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Abstract 
 

Crime remains a persistent threat in South Africa. This has significant implications for our ability to 

function as a country. As a result, there is a dire need for crime prevention strategies and measures 

that seek to reduce the risk of crimes occurring, and their potential harmful effects on individuals and 

society. Many local businesses, organisations and homes utilise video surveillance as a measure, as 

it can capture the crime as it is committed, thus identifying the perpetrators, or at least presenting a 

few suspects. In current video surveillance systems, there is no software that enables security officers 

to manage the data collected (i.e. automatically describe activities occurring in the video) and make it 

easily accessible for query and investigation. Access to the data is difficult because of the nature and 

size of the data. There is a need for efficiently extracting data to automatically detect, track, and 

recognise objects of interest, including understanding and analysing data through intelligent video 

surveillance. The aim of the study is to create an intelligent vision system that can identify a range of 

human actions in surveillance videos. This would offer security officers additional data of activities 

occurring in the videos, thus enabling them to access specific incidents faster and provide early 

detections of crimes. To achieve this, a literature study was done in the research area to reveal the 

prerequisites for such systems, the separate software modules designed and developed and 

eventually integrated into the intended system. Tests were developed to validate the system and 

evaluate how all the modules work together. This inevitably confirms the functionality of the 

fundamental components and the system in its entirety. The results have indicated that each module 

in the system operates successfully, can effectively extract pose estimation features, generate 

features for training/ classification and classify the features using a deep neural network. Further 

results showed that capability of the system can be applied to intelligent surveillance systems and 

enable security officers’ early detection of abnormal behaviour that can lead to crime.
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Chapter 1 : Introduction 
________________________________________________________________________________ 

1.1 Background of the study 

South Africa is a country plagued with high levels of crime. The direct and indirect effects of crime to 

individuals, families, neighbourhoods, businesses, government and the country include: financial loss, 

increased fear of victimisation, restricted behaviour and movement, a breakdown of trust relationships, 

an untold short-term and long-term trauma, and potentially lasting physical and psychological 

consequences [1][2]. According to the Governance’s Public Safety and Justice Survey 2018/19, 1,3 

million incidences of housebreaking affect 5,8% of households in South Africa [3]. These 

housebreakings are increasing annually and as a result, gated communities have become increasingly 

popular within the South African middle class. These gated communities are protected by high 

perimeter walls topped with electric fencing, by barred doors and windows with security officers 

who patrol the perimeter [4]. Citizens who do not reside in gated communities, rely on private security 

companies to protect them and their assets. These security companies make use of video surveillance 

systems which use strategically placed cameras to capture and store videos surveillance. All these 

measures are put in place as an attempt to prevent crime. 

Crime prevention comprises strategies and measures that seek to reduce the risk of crimes occurring, 

and their potential harmful effects on individuals and society. This is achieved by intervening to 

influence their multiple causes [5]. It therefore is essential to find effective ways of reducing incidents 

of crime and violence, and to limit the negative effects and the destructive impact thereof. As 

mentioned previously one of these measures is video surveillance. Video surveillance is an effective 

measure, as it can capture the crime as it is committed, thus identifying the perpetrators or at least 

present possible suspects. 
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Video surveillance systems have played, and continue to play, a vital role in security for our society. 

Closed-circuit television (CCTV)-based video surveillance systems are the most popular across many 

enterprises, e.g. local shopping centres, malls, banks, businesses, parking lots, academic institutions 

and homes. A CCTV system consists of a set of cameras placed in strategic locations that capture 

and transmit images to a video management system. The video management system allows, inter 

alia, the viewing and recording of the images [6]. The CCTV systems usually include CCTV cameras, 

and a video recorder with local and remote monitoring. They record and centrally store hours of 

footage every day. These systems are usually monitored by human security officers. When there is 

any incidence there is multiple angles of footage to record the incident, culminating in large data 

storage. Security officers must scroll through hours and days of footage, and this results in a long and 

tedious process. 

In current video surveillance systems, there is no software that enables security officers to manage 

the collected data in order to make it easily accessible for query and search. There are currently no 

methods that automatically define activities occurring in the video. Access to the data is difficult due 

to the nature of the data and its size. There is a need for efficiently extracting data to automatically 

detect, track and recognise objects of interest that include understanding and analysing it through 

intelligent video surveillance [7]. Most surveillance systems usually monitor human actions; a human 

action recognition system would therefore assist security officers by reporting different actions 

performed by humans in the videos. 

Human action recognition aims at automatically detecting the action of a person, i.e. to identify if 

someone is walking, dancing or performing other types of activities [8]. The term human action, studied 

in computer vision research, ranges from limb movement to joint complex movement of multiple limbs 

and the human body. This process of recognising human actions is dynamic, and is thus usually 

conveyed in a video lasting a few seconds [9]. For the purpose of security, human action recognition 
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systems would assist security officers in early detection of abnormal behaviour that can lead to crime, 

because areas under surveillance usually allow certain human actions, while other actions are not 

allowed.  

1.2 Problem statement 

CCTV systems offer innovative solutions to security, as they can capture and store video footage 

through a video management system. These stored videos can later be viewed by security officers 

whenever an incident occurs to verify the incidence. This process is usually tedious, as there are days 

of footage that one needs to go through. Accessing specific videos therefore is difficult. These systems 

are more of a post measure and mainly used for gathering evidence. This demonstrates the need for 

intelligent video surveillance that can identify different human actions that can be used as an active 

measure for preventing crime. 

1.3 Hypothesis 

Human security officers can be more effective in crime prevention through early detection of abnormal 

behaviour that can lead to crime by utilising a vision system to intelligently detect human actions in 

video surveillance.  

1.4 Research, aims and objectives 

The aim of the study, therefore, is to create an intelligent vision system that can identify a range of 

human actions within surveillance videos. This would offer security officers additional data of activities 

occurring in the videos, thus enabling them to access specific incidents faster and provide early 

detections of crimes. 
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To reach the aim of the study, the following objectives were devised: 

1. Gathering training data from existing video datasets 

2. Extracting images from the videos  

3. Extracting features from the images to train a neural network 

4. Training a neural network to classify human actions 

5. Testing neural network from known data 

6. Validating neural network from real world data. 

1.5 Layout of the dissertation 

This dissertation has been prepared in six chapters. Following, is a brief description of the contents of 

each chapter. 

Chapter 1: Introduction 

Chapter 1 contains a brief introduction to the study, including the problem statement, as well as the 

aim and objectives of the study. 

Chapter 2: Study design 

In Chapter 2 the study design and a description of the different aspects of this research project are 

presented.  

Chapter 3: Literature Review  

In Chapter 3 a review of relevant literature is presented on typical video surveillance systems used in 

our modern day and age. The study further reviews literature on pose estimation, video feature 

extraction techniques and deep neural networks. Action Video Dataset is also reviewed in this chapter.  
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Chapter 4: Video Feature Extraction 

In Chapter 4 video feature extraction steps implemented as part of the Human Action Recognition 

System (HARS) are presented. This phase was divided into four sub-phases: 

• converting video to images. 

• extracting skeleton data using pose estimation. 

• pre-processing raw skeleton data; and 

• feature extraction. 

The methods and results for the video feature extraction process as well as the four sub-phases are 

presented in this chapter. 

Chapter 5: Development of a DEEP NEURAL NETWORK (DNN) for Action Classification 

This chapter presents the development of the deep neural network and the steps that were 

implemented as part of the HARS. This phase is divided into two sub-phases: 

• Training; and 

• Testing. 

The methods and results for development of the DNN for Action Classification process, as well as the 

two sub-phases are presented in this chapter. 

Chapter 6: Evaluation of the Human Action Recognition System 

This chapter presents the evaluation of the HARS. This phase has one sub-phases: 

• Validation. 
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The methods and results for the evaluation process, as well as the sub-phase, are presented in this 

chapter. 

Chapter 7: Discussion and Conclusion 

In this concluding chapter the key findings of this study are presented. It is shown how these findings 

are integrated into existing knowledge. It furthermore contains a discussion on the challenges and 

further development of the HARS.    
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Chapter 2 : Study Design 
________________________________________________________________________________ 

2.1 Introduction 

The purpose of the study is to produce a Human Action Recognition System (HARS) that detects 

human actions and analyses their activities from video surveillance. There are two main components 

that were needed to create a HARS. The first component that was created, was a video feature 

extractor to acquire a video as an input, convert it to images, extract skeleton data, preprocess the 

raw skeleton data and, lastly, generate features for training and classification. The second component 

that needed to be created, was a Deep Neural Network (DNN). The DNN is trained using the generated 

features from the video feature extractor. Figure 2.1 shows the logic design of the HARS and its two 

main components. 

 

Figure 2.1: Logic diagram of the HARS showing the two major components 

2.2 Study design 

In order to make the design of the HARS more comprehensible, this research project was broken 

down into five phases. The first phase comprises of an extensive review of the literature. Literature 

was obtained on various topics, such as intelligent surveillance, human action recognition, pose 

estimation, feature extraction and deep neural networks. In the second phase, training data was 
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collected and reviewed. This phase determines how the neural network performs in terms of floor and 

ceiling potential. In the third phase features are extracted from the videos collected from various 

dataset and prepared for training. In Phase 4, the neural network is developed, trained, and tested, 

using extracted features that were generated in phase three. In the final phase, Phase 5, the 

completed HARS was tested, using new real-world data that was captured. This was performed to 

validate the results from the training and testing. The flow diagram of the overall study design is shown 

in Figure 2.2. 
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Figure 2.2:  Flow Diagram of Study Design 

Phases 3, 4 and 5 are divided into six sub-phases. Phase 3 has three sub-phases that prepare input 

video data for training and testing in Phase 4. Phase 4 is divided into two sub-phases where data 

extracted in Phase 3, is split, and used for training and for testing the performance of the deep neural 
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network. In Phase 5 the HARS is evaluated with new data to validate its performance in Phase 4. 

Table 2.1 provides a summary of the sub-phases in Phases 3, 4 and 5. 

Table 2.1: Summary of different sub-phases in Phases 3 – 5 

Phase 3: Video Feature Extraction 

Sub-Phase Description 

Converting Video to 
Images 

The aim of this sub-phase is to take a video as an input and convert it 

to image frames, as videos are not usable in their raw format. In order 

to achieve this, the videos, typically .avi video format, are looped 

through frame by frame, and each frame is stored as a JPEG image.  

Extracting Skeleton 
Data using Pose 

Estimation 

The aim of this sub-phase is to detect and extract skeleton data from 

the image frames. This was achieved by using pose estimation. The 

pose estimation algorithm used, is called OpenPose. OpenPose uses 

a Convolutional Neural Network to detect human joints in images of 

people. 

Pre-processing Raw 
Skeleton Data 

The aim of this sub-phase is to preprocess the raw skeleton data 

generated by OpenPose in preparation for feature generation. To meet 

the aim, the skeleton data is scaled, the head joints are removed, 

invalid frames are discarded, and missing joints are generated and 

filled.      

Feature Generation 

The aim of this sub-phase is to reduce the dimensions and extract 

prominent features in the data. Preprocessed skeleton features are 

further processed, creating new features from one or multiple existing 

features. This is achieved by taking the feature vectors and applying 

the principal component analysis (PCA) technique.  

Phase 4: Development of DNN for Action Classification 

Sub-Phase Description 

Training 

The aim of this sub-phase is to train the deep neural network. To 

achieve 70% of the dataset used for training. The trained neural 

network is used to classify different human actions in videos. 
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Testing 

The aim of this sub-phase is to test the performance of the trained 

neural network. To achieve this 30% of the dataset is used to test the 

performance. 

Phase 5: Evaluation of the HARS 

Sub-Phase Description 

Validation 

The aim of this sub-phase is to test and verify the performance of the 

HARS. In order to achieve this, a separate set of data that was not 

used in the training and testing phase, was utilised.    

 

2.3 Conclusion 

The review of relevant literature and the collection and review of training data (Phases 1 and 2) is 

presented in Chapter 3. The methods and results of the video feature extraction (Phase 3) are 

discussed in Chapter 4 and the methods and results of the development of the deep neural network 

(Phase 4) are discussed in Chapter 5. The evaluation of the HARS (Phase 5) are presented and 

discussed in Chapter 6. Chapter 7 is an overall discussion of all the results presented. 
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Chapter 3 : Literature Review 
________________________________________________________________________________ 

3.1 Introduction 

This chapter consists of a literature study done to acquire preliminary knowledge in the field of 

surveillance systems, human action recognition, neural networks and pose estimation. The study 

focuses on describing the most popular and relevant research techniques related to this research 

project.  

