘Generate_Template_DSS.py’ script was used to create the

‘Current_Clean_DSS.xml’ template Snapshot. A link to this script can be found in

APPENDIX I. While all steps to complete the process are found in this script, only small

parts of the script were run at any one time, as some manual editing of the template was

required between steps.

 The first step of creating a template DSS was finding an existing DSS that

contained all possible entities. This was achieved by using the list of all possible entities

form the ‘MCDS_DSS_All_Entities_Sorted.xlsx’ spreadsheet that was originally created

while mapping MCDS entities to ISA entities. The script iterated through each DSS in

the ‘All_Digital_Snapshots’ folder, appending the entities that were missing from each

individual file, as well as appending the filenames of those files which contained every

possible entity. From this script, it was determined that DSS ‘MCDS_S_0000000089’

was the first DSS in the folder that met this requirement. This DSS could then be cleaned

of all data to produce a template. A section of MCDS_S_0000000089 prior to cleaning

can be seen in FIGURE 7 below.

26

FIGURE 7. MCDS_S_0000000089 PRIOR TO DATA CLEANING

 The next portion of the script parsed the XML file using the LXML ElementTree

and iterated through each element, removing all data contained as element text, as well as

removing any data contained within attributes. After cleaning data, the resulting XML

file was a bit disorganized, as all tab and newline characters contained in each element

were deleted. After manually adding tab and newline characters to match the white space

of the original DSS, the cleaned DSS can be seen in FIGURE 8 below.

27

FIGURE 8. MCDS_S_0000000089 FOLLOWING DATA CLEANING

 After a ‘rough draft’ of the template was completed, the template was edited to

create a finished template. This involved iterating through each original DSS to

determine the maximum number of cells found in a DSS. This was determined to be 1132

cells. This meant that the ‘cell’ element and its children should be repeated 1132 times.

This process was achieved by manually copying the cell element and its children into a

text file. This text file was then read by the script and rewritten an additional 1131 times

to the end of the text file. This text was then manually copied and pasted back into the

template DSS, completing the ‘Current_Clean_DSS.xml’ file.

 Creating a template corresponding to the maximum DSS file size may seem

counterintuitive, as the template is significantly larger than most DSSs, but this allows for

a simpler conversion script. When converting ISA-Tab data back to a DSS, the LXML

function ‘remove(element)’ allow for elements and their children to be removed in one

28

step. Meanwhile, building new elements in the ElementTree requires lines of code and

additional LXML functions to be used.

29

2. DEVELOPMENT OF ISA-TAB TO MCDS CONVERSION SCRIPT

 After completion of the template DSS file, the mapping process for the ISA-Tab

to MCDS conversion script could then be completed. The mapping process was

straightforward, as it was essentially the same as the MCDS to ISA-Tab mapping. The

main difference between the ‘forward’ and ‘reverse’ mapping was that some data found

in the ISA-Tab files was ignored in the conversion script, as it did not originate from the

DSS file itself, but rather was defined within the MCDS to ISA script. This included all

‘Text Entry’ and ‘Script Variable’ entities from the original mapping. Other than

skipping these elements, no other major changes were made to the original mapping.

 After the small changes were made to complete the mapping process, the ISA to

MCDS conversion script could then be started. It is important to emphasize the

limitations of this script. The ISA to MCDS conversion script can only revert ISA files

generated from the MCDS to ISA conversion script back to their original Snapshot. The

script cannot convert every ISA-Tab file set to a MCDS DSS at this time. There are

multiple challenges that prevent this, as will be elaborated on in the CONCLUSIONS

AND RECOMMENDATIONS section.

 The workflow for the ISA to MCDS DSS conversion script can be seen in

FIGURE 9 below. The link to the complete ‘ISA_2_MCDS_DSS.py’ script can be found

in APPENDIX I.

30

FIGURE 9. ISA TO MCDS CONVERSION SCRIPT FLOW CHART

 The ISA to MCDS conversion script converts one set of input ISA-Tab files into a

MCDS Digital Snapshot output that is identical to the original Snapshot file. The

‘reverse’ script uses the same Python packages as the ‘forward’ script, with the addition

of the TQDM package. TQDM was used to track the progress of the script, as the run

time associated with this script was much greater than the previous script. This progress

bar also showed the average time taken to complete each file conversion. The result of

31

the TQDM package can be seen in FIGURE 10 below. The full list of packages used in

the script is found in TABLE III below.

FIGURE 10. TQDM PROGRESS BAR

TABLE III.

PYTHON PACKAGES USED IN ISA TO MCDS CONVERSION SCRIPT

Package Description of Use in Script

Pandas Reads Excel as a DataFrame

LXML XML data parsing

NumPy Creation of 2 dimensional arrays for temporary data storage

TQDM Script Progress Bar

 As shown in FIGURE 9, the script first reads the set of ISA-Tab files using a CSV

reader. Although ISA files are written as text files, the data they contain can be read more

easily by the CSV reader, which reads each ‘cell’ of data in the ISA files, than the text

file reader, which reads the text line by line. Using a CSV reader thus removes extra steps

32

of splitting each line to read each ‘cell’ individually. The data from each file is then

added to a corresponding array for temporary storage

 After the data is added to arrays, the mapping Excel spreadsheet is read as a

Pandas DataFrame. The script begins transferring data by iterating through the rows of

the Investigation file array. The ISA entity in each row is searched in the DataFrame, and

the xPath and corresponding MCDS entity name is found. Using the ‘find(xPath).text’

function, the text of an element in the ElementTree is set equal to the data contained

within the ‘cell’ of the Investigation array. If the MCDS entity is an array, the

‘find(xPath).set(attribute, data)’ function is used instead, where ‘data’ is the data

contained within the ‘cell’ of the Investigation array.

 The process for iteration through the Study and Assay is very similar, but the

script iterates through each column of the arrays rather than the rows, as each column

corresponds to a MCDS entity in these files. In the Study file, only the first row of data is

read, however, as each line of the file is identical apart from the ‘Sample Name’ column,

which is not a MCDS entity. For each column, the ISA header is searched in the Pandas

DataFrame, and the corresponding MCDS entity names and xPaths are found. The Study

data is then added to the ElementTree using the ‘findall(xPath).text’ function, or by the

‘findall(xPath).set(attribute, data)’ function if the MCDS entity is an attribute.

