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Abstract
This article developed a new method to described the set of stabilizing PID con-
trol. The method is based on D-parameterization with natural description of
the set. It was found that the stability crossing surface is a ruled surface that
is completely determined by a curve known as discriminant. The discriminant
is divided into sectors at the cusps. Corresponding to the sectors, the stabil-
ity crossing surface is divided into positive and negative patches. A systematic
study is conducted to identify the regions with a fixed number of right half-plane
characteristic roots. The crossing directions of characteristic roots for positive
patches and negative patches are also studied. As a result, a systematic method
is developed to identify the regions of PID parameter such that the system is
stabilized.

K E Y W O R D S

geometric characterization, PID control, stability

1 INTRODUCTION

As PID control is widely used in industrial applications, it is natural that a substantial amount of research has been
conducted on the tuning of PID-type of control.1-5 are some examples.

However, the control objectives for different systems may be different, and it is often necessary to consider trade-offs
between different performance specifications to reach reasonable compromise.6 In such a situation, it is valuable to first
identify the set of all PID parameters that stabilizes the system. Obviously, the performance specifications are meaning-
ful only when the PID parameters are restricted to within this set. The first description of such stabilizing set has been
achieved using the Hermite–Biehler theorem.7 It was found that the intersection of the stabilizing parameter set with a
fixed proportional gain plane consists of polygons, and a linear programming method may be used to facilitate identifying
the stabilizing set.8,9 Additional results along this line have been obtained using other methods or introducing additional
concepts. For example, Nyquist plot was used in Reference 6, and singular frequency concept was introduced in Refer-
ence 10. A more explicit description has been achieved for a second-order system in Reference 11. To summarize, the
methods in most currently available literature try to visualize the stabilizing set through its cross-section with a constant
proportional gain. While such cross sections have a very simple geometric structure of polygons, it is not easy to obtain a
global view of the entire stabilizing set.

In this article, we present a more natural description of the geometric structure of the stabilizing set. With the pro-
portional gain as the vertical axis in the three-dimensional parameter space, we visualize the set by projecting it to the
horizontal plane. This bird-eye view allows us to see directly all the regions in the horizontal plane where there exist
proportional gains to stabilize the system. The method is based on the D-parameterization. Roughly speaking, the stability
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2 GU et al.

F I G U R E 1 The plant of closed-loop system

crossing surface, which consists of parameters such that at least one characteristic root is on the imaginary axis, is
described. This stability crossing surface partition the three-dimensional parameter space into regions of constant num-
ber of right half-plane (RHP) characteristic roots. Especially, the regions where there is no RHP characteristic root are
identified and declared as the set of stabilizing PID parameters.

Our study has discovered a number of very useful properties of the stability crossing surface to facilitate a systematic
process of identifying all the stabilizing regions in the parameter space. It is observed that the stability crossing surface
is a ruled surface consisting of horizontal straight lines. This ruled surface is completely determined by its discriminant,
which is the curve on the surface consisting of the points with vertical tangent planes. The stability crossing surface may
be divided into a number of positive and negative patches with the cusps of the discriminant (when projected to the
horizontal plane) as the dividing points. The crossing directions of the characteristic roots are the same for all the positive
patches as the proportional gain increases, and it is opposite to those corresponding to the negative patches.

The article is organized as follows. Section 2 formulates the stability crossing surface. Section 3 introduces dis-
criminant. Section 4 describes cusps and patches. Sections 5 and 6 are devoted to relative vertical positions of patches
and crossing directions. Section 7 presents some conclusions. A preliminary version of this article was presented in
Reference 12.

2 STABILITY CROSSING SURFACE

For a given a plant with transfer function Gp(s), we want to determine the set of coefficients (kd, ki, kp) of PID controller

Gc(s) = kp +
ki

s
+ kds, (1)

such that the closed-loop system shown in Figure 1 is stable, that is, all the solutions of the system characteristic equation

Δ(s) = 1 + Gc(s)Gp(s) = 0, (2)

are on the left half-plane (LHP). For this purpose, it is instrumental to introduce the following concept of stability crossing
surface.

Definition 1. The set of all (kd, ki, kp) ∈ R3 such that the characteristic equation Δ(s) = 0 has at least one solution on the
imaginary axis is known as the stability crossing surface, and is denoted as .

In order to focus on the main idea, we make the following assumption about the plant transfer function.

