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ABSTRACT 

 Satellite imagery is a practical and valuable tool for monitoring vegetation condition in 

forests. The longevity of the USGS/NASA Landsat program along with its medium spatial 

resolution (30m) gives researchers the ability to make informed statements on land cover 

generally, and specifically on aspects such as forest conditions. The Landsat program’s nearly 

50-year archive of imagery show how Earth’s surface has changed through modern development 

and how these developments have influenced forests. Google Earth Engine (GEE) is a cloud-

based repository of satellite imagery dating as far back as the 1970s. This study utilizes Landsat 

5-8 imagery from GEE to calculate the long-term vegetation structure trends in Berea College 

Forest (BCF) in Berea, Kentucky from 1984-2020. By calculating the average growing-season 

Normalized Difference Vegetation Index (NDVI) and using the Mann-Kendall trend test and 

Sen’s slope estimator, I evaluated the significance of vegetation productivity trends on a pixel-

by-pixel basis. The results show that 68.47% of BCF displayed significant trends in NDVI, with 

most of these pixels associated with a positive trend, and NDVI values for the study area 

increased at a rate of 0.001985 units per year. These positive trends were mostly clustered in the 

northern head and eastern tail of BCF. The southern portion displayed a clustering of pixels with 

no significant trend. Significant negative trends were rare but present. The most noticeable 

negative trend is attributed to US Highway 421, which began construction in 1998. 

Understanding long-term vegetation dynamics in BCF will assist foresters in developing 

effective management plans.  

Keywords: forest trend analysis; google earth engine; landsat; ndvi; satellite imagery 
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LAY SUMMARY 

Satellite imagery is a practical and valuable tool for monitoring vegetation condition in 

forests. The longevity of the USGS/NASA Landsat program along with its ability to resolve sub-

hectare plots of land in a single pixel help researchers make informed statements on land cover 

generally, and specifically on aspects such as forest conditions. The Landsat program’s nearly 

50-year archive of imagery shows how Earth’s surface has changed through modern 

development and how these developments have influenced forests. Google Earth Engine (GEE) 

is a cloud-based repository of satellite imagery dating as far back as the 1970s. This study 

utilizes Landsat 5-8 imagery from GEE to calculate the long-term vegetation structure trends in 

Berea College Forest (BCF) in Berea, Kentucky from 1984-2020. By calculating the average 

growing-season Normalized Difference Vegetation Index (NDVI), a proxy for photosynthetic 

activity, and using the Mann-Kendall trend test and Sen’s slope estimator, I evaluated the 

significance of vegetation productivity trends on a pixel-by-pixel basis. The results show that 

68.47% of BCF displayed significant trends in NDVI, with most of these pixels associated with a 

positive trend, and NDVI values for the study area increased at a rate of 0.001985 units per year. 

These positive trends were mostly clustered in the northern head and eastern tail of BCF. The 

southern portion displayed a clustering of pixels with no significant trend. Significant negative 

trends were rare but present. The most noticeable negative trend is attributed to US Highway 

421, which began construction in 1998. Understanding long-term vegetation dynamics in BCF 

will assist foresters in developing effective management plans.  
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INTRODUCTION 

Satellite systems can “see” beyond the visible portion of the electromagnetic spectrum, and 

this can be leveraged to monitor vegetation condition over large areas with the use of near-

infrared light (Pelkey, Stoner, and Caro 2000). Additionally, continual, high-quality satellite 

imagery has been collected since the 1980s. The temporal nature of earth observation allows 

humanity to study the influence of development on the natural world over decades. Through 

satellite imagery, researchers can analyze a wide range of phenomena, making remote sensing a 

robust and effective tool in forest management.  

The longevity of satellite programs, like the NASA/USGS Landsat program (1972-

present), provides researchers with the ability to track long-term trends in forest phenology 

(Forkel et al. 2013; Zhu et al. 2016), and these trends portray how normal seasonal fluctuations 

are changing due to rising global temperatures.  

The Department of Forestry at Berea College has grown and managed the Berea College 

Forest (BCF) -- a semi-deciduous, temperate forest -- since the late 19th century, and the 

department is known for testing new management techniques to better care for its forest (Perry 

and Patterson 2000). A compliment to those efforts is the use of remote sensing tools. Vegetation 

indices, like the Normalized Difference Vegetation Index (NDVI) (𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
), are useful 

tools in analyzing phenological changes in an area (Eastman et al. 2013; Zhu et al. 2016). These 

indices estimate vegetation productivity by measuring the amount of near-infrared (NIR) energy 

reflected from the plants. Chlorophyll in plants absorbs most visible light (notably red light 630-

680nm) while the cell structure of leaves reflects high amounts of NIR energy (845-885nm) 

(Brecht 2018). Hence, the more leaves a healthy plant has, the more these two portions of the 

electromagnetic spectrum are affected (Knipling 1970).  
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NDVI seeks to compare the difference between NIR to red energy (Liu and Huete 1995). 

