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Multi-decadal Analysis of Remotely 
Sensed Vegetation Change in Berea 
College Forest – Seasonality of Forest 
Patterns Using Remote Sensing 
Jacob Foushee1

1 The University of Louisville, Louisville, KY, USA 

ABSTRACT 
Satellite imagery is a practical and valuable tool for monitoring vegetation condition in forests. The 
longevity of the USGS/NASA Landsat program along with its medium spatial resolution (30m) 
gives researchers the ability to make informed statements on land cover generally, and specifically on 
aspects such as forest conditions. The Landsat program’s nearly 50-year archive of imagery show how 
Earth’s surface has changed through modern development and how these developments have 
influenced forests. Google Earth Engine (GEE) is a cloud-based repository of satellite imagery dating as 
far back as the 1970s. This study utilizes Landsat 5-8 imagery from GEE to calculate the long-term 
vegetation structure trends in Berea College Forest (BCF) in Berea, Kentucky from 1984-2020. By 
calculating the average growing-season Normalized Difference Vegetation Index (NDVI) and using the 
Mann-Kendall trend test and Sen’s slope estimator, I evaluated the significance of vegetation 
productivity trends on a pixel-by-pixel basis. The results show that 68.47% of BCF displayed significant 
trends in NDVI, with most of these pixels associated with a positive trend, and NDVI values for 
the study area increased at a rate of 0.001985 units per year. These positive trends were mostly clustered 
in the northern head and eastern tail of BCF. The southern portion displayed a clustering of pixels with 
no significant trend. Significant negative trends were rare but present. The most noticeable negative 
trend is attributed to US Highway 421, which began construction in 1998. Understanding long-term 
vegetation dynamics in BCF will assist foresters in developing effective management plans. 

KEYWORDS: forest trend analysis; google earth engine; landsat; ndvi; satellite imagery 

LAY SUMMARY 
Satellite imagery is a practical and valuable tool for 
monitoring vegetation condition in forests. The longevity 
of the USGS/NASA Landsat program along with its ability 
to resolve sub-hectare plots of land in a single pixel help 
researchers make informed statements on land cover 
generally, and specifically on aspects such as forest 
conditions. The Landsat program’s nearly 50-year archive 
of imagery shows how Earth’s surface has changed 
through modern development and how these 
developments have influenced forests. Google Earth 
Engine (GEE) is a cloud-based repository of satellite 
imagery dating as far back as the 1970s. This study utilizes 
Landsat 5-8 imagery from GEE to calculate the long-term 
vegetation structure trends in Berea College Forest (BCF) 
in Berea, Kentucky from 1984-2020. By calculating the 
average growing-season Normalized Difference 
Vegetation Index (NDVI), a proxy for photosynthetic 

activity, and using the Mann-Kendall trend test and 
Sen’s slope estimator, I evaluated the significance of 
vegetation productivity trends on a pixel-by-pixel 
basis. The results show that 68.47% of BCF displayed 
significant trends in NDVI, with most of these pixels 
associated with a positive trend, and NDVI values for 
the study area increased at a rate of 0.001985 units 
per year. These positive trends were mostly clustered 
in the northern head and eastern tail of BCF. The 
southern portion displayed a clustering of pixels with 
no significant trend. Significant negative trends were 
rare but present. The most noticeable negative trend is 
attributed to US Highway 421, which began 
construction in 1998. Understanding long-term 
vegetation dynamics in BCF will assist foresters 
in developing effective management plans. 
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INTRODUCTION 
Satellite systems can “see” beyond the visible portion 
of the electromagnetic spectrum, and this can be 
leveraged to monitor vegetation condition over large areas 
with the use of near-infrared light (Pelkey, Stoner, and 
Caro 2000). Additionally, continual, high-quality satellite 
imagery has been collected since the 1980s. The temporal 
nature of earth observation allows humanity to study the 
influence of development on the natural world over 
decades. Through satellite imagery, researchers can 
analyze a wide range of phenomena, making remote 
sensing a robust and effective tool in forest management. 

The longevity of satellite programs, like the NASA/USGS 
Landsat program (1972-present), provides researchers 
with the ability to track long-term trends in forest 
phenology (Forkel et al. 2013; Zhu et al. 2016), and these 
trends portray how normal seasonal fluctuations are 
changing due to rising global temperatures. 

The Department of Forestry at Berea College has grown 
and managed the Berea College Forest (BCF) -- a semi-
deciduous, temperate forest -- since the late 19th century, 
and the department is known for testing new management 
techniques to better care for its forest (Perry and 
Patterson 2000). A compliment to those efforts is the use 
of remote sensing tools. Vegetation indices, like the 
Normalized Difference Vegetation Index (NDVI) 

(𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅−𝑅𝑒𝑑), are useful tools in analyzing 
𝑁𝐼𝑅+𝑅𝑒𝑑 

phenological changes in an area (Eastman et al. 2013; Zhu 
et al. 2016). These indices estimate vegetation 
productivity by measuring the amount of near-infrared 
(NIR) energy reflected from the plants. Chlorophyll in 
plants absorbs most visible light (notably red light 630- 
680nm) while the cell structure of leaves reflects high 
amounts of NIR energy (845-885nm) (Brecht 2018). 
Hence, the more leaves a healthy plant has, the more these 
two portions of the electromagnetic spectrum are affected 
(Knipling 1970). 

