Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale School of Nursing Digital Theses

School of Nursing

January 2022

Using Telemedicine To Optimize The Delivery Of Care In Patients With Liver Disease

Samantha Ramirez samantha.ramirez@med.usc.edu

Follow this and additional works at: https://elischolar.library.yale.edu/ysndt

Recommended Citation

Ramirez, Samantha, "Using Telemedicine To Optimize The Delivery Of Care In Patients With Liver Disease" (2022). *Yale School of Nursing Digital Theses*. 1139. https://elischolar.library.yale.edu/ysndt/1139

This Open Access Thesis is brought to you for free and open access by the School of Nursing at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale School of Nursing Digital Theses by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

USING TELEMEDICINE TO OPTIMIZE THE DELIVERY OF CARE IN PATIENTS WITH LIVER DISEASE

Submitted to the Faculty

Yale University School of Nursing

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Nursing Practice

Samantha Ramirez, MSN, FNP-BC

April 29, 2022

© 2022 by Samantha Ramirez

All rights reserved.

This project is supported by a Clinical Scientific Research Grant

from the OneLegacy Foundation.

This DNP Project is accepted in partial fulfillment of the requirements for the degree Doctor of Nursing Practice.

Joan A. Kearney, PhD, APRN, FAAN

Date: _____

This material is protected by Copyright Law (Title 17, US Code). Brief quotations are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part must be granted by the copyright holder.

Signed: Samantha Ramirez, MSN, FNP-BC

April 29, 2022

Acknowledgements

My success would not have been possible without the nurturing of Dr. Joan A. Kearney and Dr. Jane K. Dixon. I want to express my deepest appreciation for their profound belief in my abilities and unparalleled support. Their expertise was instrumental in the development of this project.

A big thanks to the Yale DNP '22 cohort. I couldn't have done this without them by my side.

Most importantly, I am beyond thankful for my parents, Leni and Danny, and my siblings, Mary Jean and Donnel. Their unwavering love, support, and encouragement gave me the strength to weather the storm that came my way. I dedicate this milestone to them.

Abstractx
Chapter 1: Introduction1
Non-alcoholic Fatty Liver Disease2
Problem Statement
Significance4
Chapter 2: Review of Literature
Search Strategy5
Data Extraction6
Synthesis of the Literature7
Literature Findings7
Limitations9
Conclusion10
Project Model and Supporting Framework10
Organizational Analysis11
Strengths, Weaknesses, Opportunities, Threats Analysis12
Project Goal and Aims13
Chapter 3: Methods14
Aim 114
Aim 217
Aim 320
Dissemination
Business Implications

Human Subjects	23
Timeline	23
Immersion Plan	23
Chapter 4: Results	24
Weight	24
BMI	24
MELD-Na Score	25
Hospitalization Rates	25
Emergency Department and Urgent Care Utilization	25
Chronic Liver Disease Questionnaire	26
Abdominal Symptoms	26
Fatigue	26
Systemic Symptoms	26
Activity	26
Emotional Function	27
Worry	27
Liver Disease Undernutrition Screening Tool	27
Liver Frailty Index	27
Physical Activity	27
Chapter 5: Discussion	28
Limitations	
Conclusion	
References	32

Appendices	42
Appendix A: Adapted PRISMA Flow Diagram	43
Appendix B: Evidence Table	44
Appendix C: Project Model	60
Appendix D: Adapted PDSA Model for Improvement	61
Appendix E: The Chronic Liver Disease Questionnaire	62
Appendix F: Liver Disease Undernutrition Screening Tool	65
Appendix G: Short-Form Patient Satisfaction Questionnaire	66
Appendix H: GANNT Chart	68
Figure 1: Weight Changes	69
Figure 2: BMI Changes	70
Figure 3: Liver-Related Hospitalization Changes	71
Figure 4: Changes in the CLDQ Activity Domain	72
Figure 5: Changes in the CLDQ Worry Domain	73
Figure 6: Comparison of Visits 1 and 2 Outcomes	74
Table 1: Comparison of CLDQ Outcomes in Mean SD by Domain Changes	75

Abstract

Chronic Liver Disease (CLD) is one of the top causes of morbidity and mortality globally. Among the spectrum of liver diseases, non-alcoholic steatohepatitis (NASH) is the most common cause of cirrhosis and one of the top reasons for a liver transplant. Patients with NASH end up with hepatic decompensation and liver-related complications such as malnutrition, sarcopenia, frailty, and death. Telemedicine has transformed health care by improving access, reducing cost, and increasing the quality of care. However, telemedicine has not been widely used to manage patients with CLD. This DNP project created a telemedicine protocol to manage patients with NASH, implemented the project at a transplant facility, and evaluated the effectiveness of the intervention using preliminary data from visits one and two. Although a larger sample size and longer study duration are needed, the telemedicine protocol appears to improve patient clinical outcomes as evidenced by a significant decrease in weight and BMI, fewer liver-related hospitalizations, no ED or urgent care visits, and improvement on patients' MELD-Na score, overall health-related quality of life, frailty, and malnutrition status.

Chapter 1

Introduction

Telemedicine, derived from the Latin word "medicus" and the Greek word "tele," was first defined in the 1970s by Thomas Bird, which means healing at a distance (Dinevski et al., 2011). The World Health Organization (2010) defined telemedicine and telehealth as the delivery of health care services by using advances in technology to promote the health of individuals and communities. Telemedicine refers explicitly to the use of electronic information and telecommunications technologies to render clinical services (Health Resources Services Administration, 2019). Due to recent advancements in technology and increasing availability, telemedicine is now widely used in different health care fields with great success in improving patient outcomes (Du Toit et al., 2019; Marcolino et al., 2019; Michaud et al., 2020). Furthermore, the COVID-19 pandemic has dramatically transformed health care and telemedicine services. Innovations in telemedicine can enhance the delivery of care in patients with chronic liver disease.

Chronic liver disease (CLD) is a public health threat and a burden to society. It is one of the top causes of morbidity and mortality in the world. The Centers for Disease Control and Prevention (2019) estimated that 1.8% or 4.5 million adults have liver disease in the United States. In 2017, 41,743 died from liver disease in the United States, and more than 1.32 million died from cirrhosis globally (GBD 2017 Cirrhosis Collaborators, 2020). Having a liver disease is also associated with higher health care expenditure, approximately \$19,390 per year. Without considering hepatitis C costs, the direct cost of chronic liver disease was \$2.5 billion, and the indirect cost was \$10.6 billion in 2004. Health care utilization and costs were nearly \$14,000 per patient per year in 2015. Chronic liver disease-related inpatient hospitalization cost was

approximately \$18.8 billion in 2016 (Hirodge et al., 2020). Furthermore, patients with chronic liver disease are more likely to have depressive symptoms, poor health-related quality of life (HRQoL), and lower health utility scores (Stepanova et al., 2017).

Non-alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease, or NAFLD, is an emerging liver disease associated with metabolic syndrome (Chalasani et al., 2018). It is defined as the presence of fat in the liver in the absence of secondary causes of hepatic steatosis. It is commonly associated with risk factors for metabolic syndrome, such as obesity, insulin resistance, diabetes, hypertension, and dyslipidemia (Younossi, 2019). NAFLD has two components: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH).

The global prevalence of non-alcoholic fatty liver disease is 24.24% (Younossi, Koenig, et al., 2016). The worldwide incidence rate ranges from 28.01 to 52.34 per 1,000 person-years. Approximately 76% of people with diabetes and 90% of people with obesity have NAFLD. The prevalence of NAFLD has increased in parallel with rising obesity and diabetes rates (Sundaram et al., 2009; Younossi, 2019). In the United States, mortality from non-alcoholic fatty liver disease increased between 2007 to 2016 (Kim et al., 2018).

Non-alcoholic fatty liver disease is a burden to the economy. NAFLD's annual medical and societal costs are estimated \$292 billion annually (Perumpail et al., 2017). Approximately \$87 billion accounted for NAFLD alone in all age groups. In 2010, the Medicare median annual hospitalization cost was \$11,000 per patient, and the median yearly outpatient cost was between $$3,308 \pm 5,132$ (Shetty & Syn, 2019). Due to the rising healthcare utilization, the expected 10-year economic burden of the disease is estimated to be over a trillion dollars in the United States (Younossi, Blisset, et al., 2016).

Problem Statement

The American Association for the Study of Liver Diseases (2020) has defined evidencebased guidelines standardizing the management and care for patients with chronic liver disease. However, despite clear guidelines, patients with CLD often receive suboptimal care and fail to receive treatments as recommended (Buchanan et al., 2014; Kanwal et al., 2012; Wong et al., 2009). Furthermore, the National Health Interview Survey (NHIS) 2013-2017 revealed that patients with CLD have higher rates of poor health and barriers than other diseases (Wong et al., 2019). Identified barriers to care include appointments, access, and finances. Telemedicine can reduce the quality gaps and overcome barriers to care among patients with liver disease. Besides, telemedicine offers various advantages, including enhancing access to care, improving clinical management, enhancing communication between patients and providers, increasing patient satisfaction, improving patient outcomes, and reducing health care costs.

Among the spectrum of liver diseases, non-alcoholic steatohepatitis is the most common cause of cirrhosis and one of the top reasons for a liver transplant (Byrne & Targher, 2015; Pais et al., 2016; Sheka et al., 2020; Tesfay et al., 2018; Younossi et al., 2018). It is associated with increased rates of liver-specific morbidity and mortality (Mantovani et al., 2020; Oaik et al., 2019; Sarwar et al., 2018). A liver transplant is a treatment option. However, organ shortage has made it difficult for liver transplant candidates to get transplanted. Therefore, patients with NASH end up with hepatic decompensation and liver-related complications such as malnutrition, sarcopenia, frailty, and death (Bhanji et al., 2019; Li et al., 2020; Palmer et al., 2019).

To address this problem of suboptimal care, this DNP project developed a telemedicine protocol to optimize the delivery of care among patients with NASH. The protocol includes a monthly telemedicine appointment with the liver transplant multi-disciplinary team. The team

consists of a transplant hepatologist, a transplant surgeon, a nurse practitioner, and a registered dietitian. This project aimed to address patients' needs, reduce readmissions, improve patient outcomes, and increase patient satisfaction.

Significance

Non-alcoholic steatohepatitis is associated with severe liver-related complications and a high death rate. The overall mortality rate for NASH is 25.56 per 1,000 person-years (Paik et al., 2019; Younossi et al., 2019). The common complications of CLD include hepatic encephalopathy, upper gastrointestinal bleeding, ascites requiring paracentesis, and spontaneous bacterial peritonitis. Such decompensating events often lead to frequent emergency department visits and hospitalizations. To overcome these challenges, telemedicine should be utilized to prevent, monitor, and control complications from NASH.

Chapter 2

Review of Literature

Telemedicine has transformed health care by improving access to care, reducing cost, and increasing care quality. However, despite evidence showing its benefits, telemedicine has not been widely used to manage patients with chronic liver disease clinically. This literature review examined the evidence available on telemedicine in patients with liver problems, focusing on the clinical outcomes and methodologies for evaluation.

Search Strategy

A literature review of telemedicine use on CLD was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses or PRISMA guidelines (Moher et al., 2009; Oermann & Hays, 2019). The key questions identified for this literature review were: (1) Is telemedicine feasible in managing patients with CLD? (2) How does telemedicine impact the clinical outcomes of patients with CLD? (3) What tools are used to evaluate the effects of telemedicine and the severity of CLD? And (4) does the use of telemedicine improve patient satisfaction?