The greater the difference between NIR and red light, the higher the NDVI score. The NDVI 

score is a unitless value. On a larger scale, NDVI is a proxy for the productivity of entire forests, 

and denser vegetation will generally lead to greater NDVI values (Naif et al. 2020). NDVI 

interpreted on a pixel-by-pixel basis can evaluate the variation in vegetation conditions within 

the forest (Piao et al. 2019). However, Landsat’s 30m spatial resolution is not fine enough to 

capture the structure of every tree in a forest. Pixels are assigned the average digital number 

value found in the 30m-by-30m area. A pixel exhibiting a high NDVI value does not mean that 

every tree in the pixel’s area will have a high NDVI value as well. While medium-resolution 

satellites cannot collect all the nuance in vegetation production, they are useful in analyzing large 

study areas, like BCF, because they have a long repository of imagery and are easily accessible 

(Earth Observation System 2019).  

Plant phenology refers to the timing of seasonal plant advancement, like green-up and 

senescence. According to previous research, temperature is the driving factor in plant phenology 

(Vitasse et al. 2011; Chuine, Cour, and Rousseau 1999). Continued research into phenological 

shifts in local forests is important as the timing of plant cycles is extremely sensitive to changes 

in the climate system (Piao et al. 2019). The growing season in Berea typically ranges from mid-

April to mid-October (USDA 2012). For this research, I will define the growing season as 

beginning on April 15th and ending on October 15th. 

The impact of climate change on a forest’s seasonal dynamics varies from region to region 

(Melaas, Sulla-Menashe, and Friedl 2018), but studies highlight that the trends in temperate 

forests show earlier green-up (Melaas, Sulla-Menashe, and Friedl 2018; Piao et al. 2019; Vitasse 

et al. 2011). Multiple studies have identified an earlier start to the growing season with a shift in 
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timing for temperate forests (Piao et al. 2019; Vitasse et al. 2011; Linderholm 2006), correlating 

with an expected increase in NDVI values during the growing season.  

GEE is a freely available software that does not require users to download large datasets 

(Chen et al., 2021). GEE is flexible in that users can developed their own scripts to answer 

questions specific to their interests, such as monitoring forest structure or tracking land cover 

over time.  Furthermore, GEE can be applied to any region of the world to observe a wide range 

of land cover types, including temperate forests and savannas (Alencar et al., 2020; Schmid, 

2017). The platform maintains entire series of satellite imagery that can be quickly accessed, 

analyzed, and processed in the cloud. Since users can easily access whole satellite series, multi-

decadal trend analysis is a common application of GEE (Alencar et al., 2020; Chen et al., 2021; 

Schmid, 2017). Since forests are critical to the global climate, GEE is frequently used to monitor 

long-term trends in forest condition (Brovelli et al., 2020; Sankey et al., 2020). 

Two statistical tests commonly used in analyzing biophysical data are the Mann-Kendall 

Trend Test and Sen’s Slope Estimator (Douglas, Vogel, and Kroll 2000; Tabari and Marofi 2010; 

Gocic and Trajkovic 2013). The article by Gocic and Trajkovic demonstrates the utility of these 

statistical tests. The authors tested the significance of weather data in Serbia and identified 

significant positive trends in maximum and minimum temperatures, among other factors. These 

tests evaluate remotely sensed trends in long-term vegetation patterns. In this research, I will be 

conducting trend analyses of NDVI calculated on composited median reflectance images in the 

red and NIR bands across the growing season. 

The objective of this research is to evaluate NDVI trends in BCF during the growing 

season. The central question framing this research is - has the growing season NDVI in BCF 

shifted since 1984? I hypothesize that growing season NDVI in BCF will trend larger during the 
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study period, meaning vegetation production is increasing. If true, BCF will need to develop 

management techniques that are adapted to the longer growing season and are flexible to future 

changes in the local climate. 

Significance 

Extensive research on phenological changes due to climate change shows that spring is 

beginning earlier in temperate forests across the planet (Melaas, Sulla-Menashe, and Friedl 2018; 

Piao et al. 2019; Vitasse et al. 2011; Linderholm 2006; Menzel 2000). However, the magnitude 

of change varies from place to place (Melaas, Sulla-Menashe, and Friedl 2018). This research is 

significant in understanding the nuance of phenological timing in a small forest. 

Study Area 

The study area is Berea College Forest (BCF) (Figure 1). BCF is a temperate, semi-

deciduous forest located adjacent to Berea College. The College has often used the forest to test 

innovative forest management techniques, the most recent being prescribed burning which 

started in 2019. BCF is certified by the Forest Stewardship Council and has goals to sequester 

carbon, provide recreational activities, improve the water supply to Berea, and grow lumber 

sustainably.  

BCF has grown considerably during its lifetime. The college began purchasing land in 

1898 with the expressed purpose of pioneering forestry in the US, a primarily European 

discipline until this point (Perry and Patterson 2000). Much of the land was in poor condition 

when it was acquired. Agriculture was the dominate force in the area that clear cut broad swaths 

of the land. Over farming and over grazing had severely degraded the soil quality. As Berea 

College slowly amassed land, the lead foresters implemented new management techniques, like 

seedling nurseries and tree thinning, to support native species. Today, the forest spans over 9,000 
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acres and serves as a demonstration of adaptive forest management in the Appalachian region. 

