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ABSTRACT 

MACHINE LEARNING MODELS FOR LODI INDICES 

Lucas A. Bruns 

July 22, 2021 

Two indices published monthly by the Logistics and Distribution Institute (LoDI) 

predict changes in logistics and distribution activity levels nationally and regionally and 

are useful for organizations when planning projects and expenses. This research validates 

the current linear regression model, updates the index conversion method, and introduces 

machine learning models.  

New source data are introduced to the models to validate the current linear 

regression model and a comparative analysis verifies that the current source data are 

robust. A rolling average is used for index conversion in place of a fixed reference month 

to reflect recent changes in employment levels.  

Three linear machine learning models are tested on the data. Patterns among the 

residuals indicate non-linearity. Four non-linear models are tested on the data and 

compared to the linear models. The non-linear models are found to be more accurate than 

the linear models for both the national index and regional index. 
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INTRODUCTION 

 

The two indices published monthly by the Logistics and Distribution Institute 

(LoDI) were developed in 2012 at the University of Louisville (Gerber, 2013). One is a 

regional index for the Greater Louisville area and the other is a national index for the United 

States. Both are designed to predict changes in employment levels for the logistics and 

distribution industry and can be used by many organizations in their strategic planning of 

such activities.  

After the creation of the indices in 2012, only one update to the regional index 

model has been completed (Eskridge & Gerber, 2016) and the national model has remained 

the same since its inception. Although the models are only nine years old, the constantly 

changing nature of the logistics industry necessitates regular revision so they don’t become 

obsolete. This update seeks to address some of the problems that arise due to outdated data, 

such as the index conversion that relies on data from more than five years prior.  

Though the current index models for the national LoDI index and the Greater 

Louisville area index are useful for predicting employment levels under normal 

circumstances, they are prone to overcorrection and due to the use of a linear rolling 

regression model, tend to lag behind the trends in the actual data.  

This research attempts to account for the seasonal trends, as well as the long-term 

trends that occur due to the growth of the logistics and distribution industries over time, by 

using machine learning models, both linear and non-linear.   



2 
 

BACKGROUND 

 

LoDI Indices 

Rolling Regression Model 

For both of the current indices, national and regional, many variables are considered 

in the regression model. The regional index uses data collected by the Ports of Indiana 

regarding barge (“River”) and railway (“Rail”) transit (Gerber, 2013). Barge data is 

reported as tonnage shipped, but railway data is reported in “carloads” shipped, requiring 

the use of a multiplier to calculate the estimated tonnage shipped. For the regional index, 

“Air” data is reported by the Louisville Regional Airport. Trucking tonnage data is not 

tracked in the same way for the region, so the American Trucking Associations (ATA) 

Truck Tonnage Index (TTI), which is seasonally adjusted, is used in place of a raw number.  

Upon completion of the update in 2016, two new factors were added to the regional 

index model (Eskridge & Gerber, 2016). The Purchasing Manager’s Index (PMI) is 

reported monthly by the Institute for Supply Management and published on ycharts.com. 

It is based on a survey of managers in the area of supply management and purchasing. It is 

seasonally adjusted. The Kentucky Crude Oil First Purchase Price (KY Oil) is reported 

monthly by the U.S. Energy Information Administration (EIA). It represents the price of 

the initial removal of crude oil from a property. 

For a response variable, the regional index model uses employment data published 

monthly by the Bureau of Labor Statistics (Gerber, 2013). The specific numbers used are 



3 
 

for “Manufacturing” and “Trade, Transportation, and Utilities” employment, which are 

reported in thousands (i.e., 84.3 = 84,300 employed). Those numbers are not seasonally 

adjusted. 

The national index uses Rail data from the Association of American Railroads 

(AAR), which, like the regional data, is reported in carloads shipped and must be converted 

into estimated tonnage (Gerber, 2013). Air data for the national index is published by the 

Bureau of Transportation Statistics and reported as total tonnage shipped. The ATA index 

is also used for the national model because raw tonnage data is unavailable. Total tonnage 

shipped by barge in the U.S. is published by the Federal Reserve Bank of St. Louis online 

database. It is collected and provided by the Army Corps of Engineers. 

The national index also uses several economic indicators (Gerber, 2013). One is the 

estimated monthly Gross Domestic Product (GDP), which is published on ycharts.com. 

That value is calculated by a group called the Macroeconomic Advisors using the actual 

GDP value that is only published quarterly and yearly. Monthly crude oil prices are 

reported by the U.S. EIA. The PMI is also used for the national index.  

The response variable for the national index is employment data, specifically 

“Transportation and Warehousing”, which is published monthly by the Bureau of Labor 

Statistics (Gerber, 2013). This data is also reported in thousands and is seasonally adjusted.  

The original model for the regional index used the following variables: Air (lag = 

3), Rail (lag=3), River (lag=3), ATA Index (lag=3), Air (lag = 4), Rail (lag=4), River 

(lag=4), ATA Index (lag=4), Air (lag = 5), Rail (lag=5), ATA Index (lag=5), and seasonal 
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indicators (M2-M12) (Gerber, 2013). The original regional index model is shown in 

Equation 1. 

 

 Total Employment =  508 +  0.000501 Air − 0.000104 Rail +

 0.000031 River +  0.745 ATA − 1.90 M2 +  1.95 M3 +  12.3 M4 +

 26.4 M5 +  35.3 M6 +  15.1 M7 +  23.5 M8 +  25.0 M9 +

 20.4 M10 +  21.9 M11 +  19.9 M12 +  0.000515 Air (Lag =  1) +

 0.000075 Rail (Lag =  1)  +  0.000025 River (Lag =  1) −

0.456 ATA (Lag = 1)  +  0.000340 Air (Lag = 2) −

0.000091 Rail (Lag = 2)  − 0.479 ATA (Lag = 2)  

(1) 

 

The regional index model was updated in 2016 to a 36-month rolling regression 

model that better accounted for changes in the industry and to the data year over year 

(Eskridge & Gerber, 2016). Thus, there is no set model for each index calculation because 

the coefficients change each time a new month is added.  

Changes were also made to the data used in the model (Eskridge & Gerber, 2016). 

The current regional model uses Air (lag = 3), Rail (lag=3), River (lag=3), ATA Index 

(lag=3), Purchasing Manager’s Index (PMI), KY Oil, Air (lag = 4), Rail (lag=4), ATA 

Index (lag=4), River (lag=5), and ATA Index (lag=5).  

The original model for the national index used the following variables: Air (lag=4), 

Rail (lag=4), River (lag=4), ATA Index (lag=4), Air (lag=5), Rail (lag=5), Air (lag=6), 
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Estimated Monthly Gross Domestic Product (GDP), PMI, and Monthly Crude Oil Prices. 

No changes have been made to the model since its creation. The model for the national 

index is shown in Equation 2. 

 

 T&W Employment =  2708.79 − 1.64519e − 005 Air (L = 4)  +

 1.76987e − 005 Rail (L = 4) +  0.655678 River (L = 4) −

0.230156 ATA Index (L = 4) +  5.53457e − 005 Air (L = 5)  +

 3.11192e − 006 Rail (L = 5) +  3.09447e − 005 Air (L = 6)  +

 132.957 GDP for US − 0.5871 PMI − 1.20091 Oil  

(2) 

 

Index Conversion 

The existing formula for converting the national index is shown in Equation 3. It 

finds the ratio of the predicted employment to the base year employment, multiplies by one 

hundred, and then divides by two. This is done because the index is presented as a number 

from 1 to 100, with 50 indicating no growth or decline (Gerber, 2013). An index value 

between 1 and 50 indicates a projected decline of the logistics industry in the area the index 

represents, while an index value between 50 and 100 indicates a projected growth in the 

logistics industry.  

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡
𝐵𝑎𝑠𝑒 𝑦𝑟 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡  ∗  100

2
 (3) 



6 
 

The existing formula for the Louisville index is shown in Equation 4. This formula 

was originally the same as that of the national index, but was changed in 2016 (Eskridge 

& Gerber, 2016). This updated formula uses the difference between the predicted 

employment and the base year employment instead of the ratio. The result is halved and 

then 50 is added to produce an index value between 1 and 100.  

 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 −  𝐵𝑎𝑠𝑒 𝑦𝑒𝑎𝑟 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡)

2
+ 50 (4) 

The reason for this change of the conversion method is to amplify the effects of 

employment changes on the index (Eskridge & Gerber, 2016). Because the ratio of the 

predicted employment and the base year employment is often close to 1, the index values 

often fall within a very small window that makes it seem like there is very little change 

between months. To mitigate that issue and to provide an index value that the author felt 

better represented the actual changes to the employment numbers, the above index 

conversion method was created.  

Another consideration when revising the existing model was that the “base year”, 

on which all of the index calculations are based, had not been updated since 2013 for the 

national index (Gerber, 2013) and 2016 for the regional index (Eskridge & Gerber, 2016). 

This is problematic, considering that overall, the logistics industry has been growing 

consistently for at least the last decade. Therefore, employment data from 2015 cannot be 

accurately used to indicate the health of the industry. For example, the COVID-19 

pandemic that began in 2020 caused a significant decrease in logistics employment for 
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several months. Compared with the base year data from 5 years prior, however, the index 

showed that employment was still growing, albeit at a slower rate than months at the end 

of 2019.  

In previous updates to the model, the solution to this problem has been to 

intermittently change the base year to a more recent one, thereby lessening the disparity 

between that data and the current month’s predicted employment number (Eskridge & 

Gerber, 2016). However, that method doesn’t prevent the accuracy of the index prediction 

from degrading over time.  

Regularization 

Ridge regression, introduced in 1970 (Hoerl & Kennard, 1970) uses an L2 penalty 

to control the fitting of a regression model to a set of data. The purpose of this is to reduce 

overfitting of the model to the training data, a phenomenon that can occur when model 

complexity is increased and reduces a model’s ability to “generalize” or predict values that 

are not in the training set (Hastie et al., 2017).  

To reduce overfitting, ridge regression minimizes the residual sum of squares by 

penalizing large coefficients, which are thereby reduced. These penalties introduce bias 

into the model, which must be balanced with the variance of the coefficients to ensure that 

neither overfitting nor underfitting (when a model is not complex enough to account for 

correlation among data and does not generalize well) occurs (Hastie et al., 2017). 

The most obvious drawback of the ridge regression method is that while it reduces 

the coefficients toward zero, it never results in any of them being exactly zero. This can 
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cause resulting models to be difficult to interpret if the models are complex (has a large 

number of variables). 

Lasso (Least Absolute Shrinkage and Selection Operator) was introduced in 1996 

(Tibshirani, 1996) and, like ridge, can perform regularization of a regression model. A key 

difference between the two, however, is that lasso can also perform model selection by 

setting some of the coefficients equal to zero, due to its use of an L1 penalty (Tibshirani, 

1996). In this way, lasso can achieve a similar effect as best subset selection by removing 

some of the variables to create a sparse model (García-Nieto et al., 2021). 

The difference between the penalties imposed by ridge and lasso is based on the Lp 

norm of a vector, specifically a coefficient vector in this case, which can be seen in 

Equation 5 (García-Nieto et al., 2021). 

 
‖𝛽‖ = |𝛽 |  (5) 

Thus, the L1 penalty for ridge regression is 𝜆 ∑ 𝛽  and the L2 penalty for Lasso 

is 𝜆 ∑ 𝛽 . In those penalty terms, λ represents the tuning parameter used to adjust the 

impact of the penalty terms on the coefficients (García-Nieto et al., 2021). 