PubMed and Embase electronic databases were used to find the best literature that addresses the phenomenon. Boolean operators and MeSH terms used were "chronic liver disease" or "CLD" or "liver disease," and "telemedicine" or "telehealth" or "telenursing." The inclusion criteria included patients with liver disease, any electronic health interventions, and health-related outcomes.

The initial searches identified 406 articles through PubMed and Embase databases. Results were filtered to show only articles with full-text availability, which resulted in 325 publications. Further modifications were made for the following exclusionary criteria: abstracts,

articles in the press, short surveys, and youths or adolescents. Twenty-seven duplicates were removed from the list, which yielded 222 articles. The abstracts were screened afterward. One hundred thirteen publications had participants with a diagnosis other than chronic liver disease, and those studies were excluded. Seventy-nine articles were studies on interventions not considered electronic health interventions (telemedicine, telehealth, or telenursing). These articles were then removed from the list.

The thirty articles were screened in full text for relevance. Nineteen articles that provided expert opinions and recommendations on telemedicine were excluded. The last eleven publications were further analyzed. Two studies focused on patients with comorbidities and were considered irrelevant for the review. Two other articles were excluded due to the limited outcomes presented. The seven most relevant articles were selected for the literature review. An adapted PRISMA flow diagram was created to show the details of the article selection process (see Appendix A for the Adapted PRISMA Flow Diagram).

Data Extraction

Pertinent data were extracted from the final seven literature that met the review inclusion and exclusion criteria. The article title, authors, year of publication, academic journal, purpose, objective, level of evidence, sample, methods, design, results, strengths, weaknesses and limitations, and contribution to science and/or practice were organized into an evidence table. See Appendix B for the Evidence Table.

For ease of analysis and comparison, specific data for each study were synthesized in the evidence table, such as participant information, diagnosis, studies' characteristics and findings, study time frames, data collection methods, and validated tools used to evaluate outcomes. In

addition, the quality of each study, including strengths, limitations, risk of bias, and summary, were included in the evidence table.

Synthesis of the Literature

The studies included in the literature review focused on interventions delivered through telemedicine. One study was a randomized control trial. Three literatures were systematic reviews of cohort studies, and the remaining three were cohort studies. Barnett et al. (2020), Javanmardifard et al. (2017), and Mazzotti et al. (2018) explored the efficacy of telemedicine programs in modifying lifestyle behaviors. The studies by Konjeti et al. (2019), Le et al. (2019), Mauro et al. (2020), and Su et al. (2018) looked at how telemedicine streamlines patient care and improves liver-disease. In addition, the studies by Barnett et al., Le et al., and Mauro et al. investigated its effect on patient satisfaction. While the interventions and methods in the literature varied, the evidence in this review concluded that telemedicine was an effective tool for improving clinical outcomes and patient satisfaction.

Literature Findings

All seven studies concluded that the use of telemedicine in managing patients with chronic liver disease was feasible. The studies also found a strong association between telemedicine use, improved quality of care, and improved patient outcomes. In addition, telemedicine improved patient satisfaction.

The interventions delivered through telemedicine included provider consultations and follow-ups, lifestyle modification programs, and nutritional counseling. The studies by Barnett et al. (2020), Javanmardifard et al. (2017), and Mazzoti et al. (2018) aimed at interventions to promote healthy behaviors via telemedicine. Study results showed improved patients' self-care habits, including physical and nutritional habits. In addition, the patients reported positive

experiences with telemedicine and an increased desire to engage in healthier behaviors. Furthermore, two studies compared interventions delivered through telemedicine versus inperson interventions (Javanmardifard et al., 2017; Mazzotti et al., 2018). The studies found that the participants' nutritional behavior and physical activity levels significantly increased with telemedicine. In addition, the attrition rate was noted to be considerably lower among the telemedicine group.

The literature review also strongly suggested that telemedicine use in patients with liver disease improved their overall health. Su et al. (2018) found that telemedicine helped address liver-related issues such as variceal screening and hepatocellular carcinoma screening. However, in comparing telemedicine with regular in-person appointments with a hepatologist, no significant difference was found in the patient survival rate. A higher survival rate was seen in the telemedicine group compared to the no-visit group. Telemedicine did not affect the participants' alcohol use. Additionally, significant weight loss and a decrease in liver enzymes were noted by Mazotti et al. (2018).

The studies also found that telemedicine improved the quality of care. The studies by Konjeti et al. (2019), Mauro et al. (2020), Le et al. (2019), and Su et al. (2018) streamlined care, minimized unnecessary testing, and reduced health care costs. For example, Konjeti et al. found that telemedicine reduced transplant evaluations by 60% and decreased costs by preventing unnecessary consultations and testing (Konjeti et al., 2019).

The use of telemedicine led to shorter waiting times, decreased patient barriers to care, and improved patient satisfaction (Barnett et al., 2020; Le et al., 2019; Mauro et al., 2020). Telemedicine was well-accepted by the patients. The participants reported having positive experiences with telemedicine – better than traditional visits and less burden on travel. In the

study by Le et al., patients reported a moderate to a high level of satisfaction with telemedicine. On the contrary, the study found no significant difference in patient satisfaction compared to the control group.

Limitations

There were multiple limitations identified in this literature review. First, all the studies varied the study designs, objectives, interventions, inclusion and exclusion criteria, methods, and results. Barnett et al. (2020) did qualitative research focusing on lifestyle interventions delivered via telehealth. Javanmardifard et al. (2017) performed a randomized control trial to determine the efficacy of telenursing on lifestyle changes. Konjeti et al. (2019) and Mauro et al. (2020) completed prospective studies, while Le et al. (2019) conducted a retrospective study. Konjeti et al. and Le et al. looked at the effects of telemedicine on liver transplant patients. Mauro et al. investigated telemedicine consultations and patient satisfaction. Finally, the studies by Mazzotti et al. (2018) and Su et al. (2018) were cohort studies that looked at the effects of telemedicine on patients with liver disease.

The second limitation was the variations in sample sizes. Three studies had small sample sizes, which could have affected the internal and external validity of the studies (Barnet et al., 2020; Javanmardifard et al., 2017; Le et al., 2019). On the contrary, four studies had large sample sizes (Konjeti et al., 2019; Mauro et al., 2020; Mazotti et al., 2018; Su et al., 2018). Due to the larger sample size, the strength of evidence is reliable and generalizable.

Third, the duration of the studies also varied, between 12 weeks to four years. The short study duration limited the reliability of the results. Longer study duration is needed to find strong evidence regarding the use of telemedicine in CLD. Despite these limitations, the literature review indicated that telemedicine is an effective intervention for health promotion.

Conclusion

Despite the heterogeneity and the limited number of studies, this literature review concluded that telemedicine could enhance patient access to care, improve clinical outcomes, and increase patient satisfaction. Interventions found to be effective were nutritional counseling, lifestyle modifications, and provider consultation and follow-up. However, the evidence presented in this literature review is limited, and further studies are required to examine its effects on managing patients with chronic liver disease. Studies with rigorous designs and larger sample sizes are needed to better evaluate the effectiveness of telemedicine.

Project Model and Supporting Framework

A Model for Change to Evidence-Based Practice is a systematic process of implementing change in health care (Rosswurm & Larrabee, 2007). This framework incorporates change theory and can guide practitioners in the process of evidence-based change. This DNP project utilized this model for change to be adapted in an ambulatory setting (see Appendix C for Project Model).

Based on the National Health Interview Survey collected from 2013 through 2017, patients with chronic liver disease face barriers related to appointments, access to care, and finances at higher rates than patients with other diseases (Wong et al., 2019). Barriers to care can negatively impact the patient's ability to meet their needs, putting them at a higher risk of developing complications. To address these barriers, changes in current practice are needed to improve the quality of care and patient outcomes. Based on evidence gathered from the literature review, a telemedicine protocol involving a multi-disciplinary team can optimize care for patients awaiting liver transplantation with non-alcoholic steatohepatitis. Traditional practice is geared towards in-office appointments for a consultation or follow-up. Telemedicine is an

excellent alternative to traditional practice. It increases access to care without compromising the quality of care provided.

A Plan-Do-Study-Act or PDSA model for improvement was used as the supporting framework for this DNP project (Hickey & Brosnan, 2017). It provided a guide to develop, test, implement, and evaluate outcomes from the proposed changes (see Appendix D for an Adapted PDSA Model for Improvement). The PDSA model was incorporated in step four – designing practice change, and step five – implement and evaluate the change in practice of the Model of Evidence-Based Practice Change.

Organizational Analysis

This DNP project was implemented at Keck Medicine of USC's Transplant Institute in Los Angeles, California. Keck Medicine of USC (2020) is a non-profit, private academic health system that consists of three hospitals (Keck Hospital of USC, USC Norris Cancer Hospital, and USC Verdugo Hills Hospital) and forty multispecialty clinics throughout Southern California. The main facility sits in the heart of Los Angeles. It primarily services the indigent, medically underserved, and minority populations of the Los Angeles community. Keck Hospital of USC, which has 401 acute beds, is where the transplants are performed. The health system has one gastroenterology and hepatology clinic, one transplant clinic, and one outreach clinic for both services.

Thirty-six percent of the university's operating revenue is from the health system (University of Southern California, 2019). In 2019, \$1.89 billion was the total health care services revenue. The impact of COVID-19 on the university has led to cost-cutting measures, including salary cuts, hiring freeze, and discontinuation of non-essential projects. However,

during the pandemic, the institute continued to perform transplants, generating revenue for the university.

The USC Transplant Institute has four solid organ transplant programs – heart, kidney, liver, and lung. Approximately two-thirds of the revenue comes from the transplant event and cost report and about one-third from downstream income (Cost Report Data, 2020). Other sources of income are reimbursement, supplemental payment, and other remuneration directly from the hospital after the transplant. The kidney program has the highest case volume and generates the most revenue of all the programs. The current budgets allocated for Keck Medicine of USC's Transplant Institute and the Department of Gastroenterology and Hepatology department are not published.

An organizational readiness to change assessment was used to analyze the organization (Helfrich et al., 2009). The key findings of this assessment were:

- The university and leaders of the organization support current practice changes leading to quality care.
- 2. Staff members are willing to participate in changes to improve patient care.
- 3. Clinical management provides project feedback and suggestions for improvement.
- 4. No financial support can be obtained due to the impact of COVID-19 on the institution.
- Grants/financial support from foundations can be obtained to support quality improvement and research projects.

Strengths, Weaknesses, Opportunities, Threats Analysis

An analysis of Keck Medicine of USC's strengths, weaknesses, opportunities, and threats was made to aid in the strategic planning for this DNP project. Ranked #18 best hospital in the

United States, Keck Medicine of USC is one of the top-performing health systems nationwide (U.S. News & World Report, 2020). The institution prides itself on health care excellence, clinical care, teaching, and research. The COVID-19 pandemic affected the institution financially, leading to cost-cutting measures, consistent staffing shortages, a high turnover rate, and lower employee satisfaction. The institution recognizes its weaknesses and is aware of the opportunities for improvement.

In 2021, the liver transplant program at Keck Medicine of USC became the largest liver transplant program in California and the West Coast. The program is now the fourth largest liver transplant program in the nation. In addition, the USC Transplant Institute ranked second in the country for combined heart and liver transplants.

Project Goal and Aims

The goal of this DNP project was to develop a telemedicine protocol optimize the delivery of care among patients with NASH. The aims of this project were:

- To develop a telemedicine protocol to be incorporated into the department's care model for patients with chronic liver disease.
- 2. To implement and evaluate the protocol.
- To make recommendations for sustainability and scaling to a broader population of individuals awaiting organ transplantation within the organization and as a model protocol for other transplant centers.

