#### Yale University

## EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale School of Nursing Digital Theses

School of Nursing

January 2022

# Reducing Unnecessary Primary Cesarean Sections: A Quality Improvement Project

Jennifer L. Suess jenniferlsuess@gmail.com

Follow this and additional works at: https://elischolar.library.yale.edu/ysndt

#### **Recommended Citation**

Suess, Jennifer L., "Reducing Unnecessary Primary Cesarean Sections: A Quality Improvement Project" (2022). *Yale School of Nursing Digital Theses*. 1142. https://elischolar.library.yale.edu/ysndt/1142

This Open Access Thesis is brought to you for free and open access by the School of Nursing at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale School of Nursing Digital Theses by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Reducing Unnecessary Primary Cesarean Sections: A Quality Improvement Project

Submitted to the Facility Yale University School of Nursing

In Partial Fulfillment of the Requirements for the Degree Doctor of Nursing Practice

Jennifer L. Suess, MSN, RNC May 2022

© 2022 by Jennifer L. Suess All rights reserved.

This DNP Project is accepted in partial fulfillment of the requirements for the degree Doctor of Nursing Practice.

Signed: \_\_\_\_\_

Date: \_\_\_\_\_

This material is protected by Copyright Law (Title 17, US Code). Brief quotations are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part must be granted by the copyright holder.

Signed: \_\_\_\_\_

#### Abstract

Background: The cesarean section (CS) is the most common surgical procedure in the United States and while often necessary and life-saving, brings higher risk of morbidity and mortality for both patient and neonate than vaginal birth (Boyle et al., 2013; Lagrew et al., 2018). CS rates in nulliparous, term, singleton, vertex (NTSV) patients vary dramatically, from 7.1% to 69.9%, throughout US birthing facilities but can be safely reduced via the implementation of evidencebased safety bundles that aim to reduce variation in care (Council on Patient Safety in Women's Health Care, 2020; Kozhimannil et al., 2013).

Local Problem: A large birthing hospital in Maryland has NTSV CS rate of 23% with a reduction goal to 20% or less.

Methods: Plan-Do-Study-Act Cycles were utilized as the project model over 3-month period. Intervention: CS rate reporting was scaled out to include Registered Nurse (RN)-specific rate measures in the established clinician audit and feedback process while also tailoring and launching a CS communication tool.

Results: While unit CS rates did not decrease during the project period, the RN-specific CS rate measures did identify positive outlier RNs with NTSV CS rates consistently lower than goal, ranging for 0.00% to 16.67%.

Conclusion: This project demonstrates the need for continued analysis of RN-specific NTSV CS rates to identify and study the practices of these positive outliers to identify best practices, direct from the frontline, that contribute to successful, safe physiologic birth.

Keywords: NTSV, cesarean section, quality improvement, RN NTSV rate, interprofessional team, pre-cesarean checklist

## **Table of Contents**

| Abstractv                                          |
|----------------------------------------------------|
| Table of Contentsvi                                |
| Chapter I1                                         |
| Introduction1                                      |
| Problem Statement                                  |
| Significance                                       |
| Chapter II                                         |
| Review of Literature                               |
| Search Strategy                                    |
| Synthesis of Evidence                              |
| Literature Findings                                |
| Education9                                         |
| Collaboration, Teamwork, and Culture Change9       |
| Standardization of Practice with Feedback10        |
| Strengths and Limitations of Literature Reviewed11 |
| Summary of Literature Findings13                   |
| Organizational Assessment- SWOT Analysis14         |
| Strengths14                                        |
| Weaknesses15                                       |
| Opportunities16                                    |
| Threats16                                          |

| Project Model                          | 17 |
|----------------------------------------|----|
| Goals and Aims                         | 17 |
| Chapter III                            | 19 |
| Aethods                                | 19 |
| Description and Approaches to Aims     | 19 |
| Aim I                                  | 19 |
| Aim II                                 | 22 |
| Aim III                                | 24 |
| mplications                            | 25 |
| Iuman Subjects                         | 26 |
| Return of Investment                   | 27 |
| Fimeline                               | 28 |
| eadership Immersion                    | 28 |
| Chapter IV                             |    |
| Results                                | 30 |
| Statistical Methods                    | 31 |
| Statistical Results                    |    |
| Phase II Preliminary Findings          | 32 |
| Chapter V                              |    |
| Discussion                             | 33 |
| Identification of Positive Outlier RNs | 34 |
| _imitations                            | 34 |

| Implications to Practice |    |
|--------------------------|----|
| Chapter VI               |    |
| Conclusion               |    |
| References               |    |
| Appendix A               | 50 |
| Appendix B               | 51 |
| Appendix C               | 73 |
| Appendix D               | 74 |
| Appendix E               | 75 |
| Appendix F               | 76 |
| Appendix G               |    |

#### Chapter I

#### Introduction

Overuse of cesarean sections (CS) is nearing epidemic levels and identified as a significant safety issue (Lagrew et al., 2018). The CS is the most common surgical procedure in the United States (US) with 1.2 million performed per year and while often necessary and life-saving, it brings higher risk of morbidity and mortality for both patient and child than vaginal birth (Al Yassan, Al-Asadi, & Khalaf, 2019; Boyle et al., 2013; Centers for Disease Control and Prevention (CDC), 2015; CDC, 2020; Keag, Norman, & Stock, 2018; Lagrew et al., 2018). As of 2020, the Centers for Disease Control and Prevention (CDC) reports nearly one-third of births in the US are by CS with a 25.9% CS rate in low-risk first-time patients. However, the World Health Organization (WHO) (2015) cites 10-15% as a safe and acceptable goal rate and the National Partnership for Maternal Safety proposes 19% as the lowest safe rate based on updated research (Lagrew et al., 2018). More concerning still is the 50% increase in the US primary CS rate since 2000 in low-risk patients (Osterman, et al., 2015).

Not accounting for adverse outcomes, an uncomplicated CS incurs a higher level of patient acuity and staff utilization, a longer length of stay which impacts throughput and capacity, and higher costs than vaginal birth (DeJoy, et al., 2019; Rosenthal, 2013). CS patients require indwelling Foley catheters, increasing the risk of a hospital-acquired catheter associated urinary tract infection which costs the US an estimated \$450 million annually (Leelakrishna & Karthik, 2018; Scott, 2009). CS patients have longer periods of immobilization leading to increased risk of blood clots, higher risk for falls, and experience more pain in the postpartum period, requiring higher utilization of opioids which adds potential of dependency (Babazade et al., 2019; Landau, 2019).

The most common diagnosis associated with a primary low-risk or nulliparous, term, singleton, vertex (NTSV) CS, is labor dystocia which is defined as a slow or abnormally progressing labor that has achieved a cervical dilation of at least six centimeters, yet up to 40% of cases do not meet diagnostic criteria (Boyle et al., 2013; Florida Perinatal Quality Collaborative, 2019; Wise & Jolles, 2019; Zhang et al., 2010). Further, there is up to a ten-fold variation in CS rates among providers and institutions, with a range from 7.1 to 69.9% nationwide, demonstrating a lack of consistency in protocols, guidelines, management of latent and active labor, and the diagnosis of labor dystocia (American College of Obstetricians and Gynecologists (ACOG), 2014; Cox & King, 2015; Kozhimannil et al., 2013). However, entities such as the California Maternal Quality Care Collaborative (CMQCC) demonstrate CS rates can be safely decreased without increasing risk to patient or neonate by reducing variation in practice via the implementation of standardized, evidence-based practices (Main et al., 2019). Given the high degree of variability in CS rates among facilities and evidence these rates can be safely reduced, the Joint Commission (TJC), ACOG, Association of Women's Health, Obstetrics and Neonatal Nurses (AWHONN), American College of Nurse-Midwives (ACNM), Society for Maternal-Fetal Medicine (SMFM), and US Department of Health and Human Services (DHHS) agree CS rates are modifiable and reduction measures must be taken (The Joint Commission (TJC), 2020; Kozhimannil, Law, & Virnig, 2013; Vadnais et al., 2016).

TJC has instituted one such reduction measure, Perinatal Core (PC) Measure 02, requiring birthing hospitals seeking accreditation to maintain a NTSV CS rate at or below 30% by January 2021 or face public reporting as a poor performer and substantial financial implications in the form of a 2% reduction in all Medicare reimbursement payments made to the institution (TJC, 2021; Centers of Medicare and Medicaid Services (CMS), 2022). Private

insurance companies are also considering adding NTSV rates at the US DHHS goal level in their value-based purchasing measures which would result in decreased reimbursement to poor performing hospitals with clients re-routing to other higher performing facilities (D. Lagrew, personal communication, October 17, 2019). Given that a primary cesarean birth is approximately double the cost of a vaginal birth, reduced reimbursement for high rates of CS will compound financial impact on organizations (DeJoy et al., 2019; Rosenthal, 2013; Smith et al., 2016). Additionally, PC-05 measures the percentage of infants exclusively breastfeeding during hospitalization and places poor CS performers at further financial disadvantage due to decreased rates of successful breastfeeding and increased risk of human-milk substitute use in infants born via CS (TJC, 2019; Zhang et al., 2019).

#### **Problem Statement**

While maternal comorbidities and choice are often cited as key contributors to increasing NTSV CS rates, it would appear the individual hospital's practice culture is the true driver with rates varying from 7.1% to a staggering 69.9% throughout US birthing facilities (Caceres et al., 2013; Kozhimannil et al., 2013). Given this variability of practice, it is important to focus on ensuring consistent, high-quality care by implementing patient safety bundles which, by definition, leverage and implement evidence-based practices in a structured and systematic way to ensure complete consistency of care (Council on Patient Safety in Women's Health Care, 2020). Implementing a bundle to include checklists, audits, and clinician feedback, including reporting of individual provider and registered nurse (RN) NTSV CS rates, will aid in standardizing care throughout the labor process to reduce NTSV CS due to the diagnosis of labor dystocia (Chaillet & Dumont, 2007; Lagrew et al., 2018). Further, the standardized care provided by a labor dystocia checklist is shown to reduce costs by \$19,091.93 per birth (Westermann et

al., 2018). The implementation of best practices, CS audits, and clinician feedback showed a four-year savings of \$21.6 million USD in Quebec and a potential \$120.6 million savings nation-wide (Bermudez-Tamayo, Johri, & Chaillet, 2018). While the project site is utilizing components of an evidence-based care bundle, such as provider NTSV rate reporting, encouraging the use of doulas, and reducing elective CS, the elements of the labor dystocia checklist and RN NTSV rate reporting remain unimplemented. The goal of this project is to reduce the rate of primary CS in the NTSV population to 20% or less at a birthing hospital in Maryland by translating and scaling the care bundle component of NTSV rate analysis and reporting to include RNs and then implementing a labor dystocia checklist found in the California Maternal Quality Care Collaborative (CMQCC) toolkit developed from ACOG/SMFM criteria (ACOG, 2014).

#### Significance

Preventing the first unnecessary CS is critical as 90% of women who undergo a CS will have CS with subsequent births, conversely, 90% of women who give birth vaginally will continue to have successful vaginal births (Haelle, 2018; Main, 2016). The evidence shows each subsequent CS increases morbidity and mortality (Almeida, Nogueira, Candido dos Reis, & Rosa e Silva, 2002; Keag, Norman, & Stock, 2018; Kennare et al., 2007). CS prevention is also significant for newborn outcomes via increasing early breastfeeding initiation and decreasing human-milk substitute supplementation (Li, Wan & Zhu, 2021; Zhang, 2019). Additionally, those born via CS are at higher risk for neonatal intensive care unit (NICU) admission which increases acuity, cost, and staff resource utilization (Berg & Hung, 2011; Overfield, et al., 2005; Stevens, et al., 2014).

WHO estimated 6.20 million unnecessary CS were performed in 2008, costing 2.32 billion US dollars around the globe (Gibbons et al., 2010). However, the WHO estimate does not

account for the additional costs of morbidity and mortality which are difficult to quantify. For example, the care of one patient with severe morbidity due to placenta accreta, a complication most commonly seen due to previous CS, can exceed one million dollars; with a 1 in 272 incidence rate in US women with birth-related diagnosis at hospital discharge (ACOG, 2018; Bowman, et al., 2014; Ellison & Martin, 2017; Wu, Kocherginsky, & Hibbard, 2005). Further, those dyads that ultimately were unable to breastfed contributed at an estimated three billion dollars in healthcare costs per year (Babazade et al., 2019). Despite these increased costs and risk, no improvement in patient and neonatal morbidity and mortality rates have been noted with higher NTSV CS rates (ACOG, 2014; Gregory et al., 2012). Therefore, implementing interprofessional interventions to reduce unnecessary NTSV CS is an urgent need.

#### **Chapter II**

#### **Review of Literature**

While patient factors such as personal choice and comorbidities are often cited as key contributors to CS, after adjusting for comorbidities, demographics, and socioeconomic status, it would appear the individual hospital's practice culture is the true driver of CS rate variation (Caceres et al., 2013). With such variation in CS rate amongst institutions and apparent lack of standardization in clinical practice, the National Partnership for Maternal Safety issued a consensus statement recommending the implementation of evidence-based care practices designed to reduce NTSV CS (Lagrew et al., 2018). However, little is known of effectiveness and efficacy of RN NTSV rate reporting and the individual bundle component of a labor dystocia checklist in safely decreasing NTSV CS (Ogunyemi et al., 2018; Vadnais et al., 2017; Wise & Jolles, 2019). Given this knowledge gap, a review of literature was completed exploring the research question: does implementing RN NTSV CS rate reporting and the care bundle component of a labor dystocia checklist reduce the rate of primary cesarean in the NTSV population?

#### **Search Strategy**

A review of the literature on NTSV CS prevention strategies with a focus on RN NTSV rate reporting, labor dystocia checklists, and team huddles was conducted following the adapted Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (see Appendix A).

Medline, Embase, and PsycINFO, and PubMed databases were used. The terms NTSV AND reduction, labor AND dystocia AND checklist, RN AND NTSV, RN and Cesarean, and primary AND cesarean AND reduction were searched. Articles meeting search criteria in English with an

abstract were included for further review. An exclusion was placed to limit publication dates greater than five years prior to search date, however, older works identified via ancestry were included if deemed seminal or important source material.

The search revealed a total of 1,471 articles for review with two additional articles identified through ancestry. After duplicates were excluded, 646 remaining abstracts were screened. Of those, 598 articles without full text or identified as clearly irrelevant were excluded. A final review excluded an additional 38 articles with 6 being conference abstracts, 11 conducted outside of the US using out of scope guidelines, and the remaining 21 articles out of scope for NTSV or overall CS reduction intervention implementation. The remaining 10 articles were included in the review (see Appendix A). Data were organized for analysis into an evidence matrix (see Appendix B) into the fields: title authors date, purpose, sample, design, results, strengths, weaknesses, and contributions to science and/or practice.

#### Synthesis of Evidence

All interventional studies reviewed, except Gams et al. (2019), list sample sizes (n = 55 to 126,480) with approximately 160,600 total NTSV participants over an average of 2.5 years (n = 7 weeks to 7 years). Two articles were level I with a meta-analysis and a systematic review of literature, one was a level V consensus statement, and the rest were level III evidence. All interventional research was conducted in inpatient settings with a mix single and multiple sites and academic and community hospitals. All but one of the interventional studies reviewed were conducted in the US, representing a wide sample of the country. One study was conducted in France but met inclusion criteria for review as it followed the same evidenced-based guidelines, implemented the same interventions of interest, and measured the same outcomes (Thuillier et al., 2018). While the level I studies are not specific to NTSV CS, all interventional studies do

share this focus but guidelines followed vary from ACOG and SMFM's Prevention of the Primary Cesarean Section Delivery Guideline (Bell et al., 2017; Main et al., 2019; Ogunyemi et al., 2018; Thuillier et al., 2018; Wise & Jolles, 2019), ACNM's Promoting Spontaneous Labor Bundle (Gams et al., 2019), and self-designed evidence-based recommendations from ACOG and National Institutes of Health (NIH) (Vadnais et al., 2017). All studies assess balancing measures pre- and post-intervention, such as NICU admission and postpartum hemorrhage (PPH) rates, to evaluate NTSV CS reduction interventions' impact on patient outcomes to address potential safety implications. Please see Evidence Matrix for in-depth detail (See Appendix B).

#### **Literature Findings**

A decrease in the NTSV CS rate post-intervention was noted in all studies reviewed with an average reduction of 28.04% (n = 13.65% to 44.35%). Notably, Wise and Jolles (2019) found once the project ended the NTSV CS rate rebounded to 39.32% above pre-intervention baseline. A significant increase in adherence to the labor dystocia checklist by providers was noted by Bell et al. (2017) from 86.2% to 91.5% (OR 1.73, 95% CI 1.11-2.70). The implementation of preoperative team huddles increased team engagement from 85% to 98% (Wise & Jolles, 2019). Three studies reported improvement in neonatal outcomes with significant decreases in NICU admissions (Main et al., 2019; Ogunyemi et al., 2018; Wise & Jolles, 2019), three reported no significant change (Gams et al., 2019; Thuillier et al., 2018; Vadnais et al., 2017), and one was underpowered to detect change (Bell et al., 2017). Patient outcomes are overall positive with decreases in vaginal lacerations and episiotomies and no significant changes in rate of PPH (Main et al., 2019; Ogunyemi et al., 2018; Thuillier et al., 2018; Vadnais et al., 2017).

#### Education

A strong educational component as part of an intervention was the most common theme noted when reviewing the evidence. All of the literature supports clear and structured healthcare team education that targets the entire interprofessional cadre of registered nurses (RNs), certified nurse midwives (CNMs), and physicians on the implemented pieces of the care bundle (Bell et al., 2017; Challiet & Dumont, 2007; Chen et al., 2018; Gams et al., 2019; Lagrew et al., 2018; Main et al., 2019; Ogunyemi et al., 2018; Thuillier et al., 2018; Vadnais et al., 2017; Wise & Jolles, 2019). However, Chen et al. (2018) provided evidence that physician education by a respected peer was the most successful educational intervention in reducing unnecessary CS. Four articles (Bell et al., 2017; Gams et al., 2019; Lagrew et al., 2018; Ogunyemi et al., 2018) either recommended or implemented patient and family education on safe labor guidelines while Chen et al. (2018) found childbirth education effective in reducing CS. However, none of the evidence supports education as the sole intervention.

#### **Collaboration, Teamwork, and Culture Change**

Teamwork and collaboration to create a unit culture change to support physiologic birth is another common thread in the literature. Strong interprofessional teams of RNs, midwives, and physicians actively working together on the unit and role modelling behaviors are noted in four studies (Bell et al., 2017; Gams et al., 2019; Ogunyemi et al., 2018; Vadnais et al., 2017). In one study a team, led by Doctor of Nursing (DNP) students, role modelled the desired behaviors and saw positive results initially (Wise & Jolles, 2019). Upon completion of the project, the DNP students left the site with no members of the unit team identified to sustain practice changes and reinforcement of expectations, which led to regression to previous practices and a significant increase in the NTSV CS rate (Wise & Jolles, 2019).

However, a similar study conducted by DNP students which incorporated an interprofessional team of engaged unit leaders reported a sustained culture change upon the students' exit (Gams et al., 2019). State-wide collaborative teams following the same evidence-based guidelines with frequent calls to support each other were noted in two studies (Gams et al., 2019; Main et al., 2019). The unit-based teams not a part of a collaborative have an average NTSV CS rate reduction of 35.26% (n = 28.21 to 44.35%) (Bell et al., 2017; Ogunyemi et al., 2018; Thuillier et al., 2018; Vadnais et al., 2017) while the collaborative teams have an average rate reduction of 14.17% (n = 13.65 to 14.68%) (Gams et al., 209; Main et al., 2019).

#### **Standardization of Practice with Feedback**

Standardization of practice through policy change is critical to NTSV CS reduction. All articles with sustained change reported implementation of policies to incorporate care bundle elements into practice as interventions (Bell et al., 2017; Challiet & Dumont, 2007; Chen et al., 2018; Gams et al., 2019; Lagrew et al., 2018; Main et al., 2019; Ogunyemi et al., 2018; Thuillier et al., 2018; Vadnais et al., 2017). Two studies (Gams et al., 2019; Wise & Jolles, 2019) implemented a labor dystocia team huddle and checklist which are in line with Lagrew et al.'s (2018) consensus statement which emphasized the importance of implementing standardized algorithms to respond to labor dystocia. Five studies (Bell et al., 2017; Gams et al., 2019; Ogunyemi et al., 2018; Vadnais et al., 2017; Wise & Jolles, 2019) audited charts for provider compliance to labor dystocia guidelines and provided feedback while two (Ogunyemi et al., 2018; Vadnais et al., 2017) use transparent provider and institution NTSV rate reporting on the units. Further, both pieces of level I evidence, Challiet and Dumont (2007) and Chen et al. (2018), strongly support that audits and feedback in order to coach providers in effectively adhering to evidence-based interventions are the most impactful interventions in reducing CS

rates. None of the reviewed pieces directly addressed individual RN NTSV rate measurement or reporting. However, the RN's role in influencing method of birth has been documented, along with a variation in CS rate of 4.9 to 19% noted between RNs per Radin, Harmon, and Hansen (1993) (Edmonds and Jones, 2012). The evidence demonstrates a need to measure RN-specific CS rates to better understand the ability of individual RN to influence method of birth and how RN practice influences outcomes (Edmonds, et al., 2016; Edmonds, Clarke, & Shah, 2017). Edmond et al. (2020) found that RN-specific CS rates should be included as a part of the audit and feedback process but more studies with large samples are required to reliably determine individual RN performance as a valid metric.

#### Strengths and limitations of literature reviewed

Individually the studies potentially face the threat to external validity with a lack of generalizability, but together they are representative of a very large sample of the US population with the South, Midwest, West, and East Coasts as well as one international study with small community to large academic hospitals included. All studies control for subject characteristics with clearly defined criteria for inclusion as NTSV patients with Vadnais et al. (2017) going a step further examining CS rate differences in NTSV populations with the diagnosis pre-eclampsia and gestational diabetes. Many studies give statistical demographic details to describe subject characteristics to include race (Gams et al., 2019; Wise & Jolles, 2019) and age, education, body mass index, prenatal care, co-morbidities, and insurance status (Bell et al., 2017; Main et al., 2019; Ogunyemi et al., 2017; Thuillier et al., 2018; Vadnais et al., 2017).

Power to detect significant changes to NTSV rate was a strength in a handful of the studies with large sample sizes (Main et al., 2019; Ogunyemi et al., 2018; Thuillier et al., 2018; Vadnais et al., 2017) with the same studies as well as Bell et al. (2017) providing strong details

on design methodology to include appropriate statistical testing methods and effect size. All studies follow well-researched, validated, evidence-based practice (EBP) bundles based on either ACOG/SMFM or ACNM guidelines except for Vadnais et al. (2018) which is a seven-year repeat measures descriptive measures cross-sectional design that provides exceptional design methodology detail based on ACOG guidelines and allowing for replicability. There is no selection or exclusion bias given the studies' design methodologies did not withhold the intervention from a control group and no risk of attrition or maturation as all studies used data collection via chart reviews and vital statistics.