Furthermore, the forest is home to over 12 miles of trails, and the Department of Forestry is 

committed to teaching users how to best take care of their forest. 

 

Figure 1. Map showing the extent of Berea College Forest 

 This research is complimentary to another undergraduate thesis (Hinzee Smith, 2022) and 

her inquiry into the perception of prescribed burns in BCF. To evaluate public perception, 

Hinzee sent short questionnaires to landowners living near the forest. If recipients show further 

interest, Hinzee conducted interviews to elaborate on any questions asked in the survey along 

with any other information the interviewee decides to mention. Public perception of forest 

management techniques is closely tied to vegetation productivity. 

DATA AND METHODS 

Data 

This study leverages Landsat imagery from Google Earth Engine (GEE) beginning in 

1984. The Landsat mission is the longest running satellite series, collecting data as far back as 
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1972. Since this study begins analysis in 1984, I used imagery from Landsat 5 through Landsat 8 

(Table 1; Table 2). The image collections used in the study were USGS Landsat 5 Level 2, 

Collection 2, Tier 1; USGS Landsat 7 Level 2, Collection 2, Tier 1; and USGS Landsat 8 Level 

2, Collection 2, Tier 1. Each of the datasets contained atmospherically corrected land surface 

reflectance values from their respective satellites. Due to the 2003 scan line corrector error in 

Landsat 7, this study used Landsat 7 imagery only when necessary. The data were filtered by 

date. Landsat 5 imagery was used from 1/1/1984 – 12/31/2011, Landsat 7 imagery was used 

from 1/1/2012 – 12/31/2013, and Landsat 8 imagery was used from 1/1/2014 – 12/31/2020. 

 

 

 

 

Table 1. Spatial, temporal, and radiometric resolutions of Landsats 5, 7, & 8 (USGS 2021a) 

*Scan Line Corrector Malfunction in 2003 

In addition to the Landsat imagery, I imported a shapefile of BCF from the Berea College 

Department of Forestry to overlay the GEE outputs. The area of analysis was a polygon that 

encompassed BCF. The coordinates of the polygon are [-84.311, 37.485], [-84.132, 37.485], [-

84.132, 37.591], and [-84.311, 37.591]. I included this polygon to provide a broader picture of 

vegetation structure around BCF. 

  

 Spatial 

Resolution (m) 

Years Active Return Time 

(days) 

Radiometric 

Resolution (bits) 

Landsat 5 30 1984-2013 16 8 

Landsat 7 30 1999-present* 16 8 

Landsat 8 30 2013-Present 16 12 
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 Landsat 5 Landsat 7 Landsat 8 

Bands 3 Red 

630-690nm 

Red 

630-690nm 

- 

Band 4 NIR 

770-900nm 

NIR 

770-900nm 

Red 

640-670nm 

Band 5 - - NIR 

850-880nm 

 

Table 2. Spectral bands of Landsats 5, 7, & 8 and the electromagnetic spectrum (FComm 2020) 

I collected an image of growing season NDVI values for each year beginning in 1984 and 

continuing to 2020 by pulling out median pixel values from all images collected during the 

growing season and producing a composited image. The images covered BCF and portions of the 

surrounding area. These data were freely accessible. 

Methods  

To analyze the data, I used Google Earth Engine (GEE), a cloud-based computing tool, to 

calculate the trend of Landsat-derived NDVI in BCF from 1984 to 2020. Specifically, I 

calculated the growing season NDVI (April-October) on the median composited image on pixel-

by-pixel basis for the study area. My source code is in Appendix 1. 

After importing the previously mentioned image collections and filtering the collections 

by date, I merged the three datasets into one aggregate image collection. These merged data were 

the basis for analysis in GEE.  
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I first calculated a composite image for each year in the study period. To do this, I created 

a function to pull out the median digital number value of every pixel from images collected for 

one year. Extracting the median pixel value removes the influence of extreme values, like clouds, 

that would otherwise distort the imagery if the data were composited with mean pixel values. 

With the median values, I created a composite image that represented the year. This process was 

repeated for every year in the study period.  

I then created a time stamp function to arrange the composited images temporally. This 

was done to order the composited images so the program could appropriately evaluate the long-

term NDVI trends. Next, I calculated NDVI for each of the composited images in the study 

period.  

Mann-Kendall Trend Test 

 The Mann-Kendall is a nonparametric, ranked-based statistical test useful for evaluating 

trends in time series. The data points are ranked in order by date. Each data point is then 

compared to all following data points, creating image pairs. The test is looking for differences in 

relative magnitude of one data point to all following data points. If the magnitude of data points 

changes over time, then a trend is present (Douglas, Vogel, and Kroll 2000; Tabari and Marofi 

2010). The trend test is characterized as the sum of the signs of all image pairs. The Mann-

Kendall is used for identifying whether a pixel is statistically significant or not, but this test does 

not indicate the magnitude of significance. 