3.2 Typical video surveillance systems 

Video surveillance systems have played, and continue to play, a vital role in security within our society. 

A typical surveillance system will be examined with regard to what it consists of and how it operates. 

Closed-circuit television (CCTV)-based video surveillance systems are very popular across a wide 

range of enterprises, e.g. local shopping centres, malls, banks, businesses, parking lots, academic 

institutions, homes, etc. A CCTV system simply consists of a set of cameras placed in strategic places 

that capture and transmit images to a video management system. The video management system 

allows, inter alia, the viewing and recording of the images. CCTV systems usually include CCTV 

cameras, video recorders, and local and remote monitors, as seen in Figure 3.1. They daily record 

and centrally store hours of footage. These systems are usually observed by human security officers. 

An analogue CCTV system is set up to send its signal to a digital video recorder (DVR) through a 

Bayonet Neill–Concelman (BNC) cable. The footage recorded by the DVR is stored in hard disk drives. 

The DVR also has a video output that connects to a screen which allows for central monitoring, as 

seen in Figure 3.1. An advanced feature of the DVR is remote video live streaming and playback. 
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Figure 3.1 Typical video surveillance system 

Figure 3.1 shows all the components needed in a typical video surveillance system and how they 

interconnect. Analogue cameras are rare to find in our day and age, though they still exist. Most 

systems use internet protocol (IP) security cameras. An IP security camera sends its signal through 

the network. It uses a Cat 5 or Cat 6 cable to send a signal to a network video recorder (NVR). The 

NVR has a similar feature with the DVR. IP CCTV Systems have more advanced features compared 

to analogue CCTV systems. They are able to support higher resolution, produce more advanced video 

codec, and more secured video and audio transmission. The security systems mentioned above only 

record and store footage. Some systems use motion detection algorithms to trigger recording to save 

storage. When there is any incidence or when footage is required for any reason, security personnel 

must scroll through hours and days of footage. This a long and tedious process, as currently there are 

no products available to assist in searching through footage visually[10]. 
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Smart doorbells allow homeowners to receive notifications when a visitor arrives at the door, see who 

the visitor is, and contact with them all from the convenience of their own home. They have a significant 

impact on people's quality of life and contribute to the creation of smart homes[11]. These systems 

are use technology like motion detection to trigger recording of objects moving at your front door. They 

also can alert the owner on their smartphone when someone is at the door. 

 

Figure 3.2 Ring Doorbell[12] 

Figure 3.2 shows an example of the doorbell device which was developed by Ring company.  There 

are two types of doorbells: wired doorbells and wireless doorbells, which are differentiated by the need 

for wall wiring. The former requires a wire to link both the front and back door buttons to a transformer, 

whilst the later uses telephone technology to transmit the signal wirelessly. Wireless doorbell systems, 

which use radio technology to signal doorbells and answer doors remotely, are common in modern 

structures[11]. 

3.3 Intelligent video surveillance system 

The aim of an intelligent video surveillance system is to detect an interesting event efficiently from a 

large number of videos in order to avoid dangerous situations. Intelligent surveillance systems require 

much fewer human operators because of the automated services they provide, such as intrusion 

detection, robbery prevention, people counting, and loitering detection [13]. In order to achieve such 
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a system, it requires two video processing levels, as illustrated in Figure 3.3. On the first level there 

are two steps, low-level features and the primitives based on low-level features. The low-level features 

aim to detect the regions of interest in the scene and extract them. The primitives based on low-level 

features are then generated to describe the region of interest. On the second level the semantic 

information about the human action is detected, and it is determined whether the behaviour is normal 

or not[14]. 

 

Figure 3.3: Overview of an intelligent video surveillance system[14] 

Figure 3.3 shows an overview of an intelligent video surveillance system proposed by Mabrouk and 

Zagrouba[14], and all the components it comprises. Many have shown concern in using an intelligent 

surveillance system, because it will replace human security officers. On the contrary, such a 

system will not replace human security officers but rather equip them with knowledge. For example, 

instead of a security agent constantly monitoring screens with live video surveillance feeds –  a job in 

© Central University of Technology, Free State



C h a p t e r  3 :  L i t e r a t u r e  R e v i e w   P a g e  | 27 

 

which humans do not display high performance due to the lack of significant events for most of the 

time – an automated system might filter the videos and indicate that only certain video segments are 

more likely to contain relevant activities, such as suspicious behaviour[15]. 

3.4 Human action recognition 

Human action recognition (HAR) aims to automatically identify and recognise the state of an action 

from unknown video sequences. There is a growing demand for automatic interpretation of human 

behaviour, and HAR has caught the attention in both academia and industry. Analysing and 

understanding a person's behaviour is fundamentally required for a wide range of applications, such 

as video indexing, biometrics, surveillance and security[16]. Most often the motions of the different 

human body parts are part of functional movements without showing intentions and thoughts. Human 

activities can be grouped in four main categories, depending on body parts engaged in the action and 

its complexity. The groups are as follows.[17]: 

• Gesture. It is an elementary movement of a person’s body part. It is visible bodily action 

representing a specific message. It is a type of non-verbal communication that utilises a 

movement made with the hands, face or other parts of the body, such as okay gestures and 

thumbs up.  

• Action. It is a set of physical movements conducted by only one person. Actions can be 

composed of multiple gestures organised temporally, like walking and running. 

• Interactions. It is a set of actions that are performed by at most two actors. At least one 

subject is a person and the other one can be a human or an object (hand-shaking, chatting, 

etc). 

• Group activities. It is a mixture of gestures, actions, or interactions. The number of 

performers is at least two plus one or more interactive objects (playing volleyball, obstacle 

racing, etc). 
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3.4.1 Challenges in human action recognition 

In this section some of the challenges in HAR are reviewed. The challenges can dramatically 

downgrade the system performance. In an HAR system extracted features need to generalise several 

variations that may include human appearance, points of view and backgrounds, to overcome the 

challenges encountered in action recognition. 

• Anthropometric variation. The study of anthropometrics concerns the physical sizes and 

shapes of humans. A person’s age may in many cases influence the body’s flexibility or the 

position in an observed scene, humans exhibit size variabilities. Human movements are quite 

complex and present infinite variability; the slightest wink and movement can give meaning 

which is dependent on the context[18]. When designing an HAR system, one needs to factor 

in the variation in anthropometry.  

• Clutter and camera motion. Clutter is the main cause background noise. Most existing action 

features, such as histograms of oriented gradient [19] and interest points [20], also encode 

background noise which results in reduced action recognition performance. Camera 

movement is also another factor that should be considered in real-world applications of HAR. 

If there is significant camera motion, action features will not be accurately extracted. In order 

to solve this challenge and better extract action features, camera motion should be modelled 

and compensated [21]. 

• Intra-class variability and interclass similarity. People behave differently for the same 

actions. For a given semantic meaningful action, for example, ‘running’, a person can run fast, 

slow or even jump and run. One action category may contain multiple different styles of human 

movements. In addition, videos of the same action can be captured from various points. They 

can be taken in front of the human subject, on the side of the subject, or even on top of the 

subject, showing appearance variations in different views. People may also show different 
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poses in executing the same action. The factors mentioned, result in large intra-class 

appearance and pose variations, which may cause confusion to many existing action 

recognition algorithms[9]. 

• Low-quality videos. Most videos are acquired in public spaces through poor quality IP 

cameras and CCTV cameras. These cameras display many disadvantages such as slow 

frame rates, motion blurring, low resolution, and compression artefacts. This results in poor 

performing HAR systems.  

• Occlusion. Occlusion is defined as when two or more objects come too close and seemingly 

merge or combine with each other. Image processing systems with object tracking often 

wrongly track the occluded objects[22]. In some cases, after occlusion the system will wrongly 

identify the initially tracked object as a new object. There are three main types of occlusion, 

self-occlusion, crowd issue and occlusion created by an object. Self-occlusion occurs when a 

body part has been obscured by another body part. For example, the action of ‘talking’ cannot 

be recognised when a person puts his hand in front of his mouth. Crowd issue occurs when 

two or more people are hiding each other. Occlusion created by an object occurs when from 

one point of view some body parts are occluded with an object. In this case, recognising the 

action ‘texting’, from the front view, is a difficult task when the subject is behind some 

object[16]. 

• Illumination variation and shadow. Lighting plays a vital role in HAR and can result in a 

considerable difference in quality of the human action representation. Different kinds of 

lighting conditions on the same person may yield different results which may cause the human 

action to appear differently. This dramatically affects HAR system performance. It is more 

evident when the light source is blocked, and a dark area appears. This area is called a 

shadow. The shadow shape is a two-dimensional projection of the person who is blocking the 
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light. The human action is partially duplicated at different scales according to the position of 

the light source relative to the person[16]. 

• Insufficient data. In order to design efficient techniques, datasets should contain good scale 

ranges, occlusion, intra and inter class variations, etc. However, most of human action 

datasets contain a limited number of labelled videos. Datasets recorded in an unconstrained 

environment were introduced. These datasets consist of labelled videos collected from web 

videos or movies[19]. The main issue with HAR datasets is the limited number of labelled 

training and test sequences. The task of annotating a large dataset is challenging and time 

consuming. Many solutions to handle the lack of appropriate datasets have been proposed. 

Researchers have made use of web video search results[23], video subtitles and movie script 

matching[24]. 

• Poor weather conditions. Poor weather conditions pose many challenges to mechanisms 

for identifying HAR. For example, darkness, rain, blowing snow and fog affect the visibility and 

pose a challenge to identification of actions. Many parameters are changed in poor weather 

conditions, colours are extremely affected and distances are difficult to evaluated[16]. 

3.4.2 Global representation 

Global representations explicitly extract global descriptors from original videos or images and encode 

them as a whole. The human subject is located and isolated in this representation using methods of 

background subtraction that form the silhouettes or shapes which become the region of interest (ROI). 

In other global methods the ROI is encoded as descriptors from which they derive corners, edges or 

optical flow[25]. Many methods of global representation, based on silhouettes, stack the silhouette 

image along the time axis to shape the volumes of space-time in three dimensions. Then only the 

volumes are used for representation. In earlier works, solutions to global representation were mainly 

suggested and eventually discarded due to the sensitivity to noise, occlusions, and change of 
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viewpoint[25]. This study looks at three approaches to global representation, namely silhouettes, 

optical flow and 3D space-time volumes. 

• Silhouettes and shapes. In order to recognise the human action in videos, an instinctive 

approach is to isolate the human from the background. This approach is called background 

subtraction or foreground extraction. The extracted foreground in the HAR is called silhouette, 

which is the ROI and represented as a whole object in the global representation approach. 

One essential step is to calculate the background model before having silhouettes extracted. 

Wren, et al. [26] first suggested modelling Gaussian distribution of the background scene. 

Koller, et al. [27] pointed out that some foreground values were unduly updated and thus 

introduced the selective update strategy for the background. Stauffer and Grimson [28] 

suggested modelling the values of a single background pixel as a mixture of Gaussians to 

replace the technique of using just one Gaussian value in the approach before. The 

Gauussian mixture model (GMM) was commonly used, but the implementation of an 

expectation-maximization algorithm (EM) increased the cost of computation. In order to 

reduce the cost, the K-means clustering algorithm was used to replace the EM algorithm with 

an insignificant loss of precision. This was worth it, seeing that current RGBD cameras make 

the profile easy to obtain by using the depth data given by the depth sensors. 

• Optical flow. Optical flow is an efficient way of extracting silhouettes and defining them for a 

dynamic background. The optical flow may be obtained with the Lucas Kanade-Tomasi (LKT) 

feature tracker[29]. Lu, et al.[30] used a tracker approach based on the LKT feature to track 

joints in key frames and actual frames. Each activity is represented as a sequence of 

postures, and each key posture is recorded within a key frame. Specific postures can be 

recognised in actual frames by finding correspondence between the real frame and the key 

frame. By mapping body locations, the recognised posture from the actual frame is compared 
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to the key posture frame, and the corresponding posture sequences are confirmed as the 

activity. 