There is a small internal validity threat to rigor of the literature as the bulk of the studies were level III and there are no randomized control trials (RCTs) but, given the ethical challenges of withholding high quality care from a control group, this weakness is understandable. All studies review the implementation of multiple, concurrent interventions without controlling for the analysis of individual intervention's impact to the outcome of NTSV CS rate. No studies included spoke to the historical threat of the world-wide attention to the US' high CS rate and the nation-wide pressure to decrease NTSV rates or compared study results to the state-wide rates which may also note corresponding decreases. Also, both pieces of level I evidence may lack generalizability as they were not specific to NTSV CS reduction but rather overall CS reduction (Chaillet & Dumont, 2007; Chen et al., 2018).

In three studies reviewed (Gams et al., 2019; Vadnais et al., 2017; Wise & Jolles, 2019) it was unclear how many reviewers examined the records for adherence and outcomes with no validation of accuracy of data interpretation. There is also the instrumentation challenge of interrater reliability in the data collection as patient outcome data were obtained from chart reviews and vital statistics records which are not immune from incomplete or inaccurate

documentation (Bell et al., 2017; Gams et al., 2019; Main et al., 2019; Ogunyemi et al., 2017; Thuillier et al., 2018; Vadnais et al., 2017). Further, data collected such as APGAR scores and cervical exams are quite subjective measurements that can vary based on practitioner.

Statistical analysis gaps existed in a few pieces of evidence. While reporting data to include p-values, Gams et al. (2019) did not include information on chosen statistical methods to allow for validation of appropriateness. Wise and Jolles (2019) did not report any statistical analysis beyond displaying data in averages and a run chart. Even in studies with large samples and appropriate analysis, power was insufficient to detect subtle changes in patient and neonatal outcomes such as five-minute APGAR scores, meconium aspiration syndrome, and PPH (Gams et al., 2019; Ogunyemi et al., 2018; Thuillier et al., 2018), with the strongest analysis from Vadnais et al. (2018) warning readers that more research is needed after seven years of data on over 15,000 NTSV births.

Finally, two studies raise methodology concerns upon review. Wise and Jolles (2019) measure team engagement pre- and post-implementation of a pre-cesarean team huddle via two unvalidated tools developed by the researchers and reported a decrease in NTSV CS rate based on seven weeks of data. Gams et al. (2019) uses unvalidated, self-reported data from RNs to report an increase in one-to-one labor support.

#### **Summary of literature findings**

The literature demonstrates the effectiveness of a multi-faceted interprofessional quality improvement (QI) approach that includes standardization of practice via evidence-based care bundles that include pre-cesarean team huddles, labor dystocia checklists, policy changes, multiprofessional education, and transparency of data with audits and feedback in decreasing the NTSV CS rate with no significant adverse impact on patient or neonatal outcomes (Bell et al.,

2017; Chaillet & Dumont, 2007; Chen et al., 2018; Gams et al., 2019; Main et al., 2019; Ogunyemi et al., 2017; Vadnais et al., 2017; Wise & Jolles, 2019). In fact, Gould et al. (2004) found NTSV rates between 15-20% carry safer patient outcomes and no change in neonatal outcomes than with higher CS rates. The literature provides evidence that NTSV CS rates are modifiable with evidence-based intervention and the importance of the strong interprofessional teams of engaged unit leaders collaborating in establishing the buy-in necessary with the frontline to both drive and sustain meaningful practice change. However, not all team types may be equally effective. As previously noted, greater reduction of NTSV CS rates is seen in proactively formed unit-based collaboratives versus hospital teams created as a part of state-wide collaboratives. This may more reflect the unit's culture of readiness and willingness to change than the method of team formation (Callaghan-Koru et al., 2019). It appears change may be short-lived when initiated and led by outsiders to the unit culture; highlighting the need to establish engagement and a true desire to improve practice at unit level (Wise & Jolles, 2019). The intervention's focus should not be on changing the practice of individual practitioners but on the overall culture of practice (Caceres et al., 2013; Ogunyemi et al., 2017). Finally, teams should maintain a state of surveillance to sustain change and readiness for continuous improvement when opportunities arise to increase quality and patient safety (Child & DeCesare, 2017; Vadnais et al., 2017).

#### **Organizational Assessment- SWOT Analysis**

An analysis of the strengths, weaknesses, opportunities, and threats (SWOT) of large community birthing hospital in Maryland was performed (See Appendix D). Having a comprehensive understanding of the organization in its current state is essential to the team effectively implementing a project. This knowledge equips the team to act strategically to

leverage the best people and tools to achieve and sustain success.

#### Strengths

Strengths speak to the organization's internal factors that place it an advantageous position (Teoli & An, 2019). Strengths included Magnet status, four stars from the CMS (2022), and a LeapFrog Hospital Safety Grade A rating (n.d.). The organization has a clear mission, vision, values, and strategic goals. Nursing is valued with a nurse in the Chief Executive Officer and President positions. EBP is a strength with a Nursing Research and Quality department, staff researchers with grants, and staff-led projects. The project site has a strong culture of EBP with three nurse educators, a Chief of Obstetrics who is active in the Institute for Healthcare Improvement (IHI) and expects best practice, and a team of hospitalists trained in IHI that round on all patients and approve all scheduled cases to assure guideline compliance. Evidence-based staffing guidelines are followed on the labor unit to promote effective labor support. The site also has a grant doula program for low-income patients and encourages doula support for all. All RNs and providers must maintain certification in electronic fetal monitoring as a condition of employment and/or privileges. A new obstetrician residency program began in July 2020 and has the potential to increase EBP with the infusion of a new generation of practitioners.

#### Weaknesses

Weaknesses address the organization's internal factors that play negatively toward the project and must be considered (Teoli & An, 2019). The organization has a high birth volume, over 5000 births annually with only 5 triage rooms, 24 labor rooms, and 36 postpartum rooms, posing a challenge to consistent adherence to EBP and staffing guidelines, and to throughput. Of note, there is a postpartum overflow unit with an additional 26 rooms, however, this space was converted to novel coronavirus disease 2019 (COVID) and medical/surgical overflow. A new

group of private physicians and the obstetric residency program onboarded in July 2020 and may disrupt the current culture; although, as noted above, the opposite may hold true. There are communication gaps in the team and private practitioners are not always up-to-date on unit EBP changes. Additionally, staff includes members that work off-shifts or on an irregular basis, which may lead to gaps in knowledge that impact practice. Staff turnover is also a challenge.

#### **Opportunities**

Opportunities speak to factors external to the organization that may positively impact the project (Teoli & An, 2019). CS reduction has strong media attention with initiatives and safety bundles recommended by the ACOG, ACNM, and others with WHO (2015) and Healthy People 2030 (2022) stressing CS reduction (Lagrew et al., 2018). There is strong community support of the institution with generous donors, excellent reviews of care provided with maternity services especially valued, and no comparable competition.

#### Threats

Threats represent the factors external to the organization that may negatively impact the project (Teoli & An, 2019). CMS and TJC (2020) have instituted core measures based on CS rate which could reduce reimbursements; however, this also can be an opportunity to leverage buy-in for change. The ongoing novel COVID-19 pandemic impacted labor support with only one support person allowed for the entirety of the hospital stay. Also, the now infamous 2018 ARRIVE study is a strong threat against the culture of CS reduction as it is often cited as evidence for unilateral elective induction of labor (IOL) at 39 weeks, which is shown to increase NTSV CS in facilities not adhering to EBP to reduce CS due to labor dystocia and failed IOL; unlike the study site which follows strict EBP with a baseline CS rate below the 23.9% goal (Christopher, 2018). This shift towards elective IOL, coupled with a public culture that views

elective CS as a safe and schedule-friendly birth method is substantial threat to CS reduction measures; especially if a provider who views CS as the safer, less litigious option (Spong, 2015; Weaver & Magill-Cuerden, 2013).

#### **Project Model**

The model chosen to guide this project is the plan-do-study-act (PDSA) model for improvement (See Appendix C). This model leverages the scientific method to create a highly structured framework for testing change and creating improvements (Nelson, Batalden, & Godfrey, 2007). Just as the name suggests, the PDSA model clearly illustrates a four-step continuous process the change agent utilizes to both rapidly test and learn from interventions to determine the best solutions to an identified problem (Nelson, Batalden, & Godfrey, 2007).

Evidence-Based Advancing Research and Clinical Practice Through Close Collaboration (ARCC) Model based on the Control and Cognitive Behavior theories was selected as a supporting framework (See Appendix C). This model was selected as it focuses not just on implementation of EBP at the healthcare system level but on sustaining the change (Melnyk & Fineout-Overholt, 2015). ARCC is suited to the project as it seeks to bridge gap between research and translation into clinical practice implementation to improve outcomes and healthcare quality by addressing barriers and developing a culture that sustains EBP (Melnyk & Fineout-Overholt, 2015).

#### **Goal and Aims**

The goal of this project is to employ an evidence-based clinical protocol to decrease the NTSV CS rate from 23% to 20% at a large birthing hospital in Maryland via the ACOG/SMFM criteria.

The aims of the project are:

- To develop a clinical protocol to incorporate RN NTSV rate analysis and reporting to an interprofessional audit procedure to reduce the NTSV CS rate on a large labor and delivery unit.
- To implement and evaluate the clinical protocol.
- To make recommendations related to the scaling and sustainability of the protocol within and across systems.

#### Chapter III

#### Methods

#### **Description and Approaches to Aims**

The project goal is to decrease the overall NTSV CS rate from 23% to 20% or less at a large birthing hospital in Maryland by implementing an evidence-based clinical protocol based on the ACOG/SMFM criteria. The NTSV CS reduction protocol consists primarily of the implementation of RN NTSV CS rate analysis and reporting accompanied by an NTSV CS checklist adapted from the CMQCC Toolkit which will be reviewed and completed by the members of care team prior to proceeding with a non-emergent NSTV CS (See Appendix E). The transparent audit and feedback process currently in place at the project site was modified to include monthly reporting of RN NTSV rates alongside provider and overall NTSV rates. PDSA cycles were utilized as the change management structure as a real-time measure of the project's success and to allow the team to rapidly adjust with modifications as needed. The project aims and methods are be described in-depth below.

# Aim 1: Develop a clinical protocol to incorporate RN NTSV rate reporting and analysis with an interprofessional audit procedure to reduce the NTSV CS rate on a birth unit.

In order to develop an evidence-based clinical protocol, a formal literature review was conducted to evaluate and translate the evidence. The review revealed strong evidence including, a consensus statement, affirming utility of elements of a protocol to standardize care and reduce NTSV CS rates that include: NTSV rate reporting, audit and feedback procedures and NTSV CS checklist. An expert panel was deemed unnecessary as the elements of the protocol were validated and affirmed via inclusion in the CMQCC toolkit.

Project and components were discussed with site nursing and provider leadership and received approval. The project was then discussed with the Director of Nursing Quality and Research to understand and complete steps for official site approval to include an Affiliation Agreement and submission of project proposal documentation. Upon completion and submission, all project proposal documentation was then reviewed and approved by the Nursing Quality and Research Committee; per the committee no IRB is required as this is a QI project. With approval, the DNP student met with department leadership and identified key stakeholders who agreed to be on project implementation interprofessional team. Additionally, the RN who collects and reports NTSV data for the department consented to be the project Data Champion. All identified key team members served on the implementation interprofessional team throughout the course of the project.

The project implementation interprofessional team modified the current feedback and audit process conducted to include all NTSV CS charts. The review was completed with the help of the Data Champion who assisted the DNP student in creating tailored reports to obtain the required data on NTSV patients through the EPIC Electronic Medical Record (EMR) system, utilizing the same previously created, validated reports that are currently used by the Women's and Children's leadership team for analysis and reporting purposes. Next, the team modified current collection and reporting process of individual provider and overall NTSV rates to include RN NTSV rates. The DNP student then validated with Data Champion that the data needed to calculate RN NTSV CS rates could be pulled into an EPIC report from the datapoint of Delivery RN in Delivery Record. Calculation of RN NTSV CS rates was added to the established data collection process of NTSV Providers rates within EPIC and analyzed by the DNP Student.

Analysis of baseline RN NTSV CS rates was completed and shared with Unit Leadership in three, four, and five-month rolling increments to include name, number of births, and rate of NTSV CS including for each RN. Unit Leadership and the DNP student discussed RN NTSV CS data and determined a five-month rolling rate provided an adequate number of births per RN for reliable RN NTSV CS rate measurements and will be utilized for the project (See Appendix F). Unit Leadership also provided list of the RNs who primarily circulate CS cases so that any NTSV CS case attributed would be double-checked to validate who provided care at CS decision. This identified RN NTSV CS rolling rate was disseminated on a monthly cadence to RN leadership and team via e-mail after developing and implementing an education plan with RN and provider team to explain the new measure, reason for analysis, and report that included team huddles, e-mails, and meetings.

The project implementation interprofessional team reviewed the CMQCC NTSV CS checklist to assess appropriateness for implementation into current rate reporting, audit and feedback structure (See Appendix E). Next, this same team disseminated proposed NTSV CS checklist to identified unit and provider leadership for feedback on checklist to determine if modification needed and how to best incorporate checklist into clinical practice. The project implementation interprofessional team then met to discuss feedback and determined further modification was needed to incorporate current retrospective NTSV CS audit tools, which varied by provider practice checklist, and to include hard to retrieve data points. A final draft of the tool was approved by the team and renamed NTSV CS Communication Tool (see Appendix G).

NTSV CS Communication Tool collection and audit process for compliance was determined to be on a weekly cadence by team. After walking the proposed process on the unit, the team decided to place NTSV CS Communication Tool collection baskets in the CS PACU and at the

Labor and Birth team station to facilitate ease of use. This same team discussed and determined with RN and Provider Champions a plan to review NTSV CS cases found to be out in compliance with checklist on a weekly basis and to send names of corresponding RN and Provider to appropriate leadership for follow-up.

#### Aim 2: To implement and evaluate the clinical protocol.

The data collection and analysis process started by obtaining and analyzing baseline retrospective NTSV data set from 12-month period prior to project implementation at the project site and baseline overall and RN NTSV rates were analyzed to reflect an accurate retrospective data set to compare to the project implementation period. Data Champion showed the DNP student how to collect data in EPIC and filter in Excel using determined parameters.

Protocol implementation training plan and materials were developed using the CMQCC Toolkit as a guide and then were presented to the interprofessional team members for review and approval. Staff training then occurred via joint provider and nursing roll-outs through team meetings, educational sessions, e-mails, huddles, and one on one sessions with key unit leaders who then presented materials in practice-specific and resident training meetings. Training materials were then presented in PowerPoint, huddle message, and e-mail formats to ensure maximum saturation to team working variable shifts. Uniform content material, to emphasize the addition of RN NTSV CS rate measure, was presented to all members of the obstetric team that included opportunities for questions and feedback.

Collection of RN NTSV CS rates was added to current process of monthly provider and overall NTSV rate collection. Analysis of baseline RN NTSV CS rates was completed by the DNP student and shared with Unit Leadership for the five-month time period of July through November 2021 to include RN name, number of births, and rate of NTSV CS including for each

RN. Five-month rolling RN NTSV CS rates for the project implementation period were the analyzed, displayed in table format and shared on a monthly basis with Unit Leadership for review and distribution as a part of the current transparent reporting of overall and provider NTSV CS rates (See Appendix F). Finally, feedback and coaching were provided by members of interprofessional team as appropriate in 1:1 manner as per current peer review structure. Upon project completion, overall and RN NTSV CS data, which excludes scheduled cs, for the project period was obtained and analyzed using the same steps described for the baseline data collection. The deidentified data was securely e-mailed to a statistician for analysis.

Due to multiple limitations, the NTSV CS Communication Tool was implemented in Phase II of this project on February 9<sup>th</sup>, 2022, and will be fully evaluated for effectiveness in a later publication. This tool is completed by the primary provider and RN prior to CS decision. Any member of the team can review patient's plan of care and labor progression using the NTSV CS Communication Tool adapted from the CMQCC Toolkit. The team reviews tool and then determines next step in patient's plan of care. If the criteria for NTSV CS is deemed to be met, checklist is completed and signed by the delivering provider or attending midwife who makes the decision to proceed with NTSV CS. Completed NTSV CS Communication Tools are placed in a designated location for collection.

Fidelity to the protocol is monitored by the trained members of the project implementation interprofessional team and DNP student who report any deviations to the protocol via e-mail to the implementation interprofessional team. Additionally, the completed communication tools are collected and evaluated for compliance on a weekly cadence by the DNP student and deviations reported to the appropriate leader. The project site feedback and audit process was adapted to include the PDSA structure to allow for real-time monitoring and adjustment during

implementation. Weekly audits of communication tool compliance are being conducted with weekly run charts created to display NTSV rates to allow for modifications to project as needed via PDSA cycle structure. Next, all NTSV CS cases are being audited for compliance to communication tool on a monthly basis by identified interprofessional team.

Both Phases of this project have or will be evaluated for significance in reducing NTSV CS rate excluding scheduled CS, with the assistance of a statistician, using a Chi-square analysis to compare the pre-intervention and post-intervention groups on categorical parameters. Frequency and percentage statistics will be calculated to give context to the chi-square findings. Data will be compared to retrospective data of the same time period prior to implementation. For the purposes of this preliminary review, compliance to the NTSV CS Communication Tool will be displayed via a run chart showing rate trends from implementation. Post-implementation balancing measures have been compared to pre-implementation retrospective data using overall rates and a chi squared analysis. Quantitative data collected for this project consists of overall NTSV CS rate, preliminary compliance percentage to NTSV CS Communication Tool, and NTSV CS rate excluding scheduled cases. Balancing data collected for this project to measure protocol's impact on patient and neonatal safety consists of APGAR scores less than 7 at 5 minutes of life, NICU admissions, shoulder dystocia, intrauterine infection, PPH, and 3<sup>rd</sup> or 4<sup>th</sup> degree laceration rates.

# Aim 3: To make recommendations related to the scaling and sustainability of the protocol within and across systems.

No barriers are anticipated to sustainability as project is in line with current NTSV reduction work and will leverage already established and delegated resources. The Provider Champion has been trained on the collection and analysis process of RN NTSV CS rates for

measure sustainability. Project findings have been shared via PowerPoint presentation to the Women's and Children's Quality and Safety Committee, the Nursing Research Council, and to the front-line teams in staff meetings. Also, will present poster at Health System's Annual Quality and Safety Program and will then submit materials for considered for inclusion as a poster presentation at the AWHONN's Annual Convention. Additionally, the project will be submitted for publication with the *Journal of Obstetric, Gynecologic, and Neonatal Nursing* or comparable journal. Finally, the project will be implemented at a second hospital in the health system upon completion and successful evaluation.

#### Implications

This DNP project provides additional tools and structure to the continuing work of standardizing individual practice to evidence-based best practice. Such work in reducing variability has the potential to improve unit practice culture, team communication, RN and overall NTSV CS rates, and morbidity and mortality, both in the short and long term (ACOG, 2014; Boyle et al., 2013; Centers for Disease Control and Prevention, 2018; Lagrew et al., 2018; Smith et al., 2016). While improving this project site is certainly the goal of this project, the protocol can easily be replicated and implemented to improve outcomes on a wider scale.

Building upon the current structure to allow for a team-centered approach in avoiding unnecessary CS may improve staff engagement, increase a feeling of clinician empowerment to advocate for the patients under their care, and improve team communication and collaboration (Smith et al., 2016). When utilized appropriately in obstetrical care, checklists have been shown to improve team performance and communication while standardizing patient care (Bernstein et al., 2017). It is anticipated that improved team collaboration and communication will also translate to improved HCAHPS patient experience and Gallup employee engagement scores.

Further, ensuring every patient receives equitable, high-quality care is an essential step in addressing unconscious bias and eliminating disparities in healthcare; this includes robust and transparent examination of failures via chart reviews (Ozimek & Kilpatrick, 2018).

By reducing unnecessary NTSV CS and promoting normal, physiologic birth, this project can reduce healthcare costs and improve efficiencies in a multitude of ways, including:

- Increasing compliance to labor management guidelines (Bell et al., 2017; Smith et al., 2016)
- Decreasing early or latent stage labor admissions which, in turn, improves staff and bed utilization and availability (Bell et al., 2017; Smith et al., 2016)
- Decrease staffing needs and on call and overtime utilization (DeJoy et al., 2019)
- Decreasing unnecessary medical intervention (Smith et al., 2016)
- Decreasing overall length of stay and patient acuity (DeJoy et al., 2019)
- Meeting CMS VBP goals to receive full reimbursement (TJC, 2020)
- Increasing early breastfeeding initiation and exclusive breastfeeding and decreasing human-milk substitute supplementation (DeJoy et al., 2019)
- Decreasing patient complications and long-term morbidity and NICU admissions (Bell et al., 2017; Boyle et al., 2013; CDC, 2015; Main et al., 2019)

#### **Human Subjects**

This project carries no risk to the patient population beyond that of established, normal care and has the potential to benefit all patients receiving care at the implementation site. In completing the Yale University Institutional Review Boards Checklist, all answers were in the affirmative which indicate this project does not involve human subject research and meets the criteria of a QI project. As a QI project, no research was conducted, the practice change/protocol

was applied to the entire practice environment and involved all the normal NTSV patient population while working to improve outcomes by decreasing variability of practice and no consent was required beyond the normal consents obtained for the population. The project was carried out by staff as a part of their normal duties with no outside funding.

#### **Return on Investment**

An in-depth Return on Investment and Project Budget analysis was completed to support the business case for this project. A project should either reduce costs, increase revenue, or achieve strategic priorities if it hopes to be meaningful and approved; this project to reduce unnecessary NTSV CS, does all three (Agency for Healthcare Research and Quality, 2008). In reducing the project site's NTSV CS rate from 23% to 20%, an estimated 49 NTSV CS will be prevented over the course of a year.

Given an uncomplicated CS patient at the project site is hospitalized from 72-96 hours, a conservative estimate of current average length of stay (LOS) for a CS was determined to be 79 hours versus an average LOS of vaginal birth as an estimated 36 hours; with an uncomplicated vaginal birth stay ranging from 24-48 hours. Knowing these averages and applying the 49 prevented CS annually, the facility will save a total of 2,107 hours per year. Per HealthCatalyst (2018) \$10,400 is saved with each LOS day reduced; multiplying that by 2,107 hours or 88 days equals a savings of \$915,200/year. Indirect benefits include: meeting the project site's Annual Operating Priority of an NTSV CS rate of 20% or less, potential to drive customers to the project site with TJC NTSV CS rate public reporting, and ability to increase volume via decreased LOS.