The Mann-Kendall trend test S statistic is calculated as 

S = ∑  𝑛−1
𝑖=1 ∑ 𝑠𝑔𝑛(𝑥𝑗 −  𝑥𝑖)𝑛

𝑗=𝑖+1  (1) 
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where n is the total number of data points, 𝑥𝑖 and 𝑥𝑗 are the data values in time series i and j 

when j > i. The sgn(𝑥𝑗 - 𝑥𝑖) is written as  

sgn(𝑥𝑗 - 𝑥𝑖) = {

+1, if 𝑥𝑗 − 𝑥𝑖 > 0

0, if 𝑥𝑗 − 𝑥𝑖 = 0

−1, if 𝑥𝑗 − 𝑥𝑖 < 0

 (2) 

Variance for the data is then calculated, and a Z-score is determined. Positive Z-scores indicate 

an upward NDVI trend, negative Z-scores show a downward NDVI trend, and a Z-score of 0 

means there is no significant trend in NDVI values since the 1980s (Gocic and Trajkovic 2013).  

 To calculate the Mann-Kendall trend test in GEE, I imported code from the GEE tutorial 

site. This piece of code iterates over each pixel of the collection and calculates the trend sign of 

the pixel compared to each of the pixels that follow the original chronologically. The output of 

this is an image indicating the distribution of pixels with significant positive or negative NDVI 

trends along with pixels showing no significant change.  

Sen’s Slope Estimator 

 Sen’s Slope Estimator is a nonparametric statistical test that builds on the Mann-Kendall 

trend test. This test calculates the slope of a linear trend in a time series by finding the median of 

the slopes of all lines through a pair of data points. Sen’s slope shows the magnitude and slope of 

the trend calculated from the Mann-Kendall trend test. This test is useful because it is not 

influenced by outliers (Tabari and Marofi 2010; Gocic and Trajkovic 2013). In the case of my 

research, Sen’s slope estimator runs through the image pairs and identifies the magnitude of 

difference in NDVI between each of the pairs on a pixel-by-pixel basis. 

 The Sen’s Slope Estimator is calculated as 
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𝑄𝑖 =
𝑥𝑗−𝑥𝑘

𝑗−𝑘
 for 𝑖 = 1, … , 𝑁 (3) 

where 𝑥𝑗 and 𝑥𝑘 are the values at times j and k where j > k. The values for 𝑄𝑖 for each pixel are 

then ranked in ascending order, and the median of the slope is determined by 

𝑄𝑚𝑒𝑑 = {
𝑄 [

𝑁+1

2
]      if 𝑁 is odd

𝑄
[
𝑁
2

]+
𝑄

[
𝑁+2

2
]

2
     if 𝑁 is even

 (4). 

The sign of 𝑄𝑚𝑒𝑑 denotes the direction of the trend while that value shows the steepness of the 

trend (Gocic and Trajkovic 2013).  

 To determine Sen’s slope and intercept for BCF, I pulled code from the GEE tutorial 

website. Sen’s slope works similarly to the Mann-Kendall, but it instead focuses on the values 

calculated for the image pairs. This statistical test selects the median slope computed from all 

image pairs. This test is evaluated on a pixel-by-pixel basis. Red pixels indicate a decreasing 

trend in vegetation condition while green pixels represent an increasing trend. 

Significance Test 

 After running the Mann-Kendall trend test and Sen’s slope estimator, I created a binary 

classification of significant trends in NDVI on a pixel-by-pixel basis. I pulled this code from the 

GEE tutorial website. Through this code, I calculated the z-statistic for each statistic based off 

the variance output from the Mann-Kendall trend test. I then conducted a two-sided p-value test 

at the 95% confidence interval to draw out the pixels with significant increasing and decreasing 

trends in NDVI.  
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RESULTS 

 The output of my analysis shows that there is a slight positive increase of growing season 

NDVI in BCF between 1984-2020 (Table 3; Table 4). The trendline denotes an increase in NDVI 

at a rate of 0.001985 units per year. The graph shows dips in NDVI in 1985, 1991, 1993, and 

2002. These are the only years when growing season NDVI values go below 0.300. Prior to 

2000, NDVI values did not go beyond 0.400. However, eight out of the 20 years following 2000 

exhibited NDVI values above 0.400, and the years 2014-2018 all showed values greater than 

0.400.  

 

 

Table 3. Line chart of growing season NDVI values from 1984-2020 in BCF 
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Year NDVI Values 

1984 0.388 

1985 0.275 

1986 0.363 

1987 0.392 

1988 0.395 

1989 0.343 

1990 0.375 

1991 0.266 

1992 0.318 

1993 0.276 

1994 0.349 

1995 0.374 

1996 0.381 

1997 0.388 

1998 0.381 

1999 0.343 

2000 0.406 

2001 0.39 

2002 0.254 

Year NDVI Values 

2003 0.397 

2004 0.396 

2005 0.397 

2006 0.426 

2007 0.397 

2008 0.36 

2009 0.314 

2010 0.386 

2011 0.405 

2012 0.369 

2013 0.372 

2014 0.411 

2015 0.411 

2016 0.417 

2017 0.434 

2018 0.424 

2019 0.396 

2020 0.395 

Table 4. Growing season NDVI values from 1984-2020 in BCF 

The results of my analysis show that 68.47% of BCF exhibits a significant trend in NDVI 

since 1984, and most of these pixels display a significant positive trend as shown in Figure 2. 