Assumption 1. The transfer function can be written as Gp(s)=Np(s)/Dp(s), where Np(s) and Dp(s) are polynomials with
real coefficients. Furthermore, neither Np(s) nor Dp(j𝜔) has any roots on the imaginary axis.

Cases that violate the above assumption are not difficult to handle individually based on the principles presented in
this article, but will not be pursued here.

Under Assumption 1, we may let s = j𝜔 and multiply Equation (2) by j𝜔
Gp(j𝜔)

to obtain

𝛿(j𝜔) =
j𝜔

Gp(j𝜔)
+ j𝜔kp + ki − 𝜔2kd = 0. (3)

Therefore, the stability crossing surface  also corresponds to the solution of Equation (3) with real 𝜔. Let the kp-axis be
the vertical axis in the (kd, ki, kp) parameter space. Then, For 𝜔 = 0, we obtain from the equation (3)

ki = 0, (4)



GU et al. 3

F I G U R E 2 Discriminant of the ruled surface of
system (10)

which is a vertical plane. For a fix 𝜔 ≠ 0, Equation (3) defines a horizontal straight line that can be described by the
parametric equations

ki = 𝜔2kd − a(𝜔), (5)

kp = −b(𝜔)
𝜔

, (6)

where

a(𝜔) = Re
[

j𝜔
Gp(j𝜔)

]
, (7)

b(𝜔) = Im
[

j𝜔
Gp(j𝜔)

]
. (8)

As the straight line depends on 𝜔, we will denote it as (𝜔). The projection of this straight line on the (kd, ki) horizontal
plane is described by (5), and is denoted as (𝜔). Obviously, the slope of (𝜔) is 𝜔2.

As the plant transfer function satisfies

Gp(j𝜔) = G∗
p(−j𝜔),

it is obvious that a(𝜔) is an even function of 𝜔, and b(𝜔) is an odd function of 𝜔. Therefore, (𝜔) = (−𝜔). It is thus
sufficient to restrict 𝜔 to [0,∞).

As 𝜔 varies from 0+ to +∞, the straight lines (𝜔) described by (5) and (6) form a surface, which we denote as  ,

 =
⋃
𝜔>0

(𝜔).

Such a surface is known as a ruled surface.13 The surface  may be parameterized by kd and 𝜔. The stability crossing
surface  consists of this ruled surface  and the vertical plane described by (4) (which we will denote as ). In general,
barring some degenerate cases, as the parameter (kd, ki, kp) crosses  at a point on (𝜔) for some 𝜔 ≠ 0, a pair of char-
acteristic roots crosses the imaginary axis at ±j𝜔. If the parameter crosses the vertical surface  , then one characteristic
root crosses the imaginary axis at the origin.

As the vertical plane  is rather simple, we will spend most effort in understanding  . Using the vector notation, a
point in the parameter space may be expressed as

r = kdi + kij + kpk,
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F I G U R E 3 The projection of discriminant 

with cusps 𝜔i, i= 1, 2, … 5

F I G U R E 4 Illustration of +
i

Then,  can be written as

r = r(kd, 𝜔), (9)

with the components as functions of kd and 𝜔 given by kd = kd and (5) and (6). We will use the following plant transfer
function, which was analyzed in Reference 10, to illustrate our description of  and stability analysis in the remaining
part of this article

Gp(s) =
−s4 − 7s3 − 2s + 1

(s + 1)(s + 2)(s + 3)(s + 4)(s2 + s + 1)
. (10)

3 DISCRIMINANT

In this section, we introduce the discriminant of the stability crossing surface  . As will be demonstrated later,  is
completely determined by the discriminant.

Definition 2. The discriminant of the ruled surface  described by (5) and (6) is a curve formed by the points on  with
vertical tangent planes.
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F I G U R E 5 Illustration of −
i

F I G U R E 6 Division with i, +(𝜔i−1) and +(𝜔i)

F I G U R E 7 Division with i, −(𝜔i−1), and −(𝜔i)

We will use  to denote the discriminant. With  described by (9), 𝜕r
𝜕kd

and 𝜕r
𝜕𝜔

are the two tangents of the curves

formed by fixing either 𝜔 or kd, respectively. The cross product of 𝜕r
𝜕kd

and 𝜕r
𝜕𝜔

is the normal vector to  . Therefore, a point
on  with vertical tangent plane satisfies (

𝜕r
𝜕kd

× 𝜕r
𝜕𝜔

)
⋅ k = 0, (11)

where × is the cross product. Using the component expression, the above reduces to(
𝜕ki