### Timeline

#### **Table 1. Project Timeline**

| Date                 | Timeline Activities                                                                                                           |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| April 2021           | DNP Project proposal defense                                                                                                  |
| May-November 2021    | Complete Project Aim 1                                                                                                        |
| August-December 2021 | Complete education and training component of Project Aim 2                                                                    |
| December 2021        | Implement RN NTSV CS rate reporting on unit. Send monthly NTSV rates via e-mail with individual RN information and RN NTSV CS |
|                      | rates, excluding scheduled CS, in run charts for real-time information.                                                       |
| December-March 2022  | Sustain project and data collection                                                                                           |
| February 2022        | Implement NTSV CS checklist component. Start conducting weekly                                                                |
|                      | audits of NTSV CS checklist compliance to evaluate adherence and                                                              |
|                      | update NTSV CS RN attribution to using PDSA structure to adjust.                                                              |
|                      | Monitor checklist compliance and report deviation to appropriate leader.                                                      |
| March-April 2022     | Complete data analysis for project implementation period                                                                      |
| March-April 2022     | Complete and submit project paper                                                                                             |
| March-May 2022       | Write and submit project for publication                                                                                      |
| April-May 2022       | Complete Project Aim 3                                                                                                        |
| April 2022           | Present DNP Project                                                                                                           |

#### **Leadership Immersion**

DNP project implementation required the completion of a Clinical Education Affiliation Agreement between the clinical site and Yale University which required and received senior leadership approval from Barbara Jacobs, Chief Nursing Officer and Vice President of Nursing. Cathleen Ley, Ph.D., Director, Nursing Quality and Research served as External Expert and project advisor and Betsey Lewis-Snow, Senior Director, Women and Children's Services was selected as site advisor and project mentor. The project implementation interprofessional team consisted of: (a) Dr. Rhoda Raji, Associate Chair of Quality and Safety; (b) Allison Piquero, Clinical Educator, Labor and Delivery; (c) Labor and Delivery RNs and leadership, led by Jean Andres, Director, Labor and Delivery; (d) Crystal Asche, Clinical Supervisor. Updates were provided on a monthly basis, at minimum, during implementation phase to hospital mentor and

faculty per course requirement. The project was implemented and led by the DNP Student at the clinical site under the direction of the identified advisors and mentors.

#### **Chapter IV**

#### Results

During the three-month study period, the site had 415 NTSV births, excluding scheduled CS, which provided an excellent comparison to the 454 NTSV births in the 3-month baseline period. Using this data, the question of if a clinical protocol to incorporate RN NTSV CS rate analysis and reporting to an interprofessional audit procedure would reduce the NTSV CS rate on a large labor and delivery unit was addressed. While the original plan was to roll-out the RN NTSV CS rates and NTSV CS Communication Tool in tandem, the surge of the COVID-19 pandemic created a strain on staff resources, workload, and availability, making the addition of completing a robust education plan, team training and the roll-out of new checklist requiring intensive staff participation unreasonable. However, as the COVID-19 surge abated, team training on the tool commenced and phase II of the project launched February 9<sup>th</sup>, 2022 and will continue through May 31<sup>st</sup>, 2022; only preliminary data will be shared.

A retrospective review of EPIC data was conducted to review both RN-specific and total unit NTSV CS rates, excluding scheduled CS. Baseline RN-specific CS rates were collected over the months of July-November 2021 and then analyzed as individual and combined months to determine appropriate time period to examine to provide to most accurate RN NTSV CS rates while accounting for individual birth volume. The team determined a five-month rolling period to be appropriate for the RN NTSV CS rate analysis, however, given the variability in individual birth volume, number of birth data was included alongside each NTSV rate for review (See Appendix D). Unit-specific NTSV CS rates were noted to be 21.4% (97 CS/454 Total Eligible NTSV Births) during the three-month baseline period of September-November 2021 and 22.7% (94 CS/415 Total Eligible NTSV Births) during the three-month study period of December-

February 2022. Additionally, all 869 NTSV eligible charts were reviewed to obtain previously identified balancing measures of APGAR scores less than 7 at 5 minutes of life, NICU admission, shoulder dystocia, intrauterine infection, PPH, and 3<sup>rd</sup> or 4<sup>th</sup> degree laceration rates.

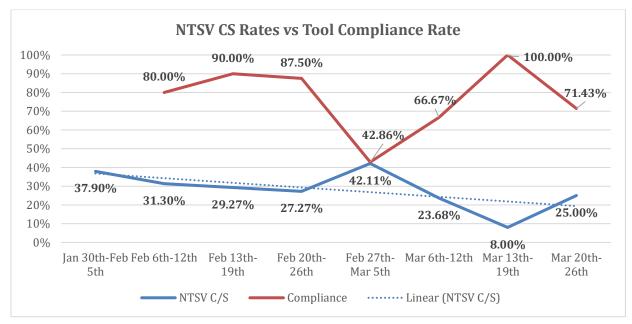
### **Statistical Methods**

Chi-square analysis was used to compare the pre-intervention and post-intervention groups on categorical parameters. Frequency and percentage statistics were calculated to give context to the chi-square findings. A planned sub-group analysis associated with comparing White and Black participants on their respective rates of CS was performed as well. Statistical significance was assumed at a two-sided alpha value of 0.05 and all analyses were performed using SPSS Version 28 (Armonk, NY: IBM Corp.).

#### **Statistical Results**

The results of the chi-square analyses found non-significant differences between the preintervention and post-intervention groups for CS, p = 0.65, PPH, p = 0.87,  $3^{rd}$ - $4^{th}$  laceration, p = 0.49, NICU admission, p = 0.64, intrauterine infection, p = 0.65, shoulder dystocia, p = 0.96, operative vaginal birth, p = 0.96, and APGAR less than 7 at 5 minutes, p = 0.67 (See Table 2). However, there was a statistically significant difference between White (n = 104; 19.7%) and Black (n = 62; 30.4%) participants on their rates of CS, p = 0.002, with Black participants having 1.78 times increased odds of CS (95% CI 1.23 – 2.56) versus White participants.

Table 2: Chi-square Analysis of the Frequency and Percentage Statistics


| Variable              | Pre-intervention | Post-intervention | <i>p</i> -value |
|-----------------------|------------------|-------------------|-----------------|
| C-section             | 97 (21.4%)       | 94 (22.7%)        | 0.65            |
| Postpartum Hemorrhage | 33 (7.3%)        | 28 (6.8%)         | 0.87            |

| 3 <sup>rd</sup> -4 <sup>th</sup> Laceration | 23 (5.12%) | 16 (2.2%) | 0.49 |
|---------------------------------------------|------------|-----------|------|
| NICU Admission                              | 39 (6.4%)  | 31 (5.5%) | 0.64 |
| Intrauterine Infection                      | 18 (4.0%)  | 20 (4.8%) | 0.65 |
| Shoulder Dystocia                           | 9 (2.0%)   | 9 (2.2%)  | 0.96 |
| Operative Vaginal Birth                     | 30 (6.6%)  | 28 (6.3%) | 0.96 |
| APGAR < 7 at 5 minutes                      | 8 (1.8%)   | 10 (2.4%) | 0.67 |
|                                             |            |           |      |

### **Phase II Preliminary Findings**

Since the February 9<sup>th</sup>, 2022, launch of Phase II, weekly NTSV CS rates have been analyzed and presented to the team to include a baseline week prior to implementation, and the project baseline data rate. A steady downward trend in weekly NTSV CS rates is noted in the data to date with the exception of the week of February 27<sup>th</sup> – March 5<sup>th</sup> wherein a sharp increase to 42.11% is noted. In review NTSV CS Communication Tool data (See Table 3), a similar increase in non-compliance is noted for the week of February 27<sup>th</sup> – March 5th.

Table 3: Rate of Weekly NTSV CS vs Tool Compliance, Excluding Scheduled CS



#### **Chapter V**

#### Discussion

The aim of this QI project was not achieved: to decrease the overall NTSV CS rate from 23% to 20% or less at a large birthing hospital in Maryland by implementing an evidence-based clinical protocol based on the ACOG/SMFM criteria. The overall NTSV CS rate of the baseline period, September through November, was 23.89% with 112 out of 469 eligible births occurring via CS while the overall NTSV CS rate of the project period was 25.52% with 110 out of 431 eligible births occurring via CS. To better understand the RN's impact on the NTSV CS rate, the decision was made to exclude scheduled CS as the RN is not involved in the decision-making or care planning of these cases, which occur prior to admission to hospital. With the exclusion of scheduled CS, the implementation of a clinical protocol to incorporate RN NTSV rate analysis and reporting resulted in a 22.7% NTSV CS rate for the project period of December through February in comparison to the 21.4% rate of the baseline period. While all reviewed overall institutional NTSV CS rates are beneath CMS' reportable threshold of 30%, the Healthy People 2030 target of 23.6% was exceeded (CMS, 2022; Office of Disease Prevention and Health Promotion, 2022). Further, the month-to-month rates demonstrate high variability, from 18.06% to 30.60% in NTSV CS excluding scheduled CS and 20.63% to 32.61% in all NTSV CS. However, the institutional rates still out-perform that of the latest annual Maryland NTSV rate of 27.9% and US annual rate of 25.6% (Maternal Safety Foundation, 2019).

Phase II of the projects adds the implementation of an NTSV CS Communication Tool, completed in real-time starting at admission for all NTSV eligible patients then reviewed and signed by the Provider and RN upon CS decision. While Phase II is preliminary and still in progress, it is showing promising results with a trend of decreasing weekly NTSV CS rates from 37.90% Week 0, 31.30% Week 1, 30.00% Week 2, 27.59% Week 3, 42.11% Week 4 (where low compliance was noted), 23.68% Week 5, 8.00% Week 6, to 25.00% Week 7 (See Table 3).

#### **Identification of Positive Outlier RNs**

While the implementation of a clinical protocol to incorporate RN NTSV CS rate analysis and reporting did not result in a significant decrease to NTSV CS rates, the five-month rolling RN NTSV CS rate data did reveal multiple RNs with consistently low NTSV CS rates despite similar or higher birth volumes than their peers (See Table 4 & Appendix D). The sample-size is too small to adequately power an analysis of the impact of these consistently lower than expected RN NTSV CS rates on the identified balancing measures, but no untoward trends were noted upon review. Ongoing RN NTSV CS rate review will continue at the project site both as a sustained practice change and to allow for further monitoring of this positive outlier trend to determine next steps.

| Delivery RN | NTSV July-Nov<br>2021 | NTSV Aug-Dec<br>2021 | NTSV Sept-Jan<br>2022 | NTSV Oct-Feb<br>2022 |
|-------------|-----------------------|----------------------|-----------------------|----------------------|
| RN 12       | 21 (0%)               | 20 (5%)              | 14 (7.14%)            | 14 (7.14%)           |
| RN 18       | 17 (0%)               | 18 (0%)              | 15 (0%)               | 14 (0%)              |
| RN 43       | 13 (7.69%)            | 17 (5.88%)           | 16 (12.5%)            | 16 (12.5%)           |
| RN 47       | 28 (10.71%)           | 36 (11.11%)          | 30 (10%)              | 26 (3.85%)           |
| RN 51       | 17 (11.76%)           | 18 (11.11%)          | 12 (16.67%)           | 8 (12.5%)            |
| RN 35       | N/A                   | 10 (10%)             | 14 (7.14%)            | 16 (6.25%)           |

#### **Table 4: Positive Outlier RNs**

#### Limitations

Data collection was a significant limitation with many EPIC report fields such as blood loss, laceration, and fetal presentation not consistently populating results. If a provider or RN failed to document a data point properly in the Delivery Summary or Delivery Note, the report would not be able to pull in the required data. Additionally, EPIC reports did not provide data on

NICU admissions nor intrauterine infections. In order to acquire all data points required, audits of 1,321 charts have been performed to date and in doing so a theme of inconsistent documentation emerged. It was noted that some providers would use Smart Phrase EPIC Delivery notes and either pull in required data points from the Delivery Summary or would manually input data, while others would not complete the Smart Phrase portion of the note and free text information at the bottom of the document. RNs also had challenges with documentation inconsistency as numerous Delivery Summaries were found to be incomplete and blood loss documented in different locations leading to issues of either no documentation or doubled documentation. It was also discovered that Delivery Providers rather than Delivery RN was the data field available to use in the EPIC report; this required removing all listed providers except for the Delivery RN to acquire the needed data point. Additionally, without manual chart audits reviewing History and Physical, Progress, Procedure, or Nursing Notes, there was no reliable method of determining reason for patient admission, membrane status upon admission, and if the patient was in spontaneous labor, an induction, or an augmentation of labor.

As this project was implemented during the pandemic, it is important to call-out the confounding factor that is COVID-19 and its potential to impact the NTSV CS rate within this and other organizations. For example, most hospitals including this project site, had limited visitation from admission to discharge to one person. Birthing people have been effectively forced to choose between their partners and a labor support person. These restrictions can impend the availability of continuous labor support which is shown to improve outcomes and decrease CS births (Bohren et al., 2017). Fortunately, the project site does allow licensed doulas to be present as a member of the care team, but this does raise an equity issue for those unable to afford a private doula or enroll in the doula grant program.

35

The COVID-19 pandemic provided another significant limitation to the project, effectively splitting the originally envisioned protocol into two separate phases due to concerns of added work to already strained staff and the inability to pull together the required stakeholders of the interprofessional team when all were needed for patient care. The pandemic has also exacerbated a nation-wide RN staffing crisis, to which the project site was not immune. High turnover of experienced birth RNs was seen, requiring the use of short-term local contracts, agency RNs, and new-to-specialty and new graduate RNs. The loss of experienced RN staff, coupled with the sudden increase of new staff, lead to challenges in consistent adherence to EBP.

Finally, this project was implemented in only one clinical setting over a three-month period. The project site does boast a high volume of patients to allow for robust data sets with adequate power to examine a multitude of variables. Regardless of patient volume, the site may lack external validity as it may only be representative of other similar practice settings in Maryland and/or the US Northeast Region.

#### **Implications to Practice**

While this project did not meet its goal of reducing the NTSV CS rate at this practice site during this time period, it does reinforce the importance of the RN as a member of the interprofessional care team and the need to better understand the individual RN's ability to promote physiologic birth. The presence of positive outlier RNs with consistently low NTSV CS rates prior to and during the project period adds validity to the term heard across birthing units: "baby whisperer," one that can seemingly help coax even the most difficult birth safely into the world without surgical intervention and is frequently requested and trusted by fellow providers. With the current high turnover of experienced RNs, the birthing community is at risk of losing these trusted and well-practiced RNs. Understanding this, it is critical to continue to analyze RN

NTSV CS rates to identify these positive outliers to further examine their individual practices that may contribute to successful, safe physiologic birth.

This project also highlights the need to improve clinical documentation and EMR reporting. The efficacy and utility of leveraging EMR to produce meaningful data sets cannot being understated. However, more work needs to be done to support clinicians and researchers in more effectively and efficiently wielding both the EMR and its data reporting technology.

While a not primary focus of this project, it is important to underscore the data analysis further illustrates continued disparities of care seen in Black patients. Black participants had 1.78 times increased odds of CS (95% CI 1.23 – 2.56) compared to White participants. Unfortunately, this racial disparity is in no way unique to the project site with a 1.73 times increased odd of CS (95% CI 1.45-2.06) seen in Black patients in California and increased odds of CS in all non-White patients (Okwandu et al., 2021). These findings reaffirm the importance of promoting EBP that supports physiologic birth and reducing variations in care. Phase II of this project, the implementation of NTSV CS Communication Tool, was adapted to include demographic information to allow for more in-depth analysis of indications for CS, baseline clinical data, and team interventions. Additionally, the Provider and RN NTSV CS rate data can be further analyzed to explore NTSV CS rates by race per Clinician.

#### **Chapter VI**

#### Conclusion

Overuse of preventable CS continues to be a concerning safety issue, bringing higher healthcare costs and risks of morbidity and mortality for birthing people and their neonates in the US. Collaborative, evidence-based interprofessional team interventions such as the implementation of RN NTSV CS rate reporting care and an NTSV CS Communication Tool work to reduce variation in care and increase standardization to EBP. While the data does not show a reduction in the NTSV CS rate, monitoring and reporting such rates are a critical component of the team audit and feedback practice. Further, the RN NTSV CS rate reporting has led to the identification of positive outlier RNs with consistently lower NTSV CS rates than their peers. Closer examination and analysis of the practices of these positive outlier RNs is a crucial next step in identifying, testing, and implementing EBP directly from those who have arguably the greatest potential for driving EBP change and research: front-line RNs.

#### References

Agency for Healthcare Research and Quality. (2008). *Will it work here? A decisionmaker's guide to adopting innovations*. Retrieved from

https://innovations.ahrq.gov/sites/default/files/guides/InnovationAdoptionGuide.pdf

- Al Yassan, A. Q., Al-Asadi, J. N., & Khalaf, S. K. (2019). The role of caesarean section in childhood asthma. *Malaysian Family Physician*, 14(3), 10-17.
- Almeida, E. C., Nogueira, A. A., Candido dos Reis, F. J., & Rosa e Silva, J. C. (2002).
  Cesarean section as a cause of chronic pelvic pain. *International Journal of Gynaecology* and Obstetrics, 79(2), 101-104. doi: 10.1016/s0020-7292(02)00227-8
- American College of Obstetricians and Gynecologists. (2014). Obstetric care consensus no. 1:
  Safe prevention of the primary cesarean delivery. *Obstetrics & Gynecology*, *123*(3), 693-711. doi: 10.1097/01.AOG.0000444441.04111.1d
- American College of Obstetricians and Gynecologists. (2018). Obstetric care consensus no. 7:
   Placenta accreta spectrum. *Obstetrics & Gynecology*, *132*(6), e259-e275. doi:
   10.1097/AOG.00000000002983
- Babazade, R., Vadhera, R. B., Krishnamurthy, P., Varma, A., Doulatram, G., Saade, G. R., & Turan, A. (2019). Acute post cesarean pain is associated with in-hospital exclusive breastfeeding, length of stay and post-partum depression. *Journal of Clinical Anesthesia*. [Epub ahead of print]. doi: 10.1016/j.clinane.2019.109697
- Bell, A. D., Joy, S., Gullo, S., Higgins, R., & Stevenson, E. (2017). Implementing a systematic approach to reduce cesarean birth rates in nulliparous women. *Obstetrics and Gynecology*, 130(5), 1082-1089. doi:10.1097/AOG.00000000002263

Berg, O., & Hung, K. J. (2011). Early skin-to-skin to improve breastfeeding after cesarean birth.

*The American Journal of Maternal Child Nursing*, *36*(5), 318-324. doi: 10.1097/NMC.0b013e3182266314

- Bernstein, P. S., Combs, C. A., Shields, L. E., Clark, S. L., & Eppes, C. S. (2017). The development and implementation of checklists in obstetrics. *American Journal of Obstetrics and Gynecology*, 217(2), B2-B6. doi: 10.1016/j.ajog.2017.05.032
- Bermudez-Tamayo, C., Johri, M., & Chaillet, N. (2018). Budget impact of a program for safely reducing caesarean sections in Canada. *Midwifery*, 60(1), 20-26. doi: 10.1016/j.midw.2018.01.022
- Bohren, M. A., Hofmeyr, G. J., Sakala, C., Fukuzawa, R. K., & Cuthbert, A. (2017). Continuous support for women during childbirth. *Cochrane Database Systematic Reviews*. doi: 10.1002/14651858.CD003766.pub6
- Bowman, Z. S., Eller, A. G., Bardsley, T. R., Greene, T., Varner, M. W., & Silver, R. M. (2014).
   Risk factors for placenta accrete: A large prospective cohort. *American Journal of Perinatology*, 31(9), 799-804. doi: 10.1055/s-0033-1361833
- Boyle, A., Reddy, U. M., Landy, H. J., Huang, C., Driggers, R. W., & Laughon, S. K. (2013).
  Primary cesarean delivery in the United States. *Obstetrics and Gynecology*, *122*(1), 33-40. doi: 10.1097/AOG.0b013e3182952242
- Caceres, I. A., Arcaya, M., Declercq, E., Belanoff, C. M., Janakiraman, V., Cohen, B., ...
  Subramanian, S. V. (2013). Hospital differences in cesarean deliveries in Massachusetts
  (US) 2004-2006: The case against case-mix artifact. *PLoS One*, 8(3), e57817. doi: 10.1371/journal.pone.0057817
- Callaghan-Koru, J. A., Creanga, A. A., DiPietro, B., Mark, K., Sowe, A., Aboutmatar, N., ... Curran, G. (2019). Implementation of the safe reduction of primary cesarean births safety

bundle during the first year of a statewide collaborative in Maryland. *Obstetrics and Gynecology, 134*(1), 109-119. doi: 10.1097/AOG.00000000003328

- Centers for Disease Control and Prevention. (2015). Maternal morbidity for vaginal and cesarean deliveries, according to previous cesarean history: New data from the birth certificate, 2013. *National Vital Statistics Reports*, 64(4). Retrieved from https://cdc.gov/nchs/data/nvsr/nvsr64/nvsr64\_04.pdf
- Centers for Disease Control and Prevention. (2020). *Births-Methods of delivery*. Retrieved from https://www.cdc.gov/nchs/fastats/delivery.htm
- Centers for Medicare and Medicaid Services. (2022). Hospital value-based purchasing. Retrieved from https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/Hospital-Value-Based-Purchasing-
- Chaillet, N., & Dumont, A. (2007). Evidence-based strategies for reducing cesarean section rates: A meta-analysis. *Birth*, *34*(1), 53-64. doi: 10.1111/j.1523-536X.2006.00146.x
- Chen, I., Opiyo, N., Tavender, E., Mortazhejri, S., Rader, T., Petkovic, J., ... Betran, A. P.
   (2018). Non-clinical interventions for reducing unnecessary caesarean section. *Cochrane Database of Systematic Reviews*, 2018(9), 1-154. doi: 10.1002/14651858.cd00528.pub3
- Child, R., & DeCesare, J. (2017). Reduction of nulliparous term singleton vertex cesarean deliveries with feedback and monitoring. *Obstetrics and Gynecology*, 5(129), 179S. doi: 10.1097/01.AOG.0000514132.62492.d7
- Christopher, M. (2018). ACMN responds to release of ARRIVE Trial Study results: Acknowledges quality of study but raises concerns about potential for misapplying results. Retrieved from https://www.midwife.org/ACNM-Responds-to-Release-of-ARRIVE-Trial-Study-Results

- Council on Patient Safety in Women's Health Care. (2020). Patient safety bundles. Retrieved from https://safehealthcareforeverywoman.org/aim/patient-safety-bundles/
- DeJoy, S. A., Bohl, M. G., Mahoney, K., & Blake, C. (2019). Estimating the financial impact of reducing primary cesareans [published online ahead of print July 28, 2019]. *Journal of Midwifery and Women's Health*. doi: 10.1111/jmwh.13010
- Edmonds, J. K., & Jones, E. J. (2012). Intrapartum nurses' perceived influence on delivery mode decisions and outcomes. *Journal of Obstetric, Gynecologic and Neonatal Nursing*, 42(1), 3-11. doi: 10.1111/j.1552-6909.2012.01422.x
- Edmonds, J. K., Hacker, M. R., Golen, T. H., & Shah, N. T. (2016). Nurses count: Tracking performance to improve cesarean delivery rates. *Birth*, *43*(1), 3-5. doi: 10.1111/birt.12216
- Edmonds, J. K., O'Hara, M., Clarke, S. P., & Shah, N. T. (2017). Variation in cesarean birth rates by labor and delivery nurses. *Journal of Obstetric, Gynecologic and Neonatal Nursing*, *46*(4), 486-493. doi: 10.1016/j.jogn.2017.03.009
- Edmonds, J. K., Weiseth, A., Neal, B. J., Woodbury, S. R., Miller, K., Souter, V., & Shah N. T. (2020). Variability in cesarean delivery rates among individual labor and delivery nurses compared to physicians at three attribution time points. *Health Services Research*. Advance online publication. doi: 10.1111/1475-6773.13546
- Ellison, K., & Martin, N. (2017). Nearly dying in childbirth: Why preventable complications are growing in the U.S. *NPR*. Retrieved from https://www.npr.org/2017/12/22/572298802/ nearly-dying-in-childbirth-why-preventable-complications-are-growing-in-u-s

Florida Perinatal Quality Collaborative. (2019). Promoting Primary Vaginal Deliveries (PROVIDE) Initiative June data report. [Unpublished Data Report].