Figure 2 shows the results of the Mann-Kendall trend test. The cross-hatching indicates 

significant trends. Green pixels represent positive trends, yellow pixels exhibit no trend, and red 

pixels indicate negative trends. While positive trends were more common, negative significant 

trends are, on average, stronger than the positive trends.  

The data show a clustering of trends in BCF. Based on Figure 2, significant positive 

NDVI trends appear most commonly in the northern head of the main body of the forest while 

the southwestern portion shows a mixture of significant positive trends with no significant trend. 

In the center of BCF is a line showing a significant negative trend. This object denotes US 

Highway 421, which began construction in 1998. The eastern tail of BCF is mostly made of 

pixels with a positive significant trend while there are pixels with no trend along the southern 
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rim. 

Figure 2. Mann-Kendall Trend Test in BCF 

 The Sen’s slope estimator output from GEE displays the median slope of the trends 

evaluated through the Mann-Kendall trend test (Figure 3). The region attracting the most 

attention in Figure 3 is US Highway 421. This road shows a significant negative trend in annual 

NDVI. Table 5 provides an example of NDVI values of one pixel located along US Highway 

421. Construction for the highway began in 1998. NDVI values along the highway plunge from 

1997 to 1998. Following construction, NDVI values averaged to half of what they were prior to 

1998. The Sen’s slope value associated with this pixel amounted to a declining slope of -

0.0000192 NDVI units per year. Pixels showing a positive significant trend generate a positive 
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Sen’s slope value, but the rate at which these NDVI values are increasing has a smaller 

magnitude than pixels located along the highway. 

 

Figure 3. Sen's Slope Estimator in BCF 
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Table 5. Growing season NDVI values from Highway 421 

DISCUSSION 

The results of my study indicate that 68.47% of the study area displayed significant 

trends in growing season NDVI between 1984-2020. Many of these trends were positive. 

However, the rate at which average NDVI values increased over the study period was slight, 

approximating to an increase of 0.001985 units per year. Furthermore, areas with significant 

trends appeared to be clustered. Significant positive trends took place in the northern head and 

eastern tail of BCF. Significant negative trends were present but were concentrated to a line 

bisecting BCF. These trends denoted US Highway 421, which began construction in 1998. 

Finally, areas exhibiting no significant trends were clustered in the southwestern portion of the 

forest and along the southeastern forest edge. 

 The results of this study fail to reject the hypothesis that growing season NDVI would 

increase in BCF from 1984-2020. While the rate of growth is less than expected, vegetation 

production, as noted by the NDVI signal, has been increasing over time in BCF. These results 
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could point to a possible expansion in the growing season, but further research into start of 

season and end of season timing in BCF is needed. The historical growing season in BCF ranges 

from mid-April to mid-October. In this study, I defined the growing season to begin on April 15th 

and end on October 15th. Since warmer temperatures and increased precipitation will likely lead 

to the growing season beginning earlier than April 15th in BCF, vegetation will have begun 

development before the normal growing season. Moreover, warmer temperatures will extend the 

growing season beyond October 15th, meaning the end of season will be delayed (Dragoni and 

Rahman 2012). These two implications lead to mature plants reflecting more NIR energy at the 

beginning and end of the historical growing season. In terms of remote sensing, NDVI values at 

the beginning and end of the normal growing season will trend larger over time.  

 These results also emphasize the difference in impact of direct and indirect human land 

cover change. Most significant negative trends in the study area are attributed to US Highway 

421, which began construction in 1998. Rapid land cover change in the area led to a sharp 

decline in NDVI values in 1998, and values remained relatively low for all following years. 

However, most pixels exhibited a slight significant positive trend that cannot be directly tied to a 

change in vegetation type or human-induce land cover change. 

Further analysis would seek to correlate the results found in this study with factors 

critical to plant growth, like precipitation and temperature. Examining long-term trends in these 

phenomena would build on this research by further demonstrating changes in the climate of the 

region. The Sixth Assessment Report from the Intergovernmental Panel on Climate Change 

(IPCC) states that regional average temperatures along with extreme temperatures are virtually 

certain to rise (Arias et al., 2021). Additionally, the authors predict that mean and extreme 

precipitation are very likely to increase. Figure 4 shows the distribution of projected temperature 
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and precipitation change during the 21st century according to two different climate scenarios. The 

RCP 8.5 scenario shows predictions for a future where nations do not take significant action in 

reducing emissions while the RCP 2.6 scenario is a low emission. As predicted by RCP 8.5, 

climate change will likely lead to hotter temperatures and greater precipitation in the eastern 

United States. According to the Seasonality and Climate Change report from the EPA, average 

surface temperatures across the contiguous US have increased at a rate of 0.16°F per decade 

since 1901, and summers have become 1°F hotter in most of the southeastern US (EPA, 2021). 

Contrary to the IPCC predictions, the EPA report found that precipitation decreased between 

1901-2015 in the southeastern US.   

