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ABSTRACT 

 

Global climate change threatens many species across the planet. High-elevation species, 

such as red spruce (Picea rubens), face significant and immediate threats from climate 

change. Red spruce has faced anthropogenic disturbances for over a century and is only 

recently beginning to regenerate across its range, making it an ideal restoration candidate. 

Ecological niche modeling has become a common method of identifying the suitable 

habitat of a species, providing vital information to land managers carrying out restoration 

efforts. In this study ecological niche models were used in a novel way, predicting 

distribution and habitat suitability separately to determine the spatial extent to which red 

spruce can be restored. In addition to models, surveys were conducted to elucidate the 

current regeneration trends of red spruce. Furthermore, climate projections were used to 

determine how restoration potential may change over the course of the 21st century. 

Comparisons between distribution and habitat suitability models indicate that there is 

additional habitat available for red spruce to expand into. Regeneration surveys show that 

there is positive regeneration both within and beyond red spruce canopies, validating 

model comparisons. Climate change projections indicate total elimination of suitable 

habitat in Virginia by 2100. However, these projections likely predict increased 

competition for red spruce from low elevation competitors as opposed to physiological 

limitations imposed by climate change. It is therefore prudent to protect established 

populations and encourage further regeneration by planting in higher elevations where 

competition is more limited. 



 

 

 

INTRODUCTION 

 

 Ecological niche models (ENMs) are powerful computational tools used to 

understand current and potential species distributions, test biogeographic hypotheses, and 

forecast anthropogenic impacts on species. ENMs relate observations of species 

occurrence and absence to their environment in order to then approximate some aspect of 

the distribution of that species across space and time (Guisan et al. 2017, Guisan and 

Thuiller 2005). Such models provide practical information which can inform 

conservation and restoration management practices, often in the form of map projections 

of habitat suitability or species distributions. The terms in the field of ecological niche 

modeling, such as ecological niche model, species distribution model (SDM), and habitat 

suitability model (HSM) are often used interchangeably, although each term can have 

very different meanings depending on the context of the study. The appropriate usage of 

modeling terminology has even been the subject of a review, though the literature still 

conflates different terms with each other (Peterson and Soberon 2012). For the purposes 

of this study ENM was used as an umbrella term to describe both SDMs and HSMs. 

Further, SDM was used to describe models which aim to predict the current distribution 

of a species, whereas HSM was used to describe models which aim to predict the 

potential distribution of a species given its suitable habitat.  

 ENMs are broadly applicable across species of both rare and ample abundance in 

marine, aquatic, and terrestrial environments (Williams-Tripp et al. 2012, Kaschner et al. 

2006, Ahmadi-Nedushan et al. 2006, Leblond et al. 2014). Of particular contemporary 

relevance is the time projection capability of ENMs through the alteration of 

environmental variable data. Climate change is expected to have a significant effect on 
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the range of many species, with many range shifts already underway (Parmesan and Yohe 

2003). ENMs are able to forecast the effects of various climate change scenarios on the 

distribution of a species (Thuiller 2004). For example, ENMs were used to forecast the 

range of Pinus pumila, a dominant alpine tree species in Japan. Models indicated that P. 

pumila will lose 14.7% of its suitable habitat by 2100 in mild climate change scenarios 

and up to 25% of its suitable habitat in severe climate change scenarios (Horikawa et al. 

2009). Predicting how a species’ range will be affected by climate change allows land 

managers to make strategic and well-informed conservation and restoration decisions, 

with the potential to conserve many ecosystems. Forests are important biodiverse 

ecosystems and therefore are often the subject of ENMs which aim to project major 

ecological consequences of climate change. 

 Mountain forests are ecologically and economically valuable habitats that provide 

an abundance of ecosystem services. Mountains constitute 24% of all land on Earth. 

Excluding Antarctica, forests cover 1/3 of all mountainous terrain and comprise 9 million 

km2 or 28% of total closed forest area on the planet (Kapos et al. 2000). Forests also 

serve as carbon sinks, estimated to absorb 2.4 petagrams of carbon annually (Pan et al. 

2011). Among the most valuable ecosystem services offered by mountains is watershed 

regulation and protection. Many watersheds originate in the mountains, which provide 

anywhere from 30%-95% of downstream water flow in various regions of the world. This 

downstream flow provides fresh water for drinking, irrigation, transportation, fishing and 

recreation (Price 2003). High elevation forests also protect the quality of watersheds by 

reducing erosion and stream sedimentation (Liniger and Weingartner 2000). Mountain 

forests are biodiversity hotspots, often supporting more biodiversity than lowland forests 
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(Price 2003). These vital ecosystems face numerous challenges of anthropogenic origin 

including habitat fragmentation, deforestation, and climate change.  

 The tree species that comprise high elevation forests are extremely vulnerable to 

climate change. With increasing temperatures, the suitable habitat available to high 

elevation tree species is expected to diminish and retreat upwards in elevation (Potter et 

al. 2010). In the Swiss Alps, the tree line was found to have already slightly shifted 

upwards in elevation due in part to climate change (Gehrig-Fasel et al. 2007). 

Concurrently, low elevation plant species are predicted to migrate upwards in elevation, 

thus burdening high elevation trees with increased competition (Bell et al. 2014). Further 

exacerbating the threat of climate change is the island-like distribution of many tree 

species endemic to high elevations. Reduced range and increased competition will further 

fragment the already isolated high elevation tree populations, which can create a genetic 

bottleneck (Potter et al. 2010). Many high elevation tree species are still yet to be 

thoroughly assessed in terms of their risk of range reduction due to climate change.  

 Red spruce (Picea rubens) is a high-elevation, late-successional, coniferous tree 

species that ranges from the Southern Appalachian Mountains of North Carolina to 

southeastern Ontario and Quebec. With a life span reaching up to 450 years, P. rubens 

serves as a foundation species in its communities, providing long-term environmental 

stability (Blum 1990). Red spruce is found in cool, mesic environments with acidic soils. 

Additionally, this species is economically valuable, serving as a source of timber and 

pulp, primarily used to make paper. Red spruce is also regarded as a high-quality 

tonewood, meaning the characteristics of its wood are excellent for use in the 

construction of wooden instruments (Murphy 1917). P. rubens provides habitat for many 
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species, several of which are endangered or threatened including the Virginia northern 

flying squirrel, the Cheat Mountain salamander, the Cow Knob salamander, and the rare 

lichen Hypotrachyna virginica (Odom et al. 2001, Dillard et al. 2008, Ford et al. 2004). 

Understanding the autecology of red spruce is useful for discerning the restoration 

potential of the species. 

 Red spruce has a life history that can both help and hinder its regeneration, largely 

depending on its life stage and surrounding environment.  The seeds of red spruce trees 

do not persist beyond a year in the seed bank and are injured by prolonged exposure to 

temperatures > 33ºC in the summer months. High soil moisture levels are the primary 

determinant of seed germination in red spruce, with germination typically beginning in 

May. Seedlings grow best in dense shade which supports the cool, moist environments 

required for germination. However, after establishment, maximum growth rates are 

attained in full sun. Red spruce do not bear cones until 45 years of age and produce 

distinctly numerous seed crops in intervals of three to eight years. Seeds are primarily 

dispersed by wind up to 100 meters distance from the parent tree. Red spruce, being a 

shade tolerant tree, has the advantageous ability to positively respond to suppression 

release in advanced age and after long term suppression. This ability, coupled with its 

relatively long life span, allows for red spruce to become more dominant as forest 

succession advances (Blum 1990). However, its slow growth and time to reproductive 

maturity make red spruce a poor competitor in the short term. Therefore, when red spruce 

outcompetes faster growing hardwoods, it is due to those hardwoods being poorly 

adapted to the shallow and moist soils, as well as the cool temperatures of red spruce 

habitat, rather than any physiological advantages of red spruce (Murphy 1917). When 
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species, such as balsam fir (Abies balsamea), are well adapted to the same environments 

as red spruce, then red spruce can be outcompeted on a physiological basis (Dumais and 

Prevost 2008). The life history and physiology of red spruce are major determinants of its 

past range and potential future distribution 

 Current red spruce stands occupy only a small portion of their historical range in 

the Central and Southern Appalachians due to a combination of natural and 

anthropogenic influences. Microfossil pollen analysis suggests that the warm and dry 

climate of the Hypsithermal Interval between 10,000 and 5,000 B.P. is chiefly 

responsible for the current island-like distribution of red spruce (Bailey and Ware 1990). 

Post-colonization logging, human-caused forest fires, and mountain top removal mining 

are responsible for a further, more recent range reduction of red spruce (Pielke 1981). 

Fires likely lead to long-term arrested regeneration in affected populations (Blum 1990, 

Griscom and Griscom 2011). From the 1960’s – 1980’s widespread decline of red spruce 

was recorded throughout its range with acid rain, climate change, and winter foliar 

damage being proposed causes (Hamburg and Cogbill 1984, Bliss and Vogelmann 1982). 

Though the high elevations of the Appalachians were subjected to high levels of acid 

rain, investigations found that acid and heavy metal deposition levels were not high 

enough to cause the observed decline in red spruce (Johnson et al. 1994). Further studies 

suggested that the combination of acid rain and a series of severe winters resulting in 

extreme foliar damage were the cause of the two-decade long decline (McLaughlin et al 

1987, Johnson et al 1988). While red spruce has faced declines in both the long- and 

short-term past, recent regeneration trends indicate a reversal in this pattern of decline 

(Goelz 1999, Nowacki et al. 2010). 
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 In their current state, red spruce stands have generally stabilized from the decline 

of the 1960’s-1980’s and are mostly regenerating. Mathias and Thomas (2018) found the 

reversal of red spruce declines is primarily due to a decrease in acidic sulfur pollution and 

an increase in atmospheric CO2. The same study found that lesser, yet significant 

secondary factors positively affecting red spruce regeneration are a decrease in nitrogen 

oxide (NOx) pollution and an increase in spring temperatures. Likewise, Li et al. (2020) 

found that tree growth responded positively to temperature increases. While current 

warming trends have shown to be beneficial to red spruce, temperatures greater than 33ºC 

have proven to be injurious to red spruce seeds. Once maximum summer temperature 

reach or surpass this 33ºC threshold, the habitat will functionally no longer be suitable for 

red spruce. Seedling and sapling representation in red spruce stands indicate positive 

regeneration of populations in the Central and Northern Appalachians (Nowacki et al. 

2010). Southern Appalachian red spruce are slightly declining in terms of growth in some 

areas and increasing in growth in other areas (Nowacki et al. 2010, Goelz 1999). The 

current regeneration trends make red spruce an ideal candidate for restoration 

management. 

 Since stabilizing from the declines of the 1960’s-1980’s, red spruce populations 

have been the subject of restoration efforts, particularly in the Central and Southern 

Appalachians. Growth simulations indicate that canopy thinning and small gap creation 

could double red spruce basal area within 50 years in West Virginia stands (Rentch et al. 