Gams, B., Neerland, C., & Kennedy, S. (2019). Reducing primary cesarean: An innovation multipronged approach to supporting physiologic labor and vaginal birth. *The Journal of Perinatal and Neonatal Nursing*, 33(1), 52-60. doi: 10.1097/JPN.00000000000378

Gibbons, L., Belizan, J. M., Lauer, J. A., Betran, A. P., Merialdi, M., & Althabe, F. (2010). *The global numbers and costs of additionally needed and unnecessary caesarean sections performed per year: Overuse as a barrier to universal coverage* (World Health Organization, Background Paper No. 30). Retrieved from: https://www.researchgate.net/ publication/265064468\_The\_Global\_Numbers\_and\_Costs\_of\_Additionally\_Needed\_and \_\_Unnecessary\_Caesarean\_Sections\_Performed\_per\_Year\_Overuse\_as\_a\_Barrier\_to\_Uni versal\_Coverage\_HEALTH\_SYSTEMS\_FINANCING

- Gould, J., Danielson, B., Korst, L., Phibbs, R., Chance, K., Main, E.K. ... Stevenson, D. K.
  (2004). Cesarean delivery rates and neonatal morbidity in a low-risk population. *Obstetrics and Gynecology*, *104*(1), 11-19. doi: 10.1097/01.AOG.0000127035.64602.97
- Gregory, K. D., Jackson, S., Korst, L., & Fridman M. (2012). Cesarean versus vaginal delivery: Whose risks? Whose benefits? *American Journal of Perinatology*, 29, 7-18. doi: 10/1055/s-0031-1285829
- Haelle, T. (2018). Your biggest c-section risk may be your hospital. Retrieved from https://www.consumerreports.org/c-section/biggest-c-section-risk-may-be-your-hospital/
- HealthCatalyst. (2018). Systematic, data-driven approach lowers length of stay and improves care coordination. Retrieved from https://healthcatalyst.com/success\_stories/reducinglength-of-stay-memorial-hospital-at-gulfport

- The Joint Commission. (2019). Measure information: Perinatal Care PC-05. *Specifications Manual of Joint Commission National Quality Measures (v2016A!)*. Retrieved from https://manual.jointcommission.org/releases/TJC2020A2/MIF0170.html
- The Joint Commission. (2020). Measure information: Perinatal Care PC-02. *Specifications Manual of Joint Commission National Quality Measures (v2021A1)*. Retrieved from https://manual.jointcommission.org/releases/TJC2021A1/MIF0167.html
- The Joint Commission. (2021). Public reporting for hospital perinatal care measure to start in late january. Retrieved from https://www.jointcommission.org/resources/news-and-multimedia/newsletters/newsletters/joint-commission-online/jan-6-2021/public-reporting-for-hospital-perinatal-care-measures-to-start-in-late-january/
- Keag, O. E., Norman, J. E., & Stock, S. J. (2018). Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: Systematic review and meta-analysis. *PLoS Medicine*, 15(1). doi: 10.1371/journal.pmed.1002494
- Kennare, R., Tucker, G., Heard, A., & Chan, A. (2007). Risks of adverse outcomes in the next birth after a first cesarean delivery. *Obstetrics and Gynecology*, 109(2), 270-276. doi: 10.1097/01.aog.0000250469.23047.73
- Kozhimannil, K. B., Law, M. R., & Virnig, B. A. (2013). Cesarean delivery rates vary 10-fold among US hospitals: Reducing variation may address quality, cost issue. *Health Aff* (*Millwood*), 32(3), 527-535. doi: 10.1377/hltaff.2012.1030
- Lagrew, D. C., Kane Low, L., Corry, M. P., Edmonds, J. K., Gilpin, B. G., Frost, J., ... Jaffer, S. (2018). National partnership for maternal safety: Consensus bundle on safe reduction of primary cesarean births-supporting intended vaginal births. *Journal of Midwifery and Women's Health*, 63(2), 235-244. doi: 10.1111/jmwh.12738

- Landau, R. (2019). Post-cesarean delivery pain. Management of the opioid-dependent patient before, during and after cesarean delivery. *International Journal of Obstetric Anesthesia*, 39(1), 105-116. doi: 10.1016/j.ijoa.2019.01.011
- The Leap Frog Group. (n. d.). Hospital ratings. Retrieved from https://www.leapfroggroup.org/ hospitals/search/list/location/Annapolis%2C%20MD%2C%20USA/10
- Leelakrishna, P., & Karthik, R. B. (2018). A study of risk factors for catheter associated urinary tract infection. *International Journal of Advances in Medicine*, 5(2), 334-339. doi: 10.18203/2349-3933.ijam20180525
- Li, L., Wan, W., & Zhu, C. (2021). Breastfeeding after a cesarean section: A literature review. *Midwifery, 103.* doi: 10.1016/j.midw.2021.103117
- Main, E. (Producer). (2016). Safely reducing primary cesarean birth [Video webinar].
- Main, E. K., Chang, S. C., Cape, V., Sakowski, C., Smith, H., & Vasher, J. (2019). Safety assessment of a large-scale improvement collaborative to reduce nulliparous cesarean delivery rates. *Obstetrics and Gynecology*, 133(4), 613-623. doi:

10.1097/AOG.000000000003109

- Maternal Safety Foundation. (2022). NTSV Cesarean Birth Rate Dashboard: Maryland. Retrieved from https://www.cesareanrates.org/maryland
- Melnyk, B. M., & Fineout-Overholt, E. (2005). *Evidence-based practice in nursing and healthcare: A guide to best practice.* Philadelphia, PA: Lippincott, Williams & Wilkins.
- Melnyk, B. M., & Fineout-Overholt, E. (2015). Evidence-based practice in nursing and healthcare: A guide to best practice. (3<sup>rd</sup> ed.). Philadelphia, PA: Lippincott, Williams & Wilkins.

Moher D., Liberati A., Tetzlaff J., Altman, D. G., & The PRISMA Group. (2009). Preferred

reporting items for systematic reviews and meta-Analyses: The PRISMA Statement. *PLoS Med*, 6(7), e1000097. doi: 10.1371/journal.pmend1000097

- Nelson, E. C., Batalden, P. B., & Godfrey, M. M. (2007). Quality by design: A clinical microsystems approach. (1<sup>st</sup> ed.). San Francisco, CA: Jossey-Bass.
- Office of Disease Prevention and Health Promotion. (2022). *Healthy people 2030: Maternal, infant, and child health.* Retrieved from https://health.gov/healthypeople/objectives-and-data/browse-objectives/pregnancy-and-childbirth/reduce-cesarean-births-among-low-risk-women-no-prior-births-mich-06
- Ogunyemi, D., McGlynn, S., Ronk, A., Knuden, P., Andrews-Johnson, T., Raczkiewicz, A., ... Bahado-Singh, R. (2018). Using a multifaceted quality improvement initiative to reverse the rising trend of cesarean births. *Journal of Maternal Fetal and Neonatal Medicine*, *31*(5), 567-579. doi: 10.1080/14767058.2017.1292244
- Okwandu, I. C., Anderson, M., Postlethwaite, D., Shirazi, A., & Torrente, S. (2021). Racial and ethnic disparities in cesarean delivery and indications among nulliparous, term, singleton, vertex women. *Journal of Racial and Ethnic Health Disparities*. doi: 10.1007/s40615-021-01057-w
- Osterman, M. J., Kockanek, K. D., MacDorman, M. F., Strobino, D. M., & Guyer, B. (2015). Annual summary of vital statistics: 2012-2013. *Pediatrics, 135*(6), 1115-1125. doi: 10.1542/peds.2015-0434
- Overfield, M., Ryan, C., Spangler, A., & Tully, R. (2005). *Clinical guidelines for the establishment of exclusive breastfeeding*. Retrieved from https://www.ilca.org/custom404?pageid=3933

Ozimek, J. A., & Kilpatrick, S. J. (2018). Maternal mortality in the twenty-first century.

*Obstetrics and Gynecology Clinics of North America, 45*(2), 175-186. doi: 10.10.1016/j.ogc.2018.01.004

- Radin, T. G., Harmon, J. S., & Hanson, D. A. (1993). Nurses' care during labor: Its effect on the cesarean birth rate of healthy, nulliparous women. *Birth*, 20(1), 14-21. doi: 10.1111/j.1523-536x.1993.tb00174.x
- Rosenthal, E. (2013, June 30). American way of birth, costliest in the world. *The New York Times*. https://www.nytimes.com/2013/07/01/health/american-way-of-birth-costliest-inthe-world.html?nl=todaysheadlines&emc=edit\_th\_20130701&\_r=2&
- Scott, R. D. (2009). *The direct costs of healthcare associated infections in US hospitals and the benefits of their prevention*. Retrieved from https://stacks.cdc.gov/view/cdc/11550
- Smith, H., Peterson N., Lagrew, D., & Main, E. (2016). Toolkit to support vaginal birth and reduce primary cesareans: A quality improvement toolkit. Stanford, CA: California Maternal Quality Care Collaborative. Retrieved from https://www.academia.edu/24991490/Toolkit\_to\_Support\_Vaginal\_Birth\_and\_Reduce\_P rimary\_Cesareans\_A\_Quality\_Improvement\_Toolkit
- Spong, C. Y. (2015). Prevention of the first cesarean delivery. Obstetrics and gynecology clinics of North America, 42(2), 377–380. https://doi.org/10.1016/j.ogc.2015.01.010
- Stevens, J., Schmied, V., Burns, E., & Dahlen, H. (2014). Immediate or early skin-to-skin contact after a caesarean section: A review of the literature. *Maternal & Child Nutrition*, 10(4), 456-473. doi: 10.1111/mcn.12128
- Teoli, D., & An, J. (2019). SWOT Analysis [Internet edition]. Treasure Island, FL: StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK537302/

Thuillier, C., Roy, S., Peyronnet, V., Quibel, T., Nlandu, A., & Rozenberg, P. (2018). Impact of

recommended changes in labor management for prevention of the primary cesarean delivery. *American Journal of Obstetrics and Gynecology*, *218*(3), 341.e1-341.e9. doi: 10.1016/j.ajog.2017.12.228

- Vadnais, M. A., Hacker, M. R., Shah, N. T., Jordan, J., Modest, A. M., Siegel, M., & Golen, T. H. (2016). Quality improvement initiatives lead to reduction in nulliparous term singleton vertex cesarean delivery rate. *Joint Commission Journal of Quality and Patient Safety*, *43*(2), 53-61. doi: 10.1016/j.jcjq.2016.11.008
- Weaver, J., & Magill-Cuerden, J. (2013). "Too posh to push": The rise and rise of a catchphrase. *Birth*, 40(4), 264-271. doi: 10.1111/birt.12069
- Westermann, M., Seet, E., Oakes, M., Crossland, B. A., Wu, E., Clair, K., & Chan. K. (2018).
  Hospital charge analysis of strict adherence to the 2012 Obstetric Care Consensus (OCC)
  Labor Dystocia Guideline amongst nulliparous term singleton vertex (NTSV) patients. *American Journal of Obstetrics and Gynecology*, 218(1), Supplement 1:S546.
- Wise, G., & Jolles, D. (2019). Promoting effective care: Reducing primary cesarean births through team engagement and standardization of care at a community hospital. *Nursing Forum*, 1-10. doi: 10.1111/nuf.12384
- World Health Organization. (2015). *WHO statement on caesarean section rates*. Retrieved from http://apps.who.int/iris/bitstream/10665/161442/1/WHO\_RHR\_15.02\_eng.pdf?ua=1
- Wu, S., Kocherginsky, M., & Hibbard, J. U. (2005). Abnormal placentation: Twenty-year analysis. American Journal of Obstetrics and Gynecology, 192(5), 1458-1461. doi: 10.1016/j.ajog.2004.12.074
- Zhang, J., Landy, H. J., Branch, D. W, Burkman, R., Haberman, S., Gregory, K. D. ... Reddy, U.

M. (2010). Contemporary patterns of spontaneous labor with normal neonatal outcomes. *Obstetrics & Gynecology*, *116*(6), 1281-1287. doi: 10.1097/AOG.0b013e181def6e

Zhang, F., Cheng, J., Yan, S., Wu, H., & Bai, T. (2019). Early feeding behaviors and breastfeeding after cesarean section. *Breastfeeding Medicine*, 14(5), 325-333. doi: 10.1089/bfm.2018.0150

### Appendix A

### **Adapted PRISMA Flow Diagram**



Adapted PRISMA flow diagram displaying number of studies throughout stages of literature review. *Source:* From Moher D., Liberati A., Tetzlaff J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-Analyses: The PRISMA Statement. *PLoS Med*, 6(7), e1000097. doi: 10.1371/journal.pmend1000097

# Appendix B

# **Evidence Matrix**

| Title,          | Purpose         | Sample         | Design                | Oxford   | Results           | Strengths       | Weaknesses    | Contribution   |
|-----------------|-----------------|----------------|-----------------------|----------|-------------------|-----------------|---------------|----------------|
| authors, date   |                 |                |                       | Centre   |                   |                 |               | : Science and  |
|                 |                 |                |                       | Level of |                   |                 |               | /or            |
|                 |                 |                |                       | evidence |                   |                 |               | Practice       |
| Using a         | To describe     | A total of     | Prospective           | III      | U-chart analysis  | Clearly defined | Multiple      | Demonstrates   |
| multifaceted    | quality         | 11,715         | descriptive           |          | revealed no       | data and        | intervention  | importance of  |
| quality         | improvement     | patient charts | longitudinal design   |          | provider          | outcome         | approach      | assessing and  |
| improvement     | initiatives and | were           |                       |          | outliers in       | measurements,   | without       | addressing     |
| initiative to   | implemented     | reviewed at    | Individual provider   |          | NTSV rates but    | design          | determining   | unit culture   |
| reverse the     | interventions   | Beaumont       | NTSV rates were       |          | rather all in     | methodology,    | significance  | surrounding    |
| rising trend of | to reduce the   | Hospital       | analyzed via U-       |          | control limits    | and statistical | of individual | practices      |
| cesarean        | primary         | Royal Oak in   | chart control to      |          | reflecting        | analysis. Large | intervention, | leading to     |
| births          | cesarean (CS)   | southeastern   | identify outliers and |          | overall culture   | sample size     | may not be    | NTSV CS        |
|                 | rate in the     | Michigan,      | a nested case-        |          | had greater       | with ability to | generalizable | when           |
| Ogunyemi,       | nulliparous,    | part of the    | control review        |          | impact on         | collect and     | to non-       | developing     |
| D., McGlynn,    | term,           | Vizient        | identified local risk |          | NTSV rates        | analyze data in | Vizient, non- | interventions. |
| S., Ronk, A.,   | singleton,      | academic       | factors for NTSV      |          | versus            | the same        | academic,     | Provides       |
| Knudsen, P.,    | vertex          | health         | deliveries to         |          | individual        | population      | and other     | evidence of    |
| Andrews-        | (NTSV)          | network,       | compare with the      |          | practice. Most    | over time.      | institutions  | effectiveness  |
| Johnson, T.,    | patient         | from March     | American College      |          | common            |                 | without       | of             |
| Raczkiewicz,    | population.     | 2014 to        | of Obstetricians and  |          | indications for   |                 | midwives or   | multidisciplin |
| А.,             |                 | March 2016     | Gynecologist          |          | NTSV CS were      |                 | in the        | ary quality    |
| Bahado-         |                 | with 1513 or   | (ACOG) and            |          | 38.1%             |                 | Midwest, and  | improvement    |
| Singh, R.       |                 | 12.9% being    | Society of            |          | abnormal fetal    |                 | data was      | approach that  |
|                 |                 | primary CS     | Maternal-Fetal        |          | heart rate        |                 | based on      | includes data  |
| 2017            |                 | and 3329 or    | Medicine (SMFM)       |          | (FHR), 36.8%      |                 | chart reviews | transparency,  |
|                 |                 | 28.4% being    | safe labor            |          | first stage labor |                 | and ICD       | feedback,      |
|                 |                 | repeat CS      | guidelines. Next,     |          | arrest, and       |                 | codes and     | education,     |
|                 |                 | cases.         | education to          |          | 24.5% arrest of   |                 |               | and policy     |

| providers on         | descent and      | may be      | change in     |
|----------------------|------------------|-------------|---------------|
| ACOG/SMFM            | most common      | inaccurate. | reducing both |
| guidelines was       | risk factors for |             | overall and   |
| provided in grand    | NTSV CS were     |             | NTSV CS       |
| rounds, posters, and | 38.7% category   |             | rates without |
| newsletters then a   | II FHR           |             | increasing    |
| multidisciplinary    | assessment,      |             | adverse       |
| team reviewed all    | 34% admission    |             | outcomes.     |
| NTSV CSs, gave       | in latent labor  |             |               |
| providers feedback   | and 27.9%        |             |               |
| while displaying     | admission prior  |             |               |
| overall rates in the | to six           |             |               |
| labor unit, giving   | centimeters,     |             |               |
| individualized rates | 29.7%            |             |               |
| to nurses and        | malposition,     |             |               |
| providers, and       | and 20.6%        |             |               |
| created patient      | pushing < three  |             |               |
| education brochures  | hours and were   |             |               |
| on safe labor. Labor | significantly    |             |               |
| dystocia guidelines  | associated with  |             |               |
| were updated,        | increased body   |             |               |
| nursing team         | mass index,      |             |               |
| received holistic    | maternal age,    |             |               |
| nursing              | low Bishop       |             |               |
| certifications,      | score, and       |             |               |
| nurse-midwives       | NICU             |             |               |
| joined the team and  | admissions.      |             |               |
| a Natural Birth      | Primary          |             |               |
| Center was open in   | cesarean         |             |               |
| November 2014 for    | outcomes         |             |               |
| low-risk patients    | decreased from   |             |               |
| without epidurals,   | 23.4% to 14.1%   |             |               |
| continuous fetal     | (p <.0001) in    |             |               |

|  |                                                                                       |                   | ī |
|--|---------------------------------------------------------------------------------------|-------------------|---|
|  | monitoring or                                                                         | IQI #33 and       |   |
|  | interventions.                                                                        | from 38.4% to     |   |
|  | Primary outcomes                                                                      | 19.2% (p          |   |
|  | were measured via                                                                     | <.0001) in PC-    |   |
|  | Inpatient Quality                                                                     | 02. No changes    |   |
|  | Indicator (IQI) No.                                                                   | noted in PPH,     |   |
|  | 33 and Joint                                                                          | infection, and    |   |
|  | Commission                                                                            | stillbirth rates. |   |
|  | Perinatal Core                                                                        | Decreases noted   |   |
|  | Measure PC-02.                                                                        | in NICU           |   |
|  | Secondary                                                                             | admissions,       |   |
|  | outcomes were                                                                         | 19.5% to          |   |
|  | incidence of                                                                          | 11.0%, vaginal    |   |
|  | postpartum                                                                            | lacerations,      |   |
|  | hemorrhage (PPH),                                                                     | episiotomies,     |   |
|  | infection, operative                                                                  | and vaginal       |   |
|  | vaginal birth, third-                                                                 | operative         |   |
|  | and fourth-degree                                                                     | deliveries.       |   |
|  | lacerations,                                                                          |                   |   |
|  | maternal transfers,                                                                   |                   |   |
|  | neonatal intensive                                                                    |                   |   |
|  | care unit (NICU)                                                                      |                   |   |
|  | admissions,                                                                           |                   |   |
|  | stillbirths, and                                                                      |                   |   |
|  | neonatal death.                                                                       |                   |   |
|  | The Vizient                                                                           |                   |   |
|  | network database                                                                      |                   |   |
|  | was used to extract                                                                   |                   |   |
|  | all outcome data                                                                      |                   |   |
|  | based on ICD                                                                          |                   |   |
|  | codes.                                                                                |                   |   |
|  | At the end of the                                                                     |                   |   |
|  |                                                                                       |                   |   |
|  | network database<br>was used to extract<br>all outcome data<br>based on ICD<br>codes. |                   |   |

|               |                |               |                       |     |                  | r                | r              |               |
|---------------|----------------|---------------|-----------------------|-----|------------------|------------------|----------------|---------------|
|               |                |               | performed to assess   |     |                  |                  |                |               |
|               |                |               | provider practice     |     |                  |                  |                |               |
|               |                |               | styles and attitudes, |     |                  |                  |                |               |
|               |                |               | leadership attitudes, |     |                  |                  |                |               |
|               |                |               | and stakeholder       |     |                  |                  |                |               |
|               |                |               | engagement.           |     |                  |                  |                |               |
|               |                |               | Statistical process   |     |                  |                  |                |               |
|               |                |               | control charts were   |     |                  |                  |                |               |
|               |                |               | developed with        |     |                  |                  |                |               |
|               |                |               | SPC for all study     |     |                  |                  |                |               |
|               |                |               | outcome variables     |     |                  |                  |                |               |
|               |                |               | and the Cochran-      |     |                  |                  |                |               |
|               |                |               | Armitage test was     |     |                  |                  |                |               |
|               |                |               | used for              |     |                  |                  |                |               |
|               |                |               | significance in       |     |                  |                  |                |               |
|               |                |               | temporal trends       |     |                  |                  |                |               |
|               |                |               | while t-test, one-    |     |                  |                  |                |               |
|               |                |               | way analysis of       |     |                  |                  |                |               |
|               |                |               | variance, and chi-    |     |                  |                  |                |               |
|               |                |               | square tests were     |     |                  |                  |                |               |
|               |                |               | used for              |     |                  |                  |                |               |
|               |                |               | corresponding         |     |                  |                  |                |               |
|               |                |               | continuous or         |     |                  |                  |                |               |
|               |                |               | categorical data      |     |                  |                  |                |               |
|               |                |               | with all p values set |     |                  |                  |                |               |
|               |                |               | at <.05 in SAS        |     |                  |                  |                |               |
|               |                |               | version 9.4.          |     |                  |                  |                |               |
| Reducing      | To reduce CS   | All NTSV      | Descriptive           | III | Baseline data    | High level of    | No             | Provides      |
| primary       | deliveries in  | births from   | longitudinal design   |     | from 2015        | interdisciplinar | information    | evidence of   |
| cesareans: An | the NTSV       | 2016 to 2017  |                       |     | shows a 29.3%    | y involvement    | on statistical | the           |
| innovative    | patient        | at the        | Baseline NTSV         |     | NSTV rate out    | and utilization  | analysis       | effectiveness |
| multipronged  | population via | University of | data from 2015 was    |     | of 781 births. A | of evidence-     | methodology    | of the        |
| approach to   | the            | Minnesota     | collected and a goal  |     | 10% decrease to  | based            | or number of   | ACNM's        |