𝜕𝜔
k −

𝜕kp

𝜕𝜔
j + 𝜔2 𝜕kp

𝜕𝜔
i
)
⋅ k = 0. (12)
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F I G U R E 8 Division with i, (𝜔i−1), and (𝜔i)

F I G U R E 9 Division with n, (𝜔n−1), and −(∞)

F I G U R E 10 Division with n and (𝜔n−1)

Using (5) in the above equation yields

2𝜔kd − a′(𝜔) = 0, (13)

which can be solved for kd to obtain

kd = a′(𝜔)
2𝜔

. (14)
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F I G U R E 11 The regions

A substitution of (5) by (14) yields

ki =
1
2
𝜔a′(𝜔) − a(𝜔). (15)

Therefore, the discriminant  is a curve that can be expressed as

r = rd(𝜔), (16)

with the component form

kd = kd
d(𝜔) =

a′(𝜔)
2𝜔

, (17)

ki = kd
i (𝜔) =

1
2
𝜔a′(𝜔) − a(𝜔), (18)

kp = kd
p(𝜔) = −b(𝜔)

𝜔
. (19)

The discriminant of the system with plant transfer function (10) is shown in Figure 2.
It is instrumental to represent discriminant  by its projection to the horizontal plane and its vertical component as

a function of 𝜔. The horizontal projection is denoted as , and is described by (17) and (18). For the system with plant
transfer function (10),  is plotted in Figure 3, and the kp versus 𝜔 plot is given in Figure 15.

A critical observation is that  is the envelope of the family of straight lines (𝜔). This can be shown as follows.
 can be expressed as (17) and (18). Define 𝜙(𝜔) = 𝜔a′′ − a′(𝜔). Taking the derivative of (17) and (18), we obtain

(kd
d)

′(𝜔) = 𝜔a′′ − a′(𝜔)
2𝜔2 = 𝜙(𝜔)

2𝜔2 , (20)

(kd
i )

′(𝜔) = 𝜔a′′ − a′(𝜔)
2

= 𝜙(𝜔)
2

. (21)

When

𝜙(𝜔) ≠ 0, (22)

the slope of the tangent of  at 𝜔 is 𝜔2, which is identical to (𝜔). It is also obvious that kd
d(𝜔) and kd

i (𝜔) satisfies (5),
which indicates that this point in  belongs to the straight line (𝜔). This allows us to conclude that the tangent of
 at 𝜔 indeed coincides with (𝜔), which is formally stated in the following theorem.
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F I G U R E 12 The regions of I

F I G U R E 13 The regions of II

Theorem 1. The surface  is completely determined by the discriminant .

Indeed, if  is given by (16), or in component form (17), (18), and (19), then it is necessary that

(kd
i )

′(𝜔) = 𝜔2(kd
d)

′(𝜔), (23)

and  can be expressed as

kd = kd
d(𝜔) + 𝛾, (24)

ki = kd
i (𝜔) + 𝜔2𝛾, (25)

kp = kd
p(𝜔), (26)

with 𝜔 ∈ (0,∞) and 𝛾 ∈ (−∞,∞).
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F I G U R E 14 The regions of III

For a fixed 𝜔, (24), (25), and (26) represent (𝜔) since (24) and (25) satisfy (5). It is useful to divide (𝜔) at the point
rd(𝜔) = (kd

d(𝜔), kd
i (𝜔), kd

p(𝜔)) into two parts

+(𝜔) = {(kd
d(𝜔) + 𝛾, kd

i (𝜔) + 𝜔2𝛾, kd
p(𝜔))|𝛾 > 0},

−(𝜔) = {(kd
d(𝜔) + 𝛾, kd

i (𝜔) + 𝜔2𝛾, kd
p(𝜔))|𝛾 < 0}.

Naturally, their projections on the (kd, ki) plane are denoted as +(𝜔) and −(𝜔), respectively.

4 CUSPS AND PATCHES

In this section, we describe the cusps and patches. The points in the discriminant that violate the condition (22) play an
important role in our analysis. To simplify our presentation, we make the following regularity assumption, which will be
a standing assumption unless explicitly pointed out.