2007, Rentch et al. 2010). Further, canopy thinning treatments resulting in increased 

understory light levels of up to 42% lead to significantly higher DBH growth and height 

increase in red spruce saplings and small trees when compared to controls (Rentch 2016). 
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Several predictive models have been used to elucidate red spruce restoration potential and 

to prioritize stands for management in West Virginia and the Central Appalachians 

(Nowacki and Wendt 2013, Beane 2010, Beane et al. 2013, Thomas-Van Gundy and 

Sturtevant 2014, Walter et al. 2017). HSM’s implemented for West Virginia red spruce 

stands disagreed on the primary drivers of red spruce distribution. Nowacki and Wendt 

(2013) identified elevation, depth to water table, mean annual precipitation, and growing 

degree days as distinctly important variables, whereas Beane et al. (2013) identified 

maximum temperature of the warmest month and minimum temperature of the coldest 

month as distinctly important.  Both models failed to exclude highly correlated 

environmental variables (e.g. temperature-related variables and elevation) which can 

cause multicollinearity issues in models. Multicollinearity in ENMs can influence the 

importance of variables (perhaps explaining discrepancies between studies) and can 

constrain predictions across time to correlation structures which may not remain constant 

over time (Guisan et al. 2017). Besides strictly mapping current distributions, ENMs have 

also been used to explore population specific niches and potential future distributions of 

red spruce. 

 In the Great Smoky Mountain National Park, ENMs were employed to improve 

the understanding of red spruce growth trends and distribution at different elevations 

(Koo et al. 2011). Walter et al. (2017) estimated the historical distribution of red spruce 

in order to create a suitability index for the central Appalachian Mountains and projected 

the effects of climate change on stands by the year 2100. The fundamental environmental 

drivers of red spruce distribution are still yet to be clearly identified. The relationship 

between increasing temperatures and red spruce distribution remains unclear. Modeling 
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the effects of climate change on red spruce distribution at more frequent time intervals 

may yield further insight into the relationship between temperature and red spruce 

distribution (Walter et al. 2017).  Virginia red spruce exist in varied habitats and have an 

island-like distribution due to the unique physiography of the Ridge and Valley province 

but lack any state specific distribution or habitat suitability models. 

 The aim of my research is to elucidate the current restoration potential of red 

spruce in Virginia and investigate how climate change will affect this potential in the 

future. In order to address these goals, several objectives were established:  

1)  Model the current distribution of red spruce in Virginia using a species 

distribution model. 

 Current red spruce distribution is predicted to be primarily driven by maximum 

summer temperatures and average annual precipitation. 

2)  Model habitat suitability (the potential distribution) for Virginia red spruce and 

compare this data to the current distribution to determine the spatial extent to which red 

spruce can regenerate. 

 Potential red spruce suitable habitat is predicted to be greater than actual occupied 

habitat (i.e. the current distribution) due to recent anthropogenic disturbance.  

3) Survey the red spruce populations of Virginia to elucidate the trends of red spruce 

regeneration (interior vs. exterior stand regeneration and elevation-related regeneration). 

 Red spruce is predicted to be regenerating in the majority of stands because of the 

reduction of air pollution stressors and warming temperatures which have not yet passed 
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a damaging threshold. Further, it is predicted that red spruce stands are expanding beyond 

current red spruce canopy cover, particularly at higher elevations. 

4) Project how climate change will affect the suitable habitat available to red spruce 

in the future.  

 Climate change is expected to decrease red spruce suitable habitat by the year 

2040 at the lower elevational extents of its distribution due to these lower elevations 

being exposed to 33ºC temperatures. By 2100, total extirpation of suitable habitat is 

predicted as even the highest elevations in Virginia are expected to experience dramatic 

warming.  

METHODOLOGY 

Study Area: 

 The Blue Ridge Mountains and Ridge and Valley province of Virginia were 

sampled for presence and absence points, with the state of Virginia being used as the 

spatial environment in which predictions were made. A presence point indicates the 

occurrence of red spruce at a given set of coordinates whereas an absence indicates the 

lack of occurrence at the location. The Blue Ridge and Ridge and Valley span the entire 

longitudinal extent of Virginia with presence and absence points being collected between 

36° 36’ 16” N and 38° 37’ 45” N. 

 Habitat suitability models (HSMs) and species distribution models (SDMs) were 

used to address the first three aforementioned objectives. Multi-model inference (MMI), 

also known as ensemble modeling, was used by applying this approach both within and 

between algorithm types. MMI enables variance reduction in predictions by creating a 
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single consensus model based on the averages of constituent models. The result is a much 

more informed and reliable model. The R package biomod2 (v3.5.1; Thuiller et al 2009) 

was used to facilitate ensemble modeling predictions. The primary benefit of ensemble 

modeling is that it accounts for the variance present within and between algorithm types 

(Guisan et al. 2017).   

Species Presence, True-Absence, and Pseudo-Absence Data: 

 Presence and absence points act as response variables in ENMs. Plots previously 

identified by the Virginia Department of Conservation and Recreation Division of 

Natural Heritage (VADCRDNH) to contain red spruce were used to locate and mark 

presence and absence points with a GPS device (GARMIN GPSmap 62st). Older range 

maps were also used as a guide to find red spruce populations (Blum, 1990). Pseudo-

absence points are randomly generated absence points which serve to inform models of 

the full environmental gradient in the study area. Presence and true absence points were 

collected throughout western Virginia. A total of 338 presence points and 169 true 

absence points were taken. The number of  presence points was greater than ten times the 

number of environmental variables included (n = 4) in models, but not less than 50  

presence points total in order to avoid complications from sample size effects (Hernandez 

et al 2006, Wisz et al 2008).  True absence points were purposefully collected in 

proximity to red spruce presence points or in areas suitable for red spruce growth to 

increase model discrimination. True absences were only included in the SDM to increase 

discrimination within models so that red spruce probability of occurrence (i.e. current 

distribution) would be more closely predicted rather than suitable habitat. An additional 

831 pseudo-absence points (totaling to 1,000 overall absence points) were generated in 
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the SDM so as to not bias models by only sampling in proximity to red spruce (Wisz and 

Guisan 2009). For each generation of pseudo-absence points (one for the SDM and one 

for the HSM), three random samples were produced and used in models to reduce the 

influence of potentially skewed pseudo-absence sampling (Figure 1). The HSM and 

climate predictions lacked any true absence points and exclusively used three randomly 

generated iterations of 1,000 pseudo-absence points.   
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Figure 1 Presence, true-absence, and pseudo-absence (PA) samples (1 – 3) for species 

distribution models (SDMs) and habitat suitability models (HSMs). 

Environmental Variable Selection: 

 A set of  93 environmental variables provided by VADCRDNH served as the 

predictor variables in ENMs (Table A1). These environmental variables had a 30 m x 30 
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m resolution and were projected in Albers Conical Equal Area in order to preserve the 

accuracy of area calculations. The environmental variables were assessed to eliminate 

redundant metrics (e.g. 1, 10, and 100 cell means of the same variable) whereby the 

intermediate values (i.e. 10 cell means) were kept for consideration. In order to reduce 

the risk of multicollinearity and identify the primary drivers of red spruce distribution, 

several steps were taken as a variable pre-selection process. First, environmental 

variables were classified as either proximal or distal. Proximal variables were those 

variables which more directly influence the physiology of the species (e.g. temperature), 

whereas distal variables had an indirect effect on red spruce physiology (e.g. elevation) 

(Figure 2). The most distal variables were eliminated from consideration so that the 

fundamental physiological drivers of red spruce distribution could be better elucidated. 

The remaining variables were then split into four categories: elevation derivatives, 

geology, precipitation, and temperature. Within each category relative importance was 

calculated using the importance function in biomod2. From each category only the most 

important variable was selected for use in models, keeping with the principle of 

parsimony. Finally, a variance inflation factor analysis (VIF test) was conducted on the 

remaining variables. A threshold of VIF score < 10 was defined, whereby any variables 

which exceed a score of 10 were considered too multicollinear and were therefore 

eliminated from consideration. 
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Figure 2 A spectrum describing the types of variables that may be considered proximal 

or distal. Temperature is proximal as it has a direct physiological effect on species, 

whereas elevation exclusively has indirect effects on species mediated by other, more 

proximal variables. 

Climate Predictions: 

 It is common practice to project HSM’s in time to investigate predicted climate 

change’s effect on a species’ suitable habitat (Thuiller 2005,  Iverson et al 2008, Iverson 

et al 2009 Normand et al 2013, Sultana et al 2017). Projecting the effects of climate 

change enables land managers to make long-term plans in order to best mitigate the risk a 

species faces with climate change. Six ensemble models were constructed to simulate the 

effects of climate change on red spruce using the Canadian Earth System Model version 5 

(CANESM5; Swart et al 2019). Three climate change scenarios shared socioeconomic 

pathway 126 (SSP126 = < 2°C warming), shared socioeconomic pathway 245 (SSP245 = 

< 3°C warming), and shared socioeconomic pathway 370 (SSP370 = < 4°C warming) 

were used to predict climate change effects on red spruce suitable habitat 

(http://worldclim.org). An ensemble model was generated for two of the predicted 

climate normal periods in the three scenarios, representing averages from 2021 – 2040 

and 2081 - 2100. The HSM was used as the reference model for climate predictions with 
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presence and pseudo-absence points and all non-climatic variables being held constant 

across all climate models. Temperature and precipitation variables were altered according 

to the predicted climate normals for each time step. All climate prediction data was 

obtained from worlclim.org. Climate prediction rasters were imported into ArcGIS Pro v 

– (ESRI, Redlands, CA), where they were cropped to the extent of Virginia, resampled to 

a 30 m x 30 m resolution using bilinear sampling, and projected to Albers Conical Equal 

Area in order to match the raster data obtained from VADCRDNH. Species range change 

(SRC) is a function of the biomod2 package that allows for a calculation to be made of 

the percent area increase or decrease of habitat suitability given a climate change 

scenario. This is done by first converting the current HSM, as well as the climate 

prediction HSMs into a binary format where zero equals unsuitable habitat and one 

equals suitable habitat. The binary climate models are then individually overlayed on the 

current HSM binary model after which each cell in the respective model’s raster 

environment is classified as stable suitable (1 to 1), stable unsuitable (0 to 0), suitable to 

unsuitable (1 to 0), or unsuitable to suitable (0 to 1) which yields a percent change for 

each classification. SRC was used to track trends exhibited by red spruce habitat 

suitability in response to climate change scenarios. 

Algorithm Parameterization: 

 Four modeling algorithms were used in each modeling objective in this study: 

generalized linear models (GLMs), generalized additive models (GAMs), randomforests 

(RFs), and boosted regression trees, referred to as generalized boosted models (GBMs) in 

biomod2.  GLMs are parametric logistic regression algorithms in which assumptions 

must be made about the shape of response curves prior to running models (Guisan et al. 
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2017). The GLMs used in this study were parameterized to have polynomial terms and an 

interaction level of one in order to account for first and second order effects, as well as 

potential interaction unaccounted for in the VIF test. GLM equations were automatically 

generated using a stepwise procedure that evaluates and compares the Akaike 

information criterion score (AIC) of each equation to generate most parsimonious 

algorithm. GAMs primarily differ from GLMs in that they are semi-parametric, meaning 

they do not require any assumptions about the shape of response curves prior to running 

models. Using the mgcv package (v1.8-33), GAMs made use of smoothing splines which 

fit response curves to data without a priori postulation of the shape of the response curve 

being necessary (Wood 2006). Equations for GAMs were generated automatically using a 

similar stepwise procedure as the GLMs where AIC scores were used to identify the most 

parsimonious equations. RFs are algorithms that use recursive partitioning (i.e. decision 

trees) in order to relate presence and absence data to environmental variables. Rather than 

generating one single tree, which is a high variance process, RFs generate multiple trees 

by randomly resampling a portion of the original dataset and then averaging the resulting 

trees, a statistical method known as bootstrapping (Breiman 2001). For each individual 

RF algorithm 500 trees were generated via bootstrapping. GBMs likewise take a 

recursive partitioning approach, however, GBMs use an iterative process where new trees 

are generated and fitted to the residuals of the previously generated trees, a statistical 

method known as boosting (Ridgeway, 1999). To determine the ideal number of trees to 

use for GBMs a “pruning” method was used. This method generates an enormous number 

of trees (e.g. 10,000 in this case), then measures at what number of trees model 

performance no longer improves. GBMs achieved maximum performance around 6,000 
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trees. All other aspects of individual algorithm parameterization were left to the default 

settings in biomod2 (v3.5.1). 

