
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Fall 10-1-2021

A Hybrid SDN-based Architecture for Wireless Networks A Hybrid SDN-based Architecture for Wireless Networks

Qiaofeng Qin
Yale University Graduate School of Arts and Sciences, qinqf_pku@yahoo.com

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Qin, Qiaofeng, "A Hybrid SDN-based Architecture for Wireless Networks" (2021). Yale Graduate School of
Arts and Sciences Dissertations. 394.
https://elischolar.library.yale.edu/gsas_dissertations/394

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/394?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

A Hybrid SDN-based Architecture for Wireless Networks

Qiaofeng Qin

2021

With new possibilities brought by the Internet of Things (IoT) and edge computing, the

traffic demand of wireless networks increases dramatically. A more sophisticated network

management framework is required to handle the flow routing and resource allocation for

different users and services. By separating the network control and data planes, Software-

defined Networking (SDN) brings flexible and programmable network control, which is

considered as an appropriate solution in this scenario.

Although SDN has been applied in traditional networks such as data centers with great

successes, several unique challenges exist in the wireless environment. Compared with

wired networks, wireless links have limited capacity. The high mobility of IoT and edge

devices also leads to network topology changes and unstable link qualities. Such factors

restrain the scalability and robustness of an SDN control plane. In addition, the coexis-

tence of heterogeneous wireless and IoT protocols with distinct representations of network

resources making it difficult to process traffic with state-of-the-art SDN standards such as

OpenFlow.

In this dissertation, we design a novel architecture for the wireless network manage-

ment. We propose multiple techniques to better adopt SDN to relevant scenarios. First,

while maintaining the centralized control plane logically, we deploy multiple SDN con-

troller instances to ensure their scalability and robustness. We propose algorithms to deter-

mine the controllers’ locations and synchronization rates that minimize the communication

costs. Then, we consider handling heterogeneous protocols in Radio Access Networks

(RANs). We design a network slicing orchestrator enabling allocating resources across

different RANs controlled by SDN, including LTE and Wi-Fi. Finally, we combine the

centralized controller with local intelligence, including deploying another SDN control

plane in edge devices locally, and offloading network functions to a programmable data

plane. In all these approaches, we evaluate our solutions with both large-scale emulations

and prototypes implemented in real devices, demonstrating the improvements in multiple

performance metrics compared with state-of-the-art methods.

A Hybrid SDN-based Architecture for Wireless Networks

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Qiaofeng Qin

Dissertation Director: Leandros Tassiulas

December 2021

Copyright c© 2021 by Qiaofeng Qin

All rights reserved.

ii

Acknowledgments

It would not be possible for me to finish this dissertation without the help and support

from so many people. I would like to thank everyone who has assisted me through my

PhD journey at Yale.

First, I am deeply indebted to my advisor, Prof. Leandros Tassiulas. Being so in-

experienced and immature at the early years of my PhD time, I feel extremely fortunate

that Prof. Tassiulas generously provided me with his guidance. His profound knowledge

in the communication and networking area has always enlightened me the adequate re-

search direction to proceed. He also created the best laboratory environment to satisfied

the requirement of each group member. Besides, with his help I got opportunities to have

collaborations and internships with people from other academic and industrial institutions.

I think these benefits I received from him will be lifelong and impact my future career, for

which I will always be grateful.

I would also like to express my deepest appreciation to Prof. Amin Karbasi, and Prof.

Sekhar Tatikonda for agreeing to join my committee and Prof. Iordanis Koutsopoulos for

reviewing my thesis paper as an external reader. I am very impressive of their knowledge

and academic achievements, and feel lucky to receive their invaluable feedback on the

research directions.

I am also grateful to all my co-authors and collaborators, Konstantinos Poularakis,

George Iosifidis, Kin K. Leung, Sastry Kompella, Liang Ma, Erich M. Nahum and Miguel

Rio, who have played a decisive role in finishing the works described in this dissertation,

as well as Nakjung Choi, Muntasir R. Rahman and Marina Thottan, who provided me with

a valuable opportunity of a summer internship and helped me to learn the state-of-the-art

industrial tendencies, opening up my eyes and making it possible for me to explore deeper

to the thesis topic. At the same time, as researchers more senior than me, they set up the

role models of how to achieve better scientific explorations.

I would like to thank senior members of our group, Nikolaos Makris and Harris Ni-

avis for sharing the experience and offering great help during the setup of the experiment

testbed. Thanks also to Mandy Singer and Marsha Marcum for spending a great amount

of time on the orders of experiment equipment. Without efforts from them, I would not

get the chance to verify the theoretical conclusions with real devices and networking envi-

ronments.

I also had great pleasure of working with all my other group members, Yuang Jiang,

Nikolaos Papadis, Nick Nordlund, Victor Valls, Akrit Mudvari, Aosong Feng and Pana-

giotis Promponas. I enjoy each time discussing progresses and ideas with you, which not

iii

only broadened my perspective but also inspired me to think of new research directions.

Outside my research group, I also received help for countless times during my studies

at Yale. I am grateful to Prof. Fengnian Xia leading the Laboratory of Emerging Materials

and Devices, as well as his group members Cheng Li, Bingchen Deng and Qiushi Guo.

This is the place where I started my studies and researches as a PhD student. I would also

like to extend my gratitude to many other peers in the department of electrical engineering,

especially Zheng Gong and Lin Chen for their helpful advice and the campus life we spent

together.

I gratefully acknowledge the assistance I acquire from various open source projects

mentioned in this dissertation. Particularly, I thank Roberto Riggio of 5G-EmPOWER

project and Robert Schmidt of FlexRAN project for sharing great wireless architecture

implementations and maintaining vital, productive open source communities, where I have

learned a lot from discussions among researchers.

iv

Contents

1 Introduction 1
1.1 Challenges of Wireless Network Control 1

1.2 A Softwarized and Hybrid Control Architecture 3

1.3 Summary of Contributions . 5

1.4 Organization . 6

2 Background 7
2.1 Software-Defined Networking . 7

2.2 Control Plane Approaches . 8

2.2.1 Distributed SDN Controllers . 8

2.2.2 Software-Defined Wireless Networks (SDWN) 9

2.3 Data Plane Approaches . 9

2.3.1 Programmable Data Planes . 10

2.3.2 In-Network Computing . 10

2.4 Summary . 10

3 Distributed Control Plane: Controller Placement Problem 12
3.1 Introduction . 12

3.2 Cost Analysis of Controller Clusters . 15

3.2.1 Control Delay Measurement . 15

3.2.2 Control Overhead Measurement 17

3.3 Problem Modeling . 19

3.4 Optimization Algorithms . 24

3.4.1 Small-Scale Optimal Solution 24

3.4.2 Large-Scale Approximate Solution 26

3.5 Evaluation Results . 29

v

3.6 Related Works . 36

3.7 Summary . 37

4 Distributed Control Plane: Controller Synchronization Problem 38
4.1 Introduction . 38

4.2 Emulation Studies on the Impact of Synchronization Policies 41

4.3 Problem Modeling . 43

4.4 Optimization Algorithms . 45

4.5 Evaluation Results . 48

4.6 Related Work . 49

4.7 Summary . 50

5 Distributed Control Plane: Orchestrating Heterogeneous Networks 51
5.1 Introduction . 51

5.2 System Design and Problem Modeling 53

5.2.1 Overview . 53

5.2.2 Service Provider Slicing Agent 54

5.2.3 Network Provider Slicing Agent 55

5.2.4 Slicing Orchestrator . 56

5.3 Optimization Algorithms . 57

5.3.1 User Utility Optimization . 57

5.3.2 Iterative Double Auction . 57

5.3.3 Social Welfare Improvement . 60

5.4 Evaluation Results . 62

5.4.1 Testbed Setup . 63

5.4.2 Small-Scale Experimentation Results 63

5.4.3 Large-Scale Simulation Results 68

5.5 Related Work . 69

5.6 Summary . 70

6 Local Intelligence: Learning-enabled Protocol-Independent Packet Classifi-
cation 71
6.1 Introduction . 71

6.2 System Design . 75

6.3 Problem Modeling . 77

6.4 Algorithms and Learning Models . 78

vi

6.4.1 Overview . 78

6.4.2 Stage 1: Neural Network Structure 80

6.4.3 Stage 2: Header Field Definition 81

6.5 Evaluation Results . 83

6.5.1 Setup . 83

6.5.2 Classification (Stage 1) Performance 86

6.5.3 Header Field Definition (Stage 2) Performance 88

6.6 Related Work . 92

6.7 Summary . 93

7 Local Intelligence: Binarization Techniques towards Scalability 94
7.1 Introduction . 94

7.2 System Design . 96

7.2.1 Challenges . 97

7.2.2 Design Choices . 97

7.3 Problem Modeling and Algorithms . 98

7.3.1 Problem Formulation . 99

7.3.2 Inference: Binarized Neural Networks 100

7.3.3 Training: Federated Learning Technique 100

7.4 Evaluation Results . 102

7.4.1 Testbed Setup . 102

7.4.2 Performance of Inference . 103

7.4.3 Performance of Federated Learning 106

7.5 Related Work . 108

7.6 Summary . 109

8 Conclusions 110
8.1 Future Work and Open Problems . 111

A Controller Placement: Emulation Setting and Proofs 112
A.1 Controller Traffic Analysis . 112

A.2 Proof of Lemma 1 . 113

A.3 Proof of Lemma 2 . 114

B Controller Synchronization: Proofs 115
B.1 Proof of Theorem 2 . 115

vii

B.2 Proof of Theorem 3 . 117

C Access Network Orchestration: Prototype Implementation 118

D Network Security: Prototype Implementation 120
D.1 P4 Data Plane . 120

D.2 Control Plane and Cloud Server . 123

Bibliography 124

viii

List of Figures

1.1 An overview of the proposed softwarized architecture. 3

3.1 A remote controller vs many controllers placed at the edge. 13

3.2 (a) Testbed of a multi-controller edge system built from smartphones that

enable Open vSwitch and ONOS. (b) CDF of controller-node communi-

cation delays. (c) Comparison of average delays under different controller

placements. 16

3.3 (a) Ring topology in emulations. (b) Controller-node overheads (solid

lines) and inter-controller overheads (dot lines) of ONOS controllers. (c)

Overheads of OpenDaylight controllers. 18

3.4 An example of an SDN-enabled edge network. 22

3.5 A comparison between leader-based and leaderless synchronization strate-

gies. 23

3.6 Evaluation results for the extended model, with parameters extracted from

the measurements on OpenDaylight. 31

3.7 Evaluations on MANIAC network [61]. (a) Balanced cost, (b) number of

placed controllers and (c) tradeoff between delay and overhead for two

different algorithms. 32

3.8 Evaluations on Barcelona network [118]. (a) Balanced cost, (b) number

of placed controllers and (c) tradeoff between delay and overhead for two

different algorithms. 33

3.9 (a) Verification on the overhead values by Mininet emulations. (b), (c) Per-

formance comparison with a state-of-the-art reliability-aware algorithm [63]

on the Barcelona network. 34

4.1 Impact of inconsistency among controllers on routing application perfor-

mance. 39

ix

4.2 Emulation results. Topology and impact of synchronization rate on the

performance (box plots and average values) of (a)(b) shortest path routing

and (c)(d) load balancing applications. 42

4.3 (a) Performance and training time for different resource budgets and (b)

learning process under the shortest path routing application. (c) RMSE

cost for different ratios of flow arrival rates under the load-balancing ap-

plication. 48

5.1 Architecture of proposed system. The new components we introduce (Slic-

ing Orchestrator and Slicing Agents) are marked in red. 53

5.2 PoA with different utilities and costs when disabling the orchestrator. . . . 60

5.3 Testbed setup and experimentation scenario of two services (video stream-

ing and web browsing) and two RANs (WLAN and LTE). 62

5.4 The (a) resource allocation and payment schemes determined by double

auction with different weights of service provider utilities. (b) Actual per-

formance of video streaming by measuring PSNR. (c) Number of auction

rounds and (d) actual time required to finish the algorithm. 64

5.5 Real-time MPTCP throughput monitoring of video streaming. The service

provider increases ws1 from 5 to 25 and starts a new auction during the

transmission. 65

5.6 The (a) resource allocation, payment schemes and (b) performance of web

browsing service. (c)(d) shows how the service provider adjusts its bids

depending on the signal strength of its users. 66

5.7 (a) Performance of two different services under their competition. (b) Cost

and social welfare comparisons between the optimal and average alloca-

tions. (c) Number of bidding rounds until convergence. (d) CPU and

memory consumption of SD-RANs. 67

5.8 (a) The number of bidding rounds required for convergence when the net-

work scales up. (b) Box plots and average values of auctions among 8

network providers and different number of service providers. (c) Social

welfare of proposed architecture where an orchestrator holds Double Auc-

tions and another architecture where providers compete as a Stackelberg

game. (d) Price of Anarchy in slicing games without an orchestrator. . . . 68

6.1 Firewalls deployed at IoT gateways targeting various types of attacks in

heterogeneous protocols. 72

x

6.2 The learning process based on OpenFlow method and P4 language. 74

6.3 The protocol independence and reconfigurability of P4 language. 75

6.4 The control and data planes of the proposed framework, both programmable. 76

6.5 Illustration of the proposed two-stage learning approach. Packet classifi-

cation is realized by the SDN control plane in Stage 1, followed by header

field definition and implementation at the IoT gateway in Stage 2. 79

6.6 Structure of the dilated convolutional neural network (Dilated CNN) for

packet classification. 81

6.7 The precision-recall curve on different datasets. 87

6.8 Distributions of single-byte importance scores in different datasets. 88

6.9 Accuracy, precision and memory cost with different header fields selected

in CICAAGM dataset. 89

6.10 Throughputs with different header field definitions. 90

7.1 An architecture deploying BNN and federated learning for network secu-

rity at the edge. 99

7.2 The precision-recall curve. 105

7.3 Packet processing latency evaluations of BNN inference as a switch func-

tion in the data plane. 106

7.4 The (a) accuracy and (b) control message overheads during federated learn-

ing with the network scaling. 107

A.1 Different inter-controller messages in ONOS. 113

C.1 Abstract of a slicing scheme as the result of an auction, from which agents

of network providers extract information and convert it into a readable

format for heterogeneous SD-RANs. 119

D.1 P4-based prototype of the proposed gateway in one domain. 121

D.2 Implementing BNN with P4 codes . 122

D.3 An example of P4 header definition for weight updates 123

xi

List of Tables

3.1 Approximation ratios for incapacitated facility location problem. 27

3.2 Approximation ratios for non-negative submodular function maximization. 28

6.1 Performance metrics of the Dilated CNN on ISCX dataset. 86

6.2 Performance metrics of the Dilated CNN on CICAAFM dataset. 86

6.3 Performance metrics of the Dilated CNN on other datasets. 87

6.4 Comparisons between the proposed algorithm and random selected header

fields. (The length of each field is 2 byte in both cases.) 92

7.1 Performance metrics of BNN on CICIDS2017 dataset. 104

7.2 Performance metrics of BNN on ISCX dataset. 104

xii

Chapter 1

Introduction

1.1 Challenges of Wireless Network Control

Nowadays, wireless networking is playing an increasingly important role in both industrial

worlds and everyday life. By interconnecting a multitude of devices interfacing with the

physical world, the Internet of Things (IoT) are carrying more and more applications such

as wearable health monitoring sensors and autonomous vehicles [117]. It is predicted that

the number of connected devices will reach more than 75 billion up to 2025 [164]. The

proliferation of IoT devices leads to a huge amount of network traffic. Driven by this de-

mand, the next generation of wireless technology such as 5G has begun being deployed

worldwide [117]. The newly emerging wireless technologies and application scenarios re-

quires an efficient and robust network control architecture. However, due to the essence of

wireless communications, unique challenges of developing a network control architecture

exist in multiple aspects compared with traditional wired networks.

Diversity of Network Services. IoT is supporting diverse use cases, which may have

different requirements of network resources. For example, the low network latency is

crucial for the autonomous vehicles. While based on high-resolution video streaming,

the virtual/augmented reality (VR/AR) applications require a large bandwidth [43]. 5G

networks have provided with specifications for these new types of services, including ultra-

reliable and low-latency communications (URLLC), enhanced mobile broadband (eMBB)

and massive machine-type communications (mMTC) [135]. These distinct demands must

be satisfied simultaneously with the same network infrastructure. It is the responsibility

of the network control architecture to allocate and schedule different types of network

resources properly.

1

Another important trend that cannot be neglected is the popularity of Artificial intelli-

gence (AI) and machine learning (ML) technologies. ML has been shown as an effective

way to analyze and classify the massive data generated by IoT sensors [69]. However,

it also results in heavy computation and communication overheads when deployed in the

wireless network. The compatibility of the network control architecture is indispensable

for integrating the AI technologies in wireless and IoT scenarios.

Heterogeneous Wireless Networks. Most modern mobile devices, such as laptops

and smartphones, are capable to connect to multiple types of radio access networks (RANs),

for example, the cellular networks and wireless local area networks (WLANs) [125].

These RANs have different communication protocols and mechanisms allocating radio

resources. The wireless control architecture should have the ability to achieve resource

allocation and traffic engineering across different access technologies, which can be even

more difficult when the mobile device has multi-connectivity to more than one RAN si-

multaneously.

Besides the access network, such heterogeneity of protocols also exists in IoT net-

works. IoT devices have distinct communication protocols with different design purposes

from the traditional network services, such as ZigBee [42] and 6LoWPAN [112] which

focus on low data-rate and low energy-consumption applications. There are also multiple

popular protocols coexisting in the application layer, such as MQTT [163] and CoAP [23].

It is difficult for the control architecture to handle the different communication and rout-

ing patterns brought by these protocols in a uniform and efficient way. What is more,

these protocols are vulnerable to different types of network attacks, enlarging the risk of

the IoT network being attacked. It is another task for the control architecture to develop

corresponding network security policies.

Scalability and Robustness The wireless networks have more dynamics than wired

networks. It is common for the wireless communication channels to have fluctuating signal

strength, leading to wireless links with unstable connections and limited bandwidth. What

is more, a large portion of end devices in the wireless environment are mobile. The move-

ment along with the joining and leaving of network devices causes the frequent changing

of network topology. The control architecture must be robust enough to maintain the net-

work management under all these changes with limited available bandwidth of the control

channel. The scalability of the solution is another difficulty because of the large amount

of interconnected devices in IoT.

2

Figure 1.1: An overview of the proposed softwarized architecture.

1.2 A Softwarized and Hybrid Control Architecture

Driven by the challenges listed above, this thesis adopts Software-defined Networking

(SDN), which is a promising paradigm that revolutionizes the way for network manage-

ment [77]. The key concept of SDN is to decouple the control plane and data plane of the

network to simplify the network control. In this way, a centralized network controller is set

up, having the global view of the whole network. Then, the network control policies can be

made accordingly in a programmable manner through protocols such as OpenFlow [103].

Having achieved great successes in wired environments such as data center networks [68],

approaches are also being made to adopt SDN in wireless scenarios. The programmabil-

ity makes SDN an enabler of network function virtualization (NFV) technology. Multiple

virtual network functions can be deployed using the same set of network infrastructure.

Therefore, SDN and NFV provide a solution to satisfy the diverse demands of various

wireless network services [185]. However, the remaining two challenges of the wireless

control architecture cannot be overcome straightforwardly. Popular SDN standards such

as OpenFlow do not have enough support for different wireless protocols and radio re-

sources. The centralization of the SDN controller makes the control link a bottleneck

of traffic overheads, and even becomes a single point of failure under unstable wireless

connections, weakening the robustness and scalability.

To leverage SDN for wireless network control, this thesis considers making improve-

3

ments to the basic SDN architecture in the following two aspects:

• Distributed Network Control Plane. To strengthen the robustness of the control

architecture, instead of only one controller, multiple controller instances can be de-

ployed at different locations of the network. Although controllers are no longer

physically centralized in this setting, the centralization can remain at the logic level,

as long as the controllers synchronize with each other to have the same information

of network states. In this way, the single point of failure problem can be solved.

Maintaining multiple controllers and keeping them synchronized bring additional

costs. Some further concerns are required. One of them is the controller placement

problem. The amount and locations of controllers much be deliberately considered

in order to minimize the costs. Another concern is the synchronization mechanism.

It is non-trivial to determine how frequently a controller shares the information to

its peers, so that all controller instances can remain consistent under the changing

network environment with reasonable communication costs. These issues should

also be considered in the context of the heterogeneous network cases, where the

controller instances belong to different RANs.

• Local Intelligence in the Network Data Plane. Despite the huge advantages brought

by the centralized network control, it is also necessary to consider the merits of keep-

ing certain control logic distributed. On the one hand, though lacking the flexibility

and programmability, traditional distributed routing protocols such as AODV [132]

and OLSR [34] for wireless networks have shown a better robustness towards net-

work topology changes and failures. On the other hand, edge computing has been

developed as a solution of the growing IoT traffic [187], where data are processed

at the local gateway to reduce the service latency and the bandwidth costs to the

centralized cloud. With networking devices becoming smarter and programmable,

it is even possible to deploy some local functions in the network data plane, i.e. ex-

ecuting the function logic totally in the forwarding devices without reporting to the

controller and waiting for commands. This further reduces the packet processing

latency, leading to higher efficiency.

A trade-off exist between the centralized and distributed control architectures. For

this approach, the main task is to find out how many and what services should be

moved local from the centralized SDN controller, as well as moved from the control

plane to the data plane, so that the efficiency and scalability can be maximized by

combining the merits of both control schemes.

4

This thesis will propose a novel control architecture applying above improvements,

namely the hybrid SDN-based control architecture, as depicted in Figure 1.1, to overcome

the challenges of today’s wireless networks and IoT application scenarios. All the addi-

tional concerns brought by the distributed control plane and local intelligence will also be

discussed.

1.3 Summary of Contributions

This dissertation aims at developing a hybrid architecture based on Software-defined Net-

working for wireless network control. More specifically, the proposed architecture will fo-

cus on solving the heterogeneity and scalability problems in the context of various cutting-

edge IoT applications scenarios. The outcome of this dissertation includes the architecture

design, theoretical optimization and prototype implementation based on state-of-the-art

open-source SDN software. To summarize, this work makes the following novel contribu-

tions:

• Heterogeneity support with the distributed control plane. We investigate the appli-

cation of SDN in heterogeneous radio access networks, including WLAN and LTE.

We propose an architecture allocating radio resources to different network services

across both LTE base stations and WLAN access points. To handle the competi-

tion among network and service providers, we design an auction-based algorithm

performing negotiation among different participants towards the optimal allocation

policy. We deploy our system in real networking devices and verify its performance

with multiple typical network applications such as the web service and mobile video

streaming.

• Scalability support with the distributed control plane. We focus on two crucial is-

sues during the deployment of the distributed SDN control plane, the controller

placement problem and the controller synchronization problem. By measuring the

costs of several production-ready SDN controllers on real mobile devices, we fig-

ure out the pattern of the traffic overhead and delay during the intercommunication

among different controllers. We then propose an optimization algorithm determin-

ing the locations to deploy controllers that minimizes theses costs, as well as a novel

synchronization mechanism that reacts to the feedback from network applications

to reach a balance between performance and costs. We evaluate our methods with

both routing and load balancing services.

5

• Heterogeneity support with the local intelligence. We leverage the data plane pro-

grammable model, P4 [24], to deploy gateways in the IoT networks capable of sup-

porting heterogeneous protocols. Taking IoT security as a representative application,

we propose a machine-learning-based algorithm classifying incoming packets into

multiple categories with a high accuracy. Packets of unknown protocols can be pro-

cessed without preknowledge, generating protocol definitions and flow tables which

are directly executed in the gateway data plane.

• Scalability support with the local intelligence. We then extend the IoT machine

learning framework to networks of larger scales with multiple edge domains. The

scalability problem is addressed regarding two aspects. First, we reduce the network

latency of executing computation-intensive machine learning algorithms by adopt-

ing binarization techniques to make the learning models lightweight, so that they

can be offloaded from the central server to the local data plane. Moreover, we pro-

pose a federated learning [104] scheme able to train algorithms with local samples

at the edge without uploading the whole dataset to the central cloud. We investigate

additional techniques to minimize the communication overhead during this process

for better scalability.

1.4 Organization

The remainder of this dissertation is organized as follows:

Chapter 2 background knowledge and literature reviews of the topics relevant to this

dissertation.

Based on our previous work [139], Chapter 3 presents the optimal scheme of dis-

tributed controller placement.

Chapter 4 extends our previous work [137] and presents the mechanism design and

optimization algorithm of distributed controller synchronization.

Chapter 5 is derived from our previous work [138], proposing the architecture of an

orchestrator that achieves network slicing over SDN controllers of heterogeneous RANs.

Based on our previous work [141], Chapter 6 describes enhancing the SDN control

architecture with local intelligence enabled by the programmable data plane.

This approach is further discussed in Chapter 7 about how to improve the efficiency

and scalability, which is based on our previous work [140].

Chapter 8 summarizes the conclusions and provides with an outlook for future work.

6

Chapter 2

Background

In this chapter, we describe the necessary context of our work. We review the concept

and development of the Software-Defined Networking (SDN) movement. Specifically, we

focus on approaches which increase the robustness and scalability of the system or extend

SDN into wireless networking scenarios. Such approaches are made in both the network

control plane and data plane.

2.1 Software-Defined Networking

Software-defined Networking (SDN) is a successful approach to make the computer net-

works programmable [44]. In tradditional networking devices such as switches and routers,

packet forwarding behaviors are configured through the devices’ interfaces, which have

fixed functions depending on specific vendors, with which network innovations are diffi-

cult to be made to satisfy the increasing traffic volumes and demands. SDN solves this

problem by separating the network control and data planes [77]. A centralized SDN con-

troller is deployed at a remote server which defines the packet forwarding behaviors with

a high-level abstraction of network elements. The controller manages multiple forwarding

devices through standardized protocols. OpenFlow [103] is one of the most widely-used

SDN standard. An OpenFlow switch processes packets according to flow tables consisting

of multiple match-action rules. It keeps a TCP connection to the SDN controller to report

packets that cannot be matched in the flow table. The controller will make decisions and

install new flow table entries in the switch data plane. Originated in the campus network,

OpenFlow has extended its application to more wired networking scenarios. The stan-

dard has been supported by hardware switches from multiple equipment vendors, as well

as software, virtualized switches such as the Open vSwitch [133] project and Intel Data

7

Plane Development Kit (DPDK) [65].

Through protocols like OpenFlow, the SDN controller acquires a global view of the

network, facilitating the network operators to make decisions with great flexibility. Mul-

tiple controller platforms have been developed after the creation of OpenFlow, such as

NOX [55], Floodlight [1], POX [74] and Ryu [2]. Network functions, such as routing

and traffic engineering can be designed with popular programming languages including

C++, Java and Python. Then, such functions can be deployed as a module in the controller

platforms without any modification on the network infrastructure.

2.2 Control Plane Approaches

In spite of the successful use cases of SDN and OpenFlow in campus [103] and data

center [68] networks, extra efforts are required to bring SDN to the wireless environment.

On the one hand, the centralized architecture design is not scalable enough with the high

dynamics and the large amount of interconnected devices in wireless networks, especially

IoT applications, because of the single point of failure problem. Distributed deployment of

controllers is proposed to tackle with this problem. On the other hand, some properties of

wireless networking are not considered in the design of SDN protocols such as OpenFlow.

Several extensions and new protocols are proposed to adopt the SDN concept in wireless

scenarios.

2.2.1 Distributed SDN Controllers

ElastiCon [40] is an early work proposing a distributed SDN architecture by deploying

a cluster of multiple controllers in the network. While being scalable, in order not to

lose the advantages of the global network view and programmability, the control plane

should keep centralized logically. ElastiCon deploys a database sharing its access to all

controllers to achieve this. Multiple other approaches [13] exist, keeping the consistency

of the whole controller cluster either by deploying a hierarchical architecture [81], or mak-

ing each controller synchronize with all peers. Among them, ONOS [16] and OpenDay-

light [105] are two representative controller platforms that provide with built-in solutions

for the distributed deployment and achieve production-grade performance. However, the

synchronization among different controller instances leads to large communication over-

heads, as measured in [113] and [167]. Therefore, the main usage of above approaches is

still limited in the data center networks rather than wireless scenarios.

8

2.2.2 Software-Defined Wireless Networks (SDWN)

Software-defined Wireless Networks (SDWN) [183] are approaches that apply the core

SDN idea of separating the network control and data planes to wireless scenarios. Due to

the variety of heterogeneous wireless protocols, these approaches differ a lot from each

other and focus on different scenarios. For instance, SoftCell [71] is an architecture for

LTE core networks which is aware of network dynamics such as topology changes. There

are other approaches for cellular core networks including [33] and [131].

Another research direction is Software-defined Radio Access Networks (SD-RAN),

focusing on applying the SDN centralized control over Radio Access Networks (RAN).

CAPWAP [17] is a protocol for the centralized management of a collection of WLAN ac-

cess points. Odin [168] proposes the light virtual access point (LVAP) abstract. Such virtu-

alization technologies make it possible to allocate radio resources among multiple users or

network services, which is an important application of SD-RAN. Similar approaches also

exist for LTE access networks. FlexRAN [48] and Orion [47] achieves network slicing

among multiple LTE eNodeBs through virtualization. Fewer works consider the heteroge-

neous cases, e.g., coexisting LTE and WLAN. SoftMobile [32] and EmPOWER [146] are

architectures for this purpose. However, different problems remain to be solved such as

the scalability of the system as well as the competition among multiple RANs and service

providers.

Software-defined Wireless Sensor Networks (SDWSN) [79] approahces such as Sensor

OpenFlow [100] and SDN-WISE [51] extend OpenFlow to support IoT protocols. They

also aim at limiting the traffic overheads between the controller and IoT devices due to the

low-rate essence of IoT communications.

2.3 Data Plane Approaches

The approaches introduced so far focus on enhancing the capability of the network control

plane, while the functions of the data plane remain relatively simple. In both the original

and modified OpenFlow protocols of above approaches, the packet header fields matched

by flow rules are predefined. It takes great efforts to extend these definitions so that a

new protocol with unique packet headers can be supported, as indicated in [100]. Besides,

the OpenFlow switches are stateless. Without storing the states of different network con-

nections, any complex packet processing behaviors can hardly be achieved at the switch

without the participation of the SDN controller, which may hamper the scalability of the

9

system. To solve this problem, innovations also happen at the data plane design, making

the forwarding devices stateful and even programmable [21]. These novel architectures

enable in-network computing, which realizes network functions with low costs.

