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Abstract

Inducible nitric oxide synthase (iNOS) and manganese superoxide dismutase

(MnSOD) are two enzymes that influence reactive oxygen species within the cell. The

promoter regions for the genes encoding these enzymes have two specific transcription

factor elements in common, activator protein 1 (AP-1) and nuclear factor kappa b (NF-

KB). This study was initiated to determine if either NF-KB or AP-1 regulates the

transcription of both genes in endothelial cells. To test whether NF-KB or AP-1 binding

sites in the MnSOD and iNOS promoter region were important for transcriptional

regulation, we performed induction analysis using various deletion constructs of MnSOD

and iNOS luciferase reporter plasmids expressed in rat aortic endothelial cells (SVAREC

and PRAEC). We found that the basal and inducible regulation of MnSOD are dependent

upon the NF-KB binding site. Deletion of this ten base pair sequence produced a 90%

decrease in basal expression and a 99% decrease in expression of lipopolysaccharide

(LPS) treated cells, also studies with the inhibitors parthenolide and A-Fos, supported the

finding that NF-KB is critical for MnSOD transcription. The AP-1 site is not necessary

for basal transcriptional regulation of MnSOD but does seem to be necessary for

induction of MnSOD, since deletion of the AP-1 binding site reduces reporter expression

of LPS treated cells down to basal levels. Taken together, these results together suggest

that MnSOD expression is dependent upon NF-KB and AP-1 for induction of

transcription, while only NF-KB is necessary for basal levels of MnSOD transcription.

Serial deletions and inhibitor studies of iNOS suggested that the NF-KB site between

xiii



-680 and -266 is important for iNOS transcription. All of this data suggests that MnSOD

and iNOS are reliant upon the transcription factor NF-KB for induction of transcription.
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1
1.0 Introduction

1.1 Nitric Oxide

The human body has a complex circulatory system to supply its organs with

nutrients and oxygen. This system is comprised of the heart, blood, and the vasculature,

which includes the arteries and veins. The blood carries oxygen to the organs through the

vasculature by a force created by the heart. This force, known as blood pressure,

produces a pressure in the arteries necessary to force the blood through the arteries and

veins. The blood pressure averages 100mm Hg in the arteries and approaches zero in the

veins. There are times when the body needs to regulate this pressure to increase or

decrease blood flow to specific organs. If metabolic activity increases, the organs need

more oxygen, metabolites are released, and blood volume increases to meet the higher

oxygen demand. In order to fulfill this requirement, the arteries and veins can dilate or

constrict, in processes called vasodilation and vasoconstriction, respectively. Vasodilation

occurs when smooth muscle relaxation increases vasculature diameter. This process

increases blood volume but decreases blood flow and blood pressure. Vasoconstriction

occurs when the vasculature decreases in diameter to decrease blood volume and increase

blood flow and blood pressure (Guyton, 1991). Humoral factors secreted by the body

regulate vasoconstriction and vasodilation. Factors that stimulate vasoconstriction include

1



norepinephrine, epinephrine, angiotensin II, and vasopressin. In addition, there are many

humoral factors that stimulate vasodilation, including bradykinin, histamine, certain

prostaglandins (Guyton, 1991), and acetylcholine (ACh) (Moncada et al., 1991a).

Furchgott and Zawadzski (1980) demonstrated that ACh-induced vascular

relaxation was dependent on an intact vascular endothelium. If the endothelium was

removed, ACh treatment produced no vascular relaxation. The factor which mediates

ACh-induced relaxation is known as endothelium derived relaxing factor (EDRF).

Endothelium dependent relaxation occurs in response to several stimuli, such as ACh,

adenine nucleotides, thrombin, substance P, the calcium ionophore A23187, and

bradykinin (Moncada et al., 1991b).

The humoral nature of EDRF was demonstrated by using donor and detector

bioassays. One system consisted of two rabbit aortic strips in which the donor aorta

retained an intact endothelium and the detector strip had the endothelium removed. The

EDRF donor aortic strip was placed next to the detector strip, intimal surface to intimal

surface (Furchgott, 1984). ACh stimulation of the donor strip caused the relaxation of the

detector tissue. In a second bio assay, an intact rabbit aorta, the donor, was perfused with

ACh. The effluent was collected and superfused on to an endothelium denuded rabbit

vascular ring (the detector). ACh stimulation of the donor tissue produced an effluent that

could cause relaxation of the detector, providing additional evidence that EDRF is a

humoral factor (Cocks et al., 1985). A second line of evidence for the humoral status of

EDRF was based on vascular endothelial cells grown on microcarrier beads and perfused

with ACh. The effluent was collected by column chromatography and used to superfuse

2



either canine coronary artery rings or denuded rabbit aortic strips. This effluent caused

denuded aortic strips and canine coronary artery rings to relax (Cocks et al., 1985;

Gryglewski et al., 1986a). Through experiments using different lengths of tubing to

deliver the effluent from a donor tissue to the denuded aorta at varying time points, it was

established that EDRF had a half-life of only a few seconds in physiological salt solutions

(Griffith et al., 1984; Cocks et al., 1985).

The donor and detector systems suggested that EDRF was a factor produced by

the endothelium and secreted into the blood. Studies in which the donor and detector

were separated, allowed chemical manipulation of the generation, action, and stability of

EDRF (Cocks et al., 1985; Rubanyi et al., 1986; Gryglewski et al., 1986a). It was found

that superoxide anions (O2) contribute to the instability of EDRF because administration

of superoxide dismutase (SOD) into the donor detector system prolonged the effects of

EDRF (Gryglewski et al., 1986b) and because compounds that generate O2’ block

relaxation by EDRF (Rubanyi and Vanhoutte, 1986). These findings suggested that O2’

reacts with EDRF and prevents its biological action.

What is EDRF and how is it produced by the endothelium? Initially, EDRF was

thought to be a product of the arachidonic acid lipoxygenase pathway (Singer and Peach,

1983; Fostermann and Neufang, 1984), or the cytochrome P-450 enzyme system (Pinto et

al., 1986; Macdonald et al., 1986). Later, Furchgott (1988) and Ignarro et al. (1988)

suggested that EDRF might be nitric oxide (NO) or a closely related species. The first

evidence was the chemical detection of NO release from vascular endothelial cells. NO

reacts with ozone to form a chemiluminescent product, which was used to quantitate the

3



amount of NO produced by the endothelial cells (Downes et al., 1976). This led to the

discovery that bradykinin stimulation of endothelial cells induces EDRF release and NO

production (Palmer et al., 1987), which were considered two separate events at this time.

A detailed comparison of NO and EDRF showed that the two compounds

produced exactly the same effect on vascular strips (Palmer et al., 1987; Hutchinson et al.,

1987) and platelets (Radomski et al., 1987b,c). EDRF and NO maintain relaxation of

vascular strips, which decline at the same rate (Palmer et al., 1987). Both compounds also

inhibit platelet aggregation (Radomski et al., 1987b) and platelet adhesion (Radomski et

al., 1987c,d), and induce platelet disaggregation (Radomski et al., 1987b). The decay rates

for both compounds were similar under in vitro conditions. The action of EDRF and NO

on vascular strips and platelets is potentiated by SOD and cytochrome c and is inhibited by

O2’ generated by the redox compounds pyrogallol, dithiothreitol, and hydroquinone. Also,

redox compound inhibition of EDRF and NO relaxation of the vasculature can be

attenuated by SOD (Griffith et al., 1984; Palmer et al., 1987; Hutchinson et al., 1987;

Radomski et al., 1987a). The sum of all this evidence supports the hypothesis that EDRF

is NO.

1.1a Biosynthesis of Nitric Oxide

Although the identity of NO and its production by endothelial cells had been

established, the biosynthesis of NO was still unknown. In 1988, L-arginine was shown to

be involved in NO synthesis by vascular endothelial cells. These cells were cultured in

medium deficient in L-arginine for 24 hours prior to stimulation with bradykinin. After
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1
stimulation, a decrease in NO production was observed in cells cultured in L-arginine-

deficient medium compared to cells cultured in complete medium with L-arginine. The

production of NO could be restored by addition of L-arginine to the deficient medium.

However, D-arginine did not restore NO production, which showed specificity in the

substrate needed for NO synthesis (Palmer et al., 1988b).

Based on this observation, several reactions could hypothetically generate NO

from L-arginine. The first hypothesis proposes that L-arginine is deiminated to form

citrulline and NH3, which is oxidized to form NO (Hibbs et al., 1987).

The second hypothesis was the formation of hydroxylamine from N-hydroxy-L-

arginine, which is acted upon by catalase to release NO (DeMaster et al., 1989).

NG-Hydroxy-L-arginine—> L-Citrulline + Hydroxylamine

Hydroxylamine—> NO

where N° is the guanidino nitrogen

The third hypothesis involved the formation of NO from L-arginine in a two-step

process (Marietta et al., 1988). First, L-arginine is oxygenated to N-hydroxy-L-arginine;

then the C=N bond of N-hydroxy-L-arginine is cleaved to form NO and L-citrulline

5

Deiminase
L-arginine + H2O —> L-citrulline + NH3

Oxidase
L-arginine NG-Hydroxy-L-arginine

Oxidase
NH3 + 1 /1 O2 —> NO2 + H2O + H



I
(Leone et al., 1991; Stuehr et al., 1991; Marietta, 1993; Korth et al., 1994). Both steps in

this process require NADPH and Cb (Leone et al., 1991; Marietta, 1993).

L-arginine—> NG-Hydroxy-L-arginine

NG-Hydroxy-L-arginine—> NO + Diimide ornithine

Diimide ornithine + H2O—> L-citrulline

This hypothesis was shown to be correct by mass spectrometric analysis. In these

aortic endothelial cells stimulated with bradykinin. One of the resulting products was

identified as l5NO (Palmer et al., 1988a). The second line of evidence for the third

reaction was shown by the conversion of [H3]L-arginine to [H3]L-citrulline (Moncada and

Palmer, 1990). This evidence strongly suggests that NO and citrulline are products of the

same enzymatic reaction (Moncada and Palmer, 1990).

1.1b NO Synthases

Currently, there are three known NOS isozymes: NOS I, NOS II, and NOS III.

All three iso forms use L-arginine, molecular oxygen and NADPH as substrates. These

enzymes contain a heme group and require tetrahydrobiopterin (BH4), FMN, and FAD as

cofactors for the reaction (Brendt and Snyder, 1990; Hevel et al., 1991; Schmidt et al.,

1991; Stuehr et al., 1991). All three NOS enzymes are completely inhibited by N-

monomethyl-L-arginine (L-NMMA) and other L-arginine analogs (Moncada et al., 1991b;

6
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1
McCall and Vallance, 1992; Joly et al., 1994). These isozymes have been found in many

different cell types.

NOS I is constitutively expressed and requires Ca2+ and calmodulin for activity.

NOS I is present in the brain (Knowles et al., 1989; Schmidt et al., 1989; Brendt and

Snyder, 1990; Rodrigo et al., 1994), spinal cord (Dun et al., 1992), sympathetic ganglia

(Dun et al., 1993), peripheral nitrergic nerves (Hassall et al., 1992; Saffrey et al., 1992;

Sheng et al., 1992), epithelial cells in the lung, stomach, and uterus (Schmidt et al., 1992),

platelets (Radomski et al., 1990a,b; Muruganam and Mutus, 1994), macula densa cells

(Schmidt et al., 1992b), adrenal glands (Dun et al., 1993), and pancreatic islet cells

(Schmidt et al., 1992). NOS I is also called the neuronal NOS (nNOS) because it is

mainly expressed in neuronal tissues.

NOS II is not constitutively expressed and does not require Ca2T for activation. Its

synthesis can be induced by lipopolysaccharide (LPS) and cytokines in endothelial cells

(Knowles et al., 1990a; Rees et al., 1990), hepatocytes (Knowles et al, 1990a,b),

macrophages (Curran et al. 1989; Hevel et al., 1991; Lyons et al., 1992; Xie et al., 1992),

neutrophils (McCall et al., 1989; Wright et al., 1989), and smooth muscle cells (Wood et

al., 1990). NOS II is commonly called the inducible NOS (iNOS) because the gene can be

induced to high levels of expression. The inducible NOS II is Ca2T independent, regulated

on a transcriptional level, and is induced by a wide variety of cytokines such as tumor

necrosis factor alpha (TNFa) (Spink et al., 1995), interferon y (IFN-y) (Xie et al., 1993),

and interleukin 1 beta (IL-1 P) (Kanno et al., 1994). NOS II produces large amounts of

7



NO and for a longer duration compared to NOS I and NOS III (Moncada et al., 1991b;

Nathan and Hibbs, 1991).

I so form NOS III is constitutively expressed and present only in endothelial cells

(Pollock et al., 1991,1993; Lamas et al., 1992; Marsden et al., 1992; Nishida et al., 1992;

Sessa et al., 1992); therefore it is called the endothelial constitutive NOS (ecNOS). It is

dependent upon Ca2t and calmodulin for activation (Brendt and Snyder, 1990; Brendt et

al., 1992; Forstermann et al., 1990,1991; Mayer et al., 1991; Nakane et al., 1991; Pollock

et al., 1991).

1.1c Functional role of NO

After production by the endothelial cell, NO diffuses across the cell membrane into

adjacent smooth muscle cells. NO reacts with the heme group of guanylate cyclase (GC)

in smooth muscle. This produces a change in conformation which activates GC and

increases the cyclic guanylyl monophosphate (cGMP) concentration within smooth muscle

mobilization from intracellular Ca2r stores (Moncada, 1991a). The decrease in Ca2+

prevents activation of calmodulin, which results in myosin kinase inactivation. Active

myosin kinase phosphorylates myosin, which forms polymers with actin, initiating

contraction of the smooth muscle. Thus, calmodulin inactivation leads to vasodilation by

preventing myosin activation (Guyton, 1991). Therefore, the physiological effect of NO is

to produce vasodilation.