Though the introduction of bias to a regression model is intended to improve the 

ability of the model to generalize, one study has shown that ridge and lasso models 

performed similarly to other linear regression models (Chen et al., 2019). That research 

also concludes that the circumstances of the study could cause the results to change, so 
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multiple models and algorithms should be tested to make the most informed decision about 

which one is best for a particular study.  

Another study demonstrated that ridge and lasso could perform worse than an 

Ordinary Least Squares (OLS) model under certain circumstances (Melkumova & 

Shatskikh, 2017). That research concludes that the penalties imposed on the coefficients 

can cause the model to be less accurate unless the appropriate hyperparameter is chosen to 

optimize the shrinkage. This is supported by García-Nieto et al. (2021) in a study that 

compares several models, including lasso and ridge, which further explains that to find the 

best value for the hyperparameter, cross-validation should be used. 

In addition to cross-validation, different algorithms can be used for model-selection 

to optimize the fitting of the model to the data as well as optimize the computational effort. 

One of those algorithms, Least Angle Regression (LARS), is a modified version of the 

Forward Stagewise method, which constructs a regression model by making tiny steps 

based on the largest correlation between a covariate and the current residual vector (Efron 

et al., 2004). The LARS algorithm uses the same parameters to select the next step, but 

takes much larger steps, reducing the computational effort. Another algorithm, coordinate 

descent (CD), constructs a model by iteratively selecting a direction and then minimizing 

a function in that direction (Wright, 2015). 

Gaussian Process Regression 

One way of accounting for non-linearity in a regression model is to use a Gaussian 

process, which uses the Gaussian probability distribution to generalize predictive functions 
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(Rasmussen & Williams, 2006). To create a predictive model, a set of functions are selected 

from the “prior” (a set of smooth functions that doesn’t consider the data points), which 

are usually smooth for Gaussian processes, and are fitted to a set of observations. A mean 

function, called the “posterior,” is then derived from the prior and weights of the model 

and is used for prediction.  

For Gaussian processes, a kernel needs to be chosen. A kernel is the covariance 

function that determines the shape of the prior and the posterior, the parameters for which 

can be chosen automatically or manually (Duvenaud, 2014). Gaussian processes are non-

parametric, meaning that there are not a fixed number of parameters, but rather the number 

of parameters depends on the size of the dataset, which means that the parameters, and 

therefore the prior and posterior change if new data is added to the model (Wang, 2021). 

The following four kernel types are available in the scikit-learn library for Python. 

They can be used individually or in combination to create kernels of different shapes.  

The constant kernel uses the equation seen in Equation 6 to construct a kernel. 

 𝑘(𝑥 , 𝑥 ) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ∀ 𝑥 , 𝑥   
(6) 

A constant kernel is used to scale the other kernel when used as part of a product-kernel 

and when used as part of a sum-kernel, it is like adding a constant to the Gaussian process, 

which changes the mean.  

The Exp-Sine-Squared kernel uses the equation seen below in Equation 7 to 

construct a kernel. 
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𝑘 𝑥 , 𝑥 = 𝑒𝑥𝑝 −

2𝑠𝑖𝑛 𝜋𝑑 𝑥 , 𝑥 /𝑝

𝑙
 (7) 

where “l is the length scale of the kernel, p is the periodicity of the kernel, and 

d(xi,xj) is the Euclidean distance” (Pedregosa et al., 2011). The Exp-Sine-Squared kernel is 

a periodic kernel that is used to model functions that repeat exactly.  

The radial-basis function kernel (or squared-exponential kernel) uses the equation 

seen in Equation 8 to construct a kernel. 

 
𝑘 𝑥 , 𝑥 = 𝑒𝑥𝑝 −

𝑑 𝑥 , 𝑥

2𝑙
 (8) 

where “l is the length scale of the kernel and d(xi,xj) is the Euclidean distance” 

(Pedregosa et al., 2011). The RBF kernel is “infinitely differentiable, which implies that 

GPs with this kernel as covariance have mean square derivative of all orders, and are thus 

very smooth.” The RBF kernel can be used to model functions with local variation 

(Duvenaud, 2014). 

The Rational Quadratic kernel uses the formula in Equation 9 to construct a kernel. 

 
𝑘 𝑥 , 𝑥 = 1 +

𝑑 𝑥 , 𝑥

2𝛼𝑙
 (9) 

where “α is the scale mixture parameter, l is the length scale of the kernel and d(xi,xj) 

is the Euclidean distance” (Pedregosa et al., 2011). The Rational Quadratic kernel is a 

“scale mixture of RBF kernels with different characteristic length scales.” 
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If a single kernel doesn’t fit the shape of the function being modeled, a combination 

of multiple kernels can be tailored more precisely. According to Duvenaud (2014), there 

are numerous ways that kernels can be combined, both through multiplication and addition. 

For example, if the RBF kernel and a periodic kernel like the Exp-Sine-Squared kernel are 

multiplied, a kernel is produced that can model local periodicity. If a linear kernel is 

combined additively with a periodic kernel, the resulting function will be periodic with a 

linear trend. Combining an RBF kernel additively adds variation. 
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METHODOLOGY 

 

Updating Rolling Regression Model 

Since the indices were created, there have been many changes in the logistics 

industry. To account for that, the first consideration when revising the model was whether 

new variables or source data should be included in the regression model. 

The first potential source data update was to use the Trucking Tonnage Index (TTI) 

calculated by the Bureau of Transportation Statistics (BTS) based on the TTI calculated by 

the American Trucking Associations (ATA) instead of the ATA index, which is currently 

used in the model.  

To determine if the change would be necessary or beneficial, the national index 

regression model was run using the BTS index values in place of the ATA index values. 

With the regression equations that were generated for each iteration of the rolling 

regression, the predicted employment values were calculated for each. Then, using the 

actual employment data, the residuals for each predicted month were calculated. The 

residuals for the original predictions (using the ATA index) were also calculated.  

The second potential source data update was to add infrastructure spending to the 

national model. No specific data could be found that represented the Greater Louisville 

area exactly, therefore the use of this spending data was limited to being tested for the 

national model only. The infrastructure spending data is provided by BTS and is one field 

of a larger report called “Monthly Transportation Statistics”.  
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Following the same method as for the ATA index vs. BTS index, to evaluate the 

change, the national index regression model was run with the existing variables and then 

with the added infrastructure spending with a lag of 3, 4, and 5 months. With the regression 

equations that were generated for each iteration of the rolling regression, the predicted 

employment values were calculated for each. Then, using the actual employment data, the 

residuals for each predicted month were calculated for both models. Once the predictions 

were made, the residuals could be calculated for each model.  

Index Conversion 

To fully address the issue of outdated data being used to covert the predicted 

employment value to an index value, a new method is proposed that uses a moving average 

of the actual employment data for the 12 months prior to the month being predicted instead 

of a fixed month. The formula for the proposed index conversion method is shown in 

Equation 10. As described, it uses the ratio of the predicted employment number of month 

i and the actual employment data for the most recent 12 months. Otherwise, the formula is 

the same as the existing formula for converting the national index.  

 
𝑃𝑟𝑒𝑑

∑ 𝐴𝑐𝑡

12

 ∗  100

2
 

(10) 

A limitation of the existing Louisville index conversion formula (see Equation 4) 

is that it requires the predicted employment to be within ±100 units of the base year 

employment, otherwise the index output would fall outside the specified 0 to 100 range. 



15 
 

Though the 2016 update to that formula was made to emphasize any growth or decline 

more obviously, the use of the difference between two employment values instead of the 

ratio means that the results are less representative of the true relationship between the two 

values.  

The benefit of the proposed method over the existing index conversion method is 

that the resulting index value more accurately represents the changes in logistics 

employment in the last year as opposed to over the last five or ten years. Due to the lags in 

the variables themselves, there will still be a delay in any drastic changes to the pattern.  

Machine Learning Models 

The first step in preparing the data for use in a machine learning model was to 

determine whether or not it needed to be normalized. For the national index, the rail 

tonnage, river tonnage, ATA index, PMI, and crude oil price all followed an approximately 

normal distribution. The employment data, air tonnage, and GDP did not. Those three 

variables were log-transformed using natural log to normalize the distributions. For the 

regional index, only the ATA index had to be log-transformed. 

Then, once the data had been normalized, it needed to be standardized so that the 

scale of each variable would be the same. This was accomplished using z-score 

normalization, which resulted in each variable having a mean of 0 and standard deviation 

of 1. 

Additionally, to ensure that all of the models created would produce results that 

were replicable and comparable, the “train_test_split” module from the scikit-learn library 
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for Python was used to split the data into replicable subsets of training and testing data. For 

the training data, 70% of the total data set was used each time, and 30% was used for 

testing. The exact subsets that were selected for training data and testing data were 

determined by passing an integer for the train_test_split parameter “random_state”, which 

controls the way the data is shuffled before the split is applied (Pedregosa et al., 2011). 

To further ensure that the results of each iteration of each model would be 

comparable, the training and test sets were compared to determine if the distributions were 

similar. To do so, histograms were created for each variable for both the training and test 

sets and the histograms were visually inspected for any significant differences. 

Once the data was prepared, an ordinary least squares (OLS) linear regression 

model was created using Python to mimic the current regression model, though the Python 

model did not use a 36-month rolling regression. Instead, it used all of the available data 

for the local index (12 years or 144 months) and for the national index (14 years or 168 

months).  

To create this model, the “fit” method of the LinearRegression class in scikit-learn 

was used to fit the OLS regression to the training data (Pedregosa et al., 2011). Then the 

“predict” method was used with the test data to get a set of predicted values. Those 

predicted values were then compared to the test set of response data to find the root mean 

square error. This process was repeated for each run of the model with different random 

subsets of training and test data. 
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The first two machine learning models that were created were linear and 

implemented Lasso. The first Lasso model used a coordinate descent solver (LassoCV from 

scikit-learn) to cross-validate and select the best model (Pedregosa et al., 2011). The 

resulting alpha value is then used to fit the first Lasso model to the training data set and to 

predict values for the test set. Like the OLS model, the root mean square error was found 

for each set of training and testing data. The second Lasso model used the LARS algorithm 

(LassoLarsCV) for cross-validation and model selection (Pedregosa et al., 2011). The alpha 

value of that model was used to fit the second Lasso model to the training data and predict 

values for the test data. Like the previous models, the root mean square error was calculated 

for each run. 

The last linear machine learning model used Ridge Regression. RidgeCV was used 

with a list of alpha values to determine the best model via cross-validation (Pedregosa et 

al., 2011). That model was then fit to the training data and used to predict values for the 

test data. The root mean square error was calculated for each run. 

Once the linear models were created, they were also cross-validated using the leave-

one-out method. By that method, each data point was predicted individually using all of 

the other data points as training data. The resulting values were used with the actual values 

to calculate the residuals and root mean square error for each data point. The residuals for 

each model were then examined to determine whether or not they indicated normality. 

When residuals were analyzed for the linear regression models and a determination 

was made that there was autocorrelation among the data that wasn’t accounted for, 
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indicating that a non-linear model might be a better fit for the data, a Gaussian model was 

chosen to test that theory.  