2.3.1 Programmable Data Planes

OpenState [20] and FAST [109] achieve stateful data plane packet processing by replacing

the stateless match-action table with a state machine, where packet can trigger state tran-

sitions. These works have shown that such switch architectures can realize more advanced

network services locally, such as TCP connection tracking and stateful firewalls. P4 [24]

is a more comprehensive high-level language enabling network engineers to dynamically

program the packet processing pipeline. It has two additional features. P4 is protocol in-

dependent that permits users to define new packet header structure and parsers. It is also

target indepdent, which can be deployed in various devices including high-performance

hardware switches [25], FPGA [191] and software switches [155, 35]. These features

make it possible to be deployed in IoT networks serving packets in heterogeneous proto-

cols. For example, [172] propose a P4-based architecture for the service automation of

several popular IoT protocols.

2.3.2 In-Network Computing

The increasingly capable and programmable data plane devices motivate people to develop

in-network computing [153] technologies. By offloading some computation tasks to the

data plane, the network throughput and latency will be improved because packets are no

longer forwarded to a remote server or host. Though having more constraints of memory

and computation power compared with genral CPUs, the in-network computing schemes

are evaluated in [170] through case studies of different applications including key-value

storing and consensus algorithms to show advantages. [180] and [161] claim that the ma-

chine learning algorithms which are regarded computation-intensive can also be assisted or

performed by the data plane. There are also IoT-related use cases, such as the architecture

proposed in [98], which aggregate data from multiple sensors in P4 switches.

2.4 Summary

We introduced the SDN architecture in this chapter. We figured out that the distributed

deployment of the SDN control plane and the in-network computations with the pro-

10

grammable data plane are two potential approaches to tackle with the scalability and het-

erogeneity issues of adopting SDN in wireless and IoT scenarios. Describing the related

works in both areas, in the next chapters, we will present a series of our works that solve

the open problems in either approach, as well as combining both approaches for a better

control architecture.

11

Chapter 3

Distributed Control Plane: Controller
Placement Problem

Driven by the trends of edge and fog computing in IoT applications which provide elastic

resources and services to end users, the network control plane should be deployed at the

network edge, since the processing capacity resides at the network periphery as opposed

to traditional data-centers. Despite their momentum, the deployment of such control ar-

chitecture is a complex and challenging problem.

In this chapter, we propose to adopt SDN control for such scenarios. We provide a

proof-of-concept implementation of a multi-controller edge system and concentrate on

the deployment strategy of controllers. Guided by our measurement of traffic delay and

overheads, we model the problem of determining the placement of controllers in the edge

network. Using linearization and supermodular function techniques, we present approxi-

mation solutions which perform close to optimal and substantially better than state-of-the-

art methods. Finally, we analyze the interplay between various performance and reliability

objectives.

3.1 Introduction

Emerging architectures, such as fog and mobile edge computing, distribute substantial

amounts of data storage, processing and communication resources at the extremes of the

network, in proximity to end-users, thereby allowing to bypass fundamental delay issues

of traditional centralized cloud platforms [108]. While still at an infancy stage, these archi-

tectures are considered to be a key enabler for next-generation wireless (5G) and Internet of

Things (IoT) systems [130] for supporting both computation-intensive and delay-sensitive

12

Core

network

Cloud

Edge

network

L
o
n
g

d
is

ta
n
c
e

SDN

Controller

(a) Single controller.
S

h
o
rt

d
is

ta
n
c
e

SDN

Controller

SDN

Controller

SDN

Controller

(b) Distribution of controllers.

Figure 3.1: A remote controller vs many controllers placed at the edge.

services.

Despite their momentum, resource management in fog/edge architectures remains a

very complex task, especially when a diverse set of services with different computation/s-

torage/communication requirements need to be supported [157]. To facilitate resource

management, we can benefit from novel softwarization technologies such as SDN. The

main principle of SDN is to shift all the control functions from the data plane nodes to

a programmable network entity, the controller. However, this is a centralized approach,

while edge architectures emphasize the distribution of resources and their management.

Therefore, it is challenging to apply SDN ideas at the edge part of the network.

To exemplify, in order for SDN protocol to work properly, the state of the data plane

nodes, e.g., the traffic statistics, link metrics and other protocol-specific parameters [181],

should be reported to the controller in a timely manner so as to make efficient resource

management decisions. This condition is easier to meet in wired networks where the

communication between the controller and the nodes is much more stable and faster than

in the wireless counterpart.

A method that can be used to solve the above issue is the placement of many controller

instances in proximity to edge nodes, as it is depicted in Figure 3.1. The placed controllers,

physically distributed but logically centralized, cooperate to manage the edge nodes which

can reduce delay due to the shorter distance to them. Such placement strategies are pos-

sible today via commercial software controller implementations which support a cluster

mode with built-in synchronization mechanisms [105], [16].

The controller placement problem has been extensively studied over the past decade,

especially in the context of data center and wired ISP networks (e.g., see the pioneer work

in [60] and [176] for a survey). However, this problem obtains an interesting new twist in

the context of edge architectures for the following reasons:

• Delay of network management: Certain links between the edge nodes may be wire-

13

less in nature, unstable and of low rate. Moreover, it may happen that many of these

links separate a node from a placed controller resulting in slow statistic collection

and node re-configuration through a multi-hop path. Hence, the controller placement

strategy can drastically affect the delay of network management.

• Overhead of control messages: Multi-controller implementations require the peri-

odic exchange of messages between the controllers and nodes for statistic collection

and resource management [181] as well as between the controllers themselves for

synchronization purposes [113]. The overheads of these two types typically increase

with the number of placed controllers, their distance to the nodes and to each other.

Hence, if the controllers are not properly placed, the overheads will be significant,

considering the scarcity of edge network resources.

• Heterogeneous synchronization strategies: There are no standard protocols for syn-

chronization among controllers. Therefore, behaviors may vary with different types

of controllers. This variety should be considered when deciding the controller place-

ment.

Given the above issues, the key open questions are: How many controllers to place in

the network and where exactly? Should we place many controllers close to the edge nodes

to reduce delay of resource management or place fewer controllers close to each other to

keep synchronization overheads as low as possible?

In this chapter, we follow a systematic methodology in order to answer the above

questions. We focus on networks where edge devices are SDN-compatible and can support

SDN data paths and controllers, such as IoT systems. The contributions of this work can

be summarized as follows:

• SDN Controller Placement at the Edge. We study the placement of controllers in

SDN-enabled edge networks. We consider several practical features of these sys-

tems such as the different delay values of the wireless links and the impact of control

overheads.

• Experimentation and Emulation. We analyze the operation and synchronization

strategies of two state-of-art SDN controller implementations, namely ONOS and

OpenDaylight (ODL). We perform experiments on a testbed of a multi-controller

edge network to show that the average delay of managing a device can significantly

change for different controller placement solutions. We also perform large-scale

14

emulations to identify two types of overheads (inter-controller and controller-node

traffic) and their dependence on the network topology.

• Optimization Algorithms. We build upon the emulation findings to formulate the

controller placement problem for two different objectives; minimization of delay

and overheads. We propose exact solutions of Mixed Integer Programming (MIP),

as well as scalable and fast approximate solutions (running in less than 0.1 secs)

using linearization and supermodular techniques.

• Evaluation Results. We evaluate the proposed controller placement algorithms using

two real network topologies. We find that our approach performs close to optimal

and better than state-of-the-art methods. We also analyze the interplay between

various performance and reliability objectives; minimizing delay can favor the re-

liability of controller - data plane node communication, but affect the reliability of

inter-controller communication.

The rest of this chapter is organized as follows. Section 3.2 presents our experimen-

tation and emulation results. Guided by these results, we model the controller placement

problem in edge networks in Section 3.3. In Section 3.4, we present optimal and ap-

proximate solution algorithms for small- and large-scale problem instances respectively.

Section 3.5 presents the evaluation of our proposed algorithms, while Section 3.6 reviews

our contribution compared to related works. We conclude our work in Section 3.7.

3.2 Cost Analysis of Controller Clusters

In this section, we present experimentation and emulation results using commercial SDN

controller and data plane implementations. The results provide insights about the delay and

overheads of multi-controller edge systems which will be used in modeling the controller

placement problem in the next section.

3.2.1 Control Delay Measurement

Testbed Set-up. In this subsection, we set up a testbed of a multi-controller edge system

using off-the-shelf network devices. Specifically, we deploy four Nexus 4 Android smart-

phones to form a wireless network as it is depicted in Figure 3.2(a). The first smartphone

works as an access point (hotspot) to provide the remaining three smartphones with Wi-Fi

connections. This represents a common edge network setting, where a node can either

15

Controller Controller

Wi-Fi
Hotspot①

②

③

④

Android Smartphone

ONOS

Open vSwitch

Wi-Fi Interface

(a) Testbed topology.

Delay (ms)
0 25 50 75 100 125 150

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

(C
D

F)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Overall CDF

 0-hop Connection

 1-hop Connection

 2-hop Connection

(b) CDF of delays.

Controllers at Node 1,3 Controllers at Node 2,4

A
ve

ra
ge

 D
el

ay
 (m

s)

0

5

10

15

20

25

30

35

(c) Comparison of two placement schemes.

Figure 3.2: (a) Testbed of a multi-controller edge system built from smartphones that
enable Open vSwitch and ONOS. (b) CDF of controller-node communication delays. (c)
Comparison of average delays under different controller placements.

establish multihop connections to backbone networks, or exchange data with its peer in a

D2D fashion. Besides, smartphones are representative devices widely used in edge net-

works. Due to their constraints of calculating and storage, our testbed shows a challenging

scenario that is worthy of investigation.

We take several steps to make the network SDN-enabled. In each smartphone, we cre-

ate a chroot environment to install the Ubuntu system running with its original Android

system at the same time. By this, we are able to install popular SDN-related software in

the smartphone. First, we make all devices working as data plane nodes by installing Open

vSwitch [133]. This creates a virtual switch that supports SDN in each smartphone. Sec-

ond, we deploy SDN controllers in Node 2 and Node 4. Though constrained in resources,

the smartphone is still capable enough to run a controller instance, such as ONOS. ONOS

is designed particularly for scalability and permits multiple controllers working together

in the form of a controller cluster. Then, we establish a connection between the two con-

trollers and assign each smartphone to its nearest controller with respect to the hop count

16

length distance metric.

Measurement Methodology. We mainly take measurements on the network delay

between the controller and data plane nodes. The devices are placed within an empty

lab room, and distance over each wireless link is 2 meters. One frequent and important

interaction between a controller and a data plane node is the request and reply of flow

statistics. Therefore, we measure the delay at controller nodes, by analyzing the interval

between sending such an OpenFlow request message and receiving its corresponding reply.

We keep capturing messages since the cluster reaches the steady state and collect 250

measurements. Figure 3.2(b) shows the cumulative distribution function of the delays we

measured. The average value is tens of milliseconds which is comparable or higher than

the delay reported in typical wired networks [60]. From the CDF plot, we notice that the

variance is large, corresponding to the relatively unstable wireless links. It is common for

the delay to go even beyond 100 milliseconds.

We also notice that the placement of controllers is important, because the delay re-

lies highly on the distance between the data plane node and its controller. For example,

Node 2 and Node 4 contain controllers locally, while Node 1 and Node 3 have one-hop

and two-hop connections to the controller, respectively. As a result, drawn separately in

Figure 3.2(b), local connection shows almost zero delays while the one-hop and two-hop

connections show notable delays. To further demonstrate this, we move ONOS controllers

from nodes 2 and 4 to nodes 1 and 3. If we still assign each data plane node to its near-

est controller, we can find that the average delay is 25% lower, as it is depicted in Figure

3.2(c).

Main Takeaways. Modern edge network devices (smartphones) can act as controllers

to manage other devices. The management delay highly depends on the number of wireless

hops and can significantly change for different controller placement strategies (up to 25%

difference in our testbed).

3.2.2 Control Overhead Measurement

In the previous subsection, we focused on the delay required to manage the edge nodes. In

this subsection, we will analyze another important factor; the overheads of SDN control.

By measuring the overheads of ONOS and OpenDaylight, the most typical commercial

multi-controller solutions, we identify two types of control overheads, controller-node

overhead and inter-controller overhead. We also summarize two types of synchronization

strategies, leaderless synchronization and leader-based synchronization.

17

Controller Cluster

Mininet

Edge Node 1

· · · · · ·

Inter-Controller Traffic

Controller-N
ode

Traffic

Controller

Edge Node 2
Edge Node 3

Edge Node 4

Edge Node 5Edge Node N

Controller Controller

(a) Emulation setting.

0 50 100 150
0

1

2

3

4

5

 Controller-Node (No Flows)
 Controller-Node (With Flows)
 Inter-Controller (Size 2)
 Inter-Controller (Size 3)
 Inter-Controller (Size 4)
 Inter-Controller (Size 5)

To
ta

l T
ra

ffi
c

(M
bp

s)

Number of Data Plane Nodes

(b) Control overheads of ONOS.

0 10 20 30 40 50

Number of Data Plane Nodes

0

5

10

15

20

25

30

35
In

te
r-

co
nt

ro
lle

r T
ra

ffi
c

(M
bp

s)
Leader to Follower 1

Leader to Follower 2

Follower 1 to Follower 2

0.048 Mbps

(c) Control overheads of OpenDaylight.

Figure 3.3: (a) Ring topology in emulations. (b) Controller-node overheads (solid lines)
and inter-controller overheads (dot lines) of ONOS controllers. (c) Overheads of Open-
Daylight controllers.

Emulation Set-up. Since control overheads depend heavily on the scale of the net-

work, we need to deploy many more nodes than what we have in our testbed if we wish

to analyze them. A more accessible way to take large-scale measurements is by running

emulations on a virtual network generated by Mininet [86]. This method allows us to test

networks with hundreds of nodes and several controllers using a common CPU machine.

Specifically, we create a virtual edge network with ring topology and evenly assign nodes

to the placed controllers, as shown in Figure 3.3(a). All controllers run a simple built-in

application named reactive forwarding.

Measurement Methodology - ONOS. First, we run ONOS as the controller. In order

to show the impact of the scale of the network, we take measurements on both types of

control traffic with different number of nodes in the virtual network. Figure 3.3(b) verifies

that both controller-node traffic and inter-controller traffic grow linearly when the network

scales up. What is more, we also consider other factors that have impact. For controller-

node traffic, we create a large amount of one-hop iperf [169] flows randomly, with a fixed

18

rate (0.1 flows per second for each node). For inter-controller traffic, we deploy different

numbers of controllers (cluster sizes). According to Figure 3.3(b), in all of these situations,

the two types of overheads are at the same order of magnitude (up to a few Mbps each).

This fact means that both of them are important when deciding the controller placement.

We also analyze the synchronization strategy adopted by ONOS. ONOS has a rela-

tively complicated consensus mechanism, deploying several different algorithms at the

same time, which we discuss in detail in the Appendix A.1. However, the majority of traf-

fic follows a leaderless manner, i.e., each pair of controllers generates a similar amount of

overheads when synchronizing.

Measurement Methodology - OpenDaylight. Next, we replace the controllers with

OpenDaylight. Same with ONOS, OpenFlow protocol is adopted for the controller-node

communications, leading to similar behaviors. However, the inter-controller traffic pattern

is quite different. As shown in Figure 3.3(c), although the overhead also grows linearly

with the number of data plane nodes, the overhead is much larger compared with the

same setting in ONOS case. Importantly, the overhead is no longer evenly distributed

among each pair of controllers. In the 3-controller case, we can identify one controller as

a leader, and the remaining two as followers. We find that non-negligible overhead only

exists between a leader and a follower, rather than two followers. Therefore, controller

synchronization of OpenDaylight follows a leader-based manner.

Main Takeaways. (i) The two types of overheads (inter-controller and controller-

node traffic) are at the same order of magnitude in representative scenarios (up to few

Mbps each), increasing linearly to the load of controllers. (ii) There are leader-based and

leaderless strategies for controller synchronization, leading to different distributions of

inter-controller overheads.

3.3 Problem Modeling

In this section, we build upon the experimentation and emulation results of the previous

section to model the controller placement problem in edge networks. We consider a net-

work of a diverse set N of N edge nodes such as access switches, cellular base stations,

set-top boxes, Wi-Fi access points and even mobile devices (e.g., smartphones), as de-

picted in Figure 3.4. We use the term edge nodes to describe them as they are in close

proximity to the end user, unlike core switches and routers of ISP backbone networks or

data centers. Our analysis applies to any kind of edge nodes as long as: (i) they are SDN-

compatible; (ii) their links have high enough capacity to support the SDN coordination

19

mechanisms without congestion. Furthermore, the edge nodes can be connected with each

other through single or multi-hop paths. Without loss of generality, the nodes generate

new flows with uniform rate, normalized to one.

The network is SDN-enabled in the sense that all nodes run virtual switches that sup-

port SDN protocol. A controller is placed at the cloud and connects to the edge nodes

through in-band or out-of-band control channels. The network operator may decide to

place additional controllers in the network. Placing a controller on an edge node requires

to locally install and run a controller implementation software such as ONOS [16]. We

introduce the binary optimization variable xn ∈ {0, 1} to indicate whether a controller is

placed at node n ∈ N (xn = 1) or not (xn = 0). These variables constitute the controller

placement policy:

x = (xn ∈ {0, 1} : n ∈ N) . (3.1)

Due to limited resources, not all the edge nodes may be capable of hosting a controller.

To model such cases, we denote by Nh ⊆ N the subset of nodes that can play the role of

host for a controller, where Nh = |Nh|. Then, we require that:

xn = 0, ∀n /∈ Nh . (3.2)

The network operator will also need to decide the assignment of nodes to controllers,

i.e., which controller is responsible for the management of each node. We introduce the

binary optimization variable ynm ∈ {0, 1} to indicate whether node n ∈ N is assigned to

the controller at node m ∈ N (ynm = 1) or not (ynm = 0). Similarly, we denote the cloud

node by c, and ync ∈ {0, 1} indicates the assignment of node n to the controller located at

the cloud. These variables constitute the assignment policy of the operator:

y = (ynm ∈ {0, 1} : n ∈ N ,m ∈ N ∪ {c}) . (3.3)

Since every node needs to be assigned to a controller, we require that:∑
m∈N∪{c}

ynm = 1, ∀n ∈ N . (3.4)

In addition, we require that a controller must be placed at node m in order for node n to

be able to assign to it:

ynm ≤ xm, ∀n,m ∈ N . (3.5)

We also consider that in the leader-based synchronization strategy, one controller acts

20

as the leader. We use the optimization variable zn ∈ {0, 1} to indicate whether a node n is

the leader or not, and require that: ∑
n∈Nh∪{c}

zn = 1 . (3.6)

As we showed in Figure 3.2(b), the delay of node management increases rapidly with

the topological distance (number of hops) between the controller and the node. Therefore,

assigning a node to a controller placed at a nearby edge node instead of the cloud controller

can greatly expedite its management. In the model, we denote by dnm (milliseconds) the

delay when node n is assigned to the controller at node m. Similarly, we denote by dnc the

delay when node n is assigned to the cloud controller. The total (across all nodes) delay is

given by:

D(y) =
∑
n∈N

∑
m∈N∪{c}

ynmdnm . (3.7)

The controllers will continuously exchange messages with the data plane nodes they

manage for statistic collection and forwarding table update. As we showed in Figure

3.3(b), the bandwidth overhead of this message exchange can be significant in practice.

Moreover, the cost of this overhead would increase with the topological distance between

the controller and the node as resources of more links would be consumed. To model

this, we denote by wanm the overhead cost of assigning node n to the controller at node m.

Similarly, the overhead cost of assigning node n to the cloud controller is denoted by wanc.

The total (across all nodes) assignment overhead cost is given by:

Wa(y) =
∑
n∈N

∑
m∈N∪{c}

ynmw
a
nm. (3.8)

The controllers will also exchange messages to each other for synchronization pur-

poses. As we show in Section 3.2, different types of controllers may adopt either leader-

based or leaderless strategy. We should notice that they may even coexist, in case that a

controller adopts multiple consensus algorithms, just as ONOS. Therefore, we model the

overheads of each strategy separately.

We begin with the leaderless case. As what Figure 3.3(b) indicates, each pair of con-

trollers exchange messages with constant rate as well as messages with rate that depends

on the controller’s load. The latter means that the more nodes are assigned to a controller

21

Internet
Access
Switch

Mobile
Devices

Base
Station

Fog
Node

Access
Point

Mesh
Network

IoT
Devices

Figure 3.4: An example of an SDN-enabled edge network.

the more messages it exchanges with the rest controllers. Therefore, we can model the

synchronization overheads as follows. For the messages exchanged at a constant rate, we

denote by wconml ≥ 0 the respective overhead cost between controllers at nodes m and l.

For the messages exchanged at a rate that depends on the controller load, we denote by

wdepml ≥ 0 the respective overhead cost between controllers at nodes m and l for each node

assigned to controller m. The total (across all controller pairs) leaderless synchronization

overhead cost is given by:

Ws1(x,y) =
∑

m∈N∪{c}

∑
l∈N∪{c}

xmxl
(
wconml + wdepml

∑
n∈N

ynm
)
. (3.9)

where, with a slight abuse of notation, we used the terms xm and xl for m and l equal to c

in the above summation. These terms are set to one to indicate that a controller is placed

at the cloud1.

For the leader-based case, we have a similar cost expression:

Ws2(x, z) =
∑

m∈N∪{c}

∑
l∈Nh∪{c}

xmzl
(
wlb conml + wlb depml ∗N

)
. (3.10)

where the difference is that the controllers synchronize only with the leader controller,

rather than in a peer-to-peer manner, as depicted in Figure 3.5. The constants wlb conml and

1We make the same abuse of notation throughout this chapter.

22

“Follower”
Controller

“Follower”
Controller

“Leader”
Controller

1
2

3
4

5 6
7

③④
⑤⑥⑦

①②
⑤⑥⑦

①② ③④

(a) Leader-based

Controller Controller

Controller

1
2

3
4

5 6
7

⑤⑥⑦ ⑤⑥⑦

①② ③④

①②

③④

(b) Leaderless

Figure 3.5: A comparison between leader-based and leaderless synchronization strategies.

wlb depml represent the linear relationship between the overhead and the controller load, just

like in the leaderless term. However the values can be different.

On the one hand, a scattered placement of many controllers across the network would

reduce delay and assignment overhead costs since nodes can be managed by controllers at

closer proximity. On the other hand, a more compact placement of fewer controllers would

reduce the synchronization overhead cost. These metrics are contradicting in general, and

therefore cannot be all minimized at the same time. Depending on its preferences, the

operator would have to find a way to balance delay and overheads. In general, this will

require to optimize a function of the following form, where the weight value γ ≥ 0 is used

to balance the different metrics:

J(x,y, z) = γD(y) +Wa(y) +Ws1(x,y) +Ws2(x, z). (3.11)

By setting γ = 0, the balanced function reduces to the total overhead costs, neglecting

delay. However, by increasing the γ value, more priority is given to the delay. The edge

controller placement (ECP, for short) can be expressed as follows:

minx,y,z J(x,y, z)

s.t. constraints: (3.1), (3.2), (3.3), (3.4), (3.5), (3.6).

The above problem is challenging since it contains discrete variables and a non-linear ob-

jective function with cubic and quadratic terms (inside Ws1 and Ws2). In fact, it is not hard

23

to show that ECP is a generalization of the well-studied facility location problem [158],

which is NP-Hard, by allowing facility opening (equivalently controller placement) costs

to be non-constant (i.e., the synchronization cost depends on the distance between the

controllers).

3.4 Optimization Algorithms

In this section, we address the ECP problem. We start by presenting an optimal algo-

rithm that can be applied to small-scale problem instances. Following that, we present

approximation algorithms that scale well with the size of the problem instance.

3.4.1 Small-Scale Optimal Solution

In this subsection, we find an optimal solution by converting ECP to a Mixed Integer

Programming (MIP) problem. That is a problem with linear objective function and con-

straints. This conversion is important since there exist various commercial solvers, such

as CPLEX [38], that can be directly used to solve this type of problems.

To obtain the MIP formulation, we apply standard linearization techniques [54]. Specif-

ically, we introduce the following two vectors of additional optimization variables:

θ = (θml ∈ {0, 1} : m, l ∈ N ∪ {c}) . (3.12)

δ = (δml ∈ {0, 1} : m ∈ N ∪ {c}), l ∈ Nh ∪ {c}) . (3.13)

φ = (φmln ∈ {0, 1} : m, l ∈ N ∪ {c}, n ∈ N) . (3.14)

Then, we add the following linear constraints for θ:

θml ≤ xm, m, l ∈ N ∪ {c} , (3.15)

θml ≤ xl, m, l ∈ N ∪ {c} , (3.16)

θml ≥ xm + xl − 1, m, l ∈ N ∪ {c} , (3.17)

the following linear constraints for δ:

δml ≤ xm, m ∈ N ∪ {c}, l ∈ Nh ∪ {c}) , (3.18)

δml ≤ zl, m ∈ N ∪ {c}, l ∈ Nh ∪ {c}) , (3.19)

δml ≥ xm + zl − 1, m ∈ N ∪ {c}), l ∈ Nh ∪ {c} , (3.20)

24

and the following linear constraints for φ:

φmln ≤ θml, m, l ∈ N ∪ {c}, n ∈ N , (3.21)

φmln ≤ ynm, m, l ∈ N ∪ {c}, n ∈ N , (3.22)

φmln ≥ θml + ynm − 1, m, l ∈ N ∪ {c}, n ∈ N . (3.23)

The D and Wa functions are already linear, so we only need to linearize the Ws1 and

Ws2 function. This is possible with the new variables, as they can be written as:

Ŵs1(θ,φ) =
∑

m∈N∪{c}

∑
l∈N∪{c}

(
θmlw

con
ml +

∑
n∈N

φmlnw
dep
ml

)
. (3.24)

Ŵs2(δ) =
∑

m∈N∪{c}

∑
l∈Nh∪{c}

δml
(
wlb conml + wlb depml ∗N

)
. (3.25)

Then, the MIP problem can be expressed as follows:

minx,y,θ,φ γD(y) +Wa(y) + Ŵs1(θ,φ) + Ŵs2(δ)

s.t. constraints: (3.1)− (3.6) and (3.12)− (3.23) .

The inequalities in (3.15)-(3.17) ensure that θml will be zero if at least one (or equivalently

the product) of xm and xl is zero; otherwise it will be one. It is similar for inequalities

in (3.18)-(3.20). Combined with the above, the inequalities in (3.21)-(3.23) ensure that

φmln will be zero if at least one (or equivalently the product) of xm, xl and ynm is zero;

otherwise it will be one.

Various commercial solvers, such as CPLEX, can be directly used to solve a MIP prob-

lem. These solvers apply branch-and-bound techniques and can be quite fast for small-

scale problem instances. However, in some cases, edge systems can be of extremely large

scale, e.g., in IoT architectures, and hence the above MIP problem becomes extremely

large, hindering the performance of such branch-and-bound or other computational meth-

ods. In the next subsection, we propose a solution method that overcomes this dimension-

ality problem, and hence extends the range of the systems to which our work can apply.

25

Algorithm 1: General Approach to Solve ECP
1 z ← 0
2 for ∀n ∈ Nh ∪ {c} do
3 zn ← 1
4 zn ← z,
5 xn ← Place(zn), yn ← Assign(xn, zn)
6 Jn ← J(xn,yn, zn)
7 zn ← 0

8 end
9 no ← arg minn J

n

10 Output: xno ,yno , zno

3.4.2 Large-Scale Approximate Solution

We need an algorithm that solves a large-scale ECP instance in a short time, so that the

placement strategy can be quickly recalculated periodically or when necessary, e.g., when

the network topology changes because nodes join or leave. In this subsection, we present

such algorithms for different variants of the problem.

Leader-based case. In some controllers like OpenDaylight, the inter-controller syn-

chronization fully follows leader-based strategy, i.e., wconml = 0 and wdepml = 0. In this case,

Ws1(x,y) can be ignored. Here we describe the steps to solve this problem in Algorithm

1. We note that there exist Nh + 1 possible locations to place the leader; the cloud or the

edge nodes with sufficient resources to play that role. Let us assume for a moment that we

could find a way to solve the subproblem of controller placement and assignment (x,y)

for a given leader selection (z). In that case, we could simply iterate the value of leader

for all the Nh + 1 possible choices, solve the subproblem for each choice, and pick the

solution with the lowest balanced cost. In the rest of this section, we will show how to

solve the above subproblem.

Consider the subproblem in which the leader is fixed at node e ∈ Nh ∪ {c}. Then, the

synchronization overhead cost depends only on the controller placement decisions (x):

Ws2(x, z) = Ws2(x) =
∑

m∈N∪{c}

xm
(
wlb conme + wlb depme ∗N

)
(3.26)

while we recall that the delay and assignment overhead costs depend only on the assign-

ment decisions (y). By defining fm = wlb conme + wlb depme ∗ N and cnm = γdnm + wanm the

26

Bound Main technique Reference
3 primal-dual [67]
3 local search [10]

1.488 LP rounding [94]

Table 3.1: Approximation ratios for incapacitated facility location problem.

balanced objective can be written as:∑
m∈Nh∪{c}

xmfm +
∑
n∈N

∑
m∈Nh∪{c}

ynmcnm . (3.27)

We notice that this is the standard form of the well-studied uncapacitated facility location

problem. The cost of locating a facility at node m is given by fm, while the cost of

assigning a client at node n to a facility at nodem is given by cnm. Various algorithms have

been developed to solve this problem in polynomial time with provable approximation

ratios, as we summarized in Table 3.1. These include LP rounding [158], primal-dual [67]

and local-search [10] methods. So far, the best performance is the 1.488-approximation

proposed in [94].

Leaderless case and hybrid case. Next, we turn to a more general case, where any

term in the original problem is not necessary to be zero. Similarly, we follow the steps

of Algorithm 1, and consider a different approach to solve the subproblem of placement

and assignment. We begin by showing that for a given controller placement x, the optimal

assignment policy y can be easily found. Specifically, we show the following lemma

(proved in the Appendix A.2).

Lemma 1. For a given controller placement x, the optimal assignment policy can be

described by:

ynm =

1, if m = arg min

m′:xm′=1
[γdnm′ + wanm′ +

∑
l:xl=1w

dep
m′l]

0, otherwise
(3.28)

for each n ∈ N , m ∈ N ∪ {c} .