NDVI seeks to compare the difference between NIR to red 
energy (Liu and Huete 1995). The greater the difference 
between NIR and red light, the higher the NDVI score. 
The NDVI score is a unitless value. On a larger scale, 
NDVI is a proxy for the productivity of entire forests, and 
denser vegetation will generally lead to greater NDVI 
values (Naif et al. 2020). NDVI interpreted on a pixel-by- 
pixel basis can evaluate the variation in vegetation 
conditions within the forest (Piao et al. 2019). However, 
Landsat’s 30m spatial resolution is not fine enough to 
capture the structure of every tree in a forest. Pixels are 
assigned the average digital number value found in the 
30m-by-30m area. A pixel exhibiting a high NDVI value 
does not mean that every tree in the pixel’s area will have 
a high NDVI value as well. While medium-resolution 
satellites cannot collect all the nuance in vegetation 
production, they are useful in analyzing large study 

areas, like BCF, because they have a long repository of 
imagery and are easily accessible (Earth Observation 
System 2019). 

Plant phenology refers to the timing of seasonal plant 
advancement, like green-up and senescence. According to 
previous research, temperature is the driving factor in 
plant phenology (Vitasse et al. 2011; Chuine, Cour, and 
Rousseau 1999). Continued research into phenological 
shifts in local forests is important as the timing of plant 
cycles is extremely sensitive to changes in the climate 
system (Piao et al. 2019). The growing season in Berea 
typically ranges from mid-April to mid-October (USDA 
2012). For this research, I will define the growing season 
as beginning on April 15th and ending on October 15th. 

The impact of climate change on a forest’s seasonal 
dynamics varies from region to region (Melaas, Sulla- 
Menashe, and Friedl 2018), but studies highlight that the 
trends in temperate forests show earlier green-up 
(Melaas, Sulla-Menashe, and Friedl 2018; Piao et al. 2019; 
Vitasse et al. 2011). Multiple studies have identified an 
earlier start to the growing season with a shift in timing for 
temperate forests (Piao et al. 2019; Vitasse et al. 2011; 
Linderholm 2006), correlating with an expected increase 
in NDVI values during the growing season. 

GEE is a freely available software that does not require 
users to download large datasets (Chen et al., 2021). GEE 
is flexible in that users can developed their own scripts to 
answer questions specific to their interests, such as 
monitoring forest structure or tracking land cover over 
time. Furthermore, GEE can be applied to any region of 
the world to observe a wide range of land cover types, 
including temperate forests and savannas (Alencar et al., 
2020; Schmid, 2017). The platform maintains entire 
series of satellite imagery that can be quickly accessed, 
analyzed, and processed in the cloud. Since users can 
easily access whole satellite series, multi- decadal trend 
analysis is a common application of GEE (Alencar et al., 
trends in forest condition (Brovelli et al., 2020; Sankey et 
al., 2020). 

Two statistical tests commonly used in analyzing 
biophysical data are the Mann-Kendall Trend Test and 
Sen’s Slope Estimator (Douglas, Vogel, and Kroll 2000; 
Tabari and Marofi 2010; Gocic and Trajkovic 2013). The 
article by Gocic and Trajkovic demonstrates the utility of 
these statistical tests. The authors tested the significance of 
weather data in Serbia and identified significant positive 
trends in maximum and minimum temperatures, among 
other factors. These tests evaluate remotely sensed trends 
in long-term vegetation patterns. In this research, I will be 
conducting trend analyses of NDVI calculated on 
composited median reflectance images in the red and NIR 
bands across the growing season. 
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The objective of this research is to evaluate NDVI trends 
in BCF during the growing season. The central question 
framing this research is - has the growing season NDVI 
in BCF shifted since 1984? I hypothesize that growing 
season NDVI in BCF will trend larger during the study 
period, meaning vegetation production is increasing. If 
true, BCF will need to develop management techniques 
that are adapted to the longer growing season and are 
flexible to future changes in the local climate. 

Significance 
Extensive research on phenological changes due to 
climate change shows that spring is beginning earlier in 
temperate forests across the planet (Melaas, 
Sulla-Menashe, and Friedl 2018; Piao et al. 2019; 
Vitasse et al. 2011; Linderholm 2006; Menzel 2000). 
However, the magnitude of change varies from place to 
place (Melaas, Sulla-Menashe, and Friedl 2018). 
This research is significant in understanding the 
nuance of phenological timing in a small forest. 

Study Area 
The study area is Berea College Forest (BCF) (Figure 
1). BCF is a temperate, semi-deciduous forest located 
adjacent to Berea College. The College has often used 
the forest to test innovative forest management 
techniques, the most recent being prescribed burning 
which started in 2019. BCF is certified by the Forest 
Stewardship Council and has goals to sequester carbon, 
provide recreational activities, improve the water supply 
to Berea, and grow lumber sustainably. 

BCF has grown considerably during its lifetime. The 
college began purchasing land in 1898 with the expressed 
purpose of pioneering forestry in the US, a primarily 
European discipline until this point (Perry and Patterson 
2000). Much of the land was in poor condition when it 
was acquired. Agriculture was the dominate force in the 
area that clear cut broad swaths of the land. Over farming 
and over grazing had severely degraded the soil quality. As 
Berea College slowly amassed land, the lead foresters 
implemented new management techniques, like seedling 
nurseries and tree thinning, to support native species. 
Today, the forest spans over 9,000 acres and serves as a 
demonstration of adaptive forest management in the 
Appalachian region. Furthermore, the forest is home to 
over 12 miles of trails, and the Department of Forestry is 
committed to teaching users how to best take care of their 
forest. 