8
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cells. The increase in cGMP causes a decrease in Ca2T concentration by inhibiting Ca2
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l.ld Transcriptional Regulation of iNOS

Since iNOS is regulated on a transcriptional level, analysis of the promoter region

will aid in the understanding of the regulation of the gene. The promoter region of rat

iNOS is reported to be 5.2 kb of which 3.2 kb plays a direct role in transcriptional

regulation of iNOS mRNA (Zhang et al., 1998). Within the 3.2 kb rat iNOS promoter,

there are many elements homologous to transcription factor consensus sequences: twenty-

nine IFN-y response elements (y-IFNRE), two IFN-y activation sequence (GAS), two

tumor necrosis factor response element (TNF-RE), two cAMP response elements (CRE),

two nuclear factor kappa B (NF-KB) binding sites, and three activator protein 1 (AP-1)

recognition elements (Zhang et al., 1998). These transcription factor elements identify

potential trans-activator proteins that can bind and cause induction or repression of the

gene.

iNOS regulation has been heavily investigated in macrophages and smooth muscle

cells. In macrophages, an NF-KB consensus site at -83 was found to be important for LPS

stimulation of murine iNOS transcription. Deletion of this NF-KB site led to a decrease in

reporter gene expression in LPS-stimulated cells (Lowenstein et al., 1993; Xie et al., 1993,

1994). However, in the vascular smooth muscle cell line A7r5, the NF-KB site at -1000 in

the rat iNOS promoter seems to be important for conferring transcriptional induction by

LPS (Zhang et al., 1998). Deletion of the -1000 NF-KB site decreases reporter gene

expression almost 10-fold. These data suggest that iNOS regulation by NF-KB could be

tissue specific, i.e., the -83 NF-KB site is important for iNOS transcription in

9
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macrophages where as the NF-KB site at —1000 is important for iNOS transcription in

smooth muscle cells.

Perrella et al. (1996) also tested the significance of the NF-KB site in the iNOS

promoter. A reporter vector containing the region -400 to -1 of the mouse iNOS promoter

region was transfected into rat aortic smooth muscle cells. These cells were either treated

with LPS or pre-treated with the NF-KB inhibitor pyrollidine dithiocarbamate (PDTC)

followed by LPS treatment. Pre-treatment with PDTC did not decrease LPS stimulation

which suggests that NF-KB is not required for LPS-mediated induction. These

inconsistencies warrant further investigation to determine which transcription factor(s) are

necessary for iNOS induction in endothelial cells.

1.2 Nuclear Factor-Kappa B and Activator Protein-1

The MnSOD and iNOS genes contain a large variety of transcription factor

response elements in their 5’ promoter regions. Comparison of their sequences revealed

that both promoters of both genes contain NF-KB and AP-1 response elements.

1.2a Nuclear Factor Kappa B

NF-KB was first characterized as a nuclear protein which bound to a 10 base pair

(bp) region (GGGYNNCCY) of the kappa light chain enhancer (Sen and Baltimore,

1986a,b). A direct correlation between kappa light chain expression and NF-KB activity

initially suggested that NF-KB might be a critical regulator for mature B cells (Sen and

10
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Baltimore, 1986b; Atchison and Perry, 1987; Leonardo et al., 1987). However, NF-KB is

found in almost every cell type and can be activated by LPS and phorbol myristic acid

(PMA) (Grilli et al., 1993; Baeuerle and Henkel, 1994). A large number of inducible

genes contain NF-KB response elements, and NF-KB can bind to these elements within a

few minutes of stimulation (Grille et al., 1993; Baeuerle and Henkel, 1994). These

findings indicate that NF-KB is a transcription factor that plays a global role in gene

regulation (Baeuerle and Henkel, 1994).

NF-KB was initially purified as a heterodimer composed of p50 and p65 subunits

(Baeuerle and Henkel, 1994). Sequencing of the genes encoding these two proteins

revealed that they are members of a much larger protein family called rel transcription

factors (Bours et al., 1990; Ghosh et al., 1990; Kieran et al., 1990; Meyer et al., 1991;

Nolan et al., 1991; Ruben et al., 1991; Blank et al., 1992). NF-KB is now described as a

homodimer or heterodimer of rel family members. The rel protein family is divided into

two groups based on structure, function, and synthesis (Thanos and Maniatis, 1995). The

first group of rel proteins contains p50 (NF-KB1) and p52 (NF-KB2), which are

processed forms of their precursors pl 05 and pl 00, respectively. The mature p50 and

p52 have a nuclear translocation signal and rel homology domain which facilitates DNA

binding and rel protein dimerization. These mature proteins form dimers with other rel

proteins and the resulting dimers can translocate to the nucleus; their unprocessed

precursors, pl 05 and pl00, can also form dimers with rel proteins but cannot translocate

into the nucleus because the unprocessed protein carboxy terminus masks the nuclear

translocation signal (Beg et al., 1992; Blank et al., 1992; Hatada et al., 1992; Henkel et

11
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aL, 1992; Liou et al., 1992). The second group of rel family members consists of p65 (rel-

A), rel-B, and c-rel. These rel family members encode rel homology domains and one or

more transcriptional activation domains (Thanos and Maniatis, 1995).

All members of both rel groups can form homodimers or heterodimers with other

rel family members (Thanos and Maniatis, 1995). It is currently believed that the selection

of dimerization partners directs either activation or inactivation of a NF-KB complex.

Thus, the classical p50/p65 heterodimer is transcriptionally active, as are the combinations

of p50/c-rel, p65/c-rel, and the p65 homodimer. However, the p50 and p52 homodimers

are inactive and can actually repress NF-KB dependent transcription (Ballard et al., 1992;

Lernbecher et al., 1993; Brown et al., 1994). The discovery of new dimer combinations

and activities can lead to a better understanding of NF-KB based transcriptional

enhancement or repression.

NF-KB dimers are retained in the cytoplasm by binding to a third protein subunit

called inhibitor kappa B (IKB). IKB sequesters NF-KB in the cytoplasm by masking the

nuclear translocation signal on p50 (Baeuerle and Baltimore, 1988a,b). IKB is a member

of a family of proteins that has the distinguishing presence of multiple conserved ankyrin

repeats. It is believed that ankyrin repeats interact with the rel homology domain of NF-

KB (Davis et al., 1991; Haskill et al., 1991; Franzoso et aL, 1992; Inoue et al., 1992;

Gilmore and Morin, 1993; Naumann et aL, 1993). IKB must be removed from NF-KB to

produce a nuclear transcription factor, which can bind DNA and enhance transcription.

Currently, the IKB family consists of IKB-a, IKB-p, IKB-y, and Bcl-3. All of the IKB

proteins, except Bcl-3, inhibit NF-KB activity (Ohno et aL, 1990; Davis et aL, 1991;
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Haskill et al., 1991; Tewari et al., 1992; Inoue et al., 1992; Liou et al., 1992; Bhatia et al.,

1991; Franzoso et al., 1992; Hatada et al., 1992; Wulczyn et al., 1992).

1.2b Activation of NF-KB

Activation of NF-KB requires a series of events which allows it to enter the

nucleus, bind DNA and induce transcription. The first step in NF-KB activation is the

stimulation of the cell by one of a diverse group of stimulators, including LPS, IL-1, IFN-

y, TNF-oc, and ultraviolet light. All of these stimulators initiate a pathway in which a

protein kinase, inhibitor kappa B kinase (IKK), is activated and phosphorylates the IKB

subunit (Chen et al., 1995). This phosphorylation targets IKB for ubiquitinization and

initiates IKB degradation by the proteosome (Thanos and Maniatis, 1995). After IKB is

degraded, the nuclear translocation signal of the NF-KB dimer is unmasked, which allows

NF-KB to translocate into the nucleus, bind its consensus sequence, and enhance

transcription of its target genes (Thanos and Maniatis, 1995). One of the important genes

that NF-KB induces is IKB-cc (de Martin et al 1993; Beg et al., 1993; Brown et al., 1993;

Sun et aL, 1993). Entry of NF-KB into the nucleus causes induction of IKB-a, which

binds and inactivates NF-KB. This forms a negative feedback loop, in which NF-KB

directly increases the production of its inhibitor and leads to its own inactivation (Kopp

and Ghosh, 1995).

The activation cascade described above is typical for NF-KB; however, different

stimulators can have specific effects on NF-KB activation. Stimulation of NF-KB by
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TNF-a or PM A produces a rapid transient activation of NF-KB, whereas LPS and IL-1

produce a prolonged activation of NF-KB in a pre-B cell line. This difference in

activation, termed the biphasic response, is based on partnering with different IKBs

(Thompson et al., 1995). IKB-a is degraded by proteolysis when any NF-KB stimulator

initiates activation of NF-KB. The degradation of IKB-a causes a transient activation of

NF-KB. In contrast to IKB-a, IKB-P is only degraded when the cells are stimulated with

IL-1 or LPS. After IKB-p is destroyed, activation of NF-KB persists for several hours

(Thompson et al., 1995).

1.2c Activator Protein 1

AP-1 is a transcription factor that binds the DNA consensus sequence

TGA(C/G)TCA (Foletta et al., 1998). AP-1 is comprised of multiple protein complexes

from two protein families, jun and fos. The jun family of proteins includes c-jun, jun B,

and jun D (Maki et al., 1987; Ryder et al., 1988, 1989; Hirai et al., 1989), and the fos

family of proteins includes c-fos, fos related antigen 1 (Fra-1), Fra-2, and fos B (Cohen et

al., 1989; Matsui et al., 1990; Nishina et al., 1990; Zerial et al., 1989). Members of these

two families can form dimeric complexes and produce an active AP-1 transcription factor

complex.

Dimerization between jun and fos is facilitated by a leucine zipper motif, which is

present in both subunits. Leucine zippers are amphipathic a helices, in which leucine

residues are present every five amino acids; two leucine zippers can associate in a coiled

coil arrangement (Kerppola and Curran, 1991). Leucine zipper proteins form very specific
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interactions due to the presence of specific charged amino acid residues in the leucine

zipper domain (O’Shea et al., 1989, 1992). These charged domains prevent fos-fos

not as stable as the jun-fos heterodimers, which produce the most stable AP-1 complex

(Nakabeppu et al., 1988; Halazonetis et al., 1988; O’Shea et al., 1989; Rauscher et al.,

1988).

A second a helix region contiguous with the leucine zipper domain is rich in basic

amino acids and forms the DNA binding domain of AP-1. Dimerization of AP-1 proteins

juxtaposes the two basic a helices, and each domain provides an equal contribution to

site-specific DNA recognition and binding (Kerppola and Curran, 1991; Nakabeppu and

Nathans, 1989; Glover and Harrison, 1995). Transcription factors that contain leucine

zippers and basic DNA binding domains are called b-Zip proteins (Lee, 1992). b-Zip

transcription factor families include CREB, C/EBP, TEF/DBP, MafTNrl, and NF-E2

(Landschulz et al., 1988; Hai et al., 1989; Williams et al., 1991; Drolet et al., 1991;

Kataoka et al., 1994). There are many instances in which b-Zip family members interact

with one another, where heterodimers from different b-Zip families form heterodimers

(Hai and Curran, 1991; Ryseck and Bravo, 1991; Kataoka et al., 1994). AP-1 can also

form complexes with non-b-Zip proteins, such as the glucocorticoid receptor, basic helix

loop helix Zip proteins, nuclear factor of activated T cells, and NF-KB (Yang-Yen et al.,

1990; Stein et al., 1993; Pognonec et al., 1997; Jain et al., 1992).
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1.3 The Endothelium

The endothelium is the innermost layer of cells in the arteries and veins. This layer

of cells plays a large role in vasoregulation by producing and modulating vasoactive

factors. Bloodborne compounds like angiotensin and bradykinin are metabolized by

angiotensin converting enzyme within the cell and adenine nucleotides are metabolized by

ectoadenosine trisphosphatase on the endothelial cell surface (Jaffe, 1985; Vane et al.,

1990; Ramos, 1992; Marin and Rodriquez-Martinez, 1995; Simonescu and Simonescu,

1986). The endothelium produces a large number of paracrine factors including the

vasoconstrictor endothelin, platelet activating factor, endothelium derived hyperpolarizing

factor, tissue plasminogen activator, interleukins, von Willebrand factor, prostacyclin, and

EDRF (Hanahan, 1986; Vanhoutte et al., 1986; Marin and Sanches Ferrer, 1990; Vane et

al., 1990; Rubanyi, 1991).

Endothelial cells are both a target and a site of production for free radicals through

mitochondrial oxidation, cyclooxygenase, and NO formation. Endothelial cells have a

lower antioxidant capacity compared to other cell types (Bishop et al., 1985). Free

radicals produced by pathological processes such as diabetes, inflammation, and

atherosclerosis target the endothelium by its proximity to the blood (Rubanyi, 1988;

Salvemini and Botting, 1990; Ward, 1991; Kehrer, 1993; Ross, 1993; Tesfamariam, 1994;

Yu, 1994).