Assumption 2. No 𝜔 ∈ (0,∞) may simultaneously satisfy

𝜙(𝜔) = 𝜔a′′(𝜔) − a′(𝜔) = 0, (27)

𝜙′(𝜔) = 𝜔a′′′(𝜔) = 0. (28)

If 𝜙(𝜔∗) = 0, then the above assumption means that 𝜙(𝜔) must have opposite signs for 𝜔 = 𝜔∗ + 𝜀 and 𝜔 = 𝜔∗ − 𝜀 when
𝜀> 0 is sufficiently small, and (kd

d(𝜔
∗), kd

i (𝜔
∗)) is a cusp of. This is obvious if we notice that (kd

d)
′(𝜔) and (kd

i )
′(𝜔) change

sign at such a point. At a cusp, the tangent to  may still be defined by its limit, and still has the slope 𝜔2. The tangent
of the discriminant  at such a point is vertical if

dkd
p

d𝜔
=
[
−b(𝜔)

𝜔

]′
≠ 0. (29)

It is not too difficult to handle the irregular points that violate Assumption 2. For instance, let 𝜙(k)(𝜔) = 0 for
k= 0, 1, … , m− 1, and 𝜙(m)(𝜔) ≠ 0, then 𝜔 corresponds to a cusp if m is odd, but it is not a cusp if m is even, and the
readers should not have difficulty generalizing the analysis in this article to such cases.

For the system with plant transfer function (10),  has five cusps, and the corresponding 𝜔 are denoted as 𝜔i,
i= 1, 2, … 5. These cusps are also labeled in Figure 3.
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F I G U R E 15 The change of kp with 𝜔

F I G U R E 16 The intersection curve

Let 𝜔i, i= 1, 2, … , n− 1 corresponds to the cusps of , and arranged in ascending order

𝜔1 < 𝜔2 < … < 𝜔n−1.

They partition (0,∞) into n intervals Ωi, i= 1, 2, … , n,

Ω1 = (0, 𝜔1],
Ωi = [𝜔i−1, 𝜔i], i = 2, 3, … ,n − 1,
Ωn = [𝜔n−1,∞).

Correspondingly, we may partition the discriminant  into n sectors

i = {(kd
d(𝜔), kd

i (𝜔), kd
p(𝜔))|𝜔 ∈ Ωi}.

The projection of i on the (kd, ki) plane is denoted as i. Obviously, i, i= 1, 2, … , n, partition .
It is observed that the slope of the tangent of i corresponding to 𝜔 is 𝜔2, which increases as one moves along i

in the directions of increasing 𝜔, from which we may use the Theorem on Turning Tangent14 to arrive at the following
theorem.
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F I G U R E 17 Region I

F I G U R E 18 Zoom in on Region I

Theorem 2. The center of curvature is always on the left hand side as one traverses i along the direction of increasing 𝜔.
The region bounded by i and the line segment connecting the two end points of i is convex.

We may also partition  into 2n patches

+
i = {+(𝜔)|𝜔 ∈ Ωi},

−
i = {−(𝜔)|𝜔 ∈ Ωi}.

+
i is known as the ith positive patch, and −

i the ith negative patch. Their projections on the (kd, ki) plane are denoted
as +

i and −
i , respectively. An example of +

i is shown in Figure 4. Figure 5 shows an example of and −
i .

Obviously, i, +(𝜔i−1), and +(𝜔i) form the boundary of +
i , and i, −(𝜔i−1) and −(𝜔i) form the boundary of −

i .
When projected to the (kd, ki) plane, as illustrated in Figure 6, the sector i, the tangents +(𝜔i−1) and +(𝜔i) divide
the (kd, ki) plane into two regions +

i and (+
i )

c. Similarly, i, −(𝜔i−1) and −(𝜔i) divide the (kd, ki) plane into
two regions −

i and (−
i )

c as shown in Figure 7. i, P(𝜔i−1), and (𝜔i) divide R2 into five regions as shown in
Figure 8, +

i ∩ (−
i )

c, +
i ∩ −

i , (+
i )

c ∩ −
i , and two components of (+

i )
c ∩ (−

i )
c.
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F I G U R E 19 The illustration to judge the order of −
2 and +

2

F I G U R E 20 The illustration to show the change of −
2

F I G U R E 21 The illustration to show the change of −
3

A few comments on the first and last sectors are in order. The boundary of ±
1 consists of 1, ±(0) and ±(𝜔1), where

±(0) = lim
𝜔→0

±(𝜔), and the limits are well defined under Assumption 1. Therefore, ±(0) are also well defined, and
the (kd, ki) plane can still be partitioned in Figure 8 for i= 1 with (𝜔0) = (0) horizontal. For ±

n , obviously, n and
±(𝜔n−1) form part of the boundary. However, the remaining piece of the boundary has a number of possibilities.