Figure 1. Map showing the extent of Berea College Forest 

This research is complimentary to another undergraduate 
thesis (Hinzee Smith, 2022) and her inquiry into the 
perception of prescribed burns in BCF. To evaluate public 
perception, Hinzee sent short questionnaires to 
landowners living near the forest. If recipients show 
further interest, Hinzee conducted interviews to elaborate 
on any questions asked in the survey along with any other 
information the interviewee decides to mention. Public 
perception of forest management techniques is closely 
tied to vegetation productivity 

DATA AND METHODS 

Data 

This study leverages Landsat imagery from Google Earth 
Engine (GEE) beginning in 1984. The Landsat mission is 
the longest running satellite series, collecting data as far 
back as 1972. Since this study begins analysis in 1984, I used 
imagery from Landsat 5 through Landsat 8 (Table 1; Table 
2). The image collections used in the study were USGS 
Landsat 5 Level 2, Collection 2, Tier 1; USGS 
Landsat 7 Level 2, Collection 2, Tier 1; and USGS Landsat 8 
Level 2, Collection 2, Tier 1. Each of the datasets contained 
atmospherically corrected land surface reflectance values 
from their respective satellites. Due to the 2003 scan line 
corrector error in Landsat 7, this study used Landsat 7 
imagery only when necessary. The data were filtered by 
date. Landsat 5 imagery was used from 1/1/1984 – 
12/31/2011, Landsat 7 imagery was used from 1/1/2012 – 
12/31/2013, and Landsat 8 imagery was used from 
1/1/2014 – 12/31/2020. 



THE CARDINAL EDGE | 4 

Spatial 
Resolution 
(m) 

Years 
Active 

Return 
Time 
(days) 

Radiometric 
Resolution 
(bits) 

Landsat 5 30 1984-2013 16 8 

Landsat 7 30 1999- 
present* 

16 8 

Landsat 8 30 2013- 
Present 

16 12 

Table 1. Spatial, temporal, and radiometric resolutions of Landsats 5, 7, & 8 (USGS 2021a) 
*Scan Line Corrector Malfunction in 2003 

In addition to the Landsat imagery, I imported a shapefile 
of BCF from the Berea College Department of Forestry to 
overlay the GEE outputs. The area of analysis was a 
polygon that encompassed BCF. The coordinates of the 

polygon are [-84.311, 37.485], [-84.132, 37.485], [84.132, 
37.591], and [-84.311, 37.591]. I included this polygon to 
provide a broader picture of vegetation structure around 
BCF. 

Landsat 5 Landsat 7 Landsat 8 

Bands 3 Red 
630-690nm

Red 
630-690nm

- 

Band 4 NIR 
770-900nm

NIR 
770-900nm

Red 
640-670nm

Band 5 - - NIR 
850-880 nm 

Table 2. Spectral bands of Landsats 5, 7, & 8 and the electromagnetic spectrum (FComm 2020) 
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𝑖=1 𝑗=𝑖+1 

j -k 

I collected an image of growing season NDVI values for 
each year beginning in 1984 and continuing to 2020 by 
pulling out median pixel values from all images collected 
during the growing season and producing a composited 
image. The images covered BCF and portions of the 
surrounding area. These data were freely accessible. 

Methods 
To analyze the data, I used Google Earth Engine (GEE), a 
cloud-based computing tool, to calculate the trend of 
Landsat-derived NDVI in BCF from 1984 to 2020. 
Specifically, I calculated the growing season NDVI (April- 
October) on the median composited image on pixel-by-
pixel basis for the study area. My source code is in 
Appendix 1. 

After importing the previously mentioned image 
collections and filtering the collections by date, I merged 
the three datasets into one aggregate image collection. 
These merged data were the basis for analysis in GEE. 

I first calculated a composite image for each year in the 
study period. To do this, I created a function to pull out the 
median digital number value of every pixel from images 
collected for one year. Extracting the median pixel value 
removes the influence of extreme values, like clouds, that 
would otherwise distort the imagery if the data were 
composited with mean pixel values. With the median 
values, I created a composite image that represented the 
year. This process was repeated for every year in the study 
period. 

I then created a time stamp function to arrange the 
composited images temporally. This was done to order the 
composited images so the program could appropriately 
evaluate the longterm NDVI trends. Next, I calculated 
NDVI for each of the composited images in the study 
period. 

Mann-Kendall Trend Test 

The Mann-Kendall is a nonparametric, ranked-based 
statistical test useful for evaluating trends in time series. 
The data points are ranked in order by date. Each data 
point is then compared to all following data points, creating 
image pairs. The test is looking for differences in relative 
magnitude of one data point to all following data points. If 
the magnitude of data points changes over time, then a 
trend is present (Douglas, Vogel, and Kroll 2000; Tabari 
and Marofi 2010). The trend test is characterized as the 
sum of the signs of all image pairs. The Mann-Kendall is 
used for identifying whether a pixel is statistically 
significant or not, but this test does not indicate the 
magnitude of significance. 

The Mann-Kendall trend test S statistic is calculated as 

S = ∑ 𝑛−1 ∑ 𝑛 𝑠𝑔𝑛(𝑥𝑗− 𝑥𝑖) (1) 

where n is the total number of data points, 𝑥𝑖 and 𝑥𝑗 are 
the data values in time series i and j when j > i. The sgn(𝑥𝑗 
- 𝑥𝑖) is written as 

+1, if 𝑥𝑗 − 𝑥𝑖 > 0 
sgn(𝑥𝑗 - 𝑥𝑖) = { 0, if 𝑥𝑗 − 𝑥𝑖 = 0 (2) 

-1, if 𝑥𝑗 − 𝑥𝑖 < 0

Variance for the data is then calculated, and a Z-score is 
determined. Positive Z-scores indicate an upward NDVI 
trend, negative Z-scores show a downward NDVI trend, 
and a Z-score of 0 means there is no significant trend in 
NDVI values since the 1980s (Gocic and Trajkovic 2013). 