 The process of adding the Assay file data to the DSS is identical to the process for

adding Study data to the DSS, except the script also iterates through each row of the

Assay data array. As previously mentioned, each row of the Assay file corresponds to

each ‘cell’ element in the DSS, so each row contains different data, whereas the Study

file contains the same data in each row.

33

 After all ISA data is added to the ElementTree, the script iterates through each

cell element to check if it contains data. ‘Cell’ elements not containing data are removed

using the ‘remove(element)’ function.

 The ISA data can then be written to a MCDS DSS XML file named

‘MCDS_S_(#here)_converted.xml.’ This file should be an identical copy to the

corresponding original DSS.

34

3. CONVERTED MCDS DSS VALIDATION

 After all sets of ISA files were converted to MCDS XML files, a validation script

was developed to validate that the XML files produced satisfied the requirements of

MCDS and to verify that all data was successfully transferred. An existing MCDS Digital

Cell Line validation script had been previously completed (Burns, 2021), but this script

used a Python package that was very inefficient when used with Digital Snapshots, as

Snapshots contain up to 200 times the number of entities of Cell Lines. This meant that a

validation script specifically for Snapshots was needed. The Python packages used in this

script can be seen in TABLE IV. The general workflow of the script can be seen in

TABLE IV.

PYTHON PACKAGES USED IN CONVERTED SNAPSHOT VALIDATION SCRIPT

Package Description of Use in Script

Pandas Reads Excel as a DataFrame

LXML XML data parsing

TQDM Script Progress Bar

XMLSchema Validation of XML files using XML Schemas (XSDs)

35

FIGURE 11. ‘CONVERTED_SNAPSHOT_VALIDATION.PY’ WORKFLOW

 To begin the script, the original DSS was found in the ‘All_Digital_Snapshots’

folder, while the converted script was found in the ‘MCDS Conversion Output’ folder,

which was the output of the ‘ISA_2_MCDS_DSS.py’ script. As shown in FIGURE 11,

the first step for validating and verifying the data in the MCDS DSS files was to use the

XMLSchema package. After assigning the path of the MCDS Schema, this package

allowed the script to ensure that the formatting of entities in the converted DSS

corresponded to the expected formatting of a DSS as defined by the data standard by

using the ‘is_valid()’ function.

36

 After the file was validated, the data within the XML file could be examined. The

first step to ensure that all data was transferred to the converted DSS was comparing the

number of MCDS entities in the original and converted file ElementTrees. This served as

an initial check to locate any missing data, as entities that were missing in the converted

DSS were appended to a Pandas DataFrame. If the number of entities was the same in

each file, the data within these entities could then be compared to ensure the files were

identical.

 After this initial check, the script iterated through each element and attribute in

the respective ElementTrees. The script checked that the name of each element/attribute

matched and checked that the text contained within each element/attribute matched. If

any name or data did not match, the file name, along with the type and location of the

error in each file, was appended to the DataFrame. After completing iteration through

each individual file, the number of errors in the file was counted and also appended to the

DataFrame. After completing iteration through all DSS files, the DataFrame was written

to ‘Converted_DSS_Eval.xlsx’ for review.

 This DSS validation and verification script also served as a validation and

verification of all other scripts produced during the course of this Thesis Project. While

the formatting of the ISA-Tab files could be validated using the CSSI Metadata Utility,

the contents of each file could not yet be verified, as no previous DSS files had been

converted to the ISA-Tab format. However, given that the ISA-Tab files produced in the

Project were later reverted to DSS files, comparisons between the original and converted

files showed where data may be missing. Edits were then made to the

‘MCDS_DSS_2_ISA_Relationships.xlsx’, ‘MCDS_DSS_2_ISA.py’, and

37

‘ISA_2_MCDS_DSS.py’ files in order to correct issues causing the data to be missing in

the converted files.

 After errors were mitigated in each script, the project was then pushed to GitHub

to allow for future use of the conversion scripts to those that require it. The link to the

GitHub repository, and each individual file within the repository, can be found in TABLE

VIII. of APPENDIX I.

38

III. RESULTS AND DISCUSSION

While executing the conversion scripts, as well as the DSS validation and

verification script, script run times were recorded in order to quantify their efficiencies.

These run times are recorded in TABLE V. It is important to note the large differences in

the run times for the ‘ISA_2_MCDS_DSS.py’ script compared to the other two scripts.

This script included a loop that located a very large amount of Assay file data and

assigned it to the output XML file. This appeared to be the main reason this script

required more time to execute. Also of note, the Python scripts were executed on a PC

with the Technical Specifications seen in FIGURE 12. Running the scripts on another

computer with different RAM and a different processor may yield different run times.

TABLE V.

SCRIPT RUN TIMES

Script Total Run Time

(327 files)

Average Run Time per

file (sec/file)

MCDS_DSS_2_ISA.py 2:46 0.51

ISA_2_MCDS_DSS.py 16:21:23 180.07

Converted_Snapshot_Validation.py 6:09 1.13

39

FIGURE 12. DEVICE SPECIFICATIONS OF PC USED TO EXECUTE SCRIPTS

 After the ‘MCDS_DSS_2_ISA.py’ script was executed, the output ISA files were

validated as described in the II. PROCEDURE. As described, approximately every tenth

file was validated using the CSSI Metadata Utility application, with the validation results

being shown in TABLE VI below. Screen clips of the validation results within the CSSI

Metadata Utility application corresponding to each of these ISA-Tab file sets can be

found in APPENDIX III.

 Of note, TABLE VI only shows the validation results for the finalized

‘MCDS_DSS_2_ISA.py’ script output ISA files. Multiple initial iterations of the script

produced invalid ISA-Tab files because of issues in both the script and mapping. These

issues were resolved in the development process, and valid ISA-Tab files are now

produced by the script.

TABLE VI.

ISA-TAB FILE VALIDATION

MCDS File Name
ISA-Tab Files

Validated?