Case 1.

kd
d(∞) = lim

𝜔→∞
kd

d(𝜔) = finite, (30)

kd
i (∞) = lim

𝜔→∞
kd

i (𝜔) = finite, (31)

kd
p(∞) = lim

𝜔→∞
kd

p(𝜔) = finite. (32)
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F I G U R E 22 The orders of the layers

F I G U R E 23 The orders of the layers in Region I

In this case, ±(𝜔n) = ±(∞) may be defined as

kd = kd
d(∞), (33)

ki = kd
i (∞) ± 𝛼, (34)

kp = kd
p(∞), (35)

with 𝛼 ∈ (0,∞), and form part of the boundary of ±
n . The projection on the (kd, ki) plane is still similar to Figure 8 for

i=n with (𝜔n) vertical.
Case 2. (30) and (31) hold, but lim

𝜔→∞
kd

p(𝜔) = ±∞. In this case, (∞) no longer exists as ±
n approaches ±∞ in the kp

direction. However, ±(∞) = lim
𝜔→∞

±(𝜔) can still be defined by (33) and (34), and form part of the bounding for 
±
n .

The projection on the (kd, ki) plane is the same as in case 1.
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F I G U R E 24 The orders of the layers in Region II

F I G U R E 25 The orders of the layers in Region III

Case 3. (30) holds, but kd
i (∞) = ∞. In this case, +(∞) no longer exists, but −(∞) may be defined as (33) and

ki = 𝛼, 𝛼 ∈ (−∞,∞). (36)

The situation may be illustrated in Figure 9.
Case 4. (30) holds, but kd

i (∞) = −∞. In this case, −(∞) no longer exists, but +(∞) may be defined as (33) and
(36).

Case 5. lim
𝜔→∞

kd
d(𝜔) = ±∞. In this case, neither +(∞) nor −(∞) exists, and 

±
n extend to ∞ or −∞ in the kd

direction. The situation is illustrated in Figure 10 for the case of kd
d(𝜔) → +∞.

The five cases exhaust all the possibilities. Taken together, i, i= 1, 2, … , n; ±(0), ±(𝜔i), i= 1, 2, … , n− 1,
and possibly ±(∞) when applicable, partition the (kd, ki) plane into open regions. Denote these regions as Rk,
k= 1, 2, … , N,

cl
(

N
∪

k=1
Rk

)
= R

2, Rk ∩ Rl = ∅,
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F I G U R E 26 The change of the roots on right
half-plane

F I G U R E 27 The change of the roots on right
half-plane of Region I

where cl is the closure operator on a set. Consider a given region Rk. As it does not contain the boundary of +
i or −

j ,
we may associate Rk with a pair of index sets +

k ⊂ Nn, −
k ⊂ Nn, where Nn = {1, 2, … ,n}. For each point r= (kd, ki)∈Rk,

r ∈ +
i or r ∈ −

j if and only if i ∈ +
k or j ∈ −

k , respectively.
Let +

k = {i1, i2, … , il}, −
k = {j1, j2, … , jm}, and represent these two index sets by a single set

k =
{

i+1 , i+2 , … , i+l , j−1 , j−2 , … , j−m
}
⊂ N

±
n , (37)

where N
±
n = {1+, 2+, … ,n+, 1−, 2−, … ,n−}. Such a notation also allows us to use the same notation 𝛼 to represent

positive and negative patches,

𝛼 =

{
+

i if 𝛼 = i+,
−

j if 𝛼 = j−.

The same can be done for +
i and −

i . Then the above can be summarized in the following theorem.
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F I G U R E 28 The change of the roots on right
half-plane of Region II

F I G U R E 29 The change of the roots on right
half-plane of Region III

Theorem 3. For k defined above, one has

Rk ⊂ 𝛼, 𝛼 ∈ k,

Rk ∩ 𝛼 = ∅, 𝛼 ∉ k,

Rk ⊂

(
∩

𝛼∈k
𝛼

)
∩
(

∪
𝛽∈N

±
n ∖k

(𝛽)c
)
.