Another scikit-learn module, GaussianProcessRegressor, was used to create four 

additional models to test (Pedregosa et al., 2011). The difference between the four models 

was the kernel used. Though the data differs between the local and the national indices, the 

Gaussian models tested, like the linear models, are the same for both. 

The GaussianProcessRegressor class accepts “kernel”, “alpha”, “optimizer”, 

“n_restarts_optimizer”, “normalize_y”, “copy_X_train”, and “random_state” parameters 

(Pedregosa et al., 2011). For the four models created for the LoDI indices, input is only 

passed for kernel, alpha, n_restarts_optimizer, and random_state.  

Per the scikit-learn documentation (Pedregosa et al., 2011)., the alpha parameter is 

the value added to the diagonal of the kernel matrix to prevent an error during fitting. The 

n_restarts_optimizer indicates how many times the optimizer that finds the parameters that 

maximize the log-marginal likelihood of the kernel restarts. On the first run, the initial 

parameters set for the kernel are used, but after that, each restart uses different, randomly 

sampled values within the allowed range. The random_state parameter is used to initialize 

the centers, so if an integer is passed for it, the results can be reproduced for multiple 

iterations. 

The first model used a product-kernel of the Constant (C) kernel and Exp-Sine-

Squared (Exp) kernel. The parameters “length_scale” (which determines the effect of 
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distance on correlation) and “periodicity” (which determines how often the pattern repeats) 

of the Exp-Sine-Squared kernel were set to 24 and 1, respectively.  

The second model used a product-kernel of a Constant kernel and a Rational 

Quadratic (RQ) kernel.  The parameters “length_scale” and “alpha” (scale mixture) of the 

Rational Quadratic kernel were set to 24 and 1, respectively. 

For the third kernel, a product-kernel of a Constant kernel, Exp-Sine-Squared 

kernel, and Rational Quadratic was used. The parameters “length_scale” and “periodicity” 

of the Exp-Sine-Squared kernel were set to 24 and 1, respectively. The parameters 

“length_scale” and “alpha” of the Rational Quadratic kernel were set to 24 and 0.5, 

respectively, with the “length_scale_bounds” values set to 1e-5 and 2 and the 

“alpha_bounds” values set to 1e-5 and 100,000.0. 

For the last kernel, the product-kernel of a Constant kernel, Radial-basis function 

(RBF) kernel, and Rational Quadratic kernel was used as part of a sum-kernel with a Exp-

Sine-Squared kernel (i.e. (C * RBF * RQ) + Exp). The “length_scale” parameter of the 

RBF kernel was set to 24 with the “length_scale_bounds” values set to 1e-5 and 2. The 

parameters “length_scale” and “alpha” of the Rational Quadratic kernel were set to 1 and 

0.5, respectively, with the “length_scale_bounds” values set to 1e-5 and 2 and the 

“alpha_bounds” values set to 1e-5 and 100,000.0. The parameters “length_scale” and 

“periodicity” of the Exp-Sine-Squared kernel were set to 24 and 1, respectively. 

Once the kernel was set, the model was assigned the GaussianProcessRegressor 

class function with the kernel, alpha, n_restarts_optimizer, and random_state parameters 
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specified. The kernel is assigned the respective kernel determined above, the alpha is set 

to 1e-1, the restart optimizer is set to 4, and the random_state is set to 0. The alpha, restart 

optimizer, and random state parameters have the same value for all four of the models. 

Each non-linear model was run on the same sets of training and test data that the 

linear models were tested on to maintain replicability and comparability of results. For each 

run of each model, the root mean square error was calculated and recorded and, like the 

linear models, each non-linear model was cross-validated using the leave-one-out method. 

The average and standard deviation RMSE values for each model using that method were 

also calculated and recorded, as well as the residuals. The residuals were graphed and 

plotted to determine whether or not the non-linear models had accounted for the 

autocorrelation observed in the linear model residuals. 

The RMSE values were normalized by the range of response values and compared 

for all of the models, as well as the normalized average and final RMSE values for the 

Leave-one-out validation.  
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ROLLING REGRESSION UPDATE ANALYSIS AND RESULTS 

 

The residuals for the rolling regression model that used the ATA index and the 

model that used the BTS index were compared using a t test in Minitab to determine if 

there was a significant different between the means of the residuals. The results of that t 

test are shown in Figures 1 and 2. Based on the p-value, it is clear that the means of the two 

results are significantly different.  

Because the difference is statistically significant, other factors were used to 

determine which index would be used. It can be seen in Figure 3 that the ATA index model 

residuals had a mean much closer to zero, as well as a smaller standard deviation than the 

residuals from the BTS index model. Therefore, the ATA index should not be replaced by 

the BTS index.  

 

Figure 1. Plot of residuals for ATA and BTS indices from Minitab 



22 
 

 

Figure 2. Results of t test of ATA and BTS index residuals from Minitab 

 

Figure 3. Descriptive statistics of ATA and BTS index residuals from Minitab 

Another t test was used to compare the residuals of the national rolling regression 

model that used the ATA index without adding infrastructure spending and the model that 

added infrastructure spending to determine if there was a significant difference between 

the means. The results are shown in Figures 4 and 5 and based on the p-value (0.859), there 

is no significant difference between the residuals of the two models. Therefore, 

infrastructure spending should not be added to the model.  
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Figure 4. Plot of residuals for ATA index without infrastructure spending and ATA index 

with infrastructure spending from Minitab 

 

Figure 5. Results of t test of ATA index without infrastructure spending residuals and 

ATA index with infrastructure spending residuals from Minitab 
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Figure 6. Descriptive statistics of ATA index without infrastructure spending residuals 

and ATA index with infrastructure spending residuals from Minitab 
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MACHINE LEARNING MODELS ANALYSIS AND RESULTS 

 

Once all of the models are trained and tested and the resulting root mean square 

error values are collected, the models are compared. Table 1 shows the mean and standard 

deviation for the national index RMSE values across all runs. To see a table of the 

individual run RMSE data, see Appendix E. Table 2 shows the mean and standard deviation 

for the Greater Louisville area index RMSE values across all runs. To see a table of the 

individual run RMSE data, see Appendix F. 

Table 1. Model comparison for national LoDI Index 

Model 
RMSE 
Mean 

RMSE 
Standard 
Deviation 

Linear 

OLS 0.10044 0.05725 
CD Lasso 0.08069 0.03130 
Lars Lasso 0.10044 0.05725 
Ridge 0.08437 0.00768 

Non-Linear 
(Gaussian) 

C * Exp  0.05569 0.01281 
C * RQ 0.05555 0.01245 
C * Exp * RQ 0.05316 0.00744 
(C * RBF * RQ) + Exp 0.04500 0.00445 

 

Based on the results for the national index, there is no significant difference 

between any of the linear models, nor between any of the non-linear models. However, the 

means of any linear model and non-linear model are significantly different. The means of 

the RMSE values for the non-linear models are all lower than the means of the linear 
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models. Additionally, with the exception of the Ridge Regression model, all of the standard 

deviation values are lower for the non-linear models. 

Table 2. Model comparison for regional LoDI index  

Model 
RMSE 
Mean 

RMSE 
Standard 
Deviation 

Linear 

OLS 0.22150 0.01621 
CD Lasso 0.22156 0.01614 
Lars Lasso 0.22150 0.01621 
Ridge 0.22150 0.01621 

Non-Linear 
(Gaussian) 

C * Exp  0.14572 0.01729 
C * RQ 0.14517 0.01722 
C * Exp * RQ 0.14907 0.01714 
(C * RBF * RQ) + Exp 0.14579 0.01723 

 

The results for the regional index model are similar to the national index model, but 

with even less difference between the means of all of the linear models and between the 

means of the non-linear models. Again, the means are all lower for the non-linear models 

than for the linear models, but the standard deviations for the linear models are slightly 

lower than those of the non-linear models. 

The mean and standard deviation of the RMSE values from the Leave-one-out 

cross-validation are shown in Table 3 for the national index models and in Table 4 for the 

regional index models.  
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Table 3. Model comparison for national index leave-one-out validation 

Model 
RMSE 
Mean 

RMSE 
Standard 
Deviation 

Linear 

OLS 0.05867 0.06770 
CD Lasso 0.05449 0.04307 
Lars Lasso 0.05867 0.06770 
Ridge 0.06326 0.04991 

Non-Linear 
(Gaussian) 

C * Exp  0.03548 0.03573 
C * RQ 0.03552 0.03618 
C * Exp * RQ 0.03698 0.03711 
(C * RBF * RQ) + Exp 0.03311 0.03045 

 

For the national index, there is no significant difference between the means of any 

of the linear models or between the means of any of the non-linear models at α=0.05. There 

is, however, a significant difference between the mean of any of the linear models and the 

mean of any of the non-linear models. The standard deviations are lower for all of the non-

linear models than for any of the linear models. 

Table 4. Model comparison for regional index leave-one-out validation 

Model 
RMSE 
Mean 

RMSE 
Standard 
Deviation 

Linear 

OLS 0.17235 0.11804 
CD Lasso 0.17244 0.11750 
Lars Lasso 0.17235 0.11803 
Ridge 0.17235 0.11804 

Non-Linear 
(Gaussian) 

C * Exp  0.08920 0.08955 
C * RQ 0.08911 0.08931 
C * Exp * RQ 0.09004 0.09151 
(C * RBF * RQ) + Exp 0.08982 0.08869 
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For the regional index, there is no significant difference between the means of any 

of the linear models or between the means of any of the non-linear models at α=0.05, but 

there is a significant difference between the mean of any of the linear models and the mean 

of any of the non-linear models. The standard deviations are also lower for all of the non-

linear models than for any of the linear models. 
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CONCLUSIONS AND FUTURE RESEARCH 

 

The results of the comparative analysis of the rolling regression models indicate 

that, if the rolling regression model is retained as the primary method of prediction for the 

LoDI indices, no data needs to be added or changed. The data is robust for the purposes of 

the rolling regression.  

The index conversion equations should be changed to use a moving average of the 

pervious 12 months of employment data instead of a fixed month because it would better 

reflect recent trends in employment growth or decrease. 

The results of the root mean square error analysis for the national index show that 

a non-linear model is more accurate than a linear model, which is also true for the 

regional index. However, this research does not conclusively select a specific non-linear 

model for predicting the LoDI indices. It only concludes that non-linearity is present in 

the data and that a non-linear Gaussian model is better suited for it than a linear 

regression model. Several kernel combinations were tested in this research, but there are 

more available to test and other parameters that can be adjusted to optimize a Gaussian 

model. 

The results of the leave-one-out validation are also important because, while using 

the same set of data to break down into training and testing data facilitated replicability and 

comparability, the current rolling regression model uses 36 months of historical data to 

predict a single, future value. The RMSE values for all of the runs of the models are found 
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by using 70% of the data to fit a model and predict the other 30%. However, for the leave-

one-out validation, one data point is predicted using all of the other data. That the RMSE 

values for the leave-one-out method also indicate that a non-linear model is more suited 

for the data than a linear model and predicts more accurately makes it even more evident 

that a non-linear model should be implemented for predicting the LoDI index. 