Ensemble Model Parameterization: 

 Eight total ensemble models were generated in this study accounting for the 

SDM, HSM, and six climate models. Ensembles used a cross-validation procedure where 

three evaluation runs of the models were conducted, with each model run being calibrated 

using a randomly selected subset of 80% of data which was then evaluated on the 

remaining 20% of data. Each ensemble also ran three additional times for each of the 

three pseudo-absence selections. Therefore, each individual ensemble model contained 

36 different individual models (4 algorithms x 3 evaluation runs x 3 pseudo-absence 

selections). Within each ensemble model three types of averages were calculated. The 

first type of average was a simple mean of predictions across the 36 individual models. 

The second type of average was weighted based on model evaluation scores, whereby a 

higher evaluation score led to a corresponding high weight when calculating averages. 

The final average was a committee average, which uses binary prediction maps from each 

of the 36 individual models generated by assessing the highest quality predictions as the 

basis for calculating averages. The mapped prediction values from the representative 

HSM ensemble models were binned using the following habitat classification scale in 

order to better visualize map projections: unsuitable 0.00 – 0.20; poor 0.21 – 0.40; fair 

0.41 – 0.60; good 0.61 – 0.80; excellent 0.81 – 1.00. The SDM ensemble map predictions 

were binned using the same intervals, however, values represent a probability of 

occurrence as opposed to habitat quality: not present 0.00 – 0.20; low occurrence 
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probability 0.21 – 0.40; intermediate occurrence probability 0.41 – 0.60; good occurrence 

probability 0.61 – 0.80; high occurrence probability 0.81 – 1.00. 

Model Evaluations: 

 Models were evaluated based on the true skill statistic (TSS) and area under the 

receiver operating characteristic curve (AUC of the ROC or simply ROC). The TSS is a 

model evaluation based on  Cohen’s kappa, however, the TSS is adjusted so that 

prevalence of the species no longer affects evaluation scores as is the case with kappa. 

TSS and kappa both fall into the calibration category of evaluation metrics, meaning they 

measure a model’s ability to correctly predict the conditional probability of presence, 

given the condition of the environmental variables. The ROC, on the other hand, is a 

discrimination metric, meaning it measures the ability of a model to distinguish between 

occupied and unoccupied sites (Phillips and Elith 2010). Because TSS and ROC are 

measuring different aspects of model performance, it is useful to consider both when 

deciding which individual models should be included in an ensemble. TSS scores range 

from zero to one, with the following scale used to assess model performance: poor 0.00 – 

0.20; fair 0.21 – 0.40; moderate 0.41 – 0.60; substantial 0.61 – 0.80; excellent 0.81 – 1.00 

(Landis and Koch 1977). ROC scores likewise range from zero to one with a slightly 

different evaluation scale: counter-predictions ROC < 0.50; fail 0.51 – 0.60; poor 0.61 – 

0.70;  fair 0.71 – 0.80; good 0.81 - 0.90;  excellent 0.91 – 1.00 (Guisan et al. 2017).  A 

threshold of TSS > 0.80 and ROC > 0.90 was defined whereby all individual models 

which fell under these limits were eliminated from ensemble predictions. Ensemble 

models were evaluated based on the TSS as well as the sensitivity (rate of correctly 

identifying presence/suitable habitat) and specificity (rate of correctly identifying 
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absence/unsuitable habitat) of models. Of the three ensemble averages calculated, the 

type with the highest sensitivity and specificity scores were selected as representatives. 

Response curves were generated for each of the environmental variables in the SDM and 

HSM using the evaluation strip method in biomod2. The evaluation strip method 

produces response curves by generating a set of predictions by a model where only one 

environmental variable is allowed to vary, and the remaining environmental variables are 

held constant (Elith et al 2005). 

Regeneration Surveys: 

 While SDMs and HSMs provide practically useful spatial predictions, they do not 

include data on the regeneration trends of the modeled species. The regeneration trends of 

a species were used in concert with suitability and distribution models to determine the 

restoration potential of the species. Therefore, this study aims to complement the ENMs 

with data on the regeneration trends that are present in red spruce populations. 

 The relationship between elevation and regeneration as well as comparisons of 

regeneration in the interior versus exterior portions of red spruce stands were measured 

by a series of plots. In order to be considered for the regeneration survey, a red spruce 

stand must have had 10 reproductive adults (as determined by cone presence on trees or a 

DBH > 30 cm) present within a 30 m radius. Stands which had less than 10 reproductive 

adults within a 30 m radius often were too small or mixed to be sampled. Candidate sites 

were visited in most regions where red spruce in known to occur in Virginia, including 

Shenandoah National Park, the Shenandoah Mountains, Highland County, Beartown 

Wilderness Area, Mountain Lake Wilderness Area, Grayson Highlands State Park, 

Mount Rogers, and Whitetop Mountain.  Four sites across Virginia were selected to be 
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surveyed at Highland County (n = 2), Mount Rogers (n = 1), and Whitetop Mountain (n = 

1) (Figure 3). At each site an initial 40m long transect was randomly placed 

perpendicular to the edge of a red spruce stand so half of the transect’s length was in the 

interior of the forest and the other half was in the exterior of forest (Figure 4). From this 

initial transect a nested plot design was made. Within 1 meter of the transect line, all red 

spruce seedlings (DBH < 1 cm) were counted. Within 3 meters of the transect line, all red 

spruce saplings (DBH <  15 cm) were counted.  Within 10 meters of the transect line all 

adult trees (DBH > 15 cm) were counted (Figure 4). From the initial nested plot, the edge 

of the forest was followed whereby an additional 11 plots were placed at least 70 meters 

apart from each other. The elevation was recorded at the center of each plot. In RStudio 

(v1.3.1093) Kruskal-Wallis and Mood’s Median tests were conducted to compare (1) 

exterior vs. interior counts within life-stage cohorts, (2) seedling exterior vs. interior 

counts by site, and (3) seedling to sapling count ratios by site and position. A linear 

regression analysis was also conducted to determine the relationship between 

regeneration at each life-stage and elevation. 
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Figure 3 Satellite images of  A) Central Appalachian regeneration survey sites at 

Highland County grassy bald (HCGB) and Highland County stand (HCSD) and B) 

Southern Appalachian survey sites at Whitetop Mountain (WTP) and Mount Rogers 

(MTR). 

 

Figure 4 Regeneration survey design; a) regeneration survey plots along the edge of a red 

spruce stand (in green) and b) nested plot design for sampling different stage-cohorts. 
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RESULTS 

Environmental Variable Selection: 

 The most important environmental variables from the elevation derivatives, 

geology, precipitation, and temperature categories were maximum temperature of the 

warmest month (MxTpWrmMth), May precipitation (MayPrecip), total insolation derived 

from direct and diffuse, but not reflected, radiation for the summer solstice (radsumsol), 

and distance to acidic shale bedrock (geo200). The generalized linear model (GLM) 

importance values were ignored for average calculations in the temperature and geology 

categories due to some variables being excluded from equations resulting in values of 

zero. Other algorithms featured zero values for variable importance, however these zero 

values resulted from rounding rather than exclusion from equations and were therefore 

considered when calculating averages across algorithms. Both MxTpWrmMth and 

minimum diurnal range (MnDiurnRng) had an average importance of 0.30, however, 

MxTpWrmMth was selected as it is the more proximal variable of the two (Table A2). A 

variance inflation factor analysis (VIF) test indicated that there were no multicollinearity 

issues between any of the four variables (Table 1).  Across the species distribution 

models (SDMs) and habitat suitability models (HSMs) MxTpWrmMth was the most 

important variable followed by either MayPrecip or geo200 depending on the model, and 

lastly radsumsol (Table 2). 

 

 

 

 



   23  

 

 

Table 1 Variance inflation factor analysis (VIF) scores of the four environmental 

variables included in models:  average May precipitation (MayPrecip), maximum 

temperature of the warmest month, insolation during the summer solstice (radsumsol), 

and distance from acidic shale bedrock (geo200). 

Variable VIF score 

MayPrecip 2.619012 

MxTpWrmMth 1.631448 

radsumsol 1.682212 

geo200 1.936584 

 

 

Table 2 Raw mean importance in species distribution models (SDMs) and habitat 

suitability models (HSMs) of utilized environmental variables: average May precipitation 

(MayPrecip), maximum temperature of the warmest month, insolation during the summer 

solstice (radsumsol), and distance from acidic shale bedrock (geo200). 

Variable Model 

Type 

GLM GAM RF GBM Mean 

MxTpWrmMth SDM 0.91 0.57 0.77 0.95 0.80 

MayPrecip SDM 0.06 0.47 0.10 0.05 0.17 

geo200 SDM 0.22 0.22 0.08 0.02 0.14 

radsumsol SDM 0.08 0.03 0.06 0.03 0.05 

MxTpWrmMth 

MayPrecip 

geo200 

radsumsol 

HSM 

HSM 

 

HSM 

 

HSM 

0.86 

0.07 

 

0.29 

 

0.01 

0.81 

0.30 

 

0.20 

 

0.02 

0.76 

0.08 

 

0.06 

 

0.00 

0.96 

0.01 

 

0.00 

 

0.00 

0.85 

0.11 

 

0.14 

 

0.01 
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Species Distribution Models: 

 With the exception of two generalized linear models (GLMs), all individual 

models in the SDM ensemble had a true skill statistic score (TSS) > 0.80 and an area 

under the receiver operating characteristic curve score (ROC) > 0.90, indicating excellent 

predictions. Two GLMs had a 0.80 > TSS > 0.60 and a 0.90 > ROC > 0.80 and were 

therefore excluded from ensemble predictions (Table A3). Randomforests (RFs) had the 

highest overall TSS and ROC scores, followed by generalized boosted models (GBMs), 

generalized additive models (GAMs), and GLMs (Figure 5). Response curves showed 

strong agreement both within and across algorithm type (Figure 6). For MxTpWrmMth, 

probability of occurrence was highest at approximately 24°C and decreased with 

increased temperature with a severe decline to a probability of zero occurring around 

26°C across all models. At temperatures below 22°C, probability of occurrence dropped 

precipitously. Response to MayPrecip was positive as precipitation increased. A 

noticeable increase in probability of occurrence occurred around 110 mm and typically 

peaked with the highest precipitation amounts of about 200 mm. geo200 typically only 

featured perturbations in response at distances between zero and 5,000 meters, although 

the extent and location of perturbation varied greatly between algorithms. Generally, 

probability of occurrence decreased as distance increased, but quickly rebounded at 

approximately 2,500 meters. Radsumsol response plots showed a negative relationship 

between occurrence probability and insolation. Probability of occurrence typically 

decreased between 30 and 35 kilowatt hours per square meter (kWh/ m2) (Figure 6).  