For the system with plant transfer function (10), the partition of the (kd, ki) plane with the corresponding index sets
is given in Figure 11 with amplified view of three regions given in Figures 12–14. In the figures, a region k with index
set k given in (37) is labeled as i+1 ∩ i+2 ∩ … ∩ i+l ∩ j−1 ∩ j−2 ∩ … ∩ j−m. Given any point (k∗

d, k∗
i ) ∈ k, the vertical

(k∗
d, k∗

i ) =
{
(k∗

d, k∗
i , kp)| −∞ < kp < ∞

}
intersects with all patches 𝛼 , 𝛼 ∈ k, but does not intersect with any patch 𝛽 , 𝛽 ∉ k.
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5 RELATIVE VERTICAL POSITIONS OF PATCHES

In this section, we discuss how to determine the relative vertical positions of patches. The knowledge of the relative vertical
positions, along with the crossing directions of patches (to be discussed in the next section) will allow us to determine the
number of roots on the RHP for each parameter region.

kp(𝜔1) = kp(𝜔2). (38)

For a given point (kd, ki) ∈ k, let the intersection of (kd, ki) and 𝛼 be (kd, ki, kp𝛼). Assume

kp𝛼 ≠ kp𝛽 , whenever 𝛼 ≠ 𝛽.

Then, we can order the elements of the index set Ik as 𝛼1, 𝛼2, … , 𝛼l+m, such that

kp𝛼1 > kp𝛼2 > … > kp𝛼l+m .

In this case, we write, at (kd, ki),

𝛼1 > 𝛼2 > … > 𝛼l+m . (39)

In general, the order is different for different (kd, ki) ∈ k. For a complete stability analysis, we want to further partition
k into subregions ki , i= 1, 2, … , mk, such that the order (39) is independent of (kd, ki) as long as it is within the
subregion ki . The internal boundaries that divide k into these subregions are the intersections between the patches
projected on the (kd, ki) plane. Such boundaries can be obtained by considering the kp versus 𝜔 relation. Recall that for
the plant transfer function given by (10), the relation is given in Figure 15. Let 𝜔1 ≠ 𝜔2, satisfy

kp(𝜔1) = kp(𝜔2). (40)

Then (𝜔1) intersects (𝜔2). The intersection can be obtained by requiring (kd, ki) to satisfy (5) for 𝜔 = 𝜔1, and 𝜔 = 𝜔2.
The resulting two equations can be solved to obtain

kd = a(𝜔2) − a(𝜔1)
𝜔2

2 − 𝜔2
1

, (41)

ki =
𝜔2

1a(𝜔2) − 𝜔2
2a(𝜔1)

𝜔2
2 − 𝜔2

1
. (42)

The collection of all (𝜔1, 𝜔2) that satisfy (40) corresponds to all the intersections between different patches. Notice,
given an 𝜔1, all the possible 𝜔2 to satisfy (40) can be easily solved numerically as (40) can be written as a polynomial
equation of 𝜔2. For the system with plant transfer function (10), Figure 16 shows all the intersections in addition to all
the i and (𝜔i) given in Figure 11. Figures 17 and 18 give amplified views. Within each ki , we may order the index
set k such that (39) is true for all (kd, ki) ∈ ki . (39) may be interpreted as 𝛼1 above 𝛼2 , which in turn is above 𝛼3 , and
so on. Within the column {

(kd, ki)|(kd, ki) ∈ ki

}
,

for any (kd, ki, kp) in the region between 𝛼j and 𝛼j+1 , the characteristic equation has a fixed number of roots on the right
half complex plane. This is also true for the region above 𝛼1 and below 𝛼l+m .

We now discuss how to determine the relative vertical positions of 𝛼 , 𝛼 ∈ k within each ki . We need to only choose
an arbitrary (k∗

d, k∗
i ) ∈ ki to determine this order as it does not change within ki . This can be carried out as follows:

For each 𝛼 ∈ k, if 𝛼 is a positive patch, say S+
j , then we may determine the unique 𝜔𝛼 ∈ (𝜔j−1, 𝜔j) such that (k∗

d, k∗
i ) ∈

+(𝜔𝛼). If 𝛼 is a negative patch, then we need (k∗
d, k∗

i ) ∈ −(𝜔𝛼) instead. Geometrically, this means drawing a tangent
ofi that passes through the point (k∗

d, k∗
i ), and the point (k∗

d, k∗
i ) is on the right of the tangent point if it is a positive patch,
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F I G U R E 30 The stable regions (angle1).