The effect of free radicals on the endothelium ranges from cell killing by activated

macrophages to slight changes in the vascular conductance (Marin and Rodriquez-

Martinez, 1995). Superoxide anion (CK), hydroxyl radical, and hydrogen peroxide can
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alter vascular tone (Marin and Rodriquez-Martinez, 1995). These reactive oxygen species

(ROS) can produce vasoregulation by acting upon the synthesis or biological activity of

endothelial derived vasodilators, such as NO and prostacyclin (Rubanyi, 1988; Marin and

Rodriquez-Martinez, 1995). Therefore, it is important for endothelial cells to control the

level of ROS. One control mechanism is mediated by the superoxide dismutases (SOD).

1.4 Manganese Superoxide Dismutase

Every cell in the human body needs oxygen (O2) to produce energy. O2 is required

as an electron acceptor in the electron transport chain. This series of reactions also

produces the byproduct O2', which is highly reactive and can lead to direct DNA damage,

inactivation of proteins, or lipid peroxidation. In order to protect the cell against these

harmful reactions, SODs catalyze the removal of Ch’by the following reaction:

The dismutation reaction can occur non-enzymatically; however, SODs catalyze this

reaction lxl04 times faster than the non-enzymatic dismutation of O2’ (Fridovich, 1975).

Three iso forms of SOD are known to exist in eukaryotic cells: (1) The copper

zinc SOD (CuZnSOD) which is found in the cytoplasm, (2) the extracellular CuZnSOD

(ECSOD), and (3) the mitochondrial manganese SOD (MnSOD). CuZnSOD is

constitutively expressed, while the MnSOD is highly regulated by various mediators of

inflammation (Wong and Goeddel, 1988; Visner et al., 1990; Dougall et al., 1991;

Valentine et al., 1992; Czaja et al., 1994). MnSOD synthesis can be induced by
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TNFa, interleukins 1 and 6 (IL-1 and IL-6), IFN-y and LPS. The induction of MnSOD

can be inhibited by actinomycin D, an inhibitor of transcription, which indicates that the

induction is caused by an increase in the transcriptional rate (Wong and Goeddel, 1988;

Visner et al., 1990; Borg et al., 1992; Valentine et al., 1992).

1.4a Functional Role of MnSOD

In studies of MnSOD deficient mice, MnSOD has been shown to play a critical

role in cellular protection in a variety of tissues. These mice exhibit metabolic acidosis,

severe cardiac myopathy and lipid accumulation in the liver and skeletal muscle. They

have a decreased level of activity for the enzymes sensitive to the redox state of the cell:

aconitase, succinate dehydrogenase, and cytochrome C oxidase. These mice die within ten

days of birth (Li et al., 1995).

MnSOD overexpression in mice exhibits a protective role against hyperoxic injury.

Mice overexpressing MnSOD live longer in 95% O2 than their non-transgenic littermates

(Wispe et al., 1992). This suggests that MnSOD prevents cellular damage by removing O2'

and preventing O2’ mediated apoptosis. MnSOD could also play a role in tumor growth,

since overexpression of MnSOD suppresses the tumorgenicity of human melanoma cells

(Church et al., 1993), breast cancer cells (Li et al., 1995), and glioma cells (Zhong et al.,

1997).

MnSOD plays an important role in the regulation of vascular tone. When 02’is

present at high levels it can react with NO to form OONO' (peroxynitrite).

O< + NO-> OONO'
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This reaction prevents NO from activating guanylate cyclase and prevents smooth muscle

relaxation (Mclntyer et al., 1999). Removal of O2-(by MnSOD) blocks the peroxynitrite

reaction and allows NO to initiate smooth muscle relaxation. Through all of these studies

MnSOD has been associated with many different diseases including cancer, diabetes,

neurodegenerative diseases and hypertension. The largest problem remains in

understanding the precise regulation of this gene.

1.4b Regulation of MnSOD

MnSOD is highly regulated and its transcription can be induced by stimulators of

the inflammation response. The MnSOD promoter is atypical because it does not contain

a TATA box or CAAT box, the standard recognition sequences for the basal

transcriptional apparatus. Because the molecular regulation of TATA-less and CAAT-less

promoters is not fully understood, the transcriptional regulation of MnSOD is under

intense investigation (Kuo et al. 1999).

The MnSOD promoter region is at least 2.5 kb in length (Ho et al., 1993), and

contains transcription factor recognition elements for SP-1, AP-1, AP-2, and NF-KB (Xu

et al. 1999). When porcine aortic endothelial cells are stimulated by the pro-inflammatory

compounds TNF-a, IL-1, or LPS, the mRNA for MnSOD is increased 6-25 fold

depending on the stimulator (Visner et al., 1991, 1992). This shows that MnSOD is

transcriptionally induced by cytokines and stress inducing factors. However, it is not clear

how these stimulators produce the increase in MnSOD mRNA.
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To determine the role ofNF-KB in MnSOD transcription, Bedoya et al. (1995)

treated porcine endothelial cells with PDTC and measured the MnSOD mRNA abundance.

They found that MnSOD mRNA abundance was not decreased by PDTC and concluded

that MnSOD does not require NF-KB for transcriptional induction. The mRNA for c-fos

was found to be elevated after PDTC treatment. The investigators hypothesize that AP-1

could be indirectly playing a role in MnSOD transcriptional regulation. However, the

study never directly examined the effect of AP-1 perturbation on MnSOD production.

Maehara et al. (1999) showed that deletion of either NF-KB or CEPB sites decreased

reporter expression and concluded that both NF-KB and CEBP are required for MnSOD

induction. Xu et al. (1999) supported the role ofNF-KB in MnSOD regulation. They

generated a series of nested deletions within the human MnSOD promoter and 3’ intronic

region and found that NF-KB sites in the 3’ intronic sequence were necessary for MnSOD

stimulation by TNF-a. There is a distinct possibility that MnSOD is differentially regulated

in different cell types and tissues.
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2.0 Hypothesis and Specific Aims

LPS induces the MnSOD and iNOS genes and the promoters of both genes have

AP-1 and NF-KB transcription factor recognition sites. We hypothesize that these

this study, LPS was used for stimulation of primary rat aortic endothelial cells (PRAEC)

and SV40 transformed aortic rat endothelial cells (SVAREC), based on the evidence that

LPS induces iNOS and MnSOD transcription and NF-KB and AP-1 activity. The overall

goal of this study was to determine how LPS induces transcription of MnSOD and iNOS.

The specific aims were to:

(1) Establish or acquire an endothelial cell line suitable for the monitoring of MnSOD and

iNOS reporter gene expression.

(2) Confirm that NF-KB and AP-1 activities are induced by LPS in PRAEC and SVAREC

cell lines by monitoring the expression of NF-KB and AP-1 reporter genes.

(3) Demonstrate that MnSOD and iNOS are induced by LPS in SVAREC cells by

monitoring the expression of MnSOD and iNOS reporter genes.

(4) Determine the role of NF-KB and AP-1 on LPS-meditated MnSOD induction in

SVAREC cells by deleting their binding sites from the MnSOD reporter gene and by

treating with inhibitors of NF-KB and AP-1.

(5) Determine the role of NF-KB and AP-1 on LPS-mediated iNOS induction in

SVAREC cells by creating serial deletions and treating with inhibitors of NF-KB and

AP-1.
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3.0 Materials and Methods

3.1 Reagents

Agarose, ampicillin, Tris-HCl, NaCl, von Willebrand Factor Antibody (vWF),

FITC-labeled smooth muscle a-actin antibody, and Endothelium Basal Medium were

obtained from Sigma-Aldrich Corp. (St. Louis, MO). Trizol, Bluo-gal, phosphate

buffered saline, fetal bovine serum, RPMI 1640, DMEM, penicillin and streptomycin,

serum free endothelial plating medium, serum free endothelial growth medium, LB

medium, Lipofectin, and Opti-mem medium were obtained from Life Technologies

(Rockville, MD). Luciferase reagent, reporter lysis buffer, Acc65 I, Nhe I, Xho I, Hind

III, Sfi I, Spe I, Nru I, Sma I, mung bean nuclease, Wizard miniprep kits, and Wizard

midiprep kits were obtained from Promega (Madison, WI). 6-well Falcon Primaria coated

plates, Falcon T-75 flasks, Matrigel, Tween 20, positively charged nylon membranes,

Whatman filter paper, and polypropylene tubes were obtained from Fisher (Pittsburgh,

PA). Top 10 Ultra Competent E. coli and the pCR2.1 cloning vector were obtained from

Invitrogen (Carlsbad, CA). Enhanced Chemiluminescence (ECL) kit and BCA Protein

Assay kit were obtained from Amersham-Pharmacia (Piscataway, NJ). A Northemmax Kit

was obtained from Ambion (Austin, TX). T4 DNA Ligase was obtained from New

England Biolabs (Boston, MA).
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3.2 Ligation of inserts into pGL vectors

All ligations followed the manufacturer’s protocol for T4 DNA ligase. In general,

pCR2.1 and pGL plasmids were digested with compatible enzymes. A 2 fold or 4 fold

molar excess of insert DNA compared to reporter plasmid was used in the ligation

reactions. The T4 DNA ligase reaction was allowed to proceed overnight at 14°C.

Ligation products were transformed into competent bacteria as described below.

3.3 Bacterial Transformation

Chemically competent bacteria (e.g. Top 10 cells) were transformed using the

manufacturer’s suggested guidelines. In general, lOOng of plasmid DNA were added to

50pl competent bacteria. This mixture was incubated on ice for 30 minutes, at 42°C for

30 seconds, and returned to ice. 200pl SOC bacterial medium was added and bacteria

were incubated at 37°C for 1 hour to allow expression of antibiotic resistance. Bacteria

were plated out on LB plates with 75 pg/ml ampicillin and incubated overnight to allow

colony formation.

3.4 Blue/White screening

Some cloning vectors (e.g. pCR2.1) contain a multiple cloning site (MCS) within a

functional lacZ gene. When a fragment is inserted into the MCS, the lacZ gene is

disrupted; transformants with this vector are unable to hydrolyze the chromogenic

substrate Bluo-gal, yielding white colonies. If lacZ is not disrupted, Bluo-gal is
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hydrolyzed and blue colonies are formed. White colonies, tentatively considered insert

positive, were plated on a second Bluo-gal plate to confirm the lacZ phenotype. Plasmid

DNA was purified from confirmed white colonies using Wizard miniprep columns.

3.5 Construction of MnSOD reporter vectors

A 2.5 kb MnSOD promoter fragment was obtained by direct amplification of

genomic DNA in PCR containing 20mM Tris-HCl (pH 8.4), 50mM KC1 with 1.5mM

MgCb, 3mM dNTPs, 300pM MNSODPR1 and MNSODPR2 primers (Table 1), lOOng

genomic DNA, and 2.5 units Taq polymerase. This reaction was performed for 30 cycles

using 95°C for denaturing, 52°C for annealing, and 72°C for extension. The PCR products

were inserted into TOPO TA cloning vector pCR2.1 which has topoisomerase covalently

linked to the site of insertion. These vectors rely on single A overhangs for cloning any

PCR product and the resealing activity of topoisomerase for plasmid closing.

Products of ligation reactions were transformed into commercially competent Top

10 cells which were plated onto LB agar medium with 75 pg/ml ampicillin and 1.5p.g/ml

Bluo-gal. Plasmid DNA was isolated from white colonies and tested for the MnSOD insert

by restriction digests and automated sequencing. Since the pCR2.1 insert did not have

compatible ends with the pGL-Basic vector, new primers were created with compatible

ends for Acc65 I (MNSODPRACC1, Table 1) and Nhe I (MNSODPRNHE2, Table 1).

These were used to reamplily the 2.5 kb fragment which was ligated into the pCR2.1

vector. One clone, designated MnSOD TA, contained the correct sequence.
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Primer Name Sequence

ACCAATCCCCATATCCCCCAGAAAMNSODPR1
AGCCGCCGCCGAGACCAACCAAAGMNSODPR2

MNSODPRACC 1 GCTTCGTCGGGTACCAATCCCCATATCCCCCAGAAA
MNSODPRNHE 2 GCTTCGTGGGCTAGCCGCCGCCGAGACCAACCAAAG

CTCAGCCACCCATCTCTCACINOSPR1
TGACAGTAGCCATCAGGTATTTAINOSPR2
GCTTGCTGCGGTACCCTCAGCCACCCACCATCTCTCACACCINOSPR1
GCTTGCGTGGCTCGAGTGACAGTAGCCATCAGGTATTTAXHOINOSPR2

ANFKBMNSOD1 AAGACC ACTGGGGTCCCACTCAAATCTCGAGACAACGCAA
ANFKBMNSOD2 TTGCGTTGTCTCGAGATTTGAGTGGGACCCCAGTGGTCTT

TCACTCAGGCATAAATTAAGAAGGCCCCTGATTACGCCAAAPMNSOD1
TGGCGTAATCAGGGGCCTTCTTAATTTATGCCTGAGTGAAAPMNSOD2

Table 1. DNA sequences of PCR primers used in this study.
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The MnSOD promoter was transferred from MnSOD TA to pGL-2 Basic by

digesting both plasmids with Acc 65 I and Nhe I. The digests were mixed in a 4:1 ratio,

MnSOD TA to pGL-Basic, and ligated using T4 DNA ligase according to manufacturer’s

directions. A pGL-2 plasmid containing the MnSOD promoter was identified by

automated DNA sequencing and was designated WT MnSOD-Luc.

3.6 Deletion of NF-KB and AP-1 Sites in MnSOD-Luc reporters

Recombinant PCR (Higuchi, 1988; Fig. 1) was used to introduce deletions of the

NF-KB and AP-1 sites into the MnSOD-Luc reporter. First, two sets of PCR primers

were designed with the following features. (1) The primer pairs amplify adjacent regions

of the promoter and generate PCR products that would overlap at the site of the deletion.