The above lemma indicates that the complexity of the subproblem primarily lies on

the optimization of the controller placement policy. Following this intuition, we introduce

the element Xn to denote the placement of a controller at node n which is equivalent of

deciding xn = 1. The set of all possible elements, also called the ground set, can be

27

Bound Main technique Reference
1
4

uniformly random [45]
1
3

local search (deterministic version) [45]
2
5

local search (randomized version) [45]
0.41 simulated annealing [53]
0.42 structural continuous greedy [46]

1
3

greedy (deterministic version) [29]
1
2

greedy (randomized version) [29]

Table 3.2: Approximation ratios for non-negative submodular function maximization.

defined as follows:

G = (Xn : n ∈ Nh) . (3.29)

A subset of elements X ⊆ G corresponds to a controller placement policy x, such that

xn = 1 if and only if Xn ∈ X . Besides, let xX be the binary representation of the

set of elements X . Then, the objective function B can be expressed as a set function

f : 2G → R:

f(X) = J(xX , y(xX)) (3.30)

where y(xX) denotes the optimal assignment policy given the controller placement policy

xX based on equation (3.28).

Next, we consider a well-studied class of set functions called supermodular [64].

Definition 1. Let G be a finite set of elements (ground set). A set function f : 2G → R is

called supermodular if for all subsets A,B ⊆ G with A ⊆ B and every element i ∈ G \B
it holds that:

f(A ∪ {i})− f(A) ≤ f(B ∪ {i})− f(B) (3.31)

The above definition indicates that the marginal value for adding an element i in a set

increases as the respective set expands. We will show that, under certain conditions on the

cost values, our objective f(X) can be expressed as a supermodular function. Specifically,

we have the following lemma (proved in the Appendix A.3).

Lemma 2. The set function f(X) defined in (3.30) is supermodular for the case of uniform

costs wdepml = wdepm′l′ = wdep, ∀m, l,m′, l′ ∈ Nh ∪ {c}.

Based on Lemma 2, the subproblem can be casted as the minimization of a supermodu-

lar function f . This type of problems are usually addressed by considering their equivalent

28

submodular function maximization version. That is, minimizing the supermodular func-

tion f (i.e., delay and overhead costs) is equivalent to maximizing the submodular function

f̂(X) = fub − f(X) (respective delay and overhead cost savings). Here, the constant fub

indicates an upper bound to the highest possible value of f(X).

Given that f̂(X) is non-negative, there exist various approximation algorithms to max-

imize it (Table 3.2). Here, an approximation bound β means that the ratio of the value

of the approximate solution over the optimal solution value is always at least β, namely

f̂apx/f̂ opt ≥ β. Therefore, we obtain the following theorem.

Theorem 1. There exists a solution to the subproblem such that f̂apx/f̂ opt ≥ β, where

β ∈ {1
4
, 1
3
, 2
5
, 0.41, 0.42, 1

3
, 1
2
}.

The Algorithm in the last row of Table 3.2 has the best approximation bound. As it is

summarized in Algorithm 2, this algorithm proceeds in Nh iterations which correspond to

some arbitrary order r1, . . . rNh of the ground setG. At each iteration, two solutions A and

B are maintained, initially set to ∅ and G respectively. At the nth iteration, the algorithm

either adds rn to A or removes rn from B. This decision is done randomly and greedily

based on the marginal gain of each of the two options. After Nh iterations both solutions

coincide, i.e., A = B. This is the output of the algorithm.

With the solution to this subproblem with a fixed leader, we follow the same steps in

Algorithm 1 as in the leader-based case, to have exhaustive search on all possible leader

choices. Finally we get a solution to ECP problem with approximation bounds listed in

Theorem 1.

We emphasize that although the approximation bounds of Theorem 1 are shown for the

case that wdep values are identical, we make no assumptions on the values of d and wcon

vectors. Moreover, in the next section we will show that in practice Algorithm 2 achieves

a near-optimal solution even for heterogeneous wdep values.

3.5 Evaluation Results

In this section, we evaluate the performance of the proposed algorithms using two real

wireless network topologies. Overall, we find that our algorithms achieve excellent per-

formance and multi-fold gains over state-of-the-art methods, especially when the priority

is given on the delay rather than the overhead optimization (large γ value). Such tendency

exists regardless of the synchronization strategy of controllers. We repeat the same eval-

uations on both OpenDaylight (Figure 3.6) and ONOS (Figure 3.7), in order to show the

29

Algorithm 2: Randomized Greedy Algorithm
1 A← ∅, B ← G
2 for n = 1 to Nh do
3 ∆A← f(A)− f(A ∪ {rn})
4 ∆B ← f(B)− f(B \ {rn})
5 ∆A← max(∆A, 0), ∆B ← max(∆B, 0)

with probability ∆A/(∆A+ ∆B)∗ do:
6 A← A ∪ {rn}
7 else (with probability∆B/(∆A+ ∆B)) do:
8 B ← B \ {rn}
9 end

10 Output: A (or equivalently B)
11

12 ∗ If ∆A = ∆B = 0, then ∆A/(∆A+ ∆B) = 1.

results in a comparative way. We also find that the optimization of delay and overheads in-

directly favors two reliability objectives, namely controller-node and inter-controller path

loss. Therefore, by balancing delay and overheads, we can also balance the above two

reliability metrics.

Evaluation Setup. Throughout the evaluation, we use the MANIAC mobile ad hoc

network in [61] and the Barcelona wireless mesh network in [118]. MANIAC contains

only 14 nodes, which allows us to execute MIP algorithm and find the optimal solution in

reasonable time. On the other hand, Barcelona contains 60 nodes, the evaluation of which

verifies the scalability of the algorithms and enriches the results. In each topology, we

augment an extra node representing the cloud controller, connected to all other nodes with

a large distance. We set this distance value as the half of the graph’s diameter. We define

delay and overhead costs based on our measurements in previous sections. The overhead

cost is the product of the measured traffic volumes in Figure 3.3 and the network distances

between the nodes. The specific values depend on the type of controllers. The delay cost

dnm is the aggregate delay of the links of the respective shortest path. We set the delay

of each link randomly with average value 12.23 ms, in accordance with our experiment

result in Figure 3.2(b).

Evaluations on OpenDaylight. First, we choose OpenDaylight as the controller,

which has totally leader-based synchronization strategy, and the facility location prob-

lem based algorithm is available. In accordance with measurement of Section 3.2, we set

waml = 0.019 · hopsml, wlb conml = 0.207 · hopsml and wlb depml = 0.62 · hopsml, where hops

indicates the number of hops of the shortest path between the respective nodes. The unit

30

10 20 30 40 50 60 70 80 90
Total Overhead (Mbps)

0

2

4

6

8

10

A
ve

ra
ge

 D
el

ay
 (m

s)

Proposed Algorithm
Optimal

(a) Tradeoff in MANIAC network.

10-1 100 101
0

2

4

6

8

10

N
um

be
r o

f C
on

tro
lle

rs

(b) Controllers in MANIAC network.

0 500 1000 1500 2000 2500
Total Overhead (Mbps)

0

5

10

15

20

25

A
ve

ra
ge

 D
el

ay
 (m

s)

(c) Tradeoff in Barcelona network.

10-1 100 101
0

5

10

15

20

N
um

be
r o

f C
on

tro
lle

rs

(d) Controllers in Barcelona network.

Figure 3.6: Evaluation results for the extended model, with parameters extracted from the
measurements on OpenDaylight.

here is Mbps.

Figures 3.6(a)-3.6(b) depict the delay-overhead cost trade-off and the number of con-

trollers placed in MANIAC network. In spite of different weights, our algorithm always

has a close to optimal performance. The algorithm is capable to balance the delay and

overhead cost as well as to place a proper number of controllers. Figures 3.6(c)-3.6(d) de-

pict the results for the Barcelona network, demonstrating the scalability of the algorithm.

Evaluations on ONOS. Next, we replace the controllers with ONOS. According to

our analysis in Section 3.2 and the Appendix, ONOS’s synchronization strategy can be

regarded as a leaderless one. Therefore we verify both our small-scale MIP method and

the large-scale randomized greedy algorithm. We set waml = 0.019 · hopsml, wconml =

0.04579 ·hopsml and wdepml = 0.00793 ·hopsml Most of the state-of-the-art methods require

that the number of placed controllers is fixed and known in advance (e.g., see the review of

related work in Section 3.6). Therefore, it would not be fair to compare the above with our

methods which optimize both the number and location of controllers. Interestingly, there

is a method in the literature that explores the same solution space with our work. Namely,

31

10
-3

10
-2

10
-1

0

5

10

15

20

25

B
a

la
n
c
e
d

 C
o
s
t

(J
)

Randomized Greedy

MIP (Optimal)

MDCP

(a) Balanced cost for different weight γ.

10-3 10-2 10-1
0

1

2

3

4

5

6

N
um

be
r

of
 C

on
tr

ol
le

rs

(b) Number of controllers for different weight γ.

0 1 2 3 4 5 6 7
Total Overhead (Mbps)

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 D
el

ay
 (

m
s)

Randomized Greedy
MIP (Optimal)
MDCP

(c) Delay-overhead tradeoff.

Figure 3.7: Evaluations on MANIAC network [61]. (a) Balanced cost, (b) number of
placed controllers and (c) tradeoff between delay and overhead for two different algo-
rithms.

the MDCP method (Algorithm 3 in [165]) is a greedy procedure that places controllers

based on the degrees of the nodes and the inter-controller traffic. The latter is estimated

by the diameter of the topology graph, rather than based on actual measurements. In next

subsections, we will show a detailed comparison among randomized greedy algorithm,

MIP and MDCP.

Impact of weight γ. Figure 3.7(a) depicts the evaluation results for the MANIAC net-

work. Running on a common CPU machine, MIP typically takes 30 seconds to return the

optimal solution using the built-in optimizer of MATLAB. On the other hand, Random-

ized Greedy algorithm takes much shorter time. Within 0.1 second, we are able to repeat

the algorithm for 200 times and pick the best result. Overall, Randomized Greedy has a

performance very close to the optimal for all values of γ, while the performance of MDCP

drops when γ is large (i.e. more weights are put on the delay rather than overhead cost).

In these cases, our algorithm has up to 3 quarters lower balanced cost than MDCP.

32

10
-3

10
-2

10
-1

10
0

0

200

400

600

800

1000

B
a
la

n
c
e

d
 C

o
s
t
(J

)

Randomized Greedy

MDCP

(a) Balanced cost for different weight γ.

10-3 10-2 10-1 100
0

5

10

15

20

25

N
um

be
r

of
 C

on
tr

ol
le

rs

(b) Number of controllers for different weight γ.

0 25 50 75 100 125 150 175 200
Total Overhead (Mbps)

0

5

10

15

20

25

30

35

A
ve

ra
ge

 D
el

ay
 (

m
s)

Randomized Greedy
MDCP

(c) Delay-overhead tradeoff.

Figure 3.8: Evaluations on Barcelona network [118]. (a) Balanced cost, (b) number of
placed controllers and (c) tradeoff between delay and overhead for two different algo-
rithms.

We need to emphasize that many of the previous controller placement works used

clustering methods such as k-median [60]. An issue is that these methods do not optimize

the number of placed controllers, but take it as an input. In contrast, Randomized Greedy

algorithm can adjust the number of placed controllers based on the weight (Figure 3.7(b)).

When overhead cost is preferred, the algorithm tends to deploy fewer controllers so that

the inter-controller communications reduce. When delay cost is preferred, however, it

places more controllers so that the data plane nodes can reach a controller with smaller

delay.

By iterating a large range of weight values, in Figure 3.7(c), we depict the trade-off

curve between the average delay and the total traffic overhead, in order to show more

details of the performance. The usage of measured data of overhead and delay empowers

Randomized Greedy algorithm with two improvements over MDCP, which makes deci-

sions based on some topology metrics only, such as network diameter and nodes degree.

33

10-3 10-2 10-1
0

10

20

30

40

50

T
ot

al
 O

ve
rh

ea
d

(M
bp

s)

Simulation
Emulation

(a) Overhead measured by Mininet emulation.

10-2 10-1 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
er

ce
nt

ag
e

of
 C

on
tr

ol
 P

at
h

Lo
ss

Controller-node Path Loss (Randomized Greedy)
Inter-controller Path Loss (Randomized Greedy)
Controller-node Path Loss (Reliability-aware)
Inter-controller Path Loss (Reliability-aware)
Inter-controller Path Loss (Random Solution)
Controller-node Path Loss (Random Solution)

(b) Control path loss for different weight γ.

10-2 10-1 100
0

100

200

300

400

500

600

700

B
al

an
ce

d
C

os
t (

J)

Weighted Overhead Cost (Randomized Greedy)

Weighted Overhead Cost (Reliability-aware)

Weighted Delay Cost (Randomized Greedy)

Weighted Delay Cost (Reliability-aware)

(c) Balanced cost for different weight γ.

Figure 3.9: (a) Verification on the overhead values by Mininet emulations. (b), (c) Perfor-
mance comparison with a state-of-the-art reliability-aware algorithm [63] on the Barcelona
network.

First, with similar total overhead, the average delay achieved by Randomized Greedy is

lower than MDCP. Besides, Randomized Greedy algorithm is able to further decrease the

delay by tolerating some additional overhead, and vice versa.

Figure 3.8(a)-3.8(c) repeat the evaluations for the Barcelona network. While MIP can-

not run in reasonable time for this larger network, Randomized Greedy algorithm is scal-

able. It takes 0.8 second in average to finish the algorithm for 200 times. The qualitative

results are similar with the MANIAC network. When γ is relatively large, the gains of our

algorithm over MDCP are more pronounced. For the same total overhead, the Randomized

Greedy algorithm achieves smaller average delay than MDCP.

Emulations vs simulations. To verify the accuracy of our model and evaluation re-

sults, we use Mininet to run emulations on the same topology we used for the MATLAB

simulations. Mininet allows us to take measurements on the real traffic overhead in the

same way as we did in Section II. In Figure 3.9(a), a consistency is shown in both the

34

value and tendency of overheads between the simulations and emulations. This implies

that our model successfully captures the pattern of the control traffic and it is capable for

providing guidance in realistic cases.

Interplay between different objectives. Though concentrating on delay and overhead

costs, our algorithm will have an impact on other metrics as well. One important metric is

the reliability of control paths. Compared with wired networks like data centers, one sig-

nificant difference in wireless edge networks is that links are generally less reliable. The

operator must consider failure scenarios where a portion of links cease working. The work

in [63] defines control path loss, which is the expected number of disconnected control

paths (including both controller-node and inter-controller connections) given the probabil-

ity of network link failure. This work proposes a simulated annealing algorithm achieving

very good reliability. In order to investigate the reliability of our solution, we use this al-

gorithm for comparison. To simplify, we assume every link in the Barcelona network may

fail independently with the same probability, e.g., 0.01. The connections to the cloud are

usually in another channel and with longer distances, therefore it is reasonable to assume

the links have a lower quality. Here we assume they fail with doubled probability. Since

the algorithm in [63] is not able to determine the amount of placed controllers, we set the

same value as our algorithm.

Figure 3.9(b) depicts the percentage of control path loss. Compared with the ref-

erence (Reliability-aware) algorithm, our algorithm achieves a close performance in the

controller-node path loss. Although we have larger inter-controller path loss when γ is

large, by calculating the performance of random placement solutions, it shows that our

algorithm still gets a significantly lower inter-controller path loss than average. Moreover,

in practice the Reliability-aware algorithm may not succeed in finding the optimal amount

of placed controllers, which may incur a deteriorated performance. Importantly, our al-

gorithm has the ability to balance the two reliability metrics. When γ is large, it tends to

decrease the distance between controllers and data plane nodes (so as to reduce delay). As

a result, controller-node connections acquire higher reliability. In a similar way, when γ

is small, inter-controller connections acquire higher reliability. Meanwhile, Figure 3.9(c)

shows that our algorithm achieves significantly lower delay and overhead cost than the

reliability-aware reference algorithm.

35

3.6 Related Works

In this section we present the related work on the SDN controller placement problem.

Delay-centric approaches: The delay between controllers and data plane nodes is espe-

cially critical for quickly exchanging messages required by the SDN protocol. Most of the

related works targeted wide area networks that extend over a large geographical distance

with large capacity links. In this context, Heller et al. [60] recognized that the problem of

placing a given number k of controllers to minimize the average and worst-case delay can

be modeled as a k-median and a k-center problem, respectively. Yao et al. [184] explored

the impact of controller capacity limitations on the worst-case delay, and proposed an al-

gorithm inspired by the capacitated k-center problem. Zhang et al. [188] experimentally

showed that the interaction between the controllers can affect the reaction time perceived

by the data plane nodes. Motivated by this, an evolutionary algorithm that finds a Pareto

optimal solution with respect to the average controller-node and inter-controller delay met-

rics was proposed. In the context of a wireless network, Abdel-Rahman et al. [4] modeled

the controller-node delay probability assuming the TDMA strategy, and formulated an

integer program for minimizing the number of placed controllers. Sudheera et al. [166]

augmented to the above objective function components which represent controller-node

delay and controller load imbalance costs in a vehicular ad hoc network, and formulated

the controller placement problem as a quadratic integer program.

Reliability-centric approaches: Since disruptions in the network can isolate data

plane nodes from controllers, it is of great importance to improve the reliability of SDN.

Previous works defined various reliability metrics. Hu et al. [63] focused on the mini-

mization of the expected percentage of control path loss which was solved using greedy

and simulated annealing based heuristics. The tradeoff between reliability and delay was

also explored through simulations. Jimenez et al. [70] proposed an algorithm of different

flavor, named k-critical, which creates a robust topology with the minimum number of

controllers to deal with network failures and balance the load among the controllers. Guo

et al. [56] performed a cascading failure analysis and applied a clustering algorithm to

minimize the number of nodes survived at the steady stage. Müller et al. [111] proposed

heuristic algorithms to maximize the number of node-disjoint paths between controllers

and data plane nodes (path diversity). Lange at al. [85] investigated the delay, load imbal-

ance and number of controller-less nodes (i.e., nodes isolated from controllers) caused by

network failures. A simulated annealing algorithm that returns a pareto optimal solution

was presented.

36

Cost-centric approaches: Another aspect of the problem lies on the costs associated

to the deployment and operation of controllers. These include the expenses to buy the

controllers, if specialized equipment is required, manually install them and connect them

in the network. Sallahi et al. [152] proposed an optimal model aiming to calculate the

optimal number, location, and type of controllers that minimizes the overall cost. A lim-

itation of this approach is that it requires the solution to an integer program which does

not scale well for large networks. Hu et al. [62] studied the problem of minimizing the

energy cost associated to the communication between the controllers and data plane nodes

and proposed a genetic heuristic algorithm. However, the energy cost associated to the

inter-controller communication was not considered. Another operational cost component,

which is central to our work, is the bandwidth overhead of inter-controller and controller-

node communication. Su et al. [165] and Ksentini et al. [83] considered the minimization

of the above two types of overheads and proposed a facility-location inspired heuristic and

a bargaining game based pareto optimal solution, respectively. While these are perhaps

the closest to our work, they were based on a simpler model for overheads and did not

balance overheads with delay. In contrast, our model is driven by empirical measurements

on delay and overheads from a multi-controller edge system we developed.

Adaptive approaches: For completeness, we should stress that dynamic algorithms

which periodically adapt the controller placement solution were proposed in [14], [173]

and [144]. In this way, the required controllers can be dynamically added or deleted and

data plane nodes can be reassigned to different controllers based on traffic dynamics. The

above algorithms are optimized to minimize the number of reassignments, the number of

added controllers and other CAPEX and OPEX costs associated to controllers.

3.7 Summary

In this chapter, we studied the SDN controller placement problem in edge network archi-

tectures. Our work combines strong experimentation results along with valid theoretical

modeling and analysis. Namely, we built a testbed of a multi-controller edge system and

described the sensitivity of delay on the controller placement as well as the magnitude

and shape of traffic overheads. Guided by these findings, we presented a methodology

that yields a set of optimal controller locations and assignment of nodes to controllers.

Evaluation results demonstrated significant performance gains over state-of-the-art meth-

ods, and provided insights about the interplay between various performance and reliability

objectives.

37

Chapter 4

Distributed Control Plane: Controller
Synchronization Problem

As discussed in the last chapter, the physical distribution of the control plane is a proper

way to address scalability and reliability challenges of the centralized design of SDN.

However, having multiple controllers managing the network while maintaining a “logically-

centralized” network view brings additional challenges. In spite of the controller place-

ment problem, another challenge is how to coordinate the management decisions made by

the controllers which is usually achieved by disseminating synchronization messages in a

peer-to-peer manner. While there exist many architectures and protocols to ensure syn-

chronized network views and drive coordination among controllers, there is no systematic

methodology for deciding the optimal frequency (or rate) of message dissemination. In

this chapter, we fill this gap by introducing the SDN synchronization problem: how often

to synchronize the network views for each controller pair. Our objective is to maximize the

performance of applications of interest which may be affected by the synchronization rate.

Using techniques from learning theory, we derive algorithms with provable performance

guarantees. Evaluation results demonstrate significant benefits over baseline schemes that

synchronize all controller pairs at equal rate.

4.1 Introduction

As shown in the last chapter, in order to keep the flexibility of the SDN control while

enhancing the scalability of the system, multiple controller instances can be deployed at

different locations in the network. The controllers may be physically distributed across

the network, but they should be “logically-centralized”. This means that the controllers

38

SDN controller

Data plane node

Domain

A B

C

!

Failure

Routing path

Temporary

inconsistency

Figure 4.1: Impact of inconsistency among controllers on routing application performance.

should coordinate their decisions to ensure their collective behavior matches the behavior

of a single controller.

The coordination among controllers is an active area of research with several proto-

cols proposed thus far [123]. For example, OpenDaylight [105] and ONOS [16], two

state-of-the-art controller implementations, rely on RAFT and Anti-entropy protocols for

disseminating coordination messages among controllers. Typically, each controller is re-

sponsible for a part of the network only, commonly referred to as the controller’s domain.

The messages disseminated by a controller to the other controllers convey its view on the

state of its domain (e.g., available links and installed flows). The composition of these

messages allow the controllers to synchronize and agree on the state of the entire network.

While different coordination protocols may generate messages of different types and

at different timescales, there exist two broad protocol categories [126], [26]. The first cat-

egory contains the strongly consistent protocols which strive to maintain all the controllers

synchronized in all times. This is ensured by disseminating messages each time a network

change (e.g., a node or link failure) happens followed by a consensus procedure. The

second category contains the eventually consistent protocols which omit the consensus

procedure, yet converge to a common state in a timely manner usually through periodic

message dissemination.

Despite its benefits, strong consistency is difficult to ensure in practice as it is chal-

lenged by the unreliable nature of network communications. In addition, this approach

generates significant overheads for message dissemination among controllers which may

be prohibitively large especially when applied to wireless networks with in-band control

channels of limited capacity [113], [150]. On the other hand, eventual consistency, where

controllers are permitted to temporarily have inconsistent views of each other’s state, bet-

ter suits the needs of the above networks, and, thus, can be used to extend the applicability

39

of distributed controller solutions. Yet, the inconsistent views of controller states can harm

the performance of network applications.

To illustrate the impact of inconsistency, we consider the toy example with three con-

trollers (A, B and C) and their respective domains in Figure 4.1. Each pair of controllers

synchronize periodically, e.g., every few seconds. At some time, controller A receives a

request for routing a flow to a destination node inside the domain of B. Controller A will

respond by computing and setting up a routing path based on its current view on the state

(topology, traffic loads) of its domain and the other domains. However, controller A is not

aware if the links on the routing path outside of its domain are still available or have failed

(e.g., a failed link in domain B in Figure 4.1) since the last synchronization period. If

failures happened, the packets of the flow will have to wait until the next synchronization

period, although there is an alternative directly available routing path through the domain

of C. Similar problems, if not more serious, can be identified for more advanced traf-

fic engineering applications where inconsistency hinders the effective load balancing and

distribution across multiple paths.

The eventually consistent model raises new technical challenges. In particular, it is

important to decide how often (at what period or rate) to synchronize each pair of con-

trollers in a given network. One might expect that the straightforward policy where all

controller pairs synchronize at the same rate would work well. However, some may argue

that the synchronization rate should be higher for domains that are more dynamic (with

many changes in topology and flow configurations) in order to preserve consistency of the

rest domains.

The issue is further complicated by the requirements of the network applications. Pre-

vious works [92], [127] showed that certain network applications, like load-balancers, can

work around eventual consistency and still deliver acceptable (although degraded) perfor-

mance. In such cases, some additional effort needs to be made to ensure that conflicts such

as forwarding loops, black holes and reachability violation are avoided [57]. Therefore,

synchronization policies that completely neglect the specific applications of interest in the

network as well as the impact of synchronization rate on their performance may end-up

being highly inefficient.

The above questions remain open since, until now, the inter-controller traffic has been

often neglected in SDN literature with most of the existing works focusing on the routing

and balancing of the data traffic (e.g., see the survey in [82]).

Our goal in this work is to investigate policies for the synchronization among SDN

controllers, and focus particularly on the impact of the rate of synchronization on the per-

40

formance of network applications. This is a complex problem since, in practice, we do

not know the function that maps the synchronization rate to application performance. To

obtain some quantitative insights on this function, we emulate the performance of two

applications of interest, namely shortest path routing and load balancing, using a commer-

cial platform (Mininet) [86] and SDN controller (RYU) [2]. While the results are quite

unsteady, the average performance increases with the synchronization rate and saturates

eventually showing that a diminishing return rule applies. Next, to overcome the unknown

objective challenge, we use elements from the learning theory, and propose an algorithm

that gradually trains the system and constructs a solution that is with high confidence close

to the optimal. The contributions of this work can be summarized as follows:

• We introduce the problem of finding the optimal synchronization rates among SDN

controllers in a network with the objective of maximizing the performance of appli-

cations. To the best of our knowledge, this is the first work that studies this problem.

• We emulate the performance of two popular applications and obtain insights about

the impact of synchronization rates. We use these results to derive an algorithm that

gradually trains the system in order to learn the optimal policy.

• We perform evaluations to show the efficiency of our proposed algorithm. We find

that benefits are realized compared with the baseline policy that synchronizes all

controller pairs at an equal rate.

The rest of the chapter is organized as follows. In Section 4.2, we present our em-

ulation results, based on which we model the problem in Section 4.3 and propose our

learning algorithm for maximizing the network application performance in Section 4.4.

Section 4.5 presents the evaluation of our proposed algorithm, while Section 4.6 reviews

our contribution compared to related works. We conclude our work in Section 4.7.

4.2 Emulation Studies on the Impact of Synchronization
Policies

In this section, we provide an emulation study that will illustrate the impact of synchro-

nization rate on the performance of some popular network applications, namely shortest

path routing and load balancing.

41

(a)

0.063 0.125 0.25 0.5

Synchronization Rate (Messages per Second)

70

80

90

S
u

c
c
e

s
s
fu

lly
 R

o
u

te
d

 P
a

c
k
e

ts
 (

%
)

(b)

Domain A Domain B

Flow A Flow B

Controller A Controller B

(c)

0.063 0.125 0.25 0.5

Synchronization Rate (Messages per Second)

0.04

0.06

0.08

0.1

0.12

0.14

T
h

ro
u

g
h

p
u

t
R

M
S

E
 (

M
b

p
s

2
)

(d)

Figure 4.2: Emulation results. Topology and impact of synchronization rate on the per-
formance (box plots and average values) of (a)(b) shortest path routing and (c)(d) load
balancing applications.

Emulation setup. We use Mininet [86] to emulate virtual networks with several nodes

and SDN controllers running on the same CPU machine. Among the set of commercial

controllers that are available online we pick RYU [2] which is open-source and allows us

to develop our own protocols for the synchronization among controllers. Specifically, we

implement a simple eventually-consistent protocol which periodically disseminates syn-

chronization messages between each controller pair. Our code is parameterized to allow

for any synchronization period. The disseminated messages convey the local views of con-

trollers about the topology and installed flow tables. This information is made available to

the controllers by the OpenFlow protocol.

Shortest Path Routing. We first test the performance of a shortest path routing ap-

plication. With this application, packets are routed to their destination following the path

of minimum hop count, calculated by Dijkstra’s algorithm. We generate the random net-

work of 16 nodes and 3 controllers, depicted in Figure 4.2(a), where links fail or recover

randomly and independently every one second with probability 0.05, and nodes with the

same color are managed by the same controller. We further generate data packets with

random source-destination nodes. Unless the controllers synchronize at the time of packet

42

generation, the packet is at risk of following a failed routing path.

The performance of routing application is determined by the number of packets that

are successfully routed (without traversing any failed link) to their destinations. We emu-

late the performance for five different scenarios where all the controller pairs synchronize

at the same rate equal to (i) 0.5, (ii) 0.25, (iii) 0.125, (iv) 0.063 and (v) 0.031 (messages per

second). This translates to a single message disseminated every 2, 4, 8, 16 or 32 seconds.

For each scenario, emulations are run for multiple times and the results are depicted in

Figure 4.2(b). Despite a large extent of randomness, we observe that the average perfor-

mance (calculated over 20 minutes) increases with the synchronization rate and saturates

eventually showing that a diminishing return rule applies.

Load Balancing. We perform additional emulations to test the performance of a load

balancing application. We consider a similar setup with the work in [92], depicted in Fig-

ure 4.2(c). That is, we generate a network with two controllers. Each controller manages

two nodes, a switch and a server. The switches generate flows uniformly at random. The

flows can be routed and queued to any of the two servers. Each controller is aware of the

load of the server it manages. It also receives periodic synchronization messages about

the load of the other server by the other controller. Each time a new flow is generated,

the responsible controller routes it to the server with the currently observed lowest load.

However, this may not be the least loaded server in reality, since the controllers are not

synchronized at all times.

The emulation results are depicted in Figure 4.2(d). The metric we consider is the root-

mean-square deviation (RMSE) of two servers’ throughputs. The better the two server

loads balance, the lower the value of this metric becomes. Therefore, this metric captures

the performance of a load balancing application. For convenience, we claim it the cost

function, and denote the performance metric the opposite value of cost function. Then,

coinciding with the routing application, we observe that the performance improves with

the synchronization rate but gradually saturates showing that a diminishing return rule

applies.