SDM ensemble predictions were excellent with TSS and ROC scores > 0.90. The 
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committee average was selected to be the representative model, as it had the highest 

sensitivity and specificity amongst the ensemble predictions (Figure 7, Table 3). 

 

Figure 5 Species distribution model (SDM) true skill statistic (TSS) and area under the 

receiver operating characteristic curve (ROC) scores by algorithm type; generalized 

additive model (GAM), generalized boosted model (GBM), generalized linear model 

(GLM), and Randomforest (RF). 
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Figure 6 Species distribution model response in terms of probability of red spruce 

occurrence (y-axes) for each environmental variable gradient (x-axes) in a) generalized 

linear models, b) generalized additive models, c) generalized boosted models, and d) 

Randomforest models. 
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Figure 7 Committee average ensemble species distribution model map projection; 

probability of occurrence is displayed from 0 (black) – 1 (white) with gray indicating 

intermediate values. 

Table 3 Species distribution ensemble models evaluations including overall model 

evaluations (testing data), integerized prediction probability cutoff values for constructing 

binary maps (cutoff), rate of correctly identifying presence (sensitivity), and rate of 

correctly identifying absence (specificity). Scores arranged by kappa, true skill statistic 

(TSS), and area under the receiver operating characteristic curve (ROC). 

Ensemble 

Model 

Evaluation 

Metric Testing data Cutoff Sensitivity Specificity 

Raw 

Average KAPPA 0.938 779.0 93.195 99.437 

 TSS 0.957 679.0 97.041 98.685 

 ROC 0.988 626.5 97.633 98.159 

Weighted 

Average KAPPA 0.938 711.0 96.154 99.023 

 TSS 0.958 681.0 97.041 98.723 

 ROC 0.988 624.5 97.633 98.159 

Committee 

Average KAPPA 0.957 929.0 95.858 99.549 

 TSS 0.963 869.0 97.041 99.286 

 ROC 0.999 867.5 99.041 99.286 
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Habitat Suitability Models: 

 All individual models in the HSM ensemble had a TSS > 0.80 and ROC > 0.90, 

indicating excellent predictions. Two individual GAMs, GAMRun1PA2 and 

GAMRun3PA3, exhibited clear overfitting which occurs when a model fits exactly to the 

training data (Tables A4). The result of overfitting is a model which cannot make 

predictions beyond the scope of the training data and can cause map projections to be 

overly restrictive and nearly binary (Figure 8). TSS and ROC scores exhibited minimal 

variation between algorithms, with RFs having the highest overall scores (Figure 9) . 

Response curves show fairly strong agreement across algorithms, although some 

individual models within the GLM and GAM algorithms disagreed. In some of the GLM 

and GAM equations, certain environmental variables were deemed too unimportant to 

include, which results in a flat horizontal line across the entire extent of the 

environmental spectrum in response plots at a response value of 1.0. The RF response 

curves of the HSM are fairly similar to those seen in the SDM. The HSM GBM response 

curves for MxTpWrmMth are nearly identical to that of the SDM, however the response 

curves of the remaining three variables are notably muted in terms of perturbation 

compared to the SDM curves. Across all algorithms in the HSM, radsumsol generally 

lacks a decline in probability of occurrence at the upper extreme values as was observed 

with the SDM (Figure 10).  HSM ensemble predictions were excellent with TSS > 0.90. 

The committee average was selected to be the representative model, as it had the highest 

sensitivity and specificity (Figure 11, Table 4). A binary HSM map projection was 

generated from the non-binary committee average map projection using TSS scores 

whereby all cells with a TSS value greater than or equal to 960 were identified as suitable 
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habitat (1) and all values less than 960 were identified as unsuitable habitat (0) (Figure 

12, Table 4). 

Figure 8 Visual comparison of a nearly binary overfitted generalized additive model (top 

right) with a normally fit generalized linear model (bottom left) and randomforest model 

(bottom right) in southwestern Virgnia (top left); probability of suitable habitat is 

displayed from 0 (black) – 1 (white) with gray indicating intermediate values. 
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Figure 9 Habitat suitability model (HSM) true skill statistic (TSS) and area under the 

receiver operating characteristic curve (ROC) scores by algorithm type; generalized 

additive model (GAM), generalized boosted model (GBM), generalized linear model 

(GLM), and Randomforest (RF). 
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Figure 10 Habitat suitability model (HSM) response in terms of probability of suitable 

habitat (y-axes) for each environmental variable gradient (x-axes) in a) generalized linear 

models, b) generalized additive models, c) generalized boosted models, and d) 

Randomforest models. 



   32  

 

 

Figure 11 Committee average ensemble habitat suitability model map projection; 

probability of suitable habitat is displayed from 0 (black) – 1 (white) with gray indicating 

intermediate values. 

Table 4 Habitat suitability ensemble models evaluations including overall model 

evaluations (testing data), integerized prediction probability cutoff values for constructing 

binary maps (cutoff), rate of correctly identifying suitable habitat (sensitivity), and rate of 

correctly identifying unsuitable habitat (specificity). Scores arranged by kappa, true skill 

statistic (TSS), and area under the receiver operating characteristic curve (ROC). 

Ensemble 

Model 

Evaluation 

Metric Testing data Cutoff Sensitivity Specificity 

Raw 

Average KAPPA 0.990 893.0 99.408 99.867 

 TSS 0.996 797.0 100.000 98.567 

 ROC 1.000 797.0 100.000 98.567 

Weighted 

Average KAPPA 0.990 894.0 99.867 99.867 

 TSS 0.995 798.0 100.000 98.533 

 ROC 1.000 802 100.000 99.567 

Committee 

Average KAPPA 0.993 960.0 99.704 99.9 

 TSS 0.996 960.0 99.704 99.9 

 ROC 1.00 958.0 99.704 99.9 
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Figure 12 Committee average ensemble habitat suitability model map projection 

transformed to a binary format where black (0) is unsuitable habitat and white (1) is 

suitable habitat. 

Species Distribution Models versus Habitat Suitability Models: 

 For both the SDM and HSM the 0.0 – 0.2 bins accounted for the most area when 

compared to the other bins (Table 5). This represents the fact that the vast majority of 

area in Virginia is not occupied by and is unsuitable for red spruce. The SDM accounts 

for a much greater area in the 0.2 – 0.4 bin compared to the HSM area. In the 0.4 – 0.6 

and 0.6 – 0.8 bins, areas are relatively even with the SDM having a slightly greater 

number of hectares in both instances. In the 0.8 – 1.0 bin the HSM has a much greater 

area when compared to the SDM (Figure 13). A visual comparison of the SDM and HSM 

in southwestern Virginia shows the increased discriminatory ability of the SDM, while 

both models are able to identify and agree on broadly unoccupied/unsuitable habitat 

(Figure 14). 
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Table 5 Area (in hectares) occupied by each probability bin between the species 

distribution model (SDM) and habitat suitability model (HSM). 

Bin SDM Area (ha) HSM Area (ha) 

0.0 – 0.2 11271100.32 11269827.45 

0.2 – 0.4 42422.49 29505.96 

0.4 – 0.6 30964.50 24998.04 

0.6 – 0.8 28529.19 29073.60 

0.8 – 1.0 44040.51 63651.96 

 

Figure 13 Comparison of areas occupied by each probability bin in the ensemble species 

distribution model (SDM; dark gray) and ensemble habitat suitability model (HSM; light 

gray). 
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Figure 14 Visual comparison of satellite imagery (top right), the ensemble species 

distribution model (SDM; bottom left), and ensemble habitat suitability model (HSM; 

bottom right).  

Regeneration Surveys: 

 Across site, significant differences were only seen between seedling counts  (p = 

0.04908) (Figure 15). However, a pairwise analysis within seedling counts across sites 

revealed no significant differences between the Highland County grassy bald site 

(HCGB) and the Whitetop Mountain site (WTP) (p = 0.08). The sapling (p = 0.3269) and 

adult (p = 0.3109) cohorts showed no significant differences across sites. Summed counts 

across all cohorts showed no significant differences (p = 0.06404) (Figure 15). 
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Figure 15 Counts across sites in seedlings (Kruskal-Wallis, p = 0.04908; top left), 

saplings (Mood’s Median Test, p = 0.3269; top right), adults (Kruskal-Wallis, p = 

0.3109; bottom left), and sum totals across cohorts (Mood’s Median Test, p = 0.06404; 

bottom right). Site names from left to right in each graph; Highland County Grassy Bald 

(HCGB), Highland County Stand (HCSD), Mount Rogers (MTR), Whitetop Mountain 

(WTP). 

 Interior red spruce counts were significantly higher in the adult (p < 0.0001) and 

sapling (p = 0.03) cohorts when compared to their respective exterior cohort counts, but 

there was no significant difference in the seedling cohort (p > 0.1; Figure 16). Seedling 

counts were analyzed by site and stand position (interior vs. exterior) to further 

investigate the lack of difference in the seedling cohort. Comparison between seedling 

counts and overall site and position indicate significant differences (p = 0.01794). 

However, pairwise comparisons of seedling counts by site and position revealed no 
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significant differences within or between sites (p >  0.05) (Figure 17). While no 

significant differences were present in seedlings by site and position, WTP interior has a 

considerably greater median than all other sites and positions and HCGB exterior has a 

slightly greater median (median = 500)  than HCGB interior (median = 0) (Figure 17).  

Figure 16 Counts by cohorts and position. Significant differences within cohort are 

denoted by * in adults (p < 0.0001) and saplings (p = 0.03). 
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Figure 17 Seedling counts by site and position with significant differences; Significant 

differences exist when comparisons are made with the overall dataset (p = 0.01794), 

however no pairwise significant differences exist (p> 0.05). Site names from left to right 

in each graph; Highland County Grassy Bald (HCGB), Highland County Stand (HCSD), 

Mount Rogers (MTR), Whitetop Mountain (WTP). 

 There were no significant differences in the seedling to sapling ratios across sites 

and position (p > 0.1). All median ratio values were < 3 (Figure 18).  Seedling and 

sapling counts were similar to that of Nowacki et al (2010) conducted in the Central and 

Southern Appalachian Mountains (Table 6). No strong relationships were found between 

seedlings and elevation (p = 0.0361, R2 = 0.03576 ), saplings and elevation (p = 0.0325, 

R2 =  0.03758), adults and elevation (p = 0.7903, R2 = -0.0089874), or total red spruce 

counts and elevation (p = 0.0158, R2 = 0.05045 ) (Figure 19). 

 



   39  

 

 

Figure 18 Seedling to sapling ratios by site and position. Site names from left to right in 

each graph; Highland County Grassy Bald (HCGB), Highland County Stand (HCSD), 

Mount Rogers (MTR), Whitetop Mountain (WTP). 