| supporting    | implementatio   | Medical       | of a 3% reduction     | 26.1% was seen   | interventions.   | patients in    | labor dystocia  |
|---------------|-----------------|---------------|-----------------------|------------------|------------------|----------------|-----------------|
| physiologic   | n of strategies | Center        | was set. An           | in 2016 and a    | Project part of  | either         | prevention      |
| labor and     | to support      | (UMMC).       | interdisciplinary     | decrease of      | larger ACNM      | intervention   | bundle          |
| vaginal birth | normal labor    | Total number  | team of a PhD         | 3.7% to 25.3%    | Initiative       | sample. No     | initiative      |
| -             | as a member     | of NTSV       | midwife, nurse        | was seen in      | which            | measurement    | coupled with    |
| Gams, B.,     | of the          | births not    | leader, chief of      | 2017.            | provided both    | to show        | of an           |
| Neerland, C., | American        | listed        | obstetrics, chief of  | Continuous       | support and      | efficacy or    | interdisciplina |
| & Kennedy,    | College of      | however       | anesthesia, and       | labor support    | validated,       | correlation of | ry team's       |
| S.            | Nurse-          | UMMC has      | nursing director      | was 47.5% in     | evidence-based   | individual     | ability to      |
|               | Midwives        | approximatel  | was established and   | 2016 with no     | practice         | interventions  | decrease        |
| 2019          | (ACNM)          | y 2500 births | recruited frontline   | prior baseline   | strategies.      | related to     | NTSV rates      |
|               | Healthy Birth   | a year.       | nurses, midwives,     | data and         | Unit and team    | NTSV rates.    | without         |
|               | Initiative:     |               | and physicians to     | increased to     | culture          | May not be     | negatively      |
|               | Reducing        |               | include residents.    | 66.3% in 2017.   | supportive of    | generalize to  | impacting       |
|               | Primary         |               | Next the team         | IA use was       | quality          | non-           | maternal and    |
|               | Cesareans       |               | chose to implement    | 8.1% in 2016     | improvement.     | academic       | neonatal        |
|               | (RPC)           |               | the Promoting         | and increased to | The resource     | facilities or  | safety          |
|               | Project.        |               | Spontaneous Labor     | 9.1% in 2017.    | of five DNP      | hospitals      | indicators.     |
|               |                 |               | Progress bundle       | Out of 56        | CNM students     | without        | Also shows      |
|               |                 |               | from ACNM and         | women eligible   | to lead projects | similar team   | effectiveness   |
|               |                 |               | then                  | to use the labor | and being a      | culture.       | of the          |
|               |                 |               | five DNP-CNM          | lounge only 8    | part of a large  |                | interdisciplina |
|               |                 |               | students from the     | did so. Upright  | academic         |                | ry team and     |
|               |                 |               | institution's nursing | position time in | university as a  |                | DNP student     |
|               |                 |               | program to            | labor went from  | fertile          |                | approach in     |
|               |                 |               | implement five        | 13.8% to         | recruiting       |                | promoting       |
|               |                 |               | quality               | 29.7%,           | ground for       |                | adoption of     |
|               |                 |               | improvement           | augmentation of  | doula training   |                | evidence-       |
|               |                 |               | projects. The team    | labor dropped    | program          |                | based           |
|               |                 |               | added the project to  | from 38% to      | volunteers.      |                | practices.      |
|               |                 |               | established meeting   | 30%, average     |                  |                | Highlights      |
|               |                 |               | agendas instead of    | length of labor  |                  |                | importance of   |
|               |                 |               | creating a new        | for women in     |                  |                | upright         |

| meeting to incre  |                                       | positioning     |
|-------------------|---------------------------------------|-----------------|
| buy-in. Next, a   | hours longer                          | during labor    |
| report was        | than women                            | in decreasing   |
| developed to pu   |                                       | augmentation    |
| key elements fro  |                                       | and length of   |
| the electronic    | more at 26.3%                         | labor. Shows    |
| medical record    | ,                                     | more research   |
| negate need for   |                                       | is needed in    |
| paper checklists  |                                       | the early labor |
| During the first  | more the 50%                          | lounge.         |
| year of the proje | ects of labor was                     |                 |
| of intermittent   | significant in                        |                 |
| auscultation (IA  | A) of those without                   |                 |
| fetal heart       | epidurals (7.3%                       |                 |
| assessment, upr   | ight vs 78.3%, P <                    |                 |
| laboring positio  | 0                                     |                 |
| and an early lab  | oor were no                           |                 |
| lounge were       | significant                           |                 |
| implemented w     | C C                                   |                 |
| policy change,    | of low Apgar                          |                 |
| instructional     | scores, neonatal                      |                 |
| videos, return    | intensive care                        |                 |
| demonstration     | admissions,                           |                 |
| competencies,     | infection, or                         |                 |
| patient educatio  | · · · · · · · · · · · · · · · · · · · |                 |
| bedside reference | ,                                     |                 |
| and pre- and po   |                                       |                 |
| intervention dat  |                                       |                 |
| was collected.    |                                       |                 |
| During the seco   | and                                   |                 |
| year a student d  |                                       |                 |
| DNP project wa    |                                       |                 |
| 1 0               |                                       |                 |
| implemented to    |                                       |                 |

|                     |  | I. | 1 |
|---------------------|--|----|---|
| increase one-to-one |  |    |   |
| labor support rates |  |    |   |
| which recruited     |  |    |   |
| senior and junior   |  |    |   |
| nursing students    |  |    |   |
| with a survey then  |  |    |   |
| provided a four-day |  |    |   |
| doula training      |  |    |   |
| course then         |  |    |   |
| students signed up  |  |    |   |
| for four 8-hour     |  |    |   |
| shifts. Next, the   |  |    |   |
| team implemented    |  |    |   |
| a labor             |  |    |   |
| management          |  |    |   |
| algorithm, a        |  |    |   |
| taskforce to create |  |    |   |
| and implement a     |  |    |   |
| labor dystocia      |  |    |   |
| huddle which was    |  |    |   |
| held prior to any   |  |    |   |
| CS for that         |  |    |   |
| diagnosis, and a    |  |    |   |
| provider note       |  |    |   |
| template was        |  |    |   |
| created to          |  |    |   |
| standardize         |  |    |   |
| documentation to    |  |    |   |
| aid in case reviews |  |    |   |
| on all CS due to    |  |    |   |
| labor dystocia      |  |    |   |
| every three months  |  |    |   |
| with cases not      |  |    |   |

|                      |                         |            | meeting standards<br>shared for<br>education. Finally,<br>the team tracked the<br>safety measures of<br>Apgar scores,<br>infection, and PPH.<br>No information on<br>statistical analysis<br>methodology was<br>provided. |   |                |                             |                        |                          |
|----------------------|-------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|-----------------------------|------------------------|--------------------------|
| National             | To present an           | Not        | Consensus                                                                                                                                                                                                                 | V | Not applicable | Comprehensiv                | As is                  | Provides                 |
| partnership          | evidence-               | applicable | statement                                                                                                                                                                                                                 |   |                | e incorporation             | consensus              | comprehensiv             |
| for maternal         | based quality           |            | <b>T C 1</b> · ·                                                                                                                                                                                                          |   |                | of supporting               | statement              | e, evidence-             |
| safety:<br>Consensus | improvement bundle that |            | Team of physicians,                                                                                                                                                                                                       |   |                | evidence for                | and not a research     | based,                   |
| bundle on safe       | can be                  |            | nurses, and public health researchers                                                                                                                                                                                     |   |                | each practice.<br>Consensus |                        | implementabl             |
| reduction of         |                         |            |                                                                                                                                                                                                                           |   |                | bundle                      | study there is no data | e, expert                |
|                      | replicated and readily  |            | present an<br>evidence-based                                                                                                                                                                                              |   |                |                             | provided to            | practice<br>recommendati |
| primary<br>cesarean  | implemented             |            | safety bundle                                                                                                                                                                                                             |   |                | workgroup<br>consists of    | 1                      | ons in a clear           |
| births-              | across all              |            | consisting of 14                                                                                                                                                                                                          |   |                | well-known                  | prove<br>efficacy of   | and                      |
| supporting           | birthing                |            | identified elements                                                                                                                                                                                                       |   |                | and respected               | this bundle in         | educational              |
| intended             | hospitals to            |            | categorized into the                                                                                                                                                                                                      |   |                | obstetric                   | its entirety.          | manner,                  |
| vaginal births       | reduce NTSV             |            | four overall                                                                                                                                                                                                              |   |                | leaders and are             | Does not               | generalizable            |
| vaginar on this      | CS deliveries           |            | domains of                                                                                                                                                                                                                |   |                | key members                 | provide                | to any                   |
| Lagrew, D.           | and the                 |            | recognition and                                                                                                                                                                                                           |   |                | of professional             | validated              | birthing                 |
| C., Low, L.          | burden related          |            | prevention,                                                                                                                                                                                                               |   |                | organizations               | tools to               | hospital                 |
| K., Brennan,         | to creating             |            | readiness, response,                                                                                                                                                                                                      |   |                | such as the                 | implement              | seeking to               |
| R., Corry, M.        | similar quality         |            | and reporting and                                                                                                                                                                                                         |   |                | ACOG,                       | however                | reduce NTSV              |
| P., Edmonds,         | improvement             |            | systems learning.                                                                                                                                                                                                         |   |                | Association of              | does list              | CS deliveries.           |
| J. K., Gilpin,       | initiatives at          |            | The 14 elements                                                                                                                                                                                                           |   |                | Women's                     | recommende             |                          |
| B. G.,               | the local level         |            | are: cultivating a                                                                                                                                                                                                        |   |                | Health,                     | d resources            |                          |
| Jaffer, S.           | en lieu of a            |            | culture that values                                                                                                                                                                                                       |   |                | Obstetric and               |                        |                          |

|      | national  | vaginal birth,        | Neonatal        | with web   |  |
|------|-----------|-----------------------|-----------------|------------|--|
| 2018 | standard. | engage patients and   | Nurses, the     | addresses. |  |
|      |           | families, provider    | ACNM, and       |            |  |
|      |           | education,            | the National    |            |  |
|      |           | standardize triage    | Partnership for |            |  |
|      |           | and admission         | Women and       |            |  |
|      |           | criteria, pain        | Families.       |            |  |
|      |           | management            |                 |            |  |
|      |           | supporting            |                 |            |  |
|      |           | physiologic labor,    |                 |            |  |
|      |           | standardize FHR       |                 |            |  |
|      |           | assessment,           |                 |            |  |
|      |           | protocols to          |                 |            |  |
|      |           | recognize and         |                 |            |  |
|      |           | mitigate              |                 |            |  |
|      |           | preventable CS, in-   |                 |            |  |
|      |           | house obstetric       |                 |            |  |
|      |           | care, standardize     |                 |            |  |
|      |           | labor induction       |                 |            |  |
|      |           | scheduling,           |                 |            |  |
|      |           | standardize           |                 |            |  |
|      |           | algorithms to         |                 |            |  |
|      |           | respond to labor      |                 |            |  |
|      |           | dystocia,             |                 |            |  |
|      |           | standardize           |                 |            |  |
|      |           | protocols to          |                 |            |  |
|      |           | recognize and         |                 |            |  |
|      |           | respond to            |                 |            |  |
|      |           | NRFHTs and            |                 |            |  |
|      |           | uterine activity,     |                 |            |  |
|      |           | have expertise        |                 |            |  |
|      |           | available for special |                 |            |  |
|      |           | techniques, NSTV      |                 |            |  |

|                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                       | data availability for<br>comparison across<br>providers, and track<br>maternal and fetal<br>outcomes as safety<br>balancing<br>measures.                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality<br>improvement<br>initiatives<br>lead to<br>reduction in<br>nulliparous<br>term singleton<br>vertex<br>cesarean<br>delivery rate<br>Vadnais, M.<br>A., Hacker,<br>M. R., Shah,<br>N. T., Jordan,<br>J., Modest, A.<br>M., Siegel,<br>M., & Golen,<br>T. H.<br>2017 | To study the<br>influence of<br>quality<br>improvement<br>interventions<br>on the CS<br>birth rate in<br>the NTSV<br>population. | All 15,144<br>NTSV births<br>occurring at<br>a single<br>academic<br>tertiary care<br>medical<br>center in<br>Massachusett<br>s from 2008<br>to 2015. | Repeat measures<br>descriptive cross-<br>sectional design<br>A series of<br>evidence-based<br>targeted<br>interventions<br>focused on provider<br>training, feedback<br>and policy changes<br>related to<br>standardized FHR<br>tracing<br>management, labor<br>induction, CS, and<br>awareness of<br>individual NTSV<br>rate were<br>implemented in<br>multiple waves<br>from 2008 to 2015<br>then NTSV rates,<br>neonatal and | Π | NTSV CS birth<br>rate decreased<br>over eight years<br>from the<br>baseline 34.8%<br>to 21.2% and<br>the total CS rate<br>decreased from<br>40.0% to 29.1%<br>with no<br>significant<br>changes in rate<br>of vaginal<br>operative births,<br>five-minute<br>Apgar scores,<br>admissions to<br>neonatal<br>intensive care,<br>shoulder<br>dystocia<br>insurance<br>status, fourth-<br>degree<br>lacerations, | Thorough<br>review of<br>literature,<br>strong<br>statistical<br>analysis, large<br>sample size,<br>and study<br>methodology<br>allowed data<br>collection over<br>eight years to<br>measure<br>impact of<br>multi-strategy<br>approach over<br>time in great<br>detail with<br>strong baseline<br>data. High<br>level of<br>maternal<br>medical<br>history,<br>demographic, | Multiple<br>interventions<br>occurring at<br>single time<br>so unable to<br>analyze<br>efficacy of<br>individual<br>interventions.<br>Also,<br>midwifery<br>care was<br>introduced<br>during 2014<br>and not<br>controlled for<br>in NTSV<br>data.<br>May not be<br>generalizable<br>to non-<br>academic<br>and/or non-<br>tertiary care<br>centers. | Provides<br>evidence that<br>evidence-<br>based quality<br>initiatives<br>focusing on<br>policy<br>change,<br>provider<br>education,<br>and feedback<br>of NTSV<br>rates can<br>decrease<br>NTSV rates<br>sustainably<br>over time but<br>should<br>carefully<br>monitor<br>maternal and<br>neonatal<br>outcomes.<br>Important to<br>note that co- |
|                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                       | maternal outcomes                                                                                                                                                                                                                                                                                                                                                                                                               |   | maternal age, or                                                                                                                                                                                                                                                                                                                                                                                             | maternal and                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      | morbidities                                                                                                                                                                                                                                                                                                                                        |

| Promoting<br>effective care:<br>creater care<br>increase team<br>horighing the mid-<br>primary<br>births through<br>eragagement,<br>n and<br>communicatio<br>team55 NTSV<br>patients at a<br>single 300-<br>bedSimple descriptive<br>descriptive<br>descriptive<br>data of 32.3%<br>collected from all<br>teamIVIn the sample,<br>respectively.Checklists<br>used<br>to 2.3% to<br>the NTSV beliveries in<br>23.6% with<br>admissionSmall sample<br>standardizatio<br>admissionDemonstrat<br>effective care:<br>checklists and<br>n and<br>communicatio<br>the mid-<br>AtlanticIVIn the sample,<br>the NTSV<br>23.6% with<br>admissionSmall sample<br>standardizatio<br>admissionDemonstrat<br>effective care:<br>checklists<br>atta of 32.3%<br>atta of 23.0%Simple descriptive<br>data of 32.3%<br>admissionIVIn the sample,<br>the NTSV CS<br>rate decreased<br>the NTSV deliveries in<br>admissionChecklists<br>standardizatioSmall sample<br>the NTSV<br>standardizatioDemonstrat<br>effective care:<br>admissionDemonstrat<br>effective care:<br>checklistsSmall sample<br>standardizatioDemonstrat<br>teamPromoting<br>effective care:<br>respectively.To assess if<br>community<br>data of 32.3%<br>community<br>data of 32.3%<br>community<br>data of 32.3%<br>community<br>data of 32.3%<br>community<br>data of 32.3%<br>community<br>data of 32.3%<br>community<br>admissionChecklists.Small sample<br>community<br>data of 32.3%<br>community<br>data of 32.3%<br>community<br>admissionChecklists.Checklists<br>community<br>teamDemonstrat<br>community<br>data of 32.3%<br>collected from all<br>data of 32.3%<br>collected from all<br>data of 32.3%Checklists.Checklists.Demonstrat<br>community<br>data of 3 |                                                                                                                                                    |                                                                                                                                                          |                                                                                                                                       | were examined<br>annually via<br>administrative<br>claims and birth<br>certificate data and<br>a p-trend for<br>categorical<br>variables was                                          |    | co-morbidities<br>over time.<br>Meconium<br>aspiration<br>syndrome<br>increased from<br>0.1% to 0.9%<br>and maternal                                                                | fetal outcome<br>data displayed<br>in multiple<br>charts with<br>statistical<br>analysis.<br>High level of<br>detail makes |                                                                                                                                                         | such as<br>gestational<br>diabetes and<br>pre-eclampsia<br>did not impact<br>NTSV rate.                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Promoting<br>effective care:To assess if<br>checklists and<br>team huddles55 NTSV<br>patients at a<br>designSimple descriptive<br>designIVIn the sample,<br>the NTSV CSChecklists<br>were extensive,<br>size overSmall sample<br>effectivenesDemonstrat<br>effectivenesReducing<br>primary<br>cesareanteam huddlessingle 300-<br>bedBaseline NTSV<br>data of 32.3%INIn the sample,<br>the NTSV CSChecklists<br>were extensive,<br>advert extensive,<br>size overSmall sample<br>effectivenesDemonstrat<br>effectivenesbirths through<br>team<br>engagement<br>and<br>standardizatiocommunicatiothe mid-<br>the mid-NTSV deliveries in<br>additional chart<br>additional chartIn the sample,<br>the NTSV CSChecklists<br>were extensive,<br>easy toSmall sample<br>size overDemonstrat<br>effectivenesPrimary<br>team<br>and<br>standardizatiocommunicatiothe mid-<br>the mid-NTSV deliveries in<br>additional chart<br>additional chartIn the sample,<br>the NTSV CSChecklistsSmall sample<br>size overDemonstrat<br>effectivenesPrimary<br>team<br>and<br>standardizatiocompliance to<br>labor dystociacotober 2018audits from 20 CSINIn<br>the SizePrimary<br>admissionNo data to<br>checklists.checklists.Primary<br>team<br>teamcompliance to<br>labor dystociaOctober 2018audits from 20 CSPrimary<br>admissionPrimary<br>admissionNo data to<br>checklists.checklists.                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                          |                                                                                                                                       | Cochran-Armitage<br>test and continuous<br>variables with<br>linear regression.<br>All tests are<br>identified as two-<br>side with the P<br>values <0.05 and<br>SAS 9.4 was used     |    | transfusion<br>increased from<br>0.6% to 1.4%.<br>A decrease in<br>third-degree<br>lacerations and<br>episiotomies<br>was seen, 4.4%<br>to 2.3% and<br>15.7% to 2.9%,               | •                                                                                                                          |                                                                                                                                                         |                                                                                                                |
| community<br>hospitalmanagement<br>of excessive2018.were reviewed for<br>labor dystocia andmetricssignificancewell asincreased fromof findings.improving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | effective care:<br>Reducing<br>primary<br>cesarean<br>births through<br>team<br>engagement<br>and<br>standardizatio<br>n of care at a<br>community | checklists and<br>team huddles<br>would<br>increase team<br>engagement,<br>communicatio<br>n and<br>compliance to<br>labor dystocia<br>and<br>management | patients at a<br>single 300-<br>bed<br>community<br>hospital in<br>the mid-<br>Atlantic<br>region from<br>October 2018<br>to December | design<br>Baseline NTSV<br>data of 32.3%<br>collected from all<br>NTSV deliveries in<br>2017 then<br>additional chart<br>audits from 20 CS<br>cases in July 2018<br>were reviewed for | IV | In the sample,<br>the NTSV CS<br>rate decreased<br>from 32.3% to<br>23.6% with<br>level II nursery<br>admission<br>decreased from<br>9.6% to 6.6%.<br>Team<br>engagement<br>metrics | were extensive,<br>easy to<br>understand and<br>based on<br>validated<br>evidenced-<br>based CMQCC<br>toolkit              | size over<br>short period<br>limiting<br>reliability<br>and<br>generalizabili<br>ty of results.<br>No data to<br>reflect<br>statistical<br>significance | standardized<br>NTSV<br>measures such<br>as toolkits and<br>checklists in<br>reducing<br>NTSV CS as<br>well as |

|             | uterine       | excessive uterine      | 85% to 98%.    | Team           | team            |
|-------------|---------------|------------------------|----------------|----------------|-----------------|
| Wise, G., & | activity      | activity               | However, one   | huddles only   | engagement      |
| Jolies, D.  | guidelines to | management. Four       | project        | conducted at   | communicatio    |
|             | decrease      | plan-do-study-act      | complete and   | a shift        | n. Highlights   |
| 2019        | NTSV CS       | (PDSA) cycles on       | monitoring     | change three   | importance of   |
|             | births from   | structured team        | ceased, NTSV   | times per      | strong,         |
|             | 32.3% to      | huddles and a best     | rates over the | week           | continued       |
|             | 27.3%.        | practice checklist     | next two       | limiting       | executive and   |
|             |               | adapted from the       | months were    | participation. | frontline       |
|             |               | CMQCC Toolkit to       | 45% and 43%.   |                | leadership,     |
|             |               | Support Vaginal        |                |                | oversight, and  |
|             |               | Birth and Reduce       |                |                | team            |
|             |               | Primary Cesareans      |                |                | ownership in    |
|             |               | were implemented       |                |                | sustaining      |
|             |               | by an                  |                |                | practice        |
|             |               | interdisciplinary      |                |                | change and to   |
|             |               | team. Checklists       |                |                | never           |
|             |               | and charts were        |                |                | underestimate   |
|             |               | audited for            |                |                | the impact of   |
|             |               | congruence and all     |                |                | unit culture in |
|             |               | unexpected CS          |                |                | change          |
|             |               | were reviewed          |                |                | management.     |
|             |               | input into             |                |                | C C             |
|             |               | spreadsheets then      |                |                |                 |
|             |               | field note journals    |                |                |                 |
|             |               | of qualitative staff   |                |                |                 |
|             |               | feedback via           |                |                |                 |
|             |               | conversations and      |                |                |                 |
|             |               | notes of the Wise,     |                |                |                 |
|             |               | G.'s "perception of    |                |                |                 |
|             |               | the collective         |                |                |                 |
|             |               | clinical skills of the |                |                |                 |
|             |               | L&D staff' were        |                |                |                 |