4.3 Problem Modeling

Subsequently, we study the objective of maximizing the performance of a network ap-

plication such as the applications emulated in the previous section. While the objective

function is expected to have a curve shape similar to those reported in Figure 4.2, we can-

not express in closed-form how exactly the synchronization rates will affect application

43

performance. Therefore, the objective function is unknown.

To overcome the unknown objective challenge, we propose to leverage methods from

the learning theory. Such methods typically train the system by trying-out a sequence of

solutions (synchronization rates) over some training period T = {1, 2, . . . , T} of T time

slots, until they can infer a “sufficiently good” solution. To describe such training process,

we introduce the vector of synchronization rate variables:

x = (xtij ∈ {0, 1, . . . , R} : ∀i, j ∈ C, j 6= i, t ∈ T) (4.1)

where xtij indicates the synchronization rate between controllers i and j tried-out in time

slot t. R denotes the maximum possible synchronization rate. We further denote by the

vector xt all the variables in time slot t. We emphasize that the variable values will be

typically different from slot to slot as different synchronization rates need to be explored

in order to train the system.

Given the synchronization rate vector xt tried-out in a slot t, the application perfor-

mance will be Ψt(x
t). Here, Ψt(.) is an unknown function that governs the application

performance in slot t. While the overall function is unknown, the single value Ψt(x
t) can

be observed by the system operator after the synchronization rate decision xt is made, in

the end of the slot. For a shortest path routing application, for example, this is possible

by measuring the number of data packets that reached their destination in time. Such in-

formation is available to the controllers through the TCP acknowledgement packets. The

information can be then passed to the system operator (e.g., one of the controllers) which

can simply aggregate and sum the respective values.

We emphasize that the function Ψt(.) is time slot-dependent, meaning that the per-

formance value might change with time even for the same synchronization rate decision.

That is, we may try-out the same synchronization rate vector xt = xt
′ in two slots t and

t′ but observe different performance values Ψt(x
t) 6= Ψt′(x

t′). Such uncertainty of obser-

vations is due to the stochastic nature of the network. Intuitively, the performance value

will be large if the network happens to be stable in a slot but will be much worse in other

slots during which many changes happen.

Despite the uncertainty of observations, the learning method should be able to infer

by the end of the training period T a “sufficiently good” synchronization rate decision

x̂ = (x̂ij : i, j ∈ C, j 6= i). This should, ideally, maximize the average performance

denoted by an (also unknown) function Ψ̂(.) = E[Ψt(.)]. While the system operator does

not know the average performance values, we assume that they do not change over a period

44

of time (e.g., a few hours). Therefore, the problem can be formulated as:

max
x̂

Ψ̂(x̂) (4.2)

s.t.
∑

i∈C
∑

j∈C,j 6=i x̂ijbij ≤ B (4.3)

where B is a constant and inequality (4.3) ensures that the inferred synchronization rate

decision will satisfy a resource constraint.

We need to emphasize that the average performance Ψ̂(x̂) is not the only criterion that

determines the efficiency of a learning method. Another important criterion in this context

is the running (or training) time T , i.e., how many time slots are required for training in

order to infer the synchronization rate decision x̂. In the next section, we will propose a

learning method that has adjustable average performance and running time.

4.4 Optimization Algorithms

To handle the uncertainty of an observed performance value Ψt(x
t), a learning method

would typically try-out the same synchronization decision xt multiple times, in different

time slots. Then, the empirical mean of the observations will be used to estimate the aver-

age performance value Ψ̂(xt). By repeating the above training process for every possible

synchronization decision, an estimate of the entire objective function Ψ̂(.) can be obtained.

However, there exists an exponential number of possible decisions; (R + 1)C(C−1) deci-

sions in total. Therefore, this approach would require an exponential number of time slots

for training, which is clearly not practical.

To overcome the high dimensionality of the synchronization decision space, we could

leverage learning methods proposed recently that do not require the estimation of the ob-

jective function at every possible decision. For instance, the ExpGreedy algorithm pro-

posed in [160] can infer a close-to-optimal decision in polynomial-time provided that the

objective function follows a diminishing return rule, as the one observed in the emulation

results in Figure 4.2. Still, however, the running time of this algorithm may be too large

for our problem, as we show numerically in the next section, hindering its application in

practical scenarios.

Based on the above, we propose an alternative more-practical learning algorithm for

which we can flexibly adjust the running time by setting appropriate values to its input

parameters. We refer to this algorithm as Stochastic Greedy and summarize it in Algorithm

45

3. To ease presentation, we have assumed that the resource costs are equal and normalized

to one for all the controller pairs, i.e., bij = 1 ∀i, j. However, the algorithm and analysis

can be easily extended for heterogeneous resource costs.

In a nutshell, the Stochastic Greedy algorithm starts with the all-zero synchronization

decision and then gradually constructs the decision to be returned by iteratively increasing

by 1 the synchronization rate of a single controller pair. This procedure will end when the

B resource constraint is reached, i.e., after B iterations. Each iteration requires multiple

time slots for training so as to be confident that the controller pair selected to increase

its rate by 1 will improve the average performance more than other controller pairs. The

length of the training period can be adjusted by two input parameters σ and τ . The value

of σ is between 1 and C(C − 1), while τ can take any positive integer value.

Formally, the algorithm maintains a synchronization rate decision x̂, initially set to the

zero vector 0 (line 1). It spends the first τ time slots trying out the zero synchronization

decision and uses the τ observations to estimate Ψ̂(0) (lines 2-3). In the next B itera-

tions (lines 4-12), the algorithm will iteratively select a controller pair and increase the

respective synchronization rate by 1, updating x̂. At each iteration k = 1, 2, . . . , B, the

algorithm will initially pick σ random pairs of controllers as candidates (line 5). For each

such pair p = 1, 2, . . . , σ, the synchronization decision x̂′ will be set accordingly (line 7)

and τ time slots will be spent to estimate Ψ̂(x̂′) (lines 8-9). The marginal performance

gain of switching from decision x̂ to x̂′, denoted by D(x̂, x̂′), will be estimated (line 10).

Among the σ candidate controller pairs, the algorithm will include in the current decision

x̂ the pair with the maximum estimated marginal performance gain (line 12).

The algorithm spends τ time slots to estimate Ψ̂(x̂) for x̂ = 0, and στ more slots for

each iteration. Therefore, the total running (or training) time is T = τ + στB time slots.

The following theorem describes the average performance of the algorithm. Since the

algorithm makes random decisions, the average performance bound holds in expectation.

Theorem 2. Algorithm 3 achieves average performance Ψ̂(x̂) that is in expectation a

factor 1 − e−(1−ε)µ from the optimal where ε = e−σ
B

C(C−1)R and µ is the expected fraction

of the observed marginal gain in a slot over the actual marginal gain.

We defer the proof of the theorem to the Appendix B. We emphasize that the average

performance bound depends on the value of µ. This value captures the uncertainty of

the observed performance values since the changes in network state may be unevenly

distributed across the time slots. If µ = 1, it means that the performance value does not

depend on the time slot of observation and hence the estimated maximum performance

46

Algorithm 3: Stochastic Greedy with (σ, τ) input

1 Initialize x̂ = 0;
2 Try out xt = x̂ and observe Ψt(x

t) ∀t ∈ {1, . . . , τ};
3 Estimate Ψ̂(x̂) = 1

τ

∑τ
t=1 Ψt(x

t);
4 for each iteration k from 1 to B do
5 Pick σ random controller pairs p for which x̂p < R;
6 for each picked pair p from 1 to σ do
7 Set x̂′ = x̂ where x̂′p = x̂p + 1;
8 Try out xt = x̂′ and observe Ψt(x

t)
∀t ∈ {(k − 1)στ + pτ + 1, . . . , (k − 1)στ + pτ + τ};

9 Estimate Ψ̂(x̂′) = 1
τ

∑(k−1)στ+pτ+τ
t=(k−1)στ+pτ+1 Ψt(x

t);

10 Set D(x̂, x̂′) = Ψ̂(x̂′)− Ψ̂(x̂);
11 end
12 Update x̂ = argmaxx̂′D(x̂, x̂′);
13 end
14 Output: x̂;

will be the actual one. However, as the µ value goes to 0 the observations become more

uncertain.

Another issue is that the performance bound in Theorem 2 holds in expectation, which

means that it may be violated in practice. Therefore, it is important to bound the extent to

which this happen, as we show in the following theorem.

Theorem 3. Algorithm 3 achieves average performance Ψ̂(x̂) that is a factor 1−e−(1−ε)(1−γ)µ

from the optimal with probability 1− e− γBτ2 for any γ ∈ (0, 1).

The average performance bounds of our algorithm can be better understood through

an example. In particular, consider the system with C = 5 controllers, B = 10 available

resources and s = 30 seconds per time slot. By picking σ = 5 out of the 20 possible

controller pairs and τ = 3 time slots per try-out, the total running (training) time of the

algorithm will be about one hour. Moreover, if the observed marginal performance gains

are 50% or more of the actual ones (µ = 0.5) and R = 1, the average performance

achieved by the algorithm will be in expectation at least 37% of the optimal. Picking a

larger σ value will increase the average performance (cf. Theorem 2). Picking a larger τ

value will increase the probability that the performance bound is not violated (cf. Theorem

3).

47

12 18 24

Resource Constraint B

92

93

94

95

96

O
pt

im
al

ly
 R

ou
te

d
P

ac
ke

ts
 (

%
)

0

200

400

600

800

1000

T
im

e
S

lo
ts

 R
eq

ui
re

d

Homogeneous
Stochastic Greedy
ExpGreedy
Stochastic Greedy (time slots)
ExpGreedy (time slots)

(a)

0 20 40 60 80 100 120 140 160
Time Slots

84

86

88

90

92

94

96

98

O
pt

im
al

ly
 R

ou
te

d
P

ac
ke

ts
 (

%
)

Performance in one slot
Average Performance

(b)

1 1.5 2
Ratio of Arrival Rates

1.5

2

2.5

3

3.5

4

4.5

5

5.5

T
hr

ou
gh

pu
t R

M
S

E
 (

M
bp

s2
)

Homogeneous
Stochastic Greedy

(c)

Figure 4.3: (a) Performance and training time for different resource budgets and (b) learn-
ing process under the shortest path routing application. (c) RMSE cost for different ratios
of flow arrival rates under the load-balancing application.

4.5 Evaluation Results

In this section, we carry out evaluations to show the benefits of the proposed algorithm.

Overall, we find that benefits are realized compared with the baseline algorithm that syn-

chronizes all the controller pairs at equal rate (referred to as Homogeneous). Moreover,

our Stochastic Greedy algorithm achieves better performance-training time tradeoff than a

state-of-the-art learning algorithm (ExpGreedy in [160]).

Evaluation Setup. We choose the same network topologies and applications as in our

emulations in Section 4.2 (16-node shortest path routing and 2-server load balancing). We

compare our Stochastic-Greedy algorithm with both the Homogeneous and ExpGreedy

algorithms. To eliminate randomness, we run each algorithm 10 times and take the average

value.

Shortest Path Routing. We first consider the shortest path routing application in the

16-node network. A performance metric of interest for this application is the percentage

of packets that are optimally routed to their destinations, i.e., following paths of the same

48

number of hops as the optimal path. Figure 4.3(a) depicts the performance for different

resource budgets B. We notice that the proposed Stochastic-Greedy algorithm routes op-

timally more packets than Homogeneous and ExpGreedy algorithms. The training time

required by our algorithm increases linearly with B. On the other hand, the time of Exp-

Greedy increases more dramatically, which shows that our algorithm is more scalable.

Specifically, our algorithm requires around 200 time slots (about an hour and a half) for

training while ExpGreedy may consume more than 800 time slots (6-7 hours), which may

be prohibitively large in practice.

Figure 4.3(b) illustrates the learning process when Stochastic Greedy is run for B =

18, σ = 2 and τ = 4. Although in each time slot the algorithm observes a performance

value with large randomness, it is able to allocate resources to proper pairs and increase

the average performance over time.

Load Balancing. Finally, we examine the load balancing application. Similar to the

emulations in Section 4.2, we randomly generate flows at two switches. We define one

time slot as 60 seconds. Under the same B value, we compare the Stochastic Greedy

and Homogeneous algorithms for various flow arrival rates. When the arrival rates at

the two switches are equal, the Homogeneous algorithm should be optimal because of

the symmetry. In this case, as Figure 4.3(c) shows, our algorithm gets almost the same

RMSE cost. Next, we set different arrival rates at the two switches. As a result, when the

ratio of arrival rates gets larger, our algorithm leads to lower cost than the Homogeneous

algorithm. For example, our algorithm can decrease the RMSE by around 20% when the

ratio of flow arrival rates at the two switches is equal to 2.

4.6 Related Work

Distributed SDN controller deployments require a coordination protocol among controllers,

which could easily generate significant amount of control traffic, e.g., see the measurement

studies in [113]. However, the control traffic is often neglected in literature with most of

the existing works focusing on the routing and balancing of the data traffic, e.g., see [171]

and the survey in [82].

Few recent works suggested the dynamic adaptation of synchronization period (or rate)

among controllers in an eventual-consisted system so as to improve the performance of

network applications while maintaining a scalable system [11], [151]. While interesting

and relevant, the above works did not provide any mathematical formulation or optimiza-

tion framework. To the best of our knowledge our work is the first to systematically study

49

the synchronization problem and propose optimization and learning methods.

4.7 Summary

In this work, we studied the problem of finding the optimal synchronization rates among

controllers in a distributed eventually-consistent SDN system. Our objective was to max-

imize the performance of applications which may be affected by the synchronization de-

cisions, as highlighted by emulations on a commercial SDN controller. For this objective,

we characterized the complexity of the problem and proposed algorithms to achieve the

optimal synchronization rates. Evaluation results demonstrated significant performance

benefits over the baseline policy that synchronizes all controller pairs at equal rate.

50

Chapter 5

Distributed Control Plane:
Orchestrating Heterogeneous Networks

Having investigated multiple problems during the distributed deployment of the control

plane, there are still challenges existing in applying such architecture to Radio Access

Networks (RANs), through which the IoT devices are connected to each other or the In-

ternet. Nowadays, multiple alternative radio access technologies exist (e. g. ,LTE, WLAN,

and WiMAX), and there is no unifying abstraction to compare and compose from diverse

technologies. In addition, access networks may belong to different providers where com-

petitions may exist.

In this chapter, we propose to adopt the Software-Defined Radio Access Network (SD-

RAN) architecture and virtualization technologies for heterogeneous RAN slicing across

multiple providers. A central component in our architecture is a service orchestrator that

interacts with multiple network providers and service providers to negotiate resource al-

locations that are jointly optimal. We propose a double auction mechanism that captures

the interaction among selfish parties and guarantees convergence to optimal social welfare

in finite time. We then demonstrate the feasibility of our proposed system by using open

source SD-RAN systems such as EmPOWER (WLAN) and FlexRAN (LTE).

5.1 Introduction

5G technologies will revolutionize mobile networks and push them to the limit. Besides

the significant improvement in efficiency and capacity, the network has better support to a

wide range of services with distinct requirements by virtualization. On the same physical

infrastructure, multiple virtual networks are established as slices, and network resources

51

are isolated into each slice to meet the requirement of different services.

An end-to-end virtualization involves slicing not only in the core but also in the radio

access networks (RANs). One challenging problem of RAN slicing is the coexistence of

heterogeneous radio access technologies (RATs) such as LTE, WLAN and WiMAX, where

types of resources are not identical and cannot be allocated under a uniform mechanism.

Moreover, it is common for a mobile device (such as a smartphone) to have multiple

network interfaces and utilize them simultaneously. Therefore, slicing and radio resource

allocation across multiple RANs is required.

Aiming towards more advanced coordination of heterogeneous RANs, 3GPP has de-

veloped standards like LTE-WLAN Aggregation and LTE-WLAN Radio Level Integra-

tion. Several slicing architectures across RANs have also been proposed [32][27]. These

solutions usually enforce changes or deploy new components in the network infrastruc-

ture. They also assume RANs are owned by the same network provider or they are fully

cooperative. These requirements cannot be satisfied in a more general case when mul-

tiple network providers have private infrastructures and compete in selling resources to

services.

Software-Defined Radio Access Network (SD-RAN) brings new possibilities to this

problem. By extending the SDN concept of a centralized and programmable management

layer to RANs, radio resource allocations at physical devices (e.g., eNodeBs of LTE and

Access Points of WLAN) can be achieved in a flexible manner through a central controller.

Building on the flexibility of SD-RAN, we proposed a novel architecture towards het-

erogeneous RAN slicing. Our architecture includes a slicing orchestrator which coordi-

nates multiple network providers and service providers to reach a joint slicing allocation

by negotiations. In our architecture, the SD-RAN controller of each network provider has

an associated agent which runs as an SDN application and takes part in the resource allo-

cation mechanism. Compared with existing approaches, our architecture has more flexible

and modular support of heterogeneous RANs. As a network application, it can be dynam-

ically deployed on SD-RAN platforms owned by either the same or different operators

without any infrastructure changes and is not limited within specific RATs. At the same

time, it takes advantage of the functions that already exist in the RAN such as access

control, handover and resource abstractions.

Specifically, we make the following contributions:

• We design an architecture of a novel type of orchestrator which realizes network slic-

ing across heterogeneous radio access technologies and SD-RAN platforms, taking

diversity of network services, competing network owners and users’ multi-connectivity

52

Service Providers

Network Providers

Service Users

Slicing Orchestrator

Orchestrator Database

Auction Broker

Profile of Providers
- RAN Type
- Resource Capacity
- …

Accounting Record
- Charges
- Payments

Social Welfare
Optimizer

Bids Processing

User Database
- Identity; Connectivity

Slicing Agent Network
Services

Resource Allocator
- Intra-Slice Optimizer

Auction Module
- Calculate bids
- Submit bids

Resource
Abstraction
- Resource Usage
- Resource Capacity

Slicing Agent SD-RAN
Control Plane

SD-RAN
Data Plane

Auction Module
- Calculate bids
- Submit bids

Slicing Module

Other SDN Apps

eNodeB WiFi Access PointsOther SDN Apps

Figure 5.1: Architecture of proposed system. The new components we introduce (Slicing
Orchestrator and Slicing Agents) are marked in red.

into account.

• We propose theoretical models capturing interactions and competitions among dif-

ferent roles (e.g., network providers and service providers) during slicing configura-

tion. We guarantee optimal social welfare by an iterative double auction algorithm.

• We develop a prototype of our proposed architecture based on state-of-the-art SD-

RAN open-source projects and real commercial mobile devices. We evaluate our

system by taking measurements from multiple realistic use-cases and evaluating

multiple performance metrics.

The rest of the chapter is organized as follows. In Section 5.2, we propose our system

design and establish mathematical models for each component. In Section 5.3 we provide

algorithms to optimize the resource allocation among multiple providers. We describe our

testbed setup and evaluate the proposed architecture in Section 5.4. We list related works

in Section 5.5 and summarzie the whole work in Section 5.6.

5.2 System Design and Problem Modeling

5.2.1 Overview

In this section, we propose an architecture and system model for achieving network slic-

ing across heterogeneous SD-RANs. In a typical slicing scenario, there will be multiple

53

network providers of same or different radio access technologies (RAT) represented by a

set K = {1, 2, ..., K}, and multiple service providers represented byM = {1, 2, ...,M}.
Each service provider owns a slice with a certain amount of isolated resources (e. g., power,

bandwidth, speed). Such resource slicing (isolation) tasks are challenging, as they should

permit a slice to purchase resources from more than one RAN, and make decisions on

the amount of resources to allocate that satisfy the demands of all network and service

providers.

To solve this problem, a key component in our design is the Slicing Orchestrator. It is a

centralized entity establishing connections to all network and service providers. However,

it is owned and operated by a third party different from the network and service providers.

Although the orchestrator does not have the full access to either control or private informa-

tion of each RAN, it is capable of managing the competitions among network and service

providers by holding auctions. The purpose of the orchestrator is to maximize the slicing

efficiency, which is represented by social welfare maximization, while making profits for

itself. Social welfare is typically defined as the sum of utilities of every agent involved

in the auction. In order for heterogeneous providers to communicate with the Slicing Or-

chestrator through a uniform protocol, a Slicing Agent is deployed at each network and

service provider, which is another significant component in our design. We do not require

any modifications or new components in the devices of network and service users.

Figure 5.1 shows the overall system architecture. To demonstrate the incentive of de-

ploying the orchestrator and the auction mechanism, we first model the problem in aspects

of both service and network providers.

5.2.2 Service Provider Slicing Agent

Each slice is owned by a service provider. We assume that a Slicing Agent is deployed for

requesting resources from network providers. The Slicing Agent aggregates the demands

of all service users to estimate the amount of resource required.

User Connectivity Profile. A service provider m ∈ M usually has multiple users

to serve through its slice. The connectivity of a user i ∈ Im can be denoted by a vector

βi = (βki)k∈K. βki is a non-negative number representing factors such as the link quality

(e.g., (0, 1] depending on the path loss). The values can be determined according to re-

lated indicators (e.g., Channel Quality Indicator (CQI) in LTE, Received Signal Strength

Indicator (RSSI) in 802.11) reported by users.

Intra-slice Resource Allocation. The service provider should consider all its users

54

when requesting resources for its slice, which is an optimization problem of intra-slice

resource allocation. Suppose a service provider m requests a certain amount of resources

from every RAN k denoted by a vector xm = (xmk)k∈K, then it allocates a portion of

them, zi = (zki)k∈K to each user i. Depending on the resource allocated, user i has its

utility umi(zi) (the form varies based on the type of service). In order to maximize the

sum of all user utilities, an optimization problem should be solved by service provider m:

Um(xm) = max
zi

Im∑
i=1

umi(zi) (5.1)

s.t.
Im∑
i=1

zki
βki
≤ xmk,∀k ∈ K (5.2)

zki ≥ 0,∀i ∈ Im, k ∈ K (5.3)

We can make an assumption that user utility umi(.) is an increasing and concave func-

tion, which holds in most scenarios, e.g., elastic traffic [142], or services that guarantee

fairness [75].

Objective during Slicing. The Slicing Agent determines xm, the amount of resources

to request which maximizes the service provider’s own interest, denoted by the utility

function Um(xm) of this service provider m.

5.2.3 Network Provider Slicing Agent

Similarly, a Slicing Agent exists as an application of each SD-RAN platform, determining

the type and amount of resources allocated to different services.

Resource Abstraction. Although an SD-RAN may have its own abstraction of radio

resources (e.g., Resource Blocks in LTE, airtime control in WLAN), it is able to quantify

them as the performance level of the same network metric (e.g., downlink throughput),

which will be a crucial function of the Slicing Agent. If we consider one specific network

metric in this way, the resource offered by a network provider k can be denoted by a vector

yk = (ykm)m∈M. Without loss of generality1, capacity Ck limits the amount of resources

that can be offered, i.e.,
∑M

m=1 ykm ≤ Ck.

Objective during Slicing. Similar to the service provider, the Slicing Agent of a net-

1Although the capacity can be dependent of k in the cases such as Wi-Fi channel conflicts, the orches-
trator introduced later is capable to notify each provider to prevent such conflicts. In addition, it is easy to
extend the algorithm described in the next section to other forms of linear constraints.

55

work provider aims at maximizing its own profit, i.e., minimizing a cost function Vk(yk).

This cost occurs because of the operation and management overheads of the RAN, as well

as the opportunity cost since the network provider cannot use these resources for other

purposes. In this work, we mainly discuss the representative cases where Vk(yk) function

is increasing and convex. [37]

5.2.4 Slicing Orchestrator

A service provider requests resources for its slice which maximize its utility, while net-

work providers aim at minimizing their costs. Since these goals are at conflict it is hardly

possible to achieve it without negotiations through a third party. This is the job of the

Slicing Orchestrator which leads to an agreement of resource requests and offers through

double auctions. In other words, a legal slicing scheme requires ykm = xmk for any service

provider m and network provider k. Beyond that, we consider maximizing the total utility

of all providers, which can be regarded as a social welfare optimization problem:

max
xm,yk

M∑
m=1

Um(xm)−
K∑
k=1

Vk(yk) (5.4)

s.t. ykm = xmk,∀k ∈ K,m ∈M (5.5)
M∑
m=1

ykm ≤ Ck,∀k ∈ K (5.6)

ykm ≥ 0, xmk ≥ 0,∀k ∈ K,m ∈M (5.7)

Although the Slicing Orchestrator acts as a centralized component connecting to Slicing

Agents of all providers, it cannot solve this problem directly. First, it is a reasonable

assumption that each provider is selfish and cares about their own utility or cost, rather

than the social welfare. Second, the orchestrator does not have full access to information

private to network and service providers. More specifically, providers do not always have

the incentive to reveal their utility and cost functions Um(xm) and Vk(yk). Moreover, the

orchestrator should be profiting during the resource allocation in order to maintain itself.

In the next section, we will introduce a double auction mechanism to solve this problem,

where the Slicing Orchestrator is the broker and each Slicing Agent is a bidder.

56

5.3 Optimization Algorithms

In this section, we introduce the methods to solve the social welfare optimization prob-

lem described in the last section. We also analyze the benefit of proposed mechanism

theoretically in comparison with other possible slicing architectures.

5.3.1 User Utility Optimization

First, we focus on the properties of the service provider utility function Um(xm). It is

the aggregation of each single service user’s utility, where a subproblem of the intra-slice

resource allocation exists, as stated in (5.1).

If xm has been determined by the orchestrator, the service provider can directly solve

this subproblem by itself. For example, the unique optimal can be efficiently found by ap-

plying Karush-Kuhn-Tucker (KKT) conditions [28]. What is more, Um(xm) has following

important property:

Lemma 3. Um(xm) is an increasing and concave function.

Proof. For the monotonicity, with an increased xmk, allocating the marginal value to any

arbitrary user i improves umi(zi) and
∑Im

i=1 umi(zi). Therefore, the optimal allocation

Um(xm) is increasing as well.

For the concavity, define z = (zki)k∈K,i∈Im , and

f(z,xm) =

∑Im

i=1 umi(
∑K

k=1 zki) if constraint (5.2) holds

−∞ otherwise

f(z,xm) is a concave function of both z and xm. According to [28], its partial maximiza-

tion (i.e., Um(xm)) preserves concavity.

5.3.2 Iterative Double Auction

The result of the subproblem above implies the concavity of the social welfare function,

making it possible for us to adopt a double auction mechanism similar to [66] optimizing

the resource allocation during slicing.

By applying KKT conditions and introducing Lagrange multipliers, the problem (5.4)

has a unique optimal solution because of the concavity. However, it cannot be acquired

57

without information of Um(xm), Vk(yk). Instead, we consider the following alternative

optimization problem:

L(x,y,λ,µ) =
M∑
m=1

K∑
k=1

(pmk log xmk −
akm
2
y2km)

−
K∑
k=1

λk(
M∑
m=1

ykm − Ck)

−
K∑
k=1

M∑
m=1

µmk(xmk − ykm) (5.8)

where λ = (λk ≥ 0)k∈K and µ = (µmk ≥ 0)k∈K,m∈M are Lagrange multipliers. There

are undetermined parameters ak = (akm ≥ 0)k∈K,m∈M in this alternative problem, which

are the bids that the broker expects each network provider k to submit. Similarly, pm =

(pkm ≥ 0)k∈K are bids from each service provider m. Two sets of rules are required for

the auctions. First, we need allocation rules to solve this alternative problem. Second,

payment rules will guide the providers to submit bids determining the parameters of this

alternative problem, which should lead the optimal solution coincide with the original

problem.

Allocation Rules. Optimal results x∗ and y∗ of this alternative problem can be calcu-

lated by KKT conditions of L(x,y,λ,µ):

x∗mk =
pmk
µ∗mk

, y∗km =
µ∗mk − λ∗k
akm

(5.9)

µ∗mk(x
∗
mk − y∗km) = 0, λ∗k(

M∑
m=1

y∗km − Ck) = 0 (5.10)

Equation (5.9) shows the allocation rules of the double auction, revealing how the orches-

trator determine the amount of resources allocated to each slice based on bids received.

Payment Rules. By comparing the alternative problem (5.8) with the original one

(5.4), we notice that they have the same optimal solution x∗ and y∗ only when:

pmk = x∗mk
∂Um(x∗m)

∂xmk
, akm =

1

y∗km

∂Vk(y
∗
k)

∂ykm
(5.11)

The orchestrator applies payment rules to induce bidders submitting the above values.

More specifically, the broker charges gm(pm) to each service provider m for the resource

58

Algorithm 4: Iterative Double Auction
1 t← 0

2 Initialize x(0),y(0),λ(0),µ(0)

3 IsConverged← False
4 while IsConverged is False do
5 The broker announces λt,µt

6 Each service provider m submits bids pm
(t+1) by (5.12); each network

provider n submits bids an
(t+1) by (5.13)

7 The broker calculates x(t+1) and y(t+1) by (5.9)
8 The broker calculates λ(t+1) and µ(t+1) by:
9 µ

(t+1)
mk = (µ(t) + s(t) · (x(t)mk − y

(t)
km))+

10 λ
(t+1)
k = (λ

(t)
k + s(t) · (

∑M
m=1 y

(t)
km − Ck))+

11 ∀k ∈ K,m ∈M, and s(t) > 0 is the step size of gradient descent.

12 if |p
(t+1)
mk −p

(t)
mk

p
(t)
mk

| < ε1 and |a
(t+1)
km −a(t)km
a
(t)
km

| < ε2, ∀k ∈ K,m ∈M then
13 IsConverged← True
14 end
15 t← t+ 1

16 end
17 Output: x(t),y(t),λ(t),µ(t)

it bids to request, and pays hk(ak) to each network provider k for the resource it bids to

offer.

In this case, each service provider m determines its bid that maximizes their payoff:

p∗m = arg max
pm

(Um(xm)− gm(pm)) (5.12)

Similarly, each network provider k makes decisions according to:

a∗k = arg max
ak

(−Vk(yk) + hk(ak)) (5.13)

Payment rules should make these results coincide with Equation (5.11). It can be calcu-

lated by combining the allocation rules (5.9) with bids expressions (5.11)(5.12) and (5.13).

As a result, the payments and charges are proportional to the resources demanded/offered:

gm(pm) =
K∑
k=1

pmk, hn(ak) =
M∑
m=1

(µmk − λk)2

akm
(5.14)

Iterative Algorithm. The allocation and payment rules above are parameterized by

59

0.75

0.8

0.85

0.5

0.9

P
ric

e
of

 A
na

rc
hy 0.95

2

1

0.6
3

r
1

r
2

0.7
40.8

50.9

Figure 5.2: PoA with different utilities and costs when disabling the orchestrator.

the Lagrange multipliers λ and µ, which can be calculated in a gradient descent manner

by running auctions of multiple rounds. The procedure of the iterative double auctions is

listed in Algorithm 4.

Defining a Lyapunov function summing the quadratic drifts of λ(t) and µ(t), the con-

vergence can be proved [66] under the assumption that bidders are price-takers, where they

passively accept the price raised by the broker, rather than strategically exert impact on it.

It is true in perfect competition market, which is reasonable in our architecture because we

are considering multiple network and service providers with limited information of each

other.

According to (5.12)(5.13), the algorithm is efficient and individually rational, i.e., op-

timal social welfare is reached when every bidder maximizes their own payoffs. This con-

clusion can easily be extended to the case where a service provider owns multiple slices or

a network provider owns multiple sets of RAN infrastructures. The provider can simply

make decisions for each of its slice/infrastructure independently.

The algorithm is scalable in aspects of both computing (concave minimization with

linear constraints) and synchronization overheads (O(M ·K) messages in each round). In

addition, it is straightforward to demonstrate that the profit
∑M

m=1 gm(p∗m)−
∑K

k=1 hk(a
∗
k)

is always non-negative. Therefore, the orchestrator faces no problem of maintaining itself

(it never runs a loss) and has the incentive to hold auctions.

5.3.3 Social Welfare Improvement

The optimal social welfare achieved by introducing the Slicing Orchestrator is nontrivial.

In particular, we demonstrate that while our method can guarantee optimality with Price

of Anarchy (PoA) = 1, alternative distributed architectures without centralized control

60

(where providers directly negotiate with each other as described below) can lead to sub-

optimal performance with PoA < 1. Thus the central orchestrator of our architecture is an

essential component for RAN slicing.

The Stackelberg game is a typical model to depict such distributed architectures and

widely discussed in related literature [50][76], in which a leader and followers take actions

sequentially. The interaction of each service provider m and network providers in this

alternative architecture can therefore be captured by a two-stage Stackelberg game:

• Stage 1: The service provider announces Pm, the price it is willing to pay for every

unit resource offered.

• Stage 2: Each network provider k submits xmk = ykm.

To analyze the price of anarchy (PoA) for the Stackelberg game model, we need to

make a few additional assumptions. First, we assume network providers are able to inter-

act with every service provider independently, by assuming Vk(yk) =
∑M

m=1 Vkm(ykm).

Secondly, the capacity of resources is no longer a constraint. We also assume all infor-

mation are public. These assumptions actually weaken the practicality of such models.

A strength of our proposed design is that the difficulties due to these assumptions are

avoided. Moreover, we demonstrate that the Stackelberg game has inferior social welfare

even if all these extra assumptions are satisfied.

The game has an equilibrium. At Stage 2, given the price Pm, a network provider

responds maximizing its payoff:

y∗mk(Pm) = arg max
ykm

(Pm · ykm − Vkm(ykm)) (5.15)

Anticipating the response, the service provider will determine the price in Stage 1 as:

P ∗m = arg max
Pm

(Um(y∗m(Pm))− Pm ·
K∑
k=1

y∗mk(Pm)) (5.16)

Correspondingly, the social welfare under the equilibrium is:

SWequil =
M∑
m=1

Um(y∗m(P ∗m))−
K∑
k=1

Vk(y
∗
k(P

∗
m)) (5.17)

We introduce Price of Anarchy (PoA), the ratio of social welfare between the worst

equilibrium and the centralized optimal solution, as a metric to demonstrate the benefits

61

Virtual Machine
Network Provider 1

Virtual Machine
Network Provider 2

FlexRAN
Controller

EmPOWER
Controller

OpenAirInterface
Core Network

OpenAirInterface
eNodeB

Wi-Fi
Access Point

Desktop Computer
Service Provider 1

Desktop Computer
Service Provider 2

Desktop Computer
Slicing Orchestrator

Smartphone
Service User

Laptop
Service User

Video Server Web Server

Load Balancing MPTCP

Router Desktop & SDR

Figure 5.3: Testbed setup and experimentation scenario of two services (video streaming
and web browsing) and two RANs (WLAN and LTE).

gained by setting up an orchestrator. For instance, we consider following power functions

as utility and cost, i.e., Um(xm) = A · (
∑K

k=1 xmk)
r1 and Vk(ykm) = Bk ·

∑M
m=1 y

r2
km, ∀k ∈

K, r1 ∈ (0, 1), r2 ∈ (1,∞). Then the equilibrium social welfare SWequil can be calculated

following (5.15) and (5.16). It is also trivial to acquire the unique optimal solution SWopt

by making xmk = ykm and taking derivatives of
∑M

m=1 Um(xm) −
∑K

k=1 Vk(yk). Finally

the PoA has following expression:

PoA =
SWequil

SWopt

=
r

2r1
r1−r2
2 − r

2r2
r1−r2
2 · r1

r
r1

r1−r2
2 − r

r2
r1−r2
2 · r1

(5.18)

The PoA is impacted by the extent of concavity/convexity of utility/cost functions. In

Figure 5.2 we calculate PoA in different combinations of r1 and r2. The results are lower

than 0.8 in worst cases, indicating that our proposed architecture is able to improve the

social welfare by more than 25% in specific scenarios. Later in the evaluation section, we

will also demonstrate this improvement in realistic settings.

5.4 Evaluation Results

In this section, we evaluate our proposed architecture and algorithm with both our imple-

mentation in real devices and numerical simulations in large-scale network topologies.

62

5.4.1 Testbed Setup

To quantitatively evaluate the performance of realistic scenarios, we build a testbed con-

taining heterogeneous SD-RANs, multiple network services and different types of user

devices, as shown in Figure 5.3.

We set up two network providers, one of LTE and another of WLAN. In the LTE

network, a desktop computer (3.6 GHz, 16 GB of RAM) with USRP B210 deploying

OpenAirInterface [120] eNodeB works as the data plane on LTE band 7. We also deploy

virtual machines in a server (HP ProLiant DL360) running components of LTE core net-

work (HSS, MME and SPGW) and the FlexRAN control plane. The WLAN network has

similar setting, while deploying EmPOWER control plane and using a router (TP-Link

AC1750) as data plane on 802.11g, channel 11 instead. Control planes of both RANs run

our Network Provider Agent. The details of our prototype implementation are described

in Appendix C.

We also set up two service providers (one web server and one video streaming server)

in another desktop computer, both deploying our Service Provider Agent. The Slicing

Orchestrator exists in third desktop computer. 1Gb/s Ethernet links are set between RAN

data planes and RAN control planes, as well as the agents and orchestrator.

Two types of user devices, one HP Omen laptop and two Nexus 6P Android smart-

phones are deployed for experiments. The laptop connects to LTE network with a Huawei

E3372 LTE USB modem. Besides, we consider multiple approaches enabling multi-

connectivity and deploy different solutions in user devices.

5.4.2 Small-Scale Experimentation Results

Video Streaming Service. First, we consider a scenario where a single service provider

requests downlink bandwidths from both LTE and WLAN providers, in order to support

HTTP video streaming to a laptop through MPTCP v0.93 [179]. We assume that network

providers have cost functions Vk(yk) = wnk ·
∑M

m=1 y
2
km. Here we have k = 1 for LTE

and k = 2 for WLAN. According to the actual performance of infrastructure, we set

C1 = 15Mbps andC2 = 9Mbps. On the user side, we choose the quality of received video

as its utility. Although it would not be easy to deduct its exact relationship with downlink

bandwidth, the network provider can estimate it using an elastic utility function umi(zi) =

wsm ·
∑K

k=1(1 − e−α·zki), m = 1, i = 1, which is general to cover various services [142].

Value of α can be estimated depending on the video bitrate. We use a 1080P video (around

7000 kbps) for experimentation, and assume α = 1.6 correspondingly.

63

1.5

2

2.5

3

3.5

4

P
ay

m
en

t

5 10 15 20 25
Willingness of Purchase (w

s

1
)

0

1

2

3

4

5

6

D
L

B
an

dw
id

th
 (

M
bp

s)

LTE Bandwidth

WLAN Bandwidth

Payment

(a) Converged resource allocation.

5 15 25

Willingness of Purchase (w
s

1
)

22

24

26

28

30

P
S

N
R

 (
dB

)

(b) Performance of video streaming.

0 2 4 6 8 10 12
Bidding Rounds

3

4

5

6

7

8

D
L

B
an

dw
id

th
 (

M
bp

s)

25

26

27

28

S
oc

ia
l W

el
fa

re

Offer

Request

Social Welfare

(c) Convergence of an auction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Convergence Time (Sec)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

0

10 ms

20 ms

(d) Time to finish auctions.

Figure 5.4: The (a) resource allocation and payment schemes determined by double auc-
tion with different weights of service provider utilities. (b) Actual performance of video
streaming by measuring PSNR. (c) Number of auction rounds and (d) actual time required
to finish the algorithm.

We fix wn1 = 0.2, wn2 = 0.1 and run the system with different ws1 values, which repre-

sent the willingness of the service provider to purchase resources for its slice. Figure 5.4(a)

shows the results of proposed double auction algorithm, in which the service provider re-

quests a share of bandwidth from both RANs. With a larger ws1, the service provider

acquires more resources, indicating the capability of proposed system to balance the offer

and request with different utilities/costs of providers. The result is concave in ws1, which

suits the video streaming service because redundant bandwidth beyond the video bitrate

adds little value. The orchestrator receives payments from the service provider and make

compensations to network providers. In this scenario, these two amounts are balanced.

And it is intuitive that the service provider pays more for larger requests.

We also measure the actual performance of video streaming. After the whole video

is streamed, we quantify the received video quality by measuring its peak signal-to-noise

ratio (PSNR). A larger PSNR value indicates a smaller quality loss during streaming. Fig-

ure 5.4(b) shows how the PSNR values increase with larger bandwidth allocated.

Another crucial performance metric of proposed system is the time spent on finishing

the slice configuration. Figure 5.4(c) shows the procedure of the iterative double auction.

With gradient descent step size 0.1, the offers and requests quickly converge in 11 bidding

rounds. We also measure the actual time spent on finishing an auction as Figure 5.4(d), in

64

0 5 10 15 20 25 30
Time (Sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
hr

ou
gh

pu
t (

M
bp

s)

WLAN

LTE

New Auction Request

at 15.2 s

Figure 5.5: Real-time MPTCP throughput monitoring of video streaming. The service
provider increases ws1 from 5 to 25 and starts a new auction during the transmission.

which we hold auctions for 100 times and plot the cumulative distribution function (CDF).

With all participants placed in the same room with wired connections, it always takes less

than 0.1 second. Then we add a simulated delay on all outgoing traffic from the Slicing

Orchestrator. The auctions can still be finished quickly within 1 and 2 seconds, when the

delay is set to 10ms and 20ms.

Furthermore, to verify above conclusions from another aspect, we monitor the traffic

of video streaming through both RANs in real time. As depicted in Figure 5.5, initially the

throughput from each RAN is consistent with the slicing scheme in Figure 5.4(a). Then,

we assume that the service provider changes its willingness ws1 from 5 to 25 and therefore

starts a new auction at the 15th second. As a result, the throughput starts to increase within

1 second, and becomes stable again within 5 seconds, indicating the whole procedure of

slicing has been finished. In the figure, the WLAN throughput shows fluctuations, because

we set the temporal interval of the curve as 0.1 second to better indicate the system’s

dynamic response. The queueing-based slicing mechanism of EmPOWER cannot achieve

the same level of fine-grained control as the Resource Block allocation of LTE. However,

it is able to follow the auction result correctly on a larger time scale, e.g., when measuring

the average bandwidth of every 1 second. Therefore, we assert that the auction and slicing

mechanisms work smoothly as designed and is flexible enough to adapt dynamic changes

of user demands.

Web Browsing Service. We then consider another scenario of two Android smart-

phones surfing the Internet to investigate different performance metrics. Instead of MPTCP,

we consider another multi-connectivity case, the load balancing assignment of flows to

different network interfaces. With each smartphone, we send the same amount of HTTP

requests to download a large HTML page (around 1.2 MB) through both LTE and WLAN

connections. And we measure the average page load time as the performance metric. Cor-

65

7

8

9

10

11

12

13

P
ay

m
en

t

3 5 7
Willingness of Purchase (w

s

2
)

0

2

4

6

8

10

D
L

B
an

dw
id

th
 (

M
bp

s)

LTE Bandwidth

WLAN Bandwidth

Payment

(a) Converged resource allocation.

3 5 7
Willingness of Purchase (w

s

2
)

0

0.5

1

1.5

2

2.5

3

P
ag

e
Lo

ad
 T

im
e

(S
ec

)

LTE Flows

WLAN Flows

Average

(b) Performance of web browsing.

0

2

4

6

8

10

12

P
ay

m
en

t

Case 1 Case 2
0

2

4

6

8

10

D
L

B
an

dw
id

th
 (

M
bp

s)

LTE-User1

LTE-User2

WLAN-User1

WLAN-User2

Payment

(c) Adaptive adjustment of requests.

-16.2

-16.1

-16

-15.9

-15.8

S
oc

ia
l W

el
fa

re

Case 1 Case 2 Case 2
0.5

1

1.5

2

2.5

P
ag

e
Lo

ad
 T

im
e

(S
ec

)

User 1

User 2

Average

Social Welfare

(Average)(Optimal)

(d) Performance comparison.

Figure 5.6: The (a) resource allocation, payment schemes and (b) performance of web
browsing service. (c)(d) shows how the service provider adjusts its bids depending on the
signal strength of its users.

responding to this metric, the service provider may choose a different utility function in the

form of minimum potential delay fairness, umi(zi) = wsm·
∑K

k=1(−1/zki),m = 2, i = 1, 2.

We assume the setting of network providers are the same as in the last scenario.

Figure 5.6(a) shows that the auction algorithm also succeeds in balancing the requests

and offers with this new utility function. We repeat the download for 100 times using

both network interfaces and take the average value of page load time for each slicing

scheme. As Figure 5.6(b) indicates, the delay decreases if the service provider requests

more bandwidth for its users.

We also investigate how the proposed system is able to tackle with device mobility.

Keeping ws2 = 5, we change the location of the second smartphone so that its LTE sig-

nal strength falls to around −115 dB from −95 dB. (The WLAN signal strength is less

impacted.) In this case, the user can report its signal strength to the service provider, re-

flecting in an updated β12 parameter in the formulation. Then the service provider can call

a new auction to adjust its bids. Figure 5.6(c) compares the auction results before (Case

1) and after (Case 2) the movement, considering which the service provider requests more

LTE bandwidth, and allocates a larger portion of it to its second user. In Figure 5.6(d), we

measure the performance of this new allocation, in comparison of an average allocation,

where two smartphones still acquire the same portion of resources. It indicates that there is

an improvement on the load time of the second user. The negative impact of worse signal

66

(25, 3) (15, 5) (5, 7) 20% 60% 100%
w

s
 Average Allocation

0

0.5

1

1.5

2

2.5

3

3.5

P
ag

e
Lo

ad
 T

im
e

(S
ec

)

0

5

10

15

20

25

30

P
S

N
R

 (
dB

)

(a) Competition between services.

Optimal 20% 60% 100%
Average Allocation

-5

0

5

10

15

20

25

30

U
ni

t o
f U

til
ity

SD-RAN Cost

Social Welfare

(b) RAN costs and social welfare.

0 2 4 6 8 10 12
Bidding Rounds

12.5

13

13.5

14

14.5

15

15.5

16

D
L

B
an

dw
id

th
 (

M
bp

s)

5

7

9

11

13

15

S
oc

ia
l W

el
fa

re

Offer

Request

Social Welfare

(c) Convergence of an auction.

CPU (%) Memory (MB)
WLAN LTE WLAN LTE

w/o Agent 27.7 21.9 106.5 194.2

Idle 27.7 21.9 159.7 234.7

Busy 38.2 25.5 159.7 234.7

(d) CPU and memory costs.

Figure 5.7: (a) Performance of two different services under their competition. (b) Cost
and social welfare comparisons between the optimal and average allocations. (c) Number
of bidding rounds until convergence. (d) CPU and memory consumption of SD-RANs.

is not totally eliminated, because the service provider needs to pay for the extra resource

allocated. However, it is able to find a balance and achieve the optimal social welfare.

Multiple Slices. The proposed design also handles competitions among service providers.

In this scenario, we run the two services above simultaneously. Figure 5.7(a) shows the

performance of two services under different combinations of ws1 and ws2. The service

provider with higher purchase willingness is able to achieve better performance over the

other one. We compare these results with the case in which slicing is not applied, e.g., the

WLAN applies no queueing policies, and the LTE eNodeB allocates the same number of

resource blocks to every user. We examine cases in which the eNodeB offers 20%, 60%

and 100% of resource blocks. These plans lead to different costs as well, as depicted in

Figure 5.7(b). In each case, either great performance degradation or significant additional

cost incurs, and the resources allocated to two services are also severely imbalanced. All

these factors lead to a worse (and even negative) social welfare than our optimal result.

The time required for convergence does not dramatically increase with more bidders.

Figure 5.7(c) shows the procedure of an auction with ws1 = 15 and ws2 = 5. Here the

social welfare appears to decrease with time, because the constraints are not yet satisfied.

The final result is still optimal. The performance of larger scale auctions will be further

analyzed in the next subsection.

In Figure 5.7(d) we measure the CPU usage (of two cores) and memory consumption

67

4 5 6 7 8
Number of Network/Service Providers

0

10

20

30

40

N
um

be
r

of
 B

id
di

ng
 R

ou
nd

s

Step Size = 0.1

Step Size = 0.08

Step Size = 0.06

(a) Convergence speed of different
scales.

3 4 5 6 7 8 9 10
Number of Service Providers

20

25

30

35

N
um

be
r

of
 B

id
di

ng
 R

ou
nd

s

(b) Range and average of conver-
gence speed.

4 5 6 7 8
Number of Network/Service Providers

600

800

1000

1200

1400

1600

1800

S
oc

ia
l W

el
fa

re

w/ Orchestrator (Double Auction)

w/o Orchestrator (Stackelberg Game)

(c) Social welfare of different archi-
tectures.

4 5 6 7 8
Number of Network/Service Providers

0.89

0.9

0.91

0.92

0.93

0.94

0.95

P
ric

e
of

 A
na

rc
hy

(d) PoA without an orchestrator.

Figure 5.8: (a) The number of bidding rounds required for convergence when the network
scales up. (b) Box plots and average values of auctions among 8 network providers and
different number of service providers. (c) Social welfare of proposed architecture where
an orchestrator holds Double Auctions and another architecture where providers compete
as a Stackelberg game. (d) Price of Anarchy in slicing games without an orchestrator.

of SD-RAN components. The first column shows a baseline, the consumption of the

original SD-RAN controller (EmPOWER and SDN controller for WLAN, FlexRAN and

OpenAirInterface EPC for LTE) without the deployment of our agents. In the second

column, the Slicing Agents are deployed. When not processing auctions, no additional

CPU resource is required. Only a small extra portion of memory is occupied. In the

third column we keep initiating auctions with an interval of 1 second, therefore the Slicing

Agents are busy bidding and implementing the slicing schemes, leading to larger while

still affordable CPU usage. From the results shown in the table, the Slicing Agent is

lightweight and does not exert heavy extra burden on the SD-RAN controller.

5.4.3 Large-Scale Simulation Results

Scalability. Having verified our design and implementation in the small-scale testbed,

we now run simulations of larger network topology to guarantee that the performance of

proposed design will not degrade when the network scaling up. More specifically, we

consider multiple RANs and services in a 100m × 100m area. Among K RANs, the

68

first two are LTE while remaining are WLAN providers each with an Access Point. Each

of M different service providers has I users with dual-connectivity of LTE and WLAN.

Entities above are distributed uniformly in this area. A user’s LTE provider is randomly

assigned with uniform probability, and it connects to its nearest WLAN access point. Each

LTE network covers the whole area with βki = 1, while WLAN’s βki is proportional to

the spectral efficiency of Shannon formula, following Rayleigh fading depending on the

distance between the user and the Access Point. All other parameters (e.g., wnk , wsm, α)

and utility/cost functions are identical to the testbed, except that we multiply each of them

with a random factor uniformly distributed in [0.9, 1.1], and enlarge the capacity by I times

consistent with the increasing amount of users.

We investigate the impact of network scale by observing the speed of convergence with

different numbers of network and service providers. Figure 5.8(a) depicts the number of

bidding rounds until convergence with up to 8 network providers and 8 services (each has

10 users). It does not grow dramatically with more providers participating the auction.

Besides, the convergence speed can be adjusted by setting proper step size of gradient

descent at the orchestrator.

Noticing that the marginal increase of bidding rounds becomes even slighter with more

providers, we investigate it further and have Figure 5.8(b) changing the number of service

providers (and users) while keeping 8 network providers. Both variance and average values

are larger when there are fewer services, because users sparse in the area are more likely

to result in unbalanced resource requests to each RAN, which need more iterations to

converge. Due to features shown above, our approach has good scalability.

PoA. In Figure 5.8(c) and 5.8(d), we investigate the social welfare improvement com-

pared with the Stackelberg game model without an orchestrator, as stated in the previous

section. we plot the box plot and the average values of PoA in different topology, indicat-

ing an improvement of social welfare between 7% and 10% in most cases.

5.5 Related Work

Slicing in Heterogeneous RANs. Among SD-RAN approaches above, [146] aims at hav-

ing centralized control on not only WiFi access points but also LTE eNodeB. Similarly,

architectures of applying control and slicing over heterogeneous RANs are discussed in

[32] and [27]. More specifically, [73] and [6] address the control architecture and resource

allocation problem across LTE and WLAN. [91] discusses the slicing problem in hetero-

geneous cellular networks. Most of these works adopt centralized management, ignoring

69

interactions and competitions occur among RANs owned by different parties. In our work

we utilize game theoretic modeling and mechanism design to deal with self-interested

parties.

Game Theory in Slicing and Resource Allocation. Game theory [122] and mecha-

nism design [121] has been widely applied to slicing and resource allocation of wireless

networks [31, 58]. Congestion games and Price of Anarchy (PoA) [149] have been ana-

lyzed for network slicing [41]. The authors in [189, 190] design combinatorial auctions

for efficient spectrum resource allocation. [182] proposes truthful auctions to enforce co-

operation among wireless relay nodes in a network. The authors in [52] propose a share-

constrained proportional allocation for network slicing games. Compared with existing

works, we take more realistic factors into consideration at the same time, including het-

erogeneous RATs, services and multi-connectivity of users.

Mobile Data Offloading. Another possible way to make better use of multiple RATs

for a cellular network operator is offloading its traffic to third-party owned WiFi access

points [90]. Both centralized algorithms [95, 136] and game theory models [89, 128, 66]

are developed towards this approach. Mobile data offloading schemes merely consider

interaction between two specific RATs, with the cellular operator as the game leader. Our

proposed architecture is not RAT-dependent, and demonstrates the advantages of intro-

ducing an orchestrator taking the leader role instead of one of the network providers. This

ensures that any single network provider cannot monopolize the market.

5.6 Summary

In this chapter, we have proposed a new architecture for resource slicing across multiple

selfish network providers using diverse technologies. Our proposed double auction mech-

anism guarantees convergence to optimal social welfare in finite time. Our central Slicing

Orchestrator enables a unified resource abstraction to compare and compose resources

exposed by diverse RAN technologies. We have demonstrated the feasibility of our archi-

tecture by deploying our orchestrator along with open source RAN slicing systems such

as EmPOWER and FlexRAN.

70

Chapter 6

Local Intelligence: Learning-enabled
Protocol-Independent Packet

Classification

Security threats arising in massively connected IoT devices have attracted wide attention.

It is necessary to equip IoT gateways with firewalls to prevent hacked devices from infect-

ing a larger amount of network nodes. The match-action mechanism of SDN provides the

means to differentiate malicious traffic flows from normal ones. However, vulnerabilities

of IoT devices and heterogeneous protocols coexisting in the same network challenge the

capability of SDN protocols such as OpenFlow. Despite the efforts of distributed con-

trol plane described in the previous chapters, programmability and intelligence are also

required at the data plane to overcome these challenges.

In this chapter, we leverage the high level of data plane programmability brought by

the P4 language and design a novel two-stage deep learning method for attack detec-

tion tailored to that particular language. Our method is able to generate flow rules that

match a small number of header fields from arbitrary protocols while maintaining high

performance of attack detection. Evaluations using network traces of different IoT proto-

cols show significant benefits in accuracy, efficiency and universality over state-of-the-art

methods.

6.1 Introduction

Internet of Things (IoT) interconnects a multitude of devices interfacing with the physical

world as sensors and actuators, facilitating their communication towards accomplishing

71

Cloud / Internet

ZigBee

IoT Gateways

Heterogeneous ProtocolsVarious Attack Dimensions

Botnet

Hijack

Attacker

Figure 6.1: Firewalls deployed at IoT gateways targeting various types of attacks in het-
erogeneous protocols.

assigned tasks. In such networks with massively interconnected devices, security is a

major concern. A large amount of insecure IoT devices have become targets of botnet

attacks [80], leading to some of the most potent DDoS attacks in history. IoT devices

are vulnerable to more types of attacks compared with other devices [8], such as network

attacks in different protocols (e.g., RFID, Zigbee, 6LoWPAN) and even physical attacks.

Therefore, it has been a big challenge to guarantee the security of an IoT network.

Traditional methods to secure an IoT device require the deployment of physical and

application layer protection in it, e.g., by strengthening the authentication and encryp-

tion during data transmission. However, such approaches usually involve firmware and

even hardware modifications, taking a relatively long time period. Devices in which secu-

rity policies are not updated in time will increase the risk of being hacked and becoming

sources of infection to other devices. To prevent malware from spreading, network layer

security approaches are also necessary. For example, firewalls can be deployed at IoT gate-

ways, monitoring and separating malicious from normal traffic, as depicted in Figure 6.1.

SDN provides a flexible framework for network management and is widely adopted in

IoT networks. This flexibility can be exploited for the development and dynamic recon-

figuration of network layer security mechanisms. By separating control and data planes,

SDN protocols such as OpenFlow [103] make it possible to develop such mechanisms in

a logically centralized and programmable manner. OpenFlow-enabled switches process

incoming packets through match-action flow rules received from the controller checking

72

specific header fields (e.g., MAC and IP addresses, TCP port, etc.) and performing actions

such as forwarding or dropping accordingly.

A firewall can be developed by generating flow rules through machine learning al-

gorithms, which have been demonstrated as a promising method for identifying attacks

from even unknown or encrypted traffic flows [99]. However, this method presents several

limitations. Specifically:

1. Limitations in Learning Models. The training features used by the machine learning

algorithm are often the specific header fields of the packet. However, heteroge-

neous IoT protocols may have distinct packet header structures, leading to a prob-

lem that the feature extraction process and even the whole learning algorithm should

be specifically redesigned for every different protocol. Besides, the manual feature

extraction adds difficulty to achieve optimal performance.

2. Limitations in OpenFlow. The match fields of OpenFlow are predefined and fixed.

Many IoT headers cannot be parsed by it, e.g., compressed IPv6 headers in 6LoW-

PAN packets, or application layer protocols such as MQTT and RESTful API. As a

result, no proper flow rules can be created in these cases. Although OpenFlow can

be extended with user-defined headers by OpenFlow Extensible Match (OXM), it

has limited functionality and hardware support in the above scenarios.

P4 language [24] provides possible solutions to the above challenges. Unlike Open-

Flow which focuses on the control plane (i.e., the controller), P4 makes the data plane

(i.e., the switches) programmable as well. Specifically, the packet headers are customiz-

able by operators with the position and width provided, and table lookup can be conducted

on these newly defined headers by the switches. This feature is especially meaningful in

IoT scenarios, where support of different IoT protocols can be added by defining their

headers [172].

Motivated by the above, we propose a new framework for IoT security and a corre-

sponding learning algorithm which take advantage of the P4 language. Figure 6.2 illus-

trates its differences compared with the existing OpenFlow-based methods. The proposed

method operates in two stages. In Stage 1, a learning algorithm trains a dilated Convolu-

tional Neural Network (Dilated CNN) with raw packet bytes, skipping the step of manual

feature extraction. In Stage 2, a proper set of header field definitions is inferred from the

trained neural network, based on which flow rules for blocking traffic (dropping packets)

are generated and installed in the IoT gateway (data plane switch). This method is ap-

plicable to heterogeneous IoT protocols. Besides, it is designed to take the constraints of

73

Captured Packets
(Raw Bytes)

• Security Policy Learning Model with OpenFlow:

• Security Policy Learning Model with Programmable Data Plane:

Manual Feature
Extraction

Packet Features
(Based on Predefined Headers)

Match Action

ip_src = 10.0.0.1 Drop

tcp_port = 1234 Output: Port 1

… …

Flow Table

Learning Algorithm

Captured Packets
(Raw Bytes) Match Action

Field 1 = … Drop

Field 2 = … Output: Port 1

… …

Flow Table

Packet Header Definition

Field 1 Field 2

Learning Algorithm

Limited Protocols

Arbitrary Protocols

(No Preprocessing Required)

Packet
Bytes

0 1 2 3 4 5 6 7 8 …

Figure 6.2: The learning process based on OpenFlow method and P4 language.

switch memory cost and packet processing speed into consideration, realizing a trade-off

between accuracy and efficiency.

The contributions of this work can be summarized as follows:

• IoT Security Framework. We propose a new framework for securing IoT networks

and devices. Taking advantages of the programmable data plane of P4 language,

we aim at developing a universal, highly accurate and efficient solution to identify

malicious traffic flows of multiple IoT protocols.

• Learning Algorithm (Stage 1). We propose a learning algorithm that trains a dilated

Convolutional Neural Network (CNN) with raw packet bytes to set up a traffic clas-

sifier. This approach skips the step of manual feature extraction of OpenFlow based

methods and thus requires minimum data preprocessing.

• Header Field Definition (Stage 2). We develop a method for converting the abstract

features learned in the trained CNN into a particular set of header fields, so that a

proper set of flow rules can be installed at the IoT gateway. This way, the classifica-

tion can be realized as a switch function at the IoT gateway for lower memory cost

and faster processing speed.