Chapter 3

Methods

This quality improvement project developed a telemedicine protocol to be incorporated into the Liver Transplant Department's care model. The protocol included a monthly telemedicine appointment with patients by a multi-disciplinary team. This project aimed to address the patients' needs, reduce hospitalizations, improve patient outcomes, improve quality of life, increase patient satisfaction, and reduce health care costs.

Aim 1: To develop a telemedicine protocol to be incorporated into the department's care model for patients with chronic liver disease.

The protocol consisted of a monthly telemedicine appointment for patients with NASH. The steps followed to create this protocol include:

- Built a multi-disciplinary team that will follow the patients. A multi-disciplinary team that would follow the patients was formed. This team included a Transplant Hepatologist (MD), a Transplant Surgeon (MD), a Transplant Nurse Practitioner (NP), and Transplant Registered Dietitian (RD).
- Outlined clinic format. The patient was seen by a physician or a nurse practitioner once a month for two consecutive months. The physician and the nurse practitioner alternated seeing the patients each month. The appointment was approximately 20-30 minutes with the providers. In addition, the patient had a 20–30-minute appointment with the registered dietitian for two consecutive months.
- **Planned for deviation**. The patient/s were seen in person for any urgent matters or per patient request. If a patient was seen in person instead of telemedicine, the multi-

disciplinary team followed the protocol and continued to provide routine care, as they would via telemedicine.

- Set goals, roles, expectations, training, and evaluation. The MD/NP partnered with the RD for each telemedicine appointment. The MD/NP and RD made personalized recommendations to each patient depending on their need/s. Training for the MD, NP, and RD were provided. Training included educational sessions regarding the telemedicine protocol, how to use the InTouch telemedicine platform, what questions to ask the patient during the appointment, forms to use during the appointment, what data to collect on each appointment, and what to do when there was a need to deviate from the telemedicine protocol. Evaluation of the telemedicine protocol was done on a monthly basis.
- Materials. This DNP project was awarded a Clinical Scientific Research Grant from the OneLegacy Foundation for \$55,000. Through this funding, the patients were provided the following:
 - 1. A tablet device to ensure that they had the technological means to participate in telemedicine appointments.
 - 2. A weighing scale to track the progress of their weight loss/gain journey.
 - 3. A food and activity journal for the purpose of tracking their weight, dietary habits, and physical activity.
 - 4. A digital hand dynamometer to track handgrip strength as part of the frailty evaluation.

Other funding was used for flyers, consents, patient handouts, and patient forms/questionnaires needed for this project.

- Selected a telemedicine platform. Keck Medicine of USC supports the InTouch telemedicine platform. The physicians, NP, and RD utilized the InTouch platform to conduct the telemedicine appointments. Training and handout were provided to each patient on accessing the appointment using the tablet. Keck Medicine of USC's Information Technology Department is available to aid the patient in troubleshooting.
- Outlined the patient selection process. Keck Medicine of USC's liver transplant program has a waitlist list mortality rate of 10.7% compared to the national waitlist mortality rate of 8.6% for liver transplant. Among patients with CLD, liver transplant candidates with NASH have higher rates of morbidity and mortality. This telemedicine protocol only included patients with decompensated liver disease, diagnosis of NASH, and undergoing transplant evaluation or awaiting a liver transplant. All patients need to sign a consent and agree to participate in a monthly telemedicine appointment with the MD/NP and RD. The patients must have access to the internet. The connection can be anywhere where the patient can access the internet, i.e., home, family, or friend's house. Exclusion criteria are patients with hepatocellular carcinoma, other cancer, on hemodialysis, undergoing evaluation or listed for dual-organ transplant, and previously transplanted. The selection of patients is through assessment, OTTR database search, and chart review.
- Gathered available patient data. The following information were obtained via chart review: demographics, diagnosis, Child-Turcotte-Pugh score, MELD-Na score, hospitalization rates, urgent care/ED utilization, complications from liver disease, weight, and sarcopenia status.

- **Planned intervention**. The standard of care was provided to the patients during the telemedicine visits. The multi-disciplinary team provided personalized nutritional recommendations and physical activity prescription to all patients. Frail patients were recommended to outpatient physical therapy for evaluation and treatment, if determined necessary by the provider and dietitian.
- Presented the protocol for review and approval. The telemedicine protocol was
 presented for review and approval by the project review/approving committee.
 The protocol was also reviewed by the USC's Institutional Review Board (IRB). The
 protocol was revised per the IRB recommendations. The final protocol was approved
 on January 4, 2022.

Aim 2: To implement and evaluate the protocol.

Implementation. The project was implemented immediately after IRB approval.

- Obtained baseline information. Baseline patient information was obtained, including the Chronic Liver Disease Questionnaire (CLDQ), the Liver Disease Undernutrition Screening Tool (LDUST), and the Short-Form Patient Satisfaction Questionnaire (PSQ-18).
 - Chronic Liver Disease Questionnaire (CLDQ) is a liver disease-specific healthrelated quality of life instrument developed to address fatigue, activity, emotional function, abdominal and systemic symptoms, and worry (Younossi et al., 1999). It is used to correlate the domains with the severity of the patient's liver disease. See Appendix E for the Chronic Liver Disease Questionnaire.

- Liver Disease Undernutrition Screening Tool (LDUST) is used to detect undernutrition in patients with cirrhosis (Casas Deza et al., 2021; McFarlane et al., 2018). See Appendix F for the Liver Disease Undernutrition Screening Tool.
- 3. The Short-Form Patient Satisfaction Questionnaire (PSQ-18) is a tool that assesses patient satisfaction and can be applied to various settings (Marshall & Hays, 1994; Thayaparan & Mahdi, 2013). See Appendix G for The Short-Form Patient Satisfaction Questionnaire (PSQ-18).

• Assessed the patient on each appointment.

- The MD/NP addressed the following on each appointment: the patient's wellbeing, any significant events related to their health since their last appointments, such as signs/symptoms, medication issues, urgent care/emergency department (ED) visits, hospitalizations, and any changes on their health condition. The MD/NP gave the patient and/or their family members advice on managing their condition.
- Nutritional recommendations were directed by a registered dietitian who is
 familiar with the nutritional needs of patients with cirrhosis. The RD used the
 LDUST to assess the patient's dietary habits, weight loss/gain, and
 exercise/activity level. At each appointment, the RD addressed the patient's
 behavior, weight loss/gain, and exercise/activity level on each appointment.
 Nutritional counseling and nutritional education were also provided. In addition,
 the RD made recommendations on the use of supplements when necessary.
- Family members and/or caregivers were encouraged to participate in the telemedicine appointments. Good social support is a requirement for patients

awaiting organ transplantation. Although it is not required for the patient's family members and/or caregivers to be present in their appointments, they were highly encouraged to participate in the patient's care.

- The multi-disciplinary team collaborated to make recommendations. The multidisciplinary team collaborated on the patient's care. For example, if the Registered Dietitian determined that the patient could benefit from supplements, the physician or the nurse practitioner could prescribe the supplements as recommended. The team decided on the plan of care and target goals for the next appointment. At the end of each appointment, both the MD/NP and RD educated and reinforced information to the patient and their family members.
- **Recordkeeping**. All information collected at each appointment was documented in the patient's chart. In addition, a project was created in the REDCap database to store monthly data for each patient. A HIPAA compliant spreadsheet was maintained for ease of data comparison. All identifying information was omitted from the spreadsheet. Instead, each patient was assigned a number, from one to twenty, for ease of tracking and inputting data. All documents were stored in a secured cloud drive at Keck Hospital of USC.
- Evaluation. To ensure that the protocol was implemented correctly, the multidisciplinary team met biweekly and as needed to discuss any issues.
- Chart audit. Every month, a chart audit was done to ensure that all necessary information was collected on the telemedicine appointment. An ongoing analysis of the data collected at each appointment was done using the Excel spreadsheet. This helped the multi-disciplinary team track any changes in the patient's health. For

example, weight changes were analyzed based on the weight measurement gathered at each appointment. To support sustainability and scaling, data collection continued after the six months of telemedicine.

- Questionnaire. The patients completed the CLDQ and LDUST at the first visit and each subsequent telemedicine appointment. The patients will complete six CLDQ and LDUST by the end of the telemedicine protocol. In addition, the patients included in the study completed the PSQ-18 questionnaire at the first visit. At the end of the sixth visit, the patient will need to complete the PSQ-18.
- Analysis. Data was analyzed to evaluate the efficacy of a monthly telemedicine appointments on weight, BMI, emergency department visits, hospitalizations, physical activity level, liver-disease related quality of life, malnutrition, MELD-Na score, and frailty status. The changes in weight and BMI were assessed using a lefttailed t-test. The changes in MELD-Na scores, hospitalization rates, emergency department and urgent care utilization, Chronic Liver Disease Questionnaire domains, Liver Disease Undernutrition Screening Tool score, Liver Frailty Index score, and physical activity level were analyzed using a paired sample t-test.

Aim 3: To make recommendations for sustainability and scaling to a broader population of individuals awaiting organ transplantation within the organization and as a model protocol for other transplant centers.

• Presentation of the project at USC. The telemedicine project was presented at the USC Liver WIP Conference and to the Keck Medicine of USC's Quality Committee of the Hospital Governing Board. The project goals and progress were

provided to the audience. The project will also be presented at the USC Transplant Hepatology Core Lecture at the end of April.

- Magnet Redesignation. The telemedicine project, the mentorship from Dr.
 Annette Sy, and the leadership immersion will be included in the application for Magnet Redesignation.
- **Report to the OneLegacy Foundation.** After analyzing the baseline to end of protocol data, a final report will be prepared for the OneLegacy Foundation. This will discuss all findings from the quality improvement project, including the patients' clinical outcomes, quality of life based on the CLDQ, and patient satisfaction based on PSQ-18. A comparison will be made between data from the past two years and outcomes from the quality improvement project.
- Presentation of outcomes at Keck Medicine of USC. The benefits of telemedicine on system goals such as cost, no-show rates, patient satisfaction, ED/urgent care utilization, hospitalization, and re-admission rates will be presented to the project review/approving committee, GI and Transplant Department Physicians, Nurse Practitioners, Registered Dietitians, and other staff members. In addition, the outcomes will be presented to the hospital administration, including Keck Hospital of USC's Chief Executive Officer, Rod Hanners, MD, and Chief Nursing Officer, Annette Sy, RN. As a part of the presentations of outcomes, it will also be explained that data collection is continuing. Arrangements will be made for a subsequent report of outcomes, including any updating of recommendations. Telemedicine to optimize the delivery of care can drive improvement in clinical outcomes, patient retention,

key performance indicators, and metrics that lead to greater reimbursements and incentive payments.

Dissemination

Conference presentation. An abstract will be submitted for oral or poster presentation at the American Association for the Study of Liver Diseases' The Liver Meeting, the International Liver Transplantation Society's ILTS Annual Congress, and Sigma Theta Tau's International Nursing Research Congress. If selected, findings will be presented at national conferences. Other transplant centers can utilize the outcomes of this quality improvement project to improve patient care.

Publishing results. A manuscript will be submitted to the American Journal of Transplantation in early 2023.

Business Implications

Patients with NASH awaiting liver transplantation are at high risk of developing complications that lead to higher health care utilization and mortality rates. They have higher rates of poor health, barriers to care, and poor health-related quality of life. Improving clinical outcomes for liver transplant candidates with NASH remains a challenge nationally.