F I G U R E 31 The stable regions (angle2)

and it is on the left if it is a negative patch. 𝜔𝛼 can be easily be determined numerically. Indeed, (𝜔𝛼) must satisfy (5)
for kd = k∗

d, ki = k∗
i , and 𝜔 = 𝜔𝛼 . As k∗

d and k∗
i are given, (5) may be written as a polynomial equation of 𝜔. The applicable

solution 𝜔𝛼 needs to be real and satisfy 𝜔𝛼 ∈ (𝜔j−1, 𝜔j) and kd
d(𝜔𝛼) < k∗

d (if 𝛼 is a positive patch) or kd
d(𝜔𝛼) > k∗

d (if 𝛼 is a
negative patch). Corresponding to the l+m elements of the index set k, 𝛼1, 𝛼2, … , 𝛼l+m, we may find 𝜔𝛼1 , 𝜔𝛼2 , … , 𝜔𝛼l+m .
They should be arranged in a order so that

kp(𝜔𝛼1) > kp(𝜔𝛼2) > … > kp(𝜔𝛼l+m).

As a result, the patches satisfy

𝛼1 > 𝛼2 > … > 𝛼l+m .

in ki .
We will use 8 shown in Figure 17 and amplified view in Figure 18 as an example on how to make judgement about

the relative vertical positions of the patches. It is known that 8 =
{

1+, 2+, 2−, 3−
}

, and is divided by the intersection
between 2− and 3− into two subregions 81 and 82 . As 𝜔 increases, 1 and 3 move to the right, and 2 moves to
the left. From Figure 15, it is obvious that for any 𝜔a ∈ (0, 𝜔1), 𝜔b ∈ (𝜔1, 𝜔2), kp(𝜔b) > kp(𝜔a), from which we conclude
+

2 > +
1 , −

2 > +
1 . −

3 > +
1 can be judged similarly. As shown in Figure 19, drawing tangents from a point A in 8 to
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F I G U R E 32 The stable regions (angle3)

F I G U R E 33 The stable regions of Region III
(angle1)

2, and let the tangent points correspond to𝜔+
b and𝜔−

b , such that A is on+(𝜔+
b ) and−(𝜔−

b ). Then the tangent point
of −(𝜔−

b ) is on the right of that of +(𝜔+
b ). Therefore, 𝜔+

b > 𝜔−
b , from which and Figure 15 we conclude that +

2 > −
2 .

Now consider moving A from A1 to A2 (further away from 3 and closer to 2). As shown in Figures 20 and 21, let the
tangent points corresponded to 𝜔c1 and 𝜔c2 in 2, and 𝜔d1 and 𝜔d2 in 3, respectively. It is obvious that 𝜔c2 > 𝜔c1 and
𝜔d2 > 𝜔d1 . From Figure 15, one has kp(𝜔c2) > kp(𝜔c1) and kp(𝜔d2) < kp(𝜔d1). Therefore, as A moves from A1 to A2 crossing
the intersection between −

2 and −
3 , −

2 < −
3 is changed to −

2 > −
3 . From the above analysis, we conclude that

+
2 > −

3 > −
2 > +

1 in 81 ,

+
2 > −

2 > −
3 > +

1 in 82 .

Of course, the more accurate numerical methods can be used to verify the above. The complete ordering of patches in all
the subregions for the system with the plant transfer function (10) is given in Figures 22–25. In the figures,

𝛼1 > 𝛼2 > … > 𝛼l+m ,

is denoted as

𝛼1 > 𝛼2 > … > 𝛼l+m.
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F I G U R E 34 The stable regions of Region III (angle2)

6 CROSSING DIRECTIONS

This section discusses the crossing directions. For each region in the (kd, ki) plane, there are several patches above it. By
considering the vertical crossing direction, the change of the RHP roots can be determined as a point crosses the patch.
In general, a pair of imaginary roots of the characteristic polynomial cross the imaginary axis as point (kd, ki, kp) moves
from one side of surface  to the other side. It turns out that when we move the parameter along the vertical direction,
the crossing direction is very easy to judge.

Theorem 4. As the parameters (kd, ki, kp) moves across a positive patch along the (kd, ki) in the increasing kp direction,
two roots of the characteristic equation (2) cross the imaginary axis from RHP to LHP. The crossing of the characteristic roots
is in the opposite direction if it is a negative patch.