(2) The internal primers are complementary and composed of twenty base pair regions that

flank the site to be deleted. (3) The external primers flank the entire region and have

restriction sites to facilitate subcloning of the final PCR product. Primer pairs and

sequences designed for generating the NF-KB and AP-1 deletions are shown in Table 1.

Overlapping promoter fragments were generated by PCR containing 400ng WT

MnSOD-Luc plasmid, lOOpM external primer, lOOpM internal primer, 1 unit ofTaq

polymerase, 20mM Tris-HCl, pH 8.4, 50mM KC1. Products were amplified for 25 cycles

where each cycle consisted of a one minute denaturation step at 94°C, a one minute

annealing step at 52°C and a one minute extension step at 72°C. PCR product formation
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Figure 1. Recombinant PCR procedure for preparation of

ANFKBMNSOD and AAPMNSOD promoters. In this study,

ANFKBMNSOD and AAPMNSOD primers were used as the internal

primers, and MNSODPRACC and MNSODPRNHE were used as the

external primers.
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PCR products were gel purified, mixed together, denatured by heating at 95°C for

10 minutes and used as template in the second stage PCR, which contained 4ul of primary

PCR product reaction mixture, lOOpM of both external primers, 1 unit Taq polymerase,

50mM Tris-HCl, pH 8.4, 50mM KC1, and 1.5mM MgCL. Secondary PCR products were

amplified as described for primary PCR product amplification. The resulting 2.5 kb PCR

product was subcloned into TOPO TA plasmid pCR2.1. The presence of the promoter

insert was screened by restriction digestion of plasmid DNA from P-galactosidase negative

(white) colonies. Verification of the MnSOD sequence and binding site deletions were

confirmed by automated sequencing. pCR2.1 subclones, which contained the appropriate

NF-KB or AP-1 deletions, were designated TA-ANF-KB and TA-AAP-1, respectively.

Luciferase reporters were made by transferring the deletion promoters from

pCR2.1 subclones to pGL2-Basic as follows. Plasmid TA-ANFKB (or TA-AAP-1) and

pGL2-Basic were digested with Acc65 I and Nhe I at 37°C for 1 hour. After restriction

enzymes were inactivated by incubating at 67°C for 15 minutes, plasmid TA-ANFKB (or

TA-AAP-1) and pGL2-Basic were mixed in a 4:1 molar ratio and ligated with T4 DNA

ligase. The ligation mixture was transformed into TOP 10 competent cells which were

then plated onto LB-amp plates. Ampicillin resistant transformants were screened for

insert-positive pGL-Basic clones by PCR and restriction digests. The presence of the

MnSOD promoter and appropriate deletions in NF-KB and AP-1 sites was confirmed by

automated sequencing. These clones were designated ANF MnSOD-Luc and AAP

MnSOD-Luc, respectively.
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3.7 Cloning of iNOS Regulatory Region

A PCR based strategy was devised using primers INOSPR1 and INOSPR2 (Table

1) designed to amplify 1.7 kb (-1746 to -1) of the iNOS promoter. PCRs were performed

using the standard PCR buffer (20mM Tris-HCl (pH 8.4), 50mM KC1, lOOpM INOSPR1,

1 OOpM INOSPR2, and 2.5 units of Taq) and a range of magnesium chloride

concentrations (1.5mM, 2mM, 3mM, and 4mM). Two of these reactions (1.5 mM and

2mM MgCb) produced the predicted 1.7 kb fragment. This fragment was gel purified and

digested with Ncol to initially confirm the product’s identity. This digestion produced 1 kb

and 700 bp fragments, the predicted products based upon the iNOS DNA sequence.

In order to facilitate insertion of the 1.7 kb fragment into pGL-3 Basic, the

fragment was reamplified using upper and lower primers (INOSACC 1 and INOSXHO2,

Table 1) that contained Acc65 I and Xho I restriction sites compatible with the pGL-3

Basic polylinker. This PCR product was ligated into the TA TOPO 2.1 vector. The

presence of the iNOS promoter was confirmed by restriction digest and automated

sequencing (148 consecutive bases matched the published iNOS sequence) (Zhang et al.,

1998). This clone was designated 1.7 INOS TA.

3.8 Construction of 1.7 iNOS-Luc

This 1.7 iNOS promoter fragment was inserted into the pGL-3 Basic to form

expression vector 1.7 iNOS-Luc in the following manner. Plasmids 1.7 INOS TA and

pGL-3 Basic were digested with Acc65 I and Xho I. The ligation reaction included a four

fold molar excess of iNOS-TA clone to pGL-3 Basic vector. Insert positive clones were
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detected by amplification of 1.7 kb fragment with INOS ACC 1 and INOSXHO2 primers

(Table 1) and confirmed by automated sequencing. One plasmid, iNOS1.7-Luc contained

the correct iNOS sequence.

3.9 Construction of iNOS-Luc Deletion Series

Plasmid WT iNOS-Luc, which contains the 3.2 kb rat iNOS promoter inserted in

pGL3-Basic, was received as a gracious gift from Dr. Hanfang Zhang (University of

Georgia) and used to generate two nested deletions. Deletions were made by digesting

WT iNOS-Luc with two restriction enzymes which cut only in the promoter and religating

the plasmid backbone. The first deletion was made by cutting with Sma I and Spe I,

which deleted 2.5 kb from -3200 to -680. Spe I overhangs were removed by treatment

with Mung Bean nuclease (NEB, Boston, Mass). This blunt-ended plasmid was ligated

back together with T4 DNA Ligase to form 0.7 iNOS-Luc. For the second deletion WT

iNOS-Luc was cut with Sma I and Nru I, which deleted from -3200 to -266. This blunt

ended plasmid was ligated together with T4 DNA Ligase to produce the 0.3 iNOS-Luc.

The structures of both clones were confirmed by automated sequencing.

3.10 Transient Transfections

SV40 transformed rat aortic endothelial cells (SVAREC) and primary rat aortic

endothelial cells (PRAEC) were transfected using the lipofectin reagent (Life

Technologies, Rockville, MD). For each transfection, two solutions were prepared. (1)
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5pl of lipofectin was diluted in 100p.l of Opti-mem medium. (2) 1.5pg of luciferase

reporter, Ipg of P-GAL reporter, and either 0.5pg of pGL-Basic or A-Fos were incubated

in lOOp.1 Opti-mem for 15 minutes. Both of these solutions were combined and incubated

for 45 minutes to allow the liposome-DNA vesicles to form. Vesicles were then diluted to

a final volume of 2 ml with Opti-mem medium and overlaid onto cells (200,000 cells per

well). After incubation for 19 hours at 37°C, the vesicle solution was replaced with fresh

complete growth medium (DMEM+10%FBS). Incubation at 37°C was continued for an

additional 48 hours, at which time cells were left untreated, treated with parthenolide,

LPS, or a combination of both for 4 hours. The cells were then ready to assay for

luciferase and P-galactosidase activity.

3.11 Establishment of primary endothelial cell cultures

Rat aortic endothelial cell cultures were prepared by the method of McGuire and

Orkin (1987) with some modifications. Thoracic aortae were removed from male Sprague

Dawley rats at 9 weeks of age under aseptic conditions and placed in RPMI-1640 plus

20% serum. A longitudinal dissection of each aorta produced a sheet of aorta with the

endothelial side of the vessel facing up. The aortic sheet was then cut into two halves that

remain connected at the top; this allowed for the determination of the orientation of the
9

endothelium. Each aorta half was then cut into approximately 15 2mm“ aortic segments.

Each segment was placed endothelial side down into the well of a 12 well plate coated

with 35pl of matrigel, supplemented with 50pl complete medium (RPMI 1640 plus 20%
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fetal bovine serum, 100p.g/ml penicillin and lOOpg/ml streptomycin), and incubated at

added to each segment and incubation was continued for an additional 96-144 hours. The

aortic segments were then removed and 250pl complete medium was added to allow

attached cells to grow. Cell growth occurred mainly in the area peripheral to the original

position of the aortic segment and was continued until 70% confluence was reached.

During this period, complete medium was added every three to four days. In some cases,

addition of medium would cause segments to lose attachment to the matrigel and float in

the medium. This floating prevented cell growth in those specific wells and decreased the

yield of endothelial cells.

Confluent endothelial cells have a cobblestone appearance which is characterized

by the presence of triangular or rectangular cells that are somewhat rounded compact and

placed side by side (similar to a cobblestone street) (McGuire and Orkin, 1987) (Fig. 2).

Because all of the initial primary endothelial cell cultures failed to maintain this

appearance, it was necessary to optimize pure endothelial culture production.

Optimization began by testing four different media with the same explant

technique. These media were RPMI-1640 with 20% serum, RPMI-1640 with 3% serum,

serum free endothelial plating medium, and endothelial basal medium with 0.5% serum

(EBM). All four media supported initial growth. However, only RPMI-1640 with 20%

serum and EBM supported cell growth after aortic segment removal. EBM cultures were

confluent seven days after segment removal, compared to ten days with RPMI-1640.
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Figure 2. Morphology of primary endothelial cells. Note the rounded appearance of the

cells and the contact inhibition.
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Since EBM permitted more rapid cellular growth from the explant, this medium was used

for the establishment of primary cell cultures.

When explant cells were incubated in EBM at 37°C under 5% CC>2’ the cells grew

more slowly after the first passage from 24 well plates to 6 well plates. This reduction in

growth rate may have resulted from dilution of an endogenous growth factor(s) by the

relatively large volume of medium. To correct for this dilution effect, cells were split into

12 well plates from the initial 24 well plate. In this modification, cell cultures were

confluent after two weeks instead of four weeks.

A low percentage of explant cultures produced by this modified protocol exhibited

growth and cobblestone morphology after three passages. In order to increase explant

efficiency, two conditions (incubation time and medium volume) were tested. In the

original protocol, aortic segments were incubated at least 96 hours before removal. Since

it was possible that other cells, like smooth muscle and fibroblasts, could attach and grow

on the matrigel, shorter incubation periods, 48 hours and 72 hours, were tested. In

addition, decreased medium volume (1 Opl instead of 50p.l) was added directly on top of

the aortic segment of each well to prevent the segment from floating off of the matrigel.

All three time points had segments that produced cells which grew after removal of the

aortic segment. The time of growth before splitting the cells from 24 well plates to 12 well

plates was dependent on the time of explant incubation. The 48, 72, and 96 hour explant

cultures needed 14, 9, and 6 days, respectively, after explant growth before splitting. This

difference was probably due to the number of cells that were growing off the explant at

the time of removal. A second difference between the cultures became evident in the third
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passage when all the cells were passaged from 12 well plates onto 6 well plates. The cells

that were attached for 96 hours showed irregular growth, characterized by long spindly

cells that grew on top of one another. Most of the 72 hour cultures showed some of the

same irregular growth as found in the 96 hour cultures, but a few had the normal

endothelial morphology. The majority of the 48-hour cultures had normal endothelial cell

morphology, and only a few wells showed this irregular growth as in the 96-hour cultures.

These findings led to the final optimized protocol in establishment of a primary

endothelial cell culture. Aortic segments were placed on matrigel coated wells of a 24 well

plate and incubated with 10 pl of EBM medium for 24 hours, which provided enough time

for the aortic segment to attach to the matrigel. Aortic segments were incubated for 48

hours in the presence of 30pl of EBM medium. Segments were then removed and 500pI

of EBM was added. These cultures were grown until confluent and passaged every 2

weeks. This optimized procedure provided cell cultures that were pure aortic endothelial

cells, based on vWF expression and absence of smooth muscle a-actin staining.

3.12 Endothelial Cell Typing

3.12a Western Blot

Cell lysates were prepared by adding 500pl lysis buffer (50mM Tris Cl (pH 8.0),

150 mM NaCl, lOOpg/ml PMSF, Ipg/ml aprotinin, 1% Triton X-100) to the first well of a

six well plate and detaching cells with a scraper. This lysate was added to the second well

of the same plate, followed by cell scraping. This process was repeated for each well of
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cells, until the cells from all six wells (Approx. 6xl06 cells) were combined into 500p.l lysis

buffer. The lysate was transferred to a 1.5ml microcentrifuge tube and sonicated for 10

sec at 30 MHz. A 50pl aliquot was removed and assayed for protein content by the BCA

protocol using the following reaction:

The remainder of each sample was frozen at -70°C until needed for electrophoresis. Total

protein (1 OOpg) from each sample was prepared for electrophoretic analysis by adding an

equal volume of loading buffer (100 mM Tris Cl (pH 6.8), 4% SDS, 0.2% bromphenol

blue, 20% glycerol, 5% p-mercaptoethanol). Protein samples were denatured by heating at

100°C for 5 minutes, loaded into a 12% denaturing SDS polyacrylamide gel (Sambrook,

1989a) and electrophoresed at 35V for 20hrs. Gels were then placed in transfer buffer (39

mM glycine, 48 mM Tris base, 0.037% SDS, 20 % Methanol) for 20 minutes. Two pieces

of Whatman filter paper and one piece of nitrocellulose were cut to fit the gel and placed

in transfer buffer for 10 minutes. Protein was transferred from the gel to nitrocellulose

membrane by a semi-dry blotter (Fischer Biotech, FB-SBD-2020). The transfer apparatus

was assembled as follows. One piece of Whatman paper is placed on the bottom followed

by the gel, nitrocellulose membrane, and a second sheet of Whatman paper. A glass rod

was rolled across each surface to remove air bubbles which could prevent transfer of the

protein. A 35V electric field was applied across the blot for 90 minutes to transfer the

protein to the nitrocellulose membrane. The nitrocellulose was removed and cut on the
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right top corner in order to provide orientation of the blot. Prestained protein markers

(Bio-Rad, Hercules, CA) were cut off the blot and saved to determine the molecular

weight of blotted proteins.