• 3D space-time volumes (STVs). A video of an action can be seen as a collection of images 

containing sequences of action. Concatenating all frames along the time axis, forms the three-

dimensional STV, which includes two spatial dimensions X and Y, and one temporal 

dimension, T. STV-based representations aim to capture the additional 

complex information that the methods of spatial representation cannot obtain because of the 

lack of a time dimension. Building STVs for various activities is a method of global 

representation. But often the STV blends local features to create the final feature sets [25]. 

The space-time form was first introduced by Blank, et al. to represent human actions. Space-

time shape is obtained by stacking only the regions of the silhouette within the images. 

However, conventional 3D structure analysis cannot be extended to space-time activity 

shapes due to the non-rigidity of the constructed 3D space-time shapes, and the inherent 

disparity between space and time dimensions. Therefore, the Poisson equation approach is 

used to derive local space-time saliency and orientation features [31]. 

3.4.3 Local representation 

Local representations process activity videos as a collection of local descriptors rather than extract 

the silhouette or STV and encoding them. Instead, they focus on specific local patches determined by 

point of interest detectors or dense sampling[32]. Many of the current local features have been proven 

to be resilient against noise and partial occlusions, compared to global features. Local features 

are usually combined with the bag of visual words (BoVW) model to generate a general pipeline of 

existing state-of-the-art local representation approaches[33]. BoVW-based local representation 

mainly consists of four steps: extraction of features, generation of codebooks, encoding of features, 

and pooling and normalisation. The conventional BoVW pipeline is as follows [34]: interest points and 
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local patches are first obtained by detectors or densely sampled. Local features are then extracted 

from certain points of interest or patches. A visual dictionary (i.e. a codebook) is then studied by K-

means or the Gaussian mixture model (GMM) in the training set. The original high-dimensional 

descriptors are clustered, and the middle of each cluster is called a visual codeword. Following this, 

local features will be encoded and pooled. Lastly, the pooled vectors are normalised as a video 

representation. Two local feature extraction methods, namely Spatiotemporal Interest Point Detector 

and Local Descriptors, will be reviewed.  

• Spatio-temporal interest point detector. The basic principle of local representation is to 

define interest points that provide high-quality information in pictures or videos. Harris and 

Stephens [35] first suggested a powerful two-dimensional interest point detector, the well-

known Harris corner detector which is commonly used in the detection of objects. Laptev and 

Lindeberg [36] then suggested 3D space-time interest points (STIPs) by expanding on the 

Harris detector. Spatial points of interest in images are extended to spatial-temporal local 

structures in videos where image values have significant local variations in both space and 

time. Spatio-temporal extents of the observed points are calculated by maximising the 

normalisation of the Laplacian space-temporal operator over spatial and temporal scales. 

Although these methods have achieved remarkable results in the HAR, a common deficiency 

is the lack of stable interest points. In addition, it is difficult to regulate the trade-off between 

the stability of those points and the number of points found. In an effort to detect interest points 

in an efficient manner, Willems, et al. [37] presented a dense, scale-invariant, yet efficient, 

spatio-temporal interest point detector with minimal effect on computing time.  

• Local descriptors. Local descriptors are designed to identify areas that have been sampled 

either densely or at points of interest. Effective descriptors will be considered as discriminative 

for intended human action incidents in videos, and robust to occlusion, vibration and 

background noise[25]. Dalal and Triggs [38] proposed a histogram of orientated gradients 
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(HOG) and proved to be successful in human detection with a linear SVM classifier. Good 

performance is attributed to the fact that the HOG density distribution of local intensity 

gradients or edge directions can well describe the local object appearance and shape of the 

target objects. Lu, et al. [39] proposed the PCA-HOG descriptor, which projects the original 

HOG as a linear subspace through principal component analysis (PCA). The descriptor was 

used to represent athletes to solve the problem of tracking and action recognition at the same 

time. Using HOG and histogram of flow (HOF) descriptors. Laptev, et al. [40] completes a 

similar but more difficult activity identification task, as these actions are derived from movies. 

Klaser, et al. [32] applied the HOG descriptor to video sequences and suggested the HOG3D. 

Integral images are extended to integrated videos for efficient 3D gradient computing. 

Polyhedrons are used for orientation quantisation as an analogue of 2D space HOG polygons. 

Optimised parameters for recognition of actions were also explored in their research. 

3.4.4 Depth-based representation 

Previous HAR research focuses mainly on video sequences captured by traditional RGB cameras. 

Nevertheless, due to their high cost and complexity of operation, depth cameras have been limited[41]. 

Over the years the development of low-cost depth sensors, such as Microsoft Kinect, is an affordable 

and easy way to access depth maps is provided. In addition, Kinect SDK has made it possible 

to directly obtain skeletal joint positions in real-time[42]. 
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(A) (B)
 

Figure 3.4: RGBD Kinect camera with (A) colour images and depth maps, and (B) skeletal 

information[43] 

In Figure 3.4 is an RGB (red, green and blue) image and a depth image from a Kinect camera. Based 

on the depth data, it can locate skeleton data on the right. The accessible depth maps and skeletal 

information contributed actively to the research of computer vision[44]. These two features, and their 

derivative features, have sparked a wide interest in solving HAR issues using depth-based approaches 

replacing traditional RGB-based methods, or serving as supplements to improve RGB-based 

methods. Recent developments of action representations using depth maps or skeletons will be 

reviewed[45]. 

• Depth Maps-based representation. Depth maps contain additional distance co-ordinates 

relative to colour images which only describe the colour information. Zhao, et al. [45] proposed 

a system for the combing of RGB and depth-map features for HAR, and introduced an optimal 

scheme. Spatio-temporal interest points are created solely from RGB channels, and HOG and 

HOF are determined to form RGB-based descriptors. For the depth channel, a Depth Map-

based Descriptor called the Local Depth Pattern (LDP) was proposed, which simply calculates 

the difference in the average depth values between a pair of cells in the surrounding STIP 

area. Yang, et al. [46] proposed the use of HOG on depth maps. Depth maps are projected 

on three orthogonal planes, and depth motion maps (DMMs) are generated through the 
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accumulation of global activities throughout entire video sequences. HOG is then computed 

from a DMM as an action video representation. Jalal, et al. [47] considered multi-feature depth 

images, extracting three-dimensional silhouettes, as well as spatial-temporal joint values for 

their streamlined and appropriate information for the HAR feature. 

• Skeleton-based representations. Skeletons and joint positions are features typically 

generated based on depth maps. The Kinect system is common in this representation 

because of its ability to obtain skeleton and joints. The Kinect SDK software creates 20 joints, 

while the later versions generate 25 joints, adding 5 joints across the hands and back. There 

are other methods used to extract skeleton features without the use of a depth camera. This 

approach uses RGB images (see Section 3.6). The Kinect at times produces inaccurate 

skeletons, and joints may be completely wrong. Current approaches often solve this, by 

combining other features that are robust for occlusion, or alleviating the problem of occlusion 

by dividing the entire skeleton into different parts of the body and handling them 

independently, since not all parts of the body are occluded[25]. Not all skeleton joints are 

involved in a particular action, and only a few active joints are relevant and useful for a 

particular activity[48]. Concentrating on these active joints and abandoning the other inactive 

parts, will generate more robust features and will be beneficial in dealing with intraclass 

variations[49]. Finally, as an extracted feature from the depth maps themselves, skeleton-

based representation is often merged with the original depth information to provide more 

insightful and robust representation[49], [50]. 

3.5 Neural networks 

A neural network is a series of algorithms that aim to recognise underlying relationships in a set of 

data through a process that mimics the way the human brain operates. In this sense, neural networks 

refer to systems of neurons, albeit organic or artificial. Neural networks can adapt to changing input; 
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the network generates the best possible result without needing to redesign the output criteria. Neural 

networks enable us cluster and classify data. They can group unlabeled data according to similarities 

among the example inputs, and they classify data when they have a labeled dataset to train on[51].  

 

Figure 3.5: Typical structure of a neural network 

Figure 3.5 shows the neural network input layers on the left, hidden layers in the middle and output 

layers on the right. Neural networks also have the ability to extract features that are fed to other 

algorithms for clustering and classification. Deep neural networks can therefore be thought of as 

components of larger machine-learning applications involving algorithms for reinforcement learning, 

classification and regression[51]. 

3.5.1 Classification 

Classification entails predicting to which class an item belongs. Most classifiers are binary, resulting 

in a conclusion yes/no, while others are multi-class and can classify an item into one of many 

categories. All classification tasks rely on labeled data sets; that is, for a neural network to learn the 
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association between labels and data, humans must pass their information to the dataset[52]. This is 

called supervised learning. There are several applications of classification algorithms: 

• classifying text as spam (in e-mails)[53],[54] or fraudulent (in insurance claims), and 

recognising sentiment in text (customer feedback); 

• detecting faces, identifying people in images, recognising facial expressions (angry, joyful, 

sad)[55], [56]; 

• identifying objects in images (stop signs[57], pedestrians[58], [59], lane markers[60], 

animals[61]); 

• recognising gestures in videos[62]; and 

• detecting voices, identifying speakers, transcribing speech to text and recognising sentiment 

in voices[63]. 

Classification algorithms can be utilised on data with labels that humans can generate. Any outcomes 

that one cares about, and which correlate with the data, can be used to train a neural network. 

3.5.2 Clustering  

Clustering is the organisation of unlabelled data into similarity groups, called clusters. A cluster is a 

collection of data items which are similar to one another and dissimilar to data items in other clusters. 

Clustering algorithms do not require labels to detect similarities. Learning without labels is called 

unsupervised learning. Unlabeled data represents most data in the world. One of the laws of machine 

learning is: the more data an algorithm can train on, the more accurate it will be. Therefore, 

unsupervised learning has the potential to produce highly accurate models[64]. There are many 

applications of clustering algorithms namely: 

• Search. Comparing documents, images, or sounds to surface similar items[65]. 
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• Anomaly detection. The opposite of detecting similarities, is detecting anomalies or unusual 

behaviour. In many cases unusual behaviour correlates highly with things you want to detect 

and prevent, such as fraud[66]. 

3.5.3 Regression 

A set of statistical techniques for evaluating the associations between an outcome variable and one 

or more features is known as regression analysis. The most popular type of regression analysis is 

linear regression, which involves determining which line or more complex linear combination best fits 

the data according to a set of mathematical criteria. Regression models can also create correlations 

between present events and future events by the same token that it is exposed to sufficient appropriate 

data. It can run regression between past and future. In a way the future occurrence will be like the 

label[67]. Machine learning does not inherently involve time, or the fact that something is still to 

happen. Given a time series ,deep learning can read a string of numbers and predict the number most 

likely to occur next[68]. There are many applications of regression algorithms, namely: 

• predicting hardware breakdowns (data centres, manufacturing, transport); 

• predicting health breakdowns (strokes, heart attacks based on vital stats and data from 

wearables); 

• predicting customer behaviour (the likelihood that a customer will leave, based on web activity 

and metadata); and 

• predicting employee turnover (the likelihood that an employee will leave, based on web activity 

and metadata). 

3.5.4 Elements of a neural network 

A deep neural network or deep learning is used for networks that are stacked, i.e. networks composed 

of multiple layers. These layers consist of nodes, a node being a place where computation takes place. 
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This can be compared to a neuron in the human brain, which fires when it encounters enough stimuli. 

A node combines data input with a set of coefficients or weights that either intensify or dampen the 

input, thereby assigning value to inputs with regard to the function the algorithm is attempting to 

learn[51].  

1

X2

Xm

X1

w0

w1

wm

w1

  

...

NET INPUT 

FUNCTION

ACTIVATION 

FUNCTION

OUTPUT

 

Figure 3.6: Example of a network node 

Figure 3.6 shows a network node which consists of the input on the left, the weights, the net function, 

activation function and, lastly, the output. Such input-weight products are added up and then the total 

is passed through the so-called activation function of a node, as seen in Figure 3.6, to decide whether 

and to what degree the signal will move further through the network to influence, e.g. an act of 

classification, the ultimate result. If the signals pass, the neuron is activated. The net input function 

calculates the layer’s net input by combining its weighted inputs and biases. The activation function 
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[51]. In a neural network, the activation function describes how the weighted sum of the input is turned 

into an output from a node or nodes in a layer. 

3.5.5 Convolutional neural networks 

A convolutional neural network (CNN) in the field of deep learning is an algorithm which takes in an 

input image, assigns importance (learnable weights and biases) to various aspects/objects in the 

image and is able to differentiate one from the other. The preprocessing required in a CNN is much 

lower than other classification algorithms. A CNN can learn these filters/characteristics with enough 

training, while in primitive methods filters are hand-engineered. 