Proof. The characteristic equation (2) can be written as

G(s) + skp + ki + s2kd = 0, (43)

where

G(s) = s
Gp(s)

. (44)

Taking derivative with respect to kp using the implicit function theorem gives

G′(s) 𝜕s
𝜕kp

+ s + kp
𝜕s
𝜕kp

+ 2skd
𝜕s
𝜕kp

= 0, (45)

which may be solved to yield
𝜕s
𝜕kp

= − s
G′(s) + kp + 2skd

. (46)

From (44), (7), (8), we can take derivative to obtain

G′(s)|s=𝜔j = b′(𝜔) − ja′(𝜔). (47)

A substitution of (46) by (47) yields

𝜕s
𝜕kp

||||s=𝜔j
= −

(2𝜔kd − a′(𝜔))𝜔 − j𝜔(b′(𝜔) + kp)
(b′(𝜔) + kp)2 + (2𝜔kd − a′(𝜔))2 . (48)

Accordingly,

Re
(

𝜕s
𝜕kp

||||s=𝜔j

)
= − 𝜔(2𝜔kd − a′(𝜔))

(b′(𝜔) + kp)2 + (2𝜔kd − a′(𝜔))2 . (49)
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On a positive patch,

kd > kd
d = a′(𝜔)

2𝜔
, (50)

and therefore,

Re
(

𝜕s
𝜕kp

||||s=𝜔j

)
< 0. (51)

By symmetry, we also have

Re
(

𝜕s
𝜕kp

||||s=−𝜔j

)
< 0. (52)

(51) and (52) mean that a pair of complex conjugate roots cross the imaginary axis at ±𝜔j from the RHP to the left half
plane as kp increases across a positive patch.

Similarly, on a negative patch,

kd <
a′(𝜔)

2𝜔
, (53)

which yields

Re
(

𝜕s
𝜕kp

||||s=𝜔j

)
> 0, (54)

and a pair of roots cross the imaginary axis from LHP to RHP. The proof is complete. ▪

With the knowledge of the crossing direction and the vertical relative position of each region Rki, we only need the
number of RHP roots at one point in the parameter space to determine the number of RHP roots in each region. For one
point with the known RHP roots, we can judge the crossing direction when this point crosses the surface  vertically.
Then, the change of the number of the RHP roots is obtained. Finally, we can identify the set of stabilizing parameters.

For the system with plant transfer function (10), we can easily calculate that the system has two characteristic roots
on the RHP when ki > 0 and kp is sufficiently large (above all the patches, kp > 7 would be sufficient in view of Figure 15).
It has three RHP roots when ki < 0 and kp is large. The difference is due to crossing of  .

Consider now (kd, ki) is in the region 2 in Figure 17. From Figure 23, the relative vertical positions of the patches are

+
3 > −

3 > −
1 > +

1 . (55)

We already know that Equation (2) has two RHP roots when (kd, ki, kp) is in the region above +
3 . As +

3 is a positive
patch, we can conclude from Theorem 2 that (2) has four RHP roots when the parameters are in the region between
−

3 and +
3 (two more than above +

3 because we need to cross +
3 in the negative kp direction in order to reach from

the region above +
3 to this region). As −

3 is a negative patch, we can similarly use Theorem 2 to determine that (2)
has two RHP roots when (kd, ki, kp) is in the region between −

3 and −
1 (two less than the region above) and (2) has no

RHP root when (kd, ki, kp) is between −
1 and +

1 , and it has two RHP roots when (kd, ki, kp) is below +
1 . This is shown

in Figure 27 as 2→ 4→ 2→ 0→ 2. The same process can be applied to all the regions ki , and the results is shown in
Figures 26–29. The collection of all the regions labeled as “0" is the stabilizing set. This stabilizing set is shown in three
views in Figures 30,31,32. Two more detailed three-dimensional views for region III are given in Figures 33 and 34. Note
that there are two layers of stable regions in this region.

7 CONCLUSIONS

A geometric description of the et of all stabilizing PID controllers has been developed. The three-dimensional parameter
space is partitioned by the stability crossing surface into regions such that the number of characteristic roots on the RHP
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remains constant within each region. The stability crossing surface is a ruled surface, and it is completely determined
by a curve known as the discriminant. The discriminant may be divided into sectors between its cusps, and each sector
corresponds to a positive patch and a negative patch. The stability crossing surface is composed of these patches. The
projection of the boundary of these patches to the horizontal plane formed by the derivative and integral coefficients
allows us to partition this plane into regions such that there are a fixed number of patches in each such region, and these
patches are in the same vertical order. By identifying the crossing directions, we may determine the number of RHP
characteristic roots between any two patches. This allows us to obtain the regions in the plane where there are stabilizing
proportional coefficient, and the corresponding pair of patches such that the system is stable when the proportional
coefficient is between these pair of patches. The process is made easier by the knowledge that the crossing direction is
the same for all the positive patches, and it is the opposite for all the negative patches.
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