Table 6 Comparisons of average seedling and sapling counts from this study’s sites 

(HCGB = Highland Count grassy bald, HCSD = Highland County stand in this study, 

MTR = Mount Rogers, WTP = Whitetop Mountain) and values from Nowacki et al 

(2010) arranged by Appalachian region. 

Region Site and Cohort Study Individuals 

per hectare 

Literature 

Individuals per 

hectare 

Central 

Appalachians HCGB Seedlings 583 8713 

 HCGB Saplings 563 563 

 HCSD Seedlings 1208 8713 

 HCSD Saplings 632 563 

Southern 

Appalachians MTR Seedlings 1208 1599 

 MTR Saplings 542 376 

 WTP Seedlings 2063 1599 

 WTP Saplings 1347 376 
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Figure 19 Correlations between elevation in meters and seedling counts, sapling counts, 

adult counts, and sum counts across cohorts. 

Climate Models: 

 All climate change scenarios for the 2021 – 2040 period showed a dramatic 

decrease in suitable habitat with  shared socioeconomic pathway 126 (SSP126 = < 2°C 

warming by 2100) maintaining the most suitable habitat, shared socioeconomic pathway 

370 (SSP370  = < 4°C warming by 2100) having the least suitable habitat, and shared 

socioeconomic pathway 245 (SSP245 = < 3°C warming by 2100) having an intermediate 

amount of suitable habitat (Table 7). The only remaining suitable habitat by 2040 in all 

three scenarios was contained to the Mount Rogers area representing the highest 

elevations in Virginia (Figure 20). A 98.095%, 98.699%, and 99.899% decrease from 
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current suitable habitat occurred in the SSP126, SSP245, and SSP370 scenarios 

respectively (Table 8). Maximum temperatures of the warmest month at recorded 

presence points increased substantially across all scenarios. SSP126 had the smallest 

increase in temperatures followed by SSP245 then SSP370. May precipitation amounts 

decreased from their current amounts across all scenarios with greater and nearly equal 

decreases between SSP245 and SSP370 (Figure 21). 

Table 7 Comparison of area (in hectares) occupied by each probability bin for shared 

socioeconomic pathway 126 (SSP126), shared socioeconomic pathway 245 (SSP245), 

and shared socioeconomic pathway 370 (SSP370). 

Probability Bin SSP126 (ha) SSP245 (ha) SSP370 (ha) 

0.0 – 0.2 11060087.49 11060987.49 11062004.58 

0.2 – 0.4 208.53 256.59 82.44 

0.4 – 0.6 188.01 98.01 47.97 

0.6 – 0.8 277.74 233.55 88.92 

0.8 – 1.0 1559.88 743.85 97.74 
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Figure 20  Visual comparison of red spruce suitable habitat by 2040 in shared 

socioeconomic pathway 126 (SSP126; top right), shared socioeconomic pathway 245 

(SSP245; bottom left), and shared socioeconomic pathway 370 (SSP370; bottom right).   

Table 8 Changes in suitable habitat by 2040 given shared socioeconomic pathway 126 

(SSP126), shared socioeconomic pathway 245 (SSP245), and shared socioeconomic 

pathway 370 (SSP370).  

Scenario Loss (%) Gain (%) Net Loss (%) 

SSP126 98.439 0.344 98.095 

SSP245 98.741 0.042 98.699 

SSP370 99.899 0 99.899 
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Figure 21  2040 Maximum temperatures of the warmest month currently and across 

given shared socioeconomic pathway 126 (SSP126), shared socioeconomic pathway 245 

(SSP245), and shared socioeconomic pathway 370 (SSP370) (left) and May Precipitation 

currently and across SSP126, SSP245, and SSP370 (right).  

 By 2100, all climate change scenarios predicted an elimination of red spruce 

suitable habitat from Virginia (Table 9). Remarkably, the 2100 median maximum 

temperature of the warmest month in the SSP370 scenario surpasses 33°C at recorded red 

spruce occurrences. 2100 May precipitation amounts showed a similar pattern in decline 

as 2040 May precipitation, however, precipitation amounts are higher by 2100 compared 

to 2040 (Figure 21; Figure 22). 

Table 9 Comparison of area (in hectares) occupied by each probability bin for shared 

socioeconomic pathway 126 (SSP126), shared socioeconomic pathway 245 (SSP245), 

and shared socioeconomic pathway 370 (SSP370). 

Probability Bin SSP126 (ha) SSP245 (ha) SSP370 (ha) 

0.0 – 0.2 11417057.01 11417057.01 11417057.01 

0.2 – 0.4 0 0 0 

0.4 – 0.6 0 0 0 

0.6 – 0.8 0 0 0 

0.8 – 1.0 0 0 0 
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Figure 22  2100 Maximum temperatures of the warmest month currently and across 

given shared socioeconomic pathway 126 (SSP126), shared socioeconomic pathway 245 

(SSP245), and shared socioeconomic pathway 370 (SSP370) (left) and May Precipitation 

currently and across SSP126, SSP245, and SSP 370 (right). 

DISCUSSION 

 This study elucidated the current restoration potential of red spruce and 

investigated how this potential may be altered by predicted climate change over the 

course of the 21st century. Current distribution and potential red spruce distribution were 

modeled separately to define the spatial extent to which red spruce can expand into. 

Forest surveys were conducted to assess the current state of red spruce regeneration. 

Ecological niche models (ENMs) were also used to project how mild and severe climate 

change scenarios would affect the habitat suitability of red spruce. Results indicate that 

red spruce has unoccupied suitable habitat available to expand into and is actively 

expanding into these spaces adjacent to existing red spruce stands. However, climate 
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change will likely have a strong, indirect negative effect on red spruce, regardless of the 

climate scenario. 

 As predicted, suitable habitat was greater than the current distribution of red 

spruce, as indicated by species distribution model (SDM) and habitat suitability model 

(HSM) area comparisons (Figure 13). The trend of suitable habitat being greater than 

current distribution was generally true across all sites in Virginia. The contrast in 

distribution and habitat suitability is more than likely due to arrested regeneration as a 

results of acute anthropogenic disturbance events since the late 1800’s (Pielke 1981, 

Blum 1990, Griscom and Griscom 2011, Hamburg and Cogbill 1984, Bliss and 

Vogelmann 1982). Consequently, it can be concluded that, in a spatial context, red spruce 

has a high restoration potential.  

 The forest surveys conducted to assess the regeneration patterns of red spruce in 

Virginia showed no significant differences between sites in terms of red spruce counts, 

with the exception of marginal significance in the seedling cohort (Figure 15). General 

patterns are, however, evident in the data. The Southern Appalachian sites at Mount 

Rogers (MTR; median = 275) and Whitetop Mountain (WTP; median = 400) generally 

had higher counts across all cohorts when compared to the Central Appalachian sites at 

the Highland County grassy bald (HCGB; median = 167 ) and Highland County stand 

(HCSD; median = 275). The WTP site had exceptionally high regeneration compared to 

other sites. Unique to WTP plots was a strong dominance by red spruce, with very few 

other tree species present in a large portion of plots. Therefore the high regeneration 

observed at WTP can most likely be ascribed to a dearth of competition for red spruce at 

this site. In contrast, MTR red spruce faced strong competition from balsam fir (Abies 
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balsamea) and fraser fir (Abies fraseri). HCGB and HCSD red spruce likewise existed in 

much more mixed stands with greater abundance of associated species such as yellow 

birch (Betula alleghaniensis), red maple (Acer rubrum), and Canadian hemlock (Tsuga 

canadensis). 

 Forest surveys also showed that red spruce is expanding into the additional 

unoccupied suitable habitat available to it (Table 6).As would be expected, red spruce 

seedling and sapling counts were generally higher in the interior (median = 667 seedlings 

and saplings per hectare) than in the exterior (median = 500 seedlings and saplings per 

hectare) of red spruce canopies (Figure 16). However, regeneration was shown to be 

occurring in the exterior of canopies. Further, red spruce is advancing in life stage as 

frequently in the exterior as within the interior of the stand (Figure 18). Such strong 

regeneration patterns are likely due to a number of relatively recent environmental shifts. 

The reduction of acid deposition in soils due to air pollution, as well as increases in 

atmospheric CO2 and temperature are the most likely explanatory variables for the 

observed regeneration trends (Mathias and Thomas 2018, Li et al. 2020).  While current 

models and regeneration trends indicate positive regeneration, climate projections predict 

a difficult future for red spruce. 

 A mild climate change scenario (< 2°C warming) socio-economic pathway 126 

(SSP126), an intermediate climate change scenario (< 3°C warming) socioeconomic 

pathway 245 (SSP245), and a severe climate change scenario (< 4°C  warming) socio-

economic pathway 370 (SSP370) were used to project how red spruce suitable habitat 

will be affected by climate change. In all three scenarios red spruce suitable habitat was 

diminished to near zero by 2040 and completely eliminated by 2100 (Table 7; Table 9). 
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However, the predicted elimination of suitable habitat is not the same as the extirpation 

of current red spruce stands in Virginia. Understanding HSM predictions and by 

extension climate model predictions is necessary to draw accurate conclusions about the 

future of red spruce in Virginia. 

 In this study the HSM used as the basis for climate projections exhibited a sharp 

decline in the probability of the occurrence of suitable red spruce habitat at 26°C in the 

maximum temperature of the warmest month (MxTpWrmMth) variable, as indicated by 

response curves (Figure 10). The absence of suitable habitat beyond a maximum 

temperature of 26°C is contrary to known physiological limitations of red spruce. In 

terms of maximum temperatures, red spruce becomes severely limited in its ability to 

regenerate around 33°C, as the seed viability is compromised at this temperature. 

However, recent studies have consistently shown adult red spruce growth to respond 

positively to increases in temperature, with stronger responses at the colder extents of its 

distribution, indicating cold-stress as an important limiting factor as opposed to heat-

stress (Mathias and Thomas 2018, Li et al. 2020). Furthermore, in this study red spruce 

regeneration quantified in field surveys was not found to be positively or negatively 

correlated with elevation, a strong correlate of temperature, indicating there is no 

evidence for temperature related physiological limits in Virginia populations at either 

elevational extent of the red spruce distribution (Figure 19). Because there is no evidence 

of abiotic environmental limitations present for red spruce in Virginia, the most likely 

alternative explanation for the 26°C maximum temperature threshold is biotic 

interactions. 
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  Murphy (1917) noted that red spruce occurred in the habitat that it did, not 

because it was particularly well adapted to it, rather because most other species were 

poorly adapted to that habitat. Many tree species common to the lower elevations of  the 

Appalachians like pines (Pinus spp.) and oaks (Quercus spp.) are poorly adapted to the 

relatively small number of growing degree days, shallow and acidic soils, or intense 

moisture found in red spruce habitat (Davis et al. 2017).  When compared to balsam fir, a 

species adapted to the cool and moist environments of the Appalachian Mountains, red 

spruce is outcompeted on a physiological basis (Dumais and Prevost 2008). Therefore the 

26°C threshold likely represents the point at which red spruce can be outcompeted by low 

elevation tree species, rather than a physiological limitation inherent to red spruce in 

responses to the abiotic environment. While the HSM provides data useful for elucidating 

the limitations of red spruce habitat at lower elevations, the unique approach of modeling 

distribution separately in the SDM allows further inferences to be made regarding the 

limitations of red spruce at its upper elevational extent. 