The nitrocellulose membrane was blocked by incubating in 10% milk solution (4g

Dry Milk dissolved in 40 ml PBS) for Ihr, washed with PBS-Tween (PBS + 0.1% Tween-

20) three times for 15 min and then incubated with an anti-vWF antibody A8052 (diluted

1:1000 in PBS-Tween) by rocking for one hour at room temperature. The membrane was

then washed with PBS-Tween three times at 15 min intervals. The secondary goat anti

rabbit horseradish peroxidase labeled antibody was diluted 1:1000 in 5% blocking solution

(5g Milk dissolved in 100ml PBS-Tween), added to the membrane, and incubated for one

hour at room temperature on a rocker. Unbound secondary antibody was removed by a

series of three 15-minute washes with PBS-Tween. Bound antibody was detected by

enhanced chemiluminescence (ECL) as described by Amersham (Piscataway, NJ). For

subsequent blotting, antibody was removed from nitrocellulose by soaking the membrane

in stripping buffer (75mM Tris-HCl, 2% SDS, .35% 2-mercaptoethanol) for 30 minutes at

50°C, and washing twice with PBS-Tween for 15 minutes. Stripped membranes were re

probed with the smooth muscle a-actin primary antibody (1:1000) and glyceraldehyde

phosphate dehydrogenase (GAPDH) primary antibody (1:1000).

3.12b Confocal Microscopy

Cells were plated onto 22 by 22mm coverslips (Fisher, Pittsburgh, PA) and

incubated for at least 24 hours in DMEM at 37°C to allow for cell attachment and
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spreading. Cells were fixed and permeabilized by addition of ice-cold acetone for one

minute and then washed three times in PBS containing 0.5% Tween-20 pH7.5 (PBS-T).

Cells were incubated in blocking solution for 10 minutes, and stained with a FITC-labeled

anti-alpha-actin (1:500 dilution) for 30 minutes. Stained cells were visualized by mounting

on a Nikon Diaphot Microscope; confocal microscopy was performed with a Bio-Rad

1024 scanning system with a krypton/argon laser. Micrographs were collected as serial

projections of z-plane image acquisitions and analyzed using Lasersharp and Confocal

Assistant Software (Bio-Rad, Hercules, CA)

3.13 Luciferase Assay

Cells were prepared for luciferase and P-galactosidase (B-Gal) assays with

Reporter Lysis Buffer (RLB; Promega, Madison, WI) which supports the activity of both

enzymes. Growth medium was removed from each well and the cells were washed once

with PBS. RLB (400pl) was added to each well of a 6 well plate and the cells were

incubated for 15 minutes. Each well was scraped with a Co star cell scraper and the lysate

was collected into a sterile 1.5ml microcentrifuge tube. Each lysate was then placed on

dry ice in order to complete lysis of the remaining intact cells. For luciferase assays, 50pl

of each lysate were collected in duplicate and placed in a polystyrene tube. For p-

galactosidase assays, a lOOpl aliquot of each sample was transferred to a well from a 96-

well microtitre plate in duplicate.

In the presence of ATP, luciferase catalyzes the oxidative decarboxylation of

luciferin with the production of AMP, CO2, and light which is measured on a luminometer.
1
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Each luciferase reaction was initiated by adding 50pil of luciferase reagent to 50pl

cell lysate; the reaction was immediately placed in the luminometer for measurement of

light produced. Luciferase activity, measured in light units, was calculated according to

the following equations:

cL = Light Unit Value - Background

cL/BGALrL

Corrected light units (cL) were obtained by subtracting the background light reading from

corrected for transfection efficiency by dividing cL by the B-GAL activity in mU. This

calculation provides the relative light (rL) unit used to measure luciferase activity. Each

sample was assayed in duplicate.

3.14 Beta Galactosidase Assay

P-galactosidase reactions were initiated by the addition of lOOul of 4mM

chlorophenoIred-beta-D-galactopyranoside (CPRG) in Z Buffer to 1 OOpil crude extract. P-

galactosidase (B-GAL) catalyzes the releases of chlorophenol red which absorbs strongly

at 550nm.
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Reactions were incubated at 37°C for 3 hours and the absorbance at 550nm was

measured. A standard curve was prepared by plotting p-galactosidase in milli units (.1 to

6) against the absorbance at 550nm. Since LacZ is driven by a constitutive promoter, the

level of P-galactosidase activity reflects the efficiency of transfection.

3.15 Statistical Analysis

All statistical comparisons were accomplished with the Student’s t-test. A

comparison was considered significant when the P<.05. All groups had an n=3, unless

otherwise noted.

3.16 Northern Blot

3.16a Probe Production

A random priming synthesis (RPS) kit (Life Technologies, Rockville, MD) was

used to make DNA probes from cDNAs of rat MnSOD, mouse iNOS, and human

GAPDH. Double stranded DNA was converted to single strands by boiling for 5 minutes

and then chilling on ice. Each RPS reaction contained 25ng single stranded cDNA,

60pg/ml random octamer primers, 50mM Tris acetate (pH 6.8), 2.5 units of Klenow

fragment, 5rnM magnesium acetate, ImM dithiothreitol, lOpM dATP, lOpM dGTP,

10pM dTTP, and 50pCi a-P32dCTP; reactions were incubated at 37°C for 10 minutes.

In order to determine the amounts of dCTP incorporated, 1 pl of each probe was spotted

onto glass filters in duplicate. One of the filters was left at room temp; the other was
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washed with 50ml of 10% trichloroacetic acid and 50 ml of 75% ethanol. Each filter was

placed into a scintillation vial containing 10 ml Universol (Fisher, Pittsburgh PA). Isotope

incorporation was measured in a Beckman LS 1801 scintillation counter with all channels

open. The percentage of isotope incorporated into cDNA was determined by dividing the

cpm from the washed filter by the cpm from the unwashed filter. A total of 1x106 cpm/ml

of labeled cDNA in hybridization solution was used to probe nylon membranes.

3.16b RNA Samples

All RNA samples were prepared using Trizol reagent (Life Technologies,

Rockville, MD). SVAREC cells were grown on 6 well plates until confluence was

reached. Medium was removed and replaced with 1ml Trizol. This solution was pipetted

repeatedly to ensure cell lysis and transferred to a 1.5ml microcentrifiige tube.

Chloroform (200pl) was added to each sample and mixed by shaking for 15 seconds.

Phases were separated by centrifugation at 12,000 x g for 15 minutes at 4°C. The

aqueous phase, which contains the RNA, was collected and transferred to a new 1.5ml

microcentrifuge tube. Two volumes of 95% ethanol were added, and samples were

incubated at room temperature for 10 minutes. RNA precipitate was collected by

centrifugation at 12,000 x g for 15 minutes at 4°C. After decanting the supernatant, the

RNA was dried at room temperature for 10 minutes. RNA was dissolved in 50pl RNase

free water and quantified by measuring the absorbance at 260nm. Amounts of RNA were

calculated using the following formula:

RNA pg/ml = OD26o/ml x 40p.g/OD26o x dilution factor
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All RNA samples were stored at -70°C for later usage. All RNA samples were heated at

90°C for 10 minutes in Northern Max formaldehyde load buffer (Ambion, Austin, TX).

25pg RNA was separated by electrophoresis on a 1% agarose gel at 100V for 3 hours.

RNA was transferred to positively charged nylon membranes using upward capillary

transfer as described in Sambrook et al. (1985b).

3.16c Hybridization Conditions

Blotted membranes were incubated in 20ml UltraHyb solution (Ambion, Austin,

TX) for 30 minutes at 42°C.

the UltraHyb solution and allowed to hybridize to bound RNA overnight at 42°C. The

nylon membrane was then washed twice with a low stringency wash at room temperature

for 5 minutes each and twice with a high stringency wash at 42°C for 10 minutes each.

3.16d Autoradiography

Nylon membranes were wrapped in polyvinylchloride (Saran Wrap) and placed in a

film cassette with two intensifying screens. Under a dark room safety light, a piece of

Kodak X-ray film was placed over top of the membrane, with the RNA side of the

membrane facing the film. The cassette was then closed and placed at -70°C for one to

three days. After this exposure was complete, the film was developed in an automated

developer (Alphatek, AX390SE).
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4.0 Results

4.1 Endothelial Cell Typing

Primary endothelial cells are difficult to isolate as pure cultures from vascular

tissue for several reasons. (1) The endothelium is a very thin layer of cells and is easily

displaced by gentle agitation. Surgical removal of the aorta must be accomplished with

precision and gentle handling in order to minimize loss of endothelial cells. (2) Removal

of the endothelium exposes smooth muscle which is a significant source of cellular

contamination. A number of commercially available endothelial cell cultures were either

contaminated or not authentic endothelial cells (e.g. ECV304, an ATCC cell line). In

order to insure that the primary endothelial lines were composed only of endothelial cells,

cultures were tested for two markers, vWF which is found in endothelial cells and platelets

but not smooth muscle cells, and a-actin which is present in smooth muscle cells but not

endothelial cells. Western blotting was used to detect both marker proteins in PRAEC

cells and SVAREC cells.

4.1a PRAEC Cell Typing

48 PRAEC cell cultures were prepared by the optimized isolation method; two

cultures were prepared by the method described by Maguire and Orkin (1985). vWF

protein was detected by western blot in 48 out of 48 PRAEC cell cultures prepared by the

optimized method (Fig. 3, lanes 3-20 and data not shown) and the two cultures prepared
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B.

Figure 3. Detection of vWF and a-actin in PRAEC cells. Western blotting was used to

measure the abundance of vWF and a-actin in PRAEC cells. Total cell protein (100pg)

was separated by denaturing gel electrophoresis, transferred to a nitrocellulose membrane,

detected with either an anti-vWF (panel A) or anti-a-actin (panel B) antibody and

visualized using ECL. Lanes 1-2 are the initial cultures prepared with the original

McGuire and Orkin (1987) protocol; lanes 3-20 are PRAEC cultures created using the

optimized isolation protocol.
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by the original protocol (Fig. 3. lanes 1 and 2). This finding suggested that the primary cell

cultures contained endothelial cells, but did not determine the extent of possible

contamination with smooth muscle cells. To address this question, the same membrane

containing these 48 samples, was assayed for smooth muscle a-actin by western blot. The

only two cultures positive for a-actin were those prepared by the original protocol (Fig.

3B. lanes 1 and 2). This evidence implies that the optimized explant protocol yields pure

endothelial cell cultures.

4.1b SVAREC Cell Typing

In order to confirm the identity of the SVAREC cell line, four passages (#48, #50,

#52, and #56) were tested for the presence of vWF and a-actin. All four passages were

positive for vWF (Fig.4A lanes 1-4 and 6-9). Since the smooth muscle cell line, A7r5,

which was intended as a negative control, actually produced vWF (Fig. 4A lanes 5 and

10), an osteoblastic cell line, URM-108, was used as a negative control for western

blotting. vWF was not detected in this extract (Fig. 5, lane 3). This data demonstrates that

the anti-vWF antibody exhibits specificity for its target and suggests SVAREC cells

express vWF and are endothelial in nature.

To determine if SVAREC cells contained any smooth muscle cells, cell extracts

were assayed for a-actin by western blotting. As expected, A7r5 smooth muscle cells

were positive for a-actin (Fig. 4B, lane 5 and 10). However, all four SVAREC cell

passages were also positive for smooth muscle a-actin (Fig. 4B, lanes 1-4 and 6-9). This
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Figure 4. Detection of vWF and cc-actin in SVAREC cells. Western blotting was used to

measure the abundance of vWF and cc-actin in SVAREC cells. Total cell protein [lOOpg

(Lanes 1-5) or 50pg (Lanes 6-10)] was separated by denaturing gel electrophoresis.

Proteins were transferred to a nitrocellulose membrane and detected with either an anti-

vWF (A) or anti-oc-actin (B) antibody. Lanes 1-4 and 6-9 are SVAREC cells lysates from

passages 48, 50, 52, and 56, respectively. Lanes 5 and 10 are A7r5 cell lysates.
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SVAREC A7r5 URM-108

Figure 5. Detection of vWF protein in SVAREC, A7r5, and URM-108 cell lines. Western

blotting was performed on SVAREC, A7r5, and URM-108 using the anti-vWF antibody.

50pg of total protein was separated by electrophoresis and transferred to nitrocellulose.

This blot was incubated with an anti-vWF antibody and detected using ECL.
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finding suggests that the SVAREC cell line could be contaminated with smooth muscle

cells or that a-actin is present in an “atypical” form in SVAREC cells.

In order to distinguish between these two possibilities, SVAREC and A7r5 cells

were stained with a FITC-labeled smooth muscle a-actin antibody and analyzed by

confocal microscopy. Intertwined a-actin fibers typically found in smooth muscle cells

were observed in A7r5 cells (Fig. 6D). In SVAREC cells, a-actin staining was only

observed in the cell membranes (Fig. 6A and 6B). There was no natural fluorescence

found in SVAREC cells left unstained (Fig. 6C). These observations suggest that

SVAREC does not contain a-actin fibers, and that the a-actin antibody must recognize

some other form of cellular actin. This finding implies that SVAREC cells are neither

smooth muscle nor contaminated with smooth muscle cells.