Telemedicine can reduce the quality gaps and overcome barriers to care. It offers various advantages, including enhancing access to care, improving clinical management, enhancing communication between patients and providers, increasing patient satisfaction, improving patient outcomes, and reducing health care costs. It also benefits the system by reducing costs, increasing patient retention, and improving key performance indicators and metrics.

The projected outcomes of this quality improvement initiative are:

1. Improvement in clinical outcomes

- 2. Increase in quality of care and patient satisfaction, and
- 3. Improvement in metrics and reduced health care costs leading to higher revenue.

Human Subjects

This DNP project was reviewed by the Yale Institutional Review Board (IRB) and affirmed that this was a quality improvement project. However, the University of Southern California (USC) IRB required an application and approval for the protection of human subjects under 45 CFR 45.111. The USC IRB also required that all participants sign a written consent. The project was approved by the IRB on January 4, 2022.

Timeline

See Appendix H for GANNT Chart – Telemedicine Timeline.

Immersion Plan

The American Association of Colleges of Nursing DNP Essentials (2006), leadership knowledge and skills learned at the Yale School of Nursing were put into practice during the leadership immersion. Dr. Annette Sy, Keck Medicine of USC's Chief Nurse Executive, was identified as the external expert and mentor for this DNP project.

After the defense and approval of the project at Yale, the telemedicine protocol was approved by the USC project committee. Through Dr. Sy's guidance and USC Transplant Institute's support, the DNP project implementation began immediately after IRB approval.

A monthly immersion log and project summary were submitted to Dr. Sy and the Yale School of Nursing faculty to provide a project update. Multiple meetings with the external mentor were held via Zoom to discuss project trajectory, identify issues surrounding the project development and implementation, and evaluate preliminary outcomes.

Chapter 4

Results

For this paper, only the ten patients that completed visits 1 and 2 were included in the analysis. The results compared the visit 1 and visit 2 outcomes. The JMP Statistical Software, a subsidiary of SAS Institute, was the tool utilized (JMP[®], Version *Pro 16*. SAS Institute Inc., Cary, NC, 1989–2021).

Weight

Between visits 1 and 2, there was a total 21.319 kg weight loss. A left-tailed t-test was conducted to compare the weight loss between visits 1 and 2. The median weight decreased from 95.6 kg on visit 1 to 89.21 kg on visit 2. The observed mean difference was -2.1319, 95% CI [-4.4591, 0.19528]. Weight loss after the telemedicine protocol implementation was statistically significant (t-test -2.07234, p = 0.0341). The graph in Figure 1 shows the mean weights, the mean differences between weights, the mean difference depicted in a solid red line, and the upper and lower confidence interval (CI) for the mean difference depicted in red dashed lines. See Figure 1 for Weight Changes.

BMI

A left-tailed t-test was conducted to compare BMI differences between visits 1 and 2. The total decrease in BMI among the patients was 8.05 kg/m². The median BMI decreased from 36.44 kg/m^2 on visit 1 to 34.565 kg/m^2 on visit 2. The observed mean difference was -0.805, 95% CI [-1.6853, 0.07544]. After the telemedicine protocol implementation, the changes in BMI were statistically significant (t-test -2.06858, p = 0.0343). Figure 2 shows the mean BMI, the mean differences between BMIs, the mean difference depicted in a solid red line, and the upper

and lower confidence interval for the mean difference shown in red dashed lines. See Figure 2 for BMI Changes.

MELD-Na Score

The median MELD-Na score on the patients was 11 on visit 1 and 12 on visit 2. A paired t-test was used to analyze the MELD-Na score. There was no statistically significant finding (t-value = 0.309426, p-value = 0.7640) on the patient's MELD-Na score changes.

Hospitalization Rates

The average liver-related hospitalization (LRH) rate on visit 1 was 1.1 hospitalizations and zero on visit 2. Only one patient was hospitalized due to liver disease on visit 2. A paired ttest was conducted to compare the hospitalizations rates. After the telemedicine protocol implementation, the changes in LRH were statistically significant (t = -2.53546, p = 0.0319). Between visits 1 and 2, the observed mean difference was -1, 95% CI [-1.8922, -0.1078]. Figure 3 shows the mean LRH, the mean differences between LRH, the mean difference (solid red line), and the confidence interval for the mean difference (red dashed lines). See Figure 3 for Liver-Related Hospitalization Changes. The range of the differences is greater than half the range of the data, as depicted by the diamond shape on the figure.

For hospitalizations not due to liver disease, there were three hospitalizations on visit 1 and zero on visit 2. A paired t-test was done to compare the difference between the non-liver hospitalizations. The outcome was not statistically significant (t = -1.40556, p = 0.1934).

Emergency Department and Urgent Care Utilization

There was no liver-related ED utilization between visits 1 and 2. For ED visits not related to liver disease, there were four ED utilizations on visit 1 and zero on visit 2. The outcome was
statistically significant using a paired t-test (t = -2.44949, p = 0.0368). No patients went to an urgent care facility from visits 1 and 2.

Chronic Liver Disease Questionnaire

The Chronic Liver Disease Questionnaire has six domains: abdominal symptoms (AS), fatigue (FA), systemic symptoms (SS), activity (AC), emotional function (EF), and worry (WO). A paired t-test was conducted to analyze the CLDQ overall score and each domain. The overall median score was 4.74 on visit 1 and 4.665 on visit 2. The overall CLDQ score was not statistically significant (t = 0.079851, p = 0.9381). See Table 1 for Comparison of Visits 1 and 2 CLDQ Outcomes in Mean \pm SD by Domain for the differences in each domain mean scores with standard deviation between visits 1 and 2.

Abdominal Symptoms

The abdominal symptoms median score was 5.665 on visit 1 and 5 on visit 2. There was no statistical significance noted in the abdominal symptoms' domain (t = 0.689113, p = 0.5081). *Fatigue*

The fatigue median score was 5 on visit 1 and 4.5 on visit 2. There was no statistical significance noted in the fatigue domain (t = 0.0475, p = 0.9632).

Systemic Symptoms

The systemic symptoms median score was 5.1 on visit 1 and 4.8 on visit 2. No statistical significance was noted in the systemic symptoms' domain (t = -0.19108, p = 0.8527).

Activity

The activity domain median score was 4.5 on visit 1 and 5.996 on visit 2. The change in the activity was statistically significant (t = 2.957929, p = 0.0160). The observed mean difference was 1.101, 95% CI [0.25898, 1.94302]. Figure 4 shows the mean CLDQ activity score, the mean

differences between the activity scores, the mean difference (solid red line), and the CI for the mean difference (red dashed lines). See Figure 4 Changes in the CLDQ Activity Domain.

Emotional Function

The median score for the emotional function was 5 on visit 1 and 5.37 on visit 2. There was no statistical significance noted (t = 0.105927, p = 0.9180).

Worry

The worry median score was 3.9 on visit 1 and 3.3 on visit 2. After the telemedicine protocol implementation, the changes in the worry domain were statistically significant (t = -2.660532, p = 0.0260). The observed mean difference was -0.76, 95% CI [-1.4062, -0.1138]. The graph in Figure 5 shows the mean CLDQ worry score, the mean differences between the worry scores, the mean difference depicted in a solid red line, and the confidence interval for the mean difference displayed in red dashed lines. See Figure 5 Changes in the CLDQ Worry Domain.

Liver Disease Undernutrition Screening Tool

There was no malnutrition finding between visits 1 and 2. There were no statistically significant changes noted in the patients' nutritional status.

Liver Frailty Index

The median LFI decreased from 4.35 (pre-frail) on visit 1 to 4.265 (pre-frail) on visit 2. The changes were analyzed using paired t-test. There was no statistically significance noted (t = -1.6403, p = 0.1353).

Physical Activity

The medial physical activity level of patients remained at moderate (level 2) between visits 1 and 2. Using a paired t-test, the result was analyzed, and no statistical significance was noted in the physical activity level of the patients.

Chapter 5

Discussion

The USC IRB approved the telemedicine protocol in January 2022. Due to the surges in the COVID-19 pandemic, the implementation of the project was delayed, affecting the project's timeline. The preliminary findings presented in this paper included the outcomes from ten patients that completed visits 1 and 2. See Figure 6 for Comparison of Visits 1 and 2 Outcomes.

The findings of this DNP project suggested that the use of telemedicine to deliver the standard of care improves patient outcomes. The analysis showed that the intervention effectively promoted weight loss, decreased hospitalizations and ED utilization, improved patient activity levels, and lessened the patients' worry. In addition, there were no changes that indicated worsening frailty, malnutrition, abdominal symptoms, fatigue, systemic symptoms, emotional function, and MELD-Na score.

The significant weight loss and BMI reduction correlated with the patients' reported increase in the physical activity domain of the CLDQ. This observed improvement was similar to other telemedicine studies (Barnett et al., 2020; Javanmardifard et al., 2017; Mazzotti et al., 2018). In contrast, the measured physical activity based on the RD assessment showed the patients' physical activity level remained moderate between visits 1 and 2.

The lack of improvement in physical activity can be due to the patients' frailty status and fatigue level. Between visits 1 and 2, the patients reported the same fatigue level on the CLDQ. This could have prevented the patients from increasing their activity level. In addition, the Liver Frailty Index assessment showed that, on average, the patients are pre-frail. The patients identified to be frail were referred for outpatient physical therapy evaluation and treatment.

28

Despite the frailty level decreasing from 4.35 to 4.265, there were no statistically significant findings to suggest an improvement in the paired t-test analysis.

One patient had refractory ascites and underwent weekly paracentesis. The patients' volume status could have contributed to the decrease in weight and BMI. However, the total weight loss of 21.319 kg among the ten participants is likely because the patients have maintained their physical activity level and adhered to the nutritional recommendations prescribed by the multi-disciplinary team.

All patients were instructed to follow a two-gram low salt, high protein diet. For patients with diabetes mellitus, a low carbohydrate diet was added to their nutritional prescription. The RD did not identify any patients in need of a nutritional supplement. The patients' nutritional status and abdominal symptoms did not change between visits 1 and 2. However, in similar studies done by Barnett et al. (2020) and Javanmardifard et al. (2017), there was a statistically significant increase in the patients' nutritional status. The difference between the studies and this project was the frequency of follow-ups with the patients. For this project, the RD followed the patients once a month, whereas the telemedicine studies by Barnett et al. and Javanmardifard et al. provided a weekly follow-up with patients.

There were no liver-related ED and urgent care visits. However, there was one liverrelated hospitalization due to hepatic encephalopathy. This is a significant finding, decreasing the LRH rate from 1.1 to zero. In addition, there were no significant changes noted in the patients' MELD-Na score. This finding is likely due to the frequency of follow-ups with patients. A similar study by Su et al. (2018) suggested that telemedicine helped address liver-related issues and improved patient care, which led to higher survival rates.

29

A higher CLDQ score is linked with an improved health-related quality of life (Chawla et al., 2016; Younossi et al., 1999). The CLDQ worry domain analysis was statistically significant. However, the difference in the domain score was 0.6 between visit 1 and visit 2, indicating that the patients were slightly more worried on visit 2 than visit 1. Moreover, the emotional symptom domain increased from 5 on visit 1 to 5.37 on visit 2, indicating that the patients experienced an improvement in their emotional wellbeing on visit 2. On the contrary, the paired t-test analysis found no statistical significance between the scores. The overall CLDQ findings showed no significant improvements in the patients' quality of life. This can be due to the short interval between data collection.

Limitations

The first limitation of this DNP project is the small sample size. Due to the delay in implementation, only ten patients completed visits 1 and 2 by February 28, 2022. All analyses were performed using a paired t-test. The small sample size can make no difference between visits 1 and 2 variables and contribute to a type II error.