 A novel approach in ecological niche modeling was taken in which models were 

manipulated to predict current distribution (SDM) and potential distribution (HSM) 

separately, providing additional insight into the ecological challenges faced by red 

spruce. The inclusion of true absence points located in close proximity to presence points 

in the distribution model successfully caused a greater discrimination to occur in the 

SDM when compared to the HSM. The resulting SDM was able to identify more nuanced 

relationships between presence points and their environment when compared with the 

HSM. For example, the SDM was able to detect a decline in the probability of occurrence 

at temperatures below approximately 23°C whereas the HSM response curves did not 
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portray this decline (Figure 6 and Figure 10). This decline at the lower extent of the 

maximum temperatures of the warmest month (MxTpWrmMth) likely reflects an 

increase in competition for red spruce at the colder extremes. Cold-adapted tree species 

such as balsam fir and fraser fir provide competition for red spruce at elevations where 

few other species can thrive (Dumais and Prevost 2008). An alternative, but not mutually 

exclusive explanation for the decline in the probability of occurrence at the lowest 

maximum temperatures could be cold stress. This alternative explanation is much less 

likely as red spruce has been found to exist in environments with maximum temperatures 

of just 21°C while decline in probability of occurrence begins as maximum temperatures 

decrease below 23°C (Blum 1990, Figure 6).  

 Interestingly, SDMs had noticeably lower true skill statistic (TSS) and area under 

the receiver operating characteristic curve (ROC) scores than those of the HSMs (Figure 

5; Figure 9). Such high evaluation scores in the HSM can indicate that overfitting 

occurred in some cases of individual models. Overfitting occurs when models perfectly 

fit to the training data, which greatly inhibits a model’s ability to extend accurate 

predictions to data which is not included in the training dataset. In this study, the 

influence of the few overfitted models were limited by ensemble averaging with normally 

fitted models. Although SDMs had lower evaluation scores when compared to HSMs, 

SDMs clearly had greater discriminatory ability (Figure 5; Figure 9; Figure 14). 

Therefore the lower SDM scores more likely reflect the difficulty of the modeling 

objective as opposed to poor performance in achieving that modeling objective. SDMs 

regularly encountered data which was contradictory (e.g. presence and absence points 

with the same environmental variable values) on a non-random basis due to the use of 
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true-absence points in proximity to presence points, making distribution more difficult to 

model. In contrast, HSMs only dealt with randomly generated pseudo-absence points in 

which contradictory data points occurred on a purely random basis and therefore carried 

less weight in models. While modeling distribution separately from habitat suitability was 

demonstrated to be a useful method in this study, the novelty of this technique leaves 

much to be explored in terms of its implementation. 

 A question that remains about implementing true absence points in close 

proximity to presence points to model distribution is whether this method can be used for 

species with broad niches. Because red spruce has such a narrow niche, it is relatively 

easy to collect points at the edges of its distribution. However, such sampling with a 

wide-spread species would be considerably more difficult and would likely take many 

more absence points to produce a meaningful change in model outcomes. There is also 

the possibility of incorporating an environmental variable in models which describes the 

limitations of a species distribution in lieu of absence points to produce a distribution 

model, rather than a suitability model. Chen and Leites (2020) implemented an 

environmental variable which accounted for land use legacies when modeling species 

distributions. This method could be used to differentiate between distributions and habitat 

suitability for species which have experienced anthropogenic disturbances from which 

they have not yet recovered.   

 It was predicted that MxTpWrmMth and average annual precipitation would be 

the most important variables for modeling red spruce distribution and habitat. As 

expected, MxTpWrmMth was the most important variable, most likely due to 

temperature mediated effects on red spruce competition. Contrary to predictions, average 
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precipitation in May (MayPrecip) was another important variable instead of average 

annual precipitation. This may be explained by the timing of red spruce germination 

which occurs in May (Blum 1990). Moisture levels are known to be the primary 

determinant of germination and MayPrecip therefore plays a primary role in determining 

the distribution and habitat suitability of red spruce. While less important relative to 

MxTpWrmMth and MayPrecip, total insolation derived from direct and diffuse, but not 

reflected, radiation for the summer solstice (radsumsol) played a significant role in 

identifying distribution and suitable habitat at smaller scales. Of particular importance to 

the models was that radsumsol enabled models to discriminate between north and south 

facing slopes. North facing slopes are cooler and have greater moisture levels, making 

them more suitable to red spruce when compared to the hotter and drier south facing 

slopes. Geological variables were the most distal variables considered for use in models 

due to the variables being defined in terms of distance rather than presence or absence of 

a geological parent material. Further complicating the choice of geological variable is the 

geological diversity of the Blue Ridge and Ridge and Valley regions in Virginia. Despite 

being the most important variable amongst the geological category, distance to acidic 

shale bedrock (geo200) had very little impact on modeling outcomes with response 

curves commonly disagreeing, both within and between algorithm types (Figure 6; Figure 

10). 

CONCLUSION 

 In the present, red spruce has a strong restoration potential in Virginia, with 

natural regeneration occurring in the Central and Southern Appalachian Mountains in 

both the interior and exterior of spruce canopies. However, competition is likely to 
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increase for red spruce as a result of climate change over the course of the 21st century. 

Therefore, restoration management in Virginia should be aimed at 1) increasing existing 

red spruce stands resistance to competition and 2) planting red spruce in areas where 

competition is least likely in the future. 

 The primary priority of land managers in terms of increasing red spruce resistance 

to competition should be protecting and expanding the existing mature stands of red 

spruce. Not only are mature stands more resistant to competition due to their 

establishment, but the environment beneath the canopy of a red spruce stand is conducive 

to red spruce germination and growth and even counterproductive to the germination of 

species which prefer high light levels and are intolerant of highly saturated substrates. 

Because red spruce is slow growing and takes many years to reach reproductive maturity, 

it is likely to be outcompeted by most species in the short term. Less mature and more 

mixed red spruce stands at lower elevations will therefore likely see a shift in 

representation to faster growing hardwood tree species, such as red maple (Acer rubrum), 

striped maple (Acer pensylvanicum), and Fraser magnolia (Magnolia fraseri).  However, 

red spruce stands in environments which are disadvantageous to the recruitment of low-

elevation species are likely to see the least amount of change in species composition. 

Therefore, protecting mature red spruce stands limits competition and maintains 

regeneration. Should climate conditions return to their pre-industrial levels, red spruce 

would likely continue with the strong regeneration trends observed over the last two 

decades; however, the rate at which this regeneration occurs is strongly dependent on the 

number and maturity of stands remaining by the time conditions are ameliorated.  
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 Several high elevation species in Virginia which might otherwise outcompete red 

spruce are declining due to insect infestations opening a niche for red spruce. Fraser fir 

(Abies fraseri) and balsam fir, as well as Canadian hemlock (Tsuga canadensis) have 

been greatly damaged in Virginia due to the balsam wooly adelgid (Adeleges piceae) and 

the hemlock wooly adelgid (Adelges tsugae) respectively (McManamay et al 2011, 

Spaulding and Rieske 2010). The primary pest of red spruce, the spruce budworm 

(Choristoneura fumiferana) only affects populations in the Northern Appalachians and to 

a minimal degree at that (Seymour 1992). With the reduction of these high elevation 

species, additional habitat for red spruce to may open where competition from low 

elevation species will be less intense. It may therefore be advantageous to plant red 

spruce in these high elevation areas in preparation for the expected ecological shifts due 

to climate change and pest infestations to establish a head start for red spruce.  
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APPENDIX A 

Table A1 93 environmental variables provided Virginia Department of Conservation and 

Recreation Division of Natural Heritage, classified as proximal or distal. 

Variable Category Description Classification 

elevx10 Elevation 

and 

Derivatives 

Elevation in centimeters (originally in meters) Distal 

slopex100 Elevation 

and 

Derivatives 

The inclination of slope in degrees. Distal 

crvslpx100 Elevation 

and 

Derivatives 

The curvature of a cell as fitted through that cell and its 

neighbors. 

Distal 

crvprox100 Elevation 

and 

Derivatives 

The curvature of a cell in the direction of the maximum slope. 

Affects the acceleration and deceleration of flow and, therefore, 

influences erosion and deposition 

Distal 

crvplax100 Elevation 

and 

Derivatives 

The curvature of a cell perpendicular to the direction of the 

maximum slope. Influences convergence and divergence of 

flow 

Distal 

radsumsol Elevation 

and 

Derivatives 

Total insolation derived from direct and diffuse, but not 

reflected, radiation for the summer solstice 

Proximal 

radequinx Elevation 

and 

Derivatives 

Total insolation derived from direct and diffuse, but not 

reflected, radiation for the equinox 

Proximal 

radwinsol Elevation 

and 

Derivatives 

Total insolation derived from direct and diffuse, but not 

reflected, radiation for the winter solstice 

Proximal 

rgh1cx100 Elevation 

and 

Derivatives 

The standard deviation of elevation values within the 

neighborhood immediately surrounding the center cell. 

Distal 

rgh10cx100 Elevation 

and 

Derivatives 

The standard deviation of elevation values within a circular 

neighborhood with a radius of 10 cells. 

Distal 

rgh100x100 Elevation 

and 

Derivatives 

The standard deviation of elevation values within a circular 

neighborhood with a radius of 100 cells. 

Distal 

beersx1000 Elevation 

and 

Derivatives 

Beers et al. (1966) transformation of slope direction. Original 

scale is 0 (SW, most exposed) to 2 (NE, most sheltered), with 

values grading equivalently in both directions between the 

extremes. 

Distal 

distinlwat Hydrography Euclidean distance to nearest stream, river, or other inland 

waterbody (excluding estuaries) 

Distal 

diststrm Hydrography Euclidean distance to nearest stream (features represented by 

lines only) 

Distal 

distcstwat Hydrography Euclidean distance to nearest estuary or sea/ocean. [This 

probably can be tossed since only differs from estuaries if 

youÃ¯Â¿Â½re in the middle of the ocean or on an island with 

no estuaries identified] 

Distal 

distocean Hydrography Euclidean distance to nearest sea/ocean Distal 

distestury Hydrography Euclidean distance to nearest estuary Distal 

downdist Hydrography The downslope distance along the flow path to a water or 

wetland feature. 

Distal 

flowacc Hydrography Flow accumulation is used as a proxy for topographic moisture. 

For each cell, this is determined by summing the weights of all 

cells flowing into it. This does not account for flow differences 

over different soil types. 