 

Figure 3.7: Logic Diagram of a CNN[69] 

In Figure 3.7 is the logic diagram of a CNN which illustrates the input, convolution layers, pooling 

layers and the fully connected layer. CNNs can successfully capture the spatial and temporal features 

in an image through the application of appropriate filters. The architecture performs a better fitting to 

the image dataset, due to the reduction in the number of parameters involved and reusability of 

weights. This means the network can be trained to understand the sophistication of the image better. 

There are many elements that make up a CNN. All these elements play a vital role and affect the 

performance of the network. The elements are as follows: 
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• Input Image. The input image of a CNN is usually an RGB (Red, Green and Blue) image. An 

RGB image is a colour scheme that has been separated into three colour planes, as seen in 

Figure 3.8. The input image is a 4x4x3 RGB Image. There are other colour spaces which can 

be used for an image, e.g. Grayscale, RGB, HSV, CMYK, etc. Processing high-resolution 

images is computationally intensive.  

 

Figure 3.8: RGB Image[70] 

Figure 3.8 is an example of an RGB image with its three colour channels and pixel values of each 

plane. It also shows the resolution height and width. 

• Convolution layer. The convolutional layer is one of the main building blocks of a CNN. The 

parameters of this layer include a set of learnable kernels (or filters), which have a small 

receptive field that extends through the full depth of the input volume. Throughout the forward 

pass, each filter is convolved across the width and height of the input volume, computing the 

dot product between the values of the filter and the input, and producing a 2-dimensional 

feature map of that filter. Therefore, the neural network studies filters that activate when they 

detect some a specific type of feature at some spatial position in the input. Figure 3.9 shows 

a logical diagram of the convolution layer[70], [71]. 
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Input Image

Filter

Feature Map

 

Figure 3.9: Logical diagram of convolution layer 

Figure 3.9 shows the input image and filter that will be applied on the left-hand side and on the 

right-hand side the result of the applied filter on the image.  

• Pooling Layer. The responsibility of the pooling layer is to reduce the spatial size of the 

feature map. This is necessary in order to reduce the computational power required to process 

the data through dimensionality reduction. It is also useful for extracting features which are 

rotational and positional invariant the result of which will maintain the process of effectively 

training the model. There are two types of pooling, namely max pooling and average pooling, 

as seen in Figure 3.10. Max pooling returns the maximum value from the portion of the image 

covered by the filter. Average pooling returns the average of all the values from the portion of 

the image covered by the filter. Max pooling can also be utilised as a noise suppressant. It 

can discard the noisy activations and remove noise along with dimensionality reduction. 

Average pooling performs dimensionality reduction as a noise suppressing mechanism [70] 

,[71].  
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Figure 3.10: Max pooling and average pooling[52] 

Figure 3.10 shows the difference between max pooling and average pooling, and the difference 

each method yields.  

• Fully connected layer. The aim of a fully connected layer is to use the results of the 

convolution and pooling process to classify the image into a label. The convolution and pooling 

outputs are flattened into one single value vector, representing a probability that a certain 

feature belongs to a label. If, for example, the picture is of a dog, features like whiskers or fur 

should have high probabilities for the ‘dog’ label. In order to select the most accurate weights, 

the fully connected part of the CNN goes through its own backpropagation process. All the 

neuron are given weights that give priority to the label that is most fitting. Finally, , the neurons 

‘vote’ on each of the labels; ‘’the winner of that vote is the decision of the network[72]. 

3.6 Human pose estimation 

Human pose estimation is an important problem within the computer vision community. It is a central 

step towards understanding people in images and videos. Human pose estimation is defined as the 

localisation of human joints (e.g. wrists, elbows, knees, ankles, etc.) in images and videos. Despite 

the fact that pose estimation offers innovative solutions to action recognition, its performance may 
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vary because of strong articulations, small and barely visible joints, occlusions, clothing and change 

in lighting. Most recent pose estimation systems have universally adopted CNNs as their main building 

block, largely replacing hand-crafted features and graphic models; this strategy has yielded drastic 

improvements on standard benchmarks. 

 

Figure 3.11: Detected skeleton using pose estimation[73] 

Figure 3.11 is an example of human skeletons detected by pose estimation. In the next section work 

done in pose estimation and how the field has evolved through the years will be reviewed.  

3.6.1 DeepPose 

Toshev and Szegedy [74] proposed the first major paper that applied deep learning algorithms to 

human pose estimation. In their approach a convolutional neural network (CNN)-based regression 

algorithm was applied. They further cascaded such regressors to refine the pose estimates to ensure 

more accurate results. The advantage of this holistic approach is it can estimate joints that are hidden 

in certain situations. Their model was constructed with an AlexNet backend, containing 7 layers, with 

an additional final layer that outputs 2k joint co-ordinates. 

© Central University of Technology, Free State



C h a p t e r  3 :  L i t e r a t u r e  R e v i e w   P a g e  | 46 

 

 

Figure 3.12: Schematic view of the DNN-based pose regression[74] 

Figure 3.12 shows the logical layout of the DDN-based regressor. This model consists of an 

AlexNet[75] backend with 7 layers and an extra final layer that outputs 2k joint co-ordinates – (𝑥𝑖, 𝑦𝑖) 

* 2 for 𝑖 𝜖 {1,2 . . . 𝑘} where 𝑘 is the number joints. The model is trained using L2 loss for regression. 

 

Figure 3.13: Refining regressor is applied on a sub image to refine a prediction from the 

previous stage[74] 

Figure 3.13 illustrates the refining regressor that is applied on a sub-image to refine a prediction from 

the previous stage. An interesting idea implemented by this model, is refining the predictions by using 
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cascaded regressors. The initial coarse pose is refined, resulting in a better approximation. Images 

are cropped around the predicted joint and fed to the next stage, thus allowing the eventual pose 

regressors to see higher resolution images, thereby learning features for finer scales that eventually 

contribute to greater precision. 

3.6.2 Efficient object localisation using convolutional networks 

Tompson, et al. [76] introduce a novel architecture which includes an efficient ‘position refinement’ 

model that is trained to estimate the joint offset location within a small region of the image. It generates 

heat-maps by running an image through multiple resolution banks parallel to simultaneously capturing 

features at a variety of scales. The output is a discrete heat-map instead of continuous regression. A 

heat-map predicts the probability of the joint occurring at each pixel. This approach uses a mutli-

resolution convolutional neural network (CNN) architecture or coarse heatmap model. The model 

implements a sliding window detector to produce a coarse heat-map output as seen in Figure 3.14.  

 

Figure 3.14: Overview of cascaded architecture[76] 

Figure 3.14 shows an overview of the cascaded architecture. The model is trained by minimising the 

mean squared-error (MSE) distance of the predicted heat-map to a target heat-map. The target is a 

two-dimensional Gaussian of constant variance of σ ≈ 1,5 pixels cantered at the ground-

truth (x,y) joint location. 
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3.6.3 Convolutional pose machines 

Wei, et al. [77] utilise pose machines. Pose machines provide a sequential prediction framework for 

learning rich implicit spatial models. In their paper they demonstrate a systematic design for how 

convolutional networks can be incorporated into the pose machine framework for learning image 

features and image-dependent spatial models for the task of pose estimation. 

 
Figure 3.15 depicts a high-level view of Stage 1 (a) and 2 (b). Stage 1 is the image feature computation 

module. Stage 2 is the prediction module. g1 and g2 predict heat-maps. This is referred to as belief 

maps in the paper.   

 

Figure 3.15: Architecture and receptive fields of Convolutional Pose Machines[77] 

Figure 3.15 shows the architecture and the receptive fields of a convolutional pose machine and how 

the stages interact with one another. A convolution pose machine can consist of more than two stages; 

the number of stages is a hyperparameter. Stage 1 is fixed and stages after the second stage are just 

repetitions of Stage 2. In Stage 2 heat-maps and image evidence are taken as input. This input heat-

maps add spatial context for the next stage. On a high level, the convolution pose machine refines the 

heatmaps through subsequent stages. In this paper an intermediate supervision after each stage is 
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utilised to avoid the problem of vanishing gradients, which is a common problem for deep multi-stage 

networks[77]. 

3.6.4 Human pose estimation with iterative error feedback 

Carreira, et al. [78] propose a self-correcting model that progressively changes an initial solution by 

feeding back error predictions instead of directly predicting the outputs. Feedforward architectures can 

learn rich representations of the input space, but do not explicitly model dependencies in the output 

spaces which are structured for tasks such as articulated human pose estimation or object 

segmentation. They propose a framework that expands the expressive power of hierarchical feature 

extractors to encompass both input and output spaces by introducing top-down feedback.  

 

Figure 3.16: Implementation of iterative error feedback[78] 

Figure 3.16 shows the model and implementation of the iterative error feedback. The model takes an 

input image and the previous output. Therefore, the input 𝑥𝑡  =  𝐼 ⊕  𝑔(𝑦𝑡 − 1) where 𝐼 is the 

image and (𝑦𝑡 − 1) is the previous output. With each iteration the output is more refined. The function 

𝑓(𝑥𝑡) outputs the correction 𝜖𝑡 which is then added to the current output 𝑦𝑡 to create (𝑦𝑡 + 1). The 

function 𝑔(𝑦𝑡 + 1) then converts each key point in 𝑦𝑡 + 1 into a heat-map and it is stacked to image 

𝐼 to generate the input for the next iteration. This process is then repeated 𝑇 times until (𝑦𝑡 + 1) is 

refined and is brought closer to ground truth by addition of 𝜖𝑡. 
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3.6.5 Stacked hourglass networks for human pose estimation 

Newell, et al. [79] introduces a novel and intuitive architecture that performs better than all previously 

mentioned methods. The method is known as a stacked hourglass network, since it consists of steps 

of pooling and up-sampling layers which resemble an hourglass. These are then stacked together. 

This design of the hourglass was encouraged by the need to capture information at every scale. While 

local evidence is essential for identifying features like faces and hands, a final pose estimate requires 

global context. The person’s orientation, the arrangement of their limbs, and the relationships of 

adjacent joints are among the many cues that are best recognised at different scales in the image. 

 

Figure 3.17: Schematic view of the hourglass model[79] 

Figure 3.17 is a schematic depiction of the hourglass model. This network performs repeated bottom-

up, top-down processing with intermediate supervision. Bottom-up processing is from a high resolution 

to a low resolution, and top-down processing is from low resolutions to high resolutions. Intermediate 

supervision is then applied to the predictions of each hourglass stage; thus the predictions of each 

hourglass in the stack is supervised and not only the final hourglass predictions. The network also 

uses skip connections to preserve spatial information at each resolution and passes it along for up 

sampling further down the hourglass[79]. 

© Central University of Technology, Free State



C h a p t e r  3 :  L i t e r a t u r e  R e v i e w   P a g e  | 51 

 

3.6.6 Simple baselines for human pose estimation and tracking 

Previous approaches work very well but have very complex architectures. Xiao, et al. [80] ask the 

question of how good a simple method could be? This paper provides baseline methods for both pose 

estimation and tracking. The network structure is quite simple and consists of a ResNet[81] and 

deconvolutional layers at the end.  

 

Figure 3.18: Architecture of Simple Baseline[80] 

Figure 3.18 shows the architecture of the simple baseline model with its multiple layers. 

3.6.7 Deep high-resolution representation learning for human pose estimation 

Sun, et al. [82] propose the high-resolution network (HRNet) model. Most of the previous papers went 

from a high to low to high-resolution representation. HRNet maintains a high-resolution representation 

throughout the entire process. A high-resolution subnetwork as the first stage, gradually adds high-to-

low resolution subnetworks one by one to form more stages and connect the mutli-resolution 

subnetworks in parallel. A repeated multi-scale fusion, with each of the high-to-low resolution 

representations repeatedly receiving information from other parallel representations, leads to rich 

high-resolution representations.  
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Figure 3.19: Architecture of the HRNet[82] 

Figure 3.19 presents the architecture of the proposed HRNet. The architecture consists of parallel 

high-to-low resolution subnetworks with repeated information exchange across multi-resolution 

subnetworks. The horizontal and vertical directions correspond with the depth of the network and the 

scale of the feature maps[82]. 