|                |                |               | kept (2019, p. 3).<br>Also, an |     |                |                |               |                |
|----------------|----------------|---------------|--------------------------------|-----|----------------|----------------|---------------|----------------|
|                |                |               | anonymous three                |     |                |                |               |                |
|                |                |               | question Likert                |     |                |                |               |                |
|                |                |               | scale survey was               |     |                |                |               |                |
|                |                |               | given to staff prior           |     |                |                |               |                |
|                |                |               | to the PDSA cycles             |     |                |                |               |                |
|                |                |               | and after each cycle           |     |                |                |               |                |
|                |                |               | to measure                     |     |                |                |               |                |
|                |                |               | perception of team             |     |                |                |               |                |
|                |                |               | communication and              |     |                |                |               |                |
|                |                |               | engagement.                    |     |                |                |               |                |
|                |                |               | Baseline data on               |     |                |                |               |                |
|                |                |               | level II nursery               |     |                |                |               |                |
|                |                |               | admissions was                 |     |                |                |               |                |
|                |                |               | collected and                  |     |                |                |               |                |
|                |                |               | compared                       |     |                |                |               |                |
|                |                |               | throughout. All data           |     |                |                |               |                |
|                |                |               | was collected as               |     |                |                |               |                |
|                |                |               | mean score                     |     |                |                |               |                |
|                |                |               | percentages with no            |     |                |                |               |                |
|                |                |               | further statistical            |     |                |                |               |                |
| Safety         | To assess      | 56 birthing   | analysis.<br>Comparative       | III | In sample,     | Large sample   | Data          | Provides       |
| assessment of  | neonatal and   | hospitals     | descriptive design             |     | NTSV rate      | size with very | collected per | evidence that  |
| a large-scale  | maternal       | participating | descriptive design             |     | decreased from | prescriptive   | participating | standardized   |
| improvement    | safety quality | in NTSV       | Baseline maternal              |     | 29.3% to 25.0% | and objective  | hospitals'    | NTSV           |
| collaborative  | measures       | reduction     | data (blood                    |     | in 2017        | data points.   | staff with no | reduction      |
| to reduce      | during a       | collaborative | transfusions,                  |     | adjusted OR    | Participating  | validation of | quality        |
| nulliparous    | quality        | in California | operative vaginal              |     | (aOR) 0.76,    | hospitals all  | collection    | measures       |
| cesarean       | improvement    | with NTSV     | deliveries,                    |     | 95% CI 0.73-   | received same  | accuracy or   | implemented    |
| delivery rates | program to     | rates above   | infection, and third-          |     | 0.78 with no   | training and   | interrater    | via hospital   |
|                |                | 23.9% in      | or fourth-degree               |     | significant    | used same,     | reliability   | collaboratives |

| Main, E. K.,   | reduce NTSV     | 2015, from     | lacerations) and     |   | differences in    | validated        | (i.e., Apgar    | can successful |
|----------------|-----------------|----------------|----------------------|---|-------------------|------------------|-----------------|----------------|
| Chang, S. C.,  | CS birth rates. | 2015-2017      | neonatal (Apgar      |   | all of the safety | definitions and  | scores).        | decrease       |
| Cape, V.,      | es entir futes. | with 126,480   | score < five at five |   | outcomes and a    | interventions.   | No              | NTSV CS        |
| Sakowski, C.,  |                 | NTSV births.   | minutes and severe   |   | decrease in       | Data analysis,   | information     | rates while    |
| Smith, H., &   |                 | 87.5% of the   | unexpected           |   | severe            | sample           | on efficacy     | not negatively |
| Vasher, J      |                 | participating  | complication) rates  |   | unexpected        | demographics,    | of individual   | impacting      |
| v usiter, e    |                 | hospitals      | were collected from  |   | newborn           | and results are  | interventions.  | maternal or    |
| 2019           |                 | were           | sample in 2015 then  |   | complication      | extensive in     | inter ventions. | neonatal       |
| 2017           |                 | community      | compared to the      |   | (3.2%-2.2%,       | multiple tables  |                 | outcomes.      |
|                |                 | and 12.5       | same safety data     |   | aOR 0.71, 95%     | and graphs.      |                 | oute offices.  |
|                |                 | were           | submitted by         |   | CI 0.55-0.92)     | und graphs.      |                 |                |
|                |                 | academic.      | participants for     |   | noted at          |                  |                 |                |
|                |                 |                | 2017. Odds ratio     |   | hospitals in      |                  |                 |                |
|                |                 |                | and 95% CIs          |   | tercile of        |                  |                 |                |
|                |                 |                | calculated via a     |   | greatest NTSV     |                  |                 |                |
|                |                 |                | mixed-effect         |   | rate decline via  |                  |                 |                |
|                |                 |                | multivariable        |   | a sensitivity     |                  |                 |                |
|                |                 |                | logistic regression  |   | analysis.         |                  |                 |                |
|                |                 |                | model.               |   |                   |                  |                 |                |
| Non-clinical   | To evaluate     | 12171          | Systematic Review    | Ι | 29 studies from   | Very in-depth    | Not specific    | Provides       |
| interventions  | efficacy of     | articles       |                      |   | 18 countries,     | description of   | to NTVS CS      | evidence that  |
| for reducing   | non-clinical    | reviewed       | The Cochrane         |   | representing all  | design details   | reduction and   | CS reduction   |
| unnecessary    | interventions   | with a total   | Central Register of  |   | continents        | with statistical | does not        | interventions  |
| caesarean      | designed to     | of 29 studies  | Controlled Trials,   |   | except Africa,    | analysis         | address labor   | do not         |
| section        | reduce          | meeting        | Cochrane             |   | met review        | information      | dystocia        | increase risk  |
|                | unnecessary     | criteria: 19   | Pregnancy and        |   | criteria. Four    | that includes    | checklists or   | of maternal or |
| Chen, I.,      | CS.             | RCTs, 9        | Childbirth Group,    |   | intervention      | level of         | team            | fetal          |
| Opiyo, N.,     |                 | interrupted    | MEDLINE,             |   | types were        | evidence         | huddles.        | morbidity and  |
| Tavender, E.,  |                 | time series, 1 | Embase, and          |   | noted:            | certainty for    |                 | mortality.     |
| Mortazhejri,   |                 | controlled     | CINAHL were          |   | Interventions     | each piece of    |                 | Demonstrates   |
| S., Rader, T., |                 | before-after   | searched then        |   | targeted at       | evidence.        |                 | more research  |
| Petkovic, J.,  |                 | studies. 20    | reference list,      |   | women or          | Strong           |                 | is needed in   |
|                |                 | studies were   | websites, and trial  |   | families,         | assessment of    |                 | multifaceted   |

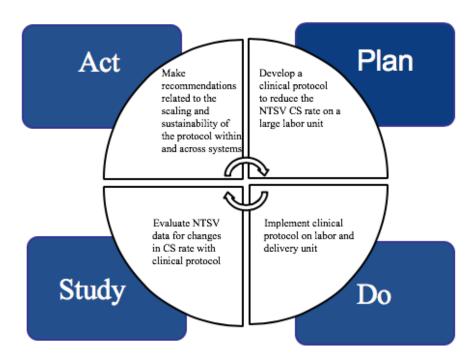
| Betran, A. | conducted in  | registries were      | Interventions    | bias and high    | CS reduction   |
|------------|---------------|----------------------|------------------|------------------|----------------|
| Р.         | high-income   | searched then        | targeted at      | generalizability | interventions. |
|            | countries and | experts contacted.   | healthcare       | to practice.     |                |
| 2018       | none          | Duplicates were      | professionals,   |                  |                |
|            | conducted in  | removed then         | Interventions    |                  |                |
|            | low-income    | articles were        | targeted at      |                  |                |
|            | countries. No | entered into         | healthcare       |                  |                |
|            | exclusions    | Covidence. Seven     | organizations or |                  |                |
|            | were placed   | reviewers worked     | facilities, and  |                  |                |
|            | on language   | in independent       | 'Cross-cutting'  |                  |                |
|            | and all       | pairs to screen      | interventions    |                  |                |
|            | articles      | articles and then    | which were       |                  |                |
|            | meeting       | five reviewers       | hybrids of two   |                  |                |
|            | inclusion     | extracted data then  | categories.      |                  |                |
|            | criteria and  | assessed for bias    | Three of eight   |                  |                |
|            | published     | using the Cochrane   | studies targeted |                  |                |
|            | since 2010 to | EPOC criteria and    | at healthcare    |                  |                |
|            | March 2018    | disagreements were   | professionals    |                  |                |
|            | were          | resolved by          | reduced CS       |                  |                |
|            | reviewed.     | discussion. Effect   | rates: physician |                  |                |
|            |               | of interventions     | education by     |                  |                |
|            |               | with dichotomous     | local leader     |                  |                |
|            |               | outcomes were        | (53.7%, 95% CI   |                  |                |
|            |               | assessed with RR,    | 46.5 to 61.0%;   |                  |                |
|            |               | OR, or risk          | control: 66.8%,  |                  |                |
|            |               | differences (RDs)    | 95% CI 61.7 to   |                  |                |
|            |               | and mean             | 72.0%), audit    |                  |                |
|            |               | differences (MD)     | and feedback     |                  |                |
|            |               | for continuous       | combined with    |                  |                |
|            |               | outcomes. Data was   | implementation   |                  |                |
|            |               | synthesized into     | of practice      |                  |                |
|            |               | four categories with | guidelines       |                  |                |
|            |               | an evidence table    | ((RD) -1.8%,     |                  |                |

|                                      |                                        |                                        | for each category.<br>Confidence in the<br>estimate of effect<br>was assessed using<br>GRADE by one<br>author and checked<br>by one or more<br>authors. Far more<br>details reported on<br>additional data<br>assessment. |   | 95% CI -3.8 to<br>0.2), and<br>mandatory<br>second opinion<br>for CS<br>combined with<br>implementation<br>of practice<br>guidelines<br>(overall CS MD<br>in rate change -<br>1.9, 95% CI -<br>3.8 to -0.1).<br>Not enough<br>evidence was<br>available, with<br>one two studies,<br>to provide<br>certainty of<br>effectiveness in<br>'Cross-cutting'<br>multifaceted<br>interventions.<br>No significant<br>increases in<br>fetal or<br>maternal |                                              |                                      |                                    |
|--------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------|
|                                      |                                        |                                        |                                                                                                                                                                                                                           |   | multifaceted<br>interventions.<br>No significant                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                      |                                    |
|                                      |                                        |                                        |                                                                                                                                                                                                                           |   | fetal or                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |                                      |                                    |
|                                      |                                        | A 11 / 11                              |                                                                                                                                                                                                                           | T | mortality were noted.                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                      | D 11                               |
| Evidence-<br>based<br>strategies for | To analyze<br>literature,<br>ascertain | All studies<br>meeting<br>criteria via | Meta-analysis                                                                                                                                                                                                             | Ι | Out of 831<br>studies, 11 met<br>criteria for                                                                                                                                                                                                                                                                                                                                                                                                      | High level of<br>design detail to<br>include | Published in<br>2007 and<br>does not | Provides<br>Level I<br>evidence on |

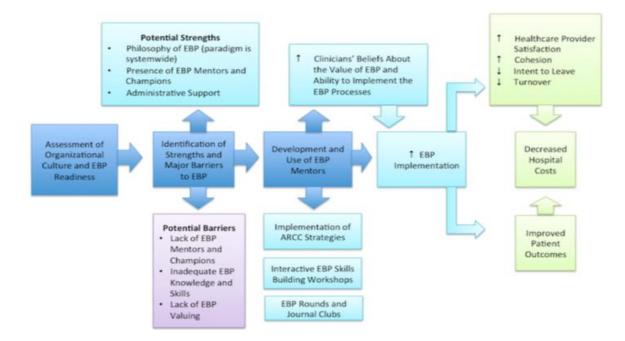
| reducing       | efficacy of CS | the Cochrane  | Controlled and       | quality           | statistical     | evaluate      | efficacy of CS |
|----------------|----------------|---------------|----------------------|-------------------|-----------------|---------------|----------------|
| cesarean       | reduction      | and Effective | interrupted time     | assessment with   | analysis        | evidence      | reduction      |
| section        | interventions, | Practice and  | series studies were  | 10 deemed         | information for | published     | strategies and |
| rates: A meta- | impact on      | Organisation  | searched by the      | acceptable in     | each type of    | after June    | evidence that  |
| analysis       | perinatal and  | of Care       | primary author and   | both quality and  | study and to    | 2005.         | CS reduction   |
|                | maternal       | Group         | a medical librarian  | inclusion         | control for     | Focuses on    | interventions  |
| Chaillet, N.,  | morbidity and  | criteria on   | via MEDLINE,         | criteria: 5       | biases. Authors | all CS        | are safe for   |
| & Dumont, A.   | mortality      | MEDLINE,      | Cochrane Library,    | interrupted time  | provided        | reduction and | both mother    |
|                | rates, and if  | Cochrane      | and Embase with      | series, 2 cluster | results with    | not           | and baby.      |
| 2007           | identifying    | Library, and  | key terms then the   | RCTs, and 3       | statistical     | exclusively   |                |
|                | and            | Embase from   | two authors          | RCTS. Audits      | information in  | on NTSV       |                |
|                | addressing     | January 1990  | independently        | and feedback,     | graphs and      | rate          |                |
|                | practice       | to June 2005  | reviewed and         | quality           | tables that     | reduction.    |                |
|                | barriers can   |               | abstracted data that | improvement,      | were clear and  |               |                |
|                | improve        |               | was evaluated for    | and               | easy to         |               |                |
|                | intervention   |               | inclusion and        | multifaceted      | understand.     |               |                |
|                | effect.        |               | quality via the      | strategies were   |                 |               |                |
|                |                |               | Cochrane and         | identified as     |                 |               |                |
|                |                |               | Effective Practice   | effective in      |                 |               |                |
|                |                |               | and Organisation of  | reducing CS       |                 |               |                |
|                |                |               | Care Group criteria. | rates the largest |                 |               |                |
|                |                |               | A meta-analysis of   | impact of 27%     |                 |               |                |
|                |                |               | the dichotomous      | was seen when     |                 |               |                |
|                |                |               | data was performed   | implementing      |                 |               |                |
|                |                |               | using relative risk  | audit and         |                 |               |                |
|                |                |               | for effect size. CS  | feedback as a     |                 |               |                |
|                |                |               | rates in randomized  | part of a         |                 |               |                |
|                |                |               | control trials       | multifaceted      |                 |               |                |
|                |                |               | (RCTs) were          | approach with a   |                 |               |                |
|                |                |               | compared directly    | total of 2 or     |                 |               |                |
|                |                |               | between              | more              |                 |               |                |
|                |                |               | intervention and     | interventions.    |                 |               |                |
|                |                |               | control groups with  |                   |                 |               |                |

| 1' / 1 ' 1 /          |                  |  |
|-----------------------|------------------|--|
| adjusted risk ratios  | Analysis found   |  |
| used when             | CS rates         |  |
| appropriate. Prerate  | significantly    |  |
| and postrate          | decreased        |  |
| interventions were    | (pooled RR,      |  |
| used to estimate      | 0.81; 95% CI,    |  |
| effect size in        | 0.75-0.87; p     |  |
| interrupted time      | <0.0001) and     |  |
| series studies with   | relative rate    |  |
| the autoregressive    | decrease of      |  |
| integrated moving     | 19% (relative    |  |
| average (ARIMA)       | RR, 19%; 95%     |  |
| model computed        | CI 13-25%)       |  |
| via SPSS version      | with significant |  |
| 11.0 to validate      | reduction of     |  |
| intervention effect   | labor dystocia,  |  |
| versus historical     | repeat CS,       |  |
| effect. Stata version | maternal and     |  |
| 7.0 was used to       | fetal            |  |
| compute the meta-     | indications.     |  |
| regression and        | No significant   |  |
| meta-analysis.        | differences      |  |
|                       | were noted in    |  |
|                       | either fetal or  |  |
|                       | maternal         |  |
|                       | outcomes in all  |  |
|                       | by 1 study       |  |
|                       | which found      |  |
|                       | significant      |  |
|                       | decrease in both |  |
|                       | with (RR =       |  |
|                       | 0.53; 95% CI,    |  |
|                       | 0.37-0.75) and   |  |

|                |                 |                |                      |     | (RR = 0.37;                  |                  |                |                |
|----------------|-----------------|----------------|----------------------|-----|------------------------------|------------------|----------------|----------------|
|                |                 |                |                      |     | (KK = 0.37,<br>95% CI, 0.21- |                  |                |                |
|                |                 |                |                      |     | 95% CI, 0.21-<br>0.64),      |                  |                |                |
|                |                 |                |                      |     |                              |                  |                |                |
| <b>T</b> 1     | <b>T</b> 1      | <b>T</b>       | <u>a</u> .:          |     | respectively.                | <b>T</b> 1 .1    | 0 11 1         | D 11           |
| Implementing   | Implementatio   | Three acute    | Comparative          | III | In the sample                | In-depth         | Small sample   | Provides       |
| a systematic   | n of a          | care hospitals | descriptive design   |     | the NTSV rates               | statistical      | size           | evidence that  |
| approach to    | systematic      | in Carolinas   |                      |     | went from                    | analysis details | impacting      | implementing   |
| reduce         | method to       | Health         | All staff were       |     | 34.0%, 32.9%,                | were provided    | generalizabili | a standardized |
| cesarean birth | safely reduce   | System         | educated on          |     | and 25.3% with               | and results      | ty, provider   | approach to    |
| rates in       | NTSV CS         | North          | standardized triage  |     | a cumulative                 | were clearly     | bias and       | managing       |
| nulliparous    | delivery rates. | Carolina, one  | management,          |     | 27.9% to                     | and thoroughly   | inability to   | obstetric care |
| women          |                 | urban and      | admission criteria,  |     | 22.4%, 19.4%,                | displayed in     | validate data  | in the NTSV    |
|                |                 | two rural      | FHR assessments,     |     | and 19.2% with               | figures and      | is real-time.  | population     |
| Bell, A., Joy, |                 | community,     | pain management      |     | a cumulative                 | tables. All      | Underpowere    | can decrease   |
| S., Gullo, S., |                 | with a         | techniques, patient  |     | 19.7% (odd                   | obstetric staff  | d to detect    | NTSV CS        |
| Higgins, R.,   |                 | baseline total | support and          |     | ratios (OR)                  | at the three     | any            | rates. Also    |
| & Stevenson,   |                 | NTSV rate of   | education, and CS    |     | 0.63, CI 0.46-               | hospitals        | significant    | shows value    |
| E.             |                 | 27.73%,        | reduction protocols  |     | 0.88),                       | received the     | differences in | of using       |
|                |                 | from January   | via the Council on   |     | respectively.                | same detailed    | fetal or       | collaborative  |
| 2017           |                 | 2015 to        | Patient Safety in    |     | Provider                     | training and     | maternal       | team           |
|                |                 | December       | Women's Health       |     | compliance                   | used a           | outcomes.      | approach to    |
|                |                 | 31, 2016       | Care: Patient Safety |     | increased from               | validated        | Further        | adapt          |
|                |                 | with a total   | Bundle on the Safe   |     | 86.2% to 91.5%               | safety bundle    | history bias   | evidence-      |
|                |                 | of 434         | Reduction of         |     | (OR 1.73, 95%                | to develop very  | could exist as | based bundles  |
|                |                 | patients in    | Primary Cesarean     |     | CI 1.11-2.70).               | prescriptive     | NTSV           | to practice    |
|                |                 | the pre-       | Births.              |     | Maternal                     | labor            | reduction      | environment.   |
|                |                 | implementati   | One primary          |     | position                     | management       | literature was |                |
|                |                 | on cohort      | investigator         |     | changing                     | and induction    | plentiful      |                |
|                |                 | and 401        | reviewed all         |     | increased from               | guidelines and   | prior to       |                |
|                |                 | patients in    | records for NTSV     |     | 78.7% to 87.5%               | were supported   | implementati   |                |
|                |                 | the post-      | outcome, guideline   |     | (OR 1.86, CI                 | via a highly     | on.            |                |
|                |                 | implementati   | compliance and       |     | 1.29-2.68) and               | engaged          |                |                |
|                |                 | on cohort;     | outcomes:            |     | use of peanut                | leadership       |                |                |


|                              |                       | excluding<br>non-viable | infection, PPH,<br>operative vaginal |     | ball from 16.8% to 45.2% (OR | team with<br>multiple   |                           |                       |
|------------------------------|-----------------------|-------------------------|--------------------------------------|-----|------------------------------|-------------------------|---------------------------|-----------------------|
|                              |                       | pregnancies.            | birth, and 3- or 4 <sup>th</sup> -   |     | 3.38, 95% CI                 | provider and            |                           |                       |
|                              |                       | prognancies.            | degree lacerations,                  |     | 2.84-5.16).                  | nursing                 |                           |                       |
|                              |                       |                         | meconium fluid,                      |     | There were no                | champions at            |                           |                       |
|                              |                       |                         | shoulder dystocia,                   |     | statistically                | each site.              |                           |                       |
|                              |                       |                         | five-minute Apgar                    |     | significant                  |                         |                           |                       |
|                              |                       |                         | less than seven,                     |     | changes to                   |                         |                           |                       |
|                              |                       |                         | intensive care                       |     | maternal or                  |                         |                           |                       |
|                              |                       |                         | admission, and                       |     | fetal outcomes.              |                         |                           |                       |
|                              |                       |                         | transfer.                            |     |                              |                         |                           |                       |
|                              |                       |                         | SPSS was used for                    |     |                              |                         |                           |                       |
|                              |                       |                         | statistical analysis                 |     |                              |                         |                           |                       |
|                              |                       |                         | with the X2 test                     |     |                              |                         |                           |                       |
|                              |                       |                         | used for categorical                 |     |                              |                         |                           |                       |
|                              |                       |                         | data or less than                    |     |                              |                         |                           |                       |
|                              |                       |                         | five, the Fisher                     |     |                              |                         |                           |                       |
|                              |                       |                         | exact test. T tests                  |     |                              |                         |                           |                       |
|                              |                       |                         | were used for                        |     |                              |                         |                           |                       |
|                              |                       |                         | continuous                           |     |                              |                         |                           |                       |
|                              |                       |                         | variables.                           |     |                              |                         |                           |                       |
|                              |                       |                         | Significance was                     |     |                              |                         |                           |                       |
| Incorrect of                 | T                     | A & Dalara              | set a <.05.                          | TTT | CC meter in                  | Mana in dan di          | Conducted in              | Provides              |
| Impact of                    | To assess if          | At Poissy-<br>Saint     | Retrospective                        | III | CS rate in                   | Very in-depth detail on | Conducted in<br>France so |                       |
| recommended                  | implementatio<br>n of |                         | cohort study                         |     | NTSV patient                 | statistical             |                           | evidence that         |
| changes in<br>labor          | ACOG/SMF              | Germain<br>Hospital in  | ACOG/SMFM's                          |     | population<br>significantly  | analysis and            | many not be generalizable | implementatio<br>n of |
|                              | M's                   | Poissy,                 | Consensus                            |     | decreased to                 | research                | to US patient             | ACOG/SMF              |
| management<br>for prevention | Consensus for         | France, a               | guidelines                           |     | 6.9% from                    | design;                 | population                | M's                   |
| of the primary               | safe                  | university              | implemented to                       |     | 9.4% with                    | ACOG/SMFM               | (including in             | Consensus             |
| cesarean                     | prevention of         | hospital from           | change protocol to                   |     | protocol change              | 's consensus            | ROL given                 | can safely            |
| delivery                     | the primary           | March 2014              | emulate guideline                    |     | (OR, 0.71, 95%               | used as well as         | strict                    | decrease rate         |
|                              | cesarean              | to May 2015.            | recommendations                      |     | CI, 0.59-0.85; P             |                         | adherence to              | of NTSV CS            |

| Thuillier, C., | delivery     | Including all | for management of                              | <.01) with CS    | ACOG         | ACOG/SMF     | without       |
|----------------|--------------|---------------|------------------------------------------------|------------------|--------------|--------------|---------------|
| Roy, S.,       | would safely | NTSV          | active labor and                               | of arrest of     | standards.   | М            | increasing    |
| Peyronnet, V., | decease      | patients,     | arrest of first and                            | labor decreased  | Large sample | Consensus).  | maternal or   |
| Quibel, T.,    | NTSV CS.     | excluding     | second stage arrest.                           | significantly in | size.        | Lacks detail | neonatal      |
| Nlandu, A., &  |              | elective CS   | Neonatal and                                   | first stage to   |              | of all       | morbidity or  |
| Rozenberg, P.  |              | and maternal  | maternal outcomes                              | 0.9% from        |              | exclusion    | mortality.    |
|                |              | complication  | pre and post                                   | 1.8% (OR, 0.51,  |              | criteria     | Also shows    |
| 2018           |              | s such as     | implementation                                 | 95% CI, 0.31-    |              | giving two   | improvement   |
|                |              | diabetes and  | were collected via                             | 0.81; P <.01)    |              | examples of  | in one-minute |
|                |              | preeclampsia  | electronic medical                             | and              |              | maternal and | Apgar scores  |
|                |              | and fetal     | record and birth                               | insignificantly  |              | fetal        | and decrease  |
|                |              | complication  | register and                                   | in second stage  |              | complication | in operative  |
|                |              | s such as     | reviewed by one                                | to 1.0% from     |              | s but not    | vaginal       |
|                |              | growth        | midwife and one of                             | 1.3% (OR, 1.3,   |              | exhaustive   | deliveries.   |
|                |              | restriction.  | the authors. Method                            | CI, 0.81-2.26; P |              | list.        |               |
|                |              | Total of 6351 | of delivery and                                | =.2). Duration   |              |              |               |
|                |              | patients with | indication and                                 | of labor before  |              |              |               |
|                |              | 3283          | timing for CS were                             | CS was           |              |              |               |
|                |              | baseline and  | reviewed as well as                            | significantly    |              |              |               |
|                |              | 3068 post-    | operative vaginal                              | longer,          |              |              |               |
|                |              | intervention. | deliveries, 3 <sup>rd</sup> of 4 <sup>th</sup> | operative        |              |              |               |
|                |              |               | degree lacerations,                            | vaginal rates    |              |              |               |
|                |              |               | PPH, gestational                               | decreased        |              |              |               |
|                |              |               | age at birth, Apgar                            | significantly to |              |              |               |
|                |              |               | scores, NICU                                   | 17.2% from       |              |              |               |
|                |              |               | admission, and                                 | 19.5% with no    |              |              |               |
|                |              |               | umbilical cord PH.                             | change in        |              |              |               |
|                |              |               | R studio version                               | maternal         |              |              |               |
|                |              |               | 0.99.896 (CRAN)                                | outcomes and     |              |              |               |
|                |              |               | software (Boston,                              | no changes in    |              |              |               |
|                |              |               | MA) was used for                               | neonatal         |              |              |               |
|                |              |               | statistical analysis                           | outcomes         |              |              |               |
|                |              |               | and Fisher exact or                            | except a         |              |              |               |


| X2 tests used for<br>comparison of<br>overall groups and<br>subgroups and | significant<br>decrease in rate<br>of Apgar scores<br><7 at one |
|---------------------------------------------------------------------------|-----------------------------------------------------------------|
| binary outcomes,                                                          | minute to 6.95                                                  |
| with ORs to                                                               | from 8.4% (OR,                                                  |
| measure                                                                   | 0.80, 95% CI,                                                   |
| associations and                                                          | 0.66-0.97;                                                      |
| mean durations of                                                         | P=.2).                                                          |
| labor and other                                                           |                                                                 |
| continuous                                                                |                                                                 |
| variables measured                                                        |                                                                 |
| via Independent                                                           |                                                                 |
| Student t tests. P                                                        |                                                                 |
| value set at <.05 for                                                     |                                                                 |
| significance and                                                          |                                                                 |
| two-sided analysis                                                        |                                                                 |
| used.                                                                     |                                                                 |