To calculate the Mann-Kendall trend test in GEE, I 
imported code from the GEE tutorial site. This piece of 
code iterates over each pixel of the collection and 
calculates the trend sign of the pixel compared to each of 
the pixels that follow the original chronologically. The 
output of this is an image indicating the distribution of 
pixels with significant positive or negative NDVI trends 
along with pixels showing no significant change. 

Sen’s Slope Estimator 

Sen’s Slope Estimator is a nonparametric statistical test 
that builds on the Mann-Kendall trend test. This test 
calculates the slope of a linear trend in a time series by 
finding the median of the slopes of all lines through a pair 
of data points. Sen’s slope shows the magnitude and slope 
of the trend calculated from the Mann-Kendall trend test. 
This test is useful because it is not influenced by outliers 
(Tabari and Marofi 2010; Gocic and Trajkovic 2013). In the 
case of my research, Sen’s slope estimator runs through the 
image pairs and identifies the magnitude of difference in 
NDVI between each of the pairs on a pixel- by-pixel basis. 

The Sen’s Slope Estimator is calculated as 

𝑄𝑖 = 
xj-xk 

f for i = 1, …, N (3) 

where 𝑥𝑗 and 𝑥𝑘 are the values at times j and k where j > 
k. The values for 𝑄𝑖 for each pixel are then ranked in
ascending order, and the median of the slope is determined
by
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2 

2 2 

Qmed = 

𝑄 [𝑁+1 ] 

𝑄 [𝑁 ] + 𝑄 [𝑁+2 ] 

2 

if 𝑁 is odd 

if 𝑁 is even (4) 

The sign of 𝑄𝑚𝑒𝑑 denotes the direction of the trend while 
that value shows the steepness of the trend (Gocic and 
Trajkovic 2013). 

To determine Sen’s slope and intercept for BCF, I pulled 
code from the GEE tutorial website. Sen’s slope works 
similarly to the Mann-Kendall, but it instead focuses on 
the values calculated for the image pairs. This statistical 
test selects the median slope computed from all image 
pairs. This test is evaluated on a pixel-by-pixel basis. Red 
pixels indicate a decreasing trend in vegetation condition 
while green pixels represent an increasing trend. I then 
created a time stamp function to arrange the composited 
images temporally. This was done to order the composited 
images so the program could appropriately evaluate the 
longterm NDVI trends. Next, I calculated NDVI for each of 
the composited images in the study period. 

Significance Test 

After running the Mann-Kendall trend test and Sen’s 
slope estimator, I created a binary classification of 
significant trends in NDVI on a pixel-by-pixel basis. I 
pulled this code from the GEE tutorial website. Through 
this code, I calculated the z-statistic for each statistic 
based off the variance output from the Mann- Kendall 
trend test. I then conducted a two-sided p- value test at 
the 95% confidence interval to draw out the pixels with 
significant increasing and decreasing trends in NDVI. 

RESULTS 

The output of my analysis shows that there is a slight 
positive increase of growing season NDVI in BCF 
between 1984-2020 (Table 3; Table 4). The trendline 
denotes an increase in NDVI at a rate of 0.001985 units 
per year. The graph shows dips in NDVI in 1985, 1991, 
1993, and 2002. These are the only years when growing 
season NDVI values go below 0.300. Prior to 2000, 
NDVI values did not go beyond 0.400. However, eight 
out of the 20 years following 2000 exhibited NDVI 
values above 0.400, and the years 2014-2018 all showed 
values greater than 0.400. 

Table 3. Line chart of growing season NDVI values from 
1984-2020 in BCF 

Table 4. Growing season NDVI values from 1984-2020 in 
BCF 

The results of my analysis show that 68.47% of BCF exhibits a 
significant trend in NDVI since 1984, and most of these pixels 
display a significant positive trend as shown in Figure 2. Figure 
2 shows the results of the Mann-Kendall trend test. The cross- 
hatching indicates significant trends. Green pixels represent 
positive trends, yellow pixels exhibit no trend, and red pixels 
indicate negative trends. While positive trends were more 
common, negative significant trends are, on average, stronger 
than the positive trends. 

The data show a clustering of trends in BCF. Based on Figure 2, 
significant positive NDVI trends appear most commonly in the 

Year NDVI Values 

1984 0.388 
1985 0.275 
1986 0.363 
1987 0.392 
1988 0.395 
1989 0.343 
1990 0.375 
1991 0.266 
1992 0.318 
1993 0.276 
1994 0.349 
1995 0.374 
1996 0.381 
1997 0.388 
1998 0.381 
1999 0.343 

2000 0.406 
2001 0.39 
2002 0.254 

Year NDVI Values 
2003 0.397 
2004 0.396 
2005 0.397 
2006 0.426 
2007 0.397 
2008 0.36 
2009 0.314 
2010 0.386 
2011 0.405 
2012 0.369 
2013 0.372 
2014 0.411 
2015 0.411 
2016 0.417 
2017 0.434 
2018 0.424 
2019 0.396 
2020 0.395 
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northern head of the main body of the forest while the 
southwestern portion shows a mixture of significant positive 
trends with no significant trend. In the center of BCF is a line 
showing a significant negative trend. This object denotes US 

Highway 421, which began construction in 1998. The eastern 
tail of BCF is mostly made of pixels with a positive significant 
trend while there are pixels with no trend along the southern 
rim. 