The second limitation is the short study duration. In the preliminary analysis of this DNP project, data from visits 1 and 2 were included. However, differences may show with a longer study duration. A shorter study duration may not yield reliable results.

The last limitation of this project is the generalizability. This project was conducted at one transplant center and limited the population to patients with NASH, affecting the project's external validity. NASH is not representative of the patients with CLD.

Conclusion

In summary, this DNP project revealed that using telemedicine to deliver the standard of care among patients with NASH can improve patient outcomes. The general findings that

30

emerged from this DNP project were: (1) telemedicine can promote weight loss and increase physical activity, and (2) telemedicine can decrease hospitalization rates and prevent ED/urgent care utilization. In addition, this project found no significant changes noted in the patients' MELD-Na score, HRQoL, frailty, and nutritional status.

The preliminary results of this DNP project raise several opportunities for further studies to evaluate the effects of telemedicine in managing patients with chronic liver disease. A larger study cohort and longer study duration will be necessary to determine if there is any true association between telemedicine and improvement in patient outcomes.

References

- American Association for the Study of Liver Diseases. (2020). *Practice guidelines*. AASLD. <u>https://www.aasld.org/publications/practice-guidelines</u>
- American Association of Colleges of Nursing. (2006). *The Essentials of Doctoral Education for Advanced Nursing Practice*. AACN.
- Barnett, A., Campbell, K. L., Mayr, H. L., Keating, S. E., Macdonald, G. A., & Hickman, I. J.
 (2020). Liver transplant recipients' experiences and perspectives of a telehealth-delivered lifestyle programme: A qualitative study. *Journal of Telemedicine and Telecare*, 0(0), 1-9. https://doi.org/10.1177/1357633x19900459
- Bhanji, R. A., Narayanan, P., Moynagh, M. R., Takahashi, N., Angirekula, M., Kennedy, C. C., Mara, K. C., Dierkhising, R. A., & Watt, K. D. (2019). Differing impact of sarcopenia and frailty in nonalcoholic steatohepatitis and alcoholic liver disease. *Liver Transplantation*, 25(1), 14–24. https://doi-org.libproxy2.usc.edu/10.1002/lt.25346
- Buchanan, P., Kramer, J., El-Serag, H. B., Asch, S. M., Assioun, Y., Bacon, B. R., & Kanwal, F. (2014). American Journal of Gastroenterology, 109(7), 934-940. https://doi.org/10.1038/ajg.2013.487
- Byrne, C. D., & Targher, G. (2015). NAFLD: a multisystem disease. *Journal of Hepatology*, 62(1), S47–S64. <u>https://doi-</u>

org.libproxy2.usc.edu/10.1016/j.jhep.2014.12.012

California's Office of Statewide Health Planning and Development. (2020). Annual utilization report of hospitals: Keck Hospital of USC. Retrieved from https://reports.siera.oshpd.ca.gov

- Casas Deza, D., Betoré Glaria, M. E., Sanz-París, A., Lafuente Blasco, M., Fernández Bonilla, E. M., Bernal Monterde, V., Arbonés Mainar, J. M., & Fuentes Olmo, J. (2021). Mini nutritional assessment short form is a useful malnutrition screening tool in patients with liver cirrhosis, using the global leadership initiative for malnutrition criteria as the gold standard. *Nutrition in Clinical Practice*. <u>https://doi.org/10.1002/ncp.10640</u>
- Centers for Disease Control and Prevention. (2019). *Chronic liver disease and cirrhosis*. National Center for Health Statistics. <u>https://www.cdc.gov/nchs/fastats/liver-disease.htm</u>
- Chalasani, N., Younossi, Z., Lavine, J. E., Charlton, M., Cusi, L., Rinella, M., Harrison, S. A., Brunt, E. M., & Sanyal, A. J. (2018). The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. *Hepatology*, 67(1). <u>https://doi.org/10.1002/hep.29367</u>
- Chawla, K. S., Talwalkar, J. A., Keach, J. C., Malinchoc, M., Lindor, K. D., & Jorgensen, R. (2016). Reliability and validity of the Chronic Liver Disease Questionnaire (CLDQ) in adults with non-alcoholic steatohepatitis (NASH). *BMJ Open Gastroenterology*, 3(1). <u>https://doi.org/10.1136/bmjgast-2015-000069</u>

Cost Report Data. (2020). *Profile: 050696 Keck Hospital of USC*. Retrieved from <u>https://www.costreportdata.com/profile.php?rpt_rec_num=MzM0MTU4&version=</u> <u>OTc4Nw==</u>

- Dinevski, D., Kelc, R., & Dugonik, B. (2011). Video communication in telemedicine. In G. Graschew & T. A. Roelofs (Eds.), *Advances in telemedicine: Technologies, enabling factors and scenarios* (pp. 211-232). InTech.
- Du Toit, M., Malau-Aduli, B., Vangaveti, V., Sabesan, S., & Ray, R. A. (2019). Use of telehealth in the management of non-critical emergencies in rural or remote emergency

departments: A systematic review. *Journal of Telemedicine and Telecare, 25*(1), 3-16. https://doi.org/10.1177/1357633x17734239

GBD 2017 Cirrhosis Collaborators. (2020). The global, regional, and national burden of cirrhosis
by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global
Burden of Disease Study 2017. *The Lancet, 5*(3), 245-266.

https://doi.org/10.1016/s2468-1253(19)30349-8

- Gutteling, J. J., de Man, R. A., Busschbach, J. J., & Darlington, A. S. (2008). Quality of health care and patient satisfaction in liver disease: the development and preliminary results of the QUOTE-Liver questionnaire. *BMC Gastroenterology*, *8*, 25. <u>https://doi-org.libproxy1.usc.edu/10.1186/1471-230X-8-25</u>
- Health Resources Services Administration. (2019, October 17). What is telehealth? How is telehealth different from telemedicine? Health IT.

https://www.healthit.gov/faq/what-telehealth-how-telehealth-different-telemedicine

- Helfrich, C. D., Li, Y. F., Sharp, N. D., & Sales, A. E. (2009). Organizational readiness to change assessment (ORCA): Development of an instrument based on the Promoting Action on Research in Health Services (PARIHS) framework. *Implementation Science*, 4(38).
- Hickey, J. V., & Brosnan, C. A. (2017). *Evaluation of health care quality for DNPs* (2nd ed.). Springer.
- Hirode, G., Saab, S., & Wong, R. J. (2020). Trends in the burden of chronic liver disease among hospitalized US adults. JAMA Network Open, 3(4). https://doi.org/10.1001/jamanetworkopen.2020.1997
- Institute of Medicine. (2012). *The role of telehealth in an evolving health care environment: Workshop summary*. The National Academies Press. <u>https://doi.org/10.17226/13466</u>

- Javanmardifard, S., Ghodsbin, F., Kaviani, M. J., & Jahanbin, I. (2017). The effect of telenursing on self-efficacy in patients with non-alcoholic fatty liver disease: a randomized controlled clinical trial. *Gastroenterology and Hepatology From Bed to Bench, 10*(4), 263-271.
- Kanwal, F., Kramer, J. R., Buchanan, P., Asch, S. M., Assioun, Y., Bacon, B. R., Li, J., & El-Serag, H. B. (2012). The quality of care provided to patients with cirrhosis and ascites in the Department of Veterans Affairs. *Gastroenterology*, 143(1), 70-77. https://doi.org/10.1053/j.gastro.2012.03.038
- Keck Medicine of USC. (2021). *About Keck Medicine*. Retrieved from https://www.keckmedicine.org/about-keck-medicine/
- Keck Medicine of USC. (2021). USC Transplant Institute. Retrieved from <u>https://transplant.keckmedicine.org</u>
- Kim, D., Li, A. A., Gadiparthi, C., Khan, M. A., Cholakeril, G., Glenn, J. S., & Ahmed, A. Changing trends in etiology-based annual mortality from chronic liver disease, from 2007 through 2016. *Gastroenterology*, 155(4), 1154-1163. https://doi.org/10.1053/j.gastro.2018.07.008
- Konjeti, V. R., Heuman, D., Bajaj, J. S., Gilles, H., Fuchs, M., Tarkington, P., & John, B. V.
 (2019). Telehealth-based evaluation identifies patients who are not candidates for liver transplantation. *Clinical Gastroenterology and Hepatology*, *17*(1).
 https://doi.org/10.1016/j.cgh.2018.04.048

Larrabee, J. H. (2009). Nurse to nurse: Practice. McGraw-Hill.

Le, L. B., Rahal, H. K., Viramontes, M. R., Meneses, K. G., Dong, T. S., & Saab, S. (2019). Patient satisfaction and healthcare utilization using telemedicine in liver transplant recipients. *Digestive Diseases and Sciences*, *64*, 1150-1157. https://doi.org/10.1007/s10620-018-5397-5

- Li, A. A., Kim, D., & Ahmed, A. (2020). Association of sarcopenia and NAFLD: An overview. *Clinical Liver Disease*, 16(2), 73–76. <u>https://doi-org.libproxy2.usc.edu/10.1002/cld.900</u>
- Marcolino, M. S., Maia, L. M., Oliveira, J. A., Melo, L. D., Pereira, B., Andrade-Junior, D.,
 Boersma, E., & Riberio, A. L. (2019). Impact of telemedicine interventions on mortality
 in patients with acute myocardial infarction: A systematic review and meta-analysis. *BMJ Heart, 105*(19), 1479-1486. <u>https://doi.org/10.1136/heartjnl-2018-314539</u>
- Marshall, G. N., & Hays, R. D. (1994). *The Patient Satisfaction Questionnaire Short-Form* (*PSQ-18*). RAND. <u>https://www.rand.org/content/dam/rand/pubs/papers/2006/P7865.pdf</u>
- Mauro, E., Marciano, S., Torres, M. C., Roca, J. D., Novillo, A. L., & Gadano, A. (2020).
 Telemedicine improves access to hepatology consultation with high patient satisfaction. *Journal of Clinical and Experimental Hepatology*.

https://doi.org/10.1016/j.ceh.2020.04.017

Mazzoutti, A., Caletti, M. T., Brodosi, L., Domizio, S. D., Forchielli, M. L., Petta, S., Bugianesi, E., Bianchi, G., & Marchesini, G. (2018). An internet-based approach for lifestyle changes in patients with NAFLD: Two-year effects on weight loss and surrogate markers. *Journal of Hepatology, 69*, 1155-1163. <u>http://dx.doi.org/10.1016/j.jhep.2018.07.013</u>

McFarlane, M., Hammond, C., Roper, T., Mukarati, J., Ford, R., Burrell, J., Gordon, V., & Burch, N. (2018). Comparing assessment tools for detecting undernutrition in patients with liver cirrhosis. *Clinical Nutrition ESPEN*, 23, 156–161.

https://doi.org/10.1016/j.clnesp.2017.10.009

- Michaud, T. L., Ern, J., Scoggins, D., & Su, D. (2020). Assessing the impact of telemonitoringfacilitated lifestyle modifications on diabetes outcomes: A systematic review and metaanalysis. *Telemedicine and e-Health*. <u>https://doi.org/10.1089/tmj.2019.0319</u>
- Moher, D., Liberati, A., Telzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLOS One*, 6(7). <u>https://www.doi.org/10.1371/journal.pmed.1000097</u>
- Mantovani, A., Scorletti, E., Mosca, A., Alisi, A., Byrne, C. D., & Targher, G. (2020).
 Complications, morbidity and mortality of nonalcoholic fatty liver disease. *Metabolism: Clinical and Experimental*, 111S, 154170.