Temperature is the driving factor in plant phenology (Vitasse et al. 2011; Chuine, Cour, 

and Rousseau 1999), and precipitation plays an important role in plant development. These two 

components also indirectly influence other variables critical to plant development, like soil 

moisture. Research into the relationship between increasing temperature and precipitation on 

vegetation structure would further our understanding of climate change in BCF. Identifying the 

beginning and end of the growing season from 1984 to the present would provide deeper insight 

into how the growing season’s timing is shifting. Furthermore, climate change is influencing the 

frequency and severity of seasonal extremes, like heatwaves and forest fires, along with 

expanding the time of the year they occur (EPA 2021). A stronger understanding of these factors 

in BCF will help foresters develop management techniques that can compensate for future 

climatic changes, such as adjusting drainage patterns to account for more extreme storm events. 
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Figure 4. IPCC projections for temperature and precipitation change in the US (Arias et al. 2021) 

 

Error in the Data 

 The outputs carried inherent error due to Landsat 7 imagery. On May 31st, 2003, the scan 

line corrector (SLC) on the Enhanced Thematic Mapper Plus of Landsat 7 failed, resulting in 

data gaps in all collected imagery following 2003. Because of this error, I sought to use as little 

Landsat 7 imagery as possible to limit the influence of error. However, Landsat 7 was the only 
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active satellite in the Landsat series during the entirety of the 2012 and 2013 growing season. 

These are the only two years during the study period where Landsat 7 imagery is used.  

While the data is still geometrically and radiometrically accurate, it has led to side-effects 

influencing the imagery visually. One side-effect of the SLC failure is striping, which results in 

unnatural straight lines in otherwise unaffected images. The red box in Figure 5 highlights 

striping present in the long-term trend t-test output from GEE. The SLC’s influence is present in 

both the Mann-Kendall and Sen’s slope outputs, but it is more noticeable in the Sen’s slope 

image. However, the significant trends data layer appears to be unaffected by the Landsat 7 error, 

most likely because the two-year range when Landsat 7 imagery was used was outweighed by 

the over 30 years of correct imagery from Landsats 5 and 8.   

 

Figure 5. Data error from Landsat 7 imagery 
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CONCLUSION 

 NDVI is a proxy for photosynthetic activity, and it provides us with a better 

understanding of the structure of a forest. By studying long-term NDVI trends in forests, 

researchers can provide foresters data to make informed and effective decisions. In this study, I 

conducted an analysis of long-term vegetation trends using NDVI. I used Google Earth Engine to 

evaluate Landsat imagery beginning in 1984 of Berea College Forest (BCF). From this research, 

I found that 68.47% of all pixels in the study area exhibited significant trends in NDVI, and most 

of these significant trends were positive. Likewise, I found that NDVI values for the study area 

increased on average at a rate of 0.001985 units per year. While significant negative trends were 

present, most of these pixels were clustered around US Highway 241, which was built in 1998. 

Research into small-scale forests provide researchers a broader base to understand the nuance of 

vegetation condition at a finer scale. Climate change is expected to continue affecting natural 

phenology patterns, and further research into factors important in vegetation development can be 

used to identify these patterns.  
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APPENDIX 

Appendix 1: Source Code 
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var L8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2"), 

var L7 = ee.ImageCollection("LANDSAT/LE07/C02/T1_L2"), 

var L5 = ee.ImageCollection("LANDSAT/LT05/C02/T1_L2"), 

var BCF = ee.FeatureCollection("users/fousheejacob/BereaCollegeForest"), 

var outputArea =  

    ee.Geometry.Polygon( 

        [[[-84.31086936558026, 37.59144870864262], 

          [-84.31086936558026, 37.4852766025006], 

          [-84.1316548880412, 37.4852766025006], 

          [-84.1316548880412, 37.59144870864262]]], null, false); 

 

////  NDVI Trend Analysis using Landsat 5, 7, & 8: 

 

////  Study area: Berea College Forest 

////  Shapfile imported as "BCF" 

 

//// Load Landsat data to merge and subset so we have no overlaps 

//// or duplicates: 

L5 = L5.filterDate('1984-01-01', '2011-12-31'); 

L7 = L7.filterDate('2012-01-01', '2013-12-31'); 

L8 = L8.filterDate('2014-01-01', '2020-12-31'); 

//  Merging each image collection into one 

var sr = L5.merge(L7).merge(L8);   

 

var years = [1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 

1994, 1995, 1996, 

1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 

2009, 2010, 2011,  

2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020]; 

print(years); 

 

var display_min = 0; 

var display_max = 100; 

 

//Julian dates of study period 

var start_day = 105;  //  Apr 15 

var end_day = 288;    //  Oct 15 

 

var cloud_cover = 15; 

var cloud_free_percentile = 50; 

 

////  Number of years for each image: 

var year_space = 1; 

 

////  Create cloud-free year, day filter and a simple 

////  composite using Earth Engine's built-in algorithm: 

var quick_LS = function(year){ 

 var result = ee.ImageCollection(sr) 

    .filterDate(ee.Date.fromYMD(year, 1,1), ee.Date.fromYMD(year + 

year_space-1, 12,31)) 

    .filter(ee.Filter.calendarRange(start_day, 

end_day)).filterBounds(outputArea);  
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  var cfc = result.reduce(ee.Reducer.median()).clip(outputArea); 

return cfc; 