MCDS_S_0000000001 yes

MCDS_S_0000000010 yes

MCDS_S_0000000020 yes

MCDS_S_0000000030 yes

40

MCDS_S_0000000040 yes

MCDS_S_0000000050 yes

MCDS_S_0000000060 yes

MCDS_S_0000000070 yes

MCDS_S_0000000080 yes

MCDS_S_0000000090 yes

MCDS_S_0000000100 yes

MCDS_S_0000000110 yes

MCDS_S_0000000120 yes

MCDS_S_0000000130 yes

MCDS_S_0000000140 yes

MCDS_S_0000000150 yes

MCDS_S_0000000160 yes

MCDS_S_0000000170 yes

MCDS_S_0000000180 yes

MCDS_S_0000000190 yes

MCDS_S_0000000200 yes

MCDS_S_0000000210 yes

MCDS_S_0000000220 yes

MCDS_S_0000000230 yes

MCDS_S_0000000240 yes

MCDS_S_0000000250 yes

MCDS_S_0000000260 yes

MCDS_S_0000000270 yes

MCDS_S_0000000280 yes

MCDS_S_0000000290 yes

MCDS_S_0000000300 yes

MCDS_S_0000000310 yes

MCDS_S_0000000320 yes

MCDS_S_0000000327 yes

 The ISA-Tab file sets that were output by the ‘MCDS_DSS_2_ISA.py’ script

were then converted back to DSS files using the ‘ISA_2_MCDS_DSS.py’ script. These

converted DSS files were then validated, and their data verified, by the

‘Converted_Snapshot_Validation.py’ script. A sample of the output Excel file from the

41

validation script can be seen below in TABLE VII. The full version of this file can be

seen in TABLE IX of APPENDIX II.

TABLE VII.

SAMPLE OF 'CONVERTED_SNAPSHOT_VALIDATION.PY' OUTPUT

DSS Filename Passed

MCDS

Validation

Total Data

Entities in

Original

File

Total Data

Entities in

Converted

File

Entity

Count

Equal?

Num of

Issues in

Converted

File

MCDS_S_0000000001 TRUE 28887 28887 yes 1

MCDS_S_0000000002 TRUE 13201 13201 yes 1

MCDS_S_0000000003 TRUE 23321 23321 yes 1

MCDS_S_0000000004 TRUE 17985 17985 yes 1

MCDS_S_0000000005 TRUE 17295 17295 yes 1

As shown, all converted DSS XML files passed XMLSchema validation. TABLE

VII. also shows that there was only one issue in each file when verifying the data

compared to the original DSS. Upon further investigation, each file contained the same

error, and this error was trivial. The issue occurred within the text of the ‘notes’ element

of each file (xPath - metadata/data_origins/data_origin/notes). The text within the ‘notes’

element of the converted DSS had a quotation mark that was misplaced compared to the

original, as shown below. The quotation marks in question are underlined in the text of

each element.

42

Original DSS Notes element:

<notes>To access the original image files, download the folder "Data: Original Images"

from http://datadryad.org/resource/doi:10.5061/dryad.pv85m</notes>

Converted DSS Notes element:

<notes>To access the original image files, download the folder Data: Original Images"

from http://datadryad.org/resource/doi:10.5061/dryad.pv85m"</notes>

 The exact cause of this small error could not be definitively determined, but it is

presumed to have occurred somewhere within the ‘ISA_2_MCDS_DSS.py’ script, as

each Investigation file contained text identical to the original DSS. Other text elements

with quotation marks did not have this issue. However, given the trivial nature of the

error, combined with the thousands of other entities in each converted DSS file that

contained data identical to the original DSS, the error can be overlooked, and the

conversion process confirmed as a success.

43

IV. CONCLUSIONS AND RECOMMENDATIONS

 As shown in the RESULTS AND DISCUSSIONS section of this Thesis, the

conversion scripts have shown to be successful in achieving the goals of this Project.

MultiCellDS Digital Snapshots were used to create valid ISA-Tab files, and those ISA-

Tab files were used to create a Snapshot identical to the original. All 327 ISA-Tab output

file sets were validated using the CSSI Metadata Utility application, while all 327

converted MCDS DSS files were validated with the MCDS Schema using the

validation/verification script developed during this Project. No data was lost during the

conversion process, as also confirmed by the validation/verification script.

 As additional DSS files are produced and added to the public repository, the

conversion scripts and mapping document will require updating. However, the scripts and

mapping are completed in such a way that will allow for updates without creating an

entirely new conversion script. Mapping between the DSS and Assay file would be the

most likely to require updating. All current DSS files are limited to Cell Geometrical

Property measurements, despite many more ‘cellular_information’ sub-elements existing

in the MultiCell Data Standard. This could require additional Assay files to be created for

each individual DSS, as is required in DCL conversion (Burns, 2021).

 This Thesis Project also lays groundwork for future automated conversion of

ANY ISA-Tab file to MCDS, rather than a only creating an identical copy of an existing

44

DSS. Currently, new ISA-Tab files would have to be edited within the CSSI Metadata

Utility application. The names of ISA entities could be manually changed to match names

of ISA entities that were mapped to MCDS during this project, and a valid MCDS DSS

could theoretically be produced. However, this would be a difficult process, and would

require substantial user edits. Future work could be completed to expand mapping

between ISA and MCDS entities to help automate this process.

 While expanding mapping ISA and MCDS entities would allow for conversion of

more files, this process may require additional scripts and mapping documents.

Complicating the conversion is that ISA-Tab format does not have a standardized list of

entities that are possible. ISA-Tab is merely a format for data and metadata that is

recorded and named by each individual user. Many ISA-Tab users may refer to the same

data with different names for the measurements as a result of this lack of universal

standard. Successfully mapping all ISA-Tab files to MCDS would require extensive

examination of ISA-Tab file sets from many different users. This data could then be used

to associate varying ISA-Tab entity names to the MCDS entity that they correspond to.

 Another area of the Thesis Project that could be improved upon in the future is the

runtime for the ‘ISA_2_MCDS_DSS.py’ script. This script took several minutes to

convert each ISA file set to a DSS, and over 16 hours to convert all 327 file sets. The vast

majority of this time was lost in the conversion of Assay file data, as this process required

iteration through 40 columns and hundreds of rows of data for each file. This process will

never be instantaneous, given the large amount of data involved, but there are several

potential methods to speed up this portion of the script. One potential solution is using

Python list comprehension rather than For-loops, as well as limiting the use of dot

45

notation in the scripts. These are two well-known sources of runtime issues in Python.