Distal 
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Variable Category Description Classification 

canopy1 Land cover - 

NLCD 

mean percent canopy cover in 1-cell radius (30 meter cells) Distal 

canopy10 Land cover - 

NLCD 

mean percent canopy cover in 10-cell radius (30 meter cells) Distal 

canopy100 Land cover - 

NLCD 

mean percent canopy cover in 100-cell radius (30 meter cells) Distal 

impsur1 Land cover - 

NLCD 

mean percent impervious cover in 1-cell radius (30 meter cells) Distal 

impsur10 Land cover - 

NLCD 

mean percent impervious cover in 10-cell radius (30 meter 

cells) 

Distal 

impsur100 Land cover - 

NLCD 

mean percent impervious cover in 100-cell radius (30 meter 

cells) 

Distal 

nlcdopn1 Land cover - 

NLCD 

mean open cover within 1-cell radius Distal 

nlcdopn10 Land cover - 

NLCD 

mean open cover within 10-cell radius Distal 

nlcdopn100 Land cover - 

NLCD 

mean open cover within 100 cell radius Distal 

nlcdshb1 Land cover - 

NLCD 

mean shrub cover within 1-cell radius Distal 

nlcdshb10 Land cover - 

NLCD 

mean shrub cover within 10-cell radius Distal 

nlcdshb100 Land cover - 

NLCD 

mean shrub cover within 100 cell radius Distal 

nlcdwat1 Land cover - 

NLCD 

mean open water cover within 1-cell radius Distal 

nlcdwat10 Land cover - 

NLCD 

mean open water cover within 10-cell radius Distal 

nlcdwat100 Land cover - 

NLCD 

mean open water cover within 100 cell radius Distal 

nlcdwet1 Land cover - 

NLCD 

mean wetland cover within 1-cell radius Distal 

nlcdwet10 Land cover - 

NLCD 

mean wetland cover within 10-cell radius Distal 

nlcdwet100 Land cover - 

NLCD 

mean wetland cover within 100 cell radius Distal 

dnwiffw Land cover  

- NWI 

Distance to forested palustrine wetland Distal 

dnwifemw Land cover  

- NWI 

Distance to freshwater emergent wetland Distal 

dnwisemw Land cover  

- NWI 

Distance to saltwater emergent wetland Distal 

gddays Climate: 

temperature 

Growing degree days Proximal 

geo001 Geology 

(distance to 

types) 

Euclidean distance to sand Distal 

geo002 Geology 

(distance to 

types) 

Euclidean distance to loam Distal 

geo003 Geology 

(distance to 

types) 

Euclidean distance to silt/clay Distal 

geo031 Geology 

(distance to 

types) 

Euclidean distance to coastal plain sand over limestone Distal 

geo032 Geology 

(distance to 

types) 

Euclidean distance to coastal plain loam over limestone Distal 
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Variable Category Description Classification 

geo033 Geology 

(distance to 

types) 

Euclidean distance to coastal plain silt and clay over limestone Distal 

geo100 Geology 

(distance to 

types) 

Euclidean distance to acidic sedimentary bedrock Proximal 

geo200 Geology 

(distance to 

types) 

Euclidean distance to acidic shale bedrock Proximal 

geo300 Geology 

(distance to 

types) 

Euclidean distance to calcareous bedrock Proximal 

geo400 Geology 

(distance to 

types) 

Euclidean distance to moderately calcareous bedrock Proximal 

geo500 Geology 

(distance to 

types) 

Euclidean distance to acidic granitic bedrock Proximal 

geo600 Geology 

(distance to 

types) 

Euclidean distance to mafic bedrock Proximal 

geo700 Geology 

(distance to 

types) 

Euclidean distance to ultramafic bedrock Proximal 

JulyPrecip Climate: 

precipitation 

July precipitation Proximal 

JunePrecip Climate: 

precipitation 

June precipiation Proximal 

MayPrecip Climate: 

precipitation 

May precipitation Proximal 

NrmDspPrcp Climate: 

precipitation 

normalized dispersion (CV) of precipitation Proximal 

PrcpCldQtr Climate: 

precipitation 

precipitation of coldest quarter Proximal 

PrcpDryMth Climate: 

precipitation 

precipitation of driest month Proximal 

PrcpDryQtr Climate: 

precipitation 

precipitation of driest quarter Proximal 

PrcpWrmQtr Climate: 

precipitation 

precipitation of warmest quarter Proximal 

PrcpWetMth Climate: 

precipitation 

precipitation of wettest month Proximal 

PrcpWetQtr Climate: 

precipitation 

precipitation of wettest quarter Proximal 

TtlAnnPrcp Climate: 

precipitation 

total annual precipitation Proximal 

AnnMnTemp Climate: 

temperature 

annual mean temperature Proximal 

Isotherm Climate: 

temperature 

comparison of day-to-night and summer-to-winter temperature 

oscillations 

Proximal 

MxTpWrmMth Climate: 

temperature 

maximum temperature of warmest month Proximal 

MnDiurnRng Climate: 

temperature 

(mean of monthly (max temp - min temp)) Proximal 

MnTpCldQtr Climate: 

temperature 

mean temperature of coldest quarter Proximal 

MnTpDryQtr Climate: 

temperature 

mean temperature of driest quarter Proximal 

MnTpWrmQtr Climate: 

temperature 

mean temperature of warmest quarter Proximal 
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Variable Category Description Classification 

MnTpWetQtr Climate: 

temperature 

mean temperature of wettest quarter Proximal 

MnTpCldMth Climate: 

temperature 

minimum temperature of coldest month Proximal 

TempAnnRng Climate: 

temperature 

(max temp warmest month - min temp coldest month) Proximal 

TempSeason Climate: 

temperature 

(STD * 100) Proximal 

distriver Hydrography Euclidean distance to nearest stream/river Distal 

distpond Hydrography Euclidean distance to nearest lake/pond/resevoir <= 1 ha Distal 

distlake Hydrography Euclidean distance to nearest lake/pond/resevoir > 1 ha Distal 

tp001x1000 Elevation 

and 

Derivatives 

Topographic position index using elevation values within the 

neighborhood immediately surrounding the center cell 

Distal 

tp010x1000 Elevation 

and 

Derivatives 

Topographic position index using elevation values within a 

circular neighborhood with a radius of 10 cells. 

Distal 

tp100x1000 Elevation 

and 

Derivatives 

Topographic position index using elevation values within a 

circular neighborhood with a radius of 100 cells. 

Distal 

nlcddfr1 Land cover - 

NLCD 

mean deciduous forest cover within 1-cell radius Distal 

nlcddfr10 Land cover - 

NLCD 

mean deciduous forest cover within 10-cell radius Distal 

nlcddfr100 Land cover - 

NLCD 

mean deciduous forest cover within 100-cell radius Distal 

nlcdefr1 Land cover - 

NLCD 

mean evergreen forest cover within 1-cell radius Distal 

nlcdefr10 Land cover - 

NLCD 

mean evergreen forest cover within 10-cell radius Distal 

nlcdefr100 Land cover - 

NLCD 

mean evergreen forest cover within 100-cell radius Distal 

radswdiff Elevation 

and 

Derivatives 

Difference between Summer and Winter solstice total 

insolation derived from direct and diffuse, but not reflected, 

radiation [radsumsol - radwinsol]  

Proximal 

distsink Karst 

features 

Euclidean distance to sinkholes Distal 

denssink Karst 

features 

Kernel density of sinkholes Distal 

latx10k Map-based 

information 

The latitudinal values Distal 

distkarst Karst 

features 

Euclidean distance to karst features in the Ridge and Valley 

Region 

Distal 
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Table A2 Raw importance values for each proximal enviromental variable. Importance 

calculations were carried out within variable categories. *GLM importance values were 

ignored in the Climate: temperature and Geology (distance to types) categories when 

calculating averages due to a majority of variables being excluded from GLM equations; 

The highest average values of each category are highlighted. 

Category Variable *GLM GBM RF GAM Average 
Elevation and 

Derivatives radsumsol 1.00 1.00 0.94 1.00 0.99 

 radequinx 0.74 0.07 0.20 0.75 0.44 

 radwinsol 1.00 0.34 0.40 1.00 0.69 
Geology 

(distance to 

types) geo100 0.00 0.01 0.01 0.30 0.11 

 geo200 1.00 0.19 0.07 0.64 0.30 

 geo300 0.31 0.02 0.04 0.44 0.17 

 geo400 0.00 0.02 0.05 0.57 0.21 

 geo500 0.38 0.00 0.02 0.59 0.20 

 geo600 0.00 0.02 0.03 0.63 0.23 

 geo700 0.58 0.01 0.02 0.58 0.20 
Climate: 

Precipitation JulyPrecip 0.07 0.00 0.01 0.59 0.17 

 JunePrecip 0.06 0.07 0.07 0.61 0.20 

 MayPrecip 0.89 0.34 0.13 0.89 0.56 

 NrmDspPrcp 0.62 0.02 0.03 0.55 0.31 

 PcrcpCldQtr 0.22 0.01 0.01 0.59 0.21 

 PrcpDryMth 0.09 0.05 0.06 0.57 0.19 

 PrcpDryQtr 0.75 0.15 0.13 0.78 0.45 

 PrcpWrmQtr 0.05 0.00 0.01 0.69 0.19 

 PrcpWetMth 0.30 0.00 0.01 0.69 0.25 

 PrcpWetQtr 0.44 0.00 0.01 0.68 0.28 

 TtlAnnPrcp 1.00 0.05 0.08 0.65 0.45 
Climate: 

Temperature 
 

gddays 0.00 0.00 0.02 0.52 0.18 

  

AnnMnTemp 0.93 0.01 0.02 0.52 0.18 

 Isotherm 0.13 0.00 0.02 0.60 0.21 

 MxTpWrmMth 0.00 0.10 0.06 0.73 0.30 

 MnDiurnRng 0.00 0.02 0.03 0.84 0.30 

 MnTpCldQtr 0.00 0.03 0.02 0.75 0.27 

 MnTpDryQtr 0.00 0.00 0.01 0.58 0.20 

 MnTpWrmQtr 0.00 0.08 0.06 0.60 0.25 

 MnTpWetQtr 0.03 0.00 0.02 0.49 0.17 

 MnTpCldMth 0.00 0.00 0.01 0.73 0.25 

 TempAnnRng 0.00 0.00 0.02 0.78 0.27 

 TempSeason 0.00 0.07 0.02 0.59 0.23 
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Table A3 Individual species distribution model (SDM) scores including model ID 

(algorithm type, run number, psuedo-absence sample), evaluation metrics, testing data 

(overall model perfomance), cutoff (integerized threshold for binary map construction), 

sensitivity, and specificity 

Model ID Evaluation 

Metric 

Testing 

Data 

Cutoff Sensitivity Specificity 

GLMRun1PA1 KAPPA 0.601 495 92.647 78.5 

 TSS 0.711 495 92.647 78.5 

 ROC 0.856 500 92.647 78.5 

GAMRun1PA1 KAPPA 0.763 777 98.529 87 

 TSS 0.855 777 98.529 87 

 ROC 0.949 720.5 100 86 

RFRun1PA1 KAPPA 0.809 626 89.706 93.5 

 TSS 0.850 328 98.529 86.5 

 ROC 0.975 332 98.529 86.5 

GBMRun1PA1 KAPPA 0.810 835 91.176 93 

 TSS 0.846 786 94.118 90.5 

 ROC 0.964 794.5 94.118 91. 