# REDUCING UNNECESSARY PRIMARY CESAREAN SECTIONS Appendix C

#### **Project Model and Framework**



Adapted PDSA Model for Improvement for Project *Source:* From Nelson, E. C., Batalden, P. B., & Godfrey, M. M. (2007). *Quality by design: A clinical microsystems approach.* (1<sup>st</sup> ed.). San Francisco, CA: Jossey-Bass.



Melnyk and Fineout-Overholt's ARCC Model© *Source:* From Melnyk, B. M., & Fineout-Overholt, E. (2005). *Evidence-based practice in nursing and healthcare: A guide to best practice.* Philadelphia, PA: Lippincott, Williams & Wilkins.

# REDUCING UNNECESSARY PRIMARY CESAREAN SECTIONS Appendix D

## **SWOT Analysis**

| Strengths                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weaknesses                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Magnet, Five Stars, A rating</li> <li>Mission, vision, values, strategic goals</li> <li>Nursing leadership at executive level</li> <li>EBP and research at all levels with<br/>grants and staff-led projects</li> <li>Team culture of EBP throughout all<br/>professions</li> <li>High engagement of OB leadership:<br/>Chief of OB, Hospitalists, Educators,<br/>Nursing</li> <li>Care bundle implementation in<br/>progress</li> </ul> | <ul> <li>High birth volume leads to inconsistent<br/>adherence to practice and staffing<br/>guidelines</li> <li>New private physician group</li> <li>New OB residency program</li> <li>Communication gaps with private<br/>practitioners and off-shift/PRN staff</li> <li>Staff turnover brings gaps in education<br/>to unit practice</li> <li>Risk of culture change with new team<br/>member influence</li> </ul> |
| Opportunities                                                                                                                                                                                                                                                                                                                                                                                                                                     | Threats                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Strong media attention to high cesarean rate in US</li> <li>CS reduction initiatives and bundles readily available</li> <li>CS reduction promoted by WHO, ACOG, ACMN, CMS, and Healthy People 2020.</li> <li>Strong community support of</li> </ul>                                                                                                                                                                                      | <ul> <li>CMS and The Joint Commission core<br/>measures</li> <li>Public culture promoting elective<br/>cesarean birth</li> <li>Provider preference of cesarean due to<br/>convenience and reduced litigation</li> <li>ARRIVE Trial Study misapplication,<br/>increasing elective induction of labor at</li> </ul>                                                                                                    |

39 week

- Strong community support of organization
- Strong donor support of safety initiatives

74

Appendix K

### **CMQCC** Labor Dystocia Checklist

| CMQCC Labor Dystocia Checkl                                                                                                                                                                                                                                       | ist (ACOG/SMFM Criteria                                                                              | a) California Maternal<br>Quality Care Collaborative     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                                                                                                                                   |                                                                                                      |                                                          |
| CMQCC Labor D                                                                                                                                                                                                                                                     | Dystocia Checklist (ACOG/SMFM Criteria                                                               | a)                                                       |
| 1. Diagnosis of Dystocia/Arrest Disorde                                                                                                                                                                                                                           |                                                                                                      |                                                          |
| <ul> <li>2. Diagnosis of Second Stage Arrest (o<br/>No descent or rotation for:</li> <li>At least 4 hours of pushing in n</li> <li>At least 3 hours of pushing in n</li> <li>At least 3 hours of pushing in n</li> <li>At least 2 hour of pushing in m</li> </ul> | ulliparous woman with epidural<br>ulliparous woman without epidur<br>nultiparous woman with epidural |                                                          |
| achieving cervical change and re                                                                                                                                                                                                                                  | s women and <u>&gt;</u> 8 for nulliparous                                                            | ion of labor only)<br>rupture, without<br>st 24 hours of |
| American College of Obstetrics and Gynecology, Society for Mate                                                                                                                                                                                                   | rnal-Fetal Medicine. Obstetric care consensus no. 1: s                                               | afe prevention of the primary cesarean                   |

delivery. Obstet Gynecol. 2014;123(3):693-711.

Spong CY, Berghella V, Wenstrom KD, Mercer BM, Saade GR. Preventing the first cesarean delivery: summary of a joint Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, and American College of Obstetricians and Gynecologists Workshop. Obstet Gynecol. 2012;120(5):1181-1193.

CMQCC Toolkit to Support Vaginal Birth and Reduce Primary Cesareans

CMQCC

# REDUCING UNNECESSARY PRIMARY CESAREAN SECTIONS Appendix F

# **Rolling RN NTSV CS Rates**

| Birth    | Number<br>of Births<br>(July-Nov | NTSV<br>Rate<br>(July-<br>Nov | Birth     | Number<br>of Births<br>(Aug-Dec | NTSV<br>Rate<br>(Aug-<br>Dec | Birth     | Number<br>of Births<br>(Sept-Jan | NTSV<br>Rate<br>(Sept-<br>Jan | Birth     | Number<br>of Births<br>(Oct-Feb | NTSV<br>Rate<br>(Oct-<br>Feb |
|----------|----------------------------------|-------------------------------|-----------|---------------------------------|------------------------------|-----------|----------------------------------|-------------------------------|-----------|---------------------------------|------------------------------|
| RN       | 2021)                            | 2021)                         | RN        | 2021)                           | 2021)                        | RN        | 2022)                            | 2022)                         | RN        | 2022)                           | 2022)                        |
| RN 1     | 1                                | 0.00%                         | RN<br>39  | 1                               | 0.00%                        | RN<br>107 | 1                                | 0.00%                         | RN<br>107 | 1                               | 0.00%                        |
| RN 2     | 1                                | 0.00%                         | RN<br>110 | 3                               | 0.00%                        | RN 1      | 2                                | 0.00%                         | RN 1      | 3                               | 0.00%                        |
| RN 3     | 2                                | 0.00%                         | RN 2      | 2                               | 0.00%                        | RN<br>110 | 5                                | 0.00%                         | RN<br>121 | 1                               | 0.00%                        |
|          |                                  |                               | RN        |                                 |                              | RN        |                                  |                               | RN        |                                 |                              |
| RN 4     | 1                                | 0.00%                         | 40        | 2                               | 0.00%                        | 100<br>RN | 1                                | 0.00%                         | 66<br>RN  | 5                               | 0.00%                        |
| RN 5     | 5                                | 0.00%                         | RN 3      | 2                               | 0.00%                        | 40        | 9                                | 0.00%                         | 122       | 4                               | 0.00%                        |
| RN 6     | 1                                | 0.00%                         | RN<br>111 | 4                               | 0.00%                        | RN<br>115 | 7                                | 0.00%                         | RN<br>96  | 1                               | 0.00%                        |
| RN 7     | 3                                | 0.00%                         | RN<br>112 | 2                               | 0.00%                        | RN 3      | 1                                | 0.00%                         | RN<br>123 | 1                               | 0.00%                        |
| RN 8     | 1                                | 0.00%                         | RN 4      | 1                               | 0.00%                        | RN<br>111 | 7                                | 0.00%                         | RN 40     | 9                               | 0.00%                        |
| RN 9     | 5                                | 0.00%                         | RN<br>41  | 2                               | 0.00%                        | RN<br>112 | 6                                | 0.00%                         | RN<br>62  | 1                               | 0.00%                        |
| RN 10    | 9                                | 0.00%                         | RN<br>34  | 1                               | 0.00%                        | RN 4      | 1                                | 0.00%                         | RN<br>111 | 9                               | 0.00%                        |
| RN       | 9                                | 0.00%                         | RN        | <b>1</b>                        | 0.00%                        | RN 4      | 1                                | 0.00%                         | 111       | 9                               | 0.00%                        |
| 11       | 2                                | 0.00%                         | 33        | 5                               | 0.00%                        | 93        | 2                                | 0.00%                         | RN 4      | 1                               | 0.00%                        |
| RN<br>12 | 21                               | 0.00%                         | RN<br>30  | 3                               | 0.00%                        | RN<br>77  | 1                                | 0.00%                         | RN<br>93  | 2                               | 0.00%                        |
| RN<br>13 | 1                                | 0.00%                         | RN<br>32  | 1                               | 0.00%                        | RN<br>83  | 4                                | 0.00%                         | RN<br>124 | 2                               | 0.00%                        |

| KEDUC.   |    | ECESSA |          |    | SAKEA  | N SEC.     |   |        | 1        | 1  |        |
|----------|----|--------|----------|----|--------|------------|---|--------|----------|----|--------|
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 14       | 3  | 0.00%  | 28       | 3  | 0.00%  | 86         | 1 | 0.00%  | 104      | 1  | 0.00%  |
|          |    |        |          |    |        |            |   |        |          |    |        |
| RN       |    |        |          |    |        | RN         |   |        | RN       |    |        |
| 15       | 8  | 0.00%  | RN 5     | 2  | 0.00%  | 41         | 2 | 0.00%  | 116      | 3  | 0.00%  |
|          |    |        |          |    |        |            |   |        |          |    |        |
| RN       |    | /      |          |    | /      | RN         |   | /      | RN       |    |        |
| 16       | 3  | 0.00%  | RN 7     | 4  | 0.00%  | 34         | 1 | 0.00%  | 125      | 4  | 0.00%  |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 17       | 8  | 0.00%  | 21       | 3  | 0.00%  | 116        | 1 | 0.00%  | 33       | 10 | 0.00%  |
| 1,       |    | 0.0070 |          |    | 0.0070 |            |   | 0.0070 |          |    | 0.0070 |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 18       | 17 | 0.00%  | 20       | 1  | 0.00%  | 33         | 7 | 0.00%  | 118      | 2  | 0.00%  |
|          |    |        |          |    |        |            |   |        |          |    |        |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 19       | 2  | 0.00%  | 38       | 1  | 0.00%  | 117        | 2 | 0.00%  | 30       | 2  | 0.00%  |
| RN       |    |        |          |    |        | RN         |   |        | RN       |    |        |
| 20       | 1  | 0.00%  | RN 8     | 2  | 0.00%  | 118        | 1 | 0.00%  | 32       | 2  | 0.00%  |
| RN       | 1  | 0.0070 | NN O     | 2  | 0.0070 | RN         | 1 | 0.0070 | RN       | 2  | 0.0070 |
| 21       | 6  | 0.00%  | RN 9     | 4  | 0.00%  | 30         | 2 | 0.00%  | 50       | 5  | 0.00%  |
|          | -  |        |          | -  |        |            | _ |        |          | -  |        |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 22       | 1  | 0.00%  | 24       | 2  | 0.00%  | 32         | 2 | 0.00%  | 63       | 1  | 0.00%  |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 23       | 9  | 0.00%  | 10       | 6  | 0.00%  | 63         | 2 | 0.00%  | 52       | 1  | 0.00%  |
| RN       | -  |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 24       | 2  | 0.00%  | 13       | 1  | 0.00%  | 52         | 3 | 0.00%  | 92       | 1  | 0.00%  |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 25       | 4  | 0.00%  | 14       | 2  | 0.00%  | 28         | 2 | 0.00%  |          | 1  | 0.00%  |
| RN       |    | 0.0070 | RN       | 2  | 0.0070 | 20         | 2 | 0.0070 | 54       |    | 0.0070 |
| 26       | 5  | 0.00%  | 15       | 8  | 0.00%  | RN 7       | 2 | 0.00%  | RN 7     | 2  | 0.00%  |
| RN       |    |        | RN       |    |        | RN         |   |        | RN       |    |        |
| 27       | 3  | 0.00%  | 16       | 4  | 0.00%  | 20         | 1 | 0.00%  | 103      | 4  | 0.00%  |
| RN       |    |        | RN       |    |        |            |   |        |          |    |        |
| 28       | 3  | 0.00%  | 17       | 8  | 0.00%  | RN 8       | 2 | 0.00%  | RN 8     | 2  | 0.00%  |
|          |    |        |          |    |        |            |   |        |          |    |        |
| RN       | 4  | 0.000/ | RN       | 10 | 0.000/ |            |   | 0.000/ |          |    | 0.000/ |
| 29<br>PN | 1  | 0.00%  | 18<br>PN | 18 | 0.00%  | RN 9<br>RN | 3 | 0.00%  | RN 9     | 2  | 0.00%  |
| RN<br>30 | 2  | 0.00%  | RN<br>19 | 1  | 0.00%  | RN<br>24   | 2 | 0.00%  | RN<br>24 | 1  | 0.00%  |
| RN       | ۷  | 0.00%  | RN       |    | 0.00%  | RN 24      | 2 | 0.00%  | RN 24    | 1  | 0.00%  |
| 31       | 1  | 0.00%  | 75       | 1  | 0.00%  | 67         | 9 | 0.00%  | 88       | 2  | 0.00%  |
| RN       |    | 0.0070 | RN       |    | 0.0070 | RN         |   | 0.0070 | RN       | 2  | 0.0070 |
| 32       | 1  | 0.00%  | 12       | 20 | 5.00%  | 14         | 1 | 0.00%  | 73       | 1  | 0.00%  |

|          |    | ecessa<br> | .K I PK  | IMARY CE | SAKEA   | N SEC.   |     |         |          |    | I       |
|----------|----|------------|----------|----------|---------|----------|-----|---------|----------|----|---------|
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 33       | 2  | 0.00%      | 43       | 17       | 5.88%   | 78       | 2   | 0.00%   | 67       | 4  | 0.00%   |
|          |    |            |          |          |         |          |     |         |          |    |         |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 34       | 1  | 0.00%      | 42       | 15       | 6.67%   | 16       | 3   | 0.00%   | 16       | 3  | 0.00%   |
| DNI      |    |            | -        |          |         |          |     |         |          |    |         |
| RN       | -  | 0.000/     | RN       | 10       | 0.000/  | RN       |     | 0.000/  | RN       |    | 0.000/  |
| 35       | 5  | 0.00%      | 23       | 12       | 8.33%   | 17       | 9   | 0.00%   | 99       | 4  | 0.00%   |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 36       | 1  | 0.00%      | 35       | 10       | 10.00%  | 18       | 15  | 0.00%   | 18       | 14 | 0.00%   |
| RN       |    | 0.0070     | RN       |          |         | RN       |     | 0.0070  | RN       |    |         |
| 37       | 1  | 0.00%      | 51       | 18       | 11.11%  | 19       | 1   | 0.00%   | 19       | 1  | 0.00%   |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 38       | 4  | 0.00%      | 55       | 9        | 11.11%  | 75       | 1   | 0.00%   | 118      | 1  | 0.00%   |
|          |    |            |          |          |         |          |     |         |          |    |         |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 39       | 1  | 0.00%      | 47       | 36       | 11.11%  | 35       | 14  | 7.14%   | 47       | 26 | 3.85%   |
|          |    |            | DN       |          |         |          |     |         | DN       |    |         |
| RN<br>40 | 1  | 0.00%      | RN<br>66 | 16       | 12.50%  | RN<br>12 | 14  | 7.14%   | RN<br>35 | 16 | 6.25%   |
| 40       | T  | 0.00%      | 00       | 10       | 12.50%  | 12       | 14  | 7.14%   | 35       | 10 | 0.25%   |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 41       | 2  | 0.00%      | 50       | 8        | 12.50%  | 66       | 13  | 7.69%   | 12       | 14 | 7.14%   |
| RN       |    | 0.0070     | RN       |          | 12.0070 | RN       |     | 7.007/0 | RN       |    | 712170  |
| 42       | 19 | 5.26%      | 59       | 23       | 13.04%  | 60       | 11  | 9.09%   | 60       | 11 | 9.09%   |
|          |    |            |          |          |         |          |     |         |          |    |         |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 43       | 13 | 7.69%      | 58       | 15       | 13.33%  | 46       | 11  | 9.09%   | 115      | 10 | 10.00%  |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 44       | 13 | 7.69%      | 57       | 15       | 13.33%  | 47       | 30  | 10.00%  | 17       | 10 | 10.00%  |
|          |    |            |          |          |         |          |     |         |          |    |         |
| RN       | 10 | 10.000/    | RN       | 7        | 14 200/ | RN       | 10  | 12 500/ | RN       | 0  | 11 110/ |
| 45       | 10 | 10.00%     | 25       | 7        | 14.29%  | 43       | 16  | 12.50%  | 112      | 9  | 11.11%  |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 46       | 10 | 10.00%     | 53       | 20       | 15.00%  | 58       | 15  | 13.33%  | 46       | 9  | 11.11%  |
| RN       | 10 | 10.0070    | RN       | 20       | 13.0070 | RN       | 1.5 | 13.3370 | RN       |    | 11.11/0 |
| 47       | 28 | 10.71%     | 60       | 13       | 15.38%  | 71       | 14  | 14.29%  | 51       | 8  | 12.50%  |
|          |    |            |          |          | , , ,   | _        |     | */3     |          |    |         |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 48       | 9  | 11.11%     | 52       | 6        | 16.67%  | 50       | 7   | 14.29%  | 43       | 16 | 12.50%  |
|          |    |            |          |          |         |          |     |         |          |    |         |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 49       | 9  | 11.11%     | 26       | 6        | 16.67%  | 37       | 7   | 14.29%  | 90       | 7  | 14.29%  |
| RN       |    |            | RN       |          |         | RN       |     |         | RN       |    |         |
| 50       | 9  | 11.11%     | 27       | 6        | 16.67%  | 59       | 21  | 14.29%  | 37       | 7  | 14.29%  |

| REDUC | ING UNN | ECESSA   | RY PR | IMARY CE | ESAREA  | N SEC | TIONS |         |     |    |         |
|-------|---------|----------|-------|----------|---------|-------|-------|---------|-----|----|---------|
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 51    | 17      | 11.76%   | 67    | 11       | 18.18%  | 23    | 14    | 14.29%  | 59  | 21 | 14.29%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 52    | 8       | 12.50%   | 63    | 5        | 20.00%  | 42    | 7     | 14.29%  | 45  | 20 | 15.00%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 53    | 16      | 12.50%   | 37    | 5        | 20.00%  | 51    | 12    | 16.67%  | 58  | 13 | 15.38%  |
| RN    | 10      | 12.3070  | RN    | 5        | 20.0070 | RN    | 12    | 10.0770 | RN  | 15 | 13.3670 |
| 54    | 8       | 12.50%   | 45    | 15       | 20.00%  | 45    | 18    | 16.67%  | 27  | 11 | 18.18%  |
|       |         |          |       |          |         |       |       |         |     |    |         |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 55    | 15      | 13.33%   | 61    | 15       | 20.00%  | 26    | 6     | 16.67%  | 29  | 5  | 20.00%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 56    | 14      | 14.29%   | 71    | 14       | 21.43%  | 99    | 6     | 16.67%  | 91  | 5  | 20.00%  |
|       |         |          |       |          |         |       |       |         |     |    |         |
| RN    |         |          | RN    |          |         | RN    | _     |         | RN  | _  |         |
| 57    | 14      | 14.29%   | 80    | 18       | 22.22%  | 48    | 5     | 20.00%  | 89  | 5  | 20.00%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 58    | 14      | 14.29%   | 83    | 9        | 22.22%  | 103   | 5     | 20.00%  | 76  | 5  | 20.00%  |
| RN    | 14      | 14.2370  | RN    | 5        | 22.2270 | RN    |       | 20.0070 | RN  |    | 20.0070 |
| 59    | 13      | 15.38%   | 91    | 9        | 22.22%  | 73    | 5     | 20.00%  | 26  | 5  | 20.00%  |
| RN    | 15      | 13.3070  | RN    |          | 22.2270 | RN    |       | 20.0070 | RN  |    | 20.0070 |
| 60    | 18      | 16.67%   | 46    | 9        | 22.22%  | 27    | 10    | 20.00%  | 86  | 5  | 20.00%  |
|       |         |          |       |          |         |       |       |         |     |    |         |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 61    | 12      | 16.67%   | 44    | 13       | 23.08%  | 57    | 15    | 20.00%  | 80  | 14 | 21.43%  |
|       |         |          |       |          |         | DN    |       |         | DN  |    |         |
| RN    | 6       | 4.6.670/ | RN    | 47       | 22 520/ | RN    |       | 24 420/ | RN  |    | 24 420/ |
| 62    | 6       | 16.67%   | 64    | 17       | 23.53%  | 61    | 14    | 21.43%  | 71  | 14 | 21.43%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 63    | 6       | 16.67%   | 92    | 4        | 25.00%  | 53    | 18    | 22.22%  | 23  | 14 | 21.43%  |
|       |         |          |       |          |         |       |       |         |     |    |         |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 64    | 16      | 18.75%   | 62    | 4        | 25.00%  | 90    | 9     | 22.22%  | 110 | 9  | 22.22%  |
|       |         |          |       |          |         |       |       |         |     |    |         |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 65    | 10      | 20.00%   | 69    | 8        | 25.00%  | 64    | 13    | 23.08%  | 65  | 9  | 22.22%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 66    | 20      | 20.00%   | 74    | 4        | 25.00%  | 80    | 17    | 23.53%  | 82  | 13 | 23.08%  |
| 00    | 20      | 20.00%   | /4    | 4        | 23.00%  | 00    | 1/    | 23.33/0 | 02  | 13 | 23.00%  |
| RN    |         |          | RN    |          |         | RN    |       |         | RN  |    |         |
| 67    | 15      | 20.00%   | 54    | 4        | 25.00%  | 29    | 4     | 25.00%  | 53  | 17 | 23.53%  |
| RN    |         |          | RN    |          |         | RN    | 1     |         | RN  |    |         |
| 68    | 5       | 20.00%   | 68    | 4        | 25.00%  | 91    | 4     | 25.00%  | 57  | 17 | 23.53%  |