• Experimental Datasets. We conduct experiments to create our own new datasets of

IoT traffic and multiple types of attacks. With them as well as publicly available

datasets, we evaluate the performance of the proposed framework and algorithm in

74

Control Plane

P4 Program

Compiler

Data Plane Target

Modify Flow
Entries

BMv2, FPGA, ASIC…

header ethernet_t {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;

}

Header Definitions

table ipv4_lpm {
key = {

hdr.ipv4.dstAddr: lpm;}
actions = {

ipv4_forward;
drop;
NoAction;}

size = 1024;
default_action = drop();}

Tables & Actions

Figure 6.3: The protocol independence and reconfigurability of P4 language.

all aspects. The results show that our method makes proper choices of header fields

achieving a better attack (intrusion) detection accuracy level than state-of-the-art

OpenFlow based methods (performance) while being also able to handle hetero-

geneous IoT protocols (universality). At the same time, the line speed of packet

processing is maintained (efficiency).

The rest of this chapter is organized as follows. Section 6.2 presents our IoT security

framework. Sections 6.3 and 6.4 define and solve the header field definition problem based

on the constructed CNN. The experimentation results are presented in Section 6.5, while

we review our contribution compared to the related works in Section 6.6 and conclude our

work in Section 6.7.

6.2 System Design

The proposed system has two components. The first part is the control plane, an SDN

controller which is a software entity hosted in a node with sufficient computation capacity,

e.g., a conventional cloud server or an edge cloud node. The second part is the data plane,

which can be an IoT gateway. We consider the case that the IoT gateway is programmable

by supporting the P4 language [24].

P4, or Programming Protocol-independent Packet Processors language is designed

with reconfigurability and protocol independence. More specifically, the control plane

(controller) is able to define how a data plane device (switch or gateway) parses a packet

in a programmable and automated way (reconfigurability). First, one or more headers are

75

IoT Gateway - Programmable Data PlaneIoT Devices

Firewall
Match + Action

Routing
Match + Action

Discard

Packet

SDN Controller
Packet ClassifierReport

Unknown
Samples Install Rules

Figure 6.4: The control and data planes of the proposed framework, both programmable.

defined as a list of fields given their positions and widths in bits. Then, a parser works

as a state machine to extract headers, following a series of match+action tables, which is

similar to OpenFlow, except that header fields are not predefined (protocol independence).

The whole workflow is depicted in Figure 6.3.

As shown in [172], a P4-enabled gateway is capable of serving IoT devices of het-

erogeneous network protocols. Our aim is to use the IoT gateway to identify malicious

incoming traffic flows (e.g., from a hijacked IoT device) before they are routed to other

domains and devices. We program the IoT gateway to execute a firewall function before

the routing function. The firewall keeps a match+action table recording the features of

known packets, which are the values of certain packet header fields. These fields will be

checked inside the incoming packets and marked as normal or malicious based on the flow

rules installed in the table. Normal packets will be passed to the routing function without

modifications. On the other hand, actions can be defined to handle the malicious packets,

e.g., blocking them or forwarding them to a honeypot. The flow rules are generated by the

SDN controller, where a classifier is deployed and responsible for judging whether a flow

is malicious or not. The controller is able to convert classification results into header field

definitions and flow rules to install them in the firewall at the IoT gateway either reactively

or proactively. The whole architecture is depicted in Figure 6.4.

Two key problems are required to be solved in the proposed system. First, we need to

find algorithms for classifying packets with high accuracy. Second, P4 match-action tables

should be generated, making classification a data plane function which achieves line-speed

76

packet processing. Besides, the solution we expect should be universal for heterogeneous

IoT protocols, i.e., neither algorithm redesign nor protocol-dependent data preprocessing

is required. In the next two sections, we will formally propose a formulation and a two-

stage solution corresponding to the two key problems.

6.3 Problem Modeling

Assumptions. To model the two problems, we consider a scenario of one IoT network

domain equipped with one gateway along with its SDN controller. This scenario can be

easily extended into a multi-domain or multi-gateway topology by deploying the same

solution in each domain. The gateway is responsible for identifying attacks among all

traffic flows going through it, so that it can block current and future packets of the attack

flow to prevent it from spreading, e.g., a hijacked device outside the domain infecting

devices inside the domain, and vice versa. We assume that the security of the gateway

itself and its SDN controller is not compromised.

Packet Classification. The features that can be used for classifying network traffic can

be divided into two types, the packet-level features (e.g., IP address, TCP port, payload

length), and the flow statistics (e.g., packet count, duration). The programmable data

plane of P4 brings opportunities for defining new packet-level features, not restricted to

OpenFlow’s pre-defined collection, which is particularly important for the IoT network

where heterogeneous protocols coexist. Besides, previous studies like [177] claim several

other merits of learning directly from packet bytes, including the higher accuracy and the

ability to classify encrypted traffic. Therefore, our work is focused on the packet-level

features type of classification.

We use the first N bytes of the packet as features for classification. The packet can be

thus represented by a vector x = (x1, x2, ..., xN) where each element xi ∈ [0, 1] ∀i ≤ N

is a number converted from a byte. If the length of a packet is less than N , zero padding

is applied. A classifier in the control plane should provide a function F (x) judging the

packet. We consider a binary output indicating whether the packet belongs to a normal

traffic flow (i.e., F (x) = 0) or a malicious one (i.e., F (x) = 1). We can directly extend the

method for multiple output values where the gateway takes different actions depending on

the type of attack.

Header Fields Definition. While the control plane can check the bytes inside the

packet one-by-one (and therefore compute the F (x) value), such fine-grained classification

may not be possible in the dataplane (IoT gateway) as this would require to install a huge

77

number of flow rules for all possible combinations of theN bytes. This is not feasible since

it would lead to unrealistic memory cost and latency of lookup and processing packets.

Taking advantage of P4, any substring of packet bytes can be regarded as a header field by

the gateway, based on which flow rules will be generated. Therefore, we can effectively

limit the number and length of flow rules, as well as the associated packet processing

latency, by carefully defining a small number of packet byte substrings as header fields at

the gateway.

Formally, we define the Header Fields Definition H = {hk, k = 1, 2, ..., K} which is

a set of K substrings of bytes. [39] investigates various P4-enabled devices to show that

the number of header fields has an impact on the performance. Therefore, we require that

K ≤ Kmax where Kmax << N so that to ensure a maximum memory cost and packet

processing latency requirement is met. Each element hk = (ak, ak + Lk) is a substring

starting from the ak-th byte of the packet and ending at the (ak + Lk − 1)-th byte, with its

length Lk. These substrings should not overlap with each other, i.e., ak+1 ≥ ak + Lk for

any k, to avoid wasting memory. Unlike the traditional definition of header fields, each

of which contains a specific type of information (e.g., network address or port number),

we do not restrict that every substring defined by our method corresponds to a clear entity.

Instead, we aim for an algorithm capable in learning the meaning and importance of

different substrings, so that it can minimize the requirement of data preprocessing and be

applicable to heterogeneous IoT protocols.

Based on the Header Fields Definition H , the information actually extracted from a

packet x is xH = (xa1 , ..., xa1+L1−1, ..., xaK , ..., xaK+LK−1). Therefore, the packet classifi-

cation executed at the gateway follows a different function from F (x), which depends on

the definition of header fields H . We denote this function by FH(xH). Our goal is to find

proper H and FH(xH) functions which satisfy the constraints mentioned above and are

able to predict the packet classification at a high accuracy.

6.4 Algorithms and Learning Models

6.4.1 Overview

We solve the two problems specified in the previous section in two stages as depicted in

Figure 6.5. In Stage 1, we build and train a neural network (NN) as the packet classifier.

The training is based on raw packet bytes without considering the definition of header

fields. This classifier will be deployed at the control plane. In Stage 2, we calculate

78

Neural Network

Training

Neuron Weights

Ranking

Importance Scores

Data Plane
Header Fields Definition

P4-enabled
IoT Gateway

SDN Controller

Packet Samples for
Online Training

Stage 1

Stage 2

Figure 6.5: Illustration of the proposed two-stage learning approach. Packet classification
is realized by the SDN control plane in Stage 1, followed by header field definition and
implementation at the IoT gateway in Stage 2.

importance scores for each possible substring of packet bytes using the information from

the trained NN (Neuron Weights), and then select non-overlapping substrings with largest

scores to be included in the header field definition, which will be installed at the gateway

(data plane) along with a match+action flow table.

Initially, the NN is trained offline with captured network traces. The trained NN is

then deployed at the controller as the packet classifier. For the data plane, both proactive

and reactive operating modes are available according to different scenarios. In the first

mode, the controller installs both header field definitions and corresponding flow rules

from training data proactively at the gateway. The gateway can therefore process new

incoming packets at the line speed without forwarding them to the controller. In the second

mode, the controller can proactively install header field definitions only, and install flow

rules in a reactive way by replying to the gateway’s queries. This mode incurs less memory

cost in the gateway but increases latency due to the controller-gateway communication

each time when the gateway receives unknown packets.

After the initial offline training, with the gateway sampling new packets and sending

them to the controller, the two-stage process can be repeated in an online manner op-

tionally, as long as the labels of packets can be acquired by the controller as well. The

controller can also dynamically update the header field definition by compiling a new P4

program. All these operations are supported by the P4 specification.

79

6.4.2 Stage 1: Neural Network Structure

We apply methods of supervised learning for the packet classification. In particular, trained

with a labeled dataset (i.e., large amount of packets marked as either malicious or normal),

the classifier should be able to infer the expected output of a new input (the function F (x)).

A Neural Network (NN) [59] is a computing system for supervised learning. It consists

of several hidden layers and an output layer. Each layer is constructed by building blocks

called neurons. For example, if we arrange the neurons of each layer in an array with index

n (corresponding to the byte index of the packet), assign another index i = 1, 2, ..., It for

each layer t and take the packet byte vector x as the input, the output of a neuron in the

first hidden layer is:

c1ni = f(w1;ni · x+ b1;ni) (6.1)

The output of each layer is the input of the next layer. For the neuron in the t-th hidden

layer (t > 1), the output is:

ctni = f(wt;ni · ct−1 + bt;ni) (6.2)

where wt;ni is a 2D vector of trainable weights, bt;ni is a bias term, and f is a non-linear

activation function.

Among various NN structures, we adopt 1D Dilated Convolutional Neural Network

(Dilated CNN) [174] as depicted in Figure 6.6. In each hidden layer t, connections are

local and dilated with step size 2t−1. In other words, each neuron with index i only takes

two rows of neurons with indices i and i + 2t−1 in its last layer as the inputs. Neurons in

the same layer share the same weight values. The output of the hidden layer neurons can

be represented in the following way:

c1ni = f(w1
α · xn + w1

β · xn+1 + b1) (6.3)

ctni = f(wtα · c
t−1
n +wtβ · c

t−1
n+2t−1 + bt), ∀t > 1 (6.4)

where wtα and wtβ are two 1D vectors of trainable weights.

This structure brings two major benefits. First, for any hidden layer neuron ctni, its

inputs are limited in the range between packet bytes xn and xn+2t−1, which means that we

can establish a correspondence between a neuron ctni and a substring (n, n + 2t) follow-

ing the denotation in the last section. Second, the neuron receptive field is 2t, increasing

exponentially with the network depth. With T hidden layers, we can find neurons corre-

80

Packet Bytes

Hidden Layer 1 ……

……Hidden Layer 2

……Hidden Layer 3

……
……

Output

... 192 168 0 1 … … … …

Fully Connected
Layers

Figure 6.6: Structure of the dilated convolutional neural network (Dilated CNN) for packet
classification.

sponding to any potential header field of length 2, 4, 8, ..., up to 2T bytes. In other words,

with a limited amount of layers, we are able to cover a wider range of packet substrings.

This is beneficial in both representing the packet structure better and training the neural

network more efficiently. After convolutional layers, we have fully-connected layers, the

last of which has a single neuron taking the weighted sum of the last hidden layer outputs

as the final result. This structure can be easily extended to multi-class classification, as

long as we set up more neurons in the output layer.

6.4.3 Stage 2: Header Field Definition

In the next stage, we adopt a neural network pruning [186] technique to the trained net-

work. Pruning compresses the neural network by reducing the number of neurons. With

smaller memory and calculating costs, pruning facilitates the processing of NN in IoT sce-

narios [175], where the capacity of devices may be limited. However, besides this benefit,

our main purpose is to deduct an optimal set of header field definition based on the results

of pruning, therefore enabling the line-speed packet processing in a P4-enabled gateway.

Pruning leads to an importance score of each neuron. Neurons with higher importance

scores play a more crucial role in the classification. According to [186], we apply the Inf-

FS [148] algorithm to calculate the importance scores of neurons in the last hidden layer.

Then, the importance scores are calculated for the remaining layers in a backpropagation

manner.

81

Leveraging the one-to-one correspondence between neurons and header fields in the

proposed CNN structure, we extend the notion of importance score from neurons to header

fields. Unlike [186] that suggests to greedily select neurons with highest importance

scores, our problem has additional constraints, e.g., that the header fields should not over-

lap with each other. Therefore, we propose a new problem formulation.

The input of the problem includes the importance scores of all neurons in each hidden

layer t. We denote the importance score of neuron ctni by stni. By summing these values,

we denote the importance score of a potential header field (n, n + 2t) by Sn =
∑

i s
t
ni.

Then, we obtain the following optimization problem:

max
y

Nt∑
n=1

yn ∗ Sn (6.5)

s.t.
Nt∑
n=1

yn ≤ Kmax (6.6)

yn ∗ yn+j = 0, ∀n < N t, j < L (6.7)

L = 2t, N t = N − L+ 1 (6.8)

where y = (y1, y2, ..., yNt) is the vector of variables to optimize, representing all possible

substrings of length 2t in the first N bytes of the packet. The binary element yn indicates

whether to select substring (n, n+2t) in the header field definition (yn = 1) or not (yn = 0).

To solve this problem, we propose to use Dynamic Programming [19]. A Bellman

equation can be easily defined based on two states; K as the amount of selected header

fields and n0 as the starting byte of the latest selected header field. We then have the

following equations:

V (1, n0) = Sn0 , ∀n0 ≤ N t

V (K,n0) = max
n+L≤n0

V (K − 1, n) + Sn0 , ∀n0 ≤ N t, K > 1

Based on the above equations, any V (K,n0) value can be calculated by recursion. The

maximum of our objective function is therefore maxn0≤Nt V (Kmax, n0). As described in

Algorithm 5, an optimal set of header fields H can be selected with reasonable O(Kmax ∗
N) time complexity.

The parameters Kmax (i.e., maximum number of header fields) and L = 2t (i.e., length

of one header field) can be determined according to the capacity of different types of P4-

enabled devices [39]. In general, a tradeoff between accuracy and cost can be achieved by

82

Algorithm 5: Optimal Header Fields Selection
Input: S1, S2, ..., SNt , Kmax, L

1 for n0 ≤ N t do
2 V (1, n0) = Sn0;
3 H(1, n0) = {(n0, n0 + L)};
4 end
5 for K = 2, 3, ..., Kmax do
6 for n0 ≤ N t do
7 n∗ = arg maxn+L≤n0 V (K − 1, n);
8 V (K,n0) = V (K − 1, n∗) + Sn0;
9 H(K,n0) = H(K − 1, n∗) ∪ {(n0, n0 + L)};

10 end
11 end
12 n∗ = arg maxn≤Nt V (Kmax, n);

Output: H = H(Kmax, n
∗)

adjusting these parameters. With fewer or shorter header fields, some different traffic flows

may be regarded as the same one by the gateway, negatively affecting the classification

accuracy. With more or longer header fields, however, it takes larger memory cost to store

flow rules, and may slow down the packet processing in some implementations. In the next

section, we will evaluate the exact impact of these parameters on different performance

metrics.

6.5 Evaluation Results

To demonstrate the benefits of our P4-based IoT security approach, we perform evaluations

using various real traffic datasets. We begin with presenting the datasets and algorithms

that will be later used to generate the evaluation results.

6.5.1 Setup

First, we use the following two publicly-available datasets of IoT network traffic:

• ISCX Botnet 2014 Dataset [15]. This is a collection of botnet traffic traces from

multiple well-known datasets. The types of traffic are mainly HTTP, P2P and IRC.

This dataset is already divided into the training set and test set. The test set has

more diversity than the training set, in order to evaluate the detection of unknown

attacks. It is originally gathered for statistics-based classification and contains a

83

huge amount of packets, therefore we sample 10% of the packets from each flow for

packet-level training. We also randomly modify the IP fields because all malicious

flows are remapped to fixed IP addresses in the original data.

• CICAAGM Android Dataset [87]. This publicly available dataset captures the traffic

of Android applications in real smartphones, including 250 adware, 150 malware

and 1500 benign applications. Besides HTTP, there are also massive HTTPS traces,

a large portion of which is SSL/TLS-encrypted. The raw packet bytes are available

through PCAP files. We sample 1000 successive packets from each class of the trace

for packet-level training and testing.

We also make our own efforts to create two new datasets using network simulators

and real IoT devices we deploy, containing unique threats to IoT devices. These datasets

contain protocols that OpenFlow cannot handle. On the contrary, we will demonstrate that

P4 and our algorithm work well on them.

• Cooja Network Simulator Dataset. [88, 101] analyze different types of attacks in

6LoWPAN networks through the RPL routing protocol with the help of Contiki

operating system and its Cooja simulator. Adopting similar methods, we run sim-

ulations of 10-node IoT networks with random topologies, and set up a malicious

node conducting Version Number Attack and Increased Rank Attack. We collect

packet bytes of both malicious and normal traffic flows to generate our dataset.

• Waspmote IoT Sensor Dataset. We also create a new dataset with measurements

on real IoT devices (not simulator) we deploy. Specifically, we install temperature,

humidity and luminosity sensors on a Waspmote [97] Smart Cities Pro sensor board.

It periodically sends 802.15.4 frames to the gateway containing sensor data. If the

electrical connection from a sensor to the board is impeded, the device will still send

packets in the same format but with the wrong values. This is indeed categorized as a

physical attack on sensors rather than network attack. However, we will demonstrate

that our method is also effective in detecting such unconventional attacks.

In each dataset except the first one which has already been split, we randomly pick

80% of the samples for training, and the remaining 20% for testing. We implement several

state-of-the-art algorithms and make comparisons with our method. In particular:

• Proposed P4-based Method. In Stage 1, we build the deep neural network of the

proposed structure with 4 convolutional layers each with 64 filters and the ReLU

84

activation function [114], followed by two fully-connected layers with 100 and 50

neurons. At each hidden layer, a 0.05 dropout rate is set to avoid over-fitting. We

keep the hyperameters unchanged when training with different datasets. In Stage 2,

we produce the header field definition and install the corresponding flow rules to the

IoT gateway.

• OpenFlow-based Methods. As a comparison, we consider classification methods

based on OpenFlow protocol, representing SDN without programmable data plane.

We limit the features of classification within the predefined header fields of MAC,

IP, TCP and UDP protocols according to the OpenFlow specification. As stated in

[115], multiple machine learning techniques can be applied to these features, among

which we choose two representative methods, Decision Tree (DT) and Support Vec-

tor Machine (SVM).

• 1D Convolutional Neural Networks (1D-CNN). We also consider other deep learning

approaches for packet classification which (similar to our method) take packet bytes

rather than some specific header fields as the input. We implement two 1D-CNN

imitating the structures and hyperameters in [177, 99], denoted by CNN-1 and CNN-

2. These CNNs provide the same type of output as our Stage 1 output. However,

they are not capable in producing a header field definition as Stage 2 of our method

does. In other words, the classification cannot be executed as a switch function for

line-speed packet processing.

We implement DT and SVM models using scikit-learn [129] library, and implement

NNs in TensorFlow [3]. To verify the header field definition calculated by our algorithm,

we also conduct emulations with Mininet [86] and P4 behavioral model software switch

(BMv2) [35]. The experiments are conducted on a desktop computer with Intel Core i7-

7700 Processor, 16 GB RAM and GeForce GTX 1060 graphics card.

We evaluate the performance of the classification algorithms using as metric not only

accuracy, but also precision and recall. We denote the number of correctly identified ma-

licious packets by TP and incorrectly identified ones by FP. We denote the number of cor-

rectly identified normal packets by TN and incorrectly identified ones by FN. The metrics

are calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(6.9)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(6.10)

85

Considering that the datasets have uneven class distributions (where malicious samples

account for around 30% in each dataset, except the Cooja dataset with around 10% mali-

cious samples), we also calculate the F1 score defined as the harmonic mean of precision

and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(6.11)

6.5.2 Classification (Stage 1) Performance

In this subsection, we evaluate Stage 1 of the proposed method. We compare the classi-

fication performance of the proposed dilated convolutional neural network with the two

other CNN structures as well as with the DT and SVM OpenFlow-based methods.

Method Accuracy Precision Recall F1

DT 0.790 0.694 0.659 0.676
SVM 0.773 0.706 0.544 0.615

CNN 1 0.907 0.897 0.816 0.854
CNN 2 0.909 0.903 0.816 0.857

Proposed 0.911 0.904 0.822 0.861

Table 6.1: Performance metrics of the Dilated CNN on ISCX dataset.

ISCX Botnet. We train and test all the algorithms on the ISCX dataset. Table 6.1

shows the accuracy of each algorithm. Compared with methods based on OpenFlow head-

ers, the CNNs (including our approach) that take raw bytes as the input have significantly

better performance. We also find that CNN-based methods outperform other algorithms in

both precision and recall rates, leading to higher F1 score.

Method Accuracy Precision Recall F1

DT 0.890 0.833 0.771 0.801
SVM 0.895 0.933 0.646 0.780

CNN 1 0.882 0.833 0.738 0.782
CNN 2 0.898 0.870 0.760 0.811

Proposed 0.908 0.927 0.736 0.820

Table 6.2: Performance metrics of the Dilated CNN on CICAAFM dataset.

CICAAGM dataset. We perform similar training and testing on the CICAAGM An-

droid dataset, which contains a larger diversity of traffic flows including SSL/TLS en-

crypted ones. The results are depicted in Table 6.2. Although the performance difference

86

ISCX Dataset
CICAAGM Dataset
Cooja Dataset

Pr
ec

is
io

n

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
0.5 0.6 0.7 0.8 0.9 1

Figure 6.7: The precision-recall curve on different datasets.

is not as large as in the ISCX dataset, our algorithm still achieves highest accuracy than the

other algorithms. We note that while the SVM OpenFlow-based method reaches higher

precision, it severely degrades the recall value, leading to a lower F1 score.

Dataset Cooja Waspmote

Method Accuracy F1 Accuracy F1

CNN 1 0.998 0.991 0.995 0.993
CNN 2 0.994 0.971 0.998 0.996

Proposed 0.995 0.973 1.00 1.00

Table 6.3: Performance metrics of the Dilated CNN on other datasets.

Cooja dataset and Waspmote dataset. The Cooja and Waspmote datasets are rela-

tively simple, each with smaller amount of samples and only two types of attacks. How-

ever, the former contains compressed 6LoWPAN headers, and the latter has abnormalities

which can only be identified from the packet payload rather than the headers. Therefore,

the packets are not readable and can no longer be classified by the OpenFlow-based meth-

ods (i.e., DT and SVM).

As shown in Table 6.3, all three CNNs are capable of identifying the RPL routing

attacks and sensor physical attacks with accuracy higher than 99%. The performance

metrics of different methods are generally at the same level. Except being slightly worse

than the CNN-1 in the Cooja dataset, our proposed network has superior performance in

accuracy and F1 score. Especially, it achieves perfect predictions in the Waspmote dataset.

Performance Tradeoff. We are also interested in the tradeoff between the different

performance metrics. In some scenarios, the false alarms must be controlled, otherwise

system failures can happen. To achieve this, we can apply a threshold to the CNN output.

87

Im
po

rta
nc

e
Sc

or
e

0.6

0.7

0.8

0.9

1

Byte
0 25 50 75 100 125

(a) ISCX Dataset.

Im
po

rta
nc

e
Sc

or
e

0.6

0.7

0.8

0.9

1

Byte
0 25 50 75 100 125

(b) CICAAGM Dataset.

Im
po

rta
nc

e
Sc

or
e

0
0.2
0.4
0.6
0.8

1

Byte
0 25 50 75 100 125

(c) Cooja Dataset.

Im
po

rta
nc

e
Sc

or
e

0
0.2
0.4
0.6
0.8

1

Byte
0 25 50 75 100 125

(d) Waspmote Dataset.

Figure 6.8: Distributions of single-byte importance scores in different datasets.

We depict the respective precision-recall curves for different thresholds in Figure 6.7 for

all datasets except the Waspmote dataset where perfect predictions have been reached. We

notice that in all datasets there is a space to increase the precision further at a cost of the

recall.

Main Takeaways. (1) P4-based learning methods with packet bytes as the input can

achieve better classification performance compared with OpenFlow-based learning meth-

ods that take as input predefined header fields. They can also handle heterogeneous pro-

tocols and application layer contents of packets, where OpenFlow-based methods are not

applicable. (2) Our proposed Dilated CNN structure achieves similar or better perfor-

mance than other state-of-the-art CNN approaches that take the same input (packet bytes).

6.5.3 Header Field Definition (Stage 2) Performance

The classification performance benefits in the previous subsection are important but not

surprising. It was expected that taking packet bytes rather than predefined headers as in-

put to the learning algorithm achieves superior classification performance as the classifier

design space is larger. Still, the above results quantified the exact performance improve-

ment we can achieve and verified the suitability of our proposed Dilated CNN structure

compared to other CNN structures.

The main contribution of our work, however, lies on the implementation of the intru-

sion detection function directly inside the data plane (P4-enabled IoT gateway). This is

important because it enables line-speed packet processing that is not available in the other

88

Field Length = 1
Field Length = 2
Field Length = 4
Byte-by-byte

A
cc

ur
ac

y

0.7

0.75

0.8

0.85

0.9

Number of Header Fields
1 2 3 4

(a) Accuracy.

Field Length = 1
Field Length = 2
Field Length = 4
Byte-by-byte

F 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Header Fields
1 2 3 4

(b) F1 score.

Field Length = 1
Field Length = 2
Field Length = 4

N
um

be
r o

f R
ul

es

0

5k

10k

15k

20k

25k

30k

35k

Number of Header Fields
1 2 3 4

(c) Memory cost.

Figure 6.9: Accuracy, precision and memory cost with different header fields selected in
CICAAGM dataset.

learning methods like CNN-1 and CNN-2. To achieve this, Stage 2 of our learning method

uses the trained Dilated CNN to define a particular set of packet byte substrings as header

fields that will be used by the gateway to install flow rules. Therefore, matched packets

will be directly handled by the gateway without requiring to be forwarded to the SDN

controller or another remote firewall function. In the sequel, we elaborate on the header

field definition and corresponding classification performance achieved by Stage 2 of our

algorithm.

Profiles of Importance Scores. Following the procedure described in Section 6.4.3,

we calculate the importance scores for all substrings of length 1, 2, 4, 8 and 16 in the first

N = 128 byte positions. For example, Figure 6.8 depicts the results of importance scores

(after normalization) for every single byte.

The profiles of the datasets show different and complicated tendencies. However, there

are also some intuitive results:

• ISCX dataset (with IP addresses masked). The algorithm highly scores both TCP/UDP

fields and some positions in the application layer.

• CICAAGM Android dataset. The curve has three peaks in the IP address field, the

89

T
hr

ou
gh

pu
t (

M
bp

s)

0

10

20

30

40

50

60

70

80

Baseline
(Forwarding)

L=2
K=2

L=2
K=4

L=4
K=2

Figure 6.10: Throughputs with different header field definitions.

TCP port field and application layer. This distribution implies that the classifier

makes predictions based on information from headers of multiple network layers,

which is an advantage of adopting SDN and P4. For example, in the case where

the packet payload is SSL/TLS encrypted, even if the classifier is not able to parse

application-layer information, it is able to make predictions based on TCP/IP head-

ers with a high accuracy. On the other hand, the application-layer headers reveal

much information in those packets without encryption.

• Cooja dataset. High importance score is given to 97-th byte. It is reasonable be-

cause all attacks occur through DODAG Information Object (DIO) messages [88]

of 96 bytes. The algorithm takes the packet length into account when making clas-

sification.

• Waspmote dataset. The algorithm successfully assigns highest importance scores to

Byte 31, 32 and Byte 36, 37 in every 802.15.4 frame which store the the sensing

data in question.

These distributions demonstrate that the importance scores calculated by our method

successfully identify header fields that are crucial in classifying packets.

Impact of Header Fields on Accuracy. The proposed Dynamic Programming algo-

rithm (Algorithm 5) will select as header fields the substrings of the packet bytes that have

the highest importance scores. Taking the CICAAGM Android dataset as an example,

Figure 6.9(a) and 6.9(b) show the accuracy and F1 score as we increase the number of

header fields we match in the gateway node (Kmax equal to 1, 2, 3 or 4) and for different

header field lengths (L equal to 1, 2 or 4). The byte-to-byte approach corresponds to the

packet classifier in Stage 1 of our method described in the previous subsection. Intuitively,

90

the performance improves with the number of header fields. According to the results, it is

not necessary to have a large number of header fields. With three 2-byte-long fields or two

4-byte-long fields, the classification is almost as accurate as the byte-to-byte approach.

The difference is around 0.1% in accuracy values.

Impact of Header Fields on Costs. Next, we examine the costs associated with the

header field definition, measured by the number of flow rules stored in the gateway node.

Since more rules lead to a larger memory occupancy and more queries to the control

plane, we need to keep their number as low as possible. Figure 6.9(c) shows that the

number of rules required for classification increases with both the length and the number

of header fields selected. Therefore, a tradeoff exists between the accuracy and cost.

The balance point can be achieved by adjusting the values of Kmax and L parameters in

our algorithm. Notice that although the number of all possible values of a header field

increases exponentially with its length, the growth is not drastic in practice. From the

evaluation results, the tendency is closer to a linear growth.