While this research evaluates the source data of the current model and proposes 

new models based on analysis of current data, it is possible that different source data 

would make the predictive power of the proposed non-linear models even better. More 

research and data validation should be done with Gaussian models and other non-linear 

models to determine which is the best fit. 
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APPENDICES 

Appendix A 

Table of Standardized National Data 

Employment 
Air 

(Lag=4) 
Rail 

(Lag=4) 
River 

(Lag=4) 
ATA 

(Lag=4) 
Air 

(Lag=5) 
Rail 

(Lag=5) 
Air 

(Lag=6) 
GDP for 

US PMI 
Crude Oil 

Price 
-0.6186 0.729984 0.004051 -1.01385 0.792207 2.298329 -0.07138 1.911919 -1.55301 0.421375 -0.47854 

-0.59444 0.197386 0.000746 -1.2564 0.580579 0.712015 0.001379 2.26195 -1.54283 0.521617 -0.62352 
-0.59176 2.390499 0.351827 0.785023 0.242019 0.186589 -0.00193 0.693078 -1.44686 0.36123 -0.51526 
-0.55162 1.471544 0.026638 0.198872 0.535006 2.350169 0.349432 0.173429 -1.46192 0.581763 -0.20136 
-0.51428 1.413241 0.320575 0.56269 0.49258 1.443589 0.023985 2.31322 -1.42683 0.120649 -0.12026 
-0.49831 1.979051 0.048733 0.400993 0.492437 1.386071 0.318155 1.416608 -1.41185 -0.09988 -0.15635 
-0.46114 1.29537 0.057525 0.320145 0.560976 1.944261 0.046097 1.359723 -1.41185 0.060503 0.017427 
-0.45849 2.263818 12.74159 -0.06388 -0.03898 1.269786 0.054896 1.911776 -1.38198 -0.01969 -0.05662 
-0.43995 1.900536 0.024534 0.097812 0.396931 2.225194 12.74901 1.244717 -1.35225 -0.22017 -0.4679 
-0.41616 2.050438 0.026916 -0.02346 0.264188 1.866803 0.021879 2.189619 -1.33743 -0.4808 -0.66093 
-0.38187 2.195998 0.244088 -0.24579 -0.06694 2.014687 0.024263 1.83517 -1.28828 -0.50085 -0.66135 
-0.32932 2.39079 -0.04499 -0.40749 0.425836 2.158287 0.241607 1.981427 -1.28338 -0.18008 -0.56324 
-0.3267 1.147482 0.187564 -0.89258 0.179561 2.350456 -0.0477 2.123448 -1.25408 -0.74143 -0.81762 
-0.3267 0.642336 -0.04756 -2.00424 0.339799 1.12389 0.185038 2.313504 -1.18139 -0.20013 -0.63773 
-0.3136 2.187925 -0.00976 0.360569 0.4426 0.625547 -0.05027 1.100425 -1.21037 -0.34047 -0.53336 

-0.30574 1.300527 0.269229 0.400993 0.255896 2.150323 -0.01244 0.607561 -1.12381 0.000358 -0.36188 
-0.2979 1.879425 -0.0111 0.785023 0.058635 1.274874 0.266768 2.115572 -1.10472 -0.05979 -0.32188 

-0.30574 1.83764 0.017996 0.461629 -0.0095 1.845977 -0.01378 1.249749 -1.09996 0.060503 -0.16667 
-0.30313 1.427219 -0.01698 -0.00325 0.02778 1.804754 0.015336 1.814572 -1.0952 -0.16003 0.074274 
-0.3136 2.196574 0.019947 -0.81173 0.043491 1.399861 -0.01967 1.773803 -1.04307 -0.4808 -0.04267 

-0.24832 1.639605 0.014833 -1.13512 0.116413 2.158855 0.017288 1.373361 -0.9773 -0.50085 0.124594 
-0.26134 2.168283 0.296401 0.198872 0.126202 1.609386 0.01217 2.12401 -1.0101 -0.6011 0.381046 
-0.27178 1.979817 0.000827 -0.20537 0.258261 2.130945 0.293962 1.580582 -0.98666 -0.44071 0.667542 
-0.27961 1.827697 0.155084 -0.50855 0.613183 1.945017 -0.00185 2.096407 -0.93536 -0.84168 0.553613 
-0.27178 0.992223 0.198479 -0.95322 0.850156 1.794945 0.152533 1.912523 -0.92144 -0.4808 0.801888 
-0.26917 0.513651 -0.01966 -1.86276 0.754542 0.970722 0.195962 1.764102 -0.99603 -0.84168 0.90959 
-0.25613 1.241602 -0.01095 -1.64043 0.623086 0.498595 -0.02235 0.948941 -0.95863 -0.76148 1.325252 
-0.24571 1.497067 0.281398 -0.95322 0.499504 1.216743 -0.01363 0.482005 -0.93072 -0.80158 1.663559 
-0.28483 1.329033 -0.00533 -0.26601 0.521094 1.468768 0.278946 1.192257 -0.91218 -0.66124 2.163881 
-0.30574 0.668334 -0.02177 -1.41809 0.722713 1.302996 -0.00801 1.44151 -0.83394 -0.58105 2.537044 
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-0.33194 0.937892 0.231458 -0.20537 0.487959 0.651195 -0.02446 1.277562 -0.8431 -0.66124 2.565488 
-0.37134 0.814985 0.014974 -0.16494 0.284025 0.917123 0.228967 0.632927 -0.90292 -0.74143 1.845649 
-0.45849 0.500469 -0.03556 -1.9234 0.216329 0.795871 0.012311 0.895931 -0.91681 -1.94434 1.191579 

-0.493 1.11893 0.257994 -0.38728 -0.12148 0.48559 -0.03826 0.776012 -0.96796 -2.90667 0.097785 
-0.63204 -0.09131 -0.10762 -0.67025 -0.04306 1.095723 0.255524 0.469143 -0.98198 -3.24749 -0.82532 
-0.68055 0.503578 -0.01927 -1.88297 -0.54145 -0.09822 -0.11038 1.072567 -1.11903 -3.92914 -1.42078 
-0.74554 -0.93369 -0.20961 -2.54997 -0.72643 0.488658 -0.02196 -0.10825 -1.08094 -3.44797 -1.36821 
-0.82728 -1.53188 -0.17528 -2.4287 -0.51738 -0.92926 -0.21245 0.472177 -1.08569 -3.38783 -1.2966 
-0.92061 -0.81386 -0.18368 -1.80212 -1.04644 -1.51939 -0.17809 -0.93015 -1.10472 -3.26754 -0.9604 
-1.03692 -0.75143 -0.2471 -1.82234 -1.18675 -0.81104 -0.1865 -1.51379 -1.0952 -2.60594 -0.79903 
-1.0955 -0.73424 -0.26451 -1.7617 -1.03514 -0.74945 -0.24997 -0.81323 -1.08569 -2.20497 -0.47813 

-1.14595 -0.68529 -0.0345 -0.99364 -1.10721 -0.73249 -0.26739 -0.75231 -1.18139 -1.64361 -0.06991 
-1.21355 -0.26509 -0.19813 -0.79152 -0.9773 -0.6842 -0.0372 -0.73554 -1.18622 -0.78153 -0.19919 
-1.23616 -0.43263 -0.16715 -0.69046 -0.61392 -0.26966 -0.20096 -0.68778 -1.14295 -0.30037 -0.00226 
-1.25599 0.013522 0.047833 -2.59039 -0.77057 -0.43494 -0.16996 -0.2778 -1.12859 0.060503 -0.02768 
-1.29006 0.65464 -0.17972 -1.94361 -0.76921 0.0052 0.045196 -0.44127 -1.04779 0.581763 0.158945 
-1.32137 0.114503 -0.18949 -0.81173 -0.49351 0.637685 -0.18253 -0.00596 -1.0762 0.36123 0.251738 
-1.28437 1.366198 -0.01831 -1.7617 -0.32938 0.104822 -0.19231 0.619566 -1.0952 0.702053 0.173577 
-1.35848 -0.6945 -0.2155 -2.69145 -0.22216 1.339662 -0.02099 0.092561 -1.01951 0.762199 0.277485 
-1.38424 -1.06951 -0.18833 -2.1053 -0.18776 -0.69329 -0.21834 1.313824 -0.98666 0.581763 0.221409 
-1.35848 0.249484 0.099116 -1.11491 -0.20961 -1.06325 -0.19116 -0.69677 -0.94466 1.283458 0.354667 
-1.33278 0.273683 -0.11611 -1.33725 -0.08571 0.237985 0.09652 -1.06267 -0.8983 1.223313 0.497913 
-1.30997 0.099799 -0.13649 -0.28622 -0.1153 0.261859 -0.11888 0.22426 -0.88907 1.183216 0.107231 
-1.2645 0.271189 0.076096 -0.24579 -0.22159 0.090316 -0.13927 0.247872 -0.90292 0.62186 0.142157 

-1.22202 0.25158 -0.16219 -0.56919 -0.07695 0.259398 0.073482 0.078215 -0.86145 0.561714 0.196253 
-1.23051 0.189292 -0.11577 -0.67025 -0.1881 0.240053 -0.16499 0.245438 -0.85686 0.902538 0.202552 
-1.18815 0.28713 0.134489 -0.99364 -0.10955 0.178603 -0.11854 0.226305 -0.81566 0.702053 0.181045 
-1.16563 0.612577 -0.10195 -0.30643 -0.0328 0.275124 0.131921 0.165531 -0.7838 0.822344 0.334317 
-1.13192 0.188475 -0.1499 -0.79152 -0.0391 0.596189 -0.1047 0.260991 -0.79289 1.022828 0.457888 
-1.12631 1.371566 0.02915 -0.89258 0.2856 0.177797 -0.15269 0.578525 -0.73854 0.882489 0.690917 
-1.1235 -0.6594 -0.14481 -1.78191 0.745094 1.344957 0.026499 0.164734 -0.77926 1.403749 0.776453 

-1.05363 -1.191 -0.15061 -1.84255 0.371506 -0.65866 -0.1476 1.319061 -0.77019 1.3837 0.929575 
-1.02857 0.747501 -0.12365 -1.15534 0.625207 -1.1831 -0.15341 -0.66253 -0.65784 1.363652 1.3845 
-1.0008 0.00059 0.131229 -0.14473 0.539622 0.729295 -0.12643 -1.1812 -0.6356 1.363652 1.818913 

-0.98139 -0.34116 0.090009 -0.65003 0.26873 -0.00756 0.128659 0.710168 -0.6356 0.260988 1.587617 
-0.9482 0.132244 -0.13527 0.360569 0.612419 -0.3447 0.087406 -0.01858 -0.68464 0.581763 1.476244 