3.6.8 OpenPose 

In this study the authors [83] present a real-time approach to detect the two-dimensional pose of 

multiple people in an image. This method uses a non-parametric representation, which is referred to 

as ‘part affinity fields’, to learn to associate body parts with individuals in the image. This bottom-up 

approach achieves high accuracy and real-time performance, regardless the number of people in the 

image. This method is mostly known as open pose. 
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Figure 3.20: OpenPose Architecture[83] 

In Figure 3.20 illustrates the architecture of OpenPose which consists of a two branches and multiple 

stages. The first branch consists of stages that predict confidence maps (𝑆𝑡). The second branch 

consists of stages that predicts Part Affinity Fields (𝐿𝑡). Following each stage, the predictions made 

from each branch and the image feature are the concatenated for the next stage. Every branch utilizes 

an iterative prediction approach which refines the predictions every iterative with supervision on each 

stage. Feature Maps (𝐹) are the input to the first stage of the of each stage. These sets of feature 

maps are generated by a convolutional network that analyses the image. 

3.7 Datasets 

In this section three action recognition datasets are introduced. The presented datasets are used 

throughout this study and will be used as training data. 

3.7.1 Joint-annotated human motion data base 

The large human motion database (HMDB51)[84] contains more than 5 100 video clips of 51 

different human actions collected from movies, YouTube and other sources on the internet. The  

annotation is that this entire dataset is impractical, but the joint-annotated human motion data 

base (JHMDB)[85] is a subset with fewer categories. The authors exclude categories that 
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contain mainly facial expressions, interactions with others, and actions that can only be 

executed in a specific way, such as a cartwheel.  

 

Figure 3.21: JHMDB dataset: Sample video frames for each of the 21 action categories[84] 

This resulted in a dataset that contains 21 categories, involving only a single person in action. 

Figure 3.21 shows an annotation of the selected actions. There are a total of 31,838 annotated 

frames. 

3.7.2 North-western-UCLA multiview action 3D dataset 

The Multiview 3D event dataset was captured by Jiang Wang and Xiaohan Nie at the University of 

California, Los Angeles (UCLA)[86]. The dataset contains RGB, depth and human skeleton data 

captured simultaneously by three Kinect cameras. This dataset includes ten action categories: picking 

up with one hand, picking up with two hands, dropping trash, walking around, sitting down, standing 

up, donning, doffing, throwing, carrying. Each action is performed by ten actors. The dataset contains 

data taken from a variety of viewpoints. 
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Figure 3.22: Snapshots of frames from a UCLA multiview action 3D dataset  

3.7.3 AAMAZ Human Action Recognition Dataset 

The AAMAZ human action recognition dataset is a video dataset, created by Ismali Hossain[87]. The 

dataset consists of 11 action categories. The categories are: crawling, boxing left, boxing right, hand 

clapping, jogging, jumping, one hand waving left, one hand waving right, running, two-hand waving, 

and walking. The dataset is recorded under very poor lighting conditions. 

 

Figure 3.23: Snapshots of frames from AAMAZ Human Action Recognition Dataset 

3.8 Conclusion 

The purpose of this chapter was to acquire preliminary knowledge in the field of surveillance systems, 

human action recognition, neural networks, and pose estimation, as well as how these technologies 
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can be used to design an intelligent system for prevention of crime. As previously stated, crime in 

South Africa affects all communities and has the potential of long lasting physical and psychological 

damage. Crime prevention is one of the solutions of addressing this issue.  

Surveillance systems, e.g. CCTV systems, are a great solution to gather evidence when a crime is 

committed. The advantage of a CCTV system is that it comes as a full package and they are easy to 

install and set up. The system includes a video recorder and the ability of local and remote monitoring. 

This enables security officers to scroll through footage and gather evidence of an incident. CCTV 

systems are an excellent security feature, but it has limitations. The main limitation is that such a 

system can only record incidents; it does not provide any solution for preventing crime. Intelligent 

surveillance systems aim to address some of the shortcomings of traditional surveillance systems. An 

intelligent surveillance system has abilities such as human action recognition, intrusion detection, 

robbery prevention, people counting, loitering detection, etc. Such features can be used to alert 

security officers to respond early, thus preventing a crime from happening. 

The purpose of human action recognition systems is to analyse a scene and to recognise human 

actions. In order to achieve this, extraction is needed to compute information captured from images or 

video frames. Human action recognition provides innovative technologies than can be used in crime 

prevention, but it also comes with many challenges. Videos, for example, are not always captured in 

perfect conditions; therefore, one must consider many factors when deciding on which feature 

extraction technique to use. The technique needs to be versatile, robust, and able to deal with unstable 

footage and noisy footage.  

Human pose estimation is a technique used to detect human joints in images and videos. This 

technique is commonly used to extract human features in videos, because it can be run in real time 
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and it can detect multiple humans in a frame. This technique can be used to extract information about 

a human in a frame and for later classification. 

Neural networks have the ability to learn underlying relationships in a set of data. This data usually 

comes from a dataset in which features have been extracted. Once the neural network has been 

trained, it is able to classify data it has not seen. This can be implemented in a Human Action 

Recognition System to classify human actions. 
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Chapter 4 : Video Feature Extraction 
________________________________________________________________________________ 

4.1 Introduction 

Phase 3 of this study focused on the development of video feature extraction that was responsible for 

pre-processing the video files. Feature extraction is a process of dimensionality reduction by which an 

initial set of raw data is reduced to more manageable groups for processing. Video datasets are very 

large and therefore require a lot of computing resources to process. Feature extraction effectively 

reduces the amount of data that must be processed, while still accurately and comprehensively 

describing the original data set. Figure 4.1 shows the overall study design, highlighting Phase 3, which 

involved the development of the video feature extraction. 
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Figure 4.1: Overall study design 
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Before the training could start, several preparatory steps needed to be taken. The first step was to 

convert the video files to a series of JPEG images. The raw skeleton data was then extracted, using 

OpenPose which map out the joints data of the person in the image. In the second step the raw 

skeleton data was preprocessed. The third step involved feature extraction. The extracted features 

were then used to train the deep neural network. The layout of the logical design for the video feature 

extraction is shown in Figure 4.2. 
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Figure 4.2: Logical layout of feature extraction 

4.2 Software development environment 

The four programs used for video feature extraction were developed by using Anaconda. Anaconda 

is a free open-source distribution of the Python programming language for data science, machine 

learning applications, large-scale data processing, predictive analytics, etc. It aims to simplify package 

management and deployment [88]. The distribution includes data science packages suitable for 

Windows, Linux, and macOS. The software tools used to create the programs were: 

• Python programming language. Python is a high-level general-purpose programming 

language. Python is designed with an emphasis of code readability and notable use 

of significant whitespace. Its language constructs an object-orientated approach, and is 

designed to help programmers write clear, logical code for small and large-scale projects.   
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• Spyder Integrated Development Environment (IDE). This is an open source cross-platform 

for scientific programming in the Python language. It provides comprehensive facilities for 

software development, such as a source code editor, build automation tools and a debugger. 

• Open-source Computer Vision (OpenCV). OpenCV is a computer vision and machine 

learning software library. It provides a common infrastructure for computer vision applications 

to accelerate the use of machine perception. The library provides more than 2 500 optimised 

algorithms, which includes a comprehensive set of both classic and state-of-the-art computer 

vision and machine learning algorithms. 

• TensorFlow. TensorFlow is an open-source artificial intelligence library, using data flow 

graphs to build models. It allows developers to create large-scale neural networks with many 

layers. TensorFlow is mainly used for classification, perception, understanding, discovering, 

prediction and creation. OpenPose is an open-source, real-time, multi-person key point 

detection library for human body, facial, hand and feet estimation.   

• OpenPose. OpenPose was developed by researchers at Carnegie Mellon University. It is 

considered a state-of-the-art approach for real-time human pose estimation. The code base 

is open source. OpenPose is originally written in C++ and Caffe but has been adapted to work 

with Python using TensorFlow.  

4.3 Convert videos to images 

Videos are a series of digital images. They can, however, not be used for data extraction in their raw 

format. This step coverts the video to digital images. The format that the images are converted to and 

stored as JPEG. JPEG was used because it provides smaller file sizes compared to other standards 

like BMP and PNG. It also allows users the ability to adjust the degree of compression of a digital 

image. This enables the user to find the correct balance and trade-off between the image quality and 

file size.  
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The logical design of the program was developed in Python 3 programming language, using the 

OpenCV library, and consisted of three logical steps. These steps involved initialisation of variables, 

reading video file from file path, and extracting each image frame from the video and writing an image 

file. The flow diagram in Figure 4.3 shoes how the program operates. 

Start

Set inputPath
Set outputPath

initialise count = 1
Set frameRate = 0.03

Set sec = 0

import cv2

Read video frame

while has frame End false
Store frame as JPEG 

to outputPath
true

Increment count

sec = sec + frameRate

Round off sec to 2 decimal 

points

Read Video File from 
inputPath 

Step 1

Step 3

Step 2

 

Figure 4.3: Flow chart of converting video to images 

The details of the three logical steps are as follows: 

• Step 1: Initialisation of variables. The first step in the program was to initialise variables. 

Firstly, we imported the OpenCV library, using the import cv2 command. Secondly, the 
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inputPath and outputPath were set. The inputPath is the file path where the video is stored 

and the outputPath is the path for the location folder where the images would be stored. The 

count variable was initialised to 1. This variable was used to count the number of frames 

extracted from the video. The frame rate was set to 0,03. Frame rate, i.e the frequency at 

which consecutive image frames appear, was decoded. For the videos in this program the 

frame rate was 30 frames per second. The sec was set to 0. This variable represents seconds. 

It will determine the second at which each frame is extracted.   

• Step 2: Reading video file and extracting image frame. In the second step the video was 

read from the inputPath variable given in the Step 1. A frame from the video was extracted, 

based on the value of the variable sec. An if-statement then checks if the frame exists and if 

it does not exist the program ends.  

• Step 3: Writing image file. In the third step an if-statement checks If the frame does exist 

and if it does not exist, the image frame is then stored in the outputPath folder as a JPEG. 

After the program has stored the program, it performs the following operations in preparation 

of reading the next frame. It increments the sec by the value of the frame rate. Then it then 

performs a rounding function which rounds off the value for sec to two decimal places. The 

program then returns to reading the next image frame.  

After the completion of all the logical steps, the output of the steps will be stored in the outputPath. 

This program must be applied on all videos that will be used for training data. 

4.4 Extracting skeleton data using OpenPose  

The program used to extract skeleton data from the images, was OpenPose. OpenPose is human 

pose estimation algorithm that has been implemented, using TensorFlow. Pose estimation is a key 

component in enabling machines to understand people in images and videos. OpenPose is a real-

time approach that detects two-dimensional pose of multiple people in an image. This method uses a 
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non-parametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate 

body parts with individuals in the image. 

OpenPose takes a colour image of size w x h as the input (Figure 4.4(a)) for a convolutional neural 

network (CNN) to jointly predict and produce two-dimension locations of anatomical key points for 

each person in the image (Figure 4.4(e)). The system further predicts a set of two-dimensional 

confidence maps (Figure 4.4(b)) of body part locations and a set of two-dimensional vector fields of 

part affinity fields (PAF) as seen in Figure 4.4(c), which encodes the degree of association between 

parts. The set also has confidence maps, one per part, whereas vector fields have one per limb. They 

system further refers to part pairs as limbs for clarity, but some pairs are not human limbs, e.g. the 

face. Lastly, the parsing step performs a set of bipartite matchings (Figure 4.4(d)) to associate body 

part candidates to output the 2D key points for all people in the image. 

 

Figure 4.4: Logical design for OpenPose algorithm[89] 

Each skeleton has 18 joints which include the head, neck, arms and legs. The joints are labelled as 

seen in Table 4.1.  
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Table 4.1: Skeleton Joints Label output by OpenPose 

Joints 
Skeleton 

Name Index 

Head:  0 

 

Eyes: 14, 15 

Ears: 16, 17 

Neck: 1 

Left Arm:  5, 6, 7 

Right Arm 2, 3, 4 

Left Leg: 11,12, 13 

Right Leg:  8, 9, 10 

 

4.5 Preprocessing of raw skeleton data 

The data generated by OpenPose is unusable in its raw format. OpenPose uses different units for its 

x and y co-ordinates. It also generates head joints which are not necessary for this study. There are 

also frames which the algorithm does not detect, or it partially detects a human. Software components 

were designed to address these issues. The program was designed to perform four logical steps. 