4.2 Transfectability of PRAEC cells

In order to assess the ability of PRAEC cells to take up plasmid and express the

luciferase reporter, PRAEC cells were transfected with two vectors: (1) pGL-2 Basic and

(2) pGL-2 CNTR (Fig. 7). pGL-2 Basic carries a promoterless, enhancerless luciferase

gene, and should produce low levels of luciferase when introduced into cells. pGL-2

CNTR contains a luciferase gene driven by an SV40 promoter and enhancer. When this

construct is transfected into cells, it should produce a very high expression of luciferase in

cells. Expression of pGL-2 CNTR plasmid was nearly five-fold higher than that of pGL-2
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Figure 6. Detection of oc-actin with confocal microscopy. SVAREC (panels A, B, and C)

and A7r5 (panel D) cells were stained with a FITC labeled anti-a-actin antibody and

visualized by confocal microscopy. Cells shown in panel C were not treated with antibody

in order to assess background fluorescence of SVAREC cells.
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A. pGL-2 Basic
Luciferase

B. pGL-2 Control

SV40 Promoter Luciferase

promoter or enhancer regions to initiate transcription of luciferase. The pGL Control

vector (B) contains the SV40 promoter and enhancer.

50

SV40
Enhancer

Figure 7. pGL Basic and pGL Control plasmids. The pGL Basic vector (A) contains no



Basic plasmid (Fig. 8). These findings showed evidence that PRAEC cells could be

transfected and that luciferase is expressed.

4.3 AP-1 and NF-KB activity in PRAEC Cells

Since PRAEC cells could be transfected, luciferase reporters were acquired which

measured the level of AP-1 and NF-KB transcription factor activity. The AP-1 Luc

reporter (Fig. 9B) contains seven tandemly repeated AP-1 recognition elements 5’ to the

luciferase gene, while the NF-KB Luc reporter contains five tandemly repeated NF-KB

recognition elements 5’ to the Luc ORF (Fig. 9A). PRAEC cells were transfected with

the NF-KB Luc reporter and either treated with LPS (100 p.g/ml) or left untreated. LPS

treatment increased NF-KB reporter expression by five-fold (Fig 10). PRAEC cells were

also transfected with AP-1 Luc and either treated with LPS or left untreated. AP-1 activity

increased upon LPS stimulation by 2.5-fold (Fig. 10). These data indicated that LPS

stimulation of PRAEC cells activated both AP-1 and NF-KB.

4.4 MnSOD Regulation in PRAEC Cells:

Since LPS induced both NF-KB and AP-1 activity in PRAEC cells and since the

recognition elements for both transcription factors are present in the MnSOD promoter,

we asked if LPS also induces MnSOD expression. PRAEC cells were transfected with the

WT MnSOD-Luc reporter and either stimulated by LPS or left

51



600
P<001

500 -

400 -

300 -

200 -

100 -

0

Basic CNTR

Figure 8. Expression of pGL-Basic and pGL-CNTR in PRAEC cells.

PRAEC cells were transfected with pGL-2 Basic and pGL-2 CNTR luciferase

reporter plasmids. Luciferase activity was normalized to untreated controls for pGL-2

Basic transfected cells.
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A. NF-KB Luc Reporter

TATA LuciferaseNF NF NF NFNF

NF-KB Consensus Sequence: GGGGACTTTCCGCTT

B. AP-1 Luc Reporter

TATA LuciferaseAP AP APAP AP AP AP

AP-1 Consensus Sequence: TGACTAA

TATA element. The AP-1 Luc vector contains seven AP-1 consensus sequences (AP)

in front of the TATA promoter.
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Fig 9. Schematic representation of NF-KB Luc and AP-1 Luc reporter genes. The NF-

KB Luc vector contains five consensus sequences (NF) for NF-KB upstream of the
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Figure 10. Expression of NF-KB and AP-1 reporters in PRAEC cells. PRAEC cells were

transfected with NF-KB Luc and AP-1 Luc reporter plasmids and either treated with LPS

(+LPS) or left untreated (-LPS). Luciferase activity was normalized to untreated controls

for NF-KB Luc and AP-1 Luc transfected cells.
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unstimulated (Fig.l 1). WT MnSOD-Luc was induced nearly three-fold by LPS treatment

compared to unstimulated levels. This indicates that MnSOD transcription can be

stimulated by LPS in PRAEC cells and that NF-KB and/or AP-1 may function as potential

mediators of the response.

4.5 Transfectability of SVAREC Cells

A six-week growth period was required to generate sufficient PRAEC cells for a

single transfection. Because of this restriction, SVAREC cells, acquired from Dr. Beatrice

Chareau at INSERM, were selected to complete studies on the regulation of the iNOS and

MnSOD genes. To determine if SVAREC cells could take up and express luciferase

reporters, these cells were transfected with the pGL-2 Basic and pGL-2 CNTR vectors

(Fig. 7) and luciferase levels were measured (Fig. 12). The activity of the pGL-2 CNTR

reporter was 22-fold greater than that of pGL-Basic reporter. This finding demonstrates

that SVAREC cells were able to take up plasmid DNA and express high levels of the

luciferase reporter gene.

4.6 NF-KB and AP-1 Activity in SVAREC Cells

Since SVAREC cells were able to take up plasmid and express luciferase, their

ability to activate AP-1 and NF-KB upon LPS stimulation was tested. In order to

determine the activity of these transcription factors, SVAREC cells were transiently

transfected with NF-KB Luc and AP-1 Luc reporter plasmids (Fig. 9) and then treated
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Figure 11. Expression of WT MnSOD-Luc reporter in PRAEC cells. PRAEC cells were

transfected with WT MnSOD-Luc reporter and either treated with LPS (+LPS) or left

untreated (-LPS). Luciferase activity was normalized to untreated controls for WT

MnSOD-Luc transfected cells.
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Figure 12. Expression of pGL-Basic and pGL-CNTR in SVAREC cells. SVAREC cells

were transfected with pGL-2 Basic (n=6) and pGL-2 CNTR (n=6) luciferase reporter

plasmids. Luciferase activity was normalized to untreated controls for pGL-2 Basic

transfected cells.
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with LPS or left untreated. LPS treatment caused a 2.2-fold increase in AP-1 Luc

expression (Fig. 13) and a 2.5-fold increase in expression of the NF-KB Luc reporter (Fig.

14). These two findings suggest that LPS increases the activity of AP-1 and NF-KB

transcription factors in the SVAREC cell line.

In order to confirm that the reporter genes were responding in a specific manner

to increases in transcription factor activity, transfected SVAREC cells were treated with

biological inhibitors of NF-KB and AP-1, parthenolide and A-Fos, respectively.

Parthenolide prevents the degradation of 1KB and prevents translocation of NF-KB to the

nucleus. When SVAREC cells transfected with the NF-KB Luc reporter were pre

incubated with 10p,M parthenolide 30 minutes before LPS stimulation, luciferase

expression decreased by 50% (Fig. 14, compare 2nd and 3rd columns). Inhibition of

reporter expression confirms that the NF-KB reporter requires NF-KB for expression.

Pre-incubation of SVAREC transfectants with lOpM parthenolide for 30 minutes did not

columns). This evidence shows that the AP-1 Luc reporter does not require NF-KB for

expression.

A-Fos is a dominant negative protein that binds c-jun and c-fos, but lacks an

activation domain. A-Fos complexes bind to AP-1 sites and prevent transcription of AP-1

stimulated genes. In order to assess the requirement for AP-1 in NF-KB and AP-1

reporter expression, SVAREC cells were co-transfected with an A-Fos expression plasmid

and either AP-1 Luc or NF-KB Luc reporters and stimulated with LPS.
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transfected with AP-1 Luc reporter plasmid and either treated with LPS (+LPS) or left

untreated (-LPS). In addition to LPS treatment, some cultures were either treated with

lOpM parthenolide (+Parth) or co-transfected with A-Fos (+A-Fos). Luciferase activity

was normalized to untreated controls for AP-1 Luc transfected cells.
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Figure 14. Expression of NF-KB Luc reporter in SVAREC cells. SVAREC cells were

transfected with NF-KB Luc reporter plasmid, and either stimulated with LPS (+LPS) or left

untreated. In addition to LPS treatment, some cells were either treated with lOpM parthenolide

(+Parth) or co-transfected with A-Fos (+A-Fos). Luciferase activity was normalized to

untreated controls for NF-KB Luc transfected cells.
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Expression of A-Fos decreased AP-1 Luc expression by 50% in untreated

transfectants (Fig. 13, compare 1st and 5th columns) and by 76% in LPS-treated

transfectants (Fig. 13, compare 2nd and 4th columns). This evidence implies that the basal

and induced expression of the AP-1 Luc reporter relies on AP-1 activity.

Expression of A-Fos decreased NF-KB Luc expression by 60% in untreated

transfectants (Fig. 14, compare 1st and 5th columns) and by 90% in LPS-treated

transfectants (Fig. 14, compare 2nd and 4th columns). This finding suggests either that A-

Fos can prevent NF-KB from enhancing transcription or that AP-1 is required for

activation of NF-KB.

4.7 Induction of MnSOD Reporter by LPS

Since LPS induces MnSOD transcription in primary rat, bovine (Mitchell et al.,

1996), and porcine endothelial cells (Visner et al., 1991,1992), the transcriptional

response of MnSOD to LPS was tested in SVAREC cells. In order to monitor MnSOD

expression, SVAREC cells were transfected with WT MnSOD-Luc reporter and either

treated with LPS or left untreated. Treatment of SVAREC transfectants with LPS induced

WT MnSOD-Luc reporter expression 1.75-fold compared to unstimulated levels (Fig. 15,

compare 1st and 2nd columns). This finding suggests that MnSOD induction in SVAREC

cells is comparable to other endothelial cells (Visner et al., 1991,1992; Mitchell et al.,

1996). Therefore, SVAREC cells could be considered to be an appropriate system for

endothelial study.
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Figure 15. Expression of WT MnSOD-Luc in SVAREC cells. SVAREC cells were

transfected with WT MnSOD Luc reporter plasmid, and the cells were either

stimulated with LPS (+LPS) or left untreated (-LPS). In addition to LPS treatment,

some cultures were either pre-treated with parthenolide (+Parth) or co-transfected

with A-Fos (+A-Fos). Luciferase assays were normalized to untreated controls for

WT MnSOD Luc transfected cells.
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4.8 Requirement for AP-1 and NF-KB in the induction of MnSOD

Since MnSOD transcription was induced by LPS in SVAREC cells, we sought to

determine the importance of AP-1 and NF-KB on transcriptional induction of MnSOD.

This was tested by transfecting SVAREC cells with the WT MnSOD-Luc reporter and

then treating transfected cells with LPS and biological inhibitors, A-Fos and parthenolide.

In LPS-stimulated SVAREC cells, parthenolide treatment caused a 30% decrease in

reporter expression compared to untreated LPS stimulated SVAREC (Fig. 15, compare

2nd and 3rd columns). This data suggests that NF-KB is important for stimulation of

MnSOD by LPS.

Expression of A-Fos in LPS-treated cells caused a 71% decrease in MnSOD

columns). Flowever, because the A-Fos expression plasmid inhibited both NF-KB and AP-

1 reporters, it is unclear if the action of A-Fos is against AP-1 or NF-KB or both.

4.9 Analysis of ANF MnSOD and AAP MnSOD in SVAREC Cells

In order to assess the role of NF-KB and AP-1 in MnSOD transcriptional

regulation, MnSOD-Luc reporters were created with deletions in either the NF-KB

site [ANF MnSOD-Luc, (-1443 to -1433)], or AP-1 site [AAP MnSOD-Luc, (-431 to

-423)] (Fig. 16). SVAREC cells were transfected with WT MnSOD-Luc, ANF MnSOD-

Luc, and AAP MnSOD-Luc reporters and then either treated with LPS or left untreated

(Fig. 17). The WT MnSOD-Luc was induced 1.75-fold when treated with LPS; AAP
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Mn SOD WT 5’ Promote: LuciferaseA.
-2505 -1

AP-1 and NF-KB recognition sites present

ANF-KB Mn SOD LuciferaseB.
(-1443 to-1433)-2505 -1

AP-1 site present, NF-KB site deleted

LuciferaseC. AAP-1 Mn SOD
-2505

NF-KB site present, AP-1 site deleted

Figure 16. Schematic representation of the MnSOD-Luc reporter vectors. (A) WT

MnSOD-Luc reporter which contains 2.5 kb of MnSOD promoter region 5’ to the

luciferase gene. (B) ANF-KB MnSOD-Luc reporter which contains the MnSOD promoter

region with the NF-KB response element deleted. (C) AAP-1 MnSOD-Luc reporter which

contains the MnSOD promoter region with the AP-1 response element deleted.
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Figure 17. Effect of LPS in MnSOD reporter expression. SVAREC cells were

transfected with WT MnSOD-Luc, ANF MnSOD-Luc, and AAP-1 MnSOD-Luc

reporter plasmids, transfectants were either treated with LPS (+LPS) or left untreated

(-LPS). Luciferase activity was normalized to untreated controls for WT MnSOD-Luc

transfected cells.
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MnSOD-Luc was not induced by LPS treatment. These data imply that the AP-1 binding

site plays a role in LPS induction of MnSOD. In this set of experiments, AAP-1 MnSOD-

Luc basal expression was not significantly different than that of WT MnSOD-Luc

(P=0.71); however, in other experiments (Fig 18), AAP-1 MnSOD-Luc basal expression

level was significantly reduced by 50% compared to WT MnSOD-Luc expression. Given

this conflict, no conclusive statement can be made about the effect of the AP-1 deletion on

basal expression. ANF MnSOD-Luc expression was not induced by LPS treatment

(P=0.45) and the unstimulated level was reduced 3-fold compared to WT MnSOD-Luc

expression (P<0.001). This finding implies that the NF-KB recognition site is important

for maintaining basal transcription and for mediating the response to LPS.