}; 

 

//  Create index with 1/1/year time stamp: 

var create_index_w_time_stamp = function(year){ 

  //  year = ee.Number(year); 

 var ls = quick_LS(year); 

 var time_start = ee.Date.fromYMD(year, 1, 1).millis(); 

 var time_end = ee.Date.fromYMD(year + 1, 1, 1).millis(); 

 if (year >= 2014){ 

   var NDVI = 

ls.normalizedDifference(['SR_B5_median','SR_B4_median']). 

setMulti({'system:time_start' : time_start, 'system:time_end' : 

time_end}); 

 } else { 

   var NDVI = 

ls.normalizedDifference(['SR_B4_median','SR_B3_median']). 

setMulti({'system:time_start' : time_start,'system:time_end' : time_end}); 

 } 

 return NDVI; 

}; 

 

//_________________________________________________ 

//  Finalize processing: 

//_________________________________________________ 

 

 

var ndvi_collection = 

ee.ImageCollection(years.map(create_index_w_time_stamp)); 

// print(ndvi_collection); 

 

var trends = ndvi_collection.formaTrend(); 

var SAMpalette = ['00ff00','008000', '808000', 'ffff00','ffA500', 

'ff0000','800000','8c2a04']; 

SAMpalette.reverse(); 

 

////  Further diagnostics: 

// print(trends); 

 

//// M-K Test: 

////  As implemented here: https://developers.google.com/earth- 

engine/tutorials/community/nonparametric-trends 

var afterFilter = ee.Filter.lessThan({ 

  leftField: 'system:time_start', 

  rightField: 'system:time_start' 

}); 

 

var joined = ee.ImageCollection(ee.Join.saveAll('after').apply({ 

  primary: ndvi_collection, 

  secondary: ndvi_collection, 

  condition: afterFilter 
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})); 

 

var sign = function(i, j) { // i and j are images 

  return ee.Image(j).neq(ee.Image(i)) // Zero case 

      .multiply(ee.Image(j).subtract(ee.Image(i)).multiply(10000).clamp(-

1, 1)).int(); 

}; 

 

var kendall = ee.ImageCollection(joined.map(function(current) { 

  var afterCollection = 

ee.ImageCollection.fromImages(current.get('after')); 

  return afterCollection.map(function(image) { 

    // The unmask is to prevent accumulation of masked pixels that 

    // result from the undefined case of when either current or image 

    // is masked.  It won't affect the sum, since it's unmasked to zero. 

    return ee.Image(sign(current, image)).unmask(0); 

  }); 

  // Set parallelScale to avoid User memory limit exceeded. 

//}).flatten()).reduce('sum', 2); 

}).flatten()).reduce('sum').toDouble(); 

 

var palette = ['red', 'white', 'green']; 

//  Stretch this as necessary. 

//  Map.addLayer(kendall, { palette: palette, min:-100, max:300 }, 

'kendall'); 

//  Map.addLayer(kendall, {}, 'kendall'); 

 

 

////  Sen's Slope and Intercept: 

var slope = function(i, j) { // i and j are images 

  return ee.Image(j).subtract(i) 

      .divide(ee.Image(j).date().difference(ee.Image(i).date(), 'days')) 

      .rename('slope') 

      .float(); 

}; 

 

var slopes = ee.ImageCollection(joined.map(function(current) { 

  var afterCollection = 

ee.ImageCollection.fromImages(current.get('after')); 

  return afterCollection.map(function(image) { 

      return ee.Image(slope(current, image)); 

  }); 

}).flatten()); 

 

var sensSlope = slopes.reduce(ee.Reducer.median(), 2); // Set 

parallelScale. 

// Map.addLayer( sensSlope, {palette: palette, min: -0.00001, max: 0.00001 

}, 'sensSlope'); 

//Map.addLayer(sensSlope, {}, 'sensSlope'); 

 

 

var epochDate = ee.Date('1970-01-01'); 
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var sensIntercept = ndvi_collection.map(function(image) { 

  var epochDays = image.date().difference(epochDate, 'days').float(); 

  return image.subtract(sensSlope.multiply(epochDays)).float(); 

}).reduce(ee.Reducer.median(), 2); 

// Map.addLayer(sensIntercept, {}, 'sensIntercept'); 

 

var sfTimeSeries = 

  Chart.image.series(ndvi_collection, outputArea, ee.Reducer.mean(), 200); 

   

////  Binary significance trends 

// Values that are in a group (ties).  Set all else to zero. 

var groups = ndvi_collection.map(function(i) { 

  var matches = ndvi_collection.map(function(j) { 

    return i.eq(j); // i and j are images. 

  }).sum(); 

  return i.multiply(matches.gt(1)); 

}); 

 

// Compute tie group sizes in a sequence.  The first group is discarded. 

var group = function(array) { 

  var length = array.arrayLength(0); 

  // Array of indices.  These are 1-indexed. 

  var indices = ee.Image([1]) 

      .arrayRepeat(0, length) 

      .arrayAccum(0, ee.Reducer.sum()) 

      .toArray(1); 

  var sorted = array.arraySort(); 

  var left = sorted.arraySlice(0, 1); 

  var right = sorted.arraySlice(0, 0, -1); 

  // Indices of the end of runs. 

  var mask = left.neq(right) 

  // Always keep the last index, the end of the sequence. 