These steps involved scaling joint co-ordinates, removal of head joints, discarding invalid frames and 

filling in missing joints from incomplete skeletons. The flow diagram of how the program operates, is 

shown in Figure 4.5 
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Scale Joint Coordinates Removal of Head Joints Discard Invalid Frames Fill in missing Joints

 

Figure 4.5: Preprocessing raw of skeleton data 

There were four software components designed to preprocess the raw skeleton data. Firstly, software 

to scale joint co-ordinates; secondly, software to remove the head joints of the skeleton; thirdly, 

discarding frames where humans were not detected and frames where insufficient joints were 

detected; and, lastly, filling in missing joints on frames that were not invalid but had missing joints. 

4.5.1 Scale joint co-ordinates 

In the first step of the program, it takes raw skeleton data as an input. The original joint positions that 

OpenPose outputs, uses a different unit for the x co-ordinate and y co-ordinate. The co-ordinates need 

to be normalised be the same unit to address images with different height/width ratios. 

4.5.2 Removal of head joints 

In the second step of the program, the 18 joints that OpenPose outputs, are taken as an input; the 

head joints are removed and a skeleton without head joints remains. As seen in Table 4.1, OpenPose 

also detects five head joints. The joints include one head joint, two eye joints and two ear joints. Head 

features were removed, as they are of little significance for classification in actions recognition. 
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4.5.3 Discard of invalid frames 

The third step of the program determines the validity or invalidity of frames, to be used later in training. 

The criteria used to determine the validity of the frame is twofold: firstly, if no human skeleton is 

detected by OpenPose in a frame as seen in in Figure 4.6 (b), and, secondly, if the detected skeleton 

has a neck or leg joints as seen in Figure 4.6 (a). If a frame did not meet the criteria, it is considered 

invalid, and discarded. The reasoning behind the criteria is blank frames and frames with missing 

limbs do not add any value to the training process. This will also cause errors as all feature vectors 

need to be of the same length.  

      
                                             (a)                                                          (b) 

Figure 4.6: Example of Frames that have been discarded 

4.5.4 Fill in missing joints 

In some of the frames OpenPose fails to detect a complete skeleton. This results in some blanks in 

the joint positions. In the fourth step of the program, it fills in missing joint information. This is necessary 

to maintain a fixed-size feature vector for the following feature classification. One may decide to 

discard an incomplete skeleton frame, but this would mean the final system would never be able to 

detect the action when the person is standing sideways and not facing the camera. In order to fill in 

the missing joint, we calculate a joint's position based on its relative position in the previous frame with 

regard to the neck. Suppose in the previous frame the hand is 10 pixels to the right of the neck; then, 

in the current frame if the hand joint is missing, it will set at 10 pixels to the right side of the neck of 

the current frame.  
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Equation 1:  Calculate missing joint x-coordinate  

xi(curr) =  x_neck(curr) + (xi(pre) − x_neck(pre)) 

Where: xi = x-coordinate of the missing joint 

  i = joint index (0 - 17) 

    x_neck = x-coordinate of the relative neck 

Equation 2:   Calculate missing joint y-coordinate 

   yi(curr) =  y_neck(curr) + (yi(pre) − y_neck(pre)) 

Where: yi = y-coordinate of the missing joint 

  i = joint index (0 - 17) 

   y_neck = y-coordinate of the relative neck 

After step four all the feature vectors will be of the same size without any missing coordinates which 

is important for the training of the neural network. 

4.6 Feature generation 

A feature generation program needed to be developed after all the skeleton joints had been 

preprocessed. Feature generation is the process of creating new features from one or multiple existing 

features, potentially for using in statistical analysis or machine learning algorithms.  
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Figure 4.7: Logical design for feature generation 

The logical design of the program used to generate features, was developed in four logical steps. Joint 

positions data from five frames (n) from the preprocessed data was used to generate each feature 

vector. The first step was to normalise the joint positions of the skeletons. Secondly, the velocity of 

the skeleton body was calculated. Thirdly, the velocity of the joints was calculated. Lastly, all the data 

was concatenated to create one feature vector and the principal component analysis (PCA) algorithm 

was applied to reduce the dimensions of the feature vector. The flow diagram of how the program 

works, is seen in Figure 4.7. 

4.6.1  Normalise joint positions 

In Step 1 of the program, it takes five skeleton frames (n) as an input and normalises all the joint 

positions, using Equation 3. This was necessary, as skeletons may vary in size and height. There 

therefore was a need to change the values of the skeleton joints to a common scale, without distorting 

differences in the ranges of values. 

Equation 3  Normalise skeleton joint positions 

𝑋 =  
𝑋𝑖 − 𝑋̅

𝐻
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where: X = normalised joint positions 

            𝑋𝑖 = concatenated joints of n frames 

            𝑋̅ = the sample mean 

           𝐻 = average skeleton height of 𝑋𝑖 

4.6.2  Calculate body velocity 

In the second step of the program a calculation of the body velocity was performed, using Equation 4. 

This feature gives additional data about the changes in movement of the skeleton as a whole. 

Equation 4  Calculate body velocity 

𝑉𝑏𝑜𝑑𝑦 =  
𝑉𝑛𝑒𝑐𝑘

𝐻
 

Where: 𝑉𝑏𝑜𝑑𝑦 = body velocity 

              𝑉𝑛𝑒𝑐𝑘 = velocity of the neck 

       𝐻 = average skeleton height 

4.6.3 Calculate joint velocities 

In the third step of the program a calculation of the joint’s velocity was performed, using Equation 4. 

This feature provides additional data about the changes in movement of the skeleton joints. 

Equation 5  Calculate velocity of joints 

𝑉𝑗𝑜𝑖𝑛𝑡𝑠 = 𝑋[𝑡𝑘] − 𝑋[𝑡𝑘−1] 

where: 𝑉𝑗𝑜𝑖𝑛𝑡𝑠 = joint velocity 

                    𝑋 = normalised joint coordinated 
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                   𝑡𝑘 = current frame 

4.6.4 Principal component analysis (PCA) 

In the third step of the program the PCA algorithm was applied to the dataset. The purpose of this was 

to reduce the dimensionality of a dataset while retaining the variation present in the dataset up to the 

maximum extent. PCA performs a linear mapping of the data to a lower-dimensional space with the 

goal of maximizing the data's variance in the low-dimensional representation. The data's covariance 

matrix is built, and the matrix's eigenvectors are computed. Principal components, or eigenvectors that 

correspond to the greatest eigenvalues, can now be used to recreate a considerable portion of the 

variance of the original data. Additionally, because the first few eigenvectors frequently contribute the 

great bulk of the system's energy, especially in low-dimensional systems, they can often be interpreted 

in terms of the system's large-scale physical behaviour. The original space (with a dimension of the 

number of points) has been reduced to a space spanned by a few eigenvectors (with data loss but 

presumably maintaining the most significant variance). 

The program takes the normalised skeleton joints of n = 5 frames, the body velocity, and joints 

velocities as an input. This results in an input vector of 314 dimensions. The PCA algorithm then 

reduces it to 50 dimensions. 

4.7 Results of feature extraction 

In this section the results obtained from the video feature extraction are presented, showing how each 

module processes the images. 

4.7.1 Convert videos to images 

The aim of this sub-phase was to convert videos from dataset into images. In Figure 4.8 we see the 

input path that was used to locate the videos by class. All videos in the data set were stored in avi 
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format. Figure 4.9 shows the converted videos stored in the output path and sorted by class. These 

images are now ready to be further processed. 

 

Figure 4.8: Input Videos from Video Dataset 

 

Figure 4.9: Converted JPEG Images 
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4.7.2 Extracting skeleton data using OpenPose 

The purpose of this sub-phase was to extract skeleton data of humans detected in each image frame 

and store the data of the frame. Figure 4.10 shows the results of the OpenPose algorithm, as well as 

the input image with the annotated skeleton, heat-map and PAF map. 

 

Figure 4.10: Skeleton Extraction from an image using OpenPose 

In Table 4.2 the detected joint co-ordinates detected and the confidence scores in Figure 4.10 are 

displayed. The algorithm has a 78% average score that it detected the joints correctly. The images 

above confirm these scores are correct and the skeletons have been detected correctly. 
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Table 4.2: Detected Skeleton Joints and Score by OpenPose 

Body Part No. 
Skeleton Joints 

Coordinates 
Score 

0 (0.38, 0.07) 0.89 

1 (0.41, 0.11) 0.83 

2 (0.37, 0.11) 0.71 

3 (0.32, 0.14) 0.75 

4 (0.31, 0.08) 0.77 

5 (0.44, 0.10) 0.74 

6 (0.49, 0.15) 0.74 

7 (0.48, 0.08) 0.52 

8 (0.40, 0.26) 0.64 

9 (0.39, 0.37) 0.81 

10 (0.42, 0.48) 0.65 

11 (0.45, 0.26) 0.71 

12 (0.44, 0.37) 0.68 

13 (0.46, 0.47) 0.58 

14 (0.38, 0.06) 0.82 

15 (0.39, 0.06) 0.85 

17 (0.41, 0.06) 0.84 

Overall Score 0.78 
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In Table 4.3 the number of skeletons detected in the dataset is reported. Each skeleton has 18 joints 

which makes 36 data points (Raw Feature Length).  

Table 4.3: Number of skeletons detected in the dataset 

Training Data 

Total number of Samples 22489 

Raw Feature Length 36 

Number of Classes 6 

 

In Table 4.4 the number of skeletons detected per action class is presented. This table shows the 

number of samples available for training and testing.  

Table 4.4: Number of Skeletons Detected per Class 

Number of Sample per Class 

Jump 2331 

Kick 2245 

Run 2492 

Sit 5284 

Stand 4692 

Walk 5445 
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4.7.3 Preprocessing Raw Skeleton Data 

The aim of the Preprocessing sub-phase was scaling joint coordinates, removal of head joints, 

discarding invalid frames and filling in missing joints from incomplete skeletons. This resulted in a 

reduced dataset as seen in Table 4.5.  

Table 4.5: Number of samples remaining after the reduced dataset 

Training Data 

Total number of samples 19730 

Raw feature length 36 

 

4.7.4 Feature generation 

Table 4.6 shows the results of the applied PCA function. The generated features are reduced from a 

vector of length 314 to 50 with sum Eigen value of 0.95. 

Table 4.6: Number of generated feature after PCA was applied 

Generated Sample Features  

Size of training data (19730, 314) 

Sum eigen values 0.95 

After PCA` (19730, 50) 
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4.8 Discussion 

The purpose of the videos feature extraction is to process the dataset videos and prepare them for 

training and/or classifications. This was achieved through four sub-phases, namely: converting videos 

to images, extracting skeleton data, pre-processing the skeleton data and, finally, feature generation.  

In the first sub-phase the video(s) were converted into images. In the second sub-phase a pose 

estimation algorithm was used to extract skeleton data. The algorithm that was selected to extract 

skeleton feature in the images, was OpenPose. The extracted skeletons were not ready to be used 

for training in their raw format, as they vary in size because the algorithm is unable to detect certain 

joints in cases where the video does not display the full body or where there was occlusion. As a 

result, in the third sub-phase the detected skeletons were processed to determine valid and invalid 

frames and generate missing joints. This reduced the dataset from 22 489 to 19 730 samples. In the 

last sub-phase a PCA algorithm was applied on the processed skeleton feature to reduce the 

dimensionality of a dataset, while retaining the variation in the dataset.  

After the video feature extraction phase was developed, the data it generated could now be used to 

train the Deep Neural Network (DNN) in Phase 4, Chapter 5. 
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Chapter 5 : Development of a Deep Neural Network for Action 
Classification 

________________________________________________________________________________ 

5.1 Introduction 

Phase 4 of this study involves the development of the deep neural network (DNN) for action 

classification. The purpose of the DNN is to classify human actions based on features generated in 

Phase 3 of the study. Phase 4 involves the development of a DNN to automatically recognise human 

actions based on six actions classes. The action classes selected for this study were jumping, kicking, 

running, standing, sitting, and walking. The DNN will form part of the human action recognition system 

(HARS). Figure 5.1 shows the overall study design, highlighting Phase 4, which involved the 

development of the DNN. 
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Figure 5.1: Overall Study Design 

© Central University of Technology, Free State



C h a p t e r  5 :  D e v e l o p m e n t  o f  D N N   P a g e  | 78 

 

5.2 Software environment for the development of the Deep Neural 

Network (DNN) 

The software selected for the development and implementation of the DNN was Scikit-learn. Scikit-

learn is an open-source machine learning library for the Python programming language. The library 

features various classification, regression and clustering algorithms. These include support vector 

machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to operate with 

the Python numerical and scientific libraries NumPy and SciPy[90].  

