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INTRODUCTION: FORCE DETECTION IN POSTURE AND LOCOMOTION

This dissertation describes the response properties of force receptors on the

cockroach (Periplaneta americana) leg in both restrained preparations and freely

moving animals. Receptors that measure forces on the legs have been shown to play

an important role in the control of posture and walking (review, Duysens et al. 2000).

The sense organs that are examined in these studies monitor force via strains in the

insect exoskeleton. Strains are small changes in length (formally, the ratio between the

change in length and the original length) that result from stresses (force per unit area) in

a structure (Alexander 1992; Serway 1996). It is, therefore, possible to monitor the

forces acting on a leg in posture and locomotion by measuring the strains that occur in

the animal's exoskeleton.

This work is divided into three chapters that present separate studies describing (1)

the afferent signals that occur during loading and unloading of a leg, (2) the encoding of

force dynamics and implications in the control of posture and locomotion and (3) the

responses of force receptors during postural perturbations in freely moving animals.

Each chapter includes an introduction that reviews the relevant literature concerning the

detection and regulation of forces during postural support and walking. This overall

introduction will discuss the nature of forces acting on the legs and body and how they

are detected as a background to the specific questions addressed in subsequent

chapters.

Importance of load detection in posture and locomotion

A number of studies have shown that the legs of diverse animal species perform

similar functions in posture and locomotion (Full et al. 1991; Blickhan and Full 1993). In
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order to maintain support while standing, the legs of an animal must generate forces

that oppose gravity (Horak and Macpherson 1996). In addition, postural stability

requires that the body's center of mass be contained within the base of support provided

by the legs (Fung and Macpherson 1999; Horak and Macpherson 1996). Quadrupeds

and hexapods are relatively stable when standing because the area supported by the

unstable because the area of support is small and the center of mass is high (Horak and

Macpherson 1996). However, both groups of animals maintain erect postures by

contracting appropriate groups of leg muscles (typically extensor muscles) to generate

forces to support the body.

Recent experiments have shown that the leg forces are oriented in specific

directions and show ongoing variations in magnitude, even when an animal is standing

reaction forces) have been measured using force plates in quadrupeds during standing

(Macpherson 1994, 1988a,b; Jacobs and Macpherson 1996; Fung and Macpherson

Force plates typically consist of a flat surface that is mounted on supports.1999).

Strain gauges are attached to the supports and measure the forces exerted on the

plate. To maintain upright posture, cats exert forces with the forelimbs that are directed

forward and outward while those of the hindlimb are directed backward and outward

Furthermore, during standing the body is never completely(Macpherson 1988a).

motionless and forces acting on the legs change as the center of mass is shifted within

the base of support (Horak and Macpherson 1996).

2
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legs is large and the center of mass is near the ground. In contrast, bipeds are fairly

still. For example, the forces that the feet exert upon the ground (known as ground



Macpherson and colleagues have extensively examined the dynamic regulation of

force by perturbing posture in freely standing animals (cats, Macpherson 1988a,b; 1994,

Macpherson and Fung 1999; humans, Nashner 1976,1977; Nashner et al. 1979; Dietz

et al. 1992; Dunbar et al. 1986; Macpherson et al. 1989). In a paradigm that has been

used extensively, cats stood upon a platform that was suddenly and rapidly displaced

(100-200 ms duration) (this general method will be utilized in experiments described in

the third chapter) (Macpherson 1988a,b). Force plates were used to monitor the forces

generated by the legs and the activities of a number of limb muscles were recorded.

When the support surface was translated in the horizontal plane, the feet moved with

the platform while the trunk remained behind due to inertia (Macpherson 1988a). This

created a relative displacement between the center of mass and the legs. To

compensate for this discrepancy, the animal contracted leg muscles and developed

forces to oppose the displacement. The specific groups of muscles that became active

depended upon the direction of the displacement (Macpherson 1988b). The magnitude

of the muscle contractions also varied with the rate of perturbation and larger forces

were generated when displacements were very rapid. The general conclusion of

Macpherson’s studies was that compensatory reactions to perturbations involve very

rapid responses in muscles that are specifically adjusted to the magnitude and rates of

forces that are applied. These findings support the idea that the detection of forces in

the legs is important to counter instabilities in standing and perturbations.

During walking, forces on the legs are dynamic and change as the limbs move

through the phases of swing and stance (Full and Tu 1990,1991). During swing the leg

is in the air and moving forward, while it is on the ground and moving towards the rear in
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the stance phase (Grillner 1975). During stance, walking animals must generate

vertical forces to resist gravity, horizontal forces to help move the body forward and

lateral forces to maintain stability (Alexander 1992, Duysens et al. 2000). A number of

studies have measured forces produced by the legs during walking using force plates

(Blickhan and Full 1987,1993; Full and Tu 1990,1991; Full et al. 1995). The magnitude

of forces produced by the legs has been shown to be directly proportional to the body

locomotion increases. Therefore, six-legged animals are able to distribute forces

among the legs more than two or four-legged animals (Blickhan and Full 1993; Full et

al. 1995). Forces are minimal during the swing phase and much larger during stance.

Loading of a leg begins after foot fall, then increases to a maximum, to provide support

and propulsion, and decreases prior to the leg lifting in swing (Full and Tu 1990,1991).

Qualitatively similar patterns of changes in forces have been measured in animals as

diverse as crabs (Blickhan and Full 1987) and mammals (Cavagna et al. 1977). These

findings have illustrated that forces on the legs are changing throughout the step cycle,

and that they show both increases and decreases during the stance phase. Other

studies have shown that forces decrease very rapidly when a leg slips as a result of loss

of friction between the foot and substrate (Hanson et al. 1999; McVay and Redfern

1994). Therefore, an animal’s nervous system must be able to detect incremental and

decremental changes in forces and generate muscle contractions at the appropriate

magnitude and rates to establish and maintain stability as well as produce propulsion.

4
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Response properties and reflex effects of force receptors

Many different types of sensory receptors can contribute to the control of posture and

locomotion. The following section will briefly review the response properties and reflex

effects of force receptors in a number of different animals. Although their morphology is

diverse, their response properties show similarities including: 1) sensitivity to the rate of

change of force, 2) adaptation to sustained forces and 3) strong reflex effects on leg

In addition, some of these receptors respond to decreases in force.muscles. This

commonality of response properties and reflex effects reflects the importance of receptors

that detect forces on the legs in posture and locomotion.

Receptors that monitor muscle tension

Golgi tendon organs (GTO) are force receptors in vertebrates that consist of sensory

endings near the junction of a skeletal muscle and its tendon (Fukami and Wilkinson

Each tendon organ is1977; Jami 1992; Davies et al. 1995; Prochazka 1996).

innervated by branches of a single large diameter (lb) afferent axon. Forces developed

by muscle contraction cause deformation of the sensory terminals and excitation of the

receptor. Tendon organs respond to both steady levels of muscle tension and changing

rates of tension (Fukami and Wilkinson 1977; Houk and Henneman 1967; Jami et al.

1985; review, Jami 1992). The sensory discharge also shows substantial adaptation

during sustained stimuli. For example, when the nerve to the muscle is stimulated, the

activity of Golgi tendon organs increases to a maximum and then declines to a static

level that is maintained as long as the muscle remains tense (Davies et al. 1995). The

amplitude of the peak is linearly related to the rate of change of muscle tension and

reflects the dynamic component of the response while the sustained discharge encodes

5
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the level of force (Davies et al. 1995). Given that forces acting on the legs vary during

posture and locomotion, it is beneficial for Golgi tendon organs to be sensitive to these

changes.

It is difficult to characterize the reflex effects of Golgi tendon organs because very

few techniques are available to selectively activate their afferent fibers (review, Duysens

et al. 2000). However, excitation of the tendon organ afferents via induced muscle

contractions has provided insight into how sensory information is integrated into the

motor activity of the leg (review, Jami 1992). These studies have presented evidence

that tendon organs provide autogenic inhibition to muscles (Houk and Henneman 1967;

Houk 1979; review, Jami 1992). In this reflex, activity in the motoneurons to the muscle

is inhibited, via an inhibitory interneuron, when a high level of force is detected by the

This type of negative feedback can be important in limiting musclesense organ.

tension to prevent damage (Houk 1979). Although this inhibitory pathway has been

demonstrated in restrained and anesthetized animals, it is not clear whether such

feedback is functionally important under dynamic circumstances in a behaving animal.

A number of studies have shown that autogenic inhibition may be suppressed in

walking animals (humans, Dietz et al. 1992, Stephens and Yang 1996, Dietz 1998,

review, Dietz 1992; cats, Conway et al. 1987, Pearson and Collins 1993, Heibert et al.

1996, Hiebert and Pearson 1999, review, Pearson et al. 1998). These experiments

have focused on the function of feedback from Golgi tendon organs during the stance

phase. Just after foot touchdown in stance, the activity of the leg extensor muscles

rapidly increases (Sherrington 1910). Studies have shown that tendon organ afferents

of extensor muscles can reinforce, rather than inhibit, muscle activity during walking

6



(Pearson and Collins 1993; Prochazka 1996; McCrea 1998; Pearson et al. 1998;

Hiebert and Pearson 1999; review, Duysens et al. 2000). Sensory activity during

stance may also prevent the initiation of swing (Duysens and Pearson 1980; Conway et

al. 1987; Whelen et al. 1995). For example, electrical stimulation of the tendon organ

afferents in ankle extensor muscles prolongs the duration of extensor activity and

inhibits the flexor muscle burst in a walking spinal cat (Whelen et al. 1995).

It has been postulated that feedback from these receptors insures that swing will only

occur after the leg is unloaded and, therefore, plays an important role in the control of

have recorded directly from the Golgi tendon afferents in freely moving animals to

confirm these proposed functions (Loeb 1981; Appenteng and Prochazka 1984). In

tendon organ discharges increased during muscle contractionswalking cats,

(Appenteng and Prochazka 1984). However, the relationship between muscle force

and receptor activity could not be determined because the load on leg muscles was not

In addition, the potential contributions of tendonmeasured in these experiments.

organs to signals for leg unloading have not been examined in any vertebrate system.

Muscle spindles are receptors in vertebrates that detect muscle stretch and limb

displacement (Prochazka 1996). It has been suggested that muscle spindles could act

together with Golgi tendon organs to produce excitatory effects on the extensor muscles

(Conway et al. 1987; Hiebert et al. 1995). However, the relative contribution of muscle

spindles and Golgi tendon organs in a behaving animal is difficult to assess (Hiebert

and Pearson 1999). This is clearly an area for further research.

7
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In crustaceans, receptors that are similar to Golgi tendon organs also encode forces

in leg muscles. Apodeme receptors (also called tendon receptors) usually consist of 9-

15 bipolar neurons located at the cuticular invagination (apodeme) that forms the

forces increase but the firing rate of the receptor units declines (adaptation) during

very sensitive to the rate of change of force development. Tryba and Hartman (1997)

suggest that the dynamic sensitivity of these receptors provides feedback concerning

changes in muscle force during locomotion, but this has not been tested directly.

Studies in restrained animals have shown that apodeme receptors elicit inhibitory

reflexes to extensor muscles (Clarac and Dando 1973). This feedback is believed to be

important in resisting load encountered during stance (Duysens et al. 2000).

Sense organs that are similar to the crustacean apodeme receptors have also been

identified in insects (muscle receptor organs) and are postulated to function in

compensation for leg loading (Matheson and Field 1995, Burrows 1996).

Receptors that encode forces via strains in the exoskeleton

Cuticular stress detectors (CSD) and force-sensitive mechanoreceptors of the dactyl

(foot) encode strains in the exoskeleton of crustaceans (Zill et al. 1985; Marchand et al.

1995; Libersat et al. 1987a,b). CSD's consist of 20-60 bipolar neurons that innervate an

elastic strand that is attached to an area of soft cuticle in the leg (Marchand et al. 1995).

These receptors respond to deformation of the pliable cuticle. Recordings in restrained

preparations have shown that some CSD afferents are excited when cuticular forces

increase ('on' units), while others respond to force decreases ('off units). In addition,

8
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some units respond to both increases and decreases in force ('on/off units). The

cuticular stress detectors also have a strong sensitivity to the rate of change of force

(Klarner and Barth 1986; Marchand et al. 1995).

The reflex effects of cuticular stress detectors have been studied in restrained

preparations and their activities have been recorded in freely moving animals (Klarner

and Barnes 1986; Klarner and Barth 1986; Marchand et al. 1995; Leibrock et al.

1996a,b). Two types of CSD’s have been described, C8D1 and CSD2, which differ in

their reflex effects. In general, activity in CSD1 excites depressor motoneurons of the

leg and CSD2 receptors stimulate levator motoneurons (Leibrock et al. 1996a,b). In

crustaceans, levator muscles act to lift the leg in swing while depressor muscles support

the animal during stance. During walking, CSD1 and CSD2 are both active during the

stance phase (Klarner and Barnes 1986; Marchand et al. 1995). These reflexes act to

increase the stiffness of the leg by co-activating both the levator and the depressors

when the weight of the animal is being supported (Leibrock et al. 1996a,b).

In crustaceans, force-sensitive mechanoreceptors are concentrated on the dactyl

(foot) of the leg. Each receptor consists of two sensory dendrites located in a canal

within the exoskeleton (Schmidt and Gnatzy 1984). The response properties of these

receptors have been extensively studied in restrained and freely moving animals (Zill et

al. 1985; Libersat et al. 1987a,b). Two types of force-sensitive sense organs have been

discharge at the onset of the stimulus followed by activity at a low level (phasico-tonic

units). The initial response of the mechanoreceptors encodes the rate of change of

force while the sustained discharge can signal the magnitude of force (Libersat et al.

9
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1987a). These sense organs respond to both force increases and decreases in that

they fire to bending in one direction and release of force in the opposite direction. Many

units also show adaptation to sustained forces. The mechanoreceptors located on the

tip of the dactyl are only activated at the beginning of the stimulus (phasic). However,

these units respond at a constant firing frequency to all rates of force application and do

not encode the rate of change of force (Libersat et al. 1987a).

The reflex effects of force-sensitive mechanoreceptors on the dactyl have been

tested in restrained preparations and their activity has been recorded in freely moving

levator muscles of the same leg that was sustained for the duration of the stimulus

(Libersat et al. 1987a). In addition, stimulation of the force-sensitive mechanoreceptors

elicits excitatory discharges in the depressor muscles of adjacent ipsilateral legs. During

walking, the receptors were excited during the stance phase and silent during swing

(Libersat et al. 1987b). These reflexes create a feedback system that could act to limit

the forces on the legs during stance and may be important in the coordination of leg

movements (Libersat et al. 1987a,b).

exoskeleton. In arachnids, slit sensilla are present on the leg either singly or in groups

of up to 29 sensilla (lyriform organs) (Barth and Bohnenberger 1978; Bohnenberger

1981). Each slit has a bipolar neuron that inserts onto a thin membrane on the surface

These receptors respond to minute cuticleof the exoskeleton (Barth 1981).

deformations perpendicular to the long axis of the slit (Barth 1981). Slit sense organs

encode a wide frequency range of stimuli (0.1 Hz- 1.0 kHz) and show sensitivity to the

10
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Other invertebrates also have force receptors that measure strains in the



rate of change of force in the exoskeleton (Barth and Bohnenberger 1978; Barth 1981;

Bohnenberger 1981; Blickhan and Barth 1985; Seyfarth and French 1994).

The lyriform organs can be excited by manual deflection of a leg joint. Activity of the

receptors stimulates muscles that augment leg movement and acts to relieve the strain

important in reducing forces on the legs which could cause damage or disarticulation of

the leg joint during turning or jumping (Seyfarth 1978a). The response properties of slit

sensilla have not been directly tested in freely moving animals but strains in the

exoskeleton have been shown to increase during the stance phase in walking spiders

(Barth 1985).

Campaniform sensilla are force receptors on the legs of insects that respond to

strains in the cuticle which result from muscle contraction and external load (Zill and

Moran 1981a,b; Zill et al. 1981). There are 11 groups of campaniform sensilla on the

cockroach leg including four groups on the trochanter, one on the femur, one on the

tibia and a single receptor on each of five tarsal segments (Pringle 1938b). The sensilla

are located near leg joints or in areas of muscle attachment where cuticular stresses

would be maximal. Each sensillum consists of a bipolar neuron whose dendrite inserts

into an ovoid cuticular cap on the surface of the exoskeleton (Moran et al. 1971). The

cuticular cap is believed to be the site of stimulus reception (Chapman et al. 1973,

Moran and Rowley 1975). The axon of the receptor projects to motoneuron cell bodies

in the thoracic ganglia (Zill et al. 1981).

Early work on cockroach campaniform sensilla has shown that the receptors are

directionally sensitive and that they respond to compressions perpendicular to the long

11
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axis of the cuticular cap (Pringle 1938b, Spinola and Chapman 1975). For example, the

group on the tibia (Group 6 of Pringle 1938b) is unique in that it consists of two

subgroups of receptors (proximal and distal) with mutually perpendicular cuticular caps

(see Fig. 1). In restrained preparations, the tibial sensilla are directionally sensitive in

that proximal sensilla respond to dorsal bending in the plane of joint movement while

distal sensilla are excited upon ventral bending (Zill and Moran 1981a,b). The receptors

are also weakly, but directionally, sensitive to axial forces and to imposed torques (Zill

and Moran 1981a,b; Cocatre-Zilgien and Delcomyn 1999). However, these studies did

not directly measure the magnitude of forces applied to the leg or characterize the

responses of the receptors to rates of change of force.

Reflex effects of the tibial campaniform sensilla have been previously examined in

restrained preparations and the patterns of afferent activities have been recorded in

In restrained animals, the reflex effects depend on thefreely moving animals.

orientation of the cuticular cap of the receptor (Zill and Moran 1981a; Zill et al. 1981).