|          | ING UNIN | ECESSA  |          | IMARY CE | SAKEAI  | N SEC.   |    |         | 1        | 1  | I       |
|----------|----------|---------|----------|----------|---------|----------|----|---------|----------|----|---------|
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 69       | 5        | 20.00%  | 65       | 12       | 25.00%  | 21       | 4  | 25.00%  | 81       | 8  | 25.00%  |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 70       | 10       | 20.00%  | 73       | 8        | 25.00%  | 68       | 4  | 25.00%  | 117      | 4  | 25.00%  |
| RN       | 10       | 20.0070 | RN       |          | 23.0070 | RN       |    | 23.0070 | RN       | •  | 23.0070 |
| 71       | 14       | 21.43%  | 76       | 4        | 25.00%  | 55       | 4  | 25.00%  | 56       | 8  | 25.00%  |
|          |          |         |          |          |         |          |    |         |          |    |         |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 72       | 18       | 22.22%  | 81       | 14       | 28.57%  | 65       | 12 | 25.00%  | 21       | 4  | 25.00%  |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 73       | 9        | 22.22%  | 48       | 7        | 28.57%  | 76       | 4  | 25.00%  | 94       | 8  | 25.00%  |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 74       | 4        | 25.00%  | 70       | 7        | 28.57%  | 15       | 8  | 25.00%  | 64       | 12 | 25.00%  |
|          |          |         |          |          |         |          |    |         |          |    |         |
| RN       | 4        | 25.00%  | RN       | 12       | 20 770/ | RN       | 10 | 25 000/ | RN       | 15 | 26 670/ |
| 75       | 4        | 25.00%  | 82       | 13       | 30.77%  | 82       | 16 | 25.00%  | 95       | 15 | 26.67%  |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 76       | 4        | 25.00%  | 79       | 13       | 30.77%  | 95       | 15 | 26.67%  | 15       | 7  | 28.57%  |
|          |          |         |          |          |         |          |    |         |          |    |         |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 77       | 4        | 25.00%  | 95       | 18       | 33.33%  | 44       | 11 | 27.27%  | 42       | 7  | 28.57%  |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 78       | 4        | 25.00%  | 93       | 3        | 33.33%  | 39       | 7  | 28.57%  | 39       | 10 | 30.00%  |
|          | •        |         |          |          |         |          | -  |         |          |    |         |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 79       | 15       | 26.67%  | 29       | 3        | 33.33%  | 81       | 13 | 30.77%  | 72       | 13 | 30.77%  |
|          |          |         | DN       |          |         | DN       |    |         | DN       |    |         |
| RN<br>80 | 18       | 27.78%  | RN<br>84 | 6        | 33.33%  | RN<br>25 | 9  | 33.33%  | RN<br>92 | 3  | 33.33%  |
| 80       | 10       | 27.70/0 | 04       | 0        | 33.3370 | 23       | 9  | 55.5570 | 92       | 5  | 55.5570 |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 81       | 14       | 28.57%  | 56       | 9        | 33.33%  | 92       | 3  | 33.33%  | 101      | 15 | 33.33%  |
|          |          |         |          |          |         |          |    |         |          |    |         |
| RN       |          |         | RN       |          |         |          |    |         | RN       |    |         |
| 82       | 10       | 30.00%  | 98       | 3        | 33.33%  | RN 2     | 9  | 33.33%  | 48       | 6  | 33.33%  |
| DN       |          |         | DN       |          |         | DN       |    |         | RN       |    |         |
| RN<br>83 | 10       | 30.00%  | RN<br>78 | 3        | 33.33%  | RN<br>62 | 3  | 33.33%  | км<br>69 | 9  | 33.33%  |
| 00       | 10       | 50.00%  | 70       | 3        | 33.33/0 | 02       | 3  | 55.5570 | 05       | 9  | 55.55/0 |
| RN       |          |         | RN       |          |         | RN       |    |         | RN       |    |         |
| 84       | 6        | 33.33%  | 86       | 3        | 33.33%  | 119      | 3  | 33.33%  |          | 9  | 33.33%  |

| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
|-----------|----|---------|-----------|----|---------|-----------|----|----------|----------|----|--------|
| 85        | 3  | 33.33%  | 99        | 6  | 33.33%  | 84        | 3  | 33.33%   | 10       | 3  | 33.33% |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 86        | 3  | 33.33%  | 72        | 17 | 35.29%  | 69        | 9  | 33.33%   | 78       | 3  | 33.33% |
|           |    |         |           |    |         |           |    |          |          |    |        |
| RN        | c  | 22.220/ | RN        | 0  | 27 500/ | RN        |    | 22.220/  | RN       |    | 26.260 |
| 87        | 6  | 33.33%  | 49        | 8  | 37.50%  | 56        | 9  | 33.33%   | 25       | 11 | 36.36% |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 88        | 3  | 33.33%  | 90        | 15 | 40.00%  | 54        | 3  | 33.33%   | 113      | 8  | 37.50% |
|           |    |         |           |    |         | DN        |    |          |          |    |        |
| RN<br>89  | 8  | 37.50%  | RN<br>101 | 9  | 44.44%  | RN<br>10  | 3  | 33.33%   | RN<br>61 | 16 | 37.50% |
|           |    |         |           |    |         |           |    |          |          |    |        |
| RN        |    |         | RN        | _  |         | RN        |    |          |          |    |        |
| 90        | 18 | 38.89%  | 89        | 9  | 44.44%  | 94        | 9  | 33.33%   | RN 2     | 10 | 40.00% |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 91        | 10 | 40.00%  | 94        | 11 | 45.45%  | 72        | 12 | 33.33%   | 119      | 5  | 40.00% |
|           |    |         |           |    |         |           |    |          |          |    |        |
| RN<br>92  | 5  | 40.00%  | RN<br>107 | 2  | 50.00%  | RN<br>49  | 11 | 36.36%   | RN<br>83 | 5  | 40.00% |
| 52        |    | 40.0070 | 107       | 2  | 30.0070 |           |    | 30.3070  | 05       |    | 40.007 |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 93        | 5  | 40.00%  | 100       | 2  | 50.00%  | 113       | 5  | 40.00%   | 53       | 5  | 40.00% |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 94        | 12 | 41.67%  | 96        | 2  | 50.00%  | 79        | 10 | 40.00%   | 49       | 10 | 40.00% |
|           |    |         |           |    |         |           |    |          |          |    |        |
| RN<br>95  | 17 | 47.06%  | RN<br>104 | 2  | 50.00%  | RN<br>101 | 12 | 41.67%   | RN<br>55 | 5  | 40.00% |
| 33        | 1/ | 47.00%  | 104       | 2  | 30.00%  | 101       | 12 | 41.07 /0 | 55       | 5  | 40.007 |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 96        | 2  | 50.00%  | 77        | 2  | 50.00%  | 89        | 9  | 44.44%   | 79       | 9  | 44.44% |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 97        | 6  | 50.00%  | 113       | 2  | 50.00%  | 96        | 2  | 50.00%   | 126      | 2  | 50.00% |
|           |    |         |           |    |         |           |    |          |          |    |        |
| RN        | A  | F0 000/ | RN        | ~  | F0 000/ | RN        |    | F0 000/  | RN       |    | F0.000 |
| 98        | 4  | 50.00%  | 85        | 2  | 50.00%  | 104       | 2  | 50.00%   | 120      | 2  | 50.00% |
| RN        |    |         | RN        |    |         | RN        |    |          | RN       |    |        |
| 99        | 8  | 50.00%  | 103       | 6  | 50.00%  | 85        | 2  | 50.00%   | 84       | 2  | 50.00% |
|           |    |         |           |    |         | DN        |    |          |          |    |        |
| RN<br>100 | 2  | 50.00%  | RN<br>88  | 2  | 50.00%  | RN<br>74  | 2  | 50.00%   | RN<br>85 | 2  | 50.00% |

|     |    |         |      |   |         |      |   | l       | Ì    | I     | l       |
|-----|----|---------|------|---|---------|------|---|---------|------|-------|---------|
| RN  |    |         | RN   |   |         |      |   |         | RN   |       |         |
| 101 | 5  | 60.00%  | 97   | 5 | 60.00%  | RN 6 | 4 | 50.00%  | 40   | 2     | 50.00%  |
| 101 |    | 00.0070 | 57   |   | 00.0070 |      |   | 30.0070 |      |       | 50.0070 |
| RN  |    |         | RN   |   |         | RN   |   |         | RN   |       |         |
| 102 | 3  | 66.67%  | 102  | 3 | 66.67%  | 70   | 4 | 50.00%  | 68   | 2     | 50.00%  |
|     |    |         |      |   |         |      |   |         |      |       |         |
| RN  |    |         | RN   |   |         | RN   |   |         | RN   |       |         |
| 103 | 16 | 81.25%  | 87   | 3 | 66.67%  | 86   | 2 | 50.00%  | 75   | 2     | 50.00%  |
|     |    |         |      |   |         |      |   |         |      |       |         |
| RN  |    | 100.00  |      |   |         | RN   |   |         | RN   |       |         |
| 104 | 1  | %       | RN 6 | 3 | 66.67%  | 102  | 3 | 66.67%  | 41   | 5     | 60.00%  |
|     |    |         |      |   |         |      |   |         |      |       |         |
| RN  |    | 100.00  | RN   |   | 100.00  | RN   | - | 00.000/ | RN   | 2     | CC C70/ |
| 105 | 1  | %       | 106  | 3 | %       | 97   | 5 | 80.00%  | 102  | 3     | 66.67%  |
| RN  |    | 100.00  | RN   |   | 100.00  | RN   |   | 100.00  | RN   |       |         |
| 106 | 4  | 100.00  | 108  | 1 | 100.00  | 106  | 3 | 100.00  | 70   | 3     | 66.67%  |
| 100 | 4  | 70      | 108  | 1 | 70      | 100  | 5 | 70      | 70   | 5     | 00.0770 |
| RN  |    | 100.00  | RN   |   | 100.00  | RN   |   | 100.00  | RN   |       |         |
| 107 | 1  | %       | 114  | 1 | %       | 120  | 1 | %       | 106  | 4     | 75.00%  |
|     |    |         |      |   |         |      |   |         |      |       |         |
| RN  |    | 100.00  |      |   |         | RN   |   | 100.00  |      |       |         |
| 108 | 1  | %       |      |   |         | 87   | 1 | %       | RN 6 | 4     | 75.00%  |
|     |    |         |      |   |         |      |   |         |      |       |         |
| RN  |    | 100.00  |      |   |         | RN   |   | 100.00  | RN   |       |         |
| 109 | 3  | %       |      |   |         | 88   | 1 | %       | 97   | 5     | 80.00%  |
|     |    |         |      |   |         | -    |   | 100.00  |      |       | 100.00  |
|     |    |         |      |   |         | RN   | 1 | 100.00  | RN   | 1     | 100.00  |
|     |    |         |      |   |         | 114  | 1 | %       | 127  | 1     | %       |
|     |    |         |      |   |         |      |   |         | RN   |       | 100.00  |
|     |    |         |      |   |         |      |   |         | 43   | 4     | 100.00  |
|     |    |         |      |   |         |      |   |         | RN   | т<br> | 100.00  |
|     |    |         |      |   |         |      |   |         | 74   | 1     | %       |
|     |    |         |      |   |         |      |   |         | RN   |       | 100.00  |
|     |    |         |      |   |         |      |   |         | 96   | 1     | %       |

# REDUCING UNNECESSARY PRIMARY CESAREAN SECTIONS Appendix G

## NTSV Cesarean Section Communication Tool

|                                                                                                                                                                                    |                                                                                                                                                               | NTSV C                                   | esarean Se                                    | ction                                                                                                                                            |                                                                                                 |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                    |                                                                                                                                                               |                                          | unication T                                   |                                                                                                                                                  |                                                                                                 |                         |
| atient Name:                                                                                                                                                                       |                                                                                                                                                               |                                          | Gestational A                                 | Age:                                                                                                                                             | wks                                                                                             | _/7 <sup>ths</sup> days |
| ate of C-section:                                                                                                                                                                  | Tii                                                                                                                                                           | me:                                      | am / pm G                                     | iravida                                                                                                                                          | Para                                                                                            |                         |
| ace <u>:</u>                                                                                                                                                                       |                                                                                                                                                               |                                          |                                               |                                                                                                                                                  |                                                                                                 |                         |
| aseline Clinical Inforr                                                                                                                                                            | mation                                                                                                                                                        |                                          |                                               |                                                                                                                                                  |                                                                                                 |                         |
| Admission: Dat                                                                                                                                                                     | te:                                                                                                                                                           |                                          | Time:                                         |                                                                                                                                                  | a                                                                                               | m/pm                    |
| <mark>Patient Status:</mark>                                                                                                                                                       | D Admitted in                                                                                                                                                 |                                          |                                               |                                                                                                                                                  |                                                                                                 |                         |
|                                                                                                                                                                                    |                                                                                                                                                               | e Labor at admissic                      |                                               |                                                                                                                                                  |                                                                                                 | <u> </u>                |
|                                                                                                                                                                                    |                                                                                                                                                               | eduled Induction D<br>Idmitted Antepartu |                                               | Induction D Spo                                                                                                                                  | ntaneous rupture                                                                                | of membrar              |
|                                                                                                                                                                                    |                                                                                                                                                               |                                          | <u>, , , , , , , , , , , , , , , , , , , </u> |                                                                                                                                                  |                                                                                                 |                         |
| Membranes or                                                                                                                                                                       | n admission:                                                                                                                                                  | Intact 🛛 Ru                              | ptured                                        |                                                                                                                                                  |                                                                                                 |                         |
| Cervical Ripeni                                                                                                                                                                    | ing ( <i>check all tha</i> i                                                                                                                                  | t apply):                                |                                               |                                                                                                                                                  |                                                                                                 |                         |
|                                                                                                                                                                                    |                                                                                                                                                               | I D Foley Balloon                        | Cook (double                                  | e balloon) Cathete                                                                                                                               | e <mark>r</mark>                                                                                |                         |
| Oxytocin ( <i>chec</i>                                                                                                                                                             | k one).                                                                                                                                                       |                                          |                                               |                                                                                                                                                  |                                                                                                 |                         |
|                                                                                                                                                                                    | ne utilized 📋 Indu                                                                                                                                            | uction D Augmentat                       | ion at 💦                                      | cm                                                                                                                                               |                                                                                                 |                         |
| rvical Examinations                                                                                                                                                                |                                                                                                                                                               |                                          |                                               |                                                                                                                                                  |                                                                                                 |                         |
|                                                                                                                                                                                    |                                                                                                                                                               |                                          |                                               | ented):                                                                                                                                          |                                                                                                 |                         |
|                                                                                                                                                                                    |                                                                                                                                                               |                                          |                                               |                                                                                                                                                  | Cy Consistency                                                                                  | Bishon                  |
| Event                                                                                                                                                                              | Dilation (cm)                                                                                                                                                 | Effacement<br>(%)                        | Station                                       | ented):<br>Cx Position                                                                                                                           | Cx Consistency                                                                                  | Bishop<br>Score*        |
|                                                                                                                                                                                    |                                                                                                                                                               | Effacement                               |                                               |                                                                                                                                                  | Cx Consistency                                                                                  |                         |
| Event                                                                                                                                                                              |                                                                                                                                                               | Effacement                               |                                               |                                                                                                                                                  | Cx Consistency                                                                                  |                         |
| Event<br>Arrival/First<br>Admission                                                                                                                                                |                                                                                                                                                               | Effacement                               |                                               |                                                                                                                                                  | Cx Consistency                                                                                  |                         |
| Event<br>Arrival/First                                                                                                                                                             |                                                                                                                                                               | Effacement                               |                                               |                                                                                                                                                  | Cx Consistency                                                                                  |                         |
| Event<br>Arrival/First<br>Admission<br>Last Exam                                                                                                                                   |                                                                                                                                                               | Effacement                               |                                               |                                                                                                                                                  | Cx Consistency                                                                                  |                         |
| Event<br>Arrival/First<br>Admission<br>Last Exam<br>Before                                                                                                                         |                                                                                                                                                               | Effacement                               |                                               |                                                                                                                                                  | Cx Consistency                                                                                  |                         |
| Event<br>Arrival/First<br>Admission<br>Last Exam<br>Before<br>Delivery                                                                                                             |                                                                                                                                                               | Effacement<br>(%)                        |                                               | Cx Position                                                                                                                                      | Cx Consistency                                                                                  | Score*                  |
| Event<br>Arrival/First<br>Admission<br>Last Exam<br>Before<br>Delivery<br>Admit                                                                                                    | Dilation (cm)                                                                                                                                                 | Effacement<br>(%)                        |                                               | Cx Position<br>Admitted fo                                                                                                                       |                                                                                                 | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Mechan Kinetic                                                                                                       | Dilation (cm)<br>tted for <i>Induction</i><br>nical Cervical Ripe<br>Epidural                                                                                 | Effacement<br>(%)                        |                                               | Cx Position<br>Admitted for<br>Evidence of<br>admission                                                                                          | or <i>Spontaneous La</i><br>cervical change pr                                                  | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Mechan Kinetic Peanut                                                                                                | Dilation (cm)<br>tted for <i>Induction</i><br>nical Cervical Ripe<br>Epidural<br>t Ball                                                                       | Effacement<br>(%)                        |                                               | Cx Position<br>Admitted for<br>Evidence of<br>admission<br>Kinetic Epid                                                                          | or <i>Spontaneous La</i><br>cervical change pr<br>dural                                         | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Kinetic Peanut Fetal tr                                                                                        | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document                                                           | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal                                                             | or <i>Spontaneous La</i><br>cervical change pr<br>dural                                         | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Kinetic Peanut Fetal to termino                                                                                | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document                                                           | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal                                                             | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin                    | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Admit Fetal tr terming Labor I                                                                           | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document<br>ology<br>g Labor Support<br>Loop                       | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab               | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Fetal tr terming Labor I Labor I Labor I                                                                 | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document<br>ology<br>g Labor Support<br>Loop<br>Dystocia Definitic | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Fetal tr terming Labor I Labor I Labor I                                                                 | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document<br>ology<br>g Labor Support<br>Loop                       | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Fetal tr terming Labor I Labor I Labor I                                                                 | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document<br>ology<br>g Labor Support<br>Loop<br>Dystocia Definitic | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Fetal tr terming Labor I Labor I Labor I                                                                 | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document<br>ology<br>g Labor Support<br>Loop<br>Dystocia Definitic | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Fetal tr terming Labor I Labor I Labor I                                                                 | Dilation (cm)<br>tted for Induction<br>nical Cervical Ripe<br>Epidural<br>t Ball<br>racing document<br>ology<br>g Labor Support<br>Loop<br>Dystocia Definitic | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Admit Admit Last Exam Before Delivery Admit Last Exam Labor Labor Labor Labor Risk Red Nat C/S Decision: | Dilation (cm)                                                                                                                                                 | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |
| Event Arrival/First Admission Last Exam Before Delivery Admit Admit Admit Admit Admit Last Exam Before Delivery Admit Last Labor Labor Labor Labor Risk Red                        | Dilation (cm)                                                                                                                                                 | Effacement<br>(%)                        | Station                                       | Cx Position<br>Admitted fo<br>Evidence of<br>admission<br>Kinetic Epic<br>Peanut Bal<br>Fetal tracin<br>terminology<br>Nursing Lab<br>Labor Loop | or <i>Spontaneous La</i><br>cervical change pr<br>dural<br>g documented usin<br>/<br>or Support | Score*                  |

| In the next section please use the <b>primary indication</b> for this cesarean section and answer the appropriate questions <i>(Physician to complete):</i>                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Concerning fetal status</li> <li>Antepartum testing results precluding trial of labor</li> <li>Category III FHR tracing</li> <li>Worsening Category II FHR tracing despite intrauterine resuscitative measures</li> <li>Other</li></ul>                                                                                                                                                                                                                                        |
| <ul> <li>Failed Induction – both should be present:</li> <li>Cervical ripening used if starting with unfavorable Bishop Score (&lt;6 for multip and &lt;8 for nullip).</li> <li>Unable to generate regular contractions (every 3 minutes) and cervical change after oxytocin administered forat least 12-<br/>18 hours after membrane rupture. Note: at least 24-hours of oxytocin administration after membrane rupture is preferable if maternal and fetal statuses permit</li> </ul> |
| <ul> <li>Latent Phase Arrest (less than 6 cm)</li> <li>Moderate or strong contractions palpated &gt; 12 hour @ithout cervical change OR,</li> <li>IUPC &gt; 200 MVUs for &gt; 12 hours without cervical change</li> </ul>                                                                                                                                                                                                                                                               |
| <ul> <li>Active Phase Arrest of Dilation – all three should be present:         <ul> <li>Cervix ≥6cm dilated</li> <li>Membranes ruptured</li> <li>No cervical change (dilation, effacement, station, or position) after ≥ 4h of adequate uterine contractions (strong to palpation or ≥200MVUs)</li> </ul> </li> </ul>                                                                                                                                                                  |
| OR<br>□ Inability to generate adequate uterine contractions despite ≥ 6h of Oxytocin administration                                                                                                                                                                                                                                                                                                                                                                                     |
| □       Second Stage Arrest (of descent) – No descent or rotation for (only need one):         □       Nullipara with epidural in the second stage pushing ≥4h         □       OR         □       Nullipara without epidural in the second stage pushing ≥3h         OR       OR                                                                                                                                                                                                        |
| ■Multipara with epidural in the second stage pushing ≥3h<br>OR<br>■Multipara without epidural in the second stage pushing ≥2h                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Malpresentation:</li> <li>Malpresentation diagnosed antepartum without attempted external cephalic version</li> <li>Malpresentation diagnosed antepartum period with unsuccessful external cephalic version</li> <li>Malpresentation diagnosed during labor or after membranes ruptured</li> <li>If none of the above indications were the reason please write in the diagnosis here with brief explanation:</li> </ul>                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |