Marshall University Marshall Digital Scholar

Physics Faculty Research

Physics

10-2021

Realistic Binary Neutron Stars Collisions Simulations: Challenges and Opportunities

Maria Babiuc-Hamilton

Follow this and additional works at: https://mds.marshall.edu/physics_faculty

Part of the Physical Processes Commons

Realistic Binary Neutron Stars Collisions Simulations: Challenges and Opportunities

> Maria Hamilton Marshall University, Huntington, WV

Workshop I: Computational Challenges in Multi-Messenger Astrophysics OCTOBER 4 - 8, 2021

Institute for Pure & Applied Mathematics, University of California, Los Angeles, CA

Life-cycle of Stars

- Star location reveals the evolutionary stage.
- Most stars are formed as binaries, in nebulas.
- Evolution depends on mass.
- Stars die either as white dwarfs, neutron stars or black holes.
- Stars 8 to 20 solar masses end up as supernovae.

Neutron Stars

- Left behind is a neutron star.
- Narrow mass range: 1.3-1.6 M_{Sun}, 11-13 km radius.
- 10⁹ Earth's gravity, density higher than the atomic nucleus, magnetic fields of 10⁸-10¹⁵ G.
- Billions?, 2800 pulsars known.
- 20 are in binary system and have individual magnetic field of different strengths.

Physics and Universe

Binary Neutron Stars

- One star evolves quicker, and becomes a neutron star.
- During the evolution of the companion, the first neutron star is accreting matter and goes through a "recycling phase" spinning up.
- The mass of the recycled neutron star is 1.5-2 M_{Sun}, while the nonrecycled star is around 1.3 M_{Sun}.
- Magnetic field of recycled star is 10⁸G, of companion is 10¹⁴ G.

Neutron Stars Interior

- Surface temperature 10⁸ K, super compression makes them cold: 0 K
- Surface, 0.1 m normal matter (atmosphere & envelope)
- Crust, 1 km outer (neutronization) & inner (neutron drip)
- Core, 10 km mystery? supersaturation density, nuclear pasta.
- High-mass exotic matter (hyperons, quarks, meson condensate)

Astronomy News

GW170817 FACTSHEET

LIGO-Hanford	LIGO-Livingston	Virgo	
observed by	H, L, V	Hz to 2048 Hz**	~ 60 s
source type	binary neutron star (NS)	inferred # of GW cycles	
date	17 August 2017	from 30 Hz to 2048 Hz**	~ 3000
time of merger	12:41:04 UTC	initial astronomer alert	27 min
signal-to-noise ratio	32.4		
false alarm rate	< 1 in 80 000 years	HLV sky map alert latency*	5 nrs 14 min
distance	85 to 160 million light-years	HLV sky area	28 deg ²
total mass	2.73 to 3.29 M _o	followed the trigger	~ 70
primary NS mass	1.36 to 2.26 M _o	also observed in	gamma-ray, X-ray,
secondary NS mass	0.86 to 1.36 M _o	also observed in	infrared, radio
mass ratio	0.4 to 1.0	host galaxy	NGC 4993
radiated GW energy	> 0.025 M _☉ c²	source RA, Dec	13 ^h 09 ^m 48 ^s , -23°22'53"
radius of a 1.4 M _o NS	likely ≲ 14 km	sky location	in Hydra constellation
effective spin parameter	-0.01 to 0.17	viewing angle (without and with host	$\leq 56^{\circ}$ and $\leq 28^{\circ}$
effective precession	unconstrained	galaxy identification)	
GW speed deviation from speed of light	< few parts in 10 ¹⁵	Hubble constant inferred from host galaxy identification	62 to 107 km s ⁻¹ Mpc ⁻¹
$\int_{0}^{30^{\circ}} \underbrace{\int_{E}^{5^{\circ}} \int_{E}^{N} \underbrace{ eft, HL = light blue, HLV = dark blue, improved HLV = green, optical source location = cross-hair)}$ GW=gravitational wave, EM = electromagnetic, M_{\odot} =1 solar mass=2x10 ³⁰ kg,			
-30°	9h -30°	H/L=LIGO Hanford/Li Parameter ranges are 90 *referenced to the	ivingston, V=Virgo 0% credible intervals. time of merger

25 50 Mpc

0

75

**maximum likelihood estimate

[†]90% credible region

0

H1 strain https://www.gw-openscience.org/eventapi/

L1 strain

Multi-messenger Astrophysics

- Extension of multiwavelength astronomy.
- Use of multiple signals: photons, gravitational waves, neutrinos, cosmic rays from multi-messenger cosmic sources.
- Golden age for neutron star research.
- We just need about 100 more or so such discoveries!