https://doi-org.libproxy2.usc.edu/10.1016/j.metabol.2020.154170

- Oermann, M. H., & Hays, J. C. (2019). Review and evidence-based practice articles. In M. H. Oermann & J. C. Hays (Eds.), *Writing for publication in nursing* (4th ed.) (135-155). Springer.
- Oxford Centre for Evidence-Based Medicine. (2009). Oxford Centre for Evidence-Based Medicine: Levels of Evidence. University of Oxford.

https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidencebased-medicine-levels-of-evidence-march-2009

- Paik, J. M., Henry, L., De Avila, L., Younossi, E., Racila, A., & Younossi, Z.M. (2019), Mortality related to nonalcoholic fatty liver disease Is increasing in the United States. *Hepatology Communications*, 3, 1459-1471. <u>https://doi.org/10.1002/hep4.1419</u>
- Pais, R., Barritt, A. S., Calmus, Y., Scatton, O., Runge, T., Lebray, P., Poynard, T., Ratziu, V., & Conti, F. (2016). NAFLD and liver transplantation: Current burden and expected

challenges. Journal of Hepatology, 65(6), 1245-1257.

https://doi.org/10.1016/j.hep.2016.07.033

Palmer, L. B., Kuftinec, G., Pearlman, M., & Green, C. H. (2019). Nutrition in cirrhosis. Current Gastroenterology Reports, 21(8), 38.

https://doi-org.libproxy2.usc.edu/10.1007/s11894-019-0706-5

Perumpail, B. J., Khan, M. A., Yoo, E. R., Cholankeril, G., Kim, D., & Ahmed, A. (2017).
Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. *World Journal of Gastroenterology*, 23(47), 8263-8276.

https://doi.org/10.3748/wjg.v23.i47.8263

Rosswurm, M. A., & Larrabee, J. H. (2007). A model for change to evidence-based practice. *The Journal of Nursing Scholarship*, 31(4).

https://doi.org/10.1111/j.1547-5069.1999.tb00510.x

- Sarwar, R., Pierce, N., & Koppe, S. (2018). Obesity and nonalcoholic fatty liver disease: Current perspectives. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy*, 11, 533– 542. <u>https://doi-org.libproxy2.usc.edu/10.2147/DMSO.S146339</u>
- Sheka, A. C., Adeyi, O., Thompson, J., Hameed, B., Crawford, P. A., & Ikramuddin, S. (2020). Nonalcoholic Steatohepatitis: A review. JAMA, 323(12), 1175–1183. <u>https://doi-org.libproxy2.usc.edu/10.1001/jama.2020.2298</u>
- Shetty, A., & Syn, W. (2019). Health and economic burden of nonalcoholic fatty liver disease in the United States and its impact on veterans. *Federal Practitioner*, *36*(1), 14-19.
- Stepanova, M., De Avila, L., Afendy, M., Younossi, I., Pham, H., Cable, R., & Younossi, Z. M.(2017). Direct and indirect economic burden of chronic liver disease in the United States.

Clinical Gastroenterology and Hepatology, 15(5), 759-766. https://doi.org/10.1016j.cgh.2016.07.020

- Su, G. L., Glass, L., Tapper, E. B., Van, T., Waljee, A. K., & Sales, A. E. (2018). Virtual consultations through the Veterans Administration SCAN-ECHO project improves survival for Veterans with liver disease. *Hepatology*, 68(6), 2317-2324. https://doi.org/10.1002/hep.30074
- Tesfay, M., Goldkamp, W. J., & Neuschwander-Tetri, B. A. (2018). NASH: the emerging most common form of chronic liver disease. *Missouri Medicine*, *115*(3), 225–229.
- Thayaparan, A. J., & Mahdi, E. (2013). The Patient Satisfaction Questionnaire Short Form (PSQ-18) as an adaptable, reliable, and validated tool for use in various settings. *Medical Education Online*, 18, 21747. <u>https://doi.org/10.3402/meo.v18i0.21747</u>
- U.S. News & World Report. (2020, July 28). *Best hospitals*. U.S. News & World Report. https://health.usnews.com/health-care/best-hospitals/articles/best-hospitals-honor-rolland-overview
- University of Southern California. (2019). University of Southern California Financial Report 2019. Retrieved <u>https://about.usc.edu/files/2020/07/USC-2019-Annual-ReportFINAL.pdf</u>
 University of Southern California. (2020). Consolidated financial statements for the years ended June 30, 2020 and 2019. Retrieved from <u>https://comptroller.usc.edu/files/2020/12/2020-</u> USC-Financial-Statements.pdf
- Wong., C. R., Garcia, R. T., Trinh, H. N., Lam, K. D., Ha, N. B., Nguyen, H. A., Nguyen, K. K., Levitt, B. S., & Nguyen, M. H. (2009). Adherence to screening for hepatocellular carcinoma among patients with cirrhosis or chronic hepatitis B in a community setting. *Digestive Diseases and Sciences*, 54, 2712-2721.

https://doi.org/10.1007/s10620-009-1015-x

- Wong, C., May, F. P., Han, S. B., & Macinko, J. (2019). Chronic liver disease is associated with increased barriers to medical care: Results from a national sample representative of over 116 million individuals in the United States 2013-2017. *Hepatology*, 70(1).
- World Health Organization. (2010). *Telemedicine: Opportunities and developments in member states*. WHO Press.
- Younossi, Z., Anstee, Q. M., Marietti, M., Hardy, T., Henry, L., Eslam, M., George, J., & Bugianesi, E. (2018). Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. *Nature Reviews: Gastroenterology & Hepatology*, 15(1), 11–20. <u>https://doi-org.libproxy2.usc.edu/10.1038/nrgastro.2017.109</u>
- Younossi, Z. M., Blisset, D., Henry, L., Stepanova, M., Younossi, Y., Racila, A., Hunt, S., & Beckerman, R. (2016). The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology, 64(5), 1577-1586. https://doi.org/10.1002/hep.28785
- Younossi, Z. M., Guyatt, G., Kiwi, M., Boparai, N., & King, D. (1999). Development of a disease specific questionnaire to measure health related quality of life in patients with chronic liver disease. *Gut*, 45, 295-300.
- Younossi, Z. M., Koenig, A. B., Abdelatif, D., Fazel, Y., Henry, L., & Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*, 64(1), 73–84.

https://doi-org.libproxy2.usc.edu/10.1002/hep.28431

Younossi, Z. M., Stepanova, M., Younossi, Y., Golabi, P., Mishra, A., Rafiq, N., & Henry, L.
(2019). Epidemiology of chronic liver diseases in the USA in the past three decades. *Gut*, 69, 564-568. <u>https://doi.org/10.1136/gutjnl-2019-318813</u>

Appendices

Appendix A

Adapted PRISMA Flow Diagram

Appendix A Flow diagram to show number of studies remaining at each stage of literature review. *Source:* From Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & the PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLOS Medicine*, *6*(7), e1000097. https://www.doi.org/10.1371/journal.pmed.1000097.

Appendix B

Evidence Table

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal		Evidence						Science and/or
								Practice
Liver	To assess	2b*	19	Qualitative	Median	Use of focus	Small	Telehealth is
Transplant	the		patients	study	attendance was	groups and	sample size	feasible for
Recipients'	feasibility		were		10 sessions.	interviews		lifestyle
Experiences	of a 12-		included	Focus groups		for data	There was a	modification
and	week		in the	and one on	Telehealth was	collection	probably of	programs,
Perspectives of	telehealth		study,	one	a well-		bias from	especially for
a Telehealth-	lifestyle		between	interviews	accepted	It included	the	liver transplant
Delivered	program		25-68	were	experience by	data	exclusion of	recipients.
Lifestyle			years old.	conducted on	many	triangulation	participants	
Programme: A	To assess		63% were	the	participants	and use of	without	
Qualitative	the		males.	participants	(n=8).	multi-	video	
Study	experiences					disciplinary	enabled	
	of liver		Median	The program	The overall	team to	devices and	
Amandine	transplant		time since	is a 12-week	experience was	develop	non-English	
Barnett,	recipients		liver	telehealth	that lifestyle	schedule and	speakers	
Katrina L.	with		transplant	intervention	interventions	interpret		
Campbell,	telehealth		was 4.4	which	sessions were	results		
Hannah L.			years.	included	as good or			
Mayr, Shelley				weekly group	better than	Telehealth		
E. Keating,			Exclusion	contact	traditional	lessened the		
Graeme A.			criteria:	alternating	face-to-face	burden of the		
Macdonald,			food	education on	appointments.	participants		
and Ingrid J.			allergy or	diet and		to travel.		
Hickman			dietary	physical	Telehealth was			
			restriction	activity	advantageous			
2020			that would	recommendat	due to less			

		affect the	ions, totaling	burden on		
Journal of		MedDiet	of 14	travel or to		
Telemedicine		eating	telehealth	make		
and Telecare		pattern,	appointments	appointments.		
		physical	(6 dietetic	11		
		disability	and 8	Modification		
		where	exercise	of nutritional		
		increase in	sessions	habits was a		
		physical	provided by	positive		
		activity	dietitians and	experience for		
		would be	exercise	the participants		
		inappropri	physiologists	(n=13).		
		ate,				
		deemed		There was an		
		unsafe by	Experiences,	increase in the		
		the	perspectives	amount of self-		
		providers	and	directed		
		to	feasibility	physical		
		participate	were	activity and		
		, and non-	assessed at	awareness of		
		English	the end of the	exercise		
		speaker or	12-week	capabilities		
		unable to	telehealth	and desire to		
		read/write	intervention.	engage in		
		in		healthy		
		English.		behaviors.		

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal		Evidence						Science and/or
								Practice
The Effect of	То	1b*	60	Randomized	The reported	The study	Small	Findings of this
Telenursing on	determine		participant	controlled	mean score of	concluded	sample size.	study can be
Self-efficacy in	the impact		s were	trial.	both nutritional	that		applied in
Patients with	of		included		and physical	telenursing	Short length	practice to
Non-Alcoholic	telenursing		in the	Sherer and	behavior self-	could	of study.	improve
Fatty Liver	on		study. 30	Maddux's	efficacy	improve the		outcomes for
Disease: A	nutritional		were	nutritional	increased in	patient's self-	The study	patients with
Randomized	behavior		assigned	behavior	both groups	efficacy in	did not	non-alcoholic
Controlled	and		to the	self-efficacy	after the	adherence to	address its	fatty liver
Clinical Trial	physical		interventi	questionnaire	intervention	nutritional	limitations.	disease.
	activity		on group	and Pender's	(p<0.001).	regimen and		
Sorur	self-		and 30 to	physical		physical		
Javanmardifard	efficacy		the control	activity self-	The nutritional	activity and		
, Fariba			group.	efficacy	mode was	health		
Ghodsbin,				questionnaire	statistically	behaviors		
Mohammad			26.7%	were	significant	associated		
Javan Kaviani,			(<i>n</i> =8)	obtained as	(p<0.001) for	with non-		
and Iran			were	baseline	the	alcoholic		
Jahanbin			females	information.	intervention	fatty liver		
			and 73.3%		group but not	disease by		
2017			(<i>n</i> =22)	A nutritionist	for the control	increasing		
			were	consulted	group	awareness.		
Gastroenterolo			males in	with all the	(p>0.05).			
gy and			the	participants.				
Hepatology			interventi	Each got a				
From Bed to			on group.	written				
Bench				dietary				
			20.7%	advice and				
			(<i>n</i> =6)	were				
			were	instructed to				

	females	perform at		
	and 79.3%	least 30 min		
	(<i>n</i> =23)	of moderate		
	were	physical		
	males in	activity 4-5		
	the control	times per		
	group.	week. A		
	0 1	training		
	Mean age	booklet was		
	was 40.3	provided.		
	and 38.3	1		
	vears in	The		
	the	intervention		
	interventi	group had		
	on and	telephone		
	control	follow-ups		
	groups.	for 12 weeks		
	8r	in which		
		adherence to		
		diet and		
		physical		
		activity were		
		assessed.		
		The control		
		group did not		
		receive any		
		interventions.		
				1