Also, additional Python packages could allow for portions of the script to be compiled

immediately, rather than having the code executed line by line. This option was briefly

explored, but initial research, trial, and error indicated that these types of packages may

not work well with Pandas DataFrames, which are used throughout each script. Another

potential improvement would be the parallel processing of independent functions within

the Python scripts. This would allow these sections of code to be executed at the same

time, rather than sequentially, which would reduce the overall runtime of the conversion

script. However, this method of executing the script would require use of a machine with

multiple processors, which would not have been possible on the PC used in the

development of the current scripts. Multithreading would be another option, similar to

parallel processing, that could be explored for improving runtimes on single processor

machines.

 A final recommendation for the conversion scripts would be incorporating

command line interface. The current versions of the scripts have predetermined file and

folder names within the text of the script. This works well if all files to be converted are

in the same folder and have the same folder names as those in the script. However, many

users may not have files organized in the same way they were organized during the

production of these scripts. Incorporating command line interface would allow for the

user to further interact with the script to define their own file paths without having to

manually edit the script to alter the current file paths.

46

REFERENCES CITED

Burns, C. J. (2021). Automated Conversion of MultiCellDS Digital Cell Lines and ISA-

Tab filesets. Electronic Thesis and Dissertations. Retrieved from

https://ir.library.louisville.edu/etd/3443/

CSSI Portal. (2020, November). Retrieved from NIH National Cancer Institute Center for

Strategic Scientific Initiatives: https://cssi-dcc.nci.nih.gov/cssiportal/

Friedman, S. H et al. (2016). MultiCellDS: a standard and a community for sharing

multicellular data.

Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P.

(2018). PhysiCell: An open source physics-based cell simulator for 3-D

multicellular systems. PLoO Computational Biology.

doi:https://doi.org/10.1371/journal.pcbi.1005991

ISA Abstract Model. (n.d.). Retrieved from ISA Model and Serialization Specifications:

https://isa-specs.readthedocs.io/en/latest/isamodel.html

ISA-Tab Format. (n.d.). Retrieved from ISA Model and Serialization Specifications:

https://isa-specs.readthedocs.io/en/latest/isatab.html

Macklin, P. (2019). Key challenges facing data-driven multicellular systems biology.

GigaScience, Volume 8(Issue 10). doi:https://doi.org/10.1093/gigascience/giz127

Palsson, B. (2000). The challenges of in silico biology. Nature Biotechnology.

doi:https://doi.org/10.1038/81125

47

Rocca-Serra, P. et al. (2009). Specification Document: ISA-TAB 1.0. Zenodo.

doi:http://doi.org/10.5281/zenodo.161355

48

APPENDIX I.

TABLE VIII.

PROJECT FILES AND LOCATIONS

File Description Link

MCDS_DSS_2_ISA.py Python script used to

convert MCDS DSS

XML files to an ISA-

Tab file set

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/MCDS_DSS_2_ISA.py

ISA_2_MCDS_DSS.py Python script used to

convert ISA-Tab file

sets to MCDS DSS

XML files

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/ISA_2_MCDS_DSS.py

Generate_MCDS_Entity_List.py Python script used to

determine all possible

MCDS DSS entities

used

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/Generate_MCDS_Entity_Lis

t.py

Converted_Snapshot_Validation.py Python script used to

validate converted

MCDS DSS files using

the MCDS XML

Schema and to verify

that data in converted

MCDS DSS XML files

matches the original

MCDS DSS XML files

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/Converted_Snapshot_Valida

tion.py

Generatte_Template_DSS.py Python script used to

create a MCDS DSS

with no data

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/Generate_Template_DSS.py

MCDS_DSS_2_ISA_Relationships.xlsx Excel file containing all

mapping between

MCDS and ISA-Tab

entities

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/MCDS_DSS_2_ISA_Relatio

nships.xlsx

https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/ISA_2_MCDS_DSS.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/ISA_2_MCDS_DSS.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/ISA_2_MCDS_DSS.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_MCDS_Entity_List.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_MCDS_Entity_List.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_MCDS_Entity_List.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_MCDS_Entity_List.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_Snapshot_Validation.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_Snapshot_Validation.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_Snapshot_Validation.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_Snapshot_Validation.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_Template_DSS.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_Template_DSS.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Generate_Template_DSS.py
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA_Relationships.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA_Relationships.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA_Relationships.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_2_ISA_Relationships.xlsx