GW190425 FACTSHEET

60° 30° 0° 135° 315° 180° 225 -30° -60° observed by LIGO Livings most likel source type neutron st 25 A date 08:1 time of merger Livingston signal-to-noise ratio Virgo signal-to-noise ratio

distance287 to 744 million
light-yearsredshift0.01 to 0.04total mass3.3 to 3.7 Moprimary NS mass1.61 to 2.52 Mosecondary NS mass1.12 to 1.68 Momass ratio0.4 to 1.0

false alarm rate

	ACIJILL	LIGO	
60° 30° 45° -30°	1.8 1.6 (°W) ² m		
D Livingston, Virgo	1.2		
nost likely a binary eutron star merger	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2.75 3.00	
25 April 2019	core density of primary NS	70 to 140 trillion times density of lead	
08:18:05 UTC	inferred # of GW cycles from 19.4 Hz to 2048 Hz*	~ 3900	
12.9	initial astronomer alert latency**	~43 min	
2.5	clu areat	9294 dog2	
1 in 69 000 years	SKy area'	ozo4 deg-	
87 to 744 million light-years	improved binary NS merger rate	7 to 81 mergers per year per cubic billion light-years	
0.01 to 0.04	Images: GW sky map (left): initial (black contours) and final (red and orange with grey contours) regions where		
3.3 to 3.7 $\rm M_{\odot}$	source is likely to be located. Darker shading indicates increased likelihood source is in that region of sky. Component mass distribution (right): darker shading		
1.61 to 2.52 $\rm M_{\odot}$	indicates an increased likelihood the pair of stars had that set of masses. The blue and orange lines denote		
1.12 to 1.68 $\rm M_{\odot}$	-NS spins are allowed to be large (blue) and NS spins are constrained to be small (orange). The black diagonal line is the line m,=m _a .		
0.4 to 1.0	GW=gravitational wave. NS=neutron star.		

M_o=1 solar mass=2x10³⁰ kg

'ain https://www.gw-openscience.org/eventapi/

V1 strain

Catalog of gravitational-wave candidates reported by the LIGO and Virgo detectors, Aug. 2021. NSF/LIGO

Black Hole

Neutron Star

Black Hole

Mystery Objects in 'Mass Gap' Found by LIGO and Virgo. NSF/LIGO

&

Curious Incidents

- What is the connection between gravitational waves, magnetic field and equation of state in neutron star mergers?
- What is the engine that triggers jet production?
- What is the nature of the remnant object?
- What is the correlation between gravitational waves, matter ejecta and light emission?
- Numerical simulations needed!

An illustration by Sidney E. Paget for "The Adventure of Silver Blaze," by Arthur Conan Doyle published in 1892

Multi-physics Modeling

- One of the most complicated problem to model:
 - General Relativity
 - Hydrodynamics
 - Electric and Magnetic fields
 - Realistic equations of state
 - General relativistic radiation
 - Neutrino leakage scheme

$$G^{\mu\nu} = 8\pi T^{\mu\nu}$$

$$\nabla_{\mu} \left(\rho_0 u^{\mu} \right) = 0$$

$$\nabla_{\mu}T^{\mu\nu} = 0, \ T_{\mu\nu} = T^{\text{matter}}_{\mu\nu} + T^{\text{EM}}_{\mu\nu}$$

$$\begin{aligned} \nabla_{\nu} F^{*\mu\nu} &= \frac{1}{\sqrt{-g}} \partial_{\nu} \Big(\sqrt{-g} F^{*\mu\nu} \Big) = 0 \\ P(\rho, \epsilon) &= \kappa_i \rho^{\Gamma_i} + \\ (\Gamma_{th} - 1) \rho \epsilon_{th}; \\ p^{\alpha} \nabla_{\alpha} f &= c \mathcal{E} - \frac{h}{c} \mathcal{A} f \\ \nabla_{\alpha} (\rho Y_e u^{\alpha}) &= -R_{\nu} m_U \end{aligned}$$