4.10 Effect of A-Fos on Basal MnSOD Expression

To determine the requirement for AP-1 and NF-KB activities on basal MnSOD

expression, the effect of A-Fos on MnSOD basal expression was tested by co-transfecting

SVAREC cells with A-Fos and either WT MnSOD-Luc, ANF MnSOD-Luc, or AAP

MnSOD-Luc (Fig. 18). A-Fos expression decreased WT MnSOD-Luc and AAP

MnSOD-Luc expression by 42% and 60%, respectively (Fig. 18, compare columns 1 vs 2,

and 3 vs 4). ANF MnSOD-Luc expression was not affected by A-Fos co-transfection.

These data suggest that A-Fos inhibited basal expression of WT MnSOD and AAP-1

promoters. Since A-Fos decreases AAP MnSOD-Luc basal expression and the NF-KB site

is present in the reporter, NF-KB may be necessary for basal levels of MnSOD expression.
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Figure 18.Effect of A-Fos on MnSOD reporter expression. SVAREC cells were transfected

with WT MnSOD-Luc, ANF MnSOD-Luc, and AAP-1 MnSOD-Luc reporter plasmids and

were co-transfected with either A-Fos (+A-Fos) or pGL-Basic (-A-Fos). Luciferase

activity was normalized to untreated controls for WT MnSOD-Luc transfected cells.

67

ANF 
-AFos

ANF 
+AFos

AAP 
-AFos

AAP 
+AFos

2
o 
O
*5

WT WT
-AFos +AFos



4.11 Northern Analysis of MnSOD Transcription

In order to determine if the MnSOD-Luc reporter genes accurately reflected

MnSOD mRNA abundance, a Northern blot was performed on total RNA collected from

three different SVAREC cell populations: untreated, LPS treated, and LPS and

parthenolide treated. Northern blots were probed with a cDNA derived from MnSOD

exon 1 and mRNA abundance was quantitated by densitometry. LPS stimulation

increased MnSOD mRNA 2.29-fold compared to unstimulated levels (Fig. 19, Lanes 1 vs

2, 4 vs 5, 7 vs 8). These increases in mRNA induction are comparable to those observed

for WT MnSOD-Luc expression (2.29 ± .19 vs 1.75 ± .31; P = 0.1 by Student’s t test).

Parthenolide decreased MnSOD stimulation by LPS 25% compared to LPS stimulated

MnSOD (Fig. 19, Lanes 3 vs 2, 6 vs 5, 9 vs 8). In the presence of parthenolide mRNA

levels were induced 1.73 ± .25 while reporter expression was induced 1.25 ± .17.

Although these induction values are significantly different (P=0.01), the percent reduction

measured by both methods (25% by Northern vs 28% by reporter assay) is very similar.

4.12 Effect of A-Fos on Induced WT MnSOD, ANF MnSOD and AAP

MnSOD Reporter Expression

We observed that expression of the A-Fos protein could unexpectedly block

expression of the NF-KB Luc reporter. One explanation for this finding is that A-Fos

could dimerize with NF-KB to inactivate it, as it does with c-jun and c-fos. If so, then A-

Fos protein should inhibit transcription of MnSOD reporters that had only a single
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Figure 19. Northern blot for detecting MnSOD. 10 jig of total RNA from SVAREC cells

treated with LPS (Lanes 2, 4, and 6), LPS and parthenolide (Lanes 3,6, and 9) or left

untreated (Lanes 1,4,and 7) were electrophoresed for 2 hours at 100 volts. The RNA was

transferred to a positively charged nylon membrane and hybridized with a 32P-labeled

MnSOD DNA probe. The blot was then analyzed by autoradiography and densitometry.
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recognition site, i.e. either an AP-1 or NF-KB site. To test this, SVAREC cells were co

transfected with the A-Fos expression plasmid and either WT MnSOD-Luc, ANF

MnSOD-Luc or AAP-1 MnSOD-Luc (Fig. 20). A-Fos expression decreased expression

of both WT MnSOD-Luc and AAP-1 (NF-KB+) MnSOD-Luc by 3-fold. These findings

are consistent with the hypotheses that A-Fos interacts with NF-KB and that NF-KB is a

requirement for LPS induced expression. A-Fos had no effect on expression of ANF-KB

MnSOD-Luc expression (Fig. 20, compare 5th and 6lh columns) perhaps because the NF-

KB deletion profoundly reduced basal and induced expression.

4.13 Effect of Parthenolide on Induced MnSOD Reporter Expression

The effect of NF-KB on MnSOD regulation was indirectly assessed by expressing

the A-Fos dominant negative protein. In order to more directly examine the NF-KB

requirement, SVAREC cells were transfected with WT MnSOD-Luc, AAP-1 MnSOD-

Luc, and ANF-KB MnSOD-Luc reporters and sequentially treated with parthenolide and

LPS (Fig. 21). Parthenolide treatment decreased LPS stimulated WT MnSOD-Luc

reporter expression by 40%. Parthenolide treatment had no significant effect on ANF

MnSOD-Luc or AAP MnSOD-Luc expression. The reduction in WT MnSOD-Luc by

parthenolide is consistent with an NF-KB requirement for MnSOD transcription, but a

significant reduction was also expected in AAP MnSOD-Luc given that this reporter

retains an NF-KB site.
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Figure 20. Effect of A-Fos on induced MnSOD reporter expression in SVAREC cells.

SVAREC cells were transfected with WT MnSOD-Luc, ANF-MnSOD Luc, and AAP-1

MnSOD-Luc reporter plasmids, treated with LPS (+LPS) and co-transfected with either A-

Fos (+AFos) or pGL-2 Basic (-AFos). Luciferase activity was normalized to untreated

controls for WT MnSOD-Luc transfected cells.
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Figure 21. Effect of parthenolide on induced expression of MnSOD reporters in SVAREC

cells. SVAREC cells were transfected with WT MnSOD-Luc, ANF MnSOD-Luc, and

AAP-1 MnSOD-Luc reporter plasmids, stimulated with LPS (+LPS) and either treated

with parthenolide (+Parth) or left untreated (-Parth). Luciferase activity was normalized to

untreated controls for WT MnSOD-Luc transfected cells.
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4.14 Identification of LPS response regions in iNOS promoters

LPS has been shown to induce iNOS in many cell types including the endothelium

(Kifle et al., 1996; Moncada et al., 1991a). We sought to confirm this observation using

INOS-Luc reporters and to identify transcription factors that mediate the iNOS response

to LPS. The large number of NF-KB and AP-1 recognition sites in the iNOS promoter

made deletion mutagenesis of individual sites impractical (sites shown in Fig. 22).

Therefore, a series of iNOS-Luc nested deletions were constructed to identify essential

regulatory regions in the iNOS promoter. The series of reporter constructs is as follows:

(1) WT iNOS-Luc reporter, which contains promoter sequence from -3200 to —1, where

-1 is the start of transcription, (2) 1.7 iNOS-Luc which contains —1746 to —1, (3)

0.7 iNOS-Luc which contains —680 to -1, and (4) 0.3 iNOS-Luc which contains -266 to

1 (Fig. 22). In order to determine if iNOS was stimulated by LPS, SVAREC cells were

transfected with iNOS Luc reporters and treated with LPS. WT iNOS Luc expression

was increased 2-fold by LPS stimulation, when compared to unstimulated levels (Fig. 23).

This result suggests that iNOS transcription is induced by LPS treatment in SVAREC

cells, and is consistent with previous studies which showed that LPS induced iNOS

transcription in bovine endothelial cells (Xie et al., 1993). LPS treatment of SVAREC

transfectants stimulated the 1.7 iNOS-Luc and 0.7 iNOS-Luc reporters 2-fold and 1.5-

fold, respectively; the 0.3 iNOS-Luc showed no increase after LPS treatment (Fig. 23).

Even though the 1.7 iNOS reporter was induced by LPS, the level of expression was

decreased compared to basal WT iNOS. Since the 1.7 iNOS-Luc and 0.7 iNOS-Luc

constructs retained inducibility, this suggests that the region from -3200 to -680
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Figure 22. Schematic representation of the iNOS-luc reporter constructs. (A) WT 

iNOS-Luc contains 3 NF-KB and 2 AP-1 sites. (B) 1.7 iNOS-Luc contains 2 NF-KB 

and 2 AP-1 sites. (C) 0.7 iNOS Luc contains 1 NF-KB and 1 AP-1 sites. (D) 0.3 

iNOS-Luc contains one NF-KB site. AP-1 sites are present at -2000 to -1993, -1127 

to -1120, and -676 to -668; NF-KB sites are present at -956 to -966 and -104 to 

-111.
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Figure 23. Effect of LPS on iNOS-Luc reporter expression. SVAREC cells were

transfected with WT iNOS-Luc, 1.7 iNOS-Luc, 0.7 iNOS-Luc and 0.3 iNOS-Luc

reporter plasmids and either treated with LPS (+LPS) or left untreated (-LPS).

Luciferase activity was normalized to untreated controls for WT INOS-Luc transfected

cells.
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does not play a large role in iNOS regulation and that there is a sequence between -680

and -266 required for LPS induction. Promoters below 680bp cannot maintain induction

of transcription, as shown by the 0.3 iNOS-Luc reporter.

4.15 Effect of A-Fos on Uninduced and Induced iNOS Reporter Expression

In order to determine the effect of AP-1 and NF-KB on iNOS regulation,

SVAREC cells were co-transfected with A-Fos and the iNOS deletion series. A-Fos

expression caused no significant decrease of basal expression of any of the iNOS deletions

(Fig. 24). This suggests that AP-1 and NF-KB are not required for uninduced iNOS

transcription and that A-Fos is not a non-specific inhibitor of transcription.

Since AP-1 and NF-KB were not involved in uninduced regulation of iNOS, were

they necessary for induced levels of iNOS transcription. To answer this question,

SVAREC cells were co-transfected with the A-Fos expression plasmid and the iNOS

deletion series and treated with LPS. A-Fos expression decreased the WT iNOS-Luc, 1.7

iNOS-Luc and 0.7 iNOS-Luc reporter expression, but had no effect on the 0.3 iNOS-Luc

reporter expression (Fig. 25). These data indicate that AP-1 and NF-KB are important to

iNOS expression, but do not determine the importance of AP-1 or NF-KB individually.

The largest decrease produced by A-Fos on LPS treatment was with the 0.7 iNOS-Luc,

which further supports the previous findings that there is a critical sequence between -680

and -266 that is necessary for iNOS transcriptional induction.
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Figure 24. Effect of A-Fos expression on uninduced iNOS-Luc expression. SVAREC cells

reporter plasmids and either co-transfected with A-Fos plasmid (+A-Fos) or pGl-Basic (-A-

Fos). Luciferase activity was normalized to untreated controls for WT iNOS-Luc

transfected cells.
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Figure 25. Effect of A-Fos expression on induced iNOS-Luc reporter expression.

SVAREC cells were transfected with WT iNOS-Luc, 1.7 iNOS-Luc, 0.7 iNOS-Luc and

0.3 iNOS-Luc reporter plasmids and either co-transfected with A-Fos (+A-Fos) or pGL-

Basic (-A-Fos) and stimulated with LPS (+LPS). Luciferase assays were normalized to

untreated controls for WT INOS Luc transfected cells.
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4.16 Effect of Parthenolide on Induced iNOS Reporter Expression

The role of NF-KB in iNOS regulation was assessed by treating SVAREC

transfectants with parthenolide. SVAREC cells were transfected with the iNOS-Luc

deletion series and then treated with parthenolide 30 minutes prior to stimulation with

LPS. Parthenolide decreased LPS stimulated reporter expression of WT iNOS-Luc, 1.7

iNOS-Luc, and 0.7 iNOS-Luc, but had no effect on 0.3 iNOS-Luc reporter (Fig. 26).

This suggests that there are functional NF-KB binding sites located between -680 and —

266 in the iNOS promoter.
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Figure 26. Effect of parthenolide on induced iNOS Luc reporter expression. SVAREC cells

reporter plasmids, stimulated with LPS (+LPS) and pretreated with either Parthenolide

(+Parth) or untreated (-Parth). Luciferase assays were normalized to untreated controls

for WT iNOS- Luc transfected cells.
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5.0 Discussion

Since MnSOD and iNOS are induced by common stimuli (Xie et al., 1993; Kuo et

al., 1999), we sought to determine if there was a single transcription factor or set of

factors which was necessary for induction of both genes in endothelial cells. A

comparison of MnSOD and iNOS promoters revealed that both promoters had binding

sites for transcription factors NF-KB and AP-1. This study was performed to determine if

either NF-KB or AP-1 are necessary for transcriptional regulation of MnSOD and iNOS.

5.1 Regulation of NF-KB, AP-1, and MnSOD in PRAEC cells

The first task was to prepare primary endothelial cell cultures from rat aortae.

Because the endothelial cell produces NO which causes smooth muscle relaxation,

endothelial cells are the appropriate target for study of iNOS and MnSOD regulation.

The original protocol published by McGuire and Orkin (1987) did not produce pure

cultures in my hands, as they contained smooth muscle cells as determined by western

blotting (Fig. 4). An optimized protocol, which gave rise to pure endothelial cell cultures

was used to create PRAEC cells, which were used to assess the roles of NF-KB and AP-1

in MnSOD regulation.