49

MCDS_DSS_All_Entities_Sorted.xlsx Excel file containing

the sorted output of the

‘Generate_MCDS_Enti

tiy_List.py’ script

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/MCDS_DSS_All_Entities_S

orted.xlsx

Converted_DSS_Eval.xlsx Excel File containing

the

‘Converted_Snapshot_

Validation.py’ script

output

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/Converted_DSS_Eval.xlsx

All_Digital_Snapshots Folder Folder containing all

MCDS DSS files

https://github.com/rheiland/mcds

2isa/tree/DSS_ISA_Conversion_v

1.0/All_Digital_Snapshots

ISATabOutput Folder Folder containing all

sets of ISA-Tab files

created by the

‘MDCS_DSS_2_ISA.p

y’ conversion script

https://github.com/rheiland/mcds

2isa/tree/DSS_ISA_Conversion_v

1.0/ISATabOutput

MCDS Conversion Output Folder Folder containing all

converted MCDS DSS

files created by the

‘ISA_2_MCDS_DSS.p

y’ conversion script

https://github.com/rheiland/mcds

2isa/tree/DSS_ISA_Conversion_v

1.0/MCDS%20Conversion%20O

utput

Current_Clean_DSS.xml MCDS DSS XML file

that has had all data

removed to be used as a

template for the

‘ISA_2_MCDS_DSS.p

y’ conversion script

https://github.com/rheiland/mcds

2isa/blob/DSS_ISA_Conversion_

v1.0/Current_Clean_DSS.xml

MultiCellDS-transitions-v1.0-v1.0.0

Folder

Folder containing all

MCDS XML Schemas

https://gitlab.com/MultiCellDS/M

ultiCellDS/-

/tree/master/v1.0/v1.0.0

https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_All_Entities_Sorted.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_All_Entities_Sorted.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_All_Entities_Sorted.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/MCDS_DSS_All_Entities_Sorted.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_DSS_Eval.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_DSS_Eval.xlsx
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Converted_DSS_Eval.xlsx
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/All_Digital_Snapshots
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/All_Digital_Snapshots
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/All_Digital_Snapshots
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/ISATabOutput
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/ISATabOutput
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/ISATabOutput
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/MCDS%20Conversion%20Output
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/MCDS%20Conversion%20Output
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/MCDS%20Conversion%20Output
https://github.com/rheiland/mcds2isa/tree/DSS_ISA_Conversion_v1.0/MCDS%20Conversion%20Output
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Current_Clean_DSS.xml
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Current_Clean_DSS.xml
https://github.com/rheiland/mcds2isa/blob/DSS_ISA_Conversion_v1.0/Current_Clean_DSS.xml
https://gitlab.com/MultiCellDS/MultiCellDS/-/tree/master/v1.0/v1.0.0
https://gitlab.com/MultiCellDS/MultiCellDS/-/tree/master/v1.0/v1.0.0
https://gitlab.com/MultiCellDS/MultiCellDS/-/tree/master/v1.0/v1.0.0

50

APPENDIX II.

TABLE IX.

FULL MCDS VALIDATION SCRIPT OUTPUT

DSS Filename Passed

MCDS

Validation

Total Data

Entities in

Original File

Total Data

Entities in

Converted

File

Entity

Count

Equal?