Advanced Numerical Algorithms

- Equation of state solvers
- Evolution schemes for dynamic spacetime, gauge and singularities
- Numerical capturing methods for instabilities, shocks and discontinuities
- Conservative to primitive reconstruction algorithms
- Magnetic field structure and evolution
- Neutrino and radiation transport
- Multi-spatial scale, very expensive simulations (millions CPU hours)
 - Resolving the ejecta and disc
 - Resolving the magnetic field
 - Extracting gravitational waves

Progress in the Field

 First basic model for neutron star mergers: Li-Xin Li and Bohdan Paczyski (1998) nell University

- Thousand individual BNS simulations over the last decades
- Progress towards
 - populating the parameter space with EOS and mass ratio,
 - Improving numerical schemes
 - Adding multi-physics
 - Estimating mass ejecta
 - Electromagnetic counterparts

the Sim

Work to be Done

- Vast parameter space of the EOSs, mass ratios and magnetic fields.
- Conditions for the generation of electromagnetic counterparts to gravitational wave signals.
- Reproducibility of the results!
- Open-source General-Relativistic Magnetohydrodynamics codes:
 - **GRHydro** (R. DePietri)
 - IGM (Z. Etienne, L. Werneck)
 - Spritz (B. Giacomazzo, R. Ciolfi+)
- Forge a path and make it approachable to new comers.

E Burns, arXiv:1909.06085

$$P(\rho_i) = K_i \rho_i^{\Gamma_i} = K_{i+1} \rho_i^{\Gamma_{i+1}}$$

The Equation of State

- Most popular: Nucleonic Skyrme-Lyon (Sly) 4 pieces EOS (Douchin +,arxiv:astro-ph/0111092)
- 34 types of EOSs (Read+, arXiv:0812.3955)
- 7-parameters, low density 4 Sly, impose continuity in pressure
- EOS constraints
 - stiff NICER
 - soft GW170817
 - mild GW190425 & GW190814

K. Yagi, arXiv:1406.7587

Constrained EOS

- Astronomical observations
 - ALF 1 4 (nuclear & quark matter)
 - AP 1 4 (2 & 3 nucleon interaction)
 - BBB2 (nonrelativistic)
 - ENG, MPA1 (relativistic)
 - FPS (pion condensates)
 - WFF 1 3 (variational method)
- Maximum mass
 - stiff MPA1 & AP3
 - mild ALF4 & AP4 & WFF2
 - soft WFF1

Initial Data

- Tolman–Oppenheimer–Volkoff equation (Lorene, E. Gourgoulhon+ https://lorene.obspm.fr) -> M(r)
- Primary mass: 1.5 2.4 M_{Sun}
- Mass ratio q =1, 1.3, 1.6, secondary mass GW detections:
 - $M_{chirp} \approx 1.18$, M_{Sun} , $M_{total} \approx 2.7$ M_{sun}
 - $M_{chirp} \approx 1.44 M_{Sun}$, $M_{total} \approx 3.3 M_{sun}$
- Coordinate separation: 50 km
- Visualization: **kuibit** (G Bozzola)

Initial Data Challenges

- **1.** Lorene gives wrong results for unequal mass binaries!
- 2. Lorene can generate initial data for mixed EOS binaries but there is no evolution scheme for it.
- 3. Lorene implements only two types of EOS:
 - Parametrized piecewise
 - Tabulated polytropic

Initial Data Opportunities

- 1. Use freely available Lorene initial data for unequal binaries
- 2. Implement the capability of evolving different initial data for each neutron star in the binary.
- Implement the Generalized Parametrized Piecewise Polytropic EOS that accounts for the continuity in the speed of sound, and *tidal deformability*.

Soft EOS (AP4) M_1 = 1.5 M_{Sun} , M_2 = 2.1 M_{sun} (modified) 1e-3 10 1.5 5 1.0 6 0 -50.5 -100.0 -20-100 10 20 (https://ccrgpages.rit.edu/~jfaber/BNSID/Data)

$$P(\rho_i) = K_i \rho_i^{\Gamma_i} + \Lambda_i$$
$$\gamma = \frac{d \lg p}{d \lg \rho} = \frac{\rho dp}{p d\rho}$$

(MF O'Boyle +, arxiv:2008.03342)

Magnetic Field of Neutron Stars

- Pulsars were thought to have dipolar magnetic field, marked by hot polar caps.
- NICER X-ray telescope revealed hot regions not at the dipolar magnetic poles
- One region is stretched toroidal component.
- The origin, evolution and structure of this magnetic field is open to debate.