Figure 2. Mann-Kendall Trend Test in BCF 

The Sen’s slope estimator output from GEE displays the median 
slope of the trends evaluated through the Mann-Kendall trend 
test (Figure 3). The region attracting the most attention in 
Figure 3 is US Highway 421. This road shows a significant 
negative trend in annual NDVI. Table 5 provides an example of 
NDVI values of one pixel located along US Highway 421. 
Construction for the highway began in 1998. NDVI values along 

the highway plunge from 1997 to 1998. Following construction, 
NDVI values averaged to half of what they were prior to 1998. 
The Sen’s slope value associated with this pixel amounted to a 
declining slope of - 0.0000192 NDVI units per year. Pixels 
showing a positive significant trend generate a positive Sen’s 
slope value, but the rate at which these NDVI values are 
increasing has a smaller magnitude than pixels located along 
the highway. 

Figure 3. Sen's Slope Estimator in BCF
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Table 5. Growing season NDVI values from Highway 421 

DISCUSSION 

The results of my study indicate that 68.47% of the study 
area displayed significant trends in growing season NDVI 
between 1984-2020. Many of these trends were positive. 
However, the rate at which average NDVI values increased 
over the study period was slight, approximating to an 
increase of 0.001985 units per year. Furthermore, areas 
with significant trends appeared to be clustered. Significant 
positive trends took place in the northern head and eastern 
tail of BCF. Significant negative trends were present but 
were concentrated to a line bisecting BCF. These trends 
denoted US Highway 421, which began construction in 
1998. Finally, areas exhibiting no significant trends were 
clustered in the southwestern portion of the forest and along 
the southeastern forest edge. 

The results of this study fail to reject the hypothesis that 
growing season NDVI would increase in BCF from 1984- 
2020. While the rate of growth is less than expected, 
vegetation production, as noted by the NDVI signal, has 
been increasing over time in BCF. These results could point 
to a possible expansion in the growing season, but further 
research into start of season and end of season timing in 
BCF is needed. The historical growing season in BCF ranges 
from mid-April to mid-October. In this study, I defined the 
growing season to begin on April 15th and end on October 
15th. Since warmer temperatures and increased precipitation 
will likely lead to the growing season beginning earlier than 
April 15th in BCF, vegetation will have begun development 
before the normal growing season. Moreover, warmer 
temperatures will extend the growing season beyond 
October 15th, meaning the end of season will be delayed 
(Dragoni and Rahman 2012). These two implications lead to 
mature plants reflecting more NIR energy at the beginning 
and end of the historical growing season. In terms of remote 
sensing, NDVI values at the beginning and end of the 

normal growing season will trend larger over time. 

These results also emphasize the difference in impact of 
direct and indirect human land cover change. Most 
significant negative trends in the study area are attributed to 
US Highway 421, which began construction in 1998. Rapid 
land cover change in the area led to a sharp decline in NDVI 
values in 1998, and values remained relatively low for all 
following years. However, most pixels exhibited a slight 
significant positive trend that cannot be directly tied to a 
change in vegetation type or human-induce land cover 
change. 

Further analysis would seek to correlate the results found in 
this study with factors critical to plant growth, like 
precipitation and temperature. Examining long-term trends 
in these phenomena would build on this research by further 
demonstrating changes in the climate of the region. The 
Sixth Assessment Report from the Intergovernmental Panel 
on Climate Change (IPCC) states that regional average 
temperatures along with extreme temperatures are virtually 
certain to rise (Arias et al., 2021). Additionally, the authors 
predict that mean and extreme precipitation are very likely 
to increase. Figure 4 shows the distribution of projected 
temperature and precipitation change during the 21st

century according to two different climate scenarios. The 
RCP 8.5 scenario shows predictions for a future where 
nations do not take significant action in reducing emissions 
while the RCP 2.6 scenario is a low emission. As predicted 
by RCP 8.5, climate change will likely lead to hotter 
temperatures and greater precipitation in the eastern United 
States. According to the Seasonality and Climate Change 
report from the EPA, average surface temperatures across 
the contiguous US have increased at a rate of 0.16°F per 
decade since 1901, and summers have become 1°F hotter in 
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most of the southeastern US (EPA, 2021). Contrary to the 
IPCC predictions, the EPA report found that precipitation 
decreased between 1901-2015 in the southeastern US. 

Temperature is the driving factor in plant phenology 
(Vitasse et al. 2011; Chuine, Cour, and Rousseau 1999), and 
precipitation plays an important role in plant development. 
These two components also indirectly influence other 
variables critical to plant development, like soil moisture. 
Research into the relationship between increasing 
temperature and precipitation on vegetation structure 
would further our understanding of climate change in BCF. 
Identifying the beginning and end of the growing season 
from 1984 to the present would provide deeper insight into 
how the growing season’s timing is shifting. Furthermore, 
climate change is influencing the frequency and severity of 
seasonal extremes, like heatwaves and forest fires, along 
with expanding the time of the year they occur (EPA 2021). 
A stronger understanding of these factors in BCF will help 
foresters develop management techniques that can 
compensate for future climatic changes, such as adjusting 
drainage patterns to account for more extreme storm events. 

| 9

7 imagery as possible to limit the influence of error. 
However, Landsat 7 was the only active satellite in 
the Landsat series during the entirety of the 2012 and 
2013 growing season. These are the only two years 
during the study period where Landsat 7 imagery is used. 