Num of

Issues in

Converted

File

MCDS_S_0000000001 TRUE 28887 28887 yes 1

MCDS_S_0000000002 TRUE 13201 13201 yes 1

MCDS_S_0000000003 TRUE 23321 23321 yes 1

MCDS_S_0000000004 TRUE 17985 17985 yes 1

MCDS_S_0000000005 TRUE 17295 17295 yes 1

MCDS_S_0000000006 TRUE 15731 15731 yes 1

MCDS_S_0000000007 TRUE 19227 19227 yes 1

MCDS_S_0000000008 TRUE 13799 13799 yes 1

MCDS_S_0000000009 TRUE 23643 23643 yes 1

MCDS_S_0000000010 TRUE 18445 18445 yes 1

MCDS_S_0000000011 TRUE 42181 42181 yes 1

MCDS_S_0000000012 TRUE 41767 41767 yes 1

MCDS_S_0000000013 TRUE 19273 19273 yes 1

51

MCDS_S_0000000014 TRUE 29439 29439 yes 1

MCDS_S_0000000015 TRUE 24701 24701 yes 1

MCDS_S_0000000016 TRUE 29623 29623 yes 1

MCDS_S_0000000017 TRUE 33625 33625 yes 1

MCDS_S_0000000018 TRUE 22907 22907 yes 1

MCDS_S_0000000019 TRUE 41031 41031 yes 1

MCDS_S_0000000020 TRUE 27553 27553 yes 1

MCDS_S_0000000021 TRUE 47701 47701 yes 1

MCDS_S_0000000022 TRUE 33119 33119 yes 1

MCDS_S_0000000023 TRUE 32659 32659 yes 1

MCDS_S_0000000024 TRUE 22309 22309 yes 1

MCDS_S_0000000025 TRUE 18537 18537 yes 1

MCDS_S_0000000026 TRUE 48345 48345 yes 1

MCDS_S_0000000027 TRUE 39927 39927 yes 1

MCDS_S_0000000028 TRUE 28887 28887 yes 1

MCDS_S_0000000029 TRUE 27093 27093 yes 1

MCDS_S_0000000030 TRUE 17617 17617 yes 1

MCDS_S_0000000031 TRUE 20699 20699 yes 1

MCDS_S_0000000032 TRUE 34085 34085 yes 1

MCDS_S_0000000033 TRUE 41721 41721 yes 1

52

MCDS_S_0000000034 TRUE 38317 38317 yes 1

MCDS_S_0000000035 TRUE 44113 44113 yes 1

MCDS_S_0000000036 TRUE 36615 36615 yes 1

MCDS_S_0000000037 TRUE 38225 38225 yes 1

MCDS_S_0000000038 TRUE 41905 41905 yes 1

MCDS_S_0000000039 TRUE 34867 34867 yes 1

MCDS_S_0000000040 TRUE 37397 37397 yes 1

MCDS_S_0000000041 TRUE 28892 28892 yes 1

MCDS_S_0000000042 TRUE 13206 13206 yes 1

MCDS_S_0000000043 TRUE 23326 23326 yes 1

MCDS_S_0000000044 TRUE 17990 17990 yes 1

MCDS_S_0000000045 TRUE 17300 17300 yes 1

MCDS_S_0000000046 TRUE 15736 15736 yes 1

MCDS_S_0000000047 TRUE 19232 19232 yes 1

MCDS_S_0000000048 TRUE 13804 13804 yes 1

MCDS_S_0000000049 TRUE 23648 23648 yes 1

MCDS_S_0000000050 TRUE 18450 18450 yes 1

MCDS_S_0000000051 TRUE 13344 13344 yes 1

MCDS_S_0000000052 TRUE 23970 23970 yes 1

MCDS_S_0000000053 TRUE 15506 15506 yes 1

53

MCDS_S_0000000054 TRUE 8882 8882 yes 1

MCDS_S_0000000055 TRUE 27788 27788 yes 1

MCDS_S_0000000056 TRUE 13712 13712 yes 1

MCDS_S_0000000057 TRUE 18404 18404 yes 1

MCDS_S_0000000058 TRUE 5800 5800 yes 1

MCDS_S_0000000059 TRUE 17576 17576 yes 1

MCDS_S_0000000060 TRUE 22360 22360 yes 1

MCDS_S_0000000061 TRUE 29025 29025 yes 1

MCDS_S_0000000062 TRUE 29945 29945 yes 1

MCDS_S_0000000063 TRUE 12741 12741 yes 1

MCDS_S_0000000064 TRUE 12833 12833 yes 1

MCDS_S_0000000065 TRUE 19917 19917 yes 1

MCDS_S_0000000066 TRUE 19641 19641 yes 1

MCDS_S_0000000067 TRUE 9015 9015 yes 1

MCDS_S_0000000068 TRUE 3817 3817 yes 1

MCDS_S_0000000069 TRUE 2897 2897 yes 1

MCDS_S_0000000070 TRUE 1379 1379 yes 1

MCDS_S_0000000071 TRUE 4277 4277 yes 1

MCDS_S_0000000072 TRUE 2529 2529 yes 1

MCDS_S_0000000073 TRUE 3587 3587 yes 1

54

MCDS_S_0000000074 TRUE 32613 32613 yes 1

MCDS_S_0000000075 TRUE 29163 29163 yes 1

MCDS_S_0000000076 TRUE 28432 28432 yes 1

MCDS_S_0000000077 TRUE 29260 29260 yes 1

MCDS_S_0000000078 TRUE 20474 20474 yes 1

MCDS_S_0000000079 TRUE 24154 24154 yes 1

MCDS_S_0000000080 TRUE 12562 12562 yes 1

MCDS_S_0000000081 TRUE 5386 5386 yes 1

MCDS_S_0000000082 TRUE 14448 14448 yes 1

MCDS_S_0000000083 TRUE 31146 31146 yes 1

MCDS_S_0000000084 TRUE 31376 31376 yes 1

MCDS_S_0000000085 TRUE 19687 19687 yes 1

MCDS_S_0000000086 TRUE 26868 26868 yes 1

MCDS_S_0000000087 TRUE 26960 26960 yes 1

MCDS_S_0000000088 TRUE 34550 34550 yes 1

MCDS_S_0000000089 TRUE 42692 42692 yes 1

MCDS_S_0000000090 TRUE 8284 8284 yes 1

MCDS_S_0000000091 TRUE 4696 4696 yes 1

MCDS_S_0000000092 TRUE 5892 5892 yes 1

MCDS_S_0000000093 TRUE 8652 8652 yes 1

55

MCDS_S_0000000094 TRUE 9526 9526 yes 1

MCDS_S_0000000095 TRUE 1154 1154 yes 1

MCDS_S_0000000096 TRUE 5708 5708 yes 1

MCDS_S_0000000097 TRUE 19600 19600 yes 1

MCDS_S_0000000098 TRUE 25212 25212 yes 1

MCDS_S_0000000099 TRUE 38644 38644 yes 1

MCDS_S_0000000100 TRUE 52168 52168 yes 1

MCDS_S_0000000101 TRUE 25442 25442 yes 1

MCDS_S_0000000102 TRUE 23740 23740 yes 1

MCDS_S_0000000103 TRUE 11642 11642 yes 1

MCDS_S_0000000104 TRUE 47200 47200 yes 1

MCDS_S_0000000105 TRUE 48074 48074 yes 1

MCDS_S_0000000106 TRUE 24982 24982 yes 1

MCDS_S_0000000107 TRUE 24568 24568 yes 1

MCDS_S_0000000108 TRUE 34044 34044 yes 1

MCDS_S_0000000109 TRUE 35746 35746 yes 1

MCDS_S_0000000110 TRUE 41818 41818 yes 1

MCDS_S_0000000111 TRUE 39099 39099 yes 1

MCDS_S_0000000112 TRUE 26679 26679 yes 1

MCDS_S_0000000113 TRUE 20515 20515 yes 1

56

MCDS_S_0000000114 TRUE 13247 13247 yes 1

MCDS_S_0000000115 TRUE 9383 9383 yes 1

MCDS_S_0000000116 TRUE 30727 30727 yes 1