GLMRun2PA1 KAPPA 0.852 307 98.529 92.5 

 TSS 0.910 307 98.529 92.5 

 ROC 0.975 310 98.529 92.5 

GAMRun2PA1 KAPPA 0.860 267 97.059 93.5 

 TSS 0.906 267 97.059 93.5 

 ROC 0.977 270 97.059 93.5 

RFRun2PA1 KAPPA 0.884 278 94.118 96 

 TSS 0.901 278 94.118 96 

 ROC 0.985 280 94.118 96 

GBMRun2PA1 KAPPA 0.883 464 92.647 96.5 

 TSS 0.905 55 100 90.5 

 ROC 0.983 58 100 90.5 

GLMRun3PA1 KAPPA 0.763 372 98.529 87 

 TSS 0.855 372 98.529 87 

 ROC 0.950 371.5 98.529 87 

GAMRun3PA1 KAPPA 0.756 605 94.118 88.5 

 TSS 0.855 91 100 85.5 

 ROC 0.961 91.5 100 85.5 

RFRun3PA1 KAPPA 0.821 500 85.294 96 

 TSS 0.866 303 95.588 91 

 ROC 0.980 304 95.588 91 

GBMRun3PA1 KAPPA 0.832 738 86.765 96 

 TSS 0.852 639 91.176 94 

 ROC 0.980 639.5 91.176 94 

GLMRun1PA2 KAPPA 0.698 495 100 82 

 TSS 0.820 495 100 82 

 ROC 0.910 500 100 82 
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Model ID Evaluation 

Metric 
Testing 

Data 
Cutoff Sensitivity Specificity 

GAMRun1PA2 KAPPA 0.793 787 91.176 92 

 TSS 0.856 505 97.059 88 

 ROC 0.954 510.5 97.059 89 

RFRun1PA2 KAPPA 0.867 394 95.588 94 

 TSS 0.906 379 97.059 93.5 

 ROC 0.978 380 97.059 93.5 

GBMRun1PA2 KAPPA 0.860 606.5 97.059 93.5 

 TSS 0.906 606.5 97.059 93.5 

 ROC 0.972 606 97.059 93.5 

GLMRun2PA2 KAPPA 0.776 673 97.059 88.5 

 TSS 0.856 673 97.059 88.5 

 ROC 0.961 678 97.059 88.5 

GAMRun2PA2 KAPPA 0.740 499 98.529 85.5 

 TSS 0.840 499 98.529 85.5 

 ROC 0.950 503.5 98.529 85.5 

RFRun2PA2 KAPPA 0.831 465 94.118 93 

 TSS 0.871 465 94.118 93 

 ROC 0.973 468 94.118 93 

GBMRun2PA2 KAPPA 0.805 631 94.118 91.5 

 TSS 0.870 281 100 87 

 ROC 0.974 295 100 87.5 

GLMRun3PA2 KAPPA 0.705 495 100 82.5 

 TSS 0.825 495 100 82.5 

 ROC 0.912 500 100 82.5 

GAMRun3PA2 KAPPA 0.776 449 97.059 88.5 

 TSS 0.856 449 97.059 88.5 

 ROC 0.952 446.5 97.059 88.5 

RFRun3PA2 KAPPA 0.851 500 88.235 96.5 

 TSS 0.847 500 88.235 96.5 

 ROC 0.978 503 88.235 96.5 

GBMRun3PA2 KAPPA 0.826 770 89.706 94.5 

 TSS 0.855 60 100 85.5 

 ROC 0.979 61 100 85.5 

GLMRun1PA3 KAPPA 0.620 495 79.412 86.5 

 TSS 0.659 495 79.412 86.5 

 ROC 0.830 500 79.412 86.5 

GAMRun1PA3 KAPPA 0.788 544 100 88 

 TSS 0.880 544 100 88 

 ROC 0.959 545 100 88 

RFRun1PA3 KAPPA 0.892 459 92.647 97 

 TSS 0.901 318 97.059 93 

 ROC 0.987 318 97.059 93 

GBMRun1PA3 KAPPA 0.867 613 95.588 94.5 

 TSS 0.901 613 95.588 94.5 
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Model ID Evaluation 

Metric 
Testing 

Data 
Cutoff Sensitivity Specificity 

 ROC 0.987 612.5 95.88 94.5 

GLMRun2PA3 KAPPA 0.705 553 100 82.5 

 TSS 0.825 553 100 82.5 

 ROC 0.916 554 100 82.5 

GAMRun2PA3 KAPPA 0.797 685 94.118 90.5 

 TSS 0.851 685 94.118 90.5 

 ROC 0.972 688.5 94.118 91 

RFRun2PA3 KAPPA 0.858 606 85.294 98 

 TSS 0.881 303 95.588 92.5 

 ROC 0.985 301 95.588 92.5 

GBMRun2PA3 KAPPA 0.866 616.5 94.118 95 

 TSS 0.891 616.5 94.118 95 

 ROC 0.981 618 94.118 95 

GLMRun3PA3 KAPPA 0.705 495 95.588 84.5 

 TSS 0.801 495 95.588 84.5 

 ROC 0.900 495 95.588 84.5 

GAMRun3PA3 KAPPA 0.810 763 91.176 93 

 TSS 0.866 515 97.059 89.5 

 ROC 0.965 520 97.059 90 

RFRun3PA3 KAPPA 0.885 470 95.588 95.5 

 TSS 0.911 470 95.588 95.5 

 ROC 0.986 468 95.588 95.5 

GBMRun3PA3 KAPPA 0.874 776 92.647 96 

 TSS 0.896 662 95.588 94 

 ROC 0.984 662.5 95.588 94 
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Table A4 Individual habitat suitability model (HSM) scores including model ID 

(algorithm type, run number, psuedo-absence sample), evaluation metrics, testing data 

(overall model perfomance), cutoff (integerized threshold for binary map construction), 

sensitivity, and specificity. 

Model ID Evaluation 

Metric 

Testing 

Data 

Cutoff Sensitivity Specificity 

GLMRun1PA1 KAPPA 0.971 434 100 98.5 

 TSS 0.985 434 100 98.5 

 ROC 0.992 436.5 100 98.5 

GAMRun1PA1 KAPPA 0.971 359 98.529 99 

 TSS 0.975 359 98.529 99 

 ROC 0.988 360.5 98.529 99 

RFRun1PA1 KAPPA 0.990 697 100 99.5 

 TSS 0.995 697 100 99.5 

 ROC 1.000 696 100 99.5 

GBMRun1PA1 KAPPA 0.971 338 100 98.5 

 TSS 0.985 338 100 98.5 

 ROC 0.997 343 100 98.5 

GLMRun2PA1 KAPPA 1.000 934 100 100 

 TSS 1.000 934 100 100 

 ROC 1.000 935 100 100 

GAMRun2PA1 KAPPA 0.980 495 97.059 100 

 TSS 0.971 495 97.059 100 

 ROC 0.985 500 97.059 100 

RFRun2PA1 KAPPA 1.000 556 100 100 

 TSS 1.000 556 100 100 

 ROC 1.000 555 100 100 

GBMRun2PA1 KAPPA 0.990 968 98.529 100 

 TSS 0.990 605 100 99 

 ROC 1.000 603 100 99 

GLMRun3PA1 KAPPA 0.990 495 100 99.5 

 TSS 0.995 495 100 99.5 

 ROC 0.998 500 100 99.5 

GAMRun3PA1 KAPPA 0.990 490 100 99.5 

 TSS 0.995 490 100 99.5 

 ROC 0.997 491.5 100 99.5 

RFRun3PA1 KAPPA 0.990 414 100 99.5 

 TSS 0.995 414 100 99.5 

 ROC 1.000 414 100 99.5 

GBMRun3PA1 KAPPA 0.990 500 100 99.5 

 TSS 0.995 500 100 99.5 

 ROC 1.000 498.5 100 99.5 

GLMRun1PA2 KAPPA 0.971 495 98.529 99 

 TSS 0.975 495 98.529 99 

 ROC 0.988 500 98.529 99 
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Model ID Evaluation 

Metric 
Testing 

Data 
Cutoff Sensitivity Specificity 

GAMRun1PA2 KAPPA 0.980 949 98.529 98.5 

 TSS 0.985 5 100 98.5 

 ROC 0.997 10 100 98.5 

RFRun1PA2 KAPPA 0.990 813 100 99.5 

 TSS 0.995 813 100 99.5 

 ROC 1.000 815 100 99.5 

GBMRun1PA2 KAPPA 0.971 499 100 98.5 

 TSS 0.985 499 100 98.5 

 ROC 0.999 496 100 98.5 

GLMRun2PA2 KAPPA 0.971 495 100 98.5 

 TSS 0.985 495 100 98.5 

 ROC 0.993 500 100 98.5 

GAMRun2PA2 KAPPA 0.971 495 100 98.5 

 TSS 0.985 495 100 98.5 

 ROC 0.993 500 100 98.5 

RFRun2PA2 KAPPA 0.971 374 100 98.5 

 TSS 0.985 374 100 98.5 

 ROC 0.997 375 100 98.5 

GBMRun2PA2 KAPPA 0.971 498.5 100 98.5 

 TSS 0.985 498.5 100 98.5 

 ROC 0.994 498 100 98.5 

GLMRun3PA2 KAPPA 0.990 495 100 99.5 

 TSS 0.995 495 100 99.5 

 ROC 0.998 500 100 99.5 

GAMRun3PA2 KAPPA 0.980 495 98.529 99.5 

 TSS 0.980 495 98.529 99.5 

 ROC 0.990 500 98.529 99.5 

RFRun3PA2 KAPPA 0.990 303 100 99.5 

 TSS 0.995 303 100 99.5 

 ROC 1.000 300 100 99.5 

GBMRun3PA2 KAPPA 0.990 459 100 99.5 

 TSS 0.995 459 100 99.5 

 ROC 0.999 456.5 100 99.5 

GLMRun1PA3 KAPPA 0.933 763 100 96.5 

 TSS 0.965 763 100 96.5 

 ROC 0.981 763 100 96.5 

GAMRun1PA3 KAPPA 0.923 490 98.529 96.5 

 TSS 0.950 490 98.529 96.5 

 ROC 0.974 491 98.529 96.5 

RFRun1PA3 KAPPA 0.952 449.5 100 97.5 

 TSS 0.975 449.5 100 97.5 

 ROC 0.998 452 100 97.5 

GBMRun1PA3 KAPPA 0.961 914 100 98 

 TSS 0.980 914 100 98 
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Model ID Evaluation 

Metric 
Testing 

Data 
Cutoff Sensitivity Specificity 

 ROC 0.996 914 100 98 

GLMRun2PA3 KAPPA 0.971 889 100 98.5 

 TSS 0.985 889 100 98.5 

 ROC 0.991 891 100 98.5 

GAMRun2PA3 KAPPA 0.971 520 100 98.5 

 TSS 0.985 520 100 98.5 

 ROC 0.993 524.5 100 98.5 

RFRun2PA3 KAPPA 0.971 545 100 98.5 

 TSS 0.985 545 100 98.5 

 ROC 0.996 547 100 98.5 

GBMRun2PA3 KAPPA 0.971 945 98.529 99 

 TSS 0.980 253 100 98 

 ROC 0.994 255 100 98 

GLMRun3PA3 KAPPA 0.961 611 100 98 

 TSS 0.980 611 100 98 

 ROC 0.990 614.5 100 98 

GAMRun3PA3 KAPPA 0.961 0.0 100 0 

 TSS 0.980 0.0 100 0 

 ROC 0.991 2.5 100 98 

RFRun3PA3 KAPPA 0.961 677 98.529 98.5 

 TSS 0.975 217 100 97.5 

 ROC 0.997 219 100 97.5 

GBMRun3PA3 KAPPA 0.961 604 100 98 

 TSS 0.980 604 100 98 

 ROC 0.993 605.5 100 98 
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