 

Figure 5.2: Scikit-Learn Logo 

5.3 Training and testing datasets 

The dataset used in this research project was created by combining multiple datasets. It was 

necessary to create a diverse dataset that would include varying lighting conditions, different camera 

angles, and humans that vary in height and size. The data sets were: 

• Joint-annotated Human Motion Data Base (JHMDB) 

• North-western-UCLA Multiview Action 3D Dataset 

• AAMAZ Human Action Recognition Dataset 

Table 5.1 shows that the datasets provided 13 811 samples that can be utilised for training and 5919 

testing the DNN. 
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Table 5.1: Dataset Train-Test Split 

Train-Test Split 

Number of training samples 13 811 

Number of testing samples 5 919 

 

5.4 Development of the neural network 

The development of the DNN was implemented using Scikit-learn. The model used for the 

development, was the Multi-layer Perceptron (MLP). MLP is a supervised learning algorithm that 

learns a function 𝑓(⋅) ∶  𝑅𝑚  →  𝑅𝑜 by training on a dataset, where 𝑚 is the number of dimensions 

for input and 𝑜 is the number of dimensions for output. This model used the generated features from 

the skeleton data which are represented as 𝑋 =  𝑥1, 𝑥2, . . . , 𝑥𝑚 and a target, which is the classes, 

𝑦 to learn a non-linear function approximator for classification. The model has more than one non-

linear layer between the input and the output layer, called hidden layers. Figure 5.3 shows a one 

hidden layer MLP with scalar output[91]. 

 

Figure 5.3: One hidden layer MLP[91] 
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When a multilayer perceptron has a linear activation function in all neurons, i.e. a linear function that 

maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of 

layers can be reduced to an input-output two-layer model. In MLPs some of the neurons use a non-

linear activation function that was designed to model the frequency of action potentials, or firing, of 

biological neurons. In deep learning the most used activation function is the Rectifier Linear Unit 

(ReLu), which is defined as 𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) and can be plotted as seen in Figure 5.4. 

 

Figure 5.4: Plot of ReLu activation function[92] 

The main advantage of using the ReLU function over other activation functions is that it does not 

activate all the neurons at the same time. ReLU has just enough non-linearity to be almost as simple 

as a linear activation, yet this non-linearity allows for tremendously complicated representations. 

Because, unlike in the linear situation, the more non-linear ReLUs you stack, the more non-linear it 

becomes. 

5.4.1 Learning 

For classification, the MLPClassifier class was used from the scikit-learn library. Training takes place 

in the perceptron by adjusting the link weights after processing each piece of data, depending on the 

amount of error, in the output relative to the expected result. This is a supervised learning approach, 

and it is achieved through backpropagation, a generalisation of linear perceptron of the least mean 
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squares algorithm. The degree of error in an output node 𝑗 in the 𝑛𝑡ℎ data point can be represented 

by Equation 6 

Equation 6: Error Function 

𝑒𝑗(𝑛)  =  𝑑𝑗(𝑛)  −  𝑦𝑗(𝑛)   

where  𝑑 = the target value 

            𝑦 = the value produced by the perceptron 

The weights of the node can be modified based on corrections that decrease the error in the output, 

given by 

Equation 7 

𝜀(𝑛)  =  
1

2
∑ 𝑒𝑗

2(𝑛)

𝑗

 

The adjustment in each weight is by gradient descent. 

Equation 8: Gradient Descent 

𝛥𝑤𝑗𝑖(𝑛)  =  −𝜂
𝜕𝜀(𝑛)

𝜕𝑣𝑗(𝑛)
𝑦𝑖(𝑛) 

Where  𝑦𝑖 = output of the previous neuron 

           𝜂 = the learning rate 

           𝑣𝑗  = the induced local field 
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5.4.2 Parameters 

These are the parameters that were used to configure the MLPClassifier in the learning process. See 

Table 5.2 for the values and description for each parameter.  

Table 5.2: Parameters used to Initialise MLPClassifier 

Parameter Value Description 

hidden_layer_sizes (100,) 
The ith element represents the number of 
neurons in the ith hidden layer. 

activation relu Activation function for the hidden layer 

solver adam 

The solver for weight optimization. ‘adam’ refers 
to a stochastic gradient-based optimizer 
proposed by Kingma, Diederik, and Jimmy 
Ba[93] 

alpha 0.0001 L2 penalty (regularization term) parameter 

batch_size auto Learning rate schedule for weight updates 

learning_rate constant 
‘constant’ is a constant learning rate given by 
‘learning_rate_init’. 

learning_rate_init 0.001 
The initial learning rate used. It controls the step-
size in updating the weights. 

max_iter 200 
Maximum number of iterations. The solver 
iterates until convergence (determined by ‘tol’) or 
this number of iterations.  

shuffle True Whether to shuffle samples in each iteration. 

random_state None 

Determines random number generation for 
weights and bias initialisation, train-test split if 
early stopping is used, and batch sampling when 
solver is adam optimiser.  

tol 1e-4 Tolerance for the optimisation 
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5.5 Results 

To prove that the set parameters were tuned correctly, after 200 epochs of training an accuracy of 

93% was achieved on the training set and 83% accuracy on the testing set. There further is an 

accuracy report (illustrated in Table 5.3) and confusion matrix (illustrated in Figure 5.5) detailing the 

performance and accuracy of the DNN training.  

5.5.1 Confusion matrix 

The confusion matrix is a table used to illustrate the performance of a DNN, using the test data for 

which the true values are known. Figure 5.5 depicts a confusion matrix of the developed DNN. The 

confusion takes a tally of the number of samples that the DNN classified correctly and incorrectly. 

They vertical axis is the true label, and the horizontal axis is the predicted label. In the kick action 

the DNN predicted 424 samples correctly and 180 samples incorrectly (9 as stand, 73 as walk, 43 as 

run, 41 as jump and 14 as sit, all of them being incorrect predictions).   

beta_1 0.9 
Exponential decay rate for estimates of first 
moment vector in adam 

beta_2 0.999 
Exponential decay rate for estimates of second 
moment vector in adam 

epsilon 1e-8 Value for numerical stability in adam 

n_iter_no_change 10 
Maximum number of epochs to not meet to 
improvement 
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Figure 5.5: Confusion Matrix 

Based on the data presented above, the sit, walk and stand actions have more samples in the test 

dataset compared to the kick, jump, and run actions. The DNN therefore was able to predict a higher 

number of samples correctly regarding the sit, walk and stand actions. The matrix also shows that the 

DNN classified 133 samples from the run action as walking. This could be a result of there being fewer 

samples, and the walk action being similar to the run action. Overall, the performance of the DNN is 

consistent and it is able to predict most of the samples from the test set correctly. 

5.5.2 Accuracy report 

The accuracy report (Table 5.3) displays the results for precision, recall, F1-score, and support. In 

addition, it also reports the macro-average and weighted average for each action. The precision 

column is the ratio tp/(tp + fp) where tp represents the number of true positives and fp represents the 
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number of false positives. Precision is instinctively the ability of the classifier not to label a negative 

sample as positive for that specific action. In this case of action classification, precision illustrates the 

number of correct results divided by the number of all returned results. Precision takes all retrieved 

video features into account. The recall column is the ratio tp / (tp + fn) where tp represents the number 

of true positives and fn represents the number of false negatives. The recall is the instinctive ability of 

the classifier to find all the positive samples. In this case of action classification, recall is the number 

of correct results divided by the number of results that should have been returned. This can also be 

referred to as the sensitivity of the DNN. The precision and recall score are mostly above 80%. This 

proves that the DNN returns are more correct than incorrect. 

Table 5.3: Accuracy Report 

Action Precision Recall F1-score Support 

Stand 0.85 0.84 0.84 1280 

Walk 0.80 0.88 0.84 1321 

Run 0.78 0.68 0.73 702 

Jump 0.85 0.80 0.82 547 

Sit 0.88 0.89 0.88 1465 

Kick 0.76 0.77 0.76 604 

Accuracy   0.83 5919 

Macro Average 0.82 0.81 0.81 5919 

Weighted 
Average 

0.83 
0.83 0.83 5919 
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The F1-score column is a measure of a test's accuracy for each column. It is calculated from the 

precision and the recall scores. The score can be understood as a weighted harmonic mean of the 

precision and recall. The highest possible value for F1-score is 1, meaning the DNN has perfect 

precision and recall, and the worst score is 0. The support column is the number of occurrences of 

each class. Macro-average is the average of the unweighted mean per label, and the weighted 

average is the average of the support-weighted mean per label.  

Based on the accuracy, report the DNN gives a consistent performance of above 80% across all action 

classes, except for ‘run’ and ‘kick’. The DNN could find it difficult to differentiate between walking and 

running, as they tend to be similar in motion. The score for the run action class could be lower, because 

it had the smallest number of data samples for training.  

5.6 Discussion 

The purpose of this chapter was to develop a deep neural network (DNN) to classify action features. 

The chosen classifier was an MLP classifier which was developed using scikit learn libraries and the 

Python programming language. The DNN was trained to use data samples generated in Phase 3 of 

the study. There were three main datasets were selected for training, namely Joint-annotated Human 

Motion Data Base (JHMDB), North-western-UCLA Multiview Action 3D Dataset and AAMAZ Human 

Action Recognition Dataset.  

During the development of the DNN there are many parameters that need to be set. These parameters 

influence how the network learns and eventually will perform. Important parameters to consider are 

the activation function, optimisation function, learning rate, etc. (See Table 5.2) The neural network 

was trained, and after 200 epochs it achieved an accuracy rate of 93% on the training set and 83% 

on the testing set. Further details on the performance are presented on the confusion matrix and 

accuracy report. 
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The overall result of the developed neural network is positive and demonstrates that the network can 

classify the generated features with great accuracy. However, the network struggles to classify the run 

action. When the results are analysed, it is clear that the network misclassifies the run action as walk. 

This could be a result of the actions having a similar pose. More training data can be added to the 

dataset to try and solve this issue.  
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Chapter 6 : Evaluation of the Human Action Recognition 
System 

________________________________________________________________________________ 

6.1 Introduction 

Phase 5 of this study focused on evaluating the Human Actions Recognition System (HARS). 

Additional videos were recorded to evaluate the HARS. This step was performed to validate the results 

produced during the training and testing. The aim of this phase was also to determine how effective 

HARS would be in real-life applications. Figure 6.1 provides a flow diagram of the overall study design, 

highlighting Phase 3 which involved the evaluation of the Human Action Recognition System. 
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Figure 6.1: Overall study design 
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The HARS is made up of mainly two parts, namely the video feature extraction and the deep neural 

network (DNN). The system takes a video as an input. The video is then processed, and features are 

generated. The generated features are classified using the DNN and a prediction score is displayed. 

The video feature extraction component has been tested, and the DNN has been trained and tested. 

The results are in Chapters 4 and 5. Figure 6.2displays the logical diagram of the HARS and the 

multiple components that make up the system. 

 

Figure 6.2: Logical diagram of the HARS system 

6.2 Validation 

The two parts that make up the HARS, i.e. the video feature extraction and the DNN have been tested 

individually and the results are displayed and discussed in Chapters 4 and 5. In this chapter the two 

parts are combined into one system, and it is tested on new data to see if the system performs 

consistently.  

For the validation test, three test subjects were selected, and video recorded while performing all six 

actions the system is able to classify. The videos were recorded in a room under LED lighting, using 

a 720p webcam. Test 1 contains the results of the first subject, Test 2 the results of the second and 

test 3 the results of the third subject.   
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6.2.1 Test 1 

The purpose of this validation test is to evaluate how the HARS performs on the first test subject. The 

subject performs all six actions the system is able to detect. The subject performs the same action 

multiple times, changing the distance from the camera, position within the frame and the direction in 

which they face the camera.  