MCDS_S_0000000117 TRUE 14402 14402 yes 1

MCDS_S_0000000118 TRUE 3868 3868 yes 1

MCDS_S_0000000119 TRUE 18726 18726 yes 1

MCDS_S_0000000120 TRUE 30226 30226 yes 1

MCDS_S_0000000121 TRUE 39881 39881 yes 1

MCDS_S_0000000122 TRUE 37765 37765 yes 1

MCDS_S_0000000123 TRUE 35327 35327 yes 1

MCDS_S_0000000124 TRUE 14264 14264 yes 1

MCDS_S_0000000125 TRUE 9756 9756 yes 1

MCDS_S_0000000126 TRUE 7962 7962 yes 1

MCDS_S_0000000127 TRUE 47563 47563 yes 1

MCDS_S_0000000128 TRUE 46873 46873 yes 1

MCDS_S_0000000129 TRUE 40111 40111 yes 1

MCDS_S_0000000130 TRUE 12971 12971 yes 1

MCDS_S_0000000131 TRUE 10211 10211 yes 1

MCDS_S_0000000132 TRUE 17249 17249 yes 1

MCDS_S_0000000133 TRUE 12833 12833 yes 1

57

MCDS_S_0000000134 TRUE 29623 29623 yes 1

MCDS_S_0000000135 TRUE 21849 21849 yes 1

MCDS_S_0000000136 TRUE 42503 42503 yes 1

MCDS_S_0000000137 TRUE 19692 19692 yes 1

MCDS_S_0000000138 TRUE 22314 22314 yes 1

MCDS_S_0000000139 TRUE 19094 19094 yes 1

MCDS_S_0000000140 TRUE 27006 27006 yes 1

MCDS_S_0000000141 TRUE 17852 17852 yes 1

MCDS_S_0000000142 TRUE 10216 10216 yes 1

MCDS_S_0000000143 TRUE 11596 11596 yes 1

MCDS_S_0000000144 TRUE 14770 14770 yes 1

MCDS_S_0000000145 TRUE 15092 15092 yes 1

MCDS_S_0000000146 TRUE 13160 13160 yes 1

MCDS_S_0000000147 TRUE 19646 19646 yes 1

MCDS_S_0000000148 TRUE 21440 21440 yes 1

MCDS_S_0000000149 TRUE 31238 31238 yes 1

MCDS_S_0000000150 TRUE 15782 15782 yes 1

MCDS_S_0000000151 TRUE 11458 11458 yes 1

MCDS_S_0000000152 TRUE 12240 12240 yes 1

MCDS_S_0000000153 TRUE 14034 14034 yes 1

58

MCDS_S_0000000154 TRUE 9158 9158 yes 1

MCDS_S_0000000155 TRUE 14586 14586 yes 1

MCDS_S_0000000156 TRUE 8008 8008 yes 1

MCDS_S_0000000157 TRUE 11550 11550 yes 1

MCDS_S_0000000158 TRUE 10722 10722 yes 1

MCDS_S_0000000159 TRUE 4006 4006 yes 1

MCDS_S_0000000160 TRUE 4972 4972 yes 1

MCDS_S_0000000161 TRUE 14264 14264 yes 1

MCDS_S_0000000162 TRUE 28202 28202 yes 1

MCDS_S_0000000163 TRUE 20520 20520 yes 1

MCDS_S_0000000164 TRUE 31928 31928 yes 1

MCDS_S_0000000165 TRUE 9756 9756 yes 1

MCDS_S_0000000166 TRUE 5524 5524 yes 1

MCDS_S_0000000167 TRUE 1982 1982 yes 1

MCDS_S_0000000168 TRUE 27001 27001 yes 1

MCDS_S_0000000169 TRUE 30451 30451 yes 1

MCDS_S_0000000170 TRUE 19738 19738 yes 1

MCDS_S_0000000171 TRUE 3730 3730 yes 1

MCDS_S_0000000172 TRUE 22866 22866 yes 1

MCDS_S_0000000173 TRUE 15690 15690 yes 1

59

MCDS_S_0000000174 TRUE 29306 29306 yes 1

MCDS_S_0000000175 TRUE 20566 20566 yes 1

MCDS_S_0000000176 TRUE 23372 23372 yes 1

MCDS_S_0000000177 TRUE 13942 13942 yes 1

MCDS_S_0000000178 TRUE 23694 23694 yes 1

MCDS_S_0000000179 TRUE 14356 14356 yes 1

MCDS_S_0000000180 TRUE 22268 22268 yes 1

MCDS_S_0000000181 TRUE 18404 18404 yes 1

MCDS_S_0000000182 TRUE 15920 15920 yes 1

MCDS_S_0000000183 TRUE 23372 23372 yes 1

MCDS_S_0000000184 TRUE 15598 15598 yes 1

MCDS_S_0000000185 TRUE 27052 27052 yes 1

MCDS_S_0000000186 TRUE 28432 28432 yes 1

MCDS_S_0000000187 TRUE 22774 22774 yes 1

MCDS_S_0000000188 TRUE 23464 23464 yes 1

MCDS_S_0000000189 TRUE 16334 16334 yes 1

MCDS_S_0000000190 TRUE 17162 17162 yes 1

MCDS_S_0000000191 TRUE 12884 12884 yes 1

MCDS_S_0000000192 TRUE 11780 11780 yes 1

MCDS_S_0000000193 TRUE 5800 5800 yes 1

60

MCDS_S_0000000194 TRUE 1890 1890 yes 1

MCDS_S_0000000195 TRUE 1614 1614 yes 1

MCDS_S_0000000196 TRUE 8284 8284 yes 1

MCDS_S_0000000197 TRUE 12102 12102 yes 1

MCDS_S_0000000198 TRUE 9618 9618 yes 1

MCDS_S_0000000199 TRUE 4282 4282 yes 1

MCDS_S_0000000200 TRUE 19416 19416 yes 1

MCDS_S_0000000201 TRUE 12884 12884 yes 1

MCDS_S_0000000202 TRUE 13942 13942 yes 1

MCDS_S_0000000203 TRUE 15966 15966 yes 1

MCDS_S_0000000204 TRUE 37448 37448 yes 1

MCDS_S_0000000205 TRUE 38782 38782 yes 1

MCDS_S_0000000206 TRUE 23280 23280 yes 1

MCDS_S_0000000207 TRUE 21946 21946 yes 1

MCDS_S_0000000208 TRUE 15092 15092 yes 1

MCDS_S_0000000209 TRUE 11136 11136 yes 1

MCDS_S_0000000210 TRUE 42784 42784 yes 1

MCDS_S_0000000211 TRUE 34228 34228 yes 1

MCDS_S_0000000212 TRUE 12378 12378 yes 1

MCDS_S_0000000213 TRUE 15782 15782 yes 1

61

MCDS_S_0000000214 TRUE 21619 21619 yes 1

MCDS_S_0000000215 TRUE 7548 7548 yes 1

MCDS_S_0000000216 TRUE 3546 3546 yes 1

MCDS_S_0000000217 TRUE 1752 1752 yes 1

MCDS_S_0000000218 TRUE 5248 5248 yes 1

MCDS_S_0000000219 TRUE 5519 5519 yes 1

MCDS_S_0000000220 TRUE 9567 9567 yes 1

MCDS_S_0000000221 TRUE 14857 14857 yes 1

MCDS_S_0000000222 TRUE 15690 15690 yes 1

MCDS_S_0000000223 TRUE 14448 14448 yes 1

MCDS_S_0000000224 TRUE 26224 26224 yes 1

MCDS_S_0000000225 TRUE 21394 21394 yes 1

MCDS_S_0000000226 TRUE 22820 22820 yes 1

MCDS_S_0000000227 TRUE 37724 37724 yes 1

MCDS_S_0000000228 TRUE 13482 13482 yes 1

MCDS_S_0000000229 TRUE 30088 30088 yes 1

MCDS_S_0000000230 TRUE 20520 20520 yes 1

MCDS_S_0000000231 TRUE 42324 42324 yes 1

MCDS_S_0000000232 TRUE 21302 21302 yes 1

MCDS_S_0000000233 TRUE 33308 33308 yes 1

62

MCDS_S_0000000234 TRUE 36482 36482 yes 1