While the data is still geometrically and 
radiometrically accurate, it has led to side-effects 
influencing the imagery visually. One side-effect of the 
SLC failure is striping, which results in unnatural straight 
lines in otherwise unaffected images. The red box in 
Figure 5 highlights striping present in the long-term 
trend t-test output from GEE. The SLC’s influence is 
present in both the Mann-Kendall and Sen’s slope 
outputs, but it is more noticeable in the Sen’s slope image. 
However, the significant trends data layer appears to be 
unaffected by the Landsat 7 error, most likely because the 
two-year range when Landsat 7 imagery was used was 
outweighed by the over 30 years of correct imagery from 
Landsats 5 and 8. 

Figure 5. Data error from Landsat 7 imagery 

CONCLUSION 

NDVI is a proxy for photosynthetic activity, and it provides 
us with a better understanding of the structure of a forest. 
By studying long-term NDVI trends in forests, researchers 
can provide foresters data to make informed and effective 
decisions. In this study, I conducted an analysis of long-term 
vegetation trends using NDVI. I used Google Earth Engine 
to evaluate Landsat imagery beginning in 1984 of Berea 
College Forest (BCF). From this research, I found that 
68.47% of all pixels in the study area exhibited significant 
trends in NDVI, and most of these significant trends were 
positive. Likewise, I found that NDVI values for the study 
area increased on average at a rate of 0.001985 units per 
year. While significant negative trends were present, most of 
these pixels were clustered around US Highway 421, which 
was built in 1998. Research into small-scale forests provide 
researchers a broader base to understand the nuance of 

Figure 4. IPCC projections for temperature and precipitation change in 
the US (Arias et al. 2021) 

Error in the Data 

The outputs carried inherent error due to Landsat 
7 imagery. On May 31st, 2003, the scan line corrector 
(SLC) on the Enhanced Thematic Mapper Plus of 
Landsat 7 failed, resulting in data gaps in all collected 
imagery following 2003. Because of this error, I sought to 
use as little Landsat 
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vegetation condition at a finer scale. Climate change is 
expected to continue affecting natural phenology patterns, 
and further research into factors important in vegetation 
development can be used to identify these patterns. 
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APPENDIX 

Appendix 1: Source Code 

1 var L8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2"), 
2 var L7 = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2"), 
3 var L5 = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2"), 
4 var BCF = ee.FeatureCollection("users/fousheejacob/BereaCollegeForest"), 
5 var outputArea = 
6 ee.Geometry.Polygon( 
7 [[[-84.31086936558026, 37.59144870864262], 
8 [-84.31086936558026, 37.4852766025006], 
9 [-84.1316548880412, 37.4852766025006], 

10 [-84.1316548880412, 37.59144870864262]]], null, false); 
11 
12 ////  NDVI Trend Analysis using Landsat 5, 7, & 8: 
13 
14 //// Study area: Berea College Forest 
15 //// Shapfile imported as "BCF" 
16 
17 //// Load Landsat data to merge and subset so we have no overlaps 
18 //// or duplicates: 
19 L5 = L5.filterDate('1984-01-01', '2011-12-31'); 
20 L7 = L7.filterDate('2012-01-01', '2013-12-31'); 
21 L8 = L8.filterDate('2014-01-01', '2020-12-31'); 
22 // Merging each image collection into one 
23 var sr = L5.merge(L7).merge(L8); 
24 
25 var years = [1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 
26 1994, 1995, 1996, 
27 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 
28 2009, 2010, 2011, 
29 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]; 
30 print(years); 
31 
32 var display_min = 0; 
33 var display_max = 100; 
34 
35 //Julian dates of study period 
36 var start_day = 105;  //  Apr 15 
37 var end_day = 288; // Oct 15 
38 
39 var cloud_cover = 15; 
40 var cloud_free_percentile = 50; 
41 
42 ////  Number of years for each image: 
43 var year_space = 1; 
44 
45 ////  Create cloud-free year, day filter and a simple 
46 //// composite using Earth Engine's built-in algorithm: 
47 var quick_LS = function(year){ 
48 var result = ee.ImageCollection(sr) 
49 .filterDate(ee.Date.fromYMD(year, 1,1), ee.Date.fromYMD(year + 
50 year_space-1, 12,31)) 
51 .filter(ee.Filter.calendarRange(start_day, 
52 end_day)).filterBounds(outputArea); 
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53 var cfc = result.reduce(ee.Reducer.median()).clip(outputArea); 
54 return cfc; 
55 }; 
56 
57 // Create index with 1/1/year time stamp: 
58 var create_index_w_time_stamp = function(year){ 
59 // year = ee.Number(year); 
60 var ls = quick_LS(year); 
61 var time_start = ee.Date.fromYMD(year, 1, 1).millis(); 
62 var time_end = ee.Date.fromYMD(year + 1, 1, 1).millis(); 
63 if (year >= 2014){ 
64 var NDVI = 
65 ls.normalizedDifference(['SR_B5_median','SR_B4_median']). 
66 setMulti({'system:time_start' : time_start, 'system:time_end' : 
67 time_end}); 
68 } else { 
69 var NDVI = 
70 ls.normalizedDifference(['SR_B4_median','SR_B3_median']). 
71 setMulti({'system:time_start' : time_start,'system:time_end' : time_end}); 
72 
73 
74 }; 
75 

} 
return NDVI; 