We need to emphasize that the proposed intrusion detection mechanism does not incur

much additional costs in other aspects such as the network latency and throughput, because

it only adds an one-time table lookup in the packet processing procedure. To verify this

intuition, we create a virtual network with one BMv2 switch and two hosts using the

Mininet emulation platform. We implement several sets of header field definitions and

flow tables similar to the results in Figure 6.9. We use this virtual network to measure

the maximum throughput achieved by our mechanism for different K and L choices and

compare it with the baseline L2 forwarding mechanism that does not perform any intrusion

detection. The results are depicted in Figure 6.10. We notice that the maximum throughput

is reduced by less than 10% compared with the baseline, i.e., the line speed of packet

processing is maintained. In the same scenario, we have another approach that forces

packets to go through an application-layer single-thread analyzer based on Scapy [22]

before being forwarded, which represents the case if adopting solutions similar as CNN-

1 and CNN-2 in the last subsection. In this case, no larger throughput than 1 Mbps is

achieved. Therefore, it is extremely beneficial to implement the intrusion detection as

a switch function inside the IoT gateway with the help of the programmable data plane

feature.

Optimal Selection of Header Fields. Last but not least, to demonstrate that the im-

portance scores are proper metrics for the data plane definition, we compare the optimal

selection of header fields in our algorithm with random selections. As shown in Table 6.4,

with the same number of selected header fields, the performance of our algorithm is sig-

91

Method Optimal Random

of Fields Accuracy F1 Accuracy F1

1 0.740 0.597 0.689 0.325
2 0.876 0.757 0.765 0.490
3 0.907 0.818 0.775 0.557
4 0.907 0.818 0.802 0.639

Table 6.4: Comparisons between the proposed algorithm and random selected header
fields. (The length of each field is 2 byte in both cases.)

nificantly better, with more than 10% accuracy and around 20% more F1 score than the

random selection.

Main Takeaways. A similar level of packet classification accuracy as the byte-to-byte

approach can be achieved by merely matching a small number (two or three) of header

fields appropriately selected based on the importance scores in the associated neural net-

work. When implemented as a P4 switch function at the IoT gateway, this approach re-

quires low memory and latency cost and incurs small throughput loss for table lookup

(less than 10%, i.e., line speed is maintained), while alternative application-layer intrusion

detection mechanisms would cause a multi-fold throughput reduction to achieve the same

level of functionality.

6.6 Related Work

Security problems of IoT devices have attracted wide attention. [8] and [5] provide com-

prehensive surveys of IoT attacks and classify them into various types. New types of

attacks different from traditional networks threat IoT security, including a variety of attack

methods in IoT protocols such as Zigbee and 6LoWPAN [30, 134, 101], as well as physical

attacks targeting the sensors and actuators [49, 159]. These works suggest adding authen-

tication mechanisms to the devices. However, a network-level security solution is also

necessary for preventing malware from spreading among vulnerable IoT devices, such as

botnets [9]. Our firewall implementation at the IoT gateway complements the device-level

authentication for a more powerful security guarantee.

Network-level security approaches can be grouped into two categories. The first cat-

egory applies machine learning methods on specific packet headers [93]. For example,

[116] applies learning on 6LoWPAN headers. Kalis [106] provides knowledge-driven so-

lution detecting IoT attacks, while DÏoT [119] and IoT Sentinel [107] identify the IoT

92

device types by learning. Though these methods are effective, they usually require pre-

knowledge from protocol definitions or device manufacturers. Due to the large diversity

of IoT devices and protocols, we explore another direction leading to a more universal

solution for heterogeneous IoT systems in case that such pre-knowledge is not available.

The second category classifies packets based on raw packet bytes rather than header

fields. Machine learning methods, especially neural networks are also widely applied

for it, such as [177, 99, 178]. These approaches have high accuracy and are not limited

to specific protocol or device types. However, they can only be deployed in a remote

server/host rather than a switch (IoT gateway). Therefore, packets cannot be processed at

the line speed.

Our work focuses on combining the merits of the two approaches above, developing

intrusion detection as a switch function at the IoT gateway and at the same time not relying

on assumptions of device and protocol types. Benefiting from their programmable, flexi-

ble and efficient packet processing capabilities, recent developments in SDN make the im-

plementation of such switch function possible. For example, Sensor OpenFlow [100] and

SDN-Wise [51] extend OpenFlow protocol in this direction. Besides, there is an increasing

research interest in deploying and managing P4 switches. [98] aims at aggregating sensor

data from multiple packets by P4 header operations. [172] achieves multi-protocol switch-

ing of IoT services by deploying P4-enabled switches. Our proposed security framework

is a similar approach which leverages P4 for IoT scenarios.

6.7 Summary

In this chapter, we studied new opportunities for enhancing security in the IoT network

brought by the programmable data plane. Namely, we proposed a two-stage deep learning

method based on P4 language that first trains a neural network as the packet classifier

and in a later stage selects packet byte substrings as header fields and installs appropriate

flow rules to realize intrusion detection functionality inside the IoT gateway. Evaluation

results on publicly available and newly developed datasets of IoT scenarios demonstrated

the performance benefits and universality of the proposed method compared with state-of-

the-art OpenFlow-based methods. Importantly, the results verified that a more favorable

tradeoff between detection accuracy, memory cost, latency and throughput can be achieved

by the proposed method.

93

Chapter 7

Local Intelligence: Binarization
Techniques towards Scalability

In this chapter, we continue to discuss the usage of the programmable data plane in the IoT

security application. Apart from handling heterogeneous protocols, the local intelligence

brought by the programmable data plane devices also has great potential as a scalable so-

lution for efficient security-aware packet processing, especially when combined with the

distributed control plane approach. Based on this concept, we extend the architecture pro-

posed in the last chapter for scenarios of larger scales, which may contain multiple edge

network domains. We implement another learning-based algorithm, the Binarized Neural

Network (BNN) directly in the data plane for high-efficient packet classification. We also

address the scalability issue by adopting a federated learning approach which is capable of

training the learning model across multiple edge domains with small communication over-

heads. We develop a prototype using the P4 language and perform evaluations. The results

demonstrate that a multi-fold improvement in latency and communication overheads can

be achieved compared to state-of-the-art learning architectures.

7.1 Introduction

As discussed in the last chapter, machine learning algorithms such as neural networks are

widely adopted for classifying incoming packets, which can be deployed at the network

layer as a powerful tool to secure the IoT networks. Taking the values of packet header

fields and flow statistics as input features, these algorithms are able to learn the pattern

of attacks from collected network traces and make predictions for future inputs with high

accuracy.

94

However, in the traditional network architecture, the data plane devices only execute

simple functions such as specific packet header fields matching and table lookup. When an

unknown packet arrives at a switch, it will be forwarded to a remote server or host where

the learning algorithms run. The delay incurred makes it unlikely to process packets at a

high speed. In addition, a large number of flow rules will be generated in this procedure

and have to be stored in the switches, whose memory is usually limited and becomes

another bottleneck [84].

The development of SDN and the programmable data plane concept bring new op-

portunities towards addressing the above challenges. SmartNIC products and P4 lan-

guage [24] enhance the capability of the switch itself, which is now capable of offloading

services that are traditionally run in remote servers with general (and powerful) CPUs [170].

Binarized Neural Network (BNN) [36] can be used to deploy machine-learning-based

packet classification in the form of in-network services inside the switches. BNN com-

presses all the weights of a neural network into single bits, therefore significantly reducing

the computation and memory requirement of performing the inference to a level that a

data plane switch may afford. It also converts all computations (e.g., real-valued dot pro-

duction and activation functions) into bitwise operations, which are supported by typical

programmable data plane switches.

While the use of BNNs can expedite the inference process by enabling the offloading

of it directly on the data plane switch level, there still exist challenges about the training

process of these learning models. It is unclear how to train the BNNs in a scalable man-

ner e.g., in large networks with many interconnected edge domains, many gateways and

switches. When a new attack pattern appears only in specific domains, other gateways

should also be informed, even if the attacker’s packets do not go through them, so as to

make more efficient training decisions in future. Meanwhile, the communication over-

heads either among gateways or between the gateways and the cloud being responsible for

the training should also be considered. Even worse, it is possible that edge domains are

controlled by multiple parties who do not want to share their network traces with others

for training, since the information leak itself is another security threat.

Federated learning [104] is a technique suitable for online training in this scenario,

which aggregates local weight updates from each gateway without asking their collected

packets, and then calculates new model parameters for gateways. We explore a novel

way of combining federated learning and BNN to set up a scalable packet classification

architecture with high performance and low costs while preserving the privacy of network

traces.

95

Specifically, we make the following contributions:

• We propose a learning framework for packet classification combining BNNs and

federated learning achieving high accuracy with low memory and communication

costs. To the best of our knowledge, this is the first work combining these concepts

together.

• We design an architecture based on programmable network switches for providing

security service to multi-party edge device owners while performing packet classi-

fication at the line speed of the switches and updating learning models in a scalable

manner.

• We develop a prototype of the proposed architecture in P4 language and evaluate its

performance and costs in a network testbed with real devices and traffic traces. We

find that a multi-fold improvement in latency and communication overheads can be

achieved compared to state-of-the-art learning architectures.

The remainder of this chapter is organized as follows. We describe the main chal-

lenges of the packet classification at the network edge and propose a system architecture

in Section 7.2. In Section 7.3, we describe the learning model inference and training

mechanisms, as well as the federated learning framework. Section 7.4 demonstrates how

such architecture and mechanisms are implemented as a prototype and evaluates its per-

formance. We discuss our contribution over related works in Section 7.5 and conclude the

chapter in Section 7.6.

7.2 System Design

In this section, we describe the architecture design of the proposed system for network

security. The system consists of a central cloud and several edge network domains. For

each domain, there is a gateway node responsible for forwarding packets from and to

the devices of that domain. It also performs packet classification to identify attacks from

normal traffic flows. Each gateway is SDN-enabled with separated control and data plane

i.e., an edge controller and a switch. Both planes are programmable. Previous works have

shown the feasibility and benefits of this type of gateway design and implementation for

edge networking scenarios [172]. In this work, we make a step further and propose specific

mechanisms for effective packet classification achieving high accuracy with low memory

96

and communication costs. We first list a number of challenges we need to address before

presenting the proposed mechanisms.

7.2.1 Challenges

A high-performance architecture for packet classification at the network edge has multiple

requirements:

• High Accuracy & Low False Alarm Rate. The gateway should be capable to identify

attacks from normal flows. Besides, the false alarms (normal packets incorrectly

classified as attack packets) must be kept to a low rate, otherwise normal packets

may be blocked and network functions will be hampered.

• Line-Speed Packet Processing. The gateway should perform the packet classification

by itself instead of forwarding packets to a remote host or server and waiting for

reply. This requires the classification algorithm (inference process of the learning

algorithm) to be lightweight enough so that the gateway can run it locally in real

time.

• Model Updates. An edge domain can be highly dynamic with new devices joining

the network and new traffic flows generated over time. The gateway should be able

to use the new network traces to improve the classification algorithm, i.e., re-train the

model over time. The training task can be offloaded to the control plane or remote

cloud server, but the updated model must be finally downloaded to the gateway data

plane.

• Scalability and Privacy. It is common in an edge networking scenario that the

amount of devices and domains is large. A solution can hardly scale up unless

the communication overheads between the cloud server and gateways during train-

ing can be controlled in a reasonable manner. In addition, devices of different edge

domains may belong to different owners who are not willing to share their network

traces for training.

7.2.2 Design Choices

In order to meet all requirements above, we choose the binarized neural network (BNN)

and federated learning as the main components of our architecture. We describe each

component in the following, as depicted in Figure 7.1.

97

Gateway Data Plane (Programmable Switches). The data plane refers to a packet

forwarding device with programmability such as P4-enabled switches, SmartNICs and FP-

GAs. A BNN is deployed in each gateway’s data plane for classifying incoming packets.

The data plane extracts certain bits from incoming packet’s header as the BNN input and

a binary output (i.e., attack or normal traffic) is acquired by a series of bitwise operations.

After this inference process, the gateway performs ordinary packet forwarding for normal

traffic and is able to send attack samples to the control plane if online training is active.

With both the classification and forwarding functions inside the data plane, line-speed

packet processing can be achieved.

Gateway Control Plane (Edge Controllers). Each gateway is managed by a separate

edge controller with a general CPU or GPU. The controller may be deployed locally in

the gateway or in another host within the same domain. The controller maintains a neural

network with the same structure as in the data plane, except that the weights and activation

functions are not binarized. This neural network is used for re-training the classification

algorithm over time by performing backward propagation with the new network traces

collected by the data plane. The controller also keeps an API writing weight values to the

data plane, and an API communicating with the cloud server for federated learning. The

detailed methods will be introduced in the next section.

Cloud Server. For scalable training of the classification algorithm, a federated learn-

ing technique [104] is deployed in the cloud server. The federated learning can be regarded

as a service provided by the cloud, and each gateway can choose whether to subscribe to

this service, decided by its owner. Each gateway subscribing to the service, after each

epoch of local training, it sends the local updates to the cloud that acts as the aggregator.

When the aggregator receives messages from all the gateways, it calculates the new model

weights based on the local updates and broadcasts the new model weights to the gateways.

The procedures of BNN inference in the data plane, model training in the control

plane and weight aggregation in the cloud as well as the implementation details of these

mechanisms will be described in the next sections.

7.3 Problem Modeling and Algorithms

In this section, we propose a new packet classification problem formulation which takes

multiple edge domains into consideration and describe how we adopt BNN and federated

learning techniques to solve it.

98

Gateway #1

Data Plane (Programmable Switch)
BNN Inference

(Forward Propagation)

Control Plane (General CPU)
Local Training

(Backward Propagation)

Benign:
Forward

Samples for
Online Learning

Packets

Gateway #2

Data Plane

Control Plane

IoT Devices

Cloud

Aggregation

Local
Update New

Weights

Attack:
Discard

Figure 7.1: An architecture deploying BNN and federated learning for network security at
the edge.

7.3.1 Problem Formulation

We consider a system of a cloud server c and N edge network domains. Each domain con-

tains a gateway which is the pair of a data plane switch and its edge controller (collocated

with the switch or hosted in a different device within the same domain). The set of all

gateways is denoted by N.

A data plane switch is able to parse headers of different protocols contained in a packet

and determine where the packet should be forwarded (or blocked) according to specific

header fields, which can be regarded as packet-level features. The switch may also use

flow-level features such as the packet/byte count of a flow to make appropriate forwarding

decisions. It is straightforward to represent both types of features by a bit string. Therefore,

given a group of features supported by the gateway, we can concatenate them with a fixed

sequence to get a 1D vector. Each element of the vector is binary, i.e., either −1 or +1.

We denote this vector as x0, which is the input for the packet classification.

The purpose of packet classification is to find a function ŷ = fn(x0) at each gateway

n ∈ N, where ŷ is a 1D binary vector indicating the prediction of the packet type. For ex-

ample, as a simple case, ŷ has only one binary element, taking value of +1 if the incoming

packet belongs to a normal traffic flow, or −1 if it belongs to an attack.

99

Algorithm 6: Inference Process
Input : x0: binary input sample

W b
n,l: binary weights of layer l in gateway n’s data plane

Output: y: binary prediction
1 for l = 1 : L− 1 do
2 xl ← sign(XnorDotProduct(xl−1,W

b
n,l))

3 end
4 y ← sign(XnorDotProduct(xL−1,W

b
n,L))

7.3.2 Inference: Binarized Neural Networks

To achieve line-speed packet processing, we require that an incoming packet is classified

directly in the gateway instead of forwarded to the edge controller or any other remote

server. In other words, each gateway n executes fn(x0) in its data plane independently

without help from either its edge controller or gateways of other domains.

Neural network is one of the most popular methods for packet classification. However,

it requires a large amount of dot product operations on real-valued vectors, as well as acti-

vation functions which are usually non-linear. Originally designed for packet forwarding,

most data plane devices do not support these operations. To overcome this difficulty, we

deploy BNN [36] that has weights of only binary (+1 or −1) values and sign function

as the activation function. More specifically, consider a neural network with L fully-

connected layers. We denote the neuron weights of layer l by a 2D vector W b
n,l and denote

the input of this layer by xl−1. Then, the output of layer l is:

xl = sign(xl−1 ·W b
n,l) (7.1)

If both xl−1 and W b
n,l are binary vectors, this operation is equivalent to the Hamming

weight of two bit strings’ XNOR. Similarly, the whole inference procedure of L layers is

described in Algorithm 6. In the next section, we will demonstrate how we implement it

completely in a programmable data plane device.

7.3.3 Training: Federated Learning Technique

To classify packets with high accuracy, a neural network needs to be trained in order to get

optimal weights. Although BNN is efficient when performing the inference, it cannot be

trained directly because gradients cannot be calculated from binary functions. We adopt

a similar method as [36], which keeps the real-valued weights denoted by Wn. When

100

calculating the loss function by forward propagation, binary weights are used. However,

during the backward propagation as the next step, real-valued gradients are calculated and

applied for the weight update. In our approach, we store Wn and perform the backward

propagation in the edge controller of the gateway n, leaving the data plane for binary for-

ward propagation only. Besides this one-time training, it is also possible for the data plane

to report the inference results of incoming packets to its controller in real time, so that

training can be performed again over time in the controller to improve the classification

accuracy.

[143] suggests that replacing the output layer with real-valued weights and activation

functions during the forward propagation will positively impact the accuracy in practice.

Such improvement is also possible in our architecture. The data plane can send to the

controller the output bit string of its BNN’s last hidden layer and make the controller

finish the calculation of the output layer using the real-valued weights. The details of the

interaction between control and data planes will be described in the next section.

So far, we have discussed the BNN training within one edge domain. In a network with

N domains, each domain’s gateway may receive different packet samples. In order to learn

more comprehensive attack patterns, we adopt federated learning [104] across all domains

by connecting all gateway controllers to a cloud server. In federated learning, each gateway

calculates the weight gradients with a batch of local input samples and sends the local

updates to the cloud. Receiving updates from all gateways, the cloud will aggregate them

and announce new weight values.

Scalability of federated learning is one of our main concerns. With a large number

N of domains, the communication overheads between controllers and the cloud are not

negligible if each controller reports all its real-valued weight updates in every learning

batch. To save bandwidth, we take another binarization approach, SignSGD[18]. Ac-

cording to this method, each gateway now reports the 1-bit sign of local updates. Then,

the cloud will have a “majority vote” and announce the result, which are also single bits.

More specifically, we denote a local update of gateway n by gn, then the new weights after

communicating with the cloud are calculated by:

W t+1
n = W t

n + δt ∗ sign[
N∑
n=1

sign(gn)] (7.2)

where δt is the learning rate. Both down-link and up-link messages during federated learn-

ing are compressed to single bits, while the convergence persists as proven in [18]. The

101

Algorithm 7: Training Process
Input : Xn, Yn: batch of inputs and labels trained at gateway n

L(Ŷn, Yn): loss function
W t
n: real-valued weights in gateway n’s control plane

W b,t
n : binary weights in gateway n’s data plane

δt: learning rate
Output: W t+1

n ,W b,t+1
n : updated weights of each gateway

1 for n ∈ N do
2 Ŷn ← ForwardPropogation(X,W t

n,W
b,t
n)

3 gn ← BackPropogation(L(Ŷn, Y),W t
n)

4 end
5 (At the cloud) ∆W ← δt ∗ sign[

∑N
n=1 sign(gn)]

6 for n ∈ N do
7 W t+1

n ← W t
n + ∆W

8 W b,t+1
n ← sign(W t+1

n)

9 end

complete BNN federated learning process is described in Algorithm 7.

Intuitively, SignSGD is expected to cooperate well with BNN because W b
n will not

change unless the update to Wn is large enough, i.e., from a negative value to a positive

one or the other way around. Updates without impact on W b
n will become a waste of

resources. On the other hand, (7.2) appears to be a suitable way of updating. We will

further show the efficiency of this proposed method in the evaluation section.

7.4 Evaluation Results

In this section, we deploy the proposed architecture and algorithms in a network testbed

and evaluate them with a mixture of emulations and real device experiments to demonstrate

the performance and costs in multiple aspects.

7.4.1 Testbed Setup

As indicated in the previous sections, the BNN simplifies the calculation process and there-

fore can be supported by different types of data plane devices with programmability. We

choose the representative P4 language and its BMv2 [35] software switches to develop our

prototype. The details and some crucial codes are presented in Appendix D.

We set up a network testbed containing multiple desktop computers with Linux oper-

102

ating system, connected through Ethernet cables. Each domain as well as the cloud server

is represented by one computer. Each domain contains multiple hosts and one gateway,

which are deployed in a Mininet [86] virtual network. The BNN implemented inside the

data plane contains one fully-connected hidden layer with 120 neurons and a single-neuron

output.

We consider the following publicly available datasets containing network traces to train

and test the packet classification algorithm.

• CICIDS2017 [156]. This dataset has a labeled record of multiple types of attacks

and benign flows. Statistics are summarized for each flow. We take two thirds of

records for training and the remaining for testing. We convert the layer-4 destination

port, bidirectional total amount of packets and bytes into a 144-bit input vector to

the BNN. All these statistics can be easily acquired by a P4-enabled switch.

• ISCX Botnet 2014 [15]. This dataset collects heterogeneous botnet and malware traf-

fic in realistic scenarios as well as non-malicious traffic. Its test set contains larger

diversity than the training set to evaluate whether an algorithm is able to handle un-

known traffic patterns. For the evaluations, we replay the TCP and UDP flows in this

dataset to the gateway. Different from the last dataset, we choose a very common

group of packet-level features, 5-tuple (IP addresses, layer-4 protocol and ports) and

IP packet length as a 120-bit input vector.

7.4.2 Performance of Inference

First, we concentrate on Algorithm 6 and evaluate the classification performance within

the scope of one domain and one gateway. Ignoring the federated learning method tem-

porarily, we conduct an offline training on the gateway’s BNN with the complete dataset

and Adam [78] optimizer. For comparison, we also adopt other state-of-the-art learning

algorithms, including the decision tree (DT) and linear support-vector machine (SVM)

methods implemented by scikit-learn [129], as well as another neural network (denoted by

NN) having the same structure as our BNN except that the activation function is non-linear

(sigmoid function) and all weights are real-valued with 32-bit precision. Comparison with

this NN will indicate if the binarization leads to performance loss.

We measure similar metrics as the last chapter, which are accuracy, precision, recall

rates and F-1 scores that characterize the performance of inference.

Flow-Level Classification. Table 7.1 contains our measurement of accuracy, precision

and recall rates on CICIDS2017 dataset, where algorithms classify a flow based on several

103

statistics. We observe that the real-valued NN has the same level of performance with DT.

Our proposed BNN method has only slightly lower accuracy (0.6%) after the binarization.

It also behaves better than SVM. At the same time, the BNN compresses the memory

required for weight value storage to 1/32 compared with the real-valued NN and makes

it possible to run the algorithm as a data plane switch function (at the line speed of the

switches). Besides, although DT has a good performance here, it lacks an effectively

training algorithm in a distributed manner [12]. In contrast, we will demonstrate how the

BNN can be trained across different domains using the federated learning framework in

the next subsection.

Method Accuracy Precision Recall F1

BNN 0.983 0.966 0.963 0.965
NN 0.989 0.967 0.987 0.977
DT 0.989 0.962 0.993 0.977

SVM 0.957 0.889 0.937 0.913

Table 7.1: Performance metrics of BNN on CICIDS2017 dataset.

Packet-Level Classification. While we have shown that our method is valid when

performing classification based on flow statistics, we now concentrate on the packet-level

features, i.e., matching on header fields, which permits the switch to react to incoming

packets in real time. This is the major use case of the proposed method as a switch func-

tion. We measure performance metrics on the ISCX dataset with such packet-level features

as inputs in Table 7.2. As in the previous table, we observe that the binarization incurs mi-

nor accuracy loss only (1.05%). Besides, BNN behaves better than both DT and SVM (6%

and 7% more accuracy) under this setting.

Method Accuracy Precision Recall F1

BNN 0.945 0.945 0.766 0.846
NN 0.953 0.992 0.767 0.865
DT 0.900 0.735 0.767 0.751

SVM 0.890 0.700 0.763 0.730

Table 7.2: Performance metrics of BNN on ISCX dataset.

A high recall rate is especially important for packet classification, since the incorrect

blockage of non-malicious traffic (false negatives) may hamper normal network function-

alities. Therefore we also measure the precision and recall rates in Table 7.2 and calculate

the F-1 score, which shows a similar tendency as the accuracy performance.

104

R
ec
al
l

0.7

0.8

0.9

1

Precision
0.2 0.4 0.6 0.8 1

Figure 7.2: The precision-recall curve.

Moreover, by adjusting the threshold of the Hamming weight calculated in the output

layer, a tradeoff can be achieved as depicted in Figure 7.2, which means that a better

(higher) recall rate can be acquired at a cost of sacrificing some precision.

Packet Processing Latency. We next examine how the line-speed packet classifica-

tion can be achieved in our proposed architecture. We send a subset of the ISCX dataset

containing 2000 successive packets from a host to the gateway. As described in last sec-

tion, the gateway data plane (the programmable switch) keeps both the BNN and a flow

table matching the source IP addresses and TCP/UDP ports of incoming packets. In order

to measure the network latency of every packet correctly, the switch marks the packets

of malicious flows in the DSCP field instead of dropping them. Figure 7.3(a) plots the

distribution of network latency of each packet. A small portion (around 5%) of packets

are processed with a larger latency, having an order of magnitude of 10 ms. These are

unknown input samples the gateway encounters for the first time without having a table

entry, and therefore the switch uses the BNN to process them. The remaining 95% packets

are processed with a much smaller latency (less than 2 ms), because they just require a

one-time flow table match operation.

We next focus on the latency caused by running BNN in the control plane, which in-

volves more complicated calculations. We deploy an alternative architecture (Scheme II

in Figure 7.3(b)) where the neural network is deployed in the edge controller within the

same domain. In this case, the data plane switch has to forward an unknown packet to the

controller before making forwarding decisions. This is similar to the traditional intrusion

detection approaches. To evaluate the performance of the two different architectures, we

disable the flow table and make the BNN to process all packets. The box plots of latency

are depicted in Figure 7.3(c). We notice that both the average value and the variation of

packet processing latency are lower when deploying the BNN directly in the data plane.

105

La
te

nc
y

(m
s)

1

10

100

Packet Index
0 500 1000 1500 2000

(a) Latency distribution.

Programmable
Switch

Scheme I

Scheme II

Incoming
Traffic

①

②
③

Programmable
SwitchIncoming

Traffic
①

⑤

Edge Controller

③

②

④

Forwarding
Only

(b) Different architectures.

La
te

nc
y

(m
s)

0

10

20

30

40

50

60

70

Data Plane Controller Controller
(5 ms)

Controller
(10 ms)

(c) Latency of processing unknown
samples.

Figure 7.3: Packet processing latency evaluations of BNN inference as a switch function
in the data plane.

Moreover, unlike the emulation environment, there is usually also propagation delay be-

tween the data and control planes in reality. Therefore, we introduce extra delay at the

link of the control path (the third and forth box plots). As a result, the packet processing

latency increases accordingly, demonstrating further the efficiency of our programmable

data plane approach.

Main Takeaways. (1) The proposed BNN method performs packet classification with

high accuracy based on both flow-level (flow statistics) and packet-level (header fields)

features. (2) The BNN method outperforms several state-of-the-art learning methods in

accuracy and F-1 score, with only slight performance loss during the binarization. (3)

Implementing BNN in the data plane as a switch function achieves faster packet processing

speed (line speed) than traditional approaches that deploy similar functions in a remote

host.

7.4.3 Performance of Federated Learning

Having shown the performance of the proposed architecture within a single domain, we

now extend the scenario to a multi-domain network and evaluate the federated learning

106

Av
er

ag
e

A
cc

ur
ac

y

0.6

0.7

0.8

0.9

1

of Domains
2 3 4 5 6 7 8

Federated Learning
Local Learning
Offline Learning

(a) Accuracy of different learning schemes.

2 Domains
4 Domains
6 Domains
8 Domains

R
el

at
iv

e
O

ve
rh

ea
d

(%
)

0

1

2

3

Batch Index
0 250 500 750 1000

(b) Convergence and control message overhead.

Figure 7.4: The (a) accuracy and (b) control message overheads during federated learning
with the network scaling.

method (Algorithm 7). We assume that there are N domains each containing a gateway

with the same P4 program. Correspondingly, the dataset is split into N subsets, and each

gateway can only get access to one of them.

Accuracy with Distributed Training. First, we consider a case without federated

learning (denoted as local learning), where each gateway does not connect to the cloud

and is trained based on its subset only. We evaluate the trained BNN in each domain’s

gateway with the original test set. The average accuracy is depicted by red bars with

cross texture in Figure 7.4(a), which severely degrades (less than 80% in the worst case

compared with 94.5% when training with the complete dataset). On the other hand, if

the federated learning described in Algotihm 7 is adopted during training, we can get an

accuracy (blue bars in Figure 7.4(a)) which is almost as good as the offline trainig with the

complete dataset. Such conclusion holds with different N values.

Communication Overhead. Although federated learning makes it possible to have a

scalable solution for training gateways in multiple domains, the communication overhead

of both uploading (gateways sending local updates) and downloading (the cloud announc-

ing the aggregated update) will be a problem, especially when there is a large amount of

107

domains, which is the reason why we apply the binarization technique the second time

during this communication. We analyze two types of traffic overheads; between the cloud

and gateway controllers, as well as between each gateway’s control and data planes.

When analyzing the overheads, we compare with traditional federated learning ap-

proaches, where local updates are updated with real values usually represented by 32 bits.

Then, the cloud will aggregate updates by calculating the average values. It will broad-

cast the aggregated weight updates also in 32 bits. It is straightforward that the SignSGD

method we adopt will significantly reduce the traffic overheads between the cloud and

each edge controller, because only a single bit for every weight is required in our ap-

proach, leading to 1/32 up-link traffic overhead. The same analysis can also be applied

for down-link overhead.

The control message overhead from a gateway controller to the data plane switch up-

dating the binarized neural weights also decreases. Another benefit of replacing the real-

valued weights with single bits is that the controller does not need to send a control mes-

sage if all binarized weights of the same neuron remain unchanged after training with a

new batch. Therefore, less messages and overheads are required when the BNN converges.

In Figure 7.4(b), we plot the control message overhead between all pairs of control and

data planes during the first one thousand batches of federated learning. With the network

converging quickly after training with 500 batches, the overhead reduces to less than 0.5%

compared with the case that we use the real-valued NN and traditional federated learning

method.

Main Takeaways. The proposed architecture enabled by federated learning leads to

(1) much more accurate classification compared with training each gateway independently,

and (2) small traffic overheads in communications between the cloud and edge controllers,

as well as between the control and data planes.