      .arrayCat(ee.Image(ee.Array([[1]])), 0); 

  var runIndices = indices.arrayMask(mask); 

  // Subtract the indices to get run lengths. 

  var groupSizes = runIndices.arraySlice(0, 1) 

      .subtract(runIndices.arraySlice(0, 0, -1)); 

  return groupSizes; 

}; 

 

// See equation 2.6 in Sen (1968). 

var factors = function(image) { 

  return image.expression('b() * (b() - 1) * (b() * 2 + 5)'); 

}; 

 

var groupSizes = group(groups.toArray()); 

var groupFactors = factors(groupSizes); 

var groupFactorSum = groupFactors.arrayReduce('sum', [0]) 

      .arrayGet([0, 0]); 

 

var count = joined.count(); 
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var kendallVariance = factors(count) 

    .subtract(groupFactorSum) 

    .divide(18) 

    .float(); 

Map.addLayer(kendallVariance, {}, 'kendallVariance', false); 

 

 

// Compute Z-statistics. 

var zero = kendall.multiply(kendall.eq(0)); 

var pos = kendall.multiply(kendall.gt(0)).subtract(1); 

var neg = kendall.multiply(kendall.lt(0)).add(1); 

 

var z = zero 

    .add(pos.divide(kendallVariance.sqrt())) 

    .add(neg.divide(kendallVariance.sqrt())); 

Map.addLayer(z, {min: -2, max: 2}, 'z', false); 

 

// https://en.wikipedia.org/wiki/Error_function# 

//Cumulative_distribution_function 

function eeCdf(z) { 

  return ee.Image(0.5) 

      

.multiply(ee.Image(1).add(ee.Image(z).divide(ee.Image(2).sqrt()).erf())); 

} 

 

function invCdf(p) { 

  return ee.Image(2).sqrt() 

      .multiply(ee.Image(p).multiply(2).subtract(1).erfInv()); 

} 

 

// Compute P-values. 

var p = ee.Image(1).subtract(eeCdf(z.abs())); 

Map.addLayer(p, {min: 0, max: 1}, 'p', false); 

 

// Pixels that can have the null hypothesis (there is no trend) rejected. 

// Specifically, if the true trend is zero, there would be less than 5% 

// chance of randomly obtaining the observed result (that there is a 

trend). 

var significance = p.lte(0.025); 

Map.addLayer(significance, {min: 0, max: 1}, 'significant trends'); 

 

////  Visualize time series in the Console: 

print(sfTimeSeries, 'LineChart'); 

 

////  Zoom to BCF and add shapefile 

Map.setCenter(-84.2357424, 37.5394361, 12); 

 

////  Add map layers 

Map.addLayer(sensIntercept, {}, 'sensIntercept', false); 

Map.addLayer(trends, {bands:'long-trend', min: -0.1, max: 0.1, 

palette:SAMpalette},  

'Long term trend', false); 
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Map.addLayer(ndvi_collection.toBands(), {min: 0, max: 0.7}, 'NDVI 

Collection'); 

Map.addLayer(trends, {bands:'long-tstat', min: -1.68, max: 1.68, 

palette:SAMpalette},  

'Long term tstat'); 

Map.addLayer(sensSlope, {palette: palette, min: -0.00001, max: 0.00001 }, 

'sensSlope'); 

Map.addLayer(kendall, { palette: palette, min:-100, max:300 }, 'kendall'); 

Map.addLayer(BCF, {}, 'Berea College Forest'); 

 

////  Export data/outputs 

// // NDVI_Collection 

// Export.image.toDrive({ 

//   image: ndvi_collection.mean(),  

//   description: 'NDVI_Collection',  

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 

//   scale: 30 

//   }); 

 

// //  Long Term Trend 

// Export.image.toDrive({ 

//   image: trends,  

//   description: 'LongTermTrend',  

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 

//   scale: 30 

//   }); 

   

// // Long Term TStat 

// Export.image.toDrive({ 

//   image: trends,  

//   description: 'LongTermTStat',  

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 

//   scale: 30 

//   }); 

 

// //  Sens Slope 

// Export.image.toDrive({ 

//   image: sensSlope,  

//   description: 'SensSlope',  

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 
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//   scale: 30 

//   }); 

   

// //  Mann-Kendall 

// Export.image.toDrive({ 

//   image: kendall,  

//   description: 'Mann-Kendall',  

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 

//   scale: 30 

//   }); 

   

// //  Sens Intercept 

// Export.image.toDrive({ 

//   image: sensIntercept,  

//   description: 'SensIntercept',  

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 

//   scale: 30 

//   }); 

 

// //  Significance Trend 

// Export.image.toDrive({ 

//   image: significance, 

//   description: 'SignificanceTrend', 

//   folder: 'Thesis_Output', 

//   fileFormat: 'GeoTIFF', 

//   crs: 'EPSG:26980', 

//   region: outputArea, 

//   scale: 30 

// }); 
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