76 // 
77 // Finalize processing: 
78 // 
79 
80 
81 var ndvi_collection = 
82 ee.ImageCollection(years.map(create_index_w_time_stamp)); 
83 // print(ndvi_collection); 
84 
85 var trends = ndvi_collection.formaTrend(); 
86 var SAMpalette = ['00ff00','008000', '808000', 'ffff00','ffA500', 
87 'ff0000','800000','8c2a04']; 
88 SAMpalette.reverse(); 
89 
90 //// Further diagnostics: 
91 // print(trends); 
92 
93 //// M-K Test: 
94 //// As implemented here: https://developers.google.com/earth- 
95 engine/tutorials/community/nonparametric-trends 
96 var afterFilter = ee.Filter.lessThan({ 
97 leftField: 'system:time_start', 
98 rightField: 'system:time_start' 
99 }); 
100 
101 var joined = ee.ImageCollection(ee.Join.saveAll('after').apply({ 
102 primary: ndvi_collection, 
103 secondary: ndvi_collection, 
104 condition: afterFilter 
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105 })); 
106 
107 var sign = function(i, j) { // i and j are images 
108 return ee.Image(j).neq(ee.Image(i)) // Zero case 
109 .multiply(ee.Image(j).subtract(ee.Image(i)).multiply(10000).clamp(- 
110 1, 1)).int(); 
111 }; 
112 
113 var kendall = ee.ImageCollection(joined.map(function(current) { 
114 var afterCollection = 
115 ee.ImageCollection.fromImages(current.get('after')); 
116 return afterCollection.map(function(image) { 
117 // The unmask is to prevent accumulation of masked pixels that 
118 // result from the undefined case of when either current or image 
119 // is masked. It won't affect the sum, since it's unmasked to zero. 
120 return ee.Image(sign(current, image)).unmask(0); 
121 }); 
122 // Set parallelScale to avoid User memory limit exceeded. 
123 //}).flatten()).reduce('sum', 2); 
124 }).flatten()).reduce('sum').toDouble(); 
125 
126 var palette = ['red', 'white', 'green']; 
127 // Stretch this as necessary. 
128 // Map.addLayer(kendall, { palette: palette, min:-100, max:300 }, 
129 'kendall'); 
130 // Map.addLayer(kendall, {}, 'kendall'); 
131 
132 
133 //// Sen's Slope and Intercept: 
134 var slope = function(i, j) { // i and j are images 
135 return ee.Image(j).subtract(i) 
136 .divide(ee.Image(j).date().difference(ee.Image(i).date(), 'days')) 
137 .rename('slope') 
138 .float(); 
139 }; 
140 
141 var slopes = ee.ImageCollection(joined.map(function(current) { 
142 var afterCollection = 
143 ee.ImageCollection.fromImages(current.get('after')); 
144 return afterCollection.map(function(image) { 
145 return ee.Image(slope(current, image)); 146

}); 
147 }).flatten()); 
148 
149 var sensSlope = slopes.reduce(ee.Reducer.median(), 2); // Set 
150 parallelScale. 
151 // Map.addLayer( sensSlope, {palette: palette, min: -0.00001, max: 0.00001 
152 }, 'sensSlope'); 
153 //Map.addLayer(sensSlope, {}, 'sensSlope'); 
154 
155 
156 var epochDate = ee.Date('1970-01-01'); 
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157 var sensIntercept = ndvi_collection.map(function(image) { 
158 var epochDays = image.date().difference(epochDate, 'days').float(); 
159 return image.subtract(sensSlope.multiply(epochDays)).float(); 
160 }).reduce(ee.Reducer.median(), 2); 
161 // Map.addLayer(sensIntercept, {}, 'sensIntercept'); 
162 
163 var sfTimeSeries = 
164 
165 

Chart.image.series(ndvi_collection, outputArea, ee.Reducer.mean(), 200); 

166 //// Binary significance trends 
167 // Values that are in a group (ties). Set all else to zero. 
168 var groups = ndvi_collection.map(function(i) { 
169 var matches = ndvi_collection.map(function(j) { 
170 return i.eq(j); // i and j are images.
171 }).sum(); 
172 return i.multiply(matches.gt(1));
173 }); 
174 
175 // Compute tie group sizes in a sequence. The first group is discarded. 
176 var group = function(array) { 
177 var length = array.arrayLength(0); 
178 // Array of indices. These are 1-indexed. 
179 var indices = ee.Image([1]) 
180 .arrayRepeat(0, length) 
181 .arrayAccum(0, ee.Reducer.sum()) 
182 .toArray(1); 
183 var sorted = array.arraySort(); 
184 var left = sorted.arraySlice(0, 1); 
185 var right = sorted.arraySlice(0, 0, -1); 
186 // Indices of the end of runs. 
187 var mask = left.neq(right) 
188 // Always keep the last index, the end of the sequence. 
189 .arrayCat(ee.Image(ee.Array([[1]])), 0); 
190 var runIndices = indices.arrayMask(mask); 
191 // Subtract the indices to get run lengths. 
192 var groupSizes = runIndices.arraySlice(0, 1) 
193 .subtract(runIndices.arraySlice(0, 0, -1)); 
194 return groupSizes; 
195 }; 
196 
197 // See equation 2.6 in Sen (1968). 
198 var factors = function(image) { 
199 return image.expression('b() * (b() - 1) * (b() * 2 + 5)'); 
200 }; 
201 
202 var groupSizes = group(groups.toArray()); 
203 var groupFactors = factors(groupSizes); 
204 var groupFactorSum = groupFactors.arrayReduce('sum', [0]) 
205 .arrayGet([0, 0]); 
206 
207 var count = joined.count(); 