-0.95925 -0.30598 0.067236 0.764811 0.506605 0.122324 -0.13805 -0.35202 -0.59575 -0.30037 1.488373 
-0.93992 0.018103 0.123654 0.966931 0.435894 -0.31 0.064615 0.109871 -0.35297 -0.07984 1.178568 
-0.9344 -0.14614 -0.10265 0.320145 0.641932 0.00972 0.121078 -0.3177 -0.39997 -0.07984 1.256552 
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-0.92612 -0.05087 -0.08638 1.209476 0.701162 -0.15231 -0.10541 -0.00149 -0.27677 -0.22017 1.293575 
-0.89859 -0.00353 0.125654 0.17866 0.746029 -0.05833 -0.08912 -0.16174 -0.31053 -0.13998 1.526363 
-0.88209 1.012248 -0.15222 -0.04367 1.658445 -0.01162 0.123079 -0.06879 -0.31053 0.040455 1.476541 
-0.83522 -1.12232 -0.14391 -0.0841 0.985836 0.990477 -0.15501 -0.0226 -0.25576 0.240939 1.410248 
-0.79615 -0.73501 0.087502 -0.50855 1.059599 -1.11535 -0.1467 0.968479 -0.16408 -0.09988 1.519509 
-0.77953 0.379815 -0.16203 0.198872 1.14202 -0.73325 0.084897 -1.11419 -0.19727 0.020406 1.632062 
-0.82947 -1.50547 -0.16966 0.158448 0.988953 0.366561 -0.16483 -0.7363 -0.17236 0.160746 1.520761 
-0.74174 -0.80635 0.057186 0.441417 0.847661 -1.49333 -0.17247 0.351423 -0.15994 0.060503 1.3097 
-0.75287 -0.9642 -0.14797 0.037176 1.000728 -0.80363 0.054557 -1.48802 -0.16822 -0.38056 0.846873 
-0.71435 -1.38791 -0.17728 0.097812 1.071374 -0.95936 -0.15076 -0.8059 -0.10639 -0.46076 0.88154 
-0.6946 -0.59627 -0.04945 0.299933 0.941856 -1.37736 -0.18009 -0.95992 -0.13929 -0.36051 1.027879 

-0.67515 -1.10426 -0.16754 -0.16494 0.988953 -0.59638 -0.05216 -1.37332 -0.0859 -0.13998 1.207037 
-0.66921 -0.6748 0.081802 0.906295 0.412011 -1.09752 -0.17035 -0.60093 -0.10639 -0.34047 1.157384 
-0.51428 -0.48796 -0.15531 0.219084 0.941856 -0.67386 0.079192 -1.09657 -0.09819 -0.68129 1.045556 
-0.40164 -0.26134 -0.19088 0.198872 1.330409 -0.48952 -0.15811 -0.67756 -0.04919 -0.50085 0.863703 
-0.43916 -1.02163 0.014335 -0.38728 1.49525 -0.26596 -0.1937 -0.49525 -0.00863 -0.11993 1.032506 
-0.63634 -1.97191 -0.16906 -0.65003 1.565896 -1.01601 0.011672 -0.27415 -0.03294 0.040455 1.063232 
-0.61135 -0.99362 -0.16615 0.441417 1.554122 -1.95349 -0.17187 -1.01595 -0.00459 -0.28032 1.070474 
-0.58667 -1.41627 -0.17322 -0.30643 1.518799 -0.99897 -0.16896 -1.94312 0.015587 -0.58105 0.968093 
-0.48157 -0.91881 -0.15406 -0.04367 1.84848 -1.40534 -0.17604 -0.98862 -0.03294 -0.58105 1.052548 
-0.49725 -1.20199 0.068269 0.461629 1.836706 -0.91458 -0.15686 -1.40099 0.039717 -0.07984 0.989295 
-0.53427 -1.27594 0.051916 0.259509 1.754285 -1.19394 0.065648 -0.91563 0.059759 0.401327 1.164144 
-0.5023 -0.63045 -0.11644 0.603114 1.954449 -1.2669 0.049283 -1.19192 0.095684 0.682005 1.262479 

-0.40296 -1.44348 -0.13174 -0.14473 2.025095 -0.6301 -0.1192 -1.26408 0.135374 0.62186 1.227631 
-0.40111 -0.35344 0.098825 0.845659 1.742511 -1.43219 -0.13452 -0.63428 0.186622 0.74215 0.992053 
-0.29502 -0.86328 -0.14347 0.097812 2.437197 -0.35682 0.096229 -1.42755 0.202312 0.822344 0.677434 
-0.28326 0.099984 -0.19791 -0.24579 2.319454 -0.8598 -0.14626 -0.36401 0.206229 0.722102 0.675968 
-0.24285 -0.97808 0.018868 -0.56919 -2.21935 0.090498 -0.20074 -0.86145 0.163018 -0.32042 0.631501 
-0.25561 -1.93022 -0.17961 -0.83194 -2.01111 -0.97305 0.016209 0.078395 0.190548 0.060503 0.900083 
-0.21945 -0.93892 -0.13425 0.603114 -1.95037 -1.91236 -0.18243 -0.97346 0.221873 0.160746 0.939844 
-0.18831 -0.76937 -0.11195 0.421205 -1.85493 -0.93441 -0.13703 -1.90244 0.249162 0.401327 0.935242 
-0.14538 -0.81404 0.131431 0.643538 -1.74213 -0.76715 -0.11471 -0.93525 0.303408 0.501569 0.979147 
-0.11084 -1.21382 -0.11723 0.724386 -1.8289 -0.81121 0.12886 -0.76983 0.326522 0.481521 1.055461 
-0.05665 -0.64944 0.121735 0.764811 -1.69007 -1.20561 -0.11999 -0.8134 0.372511 0.842392 0.982987 
-0.02748 -0.78122 -0.08909 1.431809 -1.48183 -0.64884 0.119157 -1.20347 0.429557 1.223313 0.764186 
-0.0096 -1.17257 -0.10685 0.704174 -1.48183 -0.77883 -0.09184 -0.65281 0.406797 0.74215 0.615296 

0.024299 -0.27443 0.151066 1.73499 -1.52521 -1.16492 -0.10961 -0.78138 0.429557 1.223313 0.35613 
0.111019 -0.85024 -0.13009 1.128628 -1.1174 -0.27887 0.148512 -1.16322 0.467318 1.163168 0.022775 
0.207639 0.543826 0.099508 0.764811 -1.1174 -0.84693 -0.13287 -0.28691 0.452239 0.441424 -0.66107 
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0.174766 -0.94659 -0.13088 0.400993 -1.21285 0.528364 0.096913 -0.84872 0.452239 0.120649 -1.16813 
0.198364 -1.46361 -0.18908 -0.4277 -1.56859 -0.94198 -0.13366 0.511446 0.512351 0.000358 -1.06276 
0.203128 -0.91679 -0.16648 -0.32664 -1.40374 -1.45204 -0.1919 -0.94273 0.486119 -0.28032 -1.06358 
0.231922 -0.74494 -0.1641 0.724386 -1.47315 -0.91258 -0.16928 -1.44718 0.531026 -0.28032 -0.87501 
0.264888 -1.10162 0.028772 1.411597 -1.52521 -0.74304 -0.16691 -0.91366 0.560798 -0.01969 -0.62693 
0.296518 -1.09558 -0.19156 0.785023 -0.99593 -1.09493 0.026121 -0.74598 0.601518 0.120649 -0.57363 
0.331537 -0.71247 0.044236 0.582902 -1.24755 -1.08896 -0.19438 -1.094 0.623625 -0.03974 -0.84781 
0.344425 -1.11189 -0.13459 1.108416 -1.35168 -0.71102 0.041596 -1.0881 0.638322 -0.36051 -1.22928 
0.329057 -0.67685 -0.15799 0.138236 -1.43844 -1.10506 -0.13737 -0.71431 0.682221 -0.54095 -1.31095 
0.334512 -0.20298 0.075377 1.492445 -1.2302 -0.67587 -0.16079 -1.10401 0.66762 -0.561 -1.26961 
0.53829 -0.91896 -0.22775 0.441417 -1.33432 -0.20839 0.072762 -0.67955 0.663965 -0.86172 -1.40077 

0.578434 0.741571 -0.08328 -0.04367 -1.29961 -0.91473 -0.2306 -0.21721 0.682221 -0.98202 -1.6477 
0.527561 -1.00467 -0.28751 -0.30643 -1.33432 0.723446 -0.08602 -0.91578 0.671273 -0.94192 -1.88475 
0.528537 -1.62184 -0.27857 -0.67025 -0.49268 -0.99928 -0.29041 0.704383 0.652987 -0.68129 -1.91418 
0.542432 -0.10441 -0.10219 0.259509 -1.04799 -1.60814 -0.28147 -0.9994 0.729455 -0.22017 -1.67904 
0.571389 -0.60098 -0.30674 0.17866 -1.24755 -0.11115 -0.10494 -1.60156 0.758357 -0.42066 -1.52332 
0.58232 -0.81162 -0.29195 0.603114 -0.90048 -0.60103 -0.30966 -0.12103 0.747534 -0.32042 -1.31095 

0.566527 -0.28142 -0.0625 0.360569 -1.09137 -0.80883 -0.29486 -0.60553 0.772761 0.060503 -1.18194 
0.596152 -0.73306 -0.2413 0.239297 -1.343 -0.28577 -0.06522 -0.81104 0.808637 -0.05979 -1.29017 
0.641902 -0.27263 -0.20005 0.502054 -0.77033 -0.73133 -0.24417 -0.29373 0.862091 -0.70134 -1.30263 
0.634168 -0.35158 0.016087 0.138236 -1.54256 -0.2771 -0.20288 -0.73439 0.893959 -0.28032 -1.3172 
0.665555 -0.46021 -0.20712 1.290325 -1.56859 -0.35498 0.013426 -0.28516 0.87273 -0.20013 -1.1559 
0.707916 -0.16144 -0.22525 0.259509 -0.60548 -0.46215 -0.20996 -0.36219 0.932704 0.060503 -1.27702 
0.958955 0.727034 -0.28296 0.158448 -1.28226 -0.16741 -0.2281 -0.46818 0.950241 0.321133 -1.07423 
0.928571 -0.86707 -0.26433 0.643538 -0.93519 0.709104 -0.28586 -0.17668 0.957243 0.62186 -1.01781 
0.946481 -1.44131 -0.22577 1.714778 -0.94387 -0.86353 -0.26721 0.690199 0.971225 0.962683 -0.97007 
0.955661 0.217613 -0.03125 0.764811 -1.06534 -1.43004 -0.22862 -0.86514 1.016466 0.862441 -1.09948 
0.97259 -0.58862 -0.24262 0.016964 -1.24755 0.206543 -0.03395 -1.42543 0.999102 0.381278 -1.06323 

1.004502 -0.27307 -0.23456 1.916899 -0.43194 -0.58883 -0.24549 0.193164 1.061403 0.401327 -1.06801 
1.017618 -0.14401 -0.00254 0.603114 -0.97858 -0.27753 -0.23742 -0.59347 1.092336 0.982732 -1.20259 
1.035627 -0.67878 -0.24592 1.452021 -0.91784 -0.15021 -0.00522 -0.28559 1.102616 0.682005 -1.1733 
1.051276 0.248035 0.016662 1.270112 -0.34517 -0.67778 -0.24879 -0.15967 1.13336 1.183216 -1.06206 
1.093913 -0.26731 -0.22538 0.66375 -0.58812 0.236556 0.014 -0.68144 1.177519 1.584185 -0.93804 
1.102516 0.184007 -0.20833 1.573294 -0.1109 -0.27185 -0.22823 0.222847 1.194426 1.163168 -0.89381 
1.373861 0.451453 -0.01173 0.158448 0.166754 0.173389 -0.21117 -0.27997 1.251592 1.062925 -0.69377 
1.393607 0.890438 -0.26304 0.340357 -0.10606 0.437235 -0.01441 0.160375 1.27499 1.283458 -0.64851 
1.428253 -0.34438 -0.08493 -0.22558 0.211847 0.870307 -0.26592 0.421319 1.301629 1.243361 -0.56376 
1.468434 -0.93952 -0.25217 -0.44791 0.105878 -0.34788 -0.08768 0.84963 1.328164 1.584185 -0.63972 
1.512745 0.225774 -0.06672 0.744598 -0.02364 -0.93501 -0.25505 -0.35516 1.338087 1.283458 -0.68914 
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1.518132 -0.58807 -0.2201 1.290325 0.317816 0.214594 -0.06945 -0.93583 1.390763 0.882489 -0.51195 
1.553536 0.166502 -0.00206 1.63393 0.364914 -0.58829 -0.22294 0.201127 1.462521 1.163168 -0.32756 
1.587051 -0.07166 -0.19593 1.553082 0.294268 0.15612 -0.00474 -0.59293 1.456029 1.463894 -0.29518 
1.605332 -0.27323 -0.22232 0.744598 0.553303 -0.07883 -0.19876 0.143296 1.507787 1.042877 -0.30671 
1.65668 0.487709 0.052047 1.189264 0.282493 -0.27769 -0.22517 -0.08908 1.507787 1.684427 -0.35795 