MCDS_S_0000000235 TRUE 32802 32802 yes 1

MCDS_S_0000000236 TRUE 22452 22452 yes 1

MCDS_S_0000000237 TRUE 25856 25856 yes 1

MCDS_S_0000000238 TRUE 29674 29674 yes 1

MCDS_S_0000000239 TRUE 4691 4691 yes 1

MCDS_S_0000000240 TRUE 1747 1747 yes 1

MCDS_S_0000000241 TRUE 5473 5473 yes 1

MCDS_S_0000000242 TRUE 1839 1839 yes 1

MCDS_S_0000000243 TRUE 10947 10947 yes 1

MCDS_S_0000000244 TRUE 20014 20014 yes 1

MCDS_S_0000000245 TRUE 25442 25442 yes 1

MCDS_S_0000000246 TRUE 23418 23418 yes 1

MCDS_S_0000000247 TRUE 18450 18450 yes 1

MCDS_S_0000000248 TRUE 42554 42554 yes 1

MCDS_S_0000000249 TRUE 29766 29766 yes 1

MCDS_S_0000000250 TRUE 19089 19089 yes 1

MCDS_S_0000000251 TRUE 33763 33763 yes 1

MCDS_S_0000000252 TRUE 28151 28151 yes 1

MCDS_S_0000000253 TRUE 30083 30083 yes 1

63

MCDS_S_0000000254 TRUE 47517 47517 yes 1

MCDS_S_0000000255 TRUE 47931 47931 yes 1

MCDS_S_0000000256 TRUE 16978 16978 yes 1

MCDS_S_0000000257 TRUE 12976 12976 yes 1

MCDS_S_0000000258 TRUE 5892 5892 yes 1

MCDS_S_0000000259 TRUE 18082 18082 yes 1

MCDS_S_0000000260 TRUE 15184 15184 yes 1

MCDS_S_0000000261 TRUE 17024 17024 yes 1

MCDS_S_0000000262 TRUE 23924 23924 yes 1

MCDS_S_0000000263 TRUE 12102 12102 yes 1

MCDS_S_0000000264 TRUE 49362 49362 yes 1

MCDS_S_0000000265 TRUE 32020 32020 yes 1

MCDS_S_0000000266 TRUE 42462 42462 yes 1

MCDS_S_0000000267 TRUE 45544 45544 yes 1

MCDS_S_0000000268 TRUE 10722 10722 yes 1

MCDS_S_0000000269 TRUE 16748 16748 yes 1

MCDS_S_0000000270 TRUE 14770 14770 yes 1

MCDS_S_0000000271 TRUE 21118 21118 yes 1

MCDS_S_0000000272 TRUE 46689 46689 yes 1

MCDS_S_0000000273 TRUE 28473 28473 yes 1

64

MCDS_S_0000000274 TRUE 18445 18445 yes 1

MCDS_S_0000000275 TRUE 15225 15225 yes 1

MCDS_S_0000000276 TRUE 23183 23183 yes 1

MCDS_S_0000000277 TRUE 21067 21067 yes 1

MCDS_S_0000000278 TRUE 13017 13017 yes 1

MCDS_S_0000000279 TRUE 30727 30727 yes 1

MCDS_S_0000000280 TRUE 18077 18077 yes 1

MCDS_S_0000000281 TRUE 10027 10027 yes 1

MCDS_S_0000000282 TRUE 43377 43377 yes 1

MCDS_S_0000000283 TRUE 36339 36339 yes 1

MCDS_S_0000000284 TRUE 29255 29255 yes 1

MCDS_S_0000000285 TRUE 42733 42733 yes 1

MCDS_S_0000000286 TRUE 28197 28197 yes 1

MCDS_S_0000000287 TRUE 34315 34315 yes 1

MCDS_S_0000000288 TRUE 21067 21067 yes 1

MCDS_S_0000000289 TRUE 39007 39007 yes 1

MCDS_S_0000000290 TRUE 27461 27461 yes 1

MCDS_S_0000000291 TRUE 35741 35741 yes 1

MCDS_S_0000000292 TRUE 11131 11131 yes 1

MCDS_S_0000000293 TRUE 17111 17111 yes 1

65

MCDS_S_0000000294 TRUE 10809 10809 yes 1

MCDS_S_0000000295 TRUE 15731 15731 yes 1

MCDS_S_0000000296 TRUE 14259 14259 yes 1

MCDS_S_0000000297 TRUE 25299 25299 yes 1

MCDS_S_0000000298 TRUE 25483 25483 yes 1

MCDS_S_0000000299 TRUE 23321 23321 yes 1

MCDS_S_0000000300 TRUE 17847 17847 yes 1

MCDS_S_0000000301 TRUE 24471 24471 yes 1

MCDS_S_0000000302 TRUE 23275 23275 yes 1

MCDS_S_0000000303 TRUE 27047 27047 yes 1

MCDS_S_0000000304 TRUE 18077 18077 yes 1

MCDS_S_0000000305 TRUE 20193 20193 yes 1

MCDS_S_0000000306 TRUE 22263 22263 yes 1

MCDS_S_0000000307 TRUE 22079 22079 yes 1

MCDS_S_0000000308 TRUE 20009 20009 yes 1

MCDS_S_0000000309 TRUE 21435 21435 yes 1

MCDS_S_0000000310 TRUE 23505 23505 yes 1

MCDS_S_0000000311 TRUE 25759 25759 yes 1

MCDS_S_0000000312 TRUE 25943 25943 yes 1

MCDS_S_0000000313 TRUE 28427 28427 yes 1

66

MCDS_S_0000000314 TRUE 25023 25023 yes 1

MCDS_S_0000000315 TRUE 27967 27967 yes 1

MCDS_S_0000000316 TRUE 24655 24655 yes 1

MCDS_S_0000000317 TRUE 25943 25943 yes 1

MCDS_S_0000000318 TRUE 15777 15777 yes 1

MCDS_S_0000000319 TRUE 18997 18997 yes 1

MCDS_S_0000000320 TRUE 24103 24103 yes 1

MCDS_S_0000000321 TRUE 19871 19871 yes 1

MCDS_S_0000000322 TRUE 19273 19273 yes 1

MCDS_S_0000000323 TRUE 21895 21895 yes 1

MCDS_S_0000000324 TRUE 30589 30589 yes 1

MCDS_S_0000000325 TRUE 30543 30543 yes 1

MCDS_S_0000000326 TRUE 18261 18261 yes 1

MCDS_S_0000000327 TRUE 29669 29669 yes 1

67

APPENDIX III.

APPENDIX III contains screenshots of proof of validation of each ISA-Tab file set

selected for validation. This selection of ISA-Tab file sets constitutes 10% of all ISA-Tab

file sets produced, and represents all entities mapped between MCDS DSSs and ISA-Tab

Format

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

VITA

Corey Peyton Chitwood graduated with a Bachelor’s of Science in

Bioengineering from the University of Louisville in May 2020 and Master’s of

Engineering in Bioengineering from the University of Louisville in July 2021. At the

University of Louisville, he was a recipient of the Henry Vogt Scholarship. Corey has

previously worked in the Clinical Engineering Department at Cincinnati Children’s

Hospital, and plans to apply his experience and passion for medicine in to a career as a

Physician in the future.

	Conversion of MultiCellDS Digital Snapshots to ISA-Tab format.
	Recommended Citation

	tmp.1626736524.pdf.dALpF