 208 
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209 var kendallVariance = factors(count) 
210 .subtract(groupFactorSum) 
211 .divide(18) 
212 .float(); 
213 Map.addLayer(kendallVariance, {}, 'kendallVariance', false); 
214 
215 
216 // Compute Z-statistics. 
217 var zero = kendall.multiply(kendall.eq(0)); 
218 var pos = kendall.multiply(kendall.gt(0)).subtract(1); 
219 var neg = kendall.multiply(kendall.lt(0)).add(1); 
220 
221 var z = zero 
222 .add(pos.divide(kendallVariance.sqrt())) 
223 .add(neg.divide(kendallVariance.sqrt())); 
224 Map.addLayer(z, {min: -2, max: 2}, 'z', false); 
225 
226 // https://en.wikipedia.org/wiki/Error_function# 
227 //Cumulative_distribution_function 
228 function eeCdf(z) { 
229 
230 

return ee.Image(0.5) 

231 .multiply(ee.Image(1).add(ee.Image(z).divide(ee.Image(2).sqrt()).erf())); 
232 } 
233 
234 function invCdf(p) { 
235 
236 
237 } 
238 

return ee.Image(2).sqrt() 
.multiply(ee.Image(p).multiply(2).subtract(1).erfInv()); 

239 // Compute P-values. 
240 var p = ee.Image(1).subtract(eeCdf(z.abs())); 
241 Map.addLayer(p, {min: 0, max: 1}, 'p', false); 
242 
243 // Pixels that can have the null hypothesis (there is no trend) rejected. 
244 // Specifically, if the true trend is zero, there would be less than 5% 
245 // chance of randomly obtaining the observed result (that there is a 
246 trend). 
247 var significance = p.lte(0.025); 
248 Map.addLayer(significance, {min: 0, max: 1}, 'significant trends'); 
249 
250 //// Visualize time series in the Console: 
251 print(sfTimeSeries, 'LineChart'); 
252 
253 //// Zoom to BCF and add shapefile 
254 Map.setCenter(-84.2357424, 37.5394361, 12); 
255 
256 //// Add map layers 
257 Map.addLayer(sensIntercept, {}, 'sensIntercept', false); 
258 Map.addLayer(trends, {bands:'long-trend', min: -0.1, max: 0.1, 
259 palette:SAMpalette}, 
260 'Long term trend', false); 
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261 Map.addLayer(ndvi_collection.toBands(), {min: 0, max: 0.7}, 'NDVI 
262 Collection'); 
263 Map.addLayer(trends, {bands:'long-tstat', min: -1.68, max: 1.68, 
264 palette:SAMpalette}, 
265 'Long term tstat'); 
266 Map.addLayer(sensSlope, {palette: palette, min: -0.00001, max: 0.00001 }, 
267 'sensSlope'); 
268 Map.addLayer(kendall, { palette: palette, min:-100, max:300 }, 'kendall'); 
269 Map.addLayer(BCF, {}, 'Berea College Forest'); 
270 
271 //// Export data/outputs 
272 // // NDVI_Collection 
273 // Export.image.toDrive({ 
274 // image: ndvi_collection.mean(), 
275 // description: 'NDVI_Collection', 
276 // folder: 'Thesis_Output', 
277 // fileFormat: 'GeoTIFF', 
278 // crs: 'EPSG:26980', 
279 // region: outputArea, 
280 // scale: 30 
281 // }); 
282 
283 // // Long Term Trend 
284 // Export.image.toDrive({ 
285 // image: trends, 
286 // description: 'LongTermTrend', 
287 // folder: 'Thesis_Output', 
288 // fileFormat: 'GeoTIFF', 
289 // crs: 'EPSG:26980', 
290 // region: outputArea, 
291 // scale: 30 
292 // }); 
293 
294 // // Long Term TStat 
295 // Export.image.toDrive({ 
296 // image: trends, 
297 // description: 'LongTermTStat', 
298 // folder: 'Thesis_Output', 
299 // fileFormat: 'GeoTIFF', 
300 // crs: 'EPSG:26980', 
301 // region: outputArea, 
302 // scale: 30 
303 // }); 
304 
305 // // Sens Slope 
306 // Export.image.toDrive({ 
307 // image: sensSlope, 
308 // description: 'SensSlope', 
309 // folder: 'Thesis_Output', 
310 // fileFormat: 'GeoTIFF', 
311 // crs: 'EPSG:26980', 
312 // region: outputArea, 



313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 

//   scale: 30 
//   }); 

// //  Mann-Kendall 
// Export.image.toDrive({ 
//   image: kendall, 
//   description: 'Mann-Kendall', 
//   folder: 'Thesis_Output', 
//   fileFormat: 'GeoTIFF', 
//   crs: 'EPSG:26980', 
//   region: outputArea, 
//   scale: 30 
//   }); 

// //  Sens Intercept 
// Export.image.toDrive({ 
//   image: sensIntercept, 
//   description: 'SensIntercept', 
//   folder: 'Thesis_Output', 
//   fileFormat: 'GeoTIFF', 
//   crs: 'EPSG:26980', 
//   region: outputArea, 
//   scale: 30 
//   }); 

// //  Significance Trend 
// Export.image.toDrive({ 
//   image: significance, 
//   description: 'SignificanceTrend', 
//   folder: 'Thesis_Output', 
//   fileFormat: 'GeoTIFF', 
//   crs: 'EPSG:26980', 
//   region: outputArea, 
//   scale: 30 
// });
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