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal	-	Evidence	-					Science and/or
								Practice
Telehealth-	То	2a*	190	Patients	Patients	Good sample	The study	Findings of this
Based	compare		patients	referred for	referred	size	was limited	study suggests
Evaluation	transplant		were	liver	through		to a single	that telehealth is
Identifies	evaluation		referred	transplant	SCAN-ECHO	Collected	VA facility,	useful in
Patients Who	outcomes		for	evaluation	were likely to	data and	which	identifying
Are Not	between		transplant.	were either	be candidates	clinical	focused on a	noncandidates
Candidates for	referrals		91 were	referred to	for	characteristic	unique	for
Liver	triaged		referred	SCAN-	transplantation	s of patients	population	transplantation
Transplantation	through		through	ECHO for a	during the	referred for		without the
	SCAN-		the	preliminary	initial referral.	liver	Generalizab	need for
Venkata Rajesh	ECHO		SCAN-	analysis of		transplantatio	ility of the	additional
Konjeti,	with direct		ECHO	candidacy	Telehealth-	n	findings	testing.
Douglas	referrals		program	before	based triage		may be	
Heuman,			(47.8%).	completing a	reduced	Compared	constrained	It can improve
Jasmohan S.				full work-up	unnecessary	the	due to the	access, reduce
Bajaj,			Majority	or direct	transplant	characteristic	limitations	cost and
HoChong			were male	referrals for	evaluations by	s of the	above.	minimize
Gilles, Michael			and	full-	60%.	SCAN-		unnecessary
Fuchs, Phillips			Caucasian	evaluation.		ECHO group		testing.
Tarkington,			in both		This program	and non-		
and Binu V.			groups.	The study	promoted	SCAN-		
John				included all	identification	ECHO group		
			Mean age	liver	of	including the		
2019			for both	transplant	noncandidates	indication for		
			SCAN-	referrals	effectively,	transplant,		
Clinical			ECHO	between	minimized	rejection		
Gastroenterolo			and non-	August 2012	unnecessary	rates, and		
gy and			SCAN-	and	testing, travel,	reasons for		
Hepatology			ECHO	September	and reduced	non-		
				2016 at a	cost.			

	group was	single VA		transplant	
	60.	center.	Rejection at	candidacy	
			time of	-	
			transplant		
			referral was		
			higher among		
			non-SCAN-		
			ECHO group		
			(41.4%)		
			compared to		
			the SCAN-		
			ECHO group		
			(n < 0.0001)		
			(þ. 010001):		
			Rejection after		
			completing		
			evaluation		
			work-up was		
			higher among		
			non-SCAN-		
			ECHO group		
			(55.6%)		
			compared to		
			the SCAN-		
			ECHO group		
			(23.1%)		
			$(p \le 0.0001)$		
			G. (0.0001).		
			Fewer patients		
			in the SCAN-		
			ECHO group		
			were denied		
			for transplant		

		due to psychosocial issues, comorbidities, and progression of HCC.		

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal		Evidence						Science and/or
								Practice
Patient	To assess	2a*	21 post-	Retrospectiv	The PSQ-18	Control	Small	Findings of this
Satisfaction	the impact		liver	e study	score did not	patients were	sample size	study suggests
and Healthcare	of		transplant		differ	used to		that
Utilization	telemedicin		patients	Patients were	significantly	match each	The study	telemedicine
Using	e in		were	divided to	between the	telemedicine	found no	contributes to
Telemedicine	overcomin		included	telemedicine	groups	patients to	significant	reduced cost
in Liver	g barriers		in the	group and	(p=0.89). The	ensure	difference in	and less time
Transplant	to care		telemedici	traditional in-	lowest mean	adequate	general	off work to
Recipients	while		ne study.	office	score for both	responses for	patient	make the
	sustaining			follow-up	groups was the	1:1	satisfaction	follow-up
Long B. Le,	strong		Three	group.	dissatisfaction	matching, to	between	appointment.
Harman K.	patient-		patients		with the	maximize the	groups.	
Rahal,	physician		were used	Patient	expenditures	effects of any		
Matthew R.	relationship		as controls	Satisfaction	involving	selection	The	
Viramontes,	S		for the	Questionnair	medical care	bias.	selection	
Katherine G.			study.	e-18 (PSQ-	(p=0.03).		process	
Meneses, Tien				18),	Accessibility		could have	
S. Dong, and			Mean age	Telemedicine	of the visit also		contributed	
Sammy Saab			was 51	Satisfaction	had a low		to selection	
			years for	Questionnair	score (p=0.89).		bias.	
2019			the	e (TSQ), and	The highest		Patients	
			telemedici	Health	was the		were	
Digestive			ne group	Utilization	interpersonal		selected by	
Diseases and			and 52	Questionnair	manner and		convenience	
Sciences			years for	e (HUQ)	friendliness of		using	
			the control	were used to	the physician		clinical	
			group	assess patient	perceived		profile,	
			(p=0.89).	satisfaction	(p=0.32).		insurance	
				and			coverage,	
							and	

		healthcare	The TSQ	familiarity	
		utilization.	indicated that	and comfort	
			patients in the	level with	
		Each	telemedicine	computers.	
		telemedicine	group had		
		patient who	moderate to	Patients	
		responded	high level of	were	
		with the	satisfaction	matched by	
		questionnaire	with	clinical	
		were	telemedicine	diagnosis	
		matched to a	services. 85%	and age	
		post-liver	of the	range.	
		transplant	questions had a		
		control	4 or higher	The use of	
		patient.	score.	survey	
				contributed	
			The HUQ	to a degree	
			mean score	of response	
			was higher	bias.	
			among the		
			telemedicine		
			group. The		
			highest		
			satisfaction		
			was the saved		
			travel time and		
			decrease		
			expenditure		
			associated with		
			in-person		
			appointments.		

	Patient outcomes di not differ in both groups	id	

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal	_	Evidence	_	_		_		Science and/or
_								Practice
Telemedicine	To evaluate	2b*	200	This study	73% (n=145)	Outcomes of	Limitation	Findings of this
Improves	the impact		patients	provided	consultations	the study	included	study suggests
Access to	of		(n=200)	telemedicine	were resolved	supports the	possible	that
Hepatology	telemedicin		were	consultations	through	implementati	selection	telemedicine
Consultation	e in		included	to patients	telemedicine.	on of	bias. The	consultations
with High	resolving		to	using non-	55 patients	telemedicine	providers	resulted in high
Patient	consultatio		participate	hepatologist	required face-	to provide	that	level of patient
Satisfaction	ns		on the	health care	to-face	early	provided	satisfaction.
			telemedici	providers.	consultation.	consultations	telemedicin	
Ezequiel	To assess		ne			or increase	e were the	This study
Mauro,	patient		consultati	Patient	A total of 188	access to	participating	supports the
Sebastian	satisfaction		ons.	satisfaction	patients	specialized	physicians.	implementation
Marciano,	by using			was assessed	answered the	consultations		of telemedicine
Maria C.	telemedicin		Median	using the	questionnaires.		Lack of	to provide early
Torres, Juan D.	e		age of	Patient	PSQ-18 results		control	consultations or
Roca, Abel L.			patients	Satisfaction	showed a high		group	increase access
Novillo, and			was 54.	Questionnair	degree of			to specialized
Adrian Gadano			56% were	e Short Form	satisfaction		Lack of	consultations.
			males.	(PSQ-18)	except for		final	
2020				and	financing of		diagnosis	
				Telemedicine	the		evaluation	
Journal of				Satisfaction	consultation.		or	
Clinical and				Questionnair	On the other		confirmatio	
Experimental				e (TSQ).	hand, 70% of		n made by	
Hepatology					the questions		the non-	
					had the highest		hepatologist	
					possible score.		providers	
					TSQ showed a			
					high degree of			
					general			

	antiafaction		
	satisfaction		
	with		
	telemedicine.		
	Most common		
	diagnosis		
	ulagilosis		
	associated with		
	the resolved		
	consultations		
	were non-		
	alcoholic fatty		
	liver disease,		
	viral hepatitis,		
	and benign		
	liver lesions.		
	HCC and		
	cirrhosis were		
	the common		
	reasons for		
	face to face		
	lace-lo-lace		
	consultations.		

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal		Evidence						Science and/or
								Practice
An Internet-	То	2a*	716	Cohort	Attrition rate	Large sample	High	Findings of this
based	determine		patients	observational	was higher in	size	number of	study suggests
Approach for	the efficacy		were	study	females		cases were	that web-based
Lifestyle	of a web-		included		(p<0.001) and	High attrition	lost to	education can
Changes in	based		in the	The group	in the group-	rate	follow-up.	be beneficial in
Patients with	educational		study.	lifestyle	based			patients with
NAFLD: Two-	interventio		Participan	modification	intervention	Used	Limitations	non-alcoholic
year Effects on	n targeting		ts	program	group	motivational	included	fatty liver
Weight Loss	lifestyle		underwent	consisted of	(p<0.001) and	interviewing	using the	disease.
and Surrogate	changes to		either a	healthy diet	decreased		standard of	
Markers	promote		web-based	counseling,	progressively	The goal of	care for the	This study
	health		interventi	120-minute	in the web-	>10% weight	control	proves that an
Arianna	eating		on or a	weekly	based group.	loss was	group. This	internet-based
Mazzotti,	habits,		group-	sessions with		achieved and	may have	cognitive and
Maria Tuchese	habitual		based	physicians	The calorie	maintained at	demonstrate	educational
Caletti, Lucia	physical		interventi	and	intake	two years.	d superiority	program is
Brodosi, Silvia	activity,		on.	dietitians,	decreased in		of treatment	useful for
Di Domizio,	and weight			and the last	the two cohorts	Weight loss	approaches.	patients with
Maria Luisa	loss in		438	session with	(p=0.006).	was		non-alcoholic
Forchielli,	patients		participate	а		accompanied		fatty liver
Salvatore Petta,	with non-		d in a	psychologist	Physical	by reduction		disease and can
Elisabetta	alcoholic		three-	that	activity	in liver		promote
Bugianesi,	fatty liver		month	discussed	increased from	enzymes.		lifestyle
Giampaolo	disease		group	behavioral	baseline in			changes.
Bianchi, and			lifestyle	strategies for	both groups			
Giulio			modificati	stimulus	(p=0.183).			
Marchesini			on	control and				
			program.	weight loss	BMI decreased			
2018				maintenance.	progressively			
					in both groups			

Journal of		278	The web-	(p=0.063),		
Hepatology		participate	based	average of		
1 02		d in a	program	3.4% in the		
		web-based	consisted of	web-based		
		program.	the group	intervention at		
		1 0	program but	6 months,		
		Mean age	divided in	4.9% at 12		
		is 52 years	four sessions.	months, 5.5%		
		old. 67%		at 24 months		
		were		(p<0.001).		
		males.		Åbout 20-28%		
				lost weight		
		33% have		>5% at		
		DM type		different time		
		2.		points.		
				-		
				All liver		
				enzymes		
				decreased		
				significantly in		
				both groups at		
				6 (p<0.001),		
				12 (p<0.001),		
				and 24 months		
				(p=0.002).		