To determine if NF-KB and AP-1 were regulated in PRAEC cells, luciferase

reporter vectors AP-1 Luc and NF-KB Luc were transfected into PRAEC cells, which

were either treated with LPS or left untreated. Reporter expression reflects transcriptional
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activation of AP-1 or NF-KB and the activity of these activators. Therefore, the level of

luciferase expression measures the amount of transcription factor activity. Since LPS

treatment increased AP-1 and NF-KB reporter expression, LPS induced activity of both

transcription factors in PRAEC cells. LPS treatment of PRAEC cells induced the WT

MnSOD-Luc reporter, which showed that LPS treatment induces expression of MnSOD.

This finding shows that MnSOD transcription can be induced in PRAEC cells, which is

similar to other studies in porcine endothelial cells (Visner et al., 1991).

PRAEC cultures were not optimal for experimentation because their growth rate

was very slow. A six-week growth period was required to generate sufficient cells for a

single experiment. In order to facilitate completion of experiments in a timely manner, an

alternative endothelial cell line was sought.

5.2 SVAREC Cell Characterization

SVAREC cells grew at an appropriate rate (doubling once every day), and cells

were split every 4-5 days. In order to ascertain their endothelial nature, SVAREC cells

were tested for the presence of vWF and a-actin by western blotting. vWF and a-actin

were both present. The presence of vWF confirms that SVAREC are derived from an

endothelial lineage. Detection of a-actin by western blot could have been caused by

smooth muscle contamination of the SVAREC cultures or by recognition of an actin

isoform. In confocal microscopy studies, a-actin antibody was bound to targets within the

outer cell membrane of SVAREC cells (Fig.7, A and B) but not the typical a-actin fibers
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found in smooth muscle cells like the A7r5 line (Fig.7 D). Most likely the antibody is

interacting with gamma-actin, or some other actin isoform in these endothelial cells. This

finding supported the vWF western blot evidence that SVAREC cells were endothelial and

the confocal evidence showed that they were not contaminated with smooth muscle.

5.3 NF-KB and AP-1 Regulation in SVAREC Cells

LPS regulation of NF-KB and AP-1 activity was tested by transfecting SVAREC

cells with AP- Luc and NF-KB Luc reporter vectors. LPS treatment stimulated expression

of both the AP-1 and NF-KB reporter vectors (Fig. 13 and 14), showing that LPS can

activate both transcription factors in SVAREC cells.

To determine if the response of the reporter vectors was specific for NF-KB and

AP-1 expression, SVAREC transfectants were treated with inhibitors of NF-KB or AP-1.

AP-1 activity was increased by LPS treatment, not affected by parthenolide and inhibited

by the expression of A-Fos. These results were to be expected, since it was known that A-

Fos decreases AP-1 activity (Olive et al., 1997), and parthenolide should not affect AP-1

activity. A second finding, also anticipated, was that treatment of SVAREC transfectants

with parthenolide before exposure to LPS decreased NF-KB Luc expression (Fig. 14).

This showed that the NF-KB reporter was responding to NF-KB.

A-Fos expression unexpectedly resulted in a near complete inhibition of the NF-

KB Luc expression (Fig. 14). A-Fos has been shown to have no effect on other

transcription factors such as CREB and GRE (Olive et al., 1997). There are two possible

explanations for these observations. The first explanation is that AP-1 activation is
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required for NF-KB activation. Thus, when AP-1 is inhibited by A-Fos, NF-KB would

remain inactive. A second possible mechanism is based on the finding that proteins from

the Rel and b-Zip families can interact (Stein et al., 1993a). NF-KB which has a rel family

subunit, can bind to C/EBP, a b-Zip protein. It is possible that NF-KB can interact with

other b-Zip proteins like AP-1. Since the A-Fos protein retains the b-Zip motif, it could

bind to the rel domain of NF-KB and physically prevent NF-KB from activating

transcription.

5.4 MnSOD Regulation in SVAREC Cells

LPS treatment of SVAREC cells induced the WT MnSOD-Luc reporter 1.75 ±

0.31 fold (Fig. 15), and MnSOD mRNA was increased 2.29 ±0.19 fold (Fig. 16). Since

there was no significant difference (P=. 10) between the two methods as compared by the

Student’s t test, these results validate the use of the luciferase reporter constructs as a

measure of mRNA abundance. The observed induction of MnSOD in SVAREC cells

supports the use of these cells as an endothelial model because they responded to LPS

treatment in the same manner as the PRAEC cells.

The MnSOD promoter region contained only one copy of the AP-1 and

NF-KB binding sites. The specific effect of each transcription factor was tested by deleting

only the DNA recognition site for NF-KB and AP-1 in the MnSOD promoter region.

Introduction of the NF-KB deletion into WT MnSOD-Luc reduced basal and induced

expression of the reporter gene (Fig. 17). This observation indicates that MnSOD

transcription is reliant upon NF-KB for basal and induced regulation. This finding
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correlates with another study using lung fibroblasts stimulated by IL-1, which found that

NF-KB was the critical transcription factor necessary to maintain transcriptional induction

by TNF-oc and IL-1 (Xu et al., 1999). It cannot be determined if MnSOD basal regulation

requires AP-1, because there were two conflicting results discovered in this study (Fig. 17

column 3 vs Fig. 18 column 3). However, when the AAP-1 MnSOD-Luc reporter was

stimulated by LPS, there was no increase in reporter activity compared to unstimulated

AAP-1 MnSOD-Luc (Fig. 17). This implies that both AP-1 and NF-KB are needed for

MnSOD induction by LPS.

The levels of reporter expression in ANF-KB MnSOD-Luc are 90% below

uninduced WT MnSOD and are not stimulated by LPS (Fig. 18). Thus, the deletion of the

NF-KB binding site from the MnSOD promoter region prevents uninduced and induced

transcription, and indicates that this site is critical for the regulation of MnSOD. In

addition, A-Fos expression produced no effect on basal or LPS treated ANF-KB MnSOD-

Luc (Fig. 18 and 19), further supporting NF-KB as the critical transcription factor

necessary for basal and induced MnSOD transcription.

A-Fos expression appears to inhibit both AP-1 and NF-KB. A-Fos expression

decreased basal expression of WT MnSOD-Luc and AAP MnSOD-Luc, which suggests

that basal regulation of MnSOD is reliant upon NF-KB and/or AP-1. Since the AAP-1

MnSOD-Luc reporter retains one NF-KB element, the decrease in reporter expression by

A-Fos could be due to the inhibition of NF-KB. The observation that A-Fos expression

decreases the LPS stimulated expression of the AAP MnSOD-Luc reporter suggests that

A-Fos expression inhibited a transcription factor necessary for induction of MnSOD (Fig.
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21). Since NF-KB is present in the AAP MnSOD-Luc reporter, the inhibition of NF-KB

could be that necessary transcription factor needed for MnSOD induction by LPS.

Therefore, NF-KB is required for basal transcription of MnSOD and induction of MnSOD

by LPS requires both NF-KB and AP-1 transcription factors.

In order to support the finding that MnSOD induction requires NF-KB, MnSOD

regulation was tested by treating SVAREC transfectants with parthenolide. Parthenolide

treatment decreased LPS stimulation of WT MnSOD-Luc by 40% and AAP MnSOD-Luc

by 45% but had no effect on ANF-KB MnSOD-Luc expression (Fig. 21). The decrease in

WT MnSOD-Luc and AAP MnSOD-Luc by parthenolide is consistent with the presence

of a functional NF-KB site in these promoters. There is a noticeable difference between

the effect of A-Fos on MnSOD expression and inhibition of NF-KB by parthenolide.

Parthenolide only partially inhibits NF-KB, thus allowing some active NF-KB to bind and

facilitate transcription, while A-Fos is completely inhibiting NF-KB activity. This is

shown by parthenolide inhibiting LPS stimulated MnSOD reporter expression by 40%,

compared to 90% inhibition with A-Fos expression. It has been shown that parthenolide

does not completely inhibit NF-KB (Hehner et al., 1998); thus, some active NF-KB

remains in the cell which could account for this difference in inhibition of MnSOD.

The finding that MnSOD regulation is reliant upon NF-KB agrees with the work of

Xu et al. (1999), which states that NF-KB is the transcription factor required for MnSOD

induction by TNF-oc and IL-1. However, it does contradict another study, which stated

that NF-KB was not required for transcription of MnSOD (Bedoya et al., 1995). This

study treated RINmF5 cells with IL-1 alone or in combination with PDTC. It was found
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that PDTC treatment did not reduce the levels of MnSOD mRNA. Thus, the authors

conclude that NF-KB is not critical for IL-1 mediated MnSOD induction. The apparent

contradiction between these studies could be due to different regulation of MnSOD in

different ceil types, or the effect of different stimulators on MnSOD regulation.

MnSOD contains no TATA or CAAT boxes (Wan et al., 1994, Kuo et al., 1999),

which are generally accepted as the initiators of transcription. Therefore, MnSOD must

contain another mechanism that allows the basal transcriptional components to form and

initiate transcription. Because the NF-KB deletion decreased basal regulation by 90% and

prevented any induction from that level by LPS treatment, I speculate that NF-KB

involvement with MnSOD could play a role in recruiting the basal apparatus to the

promoter.

5.5 iNOS Regulation in SVAREC Cells

iNOS is an extremely important enzyme that helps maintain vascular tone. It has

been studied thoroughly in several cell types and several studies reflect that iNOS

regulation is dependent upon the transcription factor NF-KB (Spink et al., 1995; Zhang et

al., 1998; Xie et al., 1993). We were interested in studying the regulation of iNOS in

endothelial cells in coordination with MnSOD. The WT iNOS contains 2 NF-KB sites

(-956 to -966; -104 to -111) and 3 AP-1 sites (-2000 to -1993; -1127 to -1120; and -676

to -668) (Fig. 22A). Because there were too many AP-1 and NF-KB sites to specifically

delete, a series of nested promoter deletions (1.7 iNOS, 0.7 iNOS, and 0.3 iNOS) were

generated in order to locate sites required for LPS induction. Since the 0.7 iNOS reporter
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produced increased basal and inducible levels by LPS treatment, while the 0.3 iNOS

reporter produced reduced basal and no induction upon LPS treatment (Fig. 23). There

are NF-KB response elements between -680 and -266 that are important for iNOS

transcriptional induction, or there is a DNA site necessary for NF-KB induction by LPS.

A second important aspect of iNOS regulation is shown by the 1.7 iNOS-Luc

construct compared to the WT iNOS-Luc and 0.7 iNOS-Luc. Expression of the 1.7

iNOS-Luc reporter expression was diminished compared to the WT iNOS-Luc and 0.7

iNOS-Luc (Fig. 23). A possible explanation for this decrease could be that an inhibitory

DNA element is active in 1.7 iNOS-Luc, but not functional in the WT iNOS-Luc. The

deletion from -1746 to -680 removes this inhibition so expression of 0.7iNOS-Luc is

higher than the WT iNOS-Luc or 1.7 iNOS-Luc. Data from this study implies that a

negative regulatory element for iNOS transcription is present between -1746 and -680 of

the iNOS promoter.

When A-Fos was expressed in SVAREC transfectants, no decrease in basal iNOS-

Luc levels was observed (Fig. 24). This finding suggests that NF-KB and AP-1 are not

necessary for basal levels of transcription of iNOS. Furthermore, this shows that A-Fos

was not a general transcriptional inhibitor. However, when SVAREC cells were co

transfected with the iNOS-Luc series and A-Fos, then treated with LPS, a marked

decrease in stimulation of WT iNOS-Luc, 1.7 iNOS-Luc, and 0.7 iNOS-Luc reporters was

found (Fig. 25). These data imply that either or both NF-KB and AP-1 are important for

iNOS induction, but not basal regulation.
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Parthenolide treatment of iNOS Luc transfected cells produced a marked decrease

in the WT iNOS-Luc, 1.7 iNOS-Luc, and 0.7 iNOS-Luc reporter constructs (Fig. 26). The

largest decrease was found in the 0.7 iNOS reporter, where parthenolide treatment

decreased the level of expression 42%. There is a NF-KB consensus site present at -114

in the iNOS promoter, thus this binding site could be necessary for iNOS induction by

LPS. These data suggest that NF-KB has a role in iNOS transcriptional induction, and that

the most important NF-KB site for induction is within 680 bp from the transcription start

site.

Overall, the analysis of iNOS has suggested that NF-KB is an important

transcription factor for iNOS induction. This follows previous studies that suggest the

same result in other cells types (macrophages and smooth muscle) (Lowenstein et al.,

1993; Spink et al., 1995; Zhang et al., 1998). Therefore, the findings here are not

unexpected and re-enforce the previous studies. It also suggests that iNOS regulation is

dependent upon NF-KB regardless of the species or cell type, in other words NF-KB is a

universal requirement for iNOS transcriptional induction.

This study was interested in looking at MnSOD regulation and iNOS regulation in

endothelial cell, specifically by the transcription factors NF-KB and AP-1. It was found

that both NF-KB and AP-1 were necessary for MnSOD induction by LPS; however, there

was not conclusive evidence that AP-1 did or did not have an effect on iNOS. Therefore it

can only be concluded that AP-1 is necessary for induction of MnSOD by LPS, and it

could play a role in iNOS regulation.
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In conclusion, findings from this study imply NF-KB as critical transcription factor

needed to maintain both MnSOD and iNOS regulation. NF-KB is needed for the basal

regulation of MnSOD and is necessary for both iNOS and MnSOD induction. Therefore,

the balance between 02’and NO could be affected by the transcription factor NF-KB.

When NF-KB is active it facilitates the transcription of iNOS and MnSOD, which will

allow dismutation of 02’and allow NO to diffuse into the smooth muscle and direct

vasodilation. If NF-KB is not active, MnSOD is not transcribed and 02’will be available

to react with NO and form OONO’, which will prevent activation of GC and facilitate

vasoconstriction.
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