1.711341 -0.13864 -0.20726 0.845659 0.294268 0.473002 0.049413 -0.28575 1.523879 1.3837 -0.31188 
1.748155 0.45644 0.013062 2.038171 0.95363 -0.14491 -0.2101 0.456694 1.575116 0.962683 -0.27299 
1.811596 0.299499 -0.23629 0.825447 1.012502 0.442154 0.010398 -0.15443 1.552748 1.283458 -0.81809 
2.000987 0.687521 -0.24369 0.825447 0.51798 0.287327 -0.23915 0.426184 1.555948 0.281036 -1.29135 
2.065881 -0.14734 -0.06781 0.421205 0.859436 0.670123 -0.24656 0.27306 1.638614 0.74215 -1.00856 
2.052372 -1.10758 -0.26156 -1.33725 0.647498 -0.1535 -0.07054 0.651647 1.613287 0.260988 -0.73061 
2.045291 0.111187 -0.29287 -0.02346 0.364914 -1.10081 -0.26445 -0.16292 1.622796 0.481521 -0.55714 
2.059664 -0.14867 -0.2278 0.987143 1.306861 0.101551 -0.29578 -1.09981 1.682706 -0.01969 -0.39231 
2.059236 0.354699 -0.0246 1.270112 0.729918 -0.1548 -0.23065 0.089326 1.704644 -0.16003 -0.41039 
2.113786 -0.14637 -0.24254 0.805235 0.565077 0.341783 -0.0273 -0.16421 1.717147 -0.24022 -0.69013 
2.113145 0.101468 -0.047 0.704174 1.401055 -0.15254 -0.24541 0.326917 1.757623 -0.34047 -0.65534 
2.096058 0.268858 -0.21655 1.654142 0.824113 0.091963 -0.04971 -0.16197 1.757623 -0.76148 -0.80892 
2.114213 -0.48158 -0.26761 0.643538 0.965405 0.257098 -0.2194 0.079844 1.779316 -1.02211 -0.73517 
2.120187 0.606803 -0.07919 1.63393 0.859436 -0.48323 -0.27049 0.243163 1.816341 -0.92187 -0.85589 
2.145545 0.077283 -0.29763 0.865871 0.376688 0.590493 -0.08193 -0.48903 1.819417 -0.96197 -0.82774 
2.309167 0.941154 -0.51759 0.785023 0.824113 0.068103 -0.30054 0.572892 1.847039 -1.1424 -0.77002 

 

 

 



38 
 

Appendix B 

Table of Standardized Regional Data 

Employment 
Air 

(Lag=3) 
Rail 

(Lag=3) 
River 

(Lag=3) 
ATA 

(Lag=3) PMI Ky Oil 
Air 

(Lag=4) 
Rail 

(Lag=4) 
ATA 

(Lag=4) 
River 

(Lag=5) 
ATA 

(Lag=5) 
-0.21077 0.253317 0.665299 0.442519 0.533786 -0.89266 1.260237 0.003722 0.236698 -0.04048 1.508695 0.425034 
-0.30364 0.570882 0.65836 0.339448 0.77957 -0.7982 1.595697 0.247083 0.671459 0.542368 0.898994 -0.03807 
-0.08308 0.629871 -0.7502 -0.56416 0.895692 -0.7982 2.168143 0.56581 0.664502 0.788925 0.429737 0.545432 
-0.19336 0.136518 -0.35122 -1.02703 1.001109 -0.60928 2.584133 0.625014 -0.7476 0.905413 0.327391 0.79227 
-0.53001 0.537578 -0.39633 -1.34485 0.924539 -0.57149 2.599778 0.129856 -0.34762 1.011161 -0.56986 0.90889 
-0.36169 0.426984 -1.50305 -1.11469 0.503932 -0.72263 1.823939 0.532384 -0.39284 0.93435 -1.02948 1.014758 
-0.58806 0.376557 -0.77449 -0.87816 0.642584 -1.55389 1.254715 0.421385 -1.50235 0.512421 -1.34505 0.93786 
-0.6461 0.839355 -0.13612 -0.73894 1.010644 -2.66853 0.023312 0.370774 -0.77195 0.651508 -1.11652 0.515451 

-0.34427 -0.21694 -0.94795 -1.0024 -0.94998 -3.12195 -0.8487 0.835265 -0.13198 1.020726 -0.88165 0.654697 
-0.43714 0.517235 -0.33041 0.239463 -0.85979 -3.76428 -1.59601 -0.2249 -0.94585 -0.94606 -0.74341 1.024334 
-1.10465 -0.40184 -0.63918 0.624215 -1.36489 -3.42422 -1.59003 0.511966 -0.32675 -0.85559 -1.00501 -0.94469 
-1.16849 -0.70087 -1.79101 1.141251 -1.62608 -3.31087 -1.70415 -0.41047 -0.6363 -1.36228 0.22811 -0.85411 
-1.23234 -0.1406 -2.34958 -0.16179 -0.51689 -3.21641 -1.29552 -0.7106 -1.79103 -1.62429 0.610154 -1.36138 
-1.23815 0.095359 -1.44407 -0.4178 -0.85979 -2.55518 -1.19429 -0.14827 -2.351 -0.51161 1.123552 -1.62369 
-1.26136 0.008015 -2.82488 -0.36173 -0.81496 -2.13955 -0.78842 0.088547 -1.44322 -0.85559 -0.17032 -0.50974 
-1.26717 0.164795 -1.8257 -0.91706 -0.23703 -1.36497 -0.27442 0.000884 -2.8275 -0.81062 -0.42453 -0.85411 
-1.4413 0.511108 -2.54733 -1.77729 -0.34386 -0.59038 -0.49483 0.158237 -1.82581 -0.23087 -0.36885 -0.80909 

-1.38906 0.233052 -1.89162 -1.89399 -0.39765 0.089738 -0.22012 0.505817 -2.54925 -0.33803 -0.92028 -0.22869 
-1.4355 0.761515 -1.75285 -0.65589 -0.18399 0.259769 -0.26245 0.226744 -1.89189 -0.39199 -1.77445 -0.33597 

-1.42389 1.11427 -1.46489 -0.02108 0.004937 0.562045 0.01779 0.75714 -1.75277 -0.17767 -1.89033 -0.38999 
-1.27297 0.241535 -2.53345 0.400979 -0.97264 0.259769 0.136973 1.111185 -1.46409 0.011856 -0.66095 -0.17542 
-1.16849 1.599454 -0.72938 0.239966 -0.71473 0.429799 -0.00706 0.235258 -2.53534 -0.96879 -0.0306 0.014318 
-1.569 0.457068 0.540402 1.973984 -1.2365 0.788752 0.12823 1.598144 -0.72673 -0.71008 0.388489 -0.96744 

-1.85921 0.257559 0.304485 0.829819 -1.29468 0.52426 0.009967 0.451579 0.546247 -1.23349 0.228609 -0.70844 
-1.56319 1.229969 0.706931 1.865954 0.691697 1.091028 0.216121 0.25134 0.309737 -1.29185 1.950425 -1.23244 
-1.50515 1.115526 0.214282 0.748784 0.190787 0.958782 0.373958 1.227308 0.713196 0.700775 0.814312 -1.29087 
-1.39486 0.921908 -1.23591 -0.45535 -0.07865 0.996566 -0.05446 1.112446 0.219307 0.19829 1.843156 0.70402 
-1.34843 1.236803 -0.71898 -0.73715 0.622879 0.637614 -0.03237 0.91812 -1.23453 -0.07199 0.733847 0.200964 
-1.49934 1.214103 -0.96183 -0.85706 0.036123 0.637614 0.004445 1.234166 -0.7163 0.631742 -0.46181 -0.06962 
-1.30199 1.077588 -1.33305 -1.67228 0.393798 0.93989 0.026993 1.211383 -0.95976 0.04314 -0.74163 0.634908 
-1.25556 1.282281 -0.68428 -0.55625 0.313026 0.618721 -0.02823 1.074369 -1.33192 0.401939 -0.8607 0.045637 
-1.13367 1.421938 -0.41714 0.213648 0.353483 0.883213 0.255235 1.279811 -0.68152 0.320914 -1.67018 0.404844 
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-0.93632 1.038236 -0.93755 0.286795 -0.1312 0.864321 0.368896 1.419978 -0.4137 0.361498 -0.56201 0.323727 
-0.72736 1.648624 -0.34775 0.760626 -0.11015 0.845428 0.581953 1.034873 -0.93542 -0.12471 0.202476 0.364358 
-1.27297 0.436724 -0.13265 1.019976 -0.48424 1.147705 0.620146 1.647494 -0.34414 -0.10359 0.275108 -0.1224 
-1.30199 0.290313 -0.37898 0.723125 -0.80378 1.242166 0.608182 0.431161 -0.1285 -0.47886 0.745605 -0.10126 
-1.25556 1.745944 1.529169 1.524078 1.367201 1.166597 1.197654 0.284214 -0.37545 -0.7994 1.00313 -0.47696 
-1.19171 0.925993 0.869991 -0.00097 0.42394 1.185489 1.524372 1.74517 1.537502 1.378404 0.708368 -0.79786 
-1.1801 0.815713 0.033875 -0.45408 0.672077 0.165307 1.141514 0.922219 0.876666 0.432176 1.503685 1.382419 

-1.11045 1.41102 -1.02081 -1.186 1.227783 0.732075 0.916493 0.811536 0.038447 0.681094 -0.01063 0.435116 
-1.34262 0.84886 -0.88897 -1.70505 0.211251 -0.0614 0.944563 1.40902 -1.01889 1.238548 -0.46056 0.684316 
-1.12786 1.304667 -1.11448 -1.31816 1.34871 -0.04251 0.457248 0.844804 -0.88672 0.218819 -1.18732 1.242403 
-1.12786 1.226513 -0.85081 -1.41947 0.982015 -0.0614 0.428718 1.302279 -1.1128 1.359855 -1.70272 0.221516 
-1.08723 1.006817 0.242037 -0.18985 0.895692 -0.307 0.454487 1.223839 -0.84847 0.992006 -1.31856 1.363848 
-0.84925 1.372061 0.609789 -0.0861 0.593259 -0.25032 0.9372 1.00334 0.247132 0.905413 -1.41915 0.995582 
-0.7854 2.443126 0.949786 0.200506 0.672077 -0.04251 1.068348 1.369919 0.615809 0.602028 -0.19818 0.90889 