A Hotspot Map of Neutron Star J0030's Surface Credit: NASA's Goddard Space Flight Center

Magnetic Field of Binary Neutron Stars

- Magnetic fields strength of neutron stars are very stable in time.
- Decay only for "recycled" millisecond pulsars in binaries, to 10⁸-10¹⁰ G
- The companion's magnetic field stays constant around 10¹¹-10¹³ G.
- The magnetic field gets amplified to 10¹⁵ G during merger, and determines the jet and the outflow dynamics.
- Is this amplification enough for jet launching, or must a black hole form?

M. Ruiz+, arxiv:2001.09153

Magnetic Field Models

 Seed internal poloidal magnetic field (B. Giacomazzo+, arxiv: 1009.2468)
 GRHydro, Spritz, IGM

$$A_{\phi} = A_b \varpi \ max(p - p_{cut}, 0)^{n_s}$$

• Seed poloidal magnetic field (V. Paschalidis, arxiv: 1304.1805) **IGM**

$$A_{\phi} = \frac{\pi r_0^2 I_0 \varpi^2}{(r_0^2 + r^2)^{3/2}} \left(1 + \frac{15r_0^2(r_0^2 + \varpi^2)}{8(r_0^2 + r^2)^2} \right)$$

• Dipolar field extending to the exterior (P. Moesta, arxiv:2003.06043) NA

$$A_{\phi} = B_0 \frac{r_0^3}{r^3 + r_0^3} r \sin \theta$$

Magnetosphere Modeling

- Numerical General Relativistic Force-Free Electrodynamics.
- Maxwell's equations in the "force-free" MHD limit.
 - Strong magnetic field
 - No mass/low inertia
 - Particles injected and traced
- A thin current sheet is imposed and maintained at equator.
- Divergenceles B-field evolution and $S = n^i \epsilon_{ijk} \sqrt{\gamma} E^j B^k$ lculation.

S. Komissarov, arxiv: 0402403

$$E_i B^i = 0$$

 $B^2 > E^2$

Pulsar and Wald Magnetosphere

- GiRaFFE (General Relativistic and Force-Free Electrodynamics) code (Z. Etienne, MBH+, arxiv:1704.00599)
- Pulsar magnetosphere: aligned rotator
- Rotation black hole magnetosphere: magnetospheric Wald

Rotating Black Hole Magnetosphere

- Blandford-Znajekfor
 mechanism for spinning
 black holes in aligned and
 tilted magnetosphere
 (MBH, arxiv:1901.00025)
- Spin effect analysis for the radio loud – radio quite transitions in quasars
- Binary black holes in external magnetosphere

$$A_i = \frac{B_0}{2}(y, -x\cos\chi, x\sin\chi)$$

Code Improvement Opportunities

• Realistic interior magnetic field (A. Bansgrove+,arxiv:1709.09167) :

$$B^{int} = B_p + B_t$$

• Multipolar exterior magnetic field:

$$V(r, \theta) = \sum_{l=1}^{l} \frac{a_l}{r^{l+1}} P_l(\cos \theta)$$

- Add extra poloidal B-field near merger to mimic amplification!
- Improvements to GiRaFFE:
 - Match the crust magnetic field to the magnetosphere
 - Dynamic current sheet location function of magnetic field strength
 - Particle-in-cell (PIC) evolution of plasma (S. Zenitani+, 1809.04378)

K. Gourgouliatos+, 2015

Computational Challenges and Opportunities

- EOS solver (Lorene) laptop.
- BNS simulations 10⁶ cpu-hr.
- Most simulations carried out on the BigGreen cluster at Marshall University, WV.
- Current allocations:
 - BigGreen: 12 cores/node, 276 CPU cores
 - Thorny Flat, WVU: 40 cores per node, 4208 CPU cores
- Future: XSEDE, Pittsburgh Supercomputer Center:
 - Bridges-2, PSC: 64 cores per node, 31231 CPU cores

Simulations Specifications

- Final time 2s, spatial domain 10³ km
- 6 refinement levels, Δx_{min}=180 m, Courant factor 0.25.
- 3 codes: Parma, IGM, Spritz
- 3 mass rations: 1, 1.3, 1.5
- 2 Magnetic fields strengths
 - $B1 = B2 = 10^{12} G$
 - $B1 = 10^{10} G$, $B2 = 10^{14} G$
- 2 magnetic field configurations
- External magnetosphere $B_c = 10^{15} G$.
- 36 runs per EOS × 5 EOSs × control