Video Snapshot Result 

 

Figure 6.3 Test 1: Jump 

 

 

Predicted label: Jump 
Mean score: 100% 

 

Figure 6.3 shows a video snapshot of the jump action and on the right-hand side are the results. The 

system was able to predict the action correctly with 100% accuracy. The system also predicted the 

action consistently as the test was repeated five times with the same positive result.  
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Video Snapshot Result 

 

Figure 6.4 Test 1: Kick 

 

Predicted label: Kick 
Mean score: 100% 

 

Figure 6.4 shows a video snapshot of the kick action with, on the right-hand side the results. The 

system was able to predict the action correctly with 100% accuracy. The system also predicted the 

action consistently as the test was repeated five times with the same positive result. 
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Video Snapshot Result 

 

Figure 6.5 Test 1: Run 

 

Predicted label: Run 
Mean score: 49% 

 

Figure 6.5 shows a video snapshot of the run action with the results on the right-hand side. The system 

was able to predict the action correctly with 49% accuracy. The system also predicted 26% walk and 

24% jump. The system predicted the run action inconsistently as the test was repeated five times with 

the results always fluctuating. This result is in line with the results seen in the previous chapter, 

because of the lower number of training samples of the run action and the fact that it is similar to the 

walk action in motion, The system tends to struggle to classify it with great accuracy. 
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Video Snapshot Result 

 

Figure 6.6 Test 1: Sit 

  

 

 

Predicted label: Sit 
Mean score: 99% 

 

Figure 6.6 shows a video snapshot of the sit action with, on the right-hand side, the results. The system 

was able to predict the action correctly with 99% accuracy. The system also predicted the action 

consistently as the test was repeated five times with the same positive result. 
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Video Snapshot Result 

 

Figure 6.7 Test 1: Stand 

 

Predicted label: Stand 
Mean score: 86% 

 

Figure 6.7 shows a video snapshot of the stand action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 86% accuracy. The system also predicted 13% 

walk action which is not an anomaly, because the pose estimation can be similar. This can be ignored, 

because the stand action was consistently predicted as the test was repeated five times with the 

similar positive result. 
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Video Snapshot Result 

 

Figure 6.8 Test 1: Walk 

 

 
 

 

Predicted label: Walk 
Mean score: 89% 

 

Figure 6.8 shows a video snapshot of the walk action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 89% accuracy. The system also predicted 9% run, 

1% jump and 2% kick. These values are insignificant, as the system was able to predict the correct 

action consistently as the test was repeated five times with the same positive result. 

6.2.2 Test 2 

The purpose of this validation test is to evaluate how the HARS performs on the second test subject. 

The subject, as in the first test, performs all six actions the system is able to detect. The subject 

performs the same action multiple times, changing the distance from the camera, the position within 

the frame and the direction in which they face the camera.  
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Video Snapshot Result 

 

Figure 6.9 Test 2: Jump 

 

Predicted label: Jump 
Mean score: 100% 

 

Figure 6.9 shows a video snapshot of the jump action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 100% accuracy. They system also predicted the 

action consistently, as the test was repeated five times with the same positive result.  
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Video Snapshot Result 

 

Figure 6.10 Test 2: Kick 

 

Predicted label: Kick 
Mean score: 85% 

 

Figure 6.10 shows a video snapshot of the kick action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 85% accuracy. The system also predicted 6% 

stand and 9 % walk. Overall, the system predicted the correct action consistently, as the test was 

repeated five times with the same positive result. 
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Video Snapshot Result 

 

Figure 6.11 Test 2: Run 

 

Predicted label: Walk 
Mean Score: 50% 

 

Figure 6.11 shows a video snapshot of the run action with, on the right-hand side, the results. The 

system was unable to predict the action correctly. It predicted 50% walk, 44% run and 5% jump. The 

system predicted the run action inconsistently, as the test was repeated five times with the results 

varying. This result is in line with the results seen in the previous chapter, because of the lower number 

of training samples of the run action. In addition, the run action is similar to the walk action in motion, 

a fact causing the system to struggle to classify it with great accuracy.  
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Video Snapshot Result 

 

Figure 6.12 Test 2: Sit 

 

Predicted label: Sit 
Mean score: 91% 

 

Figure 6.12 shows a video snapshot of the sit action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 91% accuracy. The system also predicted 9% 

stand action. This can be ignored, because the stand action was consistently predicted as the test 

was repeated five times with the similar positive result. 
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Video Snapshot Result 

 

Figure 6.13 Test 2: Stand 

 

Predicted label: Stand 
Mean score: 93% 

 

Figure 6.13 shows a video snapshot of the stand action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 93% accuracy. The system also predicted 4% walk 

action, which is not an anomaly because the pose estimation can be similar. This can be ignored, 

because the stand action was consistently predicted as the test was repeated five times with the 

similar positive result. 
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Video Snapshot Result 

 

Figure 6.14 Test 2: Walk 

 

Predicted label: Walk 
Mean score: 100% 

 

Figure 6.14 shows a video snapshot of the walk action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 100% accuracy. They system also predicted the 

action consistently, as the test was repeated five times with the same positive result. 

6.2.3 Test 3    

The purpose of this validation test is to evaluate how the HARS performs on the third test subject. The 

subject, as in the first and second tests, performs all six actions the system is able to detect. The 

subject performs the same action multiple times, changing the distance from the camera, the position 

within the frame and the direction in which they face the camera.  
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Video Snapshot Result 

 

Figure 6.15 Test 3: Jump 

 

Predicted label: Jump 
Mean score: 100% 

 

Figure 6.15 shows a video snapshot of the jump action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 100% accuracy. They system also predicted the 

action consistently, as the test was repeated five times with the same positive result.  
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Video Snapshot Result 

 

Figure 6.16 Test 3: Kick 

 

Predicted label: Kick 
Mean score: 54% 

 

Figure 6.16 shows a video snapshot of the kick action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 54% accuracy. They system also predicted 19% 

stand, 26% jump and 1% sit. Overall, the system predicted the correct action consistently, as the test 

was repeated five times with a similar positive result. 
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Video Snapshot Result 

 

Figure 6.17 Test 3: Run 

 

Predicted label: Run 
Mean score: 63% 

 

Figure 6.17 shows a video snapshot of the run action with, on the right-hand side, the results. The 

system was able to predict the action correctly with an accuracy of 63%. It also predicted 31% walk, 

4% kick and 1% sit. The system continues to predict the run action inconsistently, as the test was 

repeated five times with the results always varying.  
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Video Snapshot Result 

 

Figure 6.18 Test 3: Sit 

 

Predicted label: Sit 
Mean score: 100% 

 

Figure 6.18 shows a video snapshot of the sit action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 100% accuracy. They system also predicted the 

action consistently, as the test was repeated five times with the same positive result. 
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Video Snapshot Result 

 

Figure 6.19 Test 3: Stand 

 

Predicted label: Stand 
Mean score: 63% 

 

Figure 6.19 shows a video snapshot of the stand action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 63% accuracy. The system also predicted 34% 

walk action which is not an anomaly, because the pose estimation can be similar. This can be ignored, 

because the stand action was consistently predicted as the test was repeated five times with the 

similar positive result. 
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Video Snapshot Result 

 

Figure 6.20 Test 3: Walk 

 

Predicted label: Walk 
Mean score: 100% 

 

Figure 6.20 shows a video snapshot of the walk action with, on the right-hand side, the results. The 

system was able to predict the action correctly with 100% accuracy. They system also predicted the 

action consistently, as the test was repeated five times with the same positive result. 

6.3 Discussion 

The purpose of this chapter was to evaluate the Human Actions Recognition System (HARS). This 

was achieved by taking three human subjects performing three tests. The tests were designed to 

evaluate each human action the system is able to classify and see how the HARS would perform 

overall. Each human subject was requested to perform all six actions (jump, kick, run, sit, stand, walk) 

to see if the system would be successful at recognising the different actions. This was also to 

demonstrate how the system would function when applied in real-life situations. 

The results prove that the videos extraction methods applied, and the deep neural networks are 

functioning as expected, and can extract features and classify them with a high accuracy. However, 
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the system still has challenges in classifying the run action. This was apparent in all three tests. There 

are moments where the system can classify the run actions with high accuracy (above 80%), but in 

many cases it confuses the action with a walk action. This could be as result of not having sufficient 

data samples in the training dataset.  
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Chapter 7 : Discussion and Conclusion 
________________________________________________________________________________ 

7.1 Introduction 

The purpose of this chapter is to recapitulate the research project, revisit the research goals and 

objectives, express the contributions made, identify future work to be done and draw conclusions to 

the research.  

Chapter 1 contains a brief introduction to the research project, putting it in perspective by stating the 

problem, determining the aim and, finally, listing the objectives of the study. In Chapter 2, the study 

design, a description of the different aspects of this research project is presented. The project was 

divided into five phases. The phases include literature review, collection of training data, video feature 

extraction, development of the deep neural network and evaluation of the Human Action Recognition 

System (HARS). Chapter 3 contains a review of the field of study, which includes various aspects of 

video surveillance systems used in our modern and age. The study further reviews literature on pose 

estimation, video feature extraction techniques and deep neural networks, and action video datasets. 

Chapter 4 documents the methodologies followed to develop video feature extraction. It specifies the 

software development tools utilised to design and develop the video feature extraction process, and 

further stipulates how these functions integrate with the HARS. Lastly, it illustrates the results 

generated by the videos feature extractor which will be used in further phases of the project. Chapter 

5 documents the development of the deep neural network which was used to predict the human action. 

It further specifies the neural network tools and environment utilised, the performance of the neural 

network and how it integrates with the HARS. Chapter 6 presents tests and procedures that were 

identified to evaluate the HARS, as well as their results.  
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7.2 Human action recognition system 

The objective of the study was to create an intelligent vision system that can identify a range of human 

actions within surveillance videos. This would offer security officers additional data of activities 

occurring in the videos and enable security officers to access specific incidents faster and provide 

early detections of crimes. Training data from existing video datasets was gathered. In addition, 

images were extracted from the video datasets. From the images, features were extracted and used 

to train the neural network to classify the action features. Finally, an evaluation of the neural network 

from known data (labelled data) was performed to test for real world applications. 

These objectives were accomplished by firstly selecting software tools and developing the software 

modules that are collectively required to build the entire system. The system was built using methods 

discussed in Chapters 4 and 5. Afterwards, tests were established in Chapter 6 and were set up in 

such a way to verify each separate component of the system. After the results had been obtained, the 

results were analysed and discussed in Chapters 4, 5 and 6. These chapters delivered satisfactory 

results regarding each module and the operation of the system. They also highlighted the system’s 

shortfalls and areas that can be researched in the future. Most importantly, the results verify the 

operation of the system and that it can be utilised in real-world applications.  

A primary challenge of this study was insufficient data. Datasets should include sufficient scale ranges, 

occlusion, intra and inter-class differences, etc., to be able to develop efficient techniques. However, 

that is not that case with most human action recognition datasets. Most datasets consist of a limited 

number of labelled training and test samples. This is because the task of annotating a large dataset is 

time consuming. This results in neural networks performing poorly because of a lack of data. This was 

highlighted in Chapters 5 and 6, as the run action classification performed inconsistently because of 

insufficient data. 
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A secondary challenge of this study was occlusion. Pose estimation was the technique utilised to 

extract data about the human in the frame. This algorithm has limitations. It has difficulty detecting the 

human if there is an object blocking or partially blocking the camera’s view. As a result, after an 

occlusion has occurred, the system will wrongly identify the initially tracked object as a new object.  

7.3 Concluding remarks and future work 

The purpose of this research project was to design a human action recognition system able to detect 

jumping, kicking, running, sitting, standing, and walking in videos. In designing and developing a 

human action recognition system (HARS), many of the challenges posed by typical video surveillance 

systems, were circumvented. Using a HARS within an intelligent surveillance system will allow the 

system to collect metadata on events that occur within a video scene. The HARS will also contribute 

to crime prevention, as the data it collects, can be used towards detecting suspicious behaviour. 

Further studies are necessary to tackle the challenges the system still faces. There is a need to 

develop a system to automate the process of collecting data, as there is a need for more training data. 

Pose estimation techniques are approaching the state of the art in computer vision. These methods 

have concrete applications in human action recognition. However, due to occlusion of joints and 

anomalous angles, further work needs to be done to provide solutions. The HARS is only capable of 

classifying six action classes. Further studies are necessary to determine how the system would 

perform with additional actional classes with more complexity.  
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