Title, authors,	Purpose	Level of	Sample	Design	Results	Strengths	Weaknesses	Contribution:
date, journal		Evidence						Science and/or
								Practice
Virtual	To assess	2b*	Regional	Patients	The SCAN-	Applied	Limitations	Findings of this
Consultations	the impact		cohort of	included	ECHO group	propensity	included the	study suggest
Through the	of virtual		patients	were not	had more	matching	possibility	that virtual
Veterans	consultatio		within the	randomized.	studies and	using broad	of not	consultations
Administration	ns (SCAN-		VA system		procedures	demographic	accounting	helped address
SCAN-ECHO	ECHO) on		(VISN 11)	The design	(variceal	and clinical	all patient	issues of
Project	all-cause			attempted to	screen was	characteristic	differences	patients with
Improves	mortality		520	match patient	25% vs 15%).	s to adjust for	or	liver disease. In
Survival for	among		patients	characteristic		effect	eliminating	addition, the
Veterans with	patients		who had	s between	The SCAN-	estimates	confounding	program
Liver Disease	with liver		SCAN-	control and	ECHO group		•	improved
	disease		ECHO	cases	had	The SCAN-		process
Grace L. Su,			visit were		significantly	ECHO	The study	measures such
Lisa Glass,			included.		improved	consultations	was limited	as screening for
Elliott B.					survival and	improved	to VA,	cancer and
Tapper, Tony			62,237		were at	screening	which	varices.
Van, Akbar K.			were		decreased risk	procedures	focused on a	
Waljee, and			included		of death	and enhanced	unique	
Anne E. Sales			in the no		(p=0.003)	survival	population	
			visit		compared to	benefit for		
2018			cohort.		the no visit	patients with	Generalizab	
			These		group. The	cirrhosis.	ility of the	
Hepatology			patients		SCAN-ECHO		findings	
			did not		group had	The study	may be	
			have a		similar	showed that	constrained	
			traditional		survival as	the benefits	due to the	
			in-person		those with	of the	limitations	
			hepatolog		traditional in-	SCAN-	above.	
			У		person visits.	ECHO		

consultati	The SCAN-	showed after	
on.	ECHO group	a year.	
	had no effect		
Seven	on alcohol use		
were	compared the		
excluded	no visit group		
due to	(p>0.05).		
only			
having an	The SCAN-		
abnormal	ECHO group		
imaging	had a higher		
ICD-9	rate of liver		
code. A	cancer (25%		
total of	versus 15%)		
513 were	compared to		
included	the no visit		
(n=513).	group.		
Cohort	The SCAN-		
included	ECHO group		
patients	contributed to		
with ICD-	improvements		
9 code	in care quality		
that	and higher		
matched a	survival rates		
liver	than patients		
disease	with no visit.		

Appendix C

Project Model

Appendix C A model of evidence-based practice change to show the steps and schematic of the DNP project. *Source:* Larrabee, J. H. (2009). *Nurse to nurse: Practice.* McGraw-Hill.

Appendix D

Adapted PDSA Model for Improvement

Appendix D The model for improvement: PDSA. *Source:* Hickey, J. V., & Brosnan. (2017). *Evaluation of health care quality for DNPs (2nd ed.)*. Springer.
Appendix E

The Chronic Liver Disease Questionnaire (CLDQ)

Younossi et al. (1999)

Response options:

- 1 All of the time
- 2 Most of the time
- 3 A good bit of the time
- 4 Some of the time
- 5 A little of the time
- 6 Hardly any of the time
- 7 None of the time

Questions:

- 1. How much of the time during the last two weeks have you been troubled by a feeling of abdominal bloating?
- 2. How much of the time have you been tired or fatigued during the last two weeks?
- 3. How much of the time during the last two weeks have you experienced bodily pain?
- 4. How often during the last two weeks have you felt sleepy during the day? How much of the time during the last two weeks have you experienced abdominal pain?
- 5. How much of the time during the last two weeks has shortness of breath been a problem for you in your daily activities?
- 6. How much of the time during the last two weeks have you not been able to eat as much as you would like?

- 7. How much of the time in the last two weeks have you been bothered by having decreased strength?
- 8. How often during the last two weeks have you had trouble lifting or carrying heavy objects?
- 9. How often during the last two weeks have you felt anxious?
- 10. How often during the last two weeks have you felt a decreased level of energy?
- 11. How much of the time during the last two weeks have you felt unhappy?
- 12. How often during the last two weeks have you felt drowsy?
- 13. How much of the time during the last two weeks have you been bothered by a limitation of your diet?
- 14. How often during the last two weeks have you been irritable?
- 15. How much of the time during the last two weeks have you had difficulty sleeping at night?
- 16. How much of the time during the last two weeks have you been troubled by a feeling of abdominal discomfort?
- 17. How much of the time during the last two weeks have you been worried about the impact your liver disease has on your family?
- 18. How much of the time during the last two weeks have you had mood swings?
- 19. How much of the time during the last two weeks have you been unable to fall asleep at night?
- 20. How often during the last two weeks have you had muscle cramps?
- 21. How much of the time during the last two weeks have you been worried that your symptoms will develop into major problems?
- 22. How much of the time during the last two weeks have you had a dry mouth?
- 23. How much of the time during the last two weeks have you felt depressed?

- 24. How much of the time during the last two weeks have you been worried about your condition getting worse?
- 25. How much of the time during the last two weeks have you had problems concentrating?
- 26. How much of the time have you been troubled by itching during the last two weeks?
- 27. How much of the time during the last two weeks have you been worried about never feeling any better?
- 28. How much of the time during the last two weeks have you been concerned about the availability of a liver if you need a liver transplant?

Appendix F

Liver Disease Undernutrition Screening Tool

Casas Deza et al. (2021)

Liver Disease Undernutrition Screening Tool							
Please answer all 6 questions to the best of your ability							
Patient Questions		Column A		Column B	Column C		
1) How have you been eating lately?		 Normal or Fine I've been trying to eat less than normal. 	 I've been eating "less than normal" for <u>a</u> month or less. I don't know 		 I've been eating "less than normal" for more than one month. 		
2) Have you lost any weight in the last year?		 No Yes, but I have been trying to lose weight. 	 Yes, I have lost <u>some</u> weight. I don't know 		Yes, I have lost <u>a lot</u> <u>of weight.</u>		
3) Have you noticed any loss of body fat or thinning of your <u>arms or ribs</u> ?		no No	□ Yes, a little □ I don't know		□ Yes, a lot		
4) Have you noticed any muscle loss in your <u>temples, legs,</u> <u>clavicle, or</u> <u>shoulders?</u>		no No	□ Yes, a little □ I don't know		□ Yes, a lot		
5) Do you have any fluid or swelling in your <u>abdomen or</u> legs?		No, I have <u>no fluid</u> in my abdomen or legs.	 I have <u>some fluid</u> in my legs or abdomen. I don't know 		I have <u>a lot of fluid</u> in my legs or abdomen.		
6) Are you able to participate in your usual activities? (Ex: walking, climbing stairs, carrying groceries)		 Yes, I can participate in all my usual activities. 	 No, <u>occasionally</u> I am too <u>tired</u>, <u>weak</u>, or <u>feel</u> too bad to participate in my usual activities. I don't know 		 No, <u>occasionally</u> I am too tired, <u>weak</u>, or <u>feel</u> too bad to participate in my usual activities. I don't know 		 No, often I am too <u>tired, weak, or feel so</u> <u>bad</u> that I <u>cannot</u> participate in my usual activities.
		Ļ		Ţ			
	If you have checked 5 or more boxes in column A			If you have checked 2 or more boxes in column B or C			
No undernutrition has been identified.				Undernutrition identified Refer for nutrition evaluation.			

Appendix G

Short-Form Patient Satisfaction Questionnaire (PSQ-18)

Marshall & Hays (1994)

SHORT-FORM PATIENT SATISFACTION QUESTIONNAIRE (PSQ-18)

These next questions are about how you feel about the medical care you receive.

On the following pages are some things people say about medical care. Please read each one carefully, keeping in mind the medical care you are receiving now. (If you have not received care recently, think about what you would <u>expect</u> if you needed care today.) We are interested in your feelings, good and bad, about the medical care you have received.

How strongly do you AGREE or DISAGREE with each of the following statements?

(Circle One Number on Each Line)

		Strongly Agree	Agree	Uncertain	Disagree	Strongly Disagree
1.	Doctors are good about explaining the reason for medical tests	1	2	3	4	5
2.	I think my doctor's office has everything needed to provide complete medical care	1	2	3	4	5
3.	The medical care I have been receiving is just about perfect	1	2	з	4	5
4.	Sometimes doctors make me wonder if their diagnosis is correct	1	2	3	4	5
5.	I feel confident that I can get the medical care I need without being set back financially	1	2	3	4	5
6.	When I go for medical care, they are careful to check everything when treating and examining me	1	2	3	4	5
-			2	9	4	5
7.	care than I can afford	1	2	3	4	5
8.	I have easy access to the medical specialists I need	1	2	3	4	5

How strongly do you AGREE or DISAGREE with each of the following statements?

(Circle One Number on Each Line)

		Strongly Agree	Agree	Uncertain	Disagree	Strongly Disagree
9.	Where I get medical care, people have to wait too long for emergency treatment	1	2	3	4	5
10.	Doctors act too businesslike and impersonal toward me	1	2	3	4	5
11.	My doctors treat me in a very friendly and courteous manner	1	2	3	4	5
12.	Those who provide my medical care sometimes hurry too much when they treat me	1	2	3	4	5
13.	Doctors sometimes ignore what I tell them	1	2	3	4	5
14.	I have some doubts about the ability of the doctors who treat me	1	2	3	4	5
15.	Doctors usually spend plenty of time with me	1	2	3	4	5
16.	I find it hard to get an appointment for medical care right away	1	2	3	4	5
17.	I am dissatisfied with some things about the medical care I receive	1	2	з	4	5
18.	I am able to get medical care whenever I need it	1	2	3	4	5

Appendix H

GANNT Chart – Telemedicine Timeline

GANNT Chart Telemedicine Timeline

2021-2022					In Progress Planned				
Telemedicine Protocol Draft									
Telemedicine Protocol Revisions									
Telemedicine Protocol Approval									
Patient Enrollment and Training									
Telemedicine Monthly Appointment x 3 months									
End of Study									
Outcome Analysis									
Presentation of Outcome to Yale, Keck, and conferences									
Sustainability and Scaling						-			
	Jun Jul	Aug	Sept	Oct	Nov	Dec Jan	Feb Mar 2022		

Weight Changes

BMI Changes

Liver-Related Hospitalization Changes

Changes in the CLDQ Activity Domain

Changes in the CLDQ Worry Domain

Comparison of Visits 1 and 2 Outcomes

Table 1

Domain	Visit 1 Mean ± SD	Visit 2 Mean \pm SD
AS	4.99 ± 1.51	5.36 ± 1.33
FA	4.78 ± 0.95	4.8 ± 1.14
SS	4.98 ± 1.07	4.9 ± 1.38
AC	4.63 ± 1.73	5.73 ± 1.28
EF	5.23 ± 1.06	5.27 ± 0.98
WO	4.1 ± 1.29	3.34 ± 1.25
Total	4.82 ± 0.88	4.84 ± 0.87

Comparison of CLDQ Outcomes in Mean \pm SD by Domain