Mechanical stimulation of the proximal sensilla excites the slow motoneurons to the

extensor muscles of the tibia and the trochanter and inhibits the slow motoneurons to

the flexor muscles (Zill et al. 1981). Stimulation of distal sensilla has the opposite effect

of exciting the flexors and inhibiting the extensors. These reflexes provide a negative

feedback system, which is believed to be important in the detection of leg loading during

Techniques for recording from the tibialposture and locomotion (Zill et al. 1981).

receptors in walking animals were designed by Zill and Moran (1981b). These studies

showed that the activity patterns of the sensilla and the leg muscles are consistent with

the reflex patterns described in restrained animals. In addition, they demonstrated that

12



the proximal sensilla respond to initial loading of the leg at the beginning of the stance

phase, while the distal receptors are activated at the end of the stance. This pattern of

activity suggests that the tibial campaniform sensilla function in load compensation and

limitation of muscle tensions in behaving animals.

Summary of Responses of Force Receptors and Context of Present Investigations

Receptors that monitor forces are located at muscle tendons (vertebrate Golgi tendon

organs, invertebrate muscle receptors) or in the exoskeleton (cuticular stress detectors,

lyriform organs, campaniform sensilla). These sense organs have a number of common

properties in their responses to force that are of particular relevance to the studies

described in this dissertation. For example, many of these receptors encode the level of

force but their activity shows substantial adaptation to sustained stimuli (Fukami and

Wilkinson 1977; Zill et al. 1985; Libersat et al. 1987a,b). In addition, particular groups of

sense organs (cuticular stress detectors, force-sensitive mechanoreceptors) are activated

when forces on the legs decrease (Libersat et al. 1987a,b; Marchand et al. 1995) although

these types of responses have been less well studied.

A number of investigations have also shown that most force receptors are sensitive to

the rate of applied forces (Barth and Bohnenberger 1978; Bohnenberger 1981; Zill et al.

1985; Klarner and Barth 1986; Libersat et al. 1987a,b; Davies et al. 1995; Marchand et al.

1995; Tryba and Hartman 1997). However, very few experiments have examined how

adaptation to sustained loads effects the rate sensitivity of force receptors (Chapman et al.

1979; Juusola and French 1995). Increased tonic loading of a leg could readily occur if an

stood upon a sloped surface or carried a load. Under these circumstances,animal

sensitivities to changing loads would be particularly important to prevent falling. In

13



addition, most tests of the response properties of force receptors have been applied in

restrained preparations and very few studies have been able to confirm that similar

responses occur in freely standing or moving animals (Zill et al. 1985; Libersat et al.

1987b; Marchand et al. 1995). In those circumstances, the forces acting on the legs are

more complex because the animal is supporting the body weight.

Problems addressed in the present investigations

This dissertation extensively characterizes the response properties of the tibial

campaniform sensilla to changes in force in both restrained and unrestrained

cockroaches and addresses three major questions: 1) What are the characteristics of

receptor responses when forces on the legs are decreasing and how could they be

important in the adaptation of posture and locomotion? 2) What are the dynamic

properties of responses to increasing forces and how do receptor sensitivities vary after

adaptation to static loads? and 3) Are the tibial sensilla activated during perturbations of

spontaneously assumed postures in freely standing animals and how does receptor

activity vary with the magnitude and rate of platform movement?

The first chapter examines the dynamic responses of individual sensilla, which are

excited when forces in the legs decrease. As has been reviewed above, a number of

load receptors have been shown to encode increases in force, while few have been

shown to signal force decrements. Rapid detection mechanisms of decreases in load

could allow an animal to monitor force changes that regularly occur during walking or

adapt walking patterns to the environment, the nervous system must be able to monitor

the levels and rates of changes of forces under a wide range of loading conditions.

14
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Therefore, the second chapter systematically examines receptor responses to the rate

of change of increases in force and cases in which static load levels are changing.

Although these studies use restrained preparations, they tested the responses of the

receptors under conditions that are similar to those an animal would encounter during

perturbations. Perturbations of the surface can be used to alter forces on the legs in a

controlled and rapid manner. These data suggest that campaniform sensilla provide

precise and dynamic information about forces that could be utilized to adapt posture

and locomotion to varying terrains and unexpected perturbations.

15

locomotion. The third chapter, however, investigates the response properties of the

tibial campaniform sensilla in freely standing animals during rapid platform
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CHAPTER 1

ACTIVE SIGNALING OF LEG LOADING AND UNLOADING IN THE COCKROACH
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SUMMARY

The ability to detect changes in load is important for effective use of a leg in posture

and locomotion. While a number of limb receptors have been shown to encode increases

in load, few afferents have been demonstrated to signal leg unloading, which occurs

cyclically during walking and is indicative of slipping or perturbations. Mechanical forces

were applied to the cockroach leg at controlled rates and were recorded activities of the

tibial group of campaniform sensilla, mechanoreceptors that encode forces through the

strains they produce in the exoskeleton. Discrete responses were elicited from the group

to decreasing, as well as increasing, levels of leg loading. Discharges of individual

afferents depended upon the direction of force application and unit responses were

correlated morphologically with the orientation of the receptor’s cuticular cap. No units

responded bi-directionally. Although discharges to decreasing levels of load were phasic,

these bursts could effectively encode the rate of force decreases. These discharges may

be important in indicating leg unloading in the step cycle during walking and could rapidly

signal force decreases during perturbations or loss of ground support.
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INTRODUCTION

considered integral components in the control of posture and locomotion in many animals

In walking, for example, increase in loading after leg contact is(Prochazka 1996).

signaled by receptors that reflexively adjust the activities of muscles which generate

support and propulsion (Pearson and Collins 1993; Bassler et al. 1991). The subsequent

decrease in loading at the end of a step is necessary for the initiation of leg lifting in swing

(Whelan et al. 1995) and for normal coordination of leg movements (Bassler 1987). The

activities of some groups of limb muscles are also strongly correlated with leg unloading

during postural perturbations, and decrements in load may be important factors in

determining responses to leg slipping (Jacobs and Macpherson 1996; Mcilroy and Maki

1994). However, the specific mechanisms or receptors detecting unloading of a leg have

not been identified in many systems (Zill 1993).

We have studied the responses of the tibial campaniform sensilla of the cockroach,

Periplaneta americana, which detect forces acting on the legs through strains in the

exoskeleton (Schnorbus 1971), to determine the specific parameters that the receptors

organs have also been incorporated into models and control systems based upon insect

walking (Schmitz et al. 1995). Campaniform sensilla of insect legs are known to respond

directionally to forces that bend the exoskeleton (Hofmann and Bassler 1986; Delcomyn

The directional sensitivity of an individual1991), such as occur during leg loading.

receptor is correlated with the orientation of its ovoid cuticular cap (Spinola and Chapman

1975). The cap, which is embedded in the exoskeleton, is the site of termination of the
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The detection and regulation of forces acting upon the body and legs are now

can encode during walking. The responses and locomotor functions of these sense



sensory dendrite and is thought to be the locus of mechanoelectric transduction (French

1992). The tibial campaniform sensilla are unique in that they form two subgroups

(proximal and distal sensilla) with mutually perpendicular cap orientations (Fig. 1B). Each

subgroup exhibits discrete responses when forces are applied to the distal tibia with joint

bending in the direction of joint extension while the distal sensilla discharge to forced

flexions (Zill and Moran 1981). In the present study, we have applied controlled rates and

levels of bending to the leg and have found that the tibial campaniform sensilla, as a

whole, not only respond to increasing levels of force but also exhibit discrete responses to

decrements of force. These responses are consistent with the demonstrated directional

sensitivities of the receptors and do not represent 'on-off* or bi-directional responses

(Dickinson 1992). Instead, these new results suggest that, for a given direction of force

application, different receptors signal loading or unloading according to the orientation of

the cuticular cap.

MATERIALS AND METHODS

Adult cockroaches, Periplaneta americana, (N=21) were anaesthetized with carbon

dioxide and the nerves innervating the left metathoracic leg were cut in the thorax.

Animals were then restrained with small staples on a resin coated platform. Pairs of fine

(50 micron) wires were implanted in the femoral segment of the denervated leg adjacent to

the main leg nerve (nerve 5) or its major branch (nerve 5r8) (Nijenhuis and Dresden 1956).

These electrodes recorded the activities of both proximal and distal sensilla, as the axons

of receptors of both subgroups travel in the same nerve branches (Schnorbus 1971).

Typically, the action potentials of one distal and one or two proximal sensilla were evident

19

movement resisted (Schnorbus 1971). For example, the proximal sensilla respond to



in extracellular recordings (N = 17 of 21 experiments) (Spinola and Chapman 1975). The

tarsus (foot) and tibial sensory spines were then severed. The femoro-tibial joint was

immobilized by gluing a pin adjacent to the proximal end of the tibia with the joint at an

angle of 90 degrees or in a position of full extension. Forces were applied to the distal

tibia as ramp and hold stimuli via a probe that was driven by a piezoelectric crystal (a

complete description of the experimental setup and recording apparatus is found on p.

41). The levels and rates of applied force were monitored through a pair of strain gauges

each repeated twice, within a single series and up to three series were repeated in each

In addition, individual campaniform sensilla were identified by indentingexperiment.

their cuticular caps with a fine etched tungsten wire attached to another piezoelectric

crystal (Figs. 1A, D) (Spinola and Chapman 1975; Dickinson 1992). All signals were

stored on tape for subsequent transcription and data analysis.

RESULTS

Forces applied to the tibia as ramp and hold stimuli elicited discharges both during the

rising and the falling ramp phases (N = 16 of 17 experiments in which responses of both

proximal and distal sensilla were recorded) (Figs. 1, 2, and 3). In all recordings, the

amplitudes of the discharges during the two phases were sufficiently distinct to clearly

indicate that different units were active during increasing vs. decreasing levels of load. We

performed a number of controls to confirm that these responses originated from the tibial

campaniform sensilla and to identify the individual receptors from which the discharges

were derived. After testing responses to bending (Fig. 1C), we mechanically stimulated
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attached to the probe (Fig. 1A). In a typical sequence, we applied 16 different rates,



Figure 1: Preparation and identification of unit discharges to applied forces. A Forces

piezoelectric (PE) crystal. The applied forces (measured in millinewtons, mN; 1mN =

102 mg) were monitored with strain gauges attached to the probe and the activities of

the campaniform sensilla were recorded extracellularly (Sens). B Drawing of cuticular

caps of tibial campaniform sensilla (after Schnorbus 1971). The receptors are located

in two subgroups (proximal and distal sensilla) which differ in their directional sensitivity

according to their cap orientation. C Bending to forced extension (down on the FORCE

trace) elicited discharges to different units during force increases and decreases

Individual receptors were identified by indenting their cuticular caps(asterisk). D

in 1A) with another probe (arrow) which produced a discharge of(Indent Caps

Ablating individual receptors (hollow arrow in E) couldequivalent amplitude. E-F

Bending to forced extension (FORCE) was followed rapidly by indentation of the

decline of force application (asterisk) produced a summation in the discharge of the

distal sensillum.
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were applied to the tibia with joint movement resisted (Pin) via a probe driven by a

selectively eliminate recorded responses to force decreases (hollow asterisk in F). G

cuticular cap (arrow) of a distal sensillum. H Coincident cap indentation (arrow) and
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individual receptors by indenting their cuticular caps with a separate probe (Fig. 1D) and

were able to elicit discharges of equivalent amplitude in extracellular recordings to those

seen during declining levels of bending force. In most experiments the sensillum was then

ablated by increasing the level of indentation until the probe penetrated the cap (Fig. 1E).

These ablations could eliminate the entire response to decreasing force levels in a single

direction while leaving the discharges to force increases intact (Fig. 1F). Furthermore, in

three preparations, we were able to simultaneously apply leg bending and cap indentation,

which could show a summation during the responses to declining forces (Figs. 1G, H).

Thus, the discharges we recorded to bending were clearly derived from the tibial

campaniform sensilla.

The responses of individual afferents to decreasing force levels depended on the

direction of force application and the orientation of the receptor’s cuticular cap. The distal

sensilla fired to decrements in the level of forced extension (Figs. 2A, C, E, and G) while

the proximal sensilla were active during decreases in forced flexion (Figs. 2B, D, and F).

This general pattern occurred stably over time (Figs. 2A, B) and at a variety of levels of

Discharges to force decrementsdisplacement (Figs. 2C, D) in repetitive bending tests.

were initiated during, and not following, the declining phase of the ramp stimulus (Figs. 2E,

F) and were, therefore, not the result of resonance in our apparatus or the consequence of

inadvertent application of forces in the opposite direction. We also tested responses to

bending using patterns that approximated the durations and magnitudes of ground

reaction forces that have been measured during cockroach walking (Full and Tu 1991).

Forces applied in the direction of extension as simple, rapid triangle functions, without a
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Figure 2: Responses to ramp stimuli applied in different directions. A and C Bending

forces applied in the direction of joint extension (down on the FORCE trace) elicited

discharges of proximal sensilla to force increases and distal sensilla to force decreases. B

and D Bending the tibia in the opposite direction (forced flexion, up on the force trace)

caused excitation of distal sensilla during force application and proximal sensilla during

force declines. E and F Discharges to decreasing forces occurred during the declining

ramp and were not due to rebounds in the opposite direction of bending (zero level = no

bending force applied) or oscillations in the probe. G Tibial bending applied as repeated

increases and decreases without a hold phase approximated the magnitude and time

course of ground reaction forces that have been recorded during walking. Bending in the

direction of joint extension elicited alternating bursts of activity from the tibial campaniform

sensilla even though bending in the direction of forced flexion had not occurred.
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substantial hold phase, elicited reciprocal discharges in proximal and distal campaniform

sensilla in the same pattern, with consistent bursts during force decrements (Fig. 2G).

Do these discharges simply signal the occurrence of declining force levels or do they

also encode the rate of force decrease? To address this question, we applied ramp and

hold stimuli at varying rates of rise and decline (Fig. 3). Firing of proximal sensilla during

decreases from forced flexions consisted of intense bursts of activity in the range of 50 to

distal sensilla discharged at much lower frequencies with fewer action potentials to ramps

declining from forced extensions. At low amplitudes of bending, the distal sensilla fired

single spikes and could thus only indicate the occurrence of force decreases. Change in

bending levels of higher magnitude, however, could elicit bursts that showed distinct

modulation of firing frequency according to the rate of force decline (Fig. 3A). To compare

the sensitivities to rate of change in applied force, we plotted the maximum firing

frequencies during phasic discharges of single campaniform sensilla. These plots show a

dependence upon force velocity as a power function in both proximal and distal sensilla

during both increasing and decreasing ramps (Figs. 3B, C and legends). However, similar

results were also seen in other experiments (N=3) in which forces were applied in both

directions and sensitivities to rate of change were observed in all experiments in which

sensilla discharged with multiple spikes. Further experiments are necessary to assess

these different sensitivities quantitatively and to characterize the effect of force amplitude

on afferent firing.

DISCUSSION

The present study has shown that the tibial group of campaniform sensilla can actively
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200 Hz that showed strong correlation with the velocity of force changes. In contrast,



applied as ramps of varying rate but identical amplitude. A series of force extensions

(down on FORCE trace) elicits discharges in proximal and distal sensilla during respective

maximum discharge frequencies of a proximal sensilla during the increasing ramp phase

of forced extension (filled circles, i^= 0.935, slope =7.6, y-intercept = 109.3, p<0.01) and

the decreasing phase of forced flexion (hollow circles, r2 = 0.964, slope = 7.9, y-intercept =

68.6, p<0.01) during bending tests in a single preparation. Both discharges to increasing

and decreasing forces showed rate sensitivities with similar slopes. C Plot as in B for a

distal sensillum for tests of rate sensitivities to force increases (filled circles, r2 = 0.782,

slope = 5.68, y-intercept = 12.8, p<0.01) and decreases (hollow circles, r2 = 0.893, slope =

3.85, y-intercept = 18.1, p<0.01).
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force increases and decreases that varied in frequency with the ramp rate. B Plot of

Figure 3: Encoding of rate of force increase and decrease. A Bending forces were
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signal both increases and decreases in bending forces. These findings are important in

understanding how forces are encoded by these receptors and in evaluating their

function as inputs to the cockroach walking control system. Responses to decreasing

levels of force have not previously been explicitly reported and studied, but they are

evident in some earlier published recordings of campaniform sensilla in the cockroach

(Spinola and Chapman 1975; Zill and Moran 1981) and stick insect (Delcomyn 1991).

However, the potential information content of these discharges was not systematically

examined. Similar responses to declining levels of sinusoidally applied bending have also

recently been reported for the locust tibial campaniform sensilla (Newland and Emptage

1996), but the individual receptors and the orientation of their cuticular caps were not

identified. It was, therefore, unclear whether those responses implied a bidirectionality in

unit discharges. Discharges to decreasing levels of leg loading have been demonstrated

in groups of cuticular force receptors in other arthropods (Marchand et al. 1995) and may

be present in the walking systems of a number of animals.

The mechanisms underlying the generation of discharges to decreasing forces are, at

present, undetermined. Our finding, that the orientation of the cuticular cap predicts the

directionality of the tibial sensilla to declining forces, suggests the parsimonious hypothesis

that the cap provides a final common mechanism of transduction for both force increases

and decreases. The generation of these diverse responses could then depend upon the

specific temporal and spatial distribution of strains within the exoskeleton, which can also

show viscoelastic properties that could contribute to responses to decreasing forces

(Blickhan and Barth 1985). The present findings are in clear contrast to the bidirectional

responses obtained from campaniform sensilla of dipteran wings (Dickinson 1992) which
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differ from leg sensilla in the shape of the cuticular cap and sensory dendrite. Thus, the

morphological and mechanical properties responsible for the discharges to declining

forces remain a subject for further investigation.

What are the potential advantages in actively signaling decreases in load in a walking

system? First, the information that forces are declining is prerequisite for the initiation of

leg lifting in swing (Whelan et al. 1995; Bassler 1987) and also enhances the placement of

other legs in support (Bassler et al. 1991). These functions could be accomplished by

monitoring the declining frequency of a receptor that simply encodes the level of load.

However, such a signal could be compromised by processes such as adaptation or

hysteresis, which are present in campaniform sensilla and common in many sensory

systems (Zill and Moran 1981; French 1992). Furthermore, the force that a leg exerts

must drop substantially when the foot or point of contact slips on the substrate. The

system would therefore be providing an active signal to allow for the initiation of the

necessary rapid compensatory reactions (Jacobs and Macpherson 1996). The selective

responses of the tibial sensilla to both decreases and increases in load provide a

mechanism for anticipating the need for further support and for initiating rapid responses to

Experiments are planned to test these hypotheses in themaintain stable postures.

decrements to similar advantage.
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CHAPTER 2

ENCODING OF FORCES BY COCKROACH TIBIAL CAMPANIFORM SENSILLA:
IMPLICATIONS IN DYNAMIC CONTROL OF POSTURE AND LOCOMOTION
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SUMMARY

Forces exerted by a leg in support and propulsion can vary considerably when animals

stand upon or traverse irregular terrains. We characterized the responses of the

cockroach tibial campaniform sensilla, mechanoreceptors which encode force via strains

produced in the exoskeleton, by applying forces to the leg at controlled magnitudes and

rates. We also examined how sensory responses are altered in the presence of different

levels of static load. All receptors exhibit phasico-tonic discharges that reflect the level and

rate of force application. Our studies show that: 1) tonic discharges of sensilla can signal

the level of force, but accurate encoding of static loads may be affected by substantial

receptor adaptation and hysteresis; 2) the absolute tonic sensitivities of receptors

decrease when incremental forces are applied at different initial load levels; 3) phasic

discharges of sensilla accurately encode the rate of force application; and 4) sensitivities

to changing rates of force are strictly preserved in the presence of static loads. These

findings imply that discharges of the sensilla are particularly tuned to the rate of change of

force at all levels of leg loading. This information could be utilized to adapt posture and

walking to varying terrains and unexpected perturbations.
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INTRODUCTION

considered essential components in the control of posture and locomotion, in both

vertebrate and invertebrate animals (vertebrates, Pearson et al. 1992; Dietz 1998;

Pearson et al. 1998; invertebrates, Ridgel et al. 1999; review, Duysens et al. 2000).

These types of receptors can indicate the extent of loading and signal whether the

levels of force exerted by limb muscles are adequate to provide support during standing

and walking. For example, the magnitude of loading during the start of the stance phase

of locomotion is signaled by receptors that reflexively adjust the activities of extensor

muscles to generate forces of appropriate amplitudes to support the animal's weight

(Pearson and Collins 1993; Bassler et al. 1991). At the end of stance, loading must be

decreased to critical levels for the initiation of leg lifting in swing (Pearson et al. 1992;

Pearson et al. 1998; Whelan et al. 1995) and for normal coordination of leg movements

(Bassler 1987).

Recent work has also stressed that the regulation of force dynamics (dF/dt) may play a

key role in determining responses to perturbations of posture and locomotion (Jacobs and

Macpherson 1996; Macpherson 1988a,b), as well as the adaptation of walking patterns to

irregular or unstable terrains (Mcilroy and Maki 1994). During postural perturbations in

subjects standing upon a moveable platform, the specific activities of groups of limb

muscles were strongly correlated with the direction of force application and these patterns

of activation may be organized according to the resultant force vectors (Jacobs and

Macpherson 1996; Horak and Macpherson 1996; Macpherson 1988a,b). These

responses were adjusted to the magnitude and rate of the platform displacement and
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Inputs from sense organs that detect mechanical forces acting upon the legs are now



occurred at short latencies (Burleigh and Horak 1996), implying that they are tuned to

these variables by receptors that monitor force dynamics. Furthermore, perturbations of

larger magnitudes and rates can elicit stepping responses (Burleigh and Horak 1996;

Mcilroy and Maki 1994; Burleigh et al. 1994; Mcilroy and Maki 1993; Maki et al. 1993), in

which a leg is lifted and repositioned so that the center of gravity or pressure is within the

base of support. Those studies imply that the nervous system is able to rapidly detect and

process information about changes in force to adopt appropriate compensatory strategies

and to prevent falling.

However, the specific types of sense organs that encode these diverse forces and

the mechanism by which they detect dynamic parameters remain somewhat

controversial. In vertebrates, forces acting upon the head and body are detected directly

by two systems, the vestibular apparatus (Mittlestadt 1998; Inglis and Macpherson

1995; Macpherson and Inglis 1993) and proprioceptive afferents (Pearson et al. 1992;

Inputs from both types of receptors have been shown to bePearson et al. 1998).

integrated into reactions to postural perturbations during standing and walking. Forces

acting on the limbs are now thought to be monitored by Golgi tendon organs (Whelan et

al. 1995; Hiebert et al. 1995; Heibert et al. 1994) and some tendon organs have been

shown to be able to encode the rate of applied force (Davies et al. 1995; Jami 1992;

However, the specific way forceFukami and Wilkinson 1977; Goslow et al. 1973).

information provided by Golgi tendon organs is incorporated into postural perturbations

remains undetermined.

In contrast, many arthropods lack a vestibular system and forces are thought to be

detected entirely by proprioceptive sense organs of the limbs (cuticular stress detectors,
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Marchand et al. 1995; campaniform sensilla, Pringle 1938a; lyriform organs, Blickhan

and Barth 1985; muscle receptor organs, Tryba and Hartman 1997; overview, Zill and

Seyfarth 1996). In insects, campaniform sensilla detect forces on the legs as strains in

the exoskeleton (Pringle 1938b; Hofmann and Bassler 1982, 1986; Delcomyn 1991;

Schmitz 1993; Zill and Seyfarth 1996). The strains are monitored via small cuticular

caps that form the attachment points for the sensory dendrites (Moran et al. 1971). The

studies of Chapman and colleagues (Chapman et al. 1973, 1979; Chapman 1975;

Spinola and Chapman 1975) extensively characterized the mechanisms of sensory

transduction of the cockroach tibial campaniform sensilla by mechanical stimulation of

the cuticular caps. However, few previous studies have examined sensory responses

Spinola and Chapman (1975) and established that the tibial sensilla respond

response to forces acting close to the plane of movement of the adjacent femoro-tibial

joint. In those studies, the magnitudes of forces that were applied to the leg were not

directly monitored (but only estimated) and the rate of force application was not

controlled. These problems have limited subsequent attempts to model the responses

and functions of campaniform sensilla (Cocatre-Zilgien and Delcomyn 1999).

The goals of the present study were: 1) to characterize the basic responses of the

tibial campaniform sensilla to controlled and measured force applied to the leg and 2) to

particularly examine the effects of increased loading upon receptor function. Dynamic

variations that occur in the presence of static loads may be important in adapting

posture and locomotion to uneven or unstable terrains, in both animals and walking
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directionally to force applied to the leg and that afferent discharges were maximal in

to forces exerted upon the leg. Zill and Moran (1981a,b) confirmed the findings of
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studies have shown that the receptors are effective encoders of level but that signals

from the largest sensilla could be compromised by adaptation to sustained loads and

hysteresis. In contrast, sensitivities to changing levels of force (dF/dt) are accurately

previous evaluations of the functions of campaniform sensilla in the control of posture

and walking (Zill and Moran 1981a; Schmitz 1993; Zill 1993; Prochazka 1996). These

types of sensitivities may be important in the walking system during adaptive

locomotion.

MATERIALS AND METHODS

Adult male Periplaneta americana (n= 24) were anaesthetized with carbon dioxide

and secured, ventral side up, to a Sylgard resin-coated block using staples made from

insect pins (Fig. 4) (see methods of Ridgel et al. 1999). Under a dissecting scope, the

(Nijenhuis and Dresden 1956) were cut under the cuticle near the metathoracic ganglion.

After clotting of the wound occurred, the animals were returned to a plastic jar with a

water source for 20 minutes, then re-anaesthetized and secured, dorsal side up, on the

resin block.

Extracellular recordings from the tibial campaniform sensilla (Figs. 1A,B; Group 6 of

Pringle 1938b) were obtained by placing 50 pm silver wires near nerves 5 or 5r8

(Nijenhuis and Dresden 1956) through holes made in the cuticle of the femur (Fig. 40).

These electrodes monitored activities of the largest sensilla of both subgroups (proximal

MA, MP and distal DA of Spinola and Chapman 1975; Fig. 4D) as their axons are
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nerves that provide sensory and motor innervation to the right metathoracic leg

maintained in the presence of sustained loads. These studies confirm elements of

machines (Duysens et al. 2000; Nelson and Quinn 1998; Nelson et al. 1997). Our



• Figure 4: Experimental setup and identification of unit discharges to applied forces. A The

tibial campaniform sensilla are located on the proximal end of the tibial segment of the leg

(drawing after Schnorbus 1971). B Confocal projection image of tibial campaniform

sensilla. The tibial campaniform sensilla consist of two subgroups, proximal and distal

sensilla, which have cuticular caps with mutually perpendicular orientations. The dendrites

of two proximal sensilla, stained with Dil, are shown inserted into their respective cuticular

caps, (calibrate = 20 microns). C Diagram of experimental setup. Animals were

restrained on a resin block and the femoro-tibial joint was stabilized by gluing it to a small

pin (Pin). Sensory recordings (Sens) were obtained from wire electrodes placed adjacent

to nerve branches in the femur. Forces were applied to the tibia via a probe (Force probe)

mounted to a piezoelectric crystal. Ramp and hold waveforms (Ramp generator) were

applied to the crystal (PE amplifier) and forces were monitored through strain gauges on

the probe (SG amplifier). Individual sensilla were identified by indenting their caps with a

fine wire (Indent caps). All data were recorded on tape (Tape recorder). Di-iii Identification

of units by cap stimulation/ablation. Force applied to the tibia in the direction of forced

extension (i) excited a small amplitude unit (proximal sensilla) and release of force

excited a large amplitude unit (distal sensilla) (Ridgel et al. 1999). Indentation of an

individual proximal sensilla cap elicited an intense discharge that matched the amplitude

of the response recorded in Di (data not shown). Ablation of this proximal sensilla cap

(ii) produced an injury discharge of high frequency followed by no further activity. Cap

ablation led to an elimination of discharges to increased force (iii). However, discharges

from the large amplitude unit (distal sensilla) upon release of force could still be

recorded. E The force probe was calibrated with small weights and was equally
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sensitive to forces in both directions (filled circles = direction of force extension, r2 =

0.979; open circles = direction offeree flexion, 1^= 0.996).
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contained in the same nerve branches (Schnorbus 1971; Zill et al. 1980). The smaller

sensilla have not been systematically studied, presumably due to the fact that they have

smaller axonal diameters and are much more difficult to record using extracellular

then severed and the spines on the tibia and distal femur were cut. The femoro-tibial

joint was immobilized in either a partially flexed or completely extended position with a

small pin that was placed adjacent to the joint and secured to the joint and the resin with

glue. This arrangement allowed for unimpeded bending of the shaft of the tibia, which

was restrained only at its proximal end. Forces were imposed upon the distal end of the

tibia, in the plane of the femoro-tibial joint, using a probe that was displaced by a piezo­

electric crystal (Fig. 4C, Force probe). The probe consisted of a metal rod that was

waxed to a piece of shim steel. Two strain gauges were glued to the shim steel (one on

each side) and linked in a Wheatstone half-bridge configuration. The free end of the

metal rod was pressed against either the inner (ventral) or outer (dorsal) surface of the

distal tibia. Ramp voltages were then applied to the piezo-electric crystal. As the joint

was immobilized, these stimuli effectively bent the tibia in the direction of extension

(which we term FORCED EXTENSION) or flexion (termed FORCED FLEXION). The

resultant forces were monitored via a custom built strain gauge amplifier. In other

experiments, progressively increasing stimuli were applied to the leg through a hydraulic

micromanipulator (Narishige, Japan) which held the force probe and crystal. At the end

of an experiment, individual campaniform sensilla were identified by indenting their

cuticular caps with a fine etched tungsten wire attached to another piezo-electric crystal,
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using cyanoacrylate glue and tied to the leg with copper wire (#40). The tarsus was

techniques. The wires, which were bared of insulation near their tips, were secured



as previously described (Ridgel et al. 1999) (Fig. 4C, D). All stimuli and sensory

recordings were amplified and stored on digital audio tape (DAT).

Experiments were transcribed to computer using a CED 1401 analog to digital

converter and Spike2 3.0 software (Cambridge Electronic Design, England). Data were

analyzed in Spike2 3.0. Force measurements were calibrated by placing weights made

of solder wire on the end of the metal rod of the probe (Fig. 4E). All plots were obtained

using Sigma Plot 4.0 (SPSS, Inc) and statistics were calculated using Sigma Stat 1.0

(SPSS, Inc) and StatView 5.0 (SAS Institute).

Receptor cells (Fig. 4B) were stained with Dil (after methods of Zill et al. 1993) and

imaged with a Bio-Rad confocal microscope (Larsen et al. 1997).

RESULTS

Identification of Sensory Units

Vigorous discharges to bending of the tibia were recorded from nerves in the femur.

Typically, the activities of one or two units of small amplitude were recorded upon forced

extension (Fig. 4Di) while a single large unit was recorded during bending which forced

the tibia in the direction of flexion (Fig. 5B) (Chapman 1975, Schnorbus 1971). A

number of controls were performed to confirm the identities of these units as individual

proximal or distal tibial campaniform sensilla. First, we applied force to the end of the

tibia, then shifted the point of force application to a point approximately halfway along

the length of the tibia. This control confirmed that the discharges were elicited to tibial

bending and were not dependent upon the point of contact of the probe, which could

inadvertently stimulate the large tibial tactile spines. Second, at the end of an

experiment we mechanically stimulated the caps of Group 6 sensilla individually with a
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fine etched tungsten wire probe (distal sensilla n= 12, proximal sensilla n= 11) (Ridgel et

Cap indentation produced phasico-tonic discharges that could be quiteal. 1999).

intense and often closely matched the amplitude of the responses recorded to tibial

bending. However, the extracellular recorded amplitude could be affected by prolonged

bending or by the rapid displacements that were used to record responses to stimuli of

different velocities. We, therefore, compared spike amplitudes on the last series of tests

recorded prior to cap indentation (n= 13). In 11 preparations, we also ablated the caps

of individual sensilla, most often by forcefully depressing the probe used for cap

were recorded, cap ablation led to the complete elimination of discharges to forced

phasic discharges of units to decreasing force levels and confirmed that these

responses were derived from campaniform sensilla (Ridgel et al. 1999).

Responses to 'staircase' stimuli

\Ne first characterized the responses of Group 6 sensilla to different amplitudes of force

bending the tibia with the femoro-tibial joint immobilized. Theseby progressively

‘staircase’ stimuli were applied to the distal tibia by manually displacing the horizontal-axis

Figure 5 showscontrol knob of the micromanipulator which held the force probe.

responses recorded during progressively increasing, and then decreasing, force which

bent the tibia first in the direction of joint extension (Fig. 5Ai) and then toward joint flexion

(Fig. 5Bi). Responses of individual sensilla to increasing staircase stimuli were strictly

In alldirectional and correlated with the orientation of the receptor’s cuticular cap.

cases, the proximal sensilla fired to forced extension while the distal sensilla fired to
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extension or flexion (Fig. 4Diii). These ablations also could selectivity eliminate the

stimulation (Fig. 4Dii). In experiments in which only single proximal or distal sensilla



Figure 5: Response to increasing and decreasing forces applied as ‘staircase’ stimuli.

Forces applied as progressive staircases (through the micromanipulator that held the

force probe) elicited tonic discharges in tibial sensilla. Proximal sensilla (Ai) were

excited upon force extension (down on force trace) while distal sensilla (Bi) responded to

force flexion (up on force trace). The graphs plot the mean firing frequency of the receptors

(Aii, proximal; Bii, distal) versus the level of sustained force for the discharges shown in Ai

and Bi. The sensilla show linear increases in discharge rate that encode the force level

but saturate at higher levels of applied force. Tonic firing exhibits substantial hysteresis

when force levels were decreased (arrows signify increasing and decreasing forces). In

addition, force decreases were also accompanied by discharges of sensilla of the

opposite cap orientation (asterisks in Ai and Bi).
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forced flexion. Figures 5Aii and 5Bii plot the mean discharge frequency in the entire hold

phase at each level during increases and decreases in force application (see Figs. 5Ai,

5Bi). The proximal sensilla (Fig. 5Aii), which were often tonically active in the absence of

imposed bending, showed graded increments in firing frequency that reflected the level of

force but response sensitivities decreased at levels above 3 mN. In contrast, the distal

sensilla (Fig. 5Bii) fired phasically at low levels of applied force and only exhibited

sustained discharges at higher force amplitudes. These responses showed considerable

saturation at levels above about 3 mN, and subsequent increases in the level of applied

force did not result in higher afferent firing frequencies. When applied forces were

decreased from maximal amplitudes, sensilla discharged at much lower rates relative to

that seen during force increases. This hysteresis, shown in the frequency plots in Figs.

5Aii and 5Bii, resulted in a 58-85 percent decrease in afferent firing rate in the range of

1.5-2.5 mN for proximal sensilla and a 74-95 percent decrease in afferent firing in the

range of 2-4 mN for distal sensilla. Similar hysteresis has previously been reported for

the trochanteral campaniform sensilla in the stick insect (Hofmann and Bassler 1986)

and in a number of other mechanoreceptors (e.g. chordotonal organ, Zill and Jepson-

Innes 1988).

We also consistently observed activity during the decreasing phase of the 'staircase’

that was derived from the campaniform sensillum of the opposite cap orientation.

These types of discharges were phasic but occurred during decreases from forces

applied as forced extensions and forced flexions, even though active bending in the

opposite direction had not occurred. For example, the discharge of a distal sensillum

occurs at the end of the staircase sequence of forced extension (Fig. 5Ai), even though
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the level of applied force had not reached zero and no bending had been imposed in the

direction of forced flexion (Ridgel et al. 1999). These responses were also observed in

the tests using ramp and hold stimuli (see Figs. 6-9). These findings support the idea

that the tibial campaniform sensilla maintain their individual directionality but that firing

can occur both in the preferred direction and from release of force applied in the

opposite direction.

Responses to ramp and hold stimuli

\Ne studied responses to varying levels of force more extensively by using ramp and

hold stimuli that had constant rates of force application but variable amplitude. All

campaniform sensilla exhibited phasico-tonic discharges that had high firing frequencies

during the ramp phase which adapted to lower levels during the hold phase (Spinola

and Chapman 1975, Zill and Moran 1981b). However, the proximal and distal receptors

differed in their sensitivities and rates of adaptation. Figure 6 shows the discharges of

proximal (Fig. 6Ai,ii) and distal sensilla (Fig. 6Bi,ii) to ramps that reached different levels

of sustained force applied to the distal tibia (Figs. 6A, B are from two different

preparations). The firing frequencies of the proximal receptors to forced extension were

consistently higher than those of distal receptors to forced flexion, at all levels of force

Furthermore, the initial phasic discharge was moreapplication that were tested.

activity of the distal receptors often adapted completely as was seen in responses to

'staircase' stimuli.

These differences in the rate of adaptation and their dependence upon the amplitude

of the stimulus are evident in the graphs of sensory discharge shown in Figs. 6C-D.
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prolonged in the proximal sensilla than in the distal sensilla. At low levels of force,



Figure 6: Responses to ramp and hold stimuli and receptor adaptation. A-B Forces

were applied to the tibia via voltages delivered to the piezoelectric crystal of the probe.

Proximal sensilla (A) exhibit phasico-tonic discharges to forces applied as ramp and

hold stimuli in the direction of extension (down arrow in Ai,ii). Distal sensilla (B) show

similar responses to force flexion (up arrow in Bi,ii). The histogram above the recordings

plots the firing frequency in bins of 50 msecs. Tonic discharges of proximal receptors

occur at higher sustained frequencies and adapt less rapidly then the distal receptors

(force level: Ai 0.6 mN, Aii 1.9 mN, Bi 1.3 mN, Bii 3.0 mN). C-D Sensillum adaptation

during the hold phase. Adaptation rates were evaluated by plotting the afferent

discharges during the hold phase of the stimulus, beginning at the cessation of the

rising phase of the ramp. The instantaneous firing frequencies of a proximal (C) and

distal (D) sensillum were plotted during a 9 sec stimulus. The proximal receptors adapt

slowly at all force levels (triangles = 2.2 mN, circles = 1.2 mN; rate: 15.8 mN/sec). In

contrast, firing of the distal receptors adapted rapidly and was only more sustained at

higher levels (triangles = 2.0 mN, circles = 1.1 mN; rate = 15.9 mN/sec). E-F Encoding

of static loads. Ramp and hold stimuli were applied at constant rates of rise but

progressively increasing amplitudes. The mean tonic firing frequencies during second

1-2 (circles) and the last second (squares) of the hold phase are plotted for series of

discharges encode the static level of force during both intervals. The firing frequencies

of the proximal receptors to forced extension are consistently higher than those of distal

0.911; F circles, slope = 14.8, r2 = 0.926; squares, slope = 7.7, r2 = 0.842)
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receptors to forced flexion. (E circles, slope = 20.5 r2 = 0.959; squares, slope = 8.6 r2 =

stimuli in two different preparations (E proximal sensilla; F distal sensilla). Afferent
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Figs. 6C and 6D plot the instantaneous firing frequency during the hold phase at

comparable levels of force (amplitude 1.1-2.2 mN) (Chapman and Smith 1963; French

and Torkelli 1994). These discharges are plotted on a log-log scale and have been fitted

-kto the exponential equation y = At according to the method of Chapman and Smith

(1963). The power coefficients (k) in this example are 0.17 and 0.25 for proximal sensilla

and 0.84 and 0.86 for distal sensilla. The discharge frequencies of the proximal sensilla

adapt slowly at both levels while firing rate of the distal sensilla adapts rapidly to low and

moderate force levels and is more sustained at higher forces. The discharges of both

types of receptors also showed considerable variation in firing frequency late in the hold

phase (Fig. 6C,D). However, at these levels of imposed force, the firing of both types of

sensilla during the last second of the hold phase still reflected the amplitude of the

stimulus.

In order to assess the abilities of the campaniform sensilla to encode static loads, we

imposed ramp and hold stimuli of long duration (9-10 seconds) and increased the hold

level in successive tests. Each ramp and hold stimulus was applied from the same

baseline with a 1-5 second interval between force applications. Because of the

hysteresis exhibited by the receptors (Fig. 5), our data analysis was limited to stimuli

presented at successively increasing force levels. The graphs in Figures 6E,F show

rates of discharge of proximal (Fig. 6E) and distal sensilla (Fig. 6F) for different

seconds 1-2 (filled symbols), as well as the last second of the hold phase (open

symbols). The firing frequencies during both periods systematically increased as larger
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amplitudes of sustained force. Each graph plots the mean firing frequencies during



forces were applied, and similar results were obtained in other preparations. The tibial

campaniform sensilla linearly encoded the levels of sustained forces over these ranges.

Effects of pre-loading upon amplitude sensitivity

We studied the effects of application of pre-existing loads upon encoding of force

level in similar tests, but initiated them as series at different static offsets. In these

experiments, force applied to the tibia was first increased through the micromanipulator

decline but variable amplitude, were then initiated as a series through voltages applied

to the PE crystal of the force probe (see inset in Fig. 7). To quantify these results, we

plotted the mean firing frequencies of the receptors during the interval from second 1-2

indicator of afferent responses due to the variability in the discharge frequency seen

after more extensive receptor adaptation (discussed above). Fig. 7A contains a plot of

the tonic firing frequency of proximal receptors vs. the absolute force magnitude during

series that were initiated at offset levels of -0.1, -0.7, -1.4 and -1.7 mN (force extension).

Fig. 7B contains a similar plot of the discharge of distal sensilla at offsets of 0.3, 0.6, 1.0

and 1.3 mN (force flexion). The effects of prior loading were considerable and reflected

a decrease in the absolute tonic sensitivity of the receptors (Fig. 7C). For example, 2.2

mN of force applied to the leg from a baseline level of 0.1 mN resulted in a discharge of

28 Hz. When the same level of force was applied after adaptation to a baseline of 1.7

mN, the resultant discharge was only 13 Hz, representing a 53% decrease in firing

frequency. These findings indicate that the tonic discharges of campaniform sensilla at
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and held for 60 seconds. Ramp and hold stimuli, that had constant rates of rise and

of the hold phase at each amplitude. We found this interval to be a more reliable



Receptors encode levels of increasing force but change in absoluteFigure 7:

sensitivity at different static loads. The effects of response adaptation to pre-existing

through the micromanipulator one minute prior to the application of ramp and hold

stimuli, similar to the tests in Fig. 6 (see protocol). A-B Mean firing frequencies during

second 1-2 of the hold phase are plotted for increasing values in each series. The

effects of prior loading are substantial in both proximal (A) and distal (B) sensilla and

reflected a decrease in the absolute tonic sensitivity of the receptors. (A circle, slope =

13.0, r2 = 0.931; square, slope = 10.7, r2 = 0.806; triangle, slope = 10.7, r2 = 0.886;

diamonds, slope = 10.7, r2 = 0.859; B circle, slope = 6.7, r2 = 0.836; squares, slope =

5.2, r2 = 0.825; triangles, slope = 5.8, r2 = 0.673; diamonds, slope = 4.9, r2 = 0.632). C

Effect of prior load on discharge of a proximal sensillum. Sample recordings from the

series plotted in A showing application of 2.2 mN force from different baseline levels.

The discharge frequency is highest from a baseline of -0.1 mN (I) and is reduced from

baselines of-1.4 mN (ii) and -1.7 mN (iii).
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loads were studied at different offset levels. In each series, the offset was imposed
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a given level of force application is not invariant, but depends upon the extent of prior

application of load.

Response of sensilla to changing rates of force application

To characterize the sensitivities of the tibial campaniform sensilla to different rates of

force application (dF/dt), we applied ramp and hold stimuli in which the rate of the rising

and falling phase was varied (n = 33 distal, n = 21 proximal sensilla). In these tests, the

stimulus amplitude was held constant so that the increase in rate resulted in a decrease

The discharge frequencies of all sensilla showed a strong

dependence upon the rate offeree application (Fig. 8). At low to moderate rates (1-12

mN/sec), sensilla often discharge at uniform firing frequencies during the ramp (Fig. 8A,

B), but at higher velocities of stimulation the maximum afferent discharges did not occur

until after the end of the rising phase (this was often observed in the proximal sensilla).

We, therefore, plotted the responses of the sensilla as maximum discharge frequencies

attained in the interval between the ramp onset and 100 ms after the end of the rising

phase. Figures 8C and 8D plot the frequency of discharge of proximal (Fig. 8C) and

distal (Fig. 8D) sensilla versus the rate of change of force in four different preparations.

These data are plotted on a log-log scale (Chapman and Smith 1963) and indicate that

the sensitivity to the rate of change of force is consistent among different preparations.

Furthermore, the discharge frequencies of the proximal sensilla were consistently higher

than the distal receptors at all rates tested. Data were again fitted to power functions

using the methods of Chapman and Smith (1963). The power coefficients had a mean

value of 0.41 (range = 0.33-0.51) for the proximal receptors but were consistently higher

for the distal receptors (0.68, range = 0.64-0.75).
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in ramp duration.



Figure 8: Encoding of rate of change of applied force. A-B Ramp and hold stimuli were

applied at constant amplitudes but varying rates of rise and decline of the ramp phase.

The initial, phasic discharges of both proximal (Ai, ii) and distal (Bi,ii) sensilla increased

substantially when the rate of rise of the stimulus is increased. (Ai amplitude = 0.8 mN,

rate = 7.0 mN/sec; Aii amplitude = 0.8 mN, rate = 2.8 mN/sec; Bi amplitude = 1.0 mN,

instantaneous firing frequencies in the initial discharges of proximal (C) and distal (D)

sensilla are plotted versus rate of change of force from four different preparations. Data

are graphed on a log-log scale and show linear increases in receptor firing frequency with

among preparations (see Table 1 for power coefficients) and the discharge frequencies of

proximal sensilla are higher than distal sensilla at comparable rates. E Effects of stimulus

amplitude upon encoding of force dynamics. A series of ramp and hold stimuli were

applied at varying rates of rise and decline of the ramp phase. The amplitude of the

stimulus was then increased and responses retested. This graph plots the maximum firing

frequencies of a proximal sensillum versus the rate of change of force for tests using four

stimulus amplitudes (squares = 0.6 mN, circles = 1.3 mN, triangle = 1.9 mN, diamonds =

2.8 mN). Firing frequencies of the sensillum are lower at 0.6 mN stimulus amplitude than

at larger amplitudes. However, the sensillum fires similarly to all stimuli at rates above

The sensitivity to rate of change of force is relatively constant above a10mN/sec.

minimum amplitude and velocity.
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increased rate of force application. The sensitivity of sensilla to the rate is consistent

rate = 12.7 mN/sec; Bii amplitude =1.0 mN, rate = 4.1 mN/sec). C-D The maximum
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To further characterize the rate sensitivities of the receptors, we applied ramp and hold

stimuli to the tibia similar to those used above but then increased the amplitude of the

stimulus in successive series. Figure 8E plots the maximum firing frequencies of a proximal

sensillum versus the rate of change of force for stimulus series applied from the same

baseline levels with amplitudes of 0.6 mN, 1.3 mN, 1.9 mN and 2.8 mN. These data were

fitted to exponential functions with power coefficients of 0.57, 0.40, 0.33 and 0.28 from

lowest to highest amplitude. Firing frequencies of the sensillum to changing rates of force

application were lower when ramps were applied at an amplitude of 0.6 mN than at the

higher amplitudes. However, the sensillum fire similarly in all tests at rates above 10

mN/sec. Similar results were obtained in other experiments and may imply that the rate

sensitivities of the proximal sensilla are relatively constant when force changes occur above

a minimum amplitude.

Effects of pre-loading upon rate sensitivities

\Ne also tested the effects of pre-existing loads upon sensitivities to the rate of

change of force by applying ramp and hold series at varied rates of rise from different initial

levels (Fig. 9). We again used the micromanipulator to increase force up to an offset and

held that value for 60 seconds. The ramp and hold stimuli were then applied via the PE

crystal of the probe. Fig. 9A plots the maximum firing frequencies of proximal sensilla to

increasing rates of force application from four initial levels of force (-0.1 mN, -0.7 mN, -1.3

mN, and -1.5 mN) and Fig. 9B shows a similar plot of distal sensilla at three offsets (0.2 mN,

0.4 mN, and 0.6 mN). Table 1 provides a summary of the exponential functions calculated

from these tests and those that were applied from normal baseline levels. In contrast to the
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Figure 9: Receptors accurately signal rate of force application after adaptation to different

static loads. Series of ramp and hold stimuli of variable rates of rise and decline of the ramp

phase were applied at different initial offset levels. Plots of the responses of proximal (A)

and distal (B) sensilla from single preparations indicate that the dynamic responses of the

campaniform sensilla were largely unaltered even after substantial initial offsets (see Table 1

for power coefficients).
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Table 1: Power and regression coefficients for tests of sensitivities to rate of change of

force. Data from experiments examining rate sensitivities (Figs. 8, 9) were fitted to the

equation y=axk (Chapman and Smith 1973; Thorson and Biederman-Thorson 1974;

Chapman et al 1979; French 1992). The tests in Figs. 8A,B were applied with minimum

single preparations with progressively increasing offsets.

ka

8C

9A

ka

8D

9B
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6
7
8
9
10
10
10

1
2
3
4
5
5
5
5

97.09
78.78
58.60
104.3
85.11
88.97
96.31
97.31

15.69
23.85
16.62
14.45
15.69
17.75
15.38

0.33
0.43
0.49
0.38
0.43
0.41
0.36
0.34

0.82 
0.71 
0.58 
0.75 
0.82
0.72 
0.78

0.846
0.986
0.872
0.951
0.967
0.969
0.976 
0.972

0.939
0.971
0.809
0.949
0.939
0.934
0.952

Offset 
(mN) 

0.1 
0.1 
0.1 
0.1 
0.1 
0.7 
1.3 
1.5

Offset 
(mN) 

0.1 
0.1 
0.1 
0.1 
0.2 
0.4 
0.6

Proximal____________________
Figure Preparation Amplitude 

(mN)  
0.8 
1.0 
1.1 
1.4 
1.1 
1.1 
1.1 
1.1

R2

R2
Distal_________________________
Figure Preparation Amplitude 

(mN) 
0.6 
0.8 
1.0 
1.0 
1.0 
1.0 
1.0

offsets in four different preparations. The tests from Figs. 9A,B were performed on



encoding of force level, the dynamic responses of the campaniform sensilla were largely

unaltered even after substantial initial offsets.

Figure 10 quantitatively compares the effects of pre-loading on the tonic and dynamic

sensitivities of the tibial campaniform sensilla. To compare the tonic responses, we grouped

the data according to the absolute levels of force that were applied (see Fig. 7). We then

calculated the mean firing frequencies of the sensilla at these levels and compared them

according to the extent of pre-loading. To compare dynamic sensitivities, data were

grouped according to the rate of force application. Mean afferent firing frequencies that

occurred in those ranges were then calculated from the data shown in Fig. 9. An unpaired t-

test was used to compare the sensilla firing frequencies at the lowest and highest offsets.

Encoding of force level was significantly decreased by prior loading at nearly all levels that

were compared. In contrast, sensitivities to the rate of change of force were not decreased

by pre-loading, although slightly significant differences occurred in some ranges. These

findings, as a whole, indicate that the detection of the rate of change of force is preserved

under a wide range of loading conditions.

DISCUSSION

The accurate detection of forces applied to a leg in adaptive terrestrial locomotion

requires that the system be able to monitor the levels and rates of change of those

forces under a wide range of loading conditions. The present study has shown that the

cockroach tibial campaniform sensilla are particularly tuned to changing forces, in that

the tonic component of the discharge of the receptors can encode the level of force, but

In contrast, the phasicreceptor sensitivities change after adaptation to static load.

component of the discharge accurately signals the rate of change of force under all
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Figure 10: Summary of effects of pre-loading on afferent responses of the tibial

campaniform sensilla. A-B Encoding of force level. Data from tests of the effects of

pre-loading on tonic firing during the hold phase (Fig. 7) were grouped into ranges

according to the final static level of force that was applied. The mean tonic firing

frequencies of the receptors were calculated in each range. The tests were compared

according to the offset load that was applied prior to reaching the final level of force.

Student’s t-test was used to compare the groups with the highest and lowest initial

offsets. Firing frequency of the proximal sensilla (A) is significantly different in all three

ranges of static load (*, p<0.01). Encoding of force level by the distal sensilla (B) was

significantly different in 2 of 3 ranges (*, p<0.01). C-D Encoding of rate of change of

force. Data from tests of the effects of initial offsets on sensitivities to force rate were

grouped into ranges according to the rate of change of the rising phase of the ramp.

Mean values of sensillum firing frequency were calculated for each range from the data

in Fig. 9. The data were compared according to the static offset that had been applied.

Firing frequencies of the proximal sensilla (C) are not significantly different in 2 of 3

ranges and only slightly different (#, p=0.04) in the third range. Encoding of force rate

by distal sensilla (D) is not significantly different in 3 of 4 ranges. These tests support

the idea that sensitivity to rate of change of forces is preserved after adaptation to static

loads.
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findings of other studies on campaniform sensilla; and 2) the potential functions of these

types of signals in the maintenance of postural stability and in the adaptation of walking.

Comparison with previous studies on leg campaniform sensilla

The response properties of campaniform sensilla of insect legs have been the

subject of a number of investigations (Pringle 1938a,b; 1961; Schnorbus 1971; Spinola

and Chapman 1975; Zill and Moran 1981a, b; Schmidt 1993; Newland and Emptage

1996). However, almost all previous studies that have quantitatively examined their

encoding capabilities have utilized direct mechanical stimulation of the cuticular caps as

a stimulus (Spinola and Chapman 1975; Chapman et al. 1973; 1979). In contrast,

experiments that have characterized their responses to forces applied to the leg have

typically not measured those forces (Hofmann and Bassler 1982, 1986; Delcomyn

1991) or only estimated them by indirect calibration (Zill and Moran 1981b). The

following discussion, therefore, briefly reviews the results of previous studies in the

context of the present findings.

Directional sensitivity of the tibial campaniform sensilla

The proximal and distal tibial campaniform sensilla responded with consistent

support Chapman’s conclusions that the receptors respond maximally to strains which

act to compress the cuticular cap perpendicular to its long axis (Spinola and Chapman

1975). While these experiments only studied the encoding of forces imposed in the

plane of joint movement, a previous study has shown that forces applied in this plane

The actual distributions ofoptimally excite the receptors (Zill and Moran 1981b).
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loading conditions. In the following, we will discuss these results in the context of 1)

directionality to all levels and rates of force applied to the tibia. These results fully



stresses that occur at the femoro-tibial joint during standing or walking in freely moving

animals are unknown. The vectoral component of load, that is resisted by the actions of

the tibial extensor and flexor muscles, occurs in the plane of joint movement. These

results are therefore important in understanding the types of information that are

provided by proprioceptors about the forces that the animal actively controls.

We have also found that the tibial sensilla show phasic discharges to decreasing

forces (Ridgel et al. 1999). These types of responses occurred in many tests in the

present series of experiments (Figs. 4, 6, 8) using ramp and hold stimuli, and they were

ubiquitous in parallel studies we have performed using white noise as the driving

waveform for forces applied to the leg (DiCaprio et al. 1998). Discharges during

releases from applied forces are evident in earlier studies of campaniform sensilla of

cockroaches (Spinola and Chapman 1975, Zill and Moran 1981b) and other insects

(Delcomyn 1991; Newland and Emptage 1996). They also regularly occur in crustacean

mechanoreceptors (cuticular stress detectors, Marchand et al. 1995). The mechanisms

underlying responses to decrements in force are presently unknown.

In sum, these data support the hypothesis that individual tibial campaniform sensilla

show a single directional sensitivity and provide precise information about force vectors

and their resultant strains within the leg. In the tibia, the sensitivity to changing forces

occurs in a preferred direction, in that sensilla encode both increasing strains in that

direction and relaxation from forces applied in the opposite direction. As discharges to

force decrements are only phasic, these findings also support the idea that the tibial

campaniform sensilla are important detectors of changes in forces that act upon the leg.
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Encoding of static load

\Ne demonstrated that the discharges of the sensilla in the intervals early and late in

the hold phase effectively encoded the level of force when averaged over time (Fig. 6).

Previous reports of the tonic sensitivities of the cockroach tibial sensilla were based

upon estimates of the magnitudes of forces applied to the tibia. Furthermore, Zill and

Moran (1981b) compared the effects of force application in different directions during

interval reflects the rate, and only secondarily the amplitude, of the applied stimulus.

Thus, the plots of Zill and Moran (1981b) represent over-estimations of sensitivities of

the tibial campaniform sensilla to applied loads.

Both the proximal and distal sensilla exhibit hysteresis in tonic discharges when

Hysteresis has been previously

demonstrated in the trochanteral campaniform sensilla of the stick insect (Hofmann and

Bassler 1986) and has been noted in a number of other sensory systems (vertebrates:

Malbert and Leitner 1993; Segundo et al. 1995; invertebrates, Zill 1985a,b). The

potential functions of hysteresis in sensory discharges are often unclear (Hatsopoulos et

Zill and Jepson-Innes (1988) suggested that it can be adaptive andal. 1995) but

reduce residual tensions in leg muscles.

We found that the extent of adaptation was considerable in the tibial campaniform

sensilla of both orientations. Adaptation shown during single tests could be fitted to

simple exponential functions (Chapman and Smith 1963; Bohnenberger 1981) but

these functions had low correlation coefficients (r values) due to the considerable

variation in the firing frequencies (Fig. 6). Recent studies (French and Torkelli 1994)
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forces are decreased from maximal levels.

the first 100 msec after the stimulus onset. The present study has shown that this



suggest that sensory adaptation in arthropod mechanoreceptors represents a sequence

of processes with different time courses and that sensory responses are better

described by a corresponding set of exponents rather than a single constant.

Thus, our experiments suggest that the tibial campaniform sensilla can effectively

encode the static level of force, but the information provided by these receptors may be

limited by extensive adaptation and hysteresis. It is important to note that all studies on

the tibial group have only recorded the activities of the largest sensilla (Ridgel et al.

1999). Recordings of the discharges of the trochanteral campaniform sensilla have

demonstrated that receptors of different spike amplitude show differential sensitivities to

forces (Hofmann and Bassler 1986, 1982; Delcomyn 1991) and potentially range

fractionation (Zill et al. 1999). Thus, it is possible that the tonic activities of smaller

campaniform sensilla provide the system with information about static load that is less

affected by hysteresis or temporal adaptation.

Encoding of rate of applied forces

All campaniform sensilla accurately encode the rate of force application to the leg

(dF/dt) (Chapman et al. 1979; Hofmann and Bassler 1982, 1986). The afferent firing

frequencies during ramp application of changing levels offeree were, for the most part,

much higher than those signaling tonic loads (compare Figs. 6, 8). The information

indicating the rate of change of force may, therefore, be distinguishable by the system

from discharges related to static levels of load. These findings support and confirm the

results of Chapman and colleagues (1979) and Schnorbus (1971) which demonstrated

that tibial sensilla could encode forces applied as sinusoidal stimuli up to 80-100 Hz. At

those higher rates, responses showed saturation and receptors only fired single action
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potentials per cycle of stimulation.

Responses to rates of change of force applied to the leg could be fitted with high

correlation to simple power functions (Chapman et al. 1979; Thorson and Biederman-

Thorson 1974), in contrast to our findings on receptor adaptation. Chapman, Mosinger

and Duckrow (1979) also fitted the responses to cap indentation to power law functions

(k coefficients, median = 0.38, range= 0.14-0.69). Furthermore, we examined the

effects of varying the amplitude of the stimulus in sequences of tests of rate

sensitivities. The power coefficients were larger for low amplitude forces but reached a

receptor discharges unequivocally signal the rate of change of force when the

magnitude of the forces are above a minimum threshold.

Campaniform sensilla of the legs are, therefore, particularly tuned to monitor

changing levels of force in ranges that occur during locomotion and postural

perturbations. In parallel studies, we have found that the sensitivity of the afferent firing

frequency to the rate of force application is also present when mechanical stimuli are

applied to the leg using waveforms generated as white noise (DiCaprio et al. 1998).

However, no studies to date have systematically examined whether information is

provided by the receptors through temporal coding in the patterns or trains of action

potentials that are generated in responses to changing forces. Studies by Chapman

using cap stimulation have suggested that the sensilla may produce the largest number

of spikes at particular frequencies of sinusoidal stimulation, and this is clearly an area

for future research (Chapman et al. 1979).
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Effects of Pre-loading

A major finding of the present study was that the tonic responses of all tibial

campaniform sensilla were altered by application of prior static loads while encoding of

the rate of change of forces was unaffected. These findings are important because the

leg must regularly be used to support the animal’s weight in posture and locomotion.

Variations in forces that accompany perturbations would therefore occur as changes

have examined responses after application of tonic loads to the leg. Chapman,

Mosinger and Duckrow (1979) recorded the responses of the tibial receptors to

sinusoidally varying forces applied to the cuticular cap. Of necessity, these forces were

applied at an initial static offset level of force. All parameters measured (indentation,

force sensitivity and cap compliance) were similar when forces were applied at static

Measurements below this offset were difficult tooffset levels of 10-15 microNewtons.

(However, one sensillum showed very non-linearcontrol for technical reasons.

study, if the tonic force applied to a leg produces a continuous indentation of the

cuticular cap. Juusola and French (1995) recently studied the dynamic responses of

sensilla of the spider VS-3 lyriform organ (Seyfarth and French 1994) by application of

They found that responsewhite noise stimuli to the cuticle overlying the slit.

sensitivities to changing forces were maintained at all initial offset levels of force. Those

results clearly parallel the present findings (Fig. 9), but it is not yet known whether the

rate sensitivities of slit sensilla are comparably preserved when forces are applied to the

legs of spiders.
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responses in this region). These results are similar to those obtained in the present

about this static level. To our knowledge, no other studies on campaniform sensilla



In contrast to sensitivity to rate of change of force, static sensitivities of the receptors

were altered by imposition of prior loads. The effects of pre-loading on tonic afferent

activities were to effectively shift the range of responsiveness of the receptors so that

their firing frequencies were decreased relative to the unloaded condition. The

continuous static load. The potential causes of these effects are unknown, but could lie

in properties of the mechanisms of neuronal adaptation. For example, French (1989)

studied the effects of holding currents applied extracellularly to the sensory neuron of

the cockroach femoral spine. These currents were applied near the axo-somatic

junctional region, close to the presumed action potential generator. He demonstrated

that the effect of prior injection of depolarizing currents was to raise the threshold level

of depolarization that was needed for subsequent generation of spikes. This type of

mechanism could account for the shift in the range of sensitivities of the cockroach tibial

campaniform sensilla if forces applied to the leg produced continuous depolarizations

through the generator potential mechanism (Mann and Chapman 1975). Furthermore,

Juusola and French (1995) studied (via intracellular recording) responses of single

neurons of spider slit sensilla to mechanical stimuli applied as step displacements to the

Increases in force were applied to the slit in the presence of tonicallycuticle.

The effect of static strains was to shift the neuron’s sensitivitiesmaintained forces.

(measured as peak depolarizing currents) which ‘reset the neuron’s operational range’

(Juusola and French 1995). Those results are qualitatively similar to the changes in

sensitivity to force level we have demonstrated for the tibial campaniform sensilla and

imply that one source of the shifts in sensitivity could be the adaptation properties of the
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sensitivities to the levels of force were, apparently, reset after application of a



action potential generating mechanism.

Differences in responses of proximal and distal sensilla

The proximal and distal tibial campaniform sensilla showed consistent differences in

their response properties in all tests of static and dynamic sensitivities. The proximal

sensilla fired at higher frequencies than the distal receptors at equivalent levels and

rates of applied force. The distal sensilla also had higher thresholds and adapted more

rapidly to maintained forces. The sensitivities (and exponential coefficients) to force

rate were higher for the distal than for the proximal sensilla (Table 1). In contrast,

previous studies using cap stimulation found no differences in thresholds or sensitivities

between the subgroups of tibial sensilla, either in their spiking discharges (Chapman

and Duckrow 1975) or in recordings of generator potentials (Mann and Chapman 1975).

Thus, the differential sensitivities we observed apparently resulted from application of

forces to the leg, rather than the cuticular caps.

One possible source for these differences could be in the distributions of strains in

perpendicular to the tibial long axis, which are probably lower than the axial

compressions which excite the proximal receptors (Hibbeler 1993; Cocatre-Zilgien and

Delcomyn 1999). While the tibia has been modeled as a cylinder (Zill and Moran

1981b), it possesses a number of large cuticular spines that are distinctly asymmetrical

Asymmetry in the degree of sclerotization andin distribution (Chapman 1965).

resultant mechanical properties has been demonstrated in the proximal tibia of the

locust hindleg by Heitler (1974) and is considered to play a role in the mechanism of

jumping (Heitler and Burrows 1977; Burrows 1996). While a comparable difference in
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the cuticle of the tibia. The distal sensilla are activated by compressive strains oriented



sclerotization is not apparent in the cockroach tibia, our preliminary morphological

investigations have shown that the cuticle of the tibia in the region of the sensilla is

These types of changes in wall thickness could lead tocockroach trochanter).

substantially higher compressive stresses when forces are applied which bend the distal

tibia and should be incorporated in future models of the strains that excite the tibial

receptors.

Comparison with campaniform sensilla of insect wings

Campaniform sensilla of the wings of insects have also been shown to encode

dynamic changes in forces but they differ significantly from sensilla of the legs in their

Individual campaniformdirectional sensitivity and the rates of forces they can signal.

sensilla of the wings of flies can exhibit bi-directional responses and discharges to

increasing forces during both dorsal and ventral bending of the wing (Dickinson 1992).

Their morphology also differs from campaniform sensilla of the legs, in that the cuticular

cap is not ovoid but only slightly elliptical (Dickinson 1992). The surrounding cuticle

lacks the thickenings (buttresses) that may provide mechanical coupling for

compressive strains and the dendrite is circular (it is flattened in leg receptors, Moran

and Rowley 1975). Wing campaniform sensilla respond to dynamic forces over an even

broader range of rates than receptors of the legs. Insect flight occurs at much higher

frequencies of movement than the legs are cycled during walking (maximum 25

cycles/second) (Dickinson 1990a, Full and Tu 1991). At these high rates, individual

wing sensilla probably fire only single action potentials during one cycle of wing

movement and can only function as ‘event’ detectors (Dickinson 1990b). Thus,
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campaniform sensilla of both the wings and legs are excellent detectors of force

dynamics and they are specifically tuned to the frequencies of movement of their

respective appendages. Furthermore, the directional sensitivity of receptors of the legs

may reflect the need to resolve the direction of force vectors in a multi-legged animal in

posture and locomotion.

Comparison with other force receptors

In a number of invertebrates and vertebrates, receptors that monitor forces in the

legs have also been shown to be sensitive to the rate of change of force. Slit sensilla of

legs of spiders (Seyfarth et al. 1985; Seyfarth and French 1994), for example, encode

force dynamics and also show considerable adaptation to stimuli applied as step

increases (Barth and Bohnenberger 1978; Barth 1981; Bohnenberger 1981; Blickhan

Responses of individual slit sensilla toand Barth 1985; Seyfarth and French 1994).

step and sinusoidal functions can be described by simple power law exponents, that are

similar in value to those calculated in the present study (Bohnenberger 1981). In

Crustacea, cuticular stress detectors (CSD) and funnel canal organs encode strains in

the exoskeleton that result from both external loads and muscle contractions (Marchand

et al. 1995; Libersat et al. 1987a,b; Zill et al. 1985) and individual units encode specific

ranges of dF/dt (Marchand et al. 1995).

Internal receptors that monitor forces as muscle tensions have also been shown to

be rate sensitive. Tryba and Hartman (1997) recently demonstrated that apodeme

receptors of the crab opener muscle are specifically sensitive to the rate of change of

force development and firing to active muscle contractions is maximal at peak force

velocity, not at the highest level of force. Davies et al. (1995) showed that the initial
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sensory discharge of Golgi tendon organs was strongly dependent upon the rate of

development of force. Plots of the mean firing rates of tendon organs during the rising

phase of muscle tensions (prior to the attainment of plateaus) showed an exponential

demonstrated that the responses to changing forces are maintained over a wide range

of static tensions (Jami et al. 1985). Davies et al. (1995) conclude that ‘the dynamic

component of the tendon organ’s responses dominates the level of afferent discharge,

irrespective of the absolute tension’. These findings suggest that the sensitivities to the

rate of change of force may also be preserved in the presence of static load in other

systems, as well as in cockroach tibial campaniform sensilla.

Potential benefits of information about force dynamics in control of posture and

locomotion

Recent studies of the kinetics of cockroach locomotion suggest that the sensitivities

of the tibial campaniform sensilla to force dynamics should strongly contribute to the

signals they provide during walking (Full and Tu 1990; Full et al. 1991). The ground

reaction forces exerted by limbs during locomotion in both cockroaches (Full and Tu

1991) and vertebrates (Dietz 1998) are not constant but show ongoing changes as load

is applied and propulsion is generated during stance. Zill and Moran (1981b) recorded

activities of the tibial campaniform sensilla during walking. They found that the proximal

receptors fired early in the stance phase following leg contact, in a burst that was

initiated at a high level. During this time, ground reaction forces rise rapidly, as loading

is increased and the leg begins to exert force in support. The dynamic sensitivity of the

proximal sensilla could serve to signal the rate of leg loading early in stance. These
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inputs could also appropriately adjust the activities of leg extensor muscles to the rate of

force development through their known reflex effects (Zill et al. 1981).

Force plate measurements have also shown that ground reaction forces rapidly

decline in the latter half of the stance phase (Full and Tu 1991). The present study has

confirmed that campaniform sensilla can show vigorous discharges to declining levels of

The distal tibial campaniform sensilla fire in a short burst at the end of stance (Zill and

Moran 1981b). This activity could readily result from rapid decreases in strains as the

leg is unloaded. It may also assist in determining the phase of the onset of the swing

phase through reflex activation of flexor motoneurons (Zill et al. 1981). We have

previously tested these hypotheses by examining responses to bending forces using

waveforms that approximated the durations and magnitudes of ground reaction forces that

extension as simple, rapid triangle functions elicited reciprocal discharges in the

subgroups of tibial sensilla similar to that seen in walking (Ridgel et al. 1999, Fig. 2G).

Future experiments are planned to further extend these tests by utilizing force patterns

directly derived from measurements of ground reaction forces. The present findings

suggest that the tibial campaniform sensilla could function to adjust the magnitudes and

phase of motoneuron activation by monitoring the cyclical development and decline of

forces in the leg.

Lastly, the dynamic sensitivities of the tibial campaniform sensilla could aid in the

During platform perturbations, changes ingeneration of reactions to perturbations.

forces upon limbs precede changes in joint angles or body position (Macpherson
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force. These bursts can also encode the rate of force decrease (Ridgel et al. 1999).

occur during cockroach walking (Full and Tu 1991). Stimuli applied in the direction of



1988a,b) and the magnitude of compensatory reactions also depend upon the rate of

force application (Diener et al. 1988, Burleigh and Horak 1996). In addition, large forces

or those applied at rapid rates can elicit compensatory steps, in which a leg is lifted and

moved to a new location (Maki et al. 1993; Zill 1993). These stepping reactions

reposition the legs to provide support for the center of gravity or center of pressure

(Burleigh and Horak 1996; Mcilroy and Maki 1994; Burleigh et al. 1994; Mcilroy and Maki

1993). In these cases, receptors monitoring the rate of change of forces may function

as discrete signals indicating that swaying reactions would be insufficient and that rapid

In conclusion, we suggest that these potentiallimb movements were necessary.

functions of receptors that encode the rate of change of force may be advantageous in

both biological systems and robotic applications.
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CHAPTER 3

RESPONSE PROPERTIES OF TIBIAL CAMPANIFORM SENSILLA STUDIED BY

SUBSTRATE DISPLACEMENT IN FREELY MOVING COCKROACHES
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SUMMARY

We characterized the responses of the cockroach tibial campaniform sensilla,

receptors that encode mechanical strains in the exoskeleton of the leg, by recording

sensory activities during postural perturbations in freely standing animals. The entire

substrate upon which the animal stood was displaced horizontally using ramp and hold

stimuli at varied rates under computer control. The tibial sensilla showed discrete, short

latency responses that were initiated in the first 30 ms of platform movement.

Responses of individual receptors depended upon the direction of the displacement and

the orientation of the receptor’s cuticular cap. Proximal receptors, whose cuticular caps

are normal to the long axis of the tibia, responded to displacements directed from the

contralateral side of the body and from the head toward the abdomen. The distal

sensilla, oriented parallel to the tibia, discharged at longer latency to displacements in

Plots of afferent firing frequencies versus displacementthe opposite directions.

direction (relative to the tibia) showed that proximal and distal sensilla are activated in

reflected the rate of displacement and both maximum and mean firing frequencies

increased as the platform was displaced more rapidly. Despite the complexity of distal

leg structures that transmit forces from the substrate, these results are consistent with a

model in which displacements produce forces that result in bending of the tibia. The

response properties of the receptors could contribute to the detection of the direction

and rate of forces that occur during leg slipping or in walking on unstable terrains.
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INTRODUCTION

The forces that occur in the legs of an animal during standing and walking can be

derived from a number of diverse sources, including body loading, inertia and the

the specific parameters encoded by sense organs that monitor these forces. For

example, in vertebrates, forces on the limbs are thought to be encoded via activities of

Golgi tendon organs (Prochazka 1996). Studies in restrained cats have shown that the

firing frequencies of these receptors reflect the magnitude of loads applied to the

muscle tendon (Houk and Henneman 1967; Fukami and Wilkinson 1977; Jami 1992).

However, tendon organ afferents also encode the force produced by muscle

contractions and they are highly sensitive to the rate of tension development

(Prochazka and Wand 1980; Davies et al. 1995). Recordings obtained in walking have

shown that tendon organs are active maximally during the stance phase when loads are

applied to the legs (Loeb 1981, Appenteng and Prochazka 1984, Prochazka and

Gorassini 1998a,b). However, it is not clear to what extent these discharges reflect the

forces resulting from body loading or the magnitude of contractions of leg muscles that

Furthermore, few studies have recorded thecontribute to support and propulsion.

activity of tendon organ afferents in freely moving animals during perturbations of

posture (Aniss et al. 1990). While existing data suggest that discharges of the tendon

organs can reflect both active and passive forces at the junction between the muscle

and the tendon, the specific way that Golgi tendon organs encode these forces in freely

standing animals has not yet been determined.
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contractions of limb muscles. It has, therefore, proven difficult to accurately evaluate



In invertebrates, forces acting upon the leg are monitored by receptors located at the

insertions of muscles or by sense organs associated with the exoskeleton. These types

of sense organs also respond to passive loading and to forces generated by muscle

In crustaceans, force-sensitive mechanoreceptors in the dactyl (foot) of thetensions.

crab are active in the stance phase of walking and are silent during swing (Libersat et

The firing frequencies of these receptors during stance increaseal. 1987a,b).

significantly when weights are added to the crab’s body, demonstrating that the

However, force-sensitivereceptors encode forces that result from body load.

mechanoreceptors also fire vigorously to contractions of leg muscles when leg

These forces could contribute to ormovements are resisted (Libersat et al. 1987a).

Similar responses to forces on the legs duringbias the discharges to leg loading.

locomotion have been described in cuticular stress detectors in crayfish (Marchand et

al. 1995, Klarner and Barth 1986, Klarner and Barnes 1986).

In insects, forces on the legs are detected as strains in the exoskeleton by

campaniform sensilla (Pringle 1938b; Hofmann and Bassler 1982, 1986; Delcomyn

The strains are monitored via small1991; Schmitz 1993; Zill and Seyfarth 1996).

cuticular caps that form the attachment points for the sensory dendrites (Moran et al.

Previous studies have characterized the encoding of forces by campaniform1971).

sensilla of the tibia (Group 6 of Pringle 1938b) in restrained preparations and have

demonstrated that the receptors show directional sensitivity to bending of the tibia (Zill

and Moran 1981a, Ridgel et al. 1999, 2000). The phasic component of the discharges

of the sensilla also strictly encodes the rate of applied force (dF/dt). However, those

experiments (and previous works by Schnorbus 1971, Spinola and Chapman 1975)
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were performed with the femoro-tibial joint immobilized and forces were applied directly

to the tibia. It is not known if forces applied through the tarsus would elicit similar

responses from the receptors. While the load was applied to the leg at levels within the

range of those measured as ground reaction forces during running (Full and Tu 1990,

1991), the exact magnitude and orientation of forces exerted by the hind leg in walking

are not available. Therefore, it is not clear if these applied forces adequately replicated

those occurring during posture and walking. Lastly, the tibial muscles were denervated

in studies in restrained preparations. These muscles are known to exert strong direct

influences upon the activities of the tibial campaniform sensilla (Zill and Moran 1981a,b,;

Zill et al. 1981), as has also been shown in the trochanteral campaniform sensilla in

stick insects (Delcomyn 1991) and in model studies in cockroaches (Ramasubramanian

These diverse and potentiallyet al. 1999; Flannigan 1998; Flannigan et al. 1998).

complex sources of forces could bias or dampen the responses of the tibial sensilla to

variations in load when animals are walking or standing.

Zill and Moran (1981b) first developed techniques for recording the activities of the

In these experiments, thetibial campaniform sensilla in freely moving animals.

receptors were shown to be active during the stance phase of walking. The discharges

were thought to reflect cuticular strains resulting from two sources, body loading and the

contractions of leg muscles. These hypotheses have not been tested in freely standing

animals using techniques to alter force on the legs, such as substrate perturbations.

In studies described in this report, we utilized ramp and hold displacements of the

substrate to evaluate the response properties of the tibial campaniform sensilla in

Cockroaches stood freely within the test arena and couldunrestrained animals.
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spontaneously assume a variety of postures or orientations relative to the direction of

platform movement. In order to examine the dynamic sensitivities of the receptors, the

rate of rise of the ramp phase was increased within a series. Our studies have shown

that the tibial receptors show discrete, short latency responses immediately following

the onset of platform movement. The activity of individual sensilla depended upon the

orientation of the cuticular cap and varied according to the rate of displacement. These

experiments suggest that the tibial receptors can provide the nervous system with

information about the direction and rate of perturbations which could be utilized to

detect leg slipping or in traversing unstable terrain.

MATERIALS AND METHODS

Freely moving animals

Adult male Periplaneta americana (n= 29) were first anaesthetized with carbon

dioxide and secured, ventral side up, to a Sylgard resin-coated block using staples

To record activities of the tibial campaniform sensilla, a pair ofmade from insect pins.

50 pm silver wires was inserted near nerve 5r8 (Nijenhuis and Dresden 1956) in the

femur of the left metathoracic leg (SENS1, Fig. 11 A). This nerve is purely sensory and

contains axons derived from the largest tibial campaniform sensilla and from tactile

spines on the femur and proximal tibia (Figs. 11A,B) (Zill et al. 1980). A light

micrograph of a histological section of nerve 5r8 (following the methods of Zill et al.

1980) shows that it contains a limited number of larger diameter fibers (>10 pm, Fig.

Electrodes were inserted into the femur while using a probe (driven by a11 A).

piezoelectric crystal) to bend the distal tibia. Bending of the leg produced consistent

The wires were positioned to maximize the size of thedischarges from the receptors.
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Figure 11: Experimental Setup. A The activity of the tibial campaniform sensilla was

recorded in the femur of the left metathoracic leg with two pairs of wire electrodes. One

pair of electrodes was positioned near nerve 5r8 (SENS1) and the other was implanted

near the trochanter-femur joint (SENS2). The second set of wires also recorded

myographic activity from the tibial extensor muscle (SETi). The inset shows a light

micrograph of a cross section through nerve 5r8, which contains only sensory axons.

The graph is a histogram of the distribution of axon diameters in the nerve. Nerve 5r8

has a small number of axons greater than 10 pm which are derived from the tibial

sensilla and the tibial spines. B The campaniform sensilla are located in the proximal

end of the tibia and consist of two subgroups, proximal and distal receptors. A scanning

electron micrograph shows that the long axes of the cuticular caps of the distal sensilla

are oriented parallel to the axis of the leg while the proximal receptors are oriented

perpendicular to the leg. The tibial spine, D1 (as termed by Chapman and Pankhurst

1967), also has its axon in nerve 5r8 and was stimulated during the experiment as a

C Force was applied to the tibia (force extension) with a probecontrol (see Fig. 12B).

while positioning the electrodes to obtain a maximal signal from the receptors. Typically,

a small unit (proximal sensillum) was recorded upon force extension while a large unit

(distal) was activated upon release of force. D The action potentials were first recorded

on the wires near the femoro-tibial joint (SENS1) and then, after a short delay, on the

electrodes near the trochanter-femur joint (SENS2). The direction of action potential

propagation confirmed that recordings taken during perturbations were sensory. The

distance between the two pairs of wires was measured and used to calculate the

conduction velocities of the sensilla (distal, 5.9 ± 0.9 m/s; proximal, 4.8 ± 0.8 m/s). The
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After the recording electrodes were secured, the animal was released into an arena that

was attached to a magnetic coil. High-speed video images (250/500 frames/sec)

recorded the animal position and orientation from below (via the mirror). F

Displacements of the arena were generated by applying voltages to the magnetic coil

using a computer. Movement of the platform, as monitored from digitized video images

(PLATFORM POSITION), was closely correlated the current to the coil (COIL

CURRENT).
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units recorded during platform displacements had the same conduction velocities. E
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extracellularly recorded action potentials (100-150 microvolts). Typically (but not

invariably), the activities of one or two proximal and one distal receptor were recorded

(Fig. 11C) and the extracellularly recorded spikes of the distal sensilla were larger in

amplitude than the proximal sensilla. A second pair of wires was inserted in the femur

adjacent to the trochanter-femur joint to record from the axons of the receptors near the

point that nerve 5r8 joins the main trunk of nerve 5 (SENS2, Fig. 11 A). The use of two

recording sites allowed us to confirm that the responses obtained during platform

displacements were conclusively sensory since spikes were first recorded on the distal

electrodes in the mid-femur and then on the more proximal wires near the trochanter­

femur joint. The sensory action potentials were conducted between the pairs of

recording electrodes with a measurable delay (Fig. 11D, mean= 1.1 ms for proximal

sensilla, 0.8 ms for distal sensilla) that was identical in responses elicited by leg bending

and in activities that occurred during platform displacements. We also calculated the

conduction velocities of the sensilla (proximal =4.8 ± 0.8 m/s, distal =5.9 ± 0.9 m/s) by

femur joint also recorded the activities of the slow motoneuron of the tibial extensor

muscle (Fig. 11 A, SETi). The muscle recording was used to monitor the active

movements of the animal. All electrodes were secured using cyanoacrylate glue and

tied to the leg with copper wire (#40). Small dots were painted on the coxa, femur and

tibia of both metathoracic legs and the abdomen with white nail polish. The wings were

trimmed in order to minimize contact with the wires.

In order to test the responses of the receptors in freely standing animals during

substrate perturbations, we placed individuals in an arena that had a mesh or Plexiglas
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measuring the distance between the electrode sets. The wires near the trochanter-



floor (Fig. 11E). The area of the arena was large enough (20 X 9 mm) for the animal to

walk freely. The chamber was mounted to the moveable arm of a large magnetic coil

(Ling Dynamic Systems, Model V408, Fig. 11E) and positioned in a horizontal plane

(checked with a level). Ramp and hold waveforms were applied to the coil via

These waveforms were generated using Datapac II software (Runcomputer.

Technologies) and filtered at 40 Hz (Brownlee Precision, Model 440) to decrease the

rate of rise and termination of the ramp. This level of filtering was established by testing

the coil and arena until overshoot and endogenous oscillation was minimized. The

waveforms were amplified (APS Dynamics, Model 124) and used to displace the

The arena first moved away from the coil, and held in that position for 1chamber.

second. It was then displaced in the opposite direction at the same rate. Six

perturbations were applied that increased in rates of rise and decline of the ramp

throughout the series. The amplitude of displacement was held constant within a set of

Displacement of the platform was monitored with a Sandeman transducer or by a linear

potentiometer linked to the chamber. We also recorded the current of the magnetic coil

(Fig. 11F, Coil current) and measured the distance of chamber movement via high­

speed video images that were taken during the experiments (Fig. 11F, Platform

position).

Our protocol was to first record sensory activities during bouts of walking (Fig. 12A)

and then to initiate series of tests of platform perturbations (Figs. 13, 14 and 16). As a

control, we also mechanically stimulated (using a hand-held probe) the first tactile spine

on the tibia (spine D1, Chapman and Pankhurst 1967) while the animal was standing in
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Figure 12:

during walking and then in tests of platform perturbation. A During walking, the

proximal sensilla fired early in the stance phase (small amplitude unit, SENS1) in bursts

that were initiated prior to the onset of slow extensor activity (SETi, large unit on PROX

FEMUR). The activities of the proximal receptors were largely reciprocal with firing of

the SETi. The distal sensilla fired at the end of the SETi burst (large unit on SENS1). B

perturbation tests, the animal was restrained and the tibial sensilla were ablated with a

fine tungsten wire, producing an injury discharge of large and small units. The

amplitude of these discharges was similar to those recorded during the perturbation

experiments. D The absence of sensilla activity upon leg bending confirmed that the

receptor ablation was successful. E The animal was once again released into the arena

and walking was recorded. Activity of the tibial sensilla was not present on the sensory

Stimulation of spine D1 confirmed that the nerve recording was still intact and that the

ablation was localized to the campaniform sensilla.
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recording; however, the slow extensor tibial muscle was still active during walking. F

Tibial spine D1 was activated when stimulated with a hand-held probe. C After the

Experimental protocol and controls. Sensory activity was first recorded
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This elicited a high frequency burst of unitary amplitude in the sensorythe arena.

recordings (Fig. 12B). Animals were then restrained and the responses to bending of

the tibia were retested (data not shown). The cuticular caps of individual sensilla were

stimulated using a fine wire probe to identify the receptors. The caps were

subsequently ablated using a fine tungsten wire or a minutin pin. This ablation resulted

in an intense discharge (Fig. 12C) of units that had similar amplitudes to those recorded

during leg bending. The small hole in the cuticle that resulted from the ablation could be

visualized under a dissecting scope to confirm that the specific region of the caps had

direction of forced extension (using the force probe) to verify that the sensory discharge

had been eliminated (Fig. 12D). Animals were again released into the test arena. The

sensory activities previously recorded during walking and in postural perturbations were

absent (Fig. 12E). However, stimulation of the tactile spine D1 with the probe showed

that its activity could still be recorded following sensilla ablation (Fig. 12F). This control

demonstrated that the ablation was highly localized and did not damage the sensory

It also confirmed that the spine itself did not contribute to theneuron of the spine.

discharges elicited during postural tests.

In a few preparations (n=4 of 29), we ablated the tibial spines (except for the spine

D1) and the spines on the bottom of the femur before releasing the animal into the

This control insured that the tactile spines were notarena (data not shown).

activity recorded in these tests was similar to that seen in intact animals.
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contributing to the sensory response recorded during the experiments. The afferent

been penetrated. Following receptor ablation, forces were applied to the tibia in the



High-speed video images (Redlake video camera, 250 or 500 frames/sec) of the

animal were taken with a single camera that contained a view from below the arena, via

a mirror mounted at 45 degrees under the test chamber (Fig. 11E). These videos were

downloaded at 30 frames/s and stored on videotape. Only tests in which the animal

held its posture throughout the series and did not walk were analyzed. While we were

unable to control for the amount of body weight that an animal applied to the leg, tests

in which the leg was held elevated from the substrate were not analyzed. Two-

dimensional segmental angles of the femur-tibia joint were calculated by digitizing the

position of the leg dots from the video images using Motus 4.3 software (Peak

In addition, the orientation of the tibia relative to the direction ofPerformance).

displacement was calculated using captured video images and Image Pro 3.0 software

(Media Cybernetics). All stimuli and sensory recordings were amplified and stored on a

TEAC recorder on digital audio tape (DAT). Experiments were transcribed from tape to

computer using a CED 1401 analog to digital converter and afferent frequencies were

Spike2 3.0 software (Cambridge Electronic Design). Joint anglecalculated in

measurements were synchronized with the physiology data using a synch pulse that

recorded on both the video and the physiology recordings. Statistics werewas

calculated using StatView 5.0 (SAS Institute).

Restrained preparations

Animals (n= 5) were restrained, ventral side up, on a Sylgard resin-coated block

(similar to that described previously) and two pairs of wires were inserted near nerve

The nerves innervating the left metathoracic leg5r8 in the middle of the femur.

(Nijenhuis and Dresden 1956) were cut under the cuticle near the metathoracic ganglia
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to eliminate motor activity. The tarsus was then severed and the spines on the end of

the tibia were cut. A small drop of sealing wax was placed on the end of the tibia in

order to minimize slipping of the bending device. Forces were imposed upon the distal

end of the tibia using a force probe and were monitored with a custom-built strain gauge

amplifier. In some of the tests, the end of the tibia was waxed to the force probe to

provide a stiff linkage between the leg and the device. At the end of an experiment,

individual campaniform sensilla were identified as previously described (Ridgel et al.

1999, 2000).

RESULTS

General description of responses to platform perturbations

Cockroaches were readily able to maintain stable postures when the substrate upon

which they were standing was displaced. Escape responses, characterized by rapid

turning and running, were not elicited in any tests. Although the platform moved rapidly

during ramp perturbations, the distance that it was displaced was relatively small (1-8 mm)

and the tarsi were not observed to lose contact with substrate or to slide along the surface.

Furthermore, the imposition of perturbations did not evoke walking movements, although

individual legs could be lifted and repositioned following the start of a test sequence. Data

were analyzed after these adjustments had occurred and stable postures were

maintained.

Swaying responses, consisting of shifts in the position of the abdomen and thorax

and changes in leg joint angles, were apparent during many platform displacements. In

26 ramp perturbations (N=5 animals), the dots on the abdomen, the legs and the arena

were digitized. The position of the abdomen, the angle of the femoro-tibial joint of the
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Kinematic data and sensory responses during platform perturbations.Figure 13:

Animals were placed in an arena which was displaced a constant distance using a

series of ramp and hold waveforms. Relative abdomen position (difference between

position of the abdomen and the platform), F-T joint angle (ipsilateral leg) and platform

position were calculated from markers on the body and legs. A During a low amplitude

perturbation (1.3 mm), the proximal sensillum discharges during the first 30 ms of

platform movement. Only slight changes in the abdomen position and femoro-tibial joint

angle were seen. B The proximal sensillum discharges at a higher rate during the first

30 ms of a larger and more rapid perturbation. In this test, activation of the tibial

body position are also apparent. A small extension of the joint (2 degrees) occurs in the

initial period of platform movement, which is followed by a larger joint flexion (9

degrees) later in the substrate translation. The joint flexion is concurrent with a shift in

platform movement ceased. Top of B- Schematic diagrams of body and leg position, as

traced from video images, during a 5 mm ramp perturbation.
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the abdomen position. The distal sensilla showed a discharge that occurs after the

extensor occurs toward the end of this period. Changes in joint angles and relative
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hindleg and the movement of the platform were calculated from the digitized points. In low

amplitude perturbations, very little change in abdomen position or in leg joint angle

occurred (Fig. 13A, 1.3 mm). However, body sway could be detected in video images of

larger amplitude displacements (Fig. 13B, 5 mm, top). During the early period of platform

movement, there were small deviations in the abdomen position and femoro-tibial joint

angle (mean change = 2.4°) (Fig. 13B). These changes were not apparent in all tests (N=

displacements were directed perpendicular to the body axis from the contralateral side and

joint flexions when translations were ipsilateral. However, larger joint angle changes

(mean = 6.5°, N= 26 ramp perturbations) were evident later in the ramp displacement (>30

ms) and following the cessation of the perturbation that were of opposite sign to the earlier

deviations. In perturbations directed perpendicular to the body axis, the femoro-tibial joint

was flexed when the platform displacement was from the contralateral direction and

extended when the substrate moved from the ipsilateral side. During displacements

parallel to the body axis, the joint was flexed by displacements directed from the head

toward the abdomen and extended by translations in the opposite direction. These

changes in joint angle were coincident with swaying of the abdomen. Initially, it lagged

behind the movement of the platform and then continued in the direction of displacement

after the substrate stopped moving (Fig. 13B). The abdomen represents about 35% of the

total body weight and is not directly supported by the legs. The undamped movement of

the abdomen could readily have caused changes in joint angles that occurred toward the

end of ramp displacement if it acted as a pendulum.
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21 of 26 ramp perturbations), but typically occurred as joint extensions when



Sensilla responses to platform movement

The tibial campaniform sensilla fired bursts of activity following the onset of platform

displacement. This study focuses upon the sensory discharges that were initiated within

the first 30 ms, as body sway and recorded muscle activities were minimal during this time

period. The discharges of individual sensilla depended on the orientation of the receptor’s

cuticular cap and the direction of platform movement. As a frame of reference, we

measured the direction of displacement relative to the long axis of the tibia. The tibial axis

of the tests it did not vary from parallel by more than 20 degrees. In the following account,

the descriptions of the displacement direction relative to the tibia can therefore be taken as

roughly equivalent to those relative to the body long axis.

To correlate afferent activities with the orientation of the animal, we first classed tests as

lateral or parallel perturbations according to the direction of the platform displacement

relative to the tibia. Lateral perturbations were those in which the substrate movement

was perpendicular (± 45 degrees) to the long axis of the tibia (Fig. 14A), while the

displacement was oriented collateral (± 45 degrees) to the tibial axis in parallel

perturbations (Fig. 14D). We further defined the movement of the platform in lateral

perturbations as being initiated from the contralateral or ipsilateral side, relative to the leg

from which recordings were taken. Parallel perturbations were classed as moving from

the head toward the abdomen or from the abdomen toward the head.

Figures 14B and 14C show examples of sensory responses during the early period of

tests in which the arena moved in a direction lateral to the tibial axis. The proximal

receptors fired a rapid, short latency burst when the displacement was initiated from the
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was approximately collateral with body axis (mean = 12.2 degrees difference) and in 80%
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Figure 14: Sensilla show directional responses during ramp perturbations. The tibial

receptors fired regularly during ramp displacements and their activity was dependent on

trials in which the axis of the tibia was oriented perpendicular (± 45°) to the direction of

B-C Platform translations oriented laterally elicited excitation of thedisplacement.

proximal sensilla when platform movement was directed from the contralateral side (B)

while distal sensilla responded when translations were initiated from the ipsilateral side

(C) (amplitude- 3.2 mm, rate- 55.5 mm/sec). The frequency histograms above the

recordings plot the sensory activity (SENS1) in bins of 8 ms (PRX/DISTAL FREQ). The

arrowheads designate the start of platform movement. D In parallel perturbations the

tibia was oriented parallel (± 45°) to the direction of platform movement. E-F

Displacements directed parallel to the long axis of the tibia excited the proximal sensilla

when movement was from the head towards the abdomen (E) while distal receptors

were activated when the platform moved towards the head (F) (amplitude- 3.2 mm, rate-

taken) is drawn in bold.
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the direction of platform movement. A Lateral perturbations were defined as those

55.5 mm/sec). In all diagrams, the left metathoracic leg (from which recordings were
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contralateral side (Fig. 14B), while the distal sensilla were activated by translations from

the ipsilateral side (Fig. 14C). The sensilla also showed responses when the platform

stimulated when the direction of movement was oriented from the head towards the

abdomen while distal sensilla fired when the platform moved in the opposite direction.

This directionality was invariant and co-activation of proximal and distal receptors within

the first 30 ms did not occur.

A number of observations and controls confirmed that this early discharge was the

result of horizontal displacement of the platform and was not the consequence of

vibration in our apparatus. Receptor responses depended upon the orientation of the

animal relative to the direction of displacement. However, they were not related to its

distance from the coil, as could occur if the arena were displaced vertically as an

unsupported beam. The differential responses of the campaniform sensilla could also

be seen when the animal turned in place and altered the direction of displacement

without changing its distance from the coil. In some experiments, we rotated the arena

by 90 degrees so that the short axis was perpendicular to the direction of movement

(data not shown). This effectively brought the animal closer to coil but had no effect

upon sensillum discharges. Lastly, responses of the receptors showed thresholds that

were dependent both upon the amplitude and velocity of platform displacement. These

findings support the idea that the responses of the sensilla result from the forces that

substrate vibration.
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were applied to the legs during the translation and were not the consequence of

was displaced parallel to the body long axis (Figs. 14E,F). Proximal receptors were



Threshold and response latencies

The proximal and distal campaniform sensilla differed in the rate and amplitude of

displacement at which they became active and in the latency of their spiking activity

from the onset of platform movement. Prior to movement of the platform, the proximal

receptors were often tonically active at low levels (up to 40 Hz) in freely standing

animals. In contrast, the distal sensilla rarely showed tonic activity. The proximal

receptors had a low threshold of response in that they were activated at a lower rate of

platform displacement than the distal sensilla (see rate sensitivity section).

Response latencies of the tibial sensilla were calculated from the onset of the ramp

perturbation to the first sensory spike. The receptors were rapidly activated and

latencies to burst onset were extremely short. Response latencies of the proximal

sensilla were less than the distal receptors in most ramp perturbations at the same rate.

The graph in Figure 15A plots the mean latency of proximal and distal receptor activity

during lateral and parallel perturbations. When tests in all directions and rates were

analyzed and grouped, the proximal sensilla fired within 6.1± 3.5 ms (mean ± standard

deviation, n = 61) of platform movement during lateral perturbations and 8.8 ± 8.2 ms (n

= 49) during parallel displacements. The distal receptors responded within 18.1± 7.2

ms (n = 39) of platform movement during lateral translations and 14.8 ± 7.1 ms (n = 30)

Although these grouped figures show variability, theduring parallel perturbations.

response latencies of the proximal sensilla were significantly shorter than the distal

receptors in both lateral and parallel perturbations (ANOVA, p<0.001). However, the

latencies of the tibial sensilla were similar when lateral and parallel translations were

compared.
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Figure 15: Response latencies and encoding of perturbation direction. A The latencies

to onset of firing of the tibial campaniform sensilla are extremely short. The mean

latencies from the beginning of platform movement to the first spike of proximal and

distal sensilla are plotted for lateral (proximal n=61; distal n=39) and parallel (proximal

n=49; distal n=30) perturbations. Error bars = standard deviation (SD). There is no

significant difference in latencies between lateral and parallel perturbations but the

onset to firing of the proximal sensilla is shorter than the distal receptors in both

B-D Polar plots of maximum firingdirections of movement (ANOVA, p<0.01).

frequencies of proximal and distal receptors and tibial orientation in three different

animals (rate of platform movement = B- 43.3 mm/sec, C- 55.5 mm/sec, D- 35.7

mm/sec). In all trials examined, the proximal (closed circles) and distal sensilla (open

squares) are activated in ranges of tibial orientation that are discrete and do not overlap.

Data from the three polar plots (B-D) were grouped (into 45 degree bins) andE-F

averaged in order to compare the responses of the sensilla at different tibial

In the range of 315-0°, proximal receptor activity was significantly lessorientations.

(E; ANOVA, p< 0.05; Fisher's Protected Leastwhen compared to 45-90'

Significant Difference [PLSD], # = p<0.04, * = p<0.02). The distal sensilla also showed
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a significant decrease in activity in the range 135-180° when compared with 225-270°

or 0-45°

and 180-225° (F; ANOVA, p< 0.05; Fisher PLSD, # = p<0.02, * = p<0.01).
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Directional sensitivities of the tibial sensilla

In order to characterize the directional sensitivity of the sensilla, the activity of the

receptors relative to the direction of platform movement was examined. The responses

of the sensilla showed consistent directionality in tests of individual preparations and in

summed data. Figures 15B-D plot the maximum firing frequency of the receptors on the

radial axis and the orientation of the tibia on the angular axis for all ramp perturbations

in 3 animals. In each experiment, the proximal and distal receptors were activated

were stimulated when the leg was oriented within the range of 135-315 degrees while

the proximal receptors were excited when the tibia was oriented between 315-135

degrees. Furthermore, the sensilla show similar ranges of responsiveness in each of

the experiments, although the specific orientations at which tests were applied were not

When the experiments were compared according to the ranges of legcontrolled.

angles tested (proximal, 315-0°, 0-45°, 45-90°, 90-135°; distal, 135-180°, 180-225°, 225-

270°, 270-315°), significant differences in the magnitude of the responses were

observed. In the proximal sensilla, the mean firing frequency (mean of the maximum)

was significantly less in the range of 315-0° as compared to 0-45° and 45-90° (Fig. 15E,

ANOVA, p<0.05). Activity of the distal receptors also significantly decreased when the

(Fig. 15F, ANOVA, p<0.05). These findings suggest that the forces acting on the tibia

characterize the activity of the receptors to all possible ranges of perturbation direction.
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are reduced in these ranges of orientation, although further studies are needed to fully

animal was oriented in the range of 135-180° as compared to 225-270° and 180-225°

within discrete, and non-overlapping, ranges of tibia orientation. The distal sensilla



Figure 16: Campaniform sensilla discharges reflect the rate of displacement. A-B The

proximal sensilla show an increase in firing frequency with more rapid platform

movements. These recordings are examples of proximal sensilla activity when the

platform moved at 22 mm/sec (A) and 55 mm/sec (B). The histograms above the raw

recordings plot the firing frequency of the receptors in 8 ms bins (PRX/DISTAL FREQ).

C This graph plots the maximum firing frequency of the proximal receptors for six ramp

displacements at progressively increasing rates of movement. Data are shown for three

tests from three animals. The lines are the best linear fit to the data points. The positive

slopes indicate that the activity of the sensilla increases over the ranges of platform

movement tested, (circles and solid line, r2 =0.73, slope= 5.4; squares and dash line, r2

= 0.84, slope= 4.4; triangle and dotted line, r2 = 0.85, slope= 9.4). D-E Activity of the

distal sensilla during perturbations of 22 mm/sec (D) and 55 mm/sec (E). The distal

receptors also showed increased firing frequencies when the platform was displaced

more rapidly. F Distal receptor activity is also positively correlated with the rate of arena

movement. The threshold for activation of the distal sensilla is higher than the proximal

receptors (compare this plot with C). (circles and solid line, r2 =0.86, slope= 6.5;

squares and dash line, r2 = 0.76, slope= 6.7; triangle and dotted line, r2 = 0.84, slope=

After ablation of the tibial sensilla, no activity is recorded during7.2) G-H

displacements at any of the rates tested (G, rate =15 mm/sec; H, rate =30 mm/sec).
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Sensilla response to the rate of perturbation

The proximal and distal sensilla were highly sensitive to changing rates of platform

movement. To characterize this sensitivity, we have recorded the activities of the

sensilla in freely standing animals within a series of six perturbations in which the

amplitude of displacement was held constant but the rate of rise of the ramp was

increased. The discharge frequencies of the proximal and distal receptors consistently

increased when the platform moved more rapidly. The recordings in Figures 16A and B

show examples of the activity of the proximal sensilla (first 30 ms) in lateral

perturbations initiated from the contralateral side at two rates of platform movement. In

this example, the activity of the proximal receptors tripled when the rate of platform

translation increased from 22 mm/sec (Fig. 16A) to 55 mm/sec (Fig. 16B). Responses

of the distal sensilla during lateral perturbations in the opposite direction showed a two­

fold increase in the firing frequency with more rapid platform movements (Fig. 16D-22

mm/sec; Fig. 16E-55 mm/sec).

To characterize the receptor responses we plotted the maximum discharge

frequencies attained during the first 30 ms versus the rate of platform movement of

each ramp displacement. The maximum was chosen for the analysis because the firing

frequency within a burst often accelerated up to a peak and then decreased uniformly

(see Figs. 13B, 14B). Figures 16C and F plot the frequency of the proximal (Fig. 16C)

and distal (Fig. 16F) receptors during single tests of six ramp perturbations in three

animals. The activity of both types of sensilla increased as the platform moved more

rapidly. These graphs also illustrate the differences in threshold between the proximal
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and distal receptors. In the majority of ramp perturbations (89%, n = 90 out of 102), the



proximal receptors were activated during the slowest perturbation tests while the distal

sensilla did not respond until the platform moved more rapidly. In the examples shown

in Figures 16C and F, the proximal sensilla fired a burst of activity when the platform

moved 28 mm/sec while the distal receptors were not stimulated until the platform was

displaced at 39 mm/sec within the same test (compare filled circles).

To confirm that the tibial sensilla were responsible for the activity recorded during

tests at variable rates of arena movement, the responses of the receptors were retested

after cap ablation. Figures 16G and H show two recordings after the ablation during two

absence of responses during these platform movements confirms that the spikes

recorded in these tests are derived from the tibial campaniform sensilla.

The sensilla showed considerable variability in the absolute value of their maximum

discharge frequency during platform perturbations. However, the receptors can show

similar discharge frequencies during tests in which the animal did not move and

maintained its position for multiple repetitions. Figure 17A shows an example of

proximal sensillum activity in a single preparation during three perturbation series in

This graph illustrates that the sensitivity of the receptors to the rate ofsuccession.

platform movement can remain relatively constant if a single posture is maintained.

In order to test if the sensilla consistently discharged at higher rates to more rapid

displacements, we calculated and averaged the mean firing frequencies of the receptors

during the first 30 ms of lateral platform movements in a number of experiments (N= 32

tests in 5 animals). The responses of the proximal and distal receptors were plotted

(Fig. 17B,C) against four ranges of arena velocity (15-25, >25-35, >35-45, >45-55
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rates of platform perturbations (Fig. 16G- 15 mm/sec, Fig. 16H- 30 mm/sec). The



Figure 17: Receptor sensitivities to the rate of platform movement. A This graph plots

the firing frequencies of the proximal sensilla for three sets of ramp displacements in a

single animal that maintained its position throughout the series. The firing frequencies to

changing rates of platform movement were similar when postures were maintained for

long periods. B-C The mean firing frequencies of the proximal (B) and distal (C)

sensilla during the first 30 ms of the perturbations were averaged and plotted for

different ranges of platform movement (data from 5 animals). The activity of the

proximal (ANOVA, p<0.01; Fisher PLSD- all pair wise comparisons # = p<0.02) and

distal receptors (ANOVA, p<0.01; Fisher PLSD- all pair wise comparisons # = p<0.02)

increased significantly at higher rates of platform movement.
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mm/sec). Both the proximal and distal sensilla show a consistent and significant rise in

activity as the rate of the perturbation increased (proximal, Fig. 17B, ANOVA, p < 0.01;

distal, Fig. 17C, ANOVA, p<0.01). These graphs further confirm that the firing

frequency of the proximal receptors is higher than distal sensilla at similar rates of

also observed during tests in which the animal was oriented parallel to the direction of

displacement (data not shown).

Responses to forces ‘parallel’ to the tibial axis: tests in restrained preparations

The tibial campaniform sensilla responded vigorously to perturbations directed

parallel to the body long axis (Figs. 14, 15). This finding was unexpected, as forces

directed along the tibial axis produce uniformly distributed compressions or tensions.

Previous physiological (Zill and Moran 1981a) and modeling (Cocatre-Zilgien and

Delcomyn 1999) studies in restrained preparations have shown that these strains

generate lower discharge rates in the campaniform sensilla than bending perpendicular

to the tibia. However, in a standing animal, the tibia of the hindleg is not strictly parallel

with the substrate but is elevated on its proximal end so that its axis is raised between

15-25° relative to the horizontal plane (Larsen et al. 1997). This deviation could lead to

the generation of both axial compressions/tensions and bending when forces are

To test this possibility, weapplied to the distal tibia via contact with the platform.

applied forces in restrained preparations that were ‘off axis’, that is as compressions on

the distal tibial which were angled relative to its axis (Fig. 18A). We also compared the

responses of the sensilla in these experiments with tests in which forces were applied

strictly axially, with a minimal bending component. Figure 18B shows an example of
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platform movement. Similar sensitivities to the velocity of substrate movement were



T

Figure 18: Simulation of parallel perturbations A Forces were applied to the tibia in

restrained animals to mimic the action of the platform movement during parallel

perturbations. B Off axis forces. In standing cockroaches, the long axis of the tibia is at

an angle of 15-20 degrees with the substrate. Forces applied to the tibia in this

direction in restrained preparations (as compressions) activated the distal sensilla

(similar to parallel perturbations oriented from the abdomen toward the head). C Axial

forces. Forces were then applied to the leg directly along the tibia axis. The probe was

waxed to the distal tibia to create a stiff linkage and minimize bending forces. The

proximal receptors were excited when the force on the tibia increased, as shown in

previous studies in restrained preparations. D Caps of individual sensilla were indented

with a tungsten wire to identify the receptor units according to their spike amplitude.
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distal receptor activity when a force probe was pressed against the distal end of the tibia

position perpendicular to the tibial axis and waxed to its distal end. The wax attachment

created a mechanical linkage between the leg and the force probe which minimized
■

lateral displacements that could generate bending forces. In these tests, the proximal

sensilla fired upon force increases (Fig. 18C) as has been shown in previous studies

(Zill and Moran 1981a). Individual receptor units were identified by indenting their

cuticular caps with a tungsten wire probe, which produced a discharge of equivalent
I

amplitude to that recorded during leg bending (Fig. 18D). This control confirmed that

the response was derived from the tibial campaniform sensilla.

DISCUSSION

In the present study, we utilized horizontal displacements of the substrate to

characterize the responses of the tibial campaniform sensilla in freely standing animals.

These experiments have demonstrated that: 1) the sense organs show consistent

discharges during the period (0-30 ms) immediately following the onset of platform

movements; 2) the proximal and distal receptors respond to opposite directions of

displacement during this interval; and 3) the firing frequencies of the tibial sensilla are

highly sensitive to the rate of platform movement. These results are consistent with

previous studies in freely moving animals (Zill and Moran 1981b, Zill et. al. 1981), which

have shown that the tibial campaniform sensilla can encode forces in walking. In the

following, we will first briefly review the abilities of insects to maintain stability during

We will then discuss the specific activities of the tibialpostural perturbations.
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at an angle of approximately 15° to its long axis. The force probe was then moved to a



campaniform sensilla that occur in substrate displacements, in the context of the known

response properties and directional sensitivities of the receptors.

Behaviors of animals during substrate displacements

Cockroaches readily maintained stable postures when the platform upon which they

were standing was displaced. Insects have been shown to effectively maintain stability

when perturbations are imposed during posture and walking in a number of previous

studies (Bartling and Schmitz 2000; Cruse 1981a,b; Schmitz 1993). Substrate

displacements have been applied to grasshoppers standing on the wall of an arena that

was moved sinusoidally (Zill and Frazier 1990, Zill et al. 1992) and in experiments

utilizing horizontal platform movements to perturb walking cockroaches (Zill 1993).

Those experiments showed that animals were readily able to stand on surfaces that

were displaced, even in the absence of visual inputs (Zill and Frazier 1990, Zill et al.

1992). Insects are considered to be relatively stable when standing because the area

supported by the legs is large and the center of mass is near the ground (Full 1997).

Several studies have also demonstrated that considerable forces are needed to

dislodge insects due to the adherence of the tarsi to the substrate (Misener and Boiteau

1993; Jiao et al. 2000). Bartling and Schmitz (2000) have recently studied the

responses of freely moving stick insects to horizontal substrate displacements, by using

a small platform (containing a force plate) that permitted perturbation of only one leg

counter the imposed perturbation and concluded that these responses were generated
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addition, several authors have suggested that legs contain elastic elements that can

by muscle contractions through negative feedback reflexes from leg sense organs. In

when standing or walking. They found that forces were rapidly developed in the leg to



In the present experiments, small1993; Frazier et al. 1999; Neff et al. 2000).

displacements (see Fig. 13A) or those occurring at very low rates did not elicit sensory

discharges or activities in the slow tibial extensor motoneuron, consistent with this

hypothesis. Thus, the abilities of insects to resist perturbations is most likely due to

both neuromuscular mechanisms and inherent features of their leg design.

Directional sensitivities of proximal and distal subgroups

The tibial campaniform sensilla are rapidly excited following the initiation of platform

Substrate displacements produce accelerations at their onset that exertmovement.

forces upon the legs when the foot remains in contact with the moving surface (Jacobs

and Macpherson 1996; Bartling and Schmitz 2000). We consider that the discharges of

the campaniform sensilla result from forces that are similarly transmitted to the tibia, as

they are correlated with the direction and velocity of platform movement and do not

position assumed by the animal, we applied ramp displacements that were paired, so

that the platform first moved in one direction and then returned at the same rate and

During the first 30 ms following the onset ofamplitude in the opposite direction.

translation, the proximal and distal sensilla fired to opposite directions of the paired

movements. The exact forces and joint torques that were generated during substrate

However, the discharges of the tibial sensilla aredisplacements are unknown.

consistent with the directionality that has been demonstrated in restrained preparations

to applied bending and axial forces (Spinola and Chapman 1975; Zill and Moran

1981a). Cocatre-Zilgien and Delcomyn (1999) have also recently successfully modeled
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serve as passive compliances in resisting postural perturbations (Blickhan and Full

appear to be a result of vibration or other mechanical stimuli in our apparatus. In each



the responses of the tibial campaniform sensilla as directionally sensitive strain gauges.

Thus, the studies to date support the idea that the proximal and distal subgroups

encode strains that result from different and antagonist force vectors in both restrained

and freely moving animals.

Encoding of forces in lateral and parallel perturbations

The tibial campaniform sensilla, as a group, responded over a broad range of

displacement directions, including translations perpendicular to and parallel with the

long axis of the tibia. During platform displacements, the forces that are exerted upon

present study, measurements from video images showed that the tibia was frequently

held parallel to the body long axis, with the femoro-tibial joint initially at an angle of

The tibia was elevated on its proximal end from theapproximately 90 degrees.

In the following, we will present a hypothesis as to thehorizontal by 10-20 degrees.

mechanical forces that can generate the observed discharges of the tibial sensilla and

compare them with results from forces exerted upon the leg in restrained preparations.

We propose that substrate translations produce a bending of the tibia as the foot

initially moves with the platform (Fig. 19). In the orientation most frequently seen during

perturbation experiments, lateral displacements would act to produce forced extensions

Displacements directed from the contralateral side wouldand flexions of the joint.

generate forces to produce transient extensions (Fig. 19A) while translations in the

experiments in restrained cockroaches which have shown that the sensilla can be

transiently activated by movements when the femoro-tibial joint is not immobilized (Zill
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the legs depend upon their orientation with the substrate (Macpherson 1994). In the

opposite direction would generate joint flexions. These findings are consistent with



and Moran 1981a). Joint extensions produce activation of the proximal sensilla, while

flexions excite the distal receptors. Data from some tests support this hypothesis in that

small changes in leg joint angles in these directions were detected, coincident with

activity of the tibial sensilla (Fig. 13).

Perturbations directed parallel to the body long axis also excited the proximal and

distal receptors (Figs. 14, 15). The forces that produce these types of discharges are

As we have noted, forces applied in this direction probably do notless apparent.

produce strict axial compressions or tensions, due to the angle of orientation of the tibia

deviation could lead to the generation of both axial compressions/tensions and bending

when forces are applied to the distal tibia via contact of the tarsus with the platform. We

suggest that transient bending forces are exerted upon the tibia as shown in Figure

dorsally, exciting the proximal receptors (Fig. 19B). Movements of the platform in the

opposite direction (abdomen towards the head) could generate ventral bending and

excite the distal receptors. Our tests in restrained preparations provide some support

for these hypotheses. Compressions directed somewhat ‘off-axis’ produced excitation of

the distal sensilla, instead of the activation of proximal receptors as is seen during strict

axial compression. Further experiments, such as those using strain gauges attached to

the tibia (Newland and Emptage 1996) to monitor leg bending, would help in

understanding how these perturbations generate the observed pattern of receptor

activation.
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with the substrate (15-25° relative to the horizontal plane, Larsen et al. 1997). This

19B. Displacements from the head towards the abdomen could bend the distal tibia



Model of sensilla activation during platform perturbations. In this model,Figure 19:

movements of the substrate produce forces that are transmitted through the

exoskeleton of the leg. These forces generate transient bending of the tibia, as the foot

(tarsus) remains in contact with the platform (illustrated as dotted line). Substrate

perturbations of different orientations produce bending in different directions. A Lateral

displacements from the contralateral side of the body produced excitation of the

proximal sensilla during platform perturbations. This could result if the perturbation

generated dorsal bending of the tibia, which is known to excite the proximal receptors

(see diagram). B Parallel perturbations directed from the head towards the abdomen.

Displacements of this orientation also excited the proximal sensilla. Dorsal bending of

the leg could occur in these perturbations, as the tibia is at an angle with the horizontal

plane. The present study has shown that these ‘off-axis’ forces can produce excitation

of the sensilla consistent with the results seen in platform displacement.
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Variability in sensory discharge frequencies

The absolute firing frequency of the receptors could show variability between tests,

even when identical amplitudes and rates of displacement were compared. The goal of

these experiments was to examine the responses of the tibial sensilla in preparations

that were completely unrestrained. Cockroaches were, therefore, free to assume a

variety of postures. While we monitored the position of the hindleg tibia from which

sensory recordings were taken, the animal’s other legs could show varied orientations

relative to the displacement. The forces exerted by those legs would therefore differ

among tests. Furthermore, we were unable to completely control for the possibility that

the abdomen transiently rested against the substrate, providing further support.

Variability in loading of a single leg could also result from the fact that a six-legged

animal can maintain a stable posture using only three of its legs for support (e.g., cerca

grooming, Reingold and Camhi 1977). While the data from force plate measurements

in standing cockroaches are not available, the forces on single legs show continuous

changes in cats during quiet stance (Horak and Macpherson 1996). Similar changes in

the baseline levels of force exerted by the leg could sum with those imposed during the

displacements and contribute to the observed variation in afferent discharges.

Variability in receptor firing could also be derived from muscle tensions, which are

known to produce strains in the exoskeleton that can excite or inhibit the campaniform

While we monitored the activities of the tibialsensilla (Zill and Moran 1981a,b).

extensor muscle, its discharges were generally quite low in animals that were standing

and not walking. However, we did not directly monitor the activities of the tibial flexor

muscle. Tensions in the tibial flexor can produce activation of the proximal sensilla (Zill
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et al. 1981) and potentially contribute to the variability we found in its background levels

of firing. Lastly, a number of insect muscles are known to have considerable

endogenous tonus that can be modulated in the absence of activation by excitatory

motoneurons (Hoyle 1978). These types of changes in muscle tension could potentially

contribute to the variability in the discharges we obtained to platform perturbations.

Encoding of rate of platform movement

A consistent finding in all tests was that both proximal and distal sensilla increased

their firing to increasing rates of platform movement. Although the absolute firing

frequencies of the sensilla varied among test series, the maximum and mean discharge

rates were higher within single sequences at increasing ramp rates. Furthermore, when

animals held positions over long periods, similar discharges could be obtained upon

restrained preparations (Ridgel et al. 1999, 2000) and suggest that the phasic

discharges of the sensilla indicate the rate of change of force produced at the point of

contact of the tarsus and the substrate. However, the absolute firing frequency during

perturbations can be affected by other variables, such as strains produced by muscle

tensions or the extent of support provided by other legs.

The discharges we observed during platform displacements may also occur to

changing forces during walking, if a leg slips. Slipping can produce both sudden

decreases in forces in the leg that loses frictional contact and sudden increases in force

in the remaining legs. The signals from the campaniform sensilla could readily provide

indicators that these changes had occurred and information about the rate of change of

forces.
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repetitions of series of ramps. These findings are consistent with results obtained in
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Differences in responses of proximal and distal sensilla

The distal and proximal sensilla showed differences in their response properties in

tests of postural perturbations. The distal receptors had higher thresholds and fired at

lower frequencies than the proximal sensilla during tests at the same rate of platform

movement. Similar differences in thresholds and rate sensitivities have been observed

in restrained animals (Ridgel et al. 2000). We have suggested that these differences

result from the structure and mechanical properties of the leg. For example, the distal

sensilla are immediately adjacent to a large cuticular spine in an area associated with a

high degree of apparent sclerotization (Andersen et al. 1996). Variability in cuticular

thickness could also affect the nature of compressive strains acting on the tibia when

forces are applied to the leg (Cocatre-Zilgien and Delcomyn 1999).

Sensory modalities activated during platform perturbations

In the present study, we found that discharges of the tibial campaniform sensilla

occurred early in the ramp phase of platform displacements, often preceding activities in

the tibial extensor muscle. This finding is important as compensatory motor reactions to

substrate movements can be initiated at very short latencies in a number of systems

(Horak and Macpherson 1996; cats, Macpherson 1988b; humans, Coma et al. 1999,

Diener et al 1988, Dietz et al 1992, Nashner 1976, 1977, Nashner et al. 1979). These

reactions are thought to be adjusted to the direction, velocity and amplitude of

perturbations by information provided by sense organs that are active during the early

phase of the displacement (Aniss et al. 1990; Diener et al. 1984; Dietz and Duysens

2000; Inglis et al. 1994). However, we also found that changes in joint angles frequently

occurred during platform movements, as has been widely documented in other studies
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(Bantling and Schmitz 2000). It is therefore likely that both receptors monitoring forces

Furtherand those indicating changes in joint angles discharge during this period.

studies are planned to examine how information on joint kinematics and forces are

integrated into postural reactions in cockroaches. Our results suggest that substrate

perturbations, that have been widely used to examine the control of posture and

locomotion in vertebrates, may be utilized in future studies of insects to similar

advantage.

122



GENERAL SUMMARY

The three chapters presented in this dissertation have examined the response

properties of the tibial campaniform sensilla on the cockroach leg in restrained

In thispreparations and in freely moving animals during substrate perturbations.

summary, we will review the major findings of these studies and present our ideas for

future experiments in this field.

(1) The tibial sensilla are sensitive to increases and decreases in the magnitude of

forces on the legs. Forces exerted by the legs, as measured by force plates, have been

previously shown to increase during the stance phase and decrease prior to lifting of a

about the phase of the step cycle and could be important in the timing of leg movement.

However, forces on the legs have not been measured in conjunction with sensilla

However, this technique does not provideexerted by the legs on the ground.

information about forces acting on a single leg. Forces in the cuticle of an individual leg

could be measured by affixing small strain gauges to the tibia. This technique would

allow for simultaneous measures of receptor activity and leg forces in freely moving

animals.

(2) Sensilla responses also encode the rate of change of increases and decreases in

weight of the body must be supported by the legs for an animal to stand above the

surface. Therefore, these findings support the idea that changes in leg forces, which
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change of force increases are maintained even in the presence of static loads. The

activity in freely moving cockroaches. A force plate could be used to measure load

force in restrained preparations. The sensitivities of the tibial sensilla to the rate of

leg in swing (Full and Tu 1990,1991). The tibial receptors may provide information



receptors in the presence of static loads could be tested in freely moving animals by

applying weights during tests of platform perturbation.

(3) Individual tibial sensilla respond with consistent directionality to all magnitudes

and rates of force. This directional sensitivity is maintained in restrained preparations

and freely moving animals. The tibial receptors are unique in that they consist of two

subgroups of sensilla with mutually perpendicular cuticular caps. Therefore, the group

as a whole can detect forces from a variety of directions. These data support the

hypothesis that the receptors provide accurate information about the direction of force

vectors and their resultant cuticular strains in the leg. Information about force direction

could provide feedback to the leg muscles that are important in maintaining balance and

posture. Further studies in this field should examine the feedback pathways that are

important in the generation of postural responses in insects. Previous works have

shown that the activity of the tibial sensilla can effect the responses of the leg muscles

Therefore, an understanding of the interaction between(Zill and Moran 1981a,b).

sensory afferents and motor output could help to interpret the mechanisms involved in

the maintenance of stable postures.

(4) The tibial sensilla increase their firing at increasing rates of platform movement in

The responsiveness of the receptors to the rate of thefreely standing animals.

translations was maintained in all directions of perturbations. Dynamic responses of the

campaniform sensilla could aid in detection of rapid changes in forces on the legs that

may occur in walking over obstacles or during slipping. This hypothesis can be tested

in freely moving cockroaches during walking and climbing. Recordings from sensory
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vary about this static level, can be readily detected. The rate sensitivity of the tibial



afferents in these animals should yield further insight into the role of the tibial

campaniform sensilla in posture and locomotion.
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ABSTRACT

The ability to detect changes in forces is important for effective use of a leg in

posture and locomotion. This thesis examines how forces are detected in the legs of

cockroaches by tibial campaniform sensilla. Campaniform sensilla are

mechanoreceptors that encode forces through ovoid cuticular caps embedded in the

The tibial sensilla are unique in that they consist of two subgroups withexoskeleton.

mutually perpendicular cap orientations.

We characterized the responses of the tibial receptors in restrained preparations by

group, were sensitive to increasing and decreasing forces. Discharges of individual

afferents depended upon the direction of force application and the orientation of the

receptor’s cuticular cap. Tonic discharges of the sensilla signaled the magnitude of force

while the phasic activity accurately encoded the rate of force application. Sensitivities to

changing rates of force were strictly preserved in the presence of a wide range of static

loads. These discharges could be utilized to adapt posture and walking when animals

stand upon or traverse irregular terrains. Discharges to decreasing forces indicate leg

unloading during walking and could rapidly signal force decreases during slipping or

loss of ground support.

We also tested the response properties of tibial sensilla in freely standing animals.

The substrate upon which the animal stood was displaced horizontally using ramp and

hold stimuli at varied rates. The receptors showed short latency responses that were

initiated in the early period of platform movement. The activity of individual sensilla

depended upon the direction of displacement and the orientation of their cuticular cap.

126

applying forces to the leg at controlled magnitudes and rates. The tibial sensilla, as a



of

displacement, although the range of directional sensitivities was relatively broad.

Afferent responses were extremely sensitive to the rate of platform movement. These

results support the hypothesis that discharges of the receptors result from forces that

studies confirm the findings in restrained preparations and suggest that tibial sensilla

are tuned to monitor changing forces that could occur during posture and locomotion.
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are transmitted to the tibia when the foot initially moves with the substrate. These

Receptors of different cap orientations responded to different directions
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