-1.11045 0.332492 1.19958 1.343908 0.914932 -0.02362 1.152558 2.444902 0.956662 0.681094 -0.09516 0.60516 
-1.1801 0.17367 0.706931 0.796583 0.972456 0.014169 1.249653 0.326548 1.207084 0.924712 0.189427 0.684316 

-0.99436 1.417539 1.716515 1.081541 1.039202 0.051954 1.427277 0.167145 0.713196 0.982417 1.324783 0.928211 
-0.91891 0.454004 1.952431 0.025277 0.914932 0.221984 1.304873 1.415564 1.725319 1.049374 0.78131 0.985982 
-0.7738 1.437412 -0.48306 -0.49243 0.799006 0.070846 1.053622 0.448504 1.961829 0.924712 1.064262 1.053014 

-0.67512 1.110028 -1.0902 -1.4389 0.924539 -0.32589 0.374878 1.435509 -0.47979 0.808422 0.015431 0.928211 
-0.67512 0.607092 -0.96183 -1.29009 0.924539 -0.5526 0.587475 1.106928 -1.08845 0.93435 -0.49864 0.811789 
-0.61708 1.590814 -0.69816 -1.67292 0.876421 -0.43924 0.892104 0.602152 -0.95976 0.93435 -1.43844 0.93786 
-0.57645 0.943901 0.009589 -1.44185 0.914932 -0.21254 0.942722 1.589508 -0.69543 0.88608 -1.29068 0.93786 
-0.5126 1.364677 0.734686 -0.04875 0.43397 -0.43924 0.715401 0.940232 0.0141 0.924712 -1.67082 0.889535 

-0.28042 1.609115 -0.24714 -0.38331 0.876421 -0.77931 0.592537 1.362514 0.74102 0.442238 -1.44137 0.928211 
-0.12371 1.918511 1.629781 -0.05302 1.190316 -0.57149 0.65696 1.607803 -0.24328 0.88608 -0.05808 0.445189 
-0.52421 -1.28542 3.104259 1.407085 1.320918 -0.08029 0.945944 1.9184 1.638367 1.200962 -0.39029 0.889535 
-0.54743 -1.98935 0.401627 0.710954 1.376435 0.203092 0.99058 -1.29727 3.116554 1.331975 -0.06231 1.204775 
-0.5126 -1.53842 1.602026 0.539452 1.367201 -0.19365 0.913732 -2.00376 0.407124 1.387667 1.387516 1.335937 
-0.5126 -1.68271 1.050398 -0.00988 1.339454 -0.51481 0.885202 -1.55123 1.610542 1.378404 0.696276 1.391692 

-0.46616 -1.12094 -0.29224 -0.56274 1.595844 -0.5526 1.001624 -1.69603 1.057526 1.350569 0.525994 1.382419 
-0.40812 -1.54525 -0.88204 -1.3419 1.586786 -0.04251 0.957448 -1.13221 -0.28849 1.607766 -0.01948 1.354552 
-0.60547 -1.55876 -0.63918 -1.50972 1.523176 0.259769 1.378959 -1.55809 -0.87977 1.598679 -0.56845 1.612041 
-0.33266 -0.97304 0.235098 -1.4307 1.677046 0.486476 1.389543 -1.57158 -0.6363 1.534869 -1.34213 1.602944 
-0.32105 -1.48579 0.078977 -0.92897 1.730862 0.486476 1.447524 -0.98376 0.240176 1.689224 -1.50877 1.539061 
-0.31525 -0.69639 0.630605 1.676335 1.514059 0.52426 1.192592 -1.4984 0.083662 1.743209 -1.43031 1.693591 
-0.08888 -1.06156 -0.13612 0.780841 2.039826 0.562045 0.960209 -0.70613 0.636678 1.525724 -0.9321 1.747637 
0.085252 0.836056 -0.00082 1.788768 1.952401 0.580937 1.033835 -1.07262 -0.13198 2.053144 1.654866 1.529906 
-0.36749 -0.81696 0.599381 2.290027 -2.06037 -0.23143 0.911431 0.831959 0.003666 1.965444 0.765683 2.057925 
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-0.39071 -1.50975 0.328771 1.074849 -1.84184 0.240876 1.200415 -0.82711 0.605375 -2.05995 1.766515 1.970125 
-0.30945 -1.26602 1.397334 2.467753 -1.77888 0.259769 1.21468 -1.52244 0.334084 -1.84073 2.264249 -2.05379 
-0.26301 -1.07059 1.57774 2.076673 -1.68064 0.429799 1.347668 -1.27778 1.405335 -1.77757 1.057617 -1.84287 
-0.18175 -0.8875 0.859583 0.392223 -1.56562 0.486476 1.3265 -1.08163 1.586196 -1.67902 2.440724 -1.78156 
-0.12951 -1.40606 0.894276 -0.37938 -1.65399 0.505368 1.481116 -0.89789 0.866231 -1.56364 2.05239 -1.68415 
-0.12371 -0.97798 1.366109 0.06205 -1.51292 0.637614 1.376198 -1.4184 0.901012 -1.65229 0.379796 -1.56354 
-0.02503 -0.99644 0.908154 0.15907 -1.30454 0.958782 1.099639 -0.98875 1.374032 -1.51078 -0.38638 -1.64784 
-0.01923 -0.96149 1.84835 -0.58202 -1.30454 0.580937 0.945023 -1.00725 0.914925 -1.30174 0.051945 -1.51565 
0.085252 -0.28222 1.053867 0.672794 -1.34764 0.920997 0.576431 -0.97218 1.857486 -1.30174 0.148282 -1.30259 
0.33484 -0.98317 -0.36163 1.364383 -0.94877 0.864321 0.183449 -0.29043 1.061004 -1.34497 -0.58759 -1.30259 
0.578624 1.516037 0.599381 2.460228 -0.94877 0.392014 -0.56248 -0.99395 -0.35806 -0.94486 0.658394 -1.3496 
0.183926 -1.06596 0.606319 2.370906 -1.04088 0.089738 -1.06314 1.514428 0.605375 -0.94486 1.345114 -0.94469 
0.108469 -1.4367 1.747739 1.12218 -1.3909 -0.02362 -0.94212 -1.07699 0.612331 -1.03725 2.433248 -0.94469 
0.154904 -1.2386 1.14754 1.238791 -1.22736 -0.28811 -1.07188 -1.4491 1.756622 -1.38837 2.34456 -1.03598 
0.033012 -1.06855 1.185703 2.49655 -1.29594 -0.28811 -0.79164 -1.25026 1.154913 -1.22432 1.104621 -1.38498 
0.305818 -1.07138 -0.13612 0.437439 -1.34764 -0.04251 -0.55742 -1.07962 1.193172 -1.29311 1.220406 -1.22079 
0.398688 -1.02079 -0.28184 0.342378 -0.83261 0.089738 -0.54085 -1.08246 -0.13198 -1.34497 2.469309 -1.29087 
0.160709 -0.70221 0.037344 -0.2796 -1.07456 -0.0614 -0.87769 -1.03165 -0.27806 -0.82833 0.424693 -1.3496 
0.508971 -1.00618 -0.97224 -0.80836 -1.1762 -0.36368 -1.26101 -0.71196 0.041925 -1.07104 0.330301 -0.83158 
0.508971 -0.48872 0.165711 -0.56177 -1.2616 -0.53371 -1.17496 -1.01701 -0.9702 -1.173 -0.2873 -1.06981 
0.636668 -0.34953 1.539577 1.119163 -1.05771 -0.5526 -1.1294 -0.49767 0.170614 -1.25866 -0.81234 -1.17188 
0.810799 -1.00995 0.266322 0.950158 -1.1592 -0.83598 -1.29736 -0.35801 1.547937 -1.05413 -0.56748 -1.25764 
0.990735 1.882144 0.318363 0.629295 -1.12527 -0.94934 -1.54815 -1.02082 0.271479 -1.15594 1.10162 -1.05288 
0.642472 -1.04137 0.661829 0.929544 -1.1592 -0.91155 -1.77409 1.88189 0.32365 -1.12191 0.933804 -1.15481 
0.578624 -1.42492 1.331416 0.107717 -0.36358 -0.66595 -1.82333 -1.05231 0.66798 -1.15594 0.615198 -1.12073 
0.694711 -0.5005 1.591618 -0.05413 -0.88225 -0.23143 -1.52653 -1.4373 1.339251 -0.35782 0.913335 -1.15481 
0.735342 -0.93306 1.227335 0.642506 -1.07456 -0.42035 -1.38617 -0.50951 1.600108 -0.87812 0.09729 -0.35577 
0.793386 -0.94547 -0.65653 -0.34798 -0.74216 -0.32589 -1.12572 -0.94363 1.234909 -1.07104 -0.06342 -0.87667 
0.75856 -0.42187 -0.7502 -0.61719 -0.92378 0.033061 -1.00838 -0.95612 -0.65369 -0.73759 0.628316 -1.06981 
0.764364 -0.78979 -0.84734 -0.34484 -1.1677 -0.08029 -1.19199 -0.43059 -0.7476 -0.91978 -0.3552 -0.73598 
0.752755 -0.17115 -0.83347 -1.05292 -0.61997 -0.68484 -1.1883 -0.79987 -0.84499 -1.16447 -0.62252 -0.91838 
1.025561 -0.2083 0.186527 -0.91791 -1.36492 -0.28811 -1.1791 -0.17895 -0.83108 -0.61501 -0.35208 -1.16334 
0.979126 -0.70095 -0.71551 1.369134 -1.3909 -0.21254 -0.9504 -0.2162 0.191483 -1.36231 -1.05518 -0.61326 
1.217105 -0.25685 -0.19163 -0.40221 -0.46704 0.033061 -1.10685 -0.7107 -0.71282 -1.38837 -0.92112 -1.36141 
1.600194 0.985374 -0.09449 -0.22811 -1.10834 0.316445 -0.92647 -0.26493 -0.18763 -0.46161 1.349831 -1.3875 
1.234518 -1.1244 0.460606 1.14139 -0.77497 0.562045 -0.8372 0.981826 -0.09024 -1.10492 -0.40905 -0.45968 
1.106822 -1.45657 0.60285 -0.09641 -0.78319 0.883213 -0.79302 -1.13567 0.466251 -0.7705 -0.23617 -1.10373 
1.118431 -0.16526 0.987949 0.585414 -0.89885 0.788752 -0.97065 -1.46902 0.608853 -0.77875 1.12369 -0.76893 
1.176475 -0.9358 -0.37204 -1.09373 -1.07456 0.335338 -0.91128 -0.17303 0.994921 -0.89477 -0.1054 -0.77718 
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1.193888 -0.09818 0.543871 -0.24562 -0.30825 0.35423 -1.02448 -0.94636 -0.36849 -1.07104 0.571626 -0.89334 
1.26354 0.101329 -0.17082 -0.97076 -0.81611 0.902105 -1.26469 -0.10569 0.549726 -0.30232 -1.0957 -1.06981 
0.880451 -0.55595 0.065099 -0.67633 -0.75855 0.618721 -1.09167 0.094506 -0.16676 -0.81178 -0.25356 -0.30021 
1.269345 0.345217 -0.81612 -1.23349 -0.22968 1.091028 -1.03921 -0.56512 0.069749 -0.75404 -0.97359 -0.81025 
1.217105 -0.07124 0.682645 -1.03402 -0.45106 1.468873 -0.97249 0.339303 -0.81368 -0.2235 -0.68124 -0.75244 
1.292562 -0.11758 -0.15 -0.72283 -0.02019 1.072136 -0.88966 -0.07868 0.688849 -0.44558 -1.23448 -0.2213 
1.536346 0.534908 -0.51355 0.879595 0.223208 0.977674 -0.64577 -0.12519 -0.14589 -0.01335 -1.03641 -0.44363 
1.582781 1.227063 -0.71551 -0.15999 -0.0159 1.185489 -0.57674 0.529716 -0.51035 0.230814 -0.72741 -0.01092 
1.17067 -0.42077 0.561218 1.035467 0.262252 1.147705 -0.31905 1.224411 -0.71282 -0.00905 0.863737 0.233524 
1.054583 -1.20428 0.967133 0.005651 0.170286 1.468873 -0.38854 -0.42944 0.567116 0.26998 -0.16853 -0.00661 
1.124235 -0.39658 1.289783 0.265643 0.056866 1.185489 -0.34988 -1.21583 0.974052 0.177725 1.018512 0.272736 
1.141648 -1.41887 0.427647 -0.22561 0.353483 0.807644 -0.20815 -0.4052 1.297514 0.063948 -0.00406 0.180375 
1.106822 -0.55344 -0.05633 -0.2968 0.393798 1.072136 -0.03927 -1.43122 0.43321 0.361498 0.254105 0.06647 
1.275149 -0.81775 -0.46051 -0.79398 0.333273 1.355519 -0.15477 -0.56265 -0.05198 0.401939 -0.23369 0.364358 
1.048778 -0.94814 -0.39112 -0.51059 0.553644 0.958782 0.014109 -0.82788 -0.45718 0.341224 -0.30438 0.404844 
1.280953 -0.39909 -0.82479 -1.1432 0.323154 1.563334 -0.12394 -0.9588 -0.38762 0.562289 -0.79806 0.34406 
1.106822 -0.88608 0.434586 -0.97597 0.333273 1.27995 -0.02316 -0.40773 -0.82238 0.331074 -0.51666 0.565376 
1.0778 -0.4346 -0.43275 0.323151 0.886061 0.883213 0.007666 -0.89652 0.440166 0.341224 -1.14483 0.333898 