Postprocessing using SimuationTools https://simulationtools.org Visualization using VisIT^{Wed Mor 31 04:24:08 2021} https://visit-dav.github.io/visit-website

DB: AP4_1.55v1.55_rho.xy.h5 Cycle: 25600 Tim & & Density [1/Msun ^ 2]

DB: WFF1_1.57v1.57_rho.xy.h5 Cycle: 25600 Tim **R890** Mass Density [1/Msun ^ 2]

J. Faber+, arxiv.org:1204.3858

DB: MPA1_1.56v1.56_rho.xy.h5 Cycle: 32000 Tim Reg0Mass Density [1/Msun^2]

DB: WFF1_1.57v1.57_rho.xy.h5 Cycle: 32000 Tim & d 90 Mass Density [1/Msun^2]

DB: MPA1_1.56v1.56_rho.xy.h5 Cycle: 38400 Tim Re20Mass Density [1/Msun^2]

DB: WFF1_1.57v1.57_rho.xy.h5 Cycle: 38400 Tim Relation Density [1/Msun ^2]

DB: MPA1_1.56v1.56_rho.xy.h5 Cycle: 44800 Tim Res Density [1/Msun ^2]

DB: WFF1_1.57v1.57_rho.xy.h5 Cycle: 44800 Tim Regar Mass Density [1/Msun ^ 2]

Code Benchmarking Code Development GRHydro, IGM & Spritz magnetosphere

- 1. Sly 4, q = 1, 1.3, 1.5
- 2. Sly 7, q = 1, 1.3, 1.5
- 3. Sly 7, 10^{12} G internal magnetic field, q = 1
- 4. Sly 7, 10¹² G internal magnetic field
 + 10¹⁵ G central magnetosphere , q
 = 1
- 5. AP4, 10^{10} G & 10^{14} G internal magnetic field , q = 1, 1.3,
- 6. AP4, 10^{10} G & 10^{14} G internal magnetic field + 10^{15} G central magnetosphere , q = 1, 1.3, 1.5
- 7. WFF1 & MPA1, 10^{10} G & 10^{14} G internal magnetic field + 10^{15} G central magnetosphere , q = 1, 1.3

- 1. MPA1, 10^{10} G & 10^{14} G extended magnetic field, q = 1.3, 1.5
- 2. WFF1, 10^{10} G & 10^{14} G extended magnetic field, q = 1.3, 1.5
- ALF4, 10¹⁰ G & 10¹⁴ G extended magnetic field, q = 1.3, 1.5
- 4. MPA1, 10^{10} G & 10^{14} G extended magnetic field + 10^{15} G merger magnetosphere, q = 1.3, 1.5
- 5. WFF1, 10^{10} G & 10^{14} G extended magnetic field + 10^{15} G merger magnetosphere , q = 1.3, 1.5
- ALF4, 10¹⁰ G & 10¹⁴ G extended magnetic field + 10¹⁵ G merger magnetosphere, q = 1.3, 1.5

Code Development EOS and PIC

- 1. MPA1 & AP3, 10^{10} G & 10^{14} G extended magnetic field + magnetosphere , q = 1.3, 1.5
- 2. MPA1 & ALF4, 10¹⁰ G & 10¹⁴ G extended magnetic field + magnetosphere, q = 1.3, 1.5
- 3. MPA1 & WFF1, 10¹⁰ G & 10¹⁴ G extended magnetic field + magnetosphere, q = 1.3, 1.5
- 4. AP3 & ALF4, 10^{10} G & 10^{14} G extended magnetic field + magnetosphere , q = 1.3, 1.5
- 5. AP3 & WFF1, 10^{10} G & 10^{14} G extended magnetic field + magnetosphere , q = 1.3, 1.5
- ALF4 & WFF1, 10¹⁰ G & 10¹⁴ G extended magnetic field + magnetosphere, q = 1.3, 1.5

Conclusions

- Neutron stars merges are expected to produce gravitational waves, outflow and electromagnetic signal.
- Detected mergers involving neutron stars left important unanswered questions about the electromagnetic counterparts and remnant.
- More detailed microphysics & realistic magnetic field needed.
- The signal is sensitive to the EOS, which is still largely unknown.
- BNS mergers simulations relevant to sGRB modeling must last at least 2s.