1.40865 -0.20163 -0.35259 0.238701 0.934139 1.185489 -0.58779 -0.44333 -0.42936 0.89575 -0.97877 0.34406 
1.553759 0.814299 -0.405 -0.19404 0.523843 0.203092 -1.00792 -0.20951 -0.34899 0.94398 0.311209 0.899217 
1.217105 -0.62586 0.510912 1.088424 0.808712 0.675398 -0.87677 0.810084 -0.40153 0.532394 0.227344 0.947501 
1.228714 -1.42947 0.784991 -0.04537 0.632736 0.221984 -0.7194 -0.63533 0.516684 0.818159 -0.20235 0.535447 
1.292562 -0.67746 1.138866 0.425528 0.393798 0.429799 -0.57582 -1.44189 0.791453 0.641629 1.071101 0.821537 
1.304171 -0.38857 0.027804 -0.65967 1.171536 -0.04251 -0.31583 -0.6871 1.146217 0.401939 -0.05473 0.644807 
1.478302 0.236272 0.243771 -0.27121 0.701494 -0.17475 -0.44698 -0.39712 0.03236 1.182123 0.412866 0.404844 
1.478302 0.236194 -0.31566 -0.88237 0.563561 -0.25032 -0.63841 0.229986 0.248871 0.710603 -0.6647 1.185915 
1.269345 1.073975 -0.16301 -0.59346 1.246471 -0.34478 -0.61678 0.22992 -0.31197 0.572237 -0.27897 0.713859 
1.402845 0.88287 -0.82045 -1.18834 0.77957 -0.74152 -0.72308 1.070739 -0.15893 1.257294 -0.88583 0.575335 
1.246127 -0.24059 0.558616 -1.005 0.895692 -0.98712 -0.68258 0.878924 -0.81803 0.788925 -0.59895 1.261171 
1.211301 0.75319 -0.29138 -0.19983 0.808712 -0.89266 -0.76127 -0.24865 0.564507 0.905413 -1.18965 0.79227 
1.286758 0.209645 -0.43307 0.559148 0.403854 -0.93044 -0.70053 0.748778 -0.28762 0.818159 -1.00759 0.90889 
1.437672 1.573298 -0.56025 -0.17702 0.77957 -1.10047 -0.56984 0.203261 -0.42967 0.412027 -0.2081 0.821537 
1.135844 0.079728 0.536065 1.06195 0.740599 -0.40146 -0.60896 1.571875 -0.55718 0.788925 0.545541 0.414944 
1.071996 -1.01663 0.876062 -0.01987 0.94373 -0.5526 -0.60896 0.072842 0.5419 0.749831 -0.18544 0.79227 
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Appendix C 

Regional Index Residuals 

 

Figure C1. Histogram and scatterplot of residuals from the regional OLS regression 

model 

 

Figure C2. Histogram and scatterplot of residuals from the regional coordinate descent 

Lasso Regression model 
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Figure C3. Histogram and scatterplot of residuals from the regional Lars Lasso 

Regression model 

 

Figure C4. Histogram and scatterplot of residuals from the regional Ridge Regression 

model 
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Figure C5. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using C * Exp kernel 

 

Figure C6. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using C * RQ kernel 
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Figure C7. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using C * Exp * RQ kernel 

 

Figure C8. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using (C * RBF *RQ) + Exp kernel 
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Appendix D 

National Index Residuals 

 

Figure D1. Histogram and scatterplot of residuals from the regional OLS regression 

model 

 

Figure D2. Histogram and scatterplot of residuals from the regional coordinate descent 

Lasso Regression model 
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Figure D3. Histogram and scatterplot of residuals from the regional Lars Lasso 

Regression model 

 

Figure D4. Histogram and scatterplot of residuals from the regional Ridge Regression 

model 
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Figure D5. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using C * Exp kernel 

 

Figure D6. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using C * RQ kernel 
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Figure D7. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using C * Exp * RQ kernel 

 

Figure D8. Histogram and scatterplot of residuals from regional Gaussian Regression 

model using (C * RBF *RQ) + Exp kernel 
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Appendix E 

Root Mean Square Error for National Index Models 

RMSE Rand State 

 0 1 2 3 4 5 10 25 50 100 250 
OLS 0.62493 0.22454 0.24497 0.34933 0.21443 0.23559 0.25299 0.79416 0.22958 0.26173 0.64852 

Lasso (CD) 0.39667 0.22346 0.24366 0.25867 0.21376 0.23440 0.25319 0.55953 0.23025 0.21975 0.44492 

Lasso (LARS) 0.62493 0.22454 0.24497 0.34933 0.21443 0.23559 0.25299 0.79416 0.22958 0.26173 0.64852 

Ridge 0.31068 0.29555 0.33408 0.28078 0.25411 0.32932 0.30561 0.30970 0.35770 0.33484 0.31526 

Exp 0.22242 0.15743 0.19919 0.21204 0.16393 0.17280 0.19031 0.30078 0.15972 0.20417 0.27969 

RQ 0.22215 0.15742 0.19935 0.21268 0.16387 0.17280 0.19031 0.29566 0.15970 0.20504 0.27774 

Exp*RQ 0.22908 0.14337 0.19526 0.16396 0.16312 0.19854 0.20844 0.21875 0.21510 0.20945 0.21482 

RBF*RQ+Exp 0.18777 0.13628 0.16698 0.16366 0.14670 0.15778 0.17095 0.18183 0.15649 0.17179 0.18821 

 Normalized 

OLS 0.16920 0.06079 0.06633 0.09458 0.05806 0.06379 0.06850 0.21502 0.06216 0.07086 0.17559 

Lasso (CD) 0.10740 0.06050 0.06597 0.07004 0.05787 0.06346 0.06855 0.15150 0.06234 0.05950 0.12046 

Lasso (LARS) 0.16920 0.06079 0.06633 0.09458 0.05806 0.06379 0.06850 0.21502 0.06216 0.07086 0.17559 

Ridge 0.08412 0.08002 0.09045 0.07602 0.06880 0.08916 0.08274 0.08385 0.09685 0.09066 0.08536 

Exp 0.06022 0.04263 0.05393 0.05741 0.04438 0.04679 0.05153 0.08144 0.04324 0.05528 0.07573 

RQ 0.06015 0.04262 0.05397 0.05758 0.04437 0.04678 0.05153 0.08005 0.04324 0.05552 0.07520 

Exp*RQ 0.06202 0.03882 0.05287 0.04439 0.04416 0.05376 0.05644 0.05923 0.05824 0.05671 0.05816 

RBF*RQ+Exp 0.05084 0.03690 0.04521 0.04431 0.03972 0.04272 0.04629 0.04923 0.04237 0.04651 0.05096 
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Appendix F 

Root Mean Square Error for Regional Index Models 

RMSE Rand State 

 0 1 2 3 4 5 10 25 50 100 250 
OLS 0.764589 0.700254 0.837318 0.729522 0.815971 0.709397 0.879523 0.72892 0.74145 0.754428 0.76747 

Lasso (CD) 0.763597 0.700439 0.835766 0.730531 0.820843 0.708297 0.876716 0.727242 0.74218 0.756667 0.768945 
Lasso (LARS) 0.764574 0.700248 0.837292 0.729536 0.816042 0.709379 0.879457 0.728887 0.741459 0.75446 0.767492 

Ridge 0.764588 0.700251 0.83729 0.729511 0.815985 0.709393 0.87951 0.728915 0.741449 0.754439 0.767485 
Exp 0.481091 0.373393 0.579876 0.560302 0.509315 0.497595 0.471464 0.579049 0.459629 0.527321 0.506235 
RQ 0.481091 0.371243 0.582759 0.543342 0.50908 0.494354 0.480691 0.579048 0.451212 0.527322 0.50425 

Exp*RQ 0.477515 0.389338 0.586919 0.550488 0.527237 0.517747 0.508833 0.598568 0.459257 0.549667 0.506893 
RBF*RQ+Exp 0.483588 0.378153 0.583155 0.559956 0.504702 0.49512 0.471284 0.577279 0.455251 0.535437 0.504065 

 Normalized 

OLS 0.221017 0.20242 0.242041 0.21088 0.23587 0.205063 0.254241 0.210706 0.214329 0.21808 0.22185 
Lasso (CD) 0.220731 0.202474 0.241592 0.211172 0.237278 0.204745 0.253429 0.210222 0.21454 0.218727 0.222276 

Lasso (LARS) 0.221013 0.202418 0.242033 0.210885 0.235891 0.205058 0.254222 0.210697 0.214331 0.218089 0.221856 
Ridge 0.221017 0.202419 0.242033 0.210877 0.235874 0.205062 0.254237 0.210705 0.214328 0.218083 0.221854 

Exp 0.139067 0.107935 0.167623 0.161965 0.147226 0.143838 0.136285 0.167384 0.132864 0.152431 0.146336 

RQ 0.139067 0.107314 0.168456 0.157062 0.147158 0.142901 0.138952 0.167384 0.13043 0.152431 0.145762 
Exp*RQ 0.138034 0.112545 0.169659 0.159128 0.152407 0.149663 0.147087 0.173026 0.132756 0.15889 0.146526 

RBF*RQ+Exp 0.139789 0.109311 0.168571 0.161865 0.145893 0.143123 0.136232 0.166872 0.131598 0.154777 0.145708 
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