7.5 Related Work

Learning Methods. Machine learning has been widely used for packet classification and

intrusion detection such as approaches in [177] [99] promising high accuracy. However,

a remote host or server is typically required to run the learning algorithm, introducing

additional latency and preventing packets from being processed at the line speed of the

switches. This is true even for the SDN-based learning methods [7] where learning is

performed in the control plane (SDN controller) and the data plane (switches) only plays

the role of flow table storing and matching. To overcome this limitation, we seek for a data

108

plane-compatible algorithm for higher processing speed.

Binarized Neural Networks. BNN is a type of neural network with only binary

weights and activation functions [36], the inference process of which can be converted into

bitwise operations. [143] demonstrates that BNN can achieve much faster speed and cost

less memory while maintaining a high level of accuracy. Such features make it suitable for

embedded devices with limited capacity [102]. [161] and [162] attempted to implement

BNN in smart network devices. We make similar attempts while also performing realistic

networking tasks, i.e., packet classification. In addition, we propose an online training

scheme, which is scalable by adopting federated learning techniques.

Distributed / Federated Learning. For better scalability, neural networks can be

trained in a distributed manner. Furthermore, the concept of federated learning is pro-

posed [104], which keeps the training data locally to preserve privacy. Federated learning

has been applied for the security issue in edge scenarios, e.g., IoT [119] and mobile net-

works [12]. Reducing communication overhead is a major concern in distributed and

federated learning. One promising approach is to quantize or binarize the weight updates,

such as SignSGD [18]. The distributed learning procedure also shows good compatibility

with programmable data plane devices. [154] and [96] propose in-network methods for

accelerating the aggregation phase of distributed training. In this work, we explore meth-

ods for effective intrusion detection at the network edge by combining the advantages of

federated learning, BNN and programmable data plane.

7.6 Summary

In this chapter, we explored scalable methods for enhancing security at the network edge

with SDN and programmable data plane. We designed an architecture running BNNs

in edge gateways as switch functions to detect attacks from incoming packets. We also

proposed a federated learning framework for gateways of multiple edge network domains

to learn new attack patterns online and collaboratively. Evaluations on a real prototype

we developed demonstrate that our method can achieve line-speed packet processing with

high classification accuracy and low false alarm rate. Moreover, our solution is scalable

with small communication overheads between the control and data planes of each edge

domain, as well as between the cloud and each edge controller.

109

Chapter 8

Conclusions

This dissertation proposes solutions for better adopting SDN to wireless environments,

especially the IoT networks. We discuss two approaches, the distributed deployment of

the control plane and the local intelligence enabled by the programmable data plane. Such

architectures take advantage of the centralized and programmable network management,

while keeping the scalability and the compatibility of heterogeneous protocols which are

required by wireless networking.

Under this framework, we make contributions in multiple aspects. We investigate the

efficiency and costs of different processes during the network control architecture deploy-

ment, including the SDN controller placement, SDN controller synchronization and radio

resource allocation. For each process, we establish mathematical models based on actual

measurements on real networking devices. Then, we adopt proper techniques such as the

combinatorial optimization, convex optimization and game theory to derive optimal or

sub-optimal solutions with low time complexity.

When exploring the control architecture, we focus on the realistic performance of net-

working applications. We pick several most representative applications of IoT to verify our

optimization algorithms, including the routing and load balancing, video and web services,

as well as the IoT security. Evaluation results are provided to demonstrate the performance

improvement when applying the proposed architecture and algorithms.

We develop several prototypes of our system design based on programmable hardware

and open-source projects. We build a networking testbed with real devices to ensure our

designs and models are practical. We also release open-source codes of our implementa-

tions. We hope that the reproducibility of our results will facilitate future research efforts

for the benefit of research community.

110

8.1 Future Work and Open Problems

The current results have indicated several directions for future researches. One possible

direction is to extend the proposed architecture to support more advanced wireless stan-

dards such as the 5G New Radio (5G NR), which plays an increasingly important role in

IoT applications. Although our control architecture design provides general compatibil-

ity to heterogeneous RATs, several additional factors need to be considered. On the one

hand, the new access technology brings more IoT use cases and therefore new objectives

which require optimization, e.g., the energy consumption of lightweight devices. On the

other hand, 5G utilizes mmWave frequency bands with features such as massive MIMO

and highly directional antennas, which must be taken into consideration when modeling

and optimizing the deployment process.

The combination of learning and the programmable data plane also deserves further

exploration. So far, we focus on the packet classification application, where the pro-

grammable switches take relatively simple actions such as dropping malicious packets.

Nevertheless, the programmable data plane language such as P4 supports more sophisti-

cated operations including header modification and even stateful packet processing. It is

potential to extend the learning approach to more network applications, such as the traffic

engineering and Quality of service (QoS) control. At the same time, we will find the most

appropriate learning models correspondingly. For example, to deploy graph-based neural

networks so that the relationship among different devices in the network topology can be

better captured.

111

Appendix A

Controller Placement: Emulation
Setting and Proofs

A.1 Controller Traffic Analysis

Controller-node Traffic. When mentioning controller-node traffic, we refer to the traffic

between the controllers and data plane nodes. Namely, controllers and nodes exchange

various messages through a specific protocol, which is OpenFlow in most cases, including

periodic heartbeat messages and statistic requests/replies. It is intuitive that such overheads

grow when the network scales up. Moreover, there are also overheads related to the routing

of packet flows. When a new flow is generated and a node receives packets that cannot be

matched in its forwarding table, it will report to the controller through PacketIn messages.

On the contrary, the controller may install new forwarding rules to nodes using FlowMod

messages. Therefore, the overhead is also influenced by the number of flows. The more

frequently new flows emerge, the larger overhead is needed to install forwarding rules.

Inter-controller Traffic. In ONOS, multiple protocols for controller synchronization

coexist [113]. The first one is the anti-entropy gossip protocol [145]. With an interval,

a controller sends the information (network topology, flow tables, etc.) within its do-

main (nodes assigned to it) to a random peer controller. The second algorithm is RAFT.

ONOS uses it to synchronize controller-node assignments within the cluster, generating

an overhead also related to the controller load. In Figure A.1, we classify the captured

inter-controller traffic in the same setting as Section 3.2. Compared with RAFT traffic, the

flow tables synchronization following gossip protocol and the heartbeat massages between

each pair of controllers generate the majority of overheads. Besides, although RAFT is

leader-based, ONOS deployed multiple RAFT clusters. Every controller acts as leader in

112

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 RAFT Protocol
 Flow Table Synchronization
 Heartbeat

To
ta

l T
ra

ffi
c

(M
bp

s)

Number of Data Plane Nodes

Figure A.1: Different inter-controller messages in ONOS.

specific clusters. Taking all of above into consideration, we can regard the synchronization

of ONOS controllers as a leaderless approach. In OpenDaylight, RAFT [124] is the only

protocol for controller synchronization, therefore all the traffics are leader-based.

A.2 Proof of Lemma 1

Consider an optimal assignment policy yo with a node no being assigned to the controller

at a node mo, i.e., ynomo = 1. Clearly, it should be xmo = 1. Let us assume that there is

another node mh 6= mo such that xmh = 1 and:

γdnmh + wanmh +
∑
l:xl=1

wdep
mhl

< γdnmo + wanmo +
∑
l:xl=1

wdepmol . (A.1)

By reassigning node no to mh instead of mo the delay and assignment overhead cost are

reduced by dnmo + wanmo − dnmh − wanmh . At the same time, the synchronization cost is

reduced by: ∑
l:xl=1

wdepmol −
∑
l:xl=1

wdep
mhl

(A.2)

since the load-independent part of the synchronization cost is not affected by the above

reassignment. Hence, the value of the objective function J is reduced by:

γdnmo + wanmo +
∑
l:xl=1

wdepmol − γdnmh − w
a
nmh −

∑
l:xl=1

wdep
mhl

(A.1)
> 0 (A.3)

This contradicts our assumption of optimality of yo.

113

A.3 Proof of Lemma 2

Since the positively weighted sum of supermodular functions is also supermodular it suf-

fices to show that each of the following three functions is supermodular.

fs,con(X) =
∑

m∈N∪{c}

∑
l∈N∪{c}

1{Xm∈X}1{Xl∈X}w
con
ml (A.4)

fns,dep(X) =
∑

m∈N∪{c}

∑
l∈N∪{c}

1{Xm∈X}1{Xl∈X}w
depy(xX)nm (A.5)

fna (X) =
∑

m∈N∪{c}

y(xX)nm(γdnm + wanm) (A.6)

Here, fs,con(X) and fns,dep(X) denote the constant and load-dependent synchronization

overhead cost, respectively. For a given node n ∈ N , the function fna (X) denotes the total

(delay and overhead) assignment cost.

Let us consider two placement sets A and B where A ⊂ B ⊂ G. We add an element

Xk ∈ G \B to both placement sets. In other words, we place a controller at node k.

1) For the function fs,con and the placement set A, the marginal value of element Xk

is: ∑
l∈{l′:Xl′∈A}∪{c}

wconkl +
∑

m∈{m′:Xm′∈A}∪{c}

wconmk . (A.7)

Since the above value increases if we replace A with B ⊃ A, the function fs,con is super-

modular.

2) For the function fns,dep(X) and any placement set, the marginal value of element Xk

is wdep (which is independent of the assignment policy). Hence, the function fns,dep(X) is

modular, which is a special class of supermodular functions.

3) For the function fna (X), we distinguish between two cases. In the first case, ac-

cording to the placement set B, node n is assigned to the controller at node j where

γdnj +wanj ≤ γdnk +wank. Then, the marginal value of element Xk is zero. For the place-

ment setA, node n is assigned to the controller at node j′. If γdnj′+wanj′ ≤ γdnk+w
a
nk then

the marginal value is again zero. However, if γdnj′+wanj′ > γdnk +wank then the marginal

value is γdnk + wank − γdnj′ − wanj′ < 0. In the second case, according to the placement

B, node n is assigned to a controller at node j where γdnj +wanj > γdnk +wank. Then, the

marginal value of element Xk is γdnk +wank − γdnj −wanj . For the placement set A, node

n is assigned to a controller at node j′ where it must be γdnj′ + wanj′ ≥ γdnj + wanj since

A ⊂ B. Hence, the marginal value is γdnk+wank−γdnj′−wanj′ ≤ γdnk+wank−γdnj−wanj .

114

Appendix B

Controller Synchronization: Proofs

B.1 Proof of Theorem 2

To facilitate the presentation of the proof, we describe an alternative representation of the

synchronization rate decisions using the following set of elements (ground set):

G = {grij : ∀i, j ∈ C, j 6= i, r ∈ {1, . . . , R}} (B.1)

Here, each of the elements {g1ij, g2ij, . . . , gRij} indicates a separate message disseminated

between controllers i and j. Each subset of elements X̂ ⊆ G indicates a synchronization

policy x̂ where the synchronization rate x̂ij is equal to the number of the aforementioned

elements included in X̂ .

We denote by the subsets A ⊆ G and O ⊆ G the solution returned by the Stochastic

Greedy approximation algorithm and the optimal, respectively. We also denote by the

subset Ak = {α1, . . . , αk} ⊆ A the solution returned by the Stochastic Greedy algorithm

after the first 0 ≤ k ≤ B iterations. Then, we compute the probability that the set S of σ

elements that is randomly picked by Stochastic Greedy at iteration k + 1 does not overlap

with the optimal set O besides of the elements already included in Ak:

Pr[S ∩ (O \ Ak) = ∅] =
(

1− |O \ Ak|
|G \ Ak|

)σ
≤ e

−σ |O\Ak||G\Ak|

≤ e−σ
|O\Ak|
C(C−1)R (B.2)

where the first inequality is because (1 − x)a ≤ e−ax for any x ∈ (0, 1). The second

115

inequality is because |G| = C(C − 1)R. Then, we have:

Pr[S ∩ (O \ Ak) 6= ∅] ≥ 1− e−σ
|O\Ak|
C(C−1)R

≥ (1− e−σ
B

C(C−1)R)
|O \ Ak|

B

= (1− ε) |O \ Ak|
B

(B.3)

where the second inequality is because the function 1−e−σ
x

C(C−1)R is concave with respect

to x ∈ [0, B]. The last equality is because of the definition of ε.

At iteration k + 1, Stochastic Greedy adds the element αk+1 to the solution Ak which

is estimated to maximize the marginal gain Ψ̂(Ak+1) - Ψ̂(Ak). However, the element with

the real maximum marginal gain may be different, namely α′k+1 6= αk+1. Given that αk+1

is picked after τ try-outs, the following equation holds:

Ψ̂(Ak ∪ {αk+1})− Ψ̂(Ak) =(τ∑
t=1

µtk+1

τ

)(
Ψ̂(Ak ∪ {α′k+1})− Ψ̂(Ak)

)
(B.4)

where µtk+1 is the ratio of marginal gains according to try-out t = 1, 2, . . . , τ . Each µtk+1

value is taken from a distribution with mean value µ.

By definition, Ψ̂(Ak ∪ {α′k+1}) − Ψ̂(Ak) is at least as much as the marginal value of

an element randomly chosen from the set S ∩ (O \ Ak) (if non-empty). This is actually

an element randomly chosen from the entire set O \ Ak, since the set S itself is randomly

chosen. Thus, we have:

Ψ̂(Ak ∪ {α′k+1})− Ψ̂(Ak)

≥ Pr[S ∩ (O \ Ak) 6= ∅]
∑

o∈O\Ak(Ψ̂(Ak ∪ {o})− Ψ̂(Ak))
|O \ Ak|

≥ 1− ε
B

∑
o∈O\Ak

(Ψ̂(Ak ∪ {o})− Ψ̂(Ak))

≥ 1− ε
B

(Ψ̂(O)− Ψ̂(Ak)) (B.5)

where the second inequality is because of (B.3). The third inequality is due to the rule of

116

diminishing returns. By combining (B.4) and (B.5) we obtain:

Ψ̂(Ak+1)− Ψ̂(Ak) = Ψ̂(Ak ∪ {αk+1})− Ψ̂(Ak)

≥
(1− ε)

∑τ
t=1 µ

t
k+1

τ

B
(Ψ̂(O)− Ψ̂(Ak)) (B.6)

By induction, we can show that:

Ψ̂(AB) ≥
(

1−
(
1−

(1− ε)
∑B
k=1

∑τ
t=1 µ

t
k

Bτ

B

)B)
Ψ̂(O)

≥
(
1− e−(1−ε)

∑B
k=1

∑τ
t=1 µ

t
k

Bτ

)
Ψ̂(O) (B.7)

Since the µtk values are drawn from a distribution with mean value µ, it will be
∑B
k=1

∑τ
t=1 µ

t
k

Bτ
=

µ in expectation, which concludes the proof.

B.2 Proof of Theorem 3

Let µ1
1, . . . , µ

τ
B be the marginal gain ratios associated with theBτ try-outs of the Stochastic

greedy algorithm. Since µtk ∈ (0, 1), ∀t, k with mean value µ, we can apply the Chernoff

bound and obtain for each γ ∈ (0, 1):

Pr[
1

Bτ

B∑
k=1

τ∑
t=1

µtk < (1− γ)µ] < e−
γµBτ

2 (B.8)

Therefore, with probability 1− e− γµBτ2 , the empirical mean value will be at least as much

as (1 − γ)µ. With the same probability, the performance will be at least as much as

1− e−(1−ε)(1−γ)µ.

117

Appendix C

Access Network Orchestration:
Prototype Implementation

We develop a prototype of proposed Slicing Agents and Slicing Orchestrator and test them

over several SD-RAN controllers. In this section, we introduce some details of our imple-

mentation.

We define two protocols in the system. First, RESTful APIs are exposed to operators

for the database update and lookup. The orchestrator is open for network and service

providers to register in the system, update their information or quit the system. It also

keeps an account recording the history charges and compensations caused by auctions to

each provider. Similarly, the agent has APIs for a service provider to update the profiles of

its users, including the list of RANs a user is connecting to, the signal quality it receives

and its identification in each RAN. The double auction is also initiated at the side of service

provider, by specifying the type of resource to request, the agent will send an auction

message to the Slicing Orchestrator.

Once the auction message is accepted by the orchestrator, it will broadcast to all agents

to start an auction through the second protocol. The auction proceeds automatically by the

communications between the orchestrator and agents, following the steps described in

Algorithm 4. The auction protocol defines several types of messages, representing actions

during a double auction such as bidding and parameter updating. When the orchestrator

ensures the convergence of the algorithm, it broadcasts a message to end the auction,

and sends a summary to each bidder, containing the final slicing scheme and a bill of

charges/compensations. The auction module of our prototype is implemented in Python 3,

with bidding decisions calculated by Scipy [72] optimizer.

Receiving the slicing scheme, the agent of network provider calls its SD-RAN con-

118

{ “slicing_scheme”:
[{ “identification”:

[{“type”: “IMSI”,
“value”:

“208930000000002 ”},
{“type”: “MAC_WLAN”,

“value”:
“DC:A2:66:18:46:97”}],

“resource”:
[{“type”:”Bandwidth_DL”,

“value”: 1.35 }] },

{ “identification”:
……

Slice Configuration:
• ID: 1
• DL Resource Blocks: 9%

Slice Association:
• IMSI: 208930000000002
• DL Slice ID: 1

Slice Configuration:
• DSCP: 0x20
• Airtime Quantum: 3176
• Traffic Rule:

• dl_dst = DC:A2:66:18:46:97
• dl_type = 0x0800
• ……

Slicing
Agent 1

Slicing
Agent 2

Configuration in FlexRAN Protocol

Configuration in EmPOWER Protocol

Figure C.1: Abstract of a slicing scheme as the result of an auction, from which agents of
network providers extract information and convert it into a readable format for heteroge-
neous SD-RANs.

troller to actually execute slicing. The Slicing Agent works as a bridge enabling the inter-

action between Slicing Orchestrator and SD-RAN controller. It establishes southbound

communications with the SD-RAN following the controller’s protocols and interfaces

(which may be heterogeneous). As an instance, we implement the downlink bandwidth

auction with FlexRAN LTE controller and EmPOWER WLAN controller. FlexRAN iden-

tifies a user by its International Mobile Subscriber Identity (IMSI), and realizes bandwidth

slicing by allocating specific number of Resource Blocks (RBs), the smallest resource

unit of an LTE frame. On the other hand, EmPOWER marks flows classified by Open-

Flow [103] rules with a Differentiated Services Code Point (DSCP) header, and applies the

Airtime Deficit Round Robin (ADRR) packet scheduling policy [147] for downlink band-

width slicing. Correspondingly, the Slicing Agent has two major tasks. First, for each user

it picks the proper identification (e.g., IMSI for FlexRAN and OpenFlow fields for Em-

POWER) from the a multiple ones provided by the service provider. Then, it will translate

the amount of bandwidth requested into the unit which the SD-RAN controller adopts, e.g.,

number of Resource Blocks for FlexRAN, and airtime portion for EmPOWER. Figure C.1

shows the details of above example about the resource and user identity abstraction. Al-

though protocol-dependent, development of such a module is not a bottleneck when a new

SD-RAN joins the coordination of Slicing Orchestrator. In our prototype, lines of this

module’s codes account for less than 10% in total. And remaining codes are identical

for all providers. This enables the modular and fast deployment of proposed architecture

in heterogeneous RANs with no infrastructure modification and minor code development

required.

119

Appendix D

Network Security: Prototype
Implementation

In this section, we develop a prototype of the architecture ad algorithms proposed in Sec-

tion 7.2 and 7.3. Among various available programmable data plane methods, we choose

the representative P4 language [24] to implement our system. P4 is capable of achieving

relatively complicated logic of packet header parsing and stateful processing, and it can be

compiled for various targets, i.e., different types of software/hardware switches.

D.1 P4 Data Plane

The data plane device (gateway) in each domain runs a P4 program which is the key

component of our proposed architecture. It is responsible for the following functionalities.

Feature Extraction. Protocol-independence is one of the most significant features

of P4. By defining different network protocol headers in a P4 program, the data plane

device is able to extract any header fields (e.g., fields of IP, TCP and even application

layer protocols like HTTP) from an incoming packet and interpret them as bit strings.

We concatenate several such strings together as the input of the BNN. Moreover, P4 also

provides multiple ways (e.g., meters, counters and registers) to extract flow-level statistics.

Such features can be used as the input of the BNN in the same way.

BNN Implementation. We use a register to store each BNN neuron’s weight as a bit

string. The registers are stateful so that they can be written and read dynamically. When

processing each layer, bitwise XNOR operations are performed between the input bit string

and every neuron in the layer. The activation function can be realized by calculating the

Hamming weight of the XNOR output. Although P4 does not provide built-in functions

120

Programmable Switch

Edge Controller Communication with Cloud

Weight Updates

Packet

Parser

Features

Packet-level

Flow-level

IP Src

TCP Dst

…

Count

…

Match
Fields

Action

Flow Table

Forward
/

Discard

Hit

BNN

NN (32-bit Real-valued Weights)

Control Plane
API

Neuron Index (32 bit) 0
Weight Value 110101…

Layer 4 Weight-update Protocol

Figure D.1: P4-based prototype of the proposed gateway in one domain.

for it, there are various works [110] providing algorithms that enable fast calculations,

and the parallel algorithm among them can be easily implemented in P4. Figure D.2

roughly shows how BNN can be implemented using the P4 grammar and data structure.

In addition, we also implement the same logic in C language for supported devices.

Packet Forwarding. The BNN can coexist with layer-2/3 or any custom packet for-

warding mechanism in the same P4 program. In this prototype, we consider a simple case

where a packet from the flow regarded as an attack will be directly discarded. We com-

bine the BNN with a flow table matching the incoming packet’s 5-tuple. If the packet

hits an entry in the flow table, it will be processed accordingly without being sent to the

BNN. Otherwise, the BNN performs inference and adds a new entry to the table. In both

cases, line-speed processing is achieved, and this method further improves the efficiency

as well as reduces computation costs. The whole workflow of the data plane is depicted in

Figure D.1.

Control Protocol. We define a new layer-4 protocol for the control plane to update

the weight values of the data plane. It contains two header fields as shown in Figure D.3,

the index of target neuron and a bit string representing the weight values of this neuron.

When the data plane device receives a packet carrying this header from the controller, it

will neither forward this packet nor call the BNN. Instead, it writes the new weight value

to its register. This protocol can also be used by the data plane to send the output of the

BNN’s last hidden layer to the controller during the online training process, as described

in the previous section.

121

// an example of 120-bit input and 120 neurons in each layer
control MyIngress(...) {

register<bit<120>>(1024) weights;
bit<120> Input = 0;
bit<120> NextLayerInput = 0;
bit<1> Activated;

action Activation(bit<120> NeuronInput){
bit<8> popcnt = ... // calculate Hamming weight
Activated = popcnt>60;
NextLayerInput = NextLayerInput<<1 + (bit<120>) Activated;

}

action LayerProcess(bit<10> IndexOffset){
bit<120> weight = 0;
weights.read(weight, (bit<32>)IndexOffset+0);
Activation(˜(weightˆInput));
weights.read(weight, (bit<32>)IndexOffset+1);
Activation(˜(weightˆInput));
... // process all neurons in the same way
}

apply{
...
// a function extracting header fields and statistics
BuildInput();
LayerProcess(0); // first layer processing
Input=NextLayerInput;
NextLayerInput=0;
LayerProcess(120); // second layer processing
Input=NextLayerInput;
NextLayerInput=0;
LayerProcess(240); // third layer processing
...

}
...

}

Figure D.2: Implementing BNN with P4 codes

122

typedef bit<120> MaxInputSize;
header weightupdate_t {

bit<32> index;
MaxInputSize value;

}
...
parser MyParser(...){

...
state parse_ipv4 {

packet.extract(hdr.ipv4);
transition select(hdr.ipv4.protocol) {

17: parse_udp;
6: parse_tcp;
61: parse_weightupdate;
default: accept;

}
}

state parse_weightupdate {
packet.extract(hdr.weightupdate);
transition accept;

}
}

Figure D.3: An example of P4 header definition for weight updates

D.2 Control Plane and Cloud Server

We deploy another host with a general CPU in the same domain as the controller for

each gateway. In order to perform online training, each controller should hold a neural

network with real-valued (rather than binary) weights. We implement such networks by

TensorFlow [3] and use Scapy [22] for the communications with the data plane. We also

deploy a server as the cloud for federated learning. It receives local updates from each

controller through UDP packets and conducts the aggregation. We evaluate this prototype

with different topologies, which will be described in detail in the next section.

123

Bibliography

[1] Floodlight. https://github.com/floodlight/floodlight.

[2] Ryu sdn framework. https://ryu-sdn.org/.

[3] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–
283, 2016.

[4] M. J. Abdel-Rahman, E. A. Mazied, A. MacKenzie, S. Midkiff, M. R. Rizk, and
M. El-Nainay. On Stochastic Controller Placement in Software-defined Wireless
Networks. IEEE WCNC, 2017.

[5] Fadele Ayotunde Alaba, Mazliza Othman, Ibrahim Abaker Targio Hashem, and Faiz
Alotaibi. Internet of things security: A survey. Journal of Network and Computer
Applications, 88:10–28, 2017.

[6] Ali Saeed Dayem Alfoudi, Mohammed Dighriri, Gyu Myoung Lee, Rubem Pereira,
and Fung Po Tso. Traffic management in lte-wifi slicing networks. In 2017 20th
Conference on Innovations in Clouds, Internet and Networks (ICIN), pages 268–
273. IEEE, 2017.

[7] Pedro Amaral, Joao Dinis, Paulo Pinto, Luis Bernardo, Joao Tavares, and Hen-
rique S Mamede. Machine learning in software defined networks: Data collection
and traffic classification. In 2016 IEEE 24th International Conference on Network
Protocols (ICNP), pages 1–5. IEEE, 2016.

[8] Ioannis Andrea, Chrysostomos Chrysostomou, and George Hadjichristofi. Internet
of things: Security vulnerabilities and challenges. In 2015 IEEE Symposium on
Computers and Communication (ISCC), pages 180–187. IEEE, 2015.

[9] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In 26th {USENIX} Security Sym-
posium ({USENIX} Security 17), pages 1093–1110, 2017.

124

[10] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local
search heuristics for k-median and facility location problems. In in Proc. SIAM
Journal on Computing, vol. 33, no. 3,, pages 544–562, 2004.

[11] M. Aslan and A. Matrawy. Adaptive consistency for distributed sdn controllers.
IEEE Networks, 2016.

[12] Evita Bakopoulou, Balint Tillman, and Athina Markopoulou. A federated learning
approach for mobile packet classification. arXiv preprint arXiv:1907.13113, 2019.

[13] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed sdn control:
Survey, taxonomy, and challenges. IEEE Communications Surveys & Tutorials,
20(1):333–354, 2017.

[14] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and
R. Boutaba. Dynamic controller provisioning in software defined networks. In in
Proc. IEEE CNSM, 2013.

[15] Elaheh Biglar Beigi, Hossein Hadian Jazi, Natalia Stakhanova, and Ali A Ghorbani.
Towards effective feature selection in machine learning-based botnet detection ap-
proaches. In 2014 IEEE Conference on Communications and Network Security,
pages 247–255. IEEE, 2014.

[16] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.
Onos: towards an open, distributed sdn os. In Proceedings of the third workshop on
Hot topics in software defined networking, pages 1–6.

[17] Massimo Bernaschi, Filippo Cacace, Giulio Iannello, Massimo Vellucci, and Luca
Vollero. Opencapwap: An open source capwap implementation for the management
and configuration of wifi hot-spots. Computer Networks, 53(2):217–230, 2009.

[18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anand-
kumar. signsgd: Compressed optimisation for non-convex problems. arXiv preprint
arXiv:1802.04434, 2018.

[19] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena
scientific Belmont, MA, 1995.

[20] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo Cascone. Open-
state: Programming platform-independent stateful openflow applications inside the
switch. ACM SIGCOMM Computer Communication Review, 44(2):44–51, 2014.

[21] Roberto Bifulco and Gábor Rétvári. A survey on the programmable data plane:
Abstractions, architectures, and open problems. In 2018 IEEE 19th International
Conference on High Performance Switching and Routing (HPSR), pages 1–7. IEEE,
2018.

125

[22] Philippe Biondi et al. Scapy, 2011.

[23] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap: An application
protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2):62–67,
2012.

[24] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[25] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn. ACM SIGCOMM
Computer Communication Review, 43(4):99–110, 2013.

[26] F. Botelho, T. A. Ribeiro, P. Ferreira, F. M. V. Ramos, and A. Bessani. Design and
implementation of a consistent data store for a distributed sdn control plane. IEEE
EDCC, 2016.

[27] Amina Boubendir, Fabrice Guillemin, Christophe Le Toquin, Marie-Line Alberi-
Morel, Frédéric Faucheux, Sylvaine Kerboeuf, Jean-Luc Lafragette, and Barbara
Orlandi. Federation of cross-domain edge resources: a brokering architecture for
network slicing. In 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), pages 415–423. IEEE, 2018.

[28] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[29] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In in Proc. IEEE
FOCS, 2012.

[30] Xianghui Cao, Devu Manikantan Shila, Yu Cheng, Zequ Yang, Yang Zhou, and
Jiming Chen. Ghost-in-zigbee: Energy depletion attack on zigbee-based wireless
networks. IEEE Internet of Things Journal, 3(5):816–829, 2016.

[31] Dimitris E. Charilas and Athanasios D. Panagopoulos. A survey on game theory
applications in wireless networks. Computer Networks, 54(18):3421 – 3430, 2010.

[32] Tao Chen, Honggang Zhang, Xianfu Chen, and Olav Tirkkonen. Softmobile: Con-
trol evolution for future heterogeneous mobile networks. IEEE Wireless Communi-
cations, 21(6):70–78, 2014.

[33] Junguk Cho, Binh Nguyen, Arijit Banerjee, Robert Ricci, Jacobus Van der Merwe,
and Kirk Webb. Smore: Software-defined networking mobile offloading architec-
ture. In Proceedings of the 4th workshop on All things cellular: operations, appli-
cations, & challenges, pages 21–26, 2014.

126

[34] Thomas Clausen and Philippe Jacquet. Rfc3626: Optimized link state routing pro-
tocol (olsr), 2003.

[35] P4 Language Consortium et al. Behavioral model (bmv2), 2018.

[36] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[37] Costas Courcoubetis and Richard Weber. Pricing communication networks: eco-
nomics, technology and modelling. John Wiley & Sons, 2003.

[38] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Ma-
chines Corporation, 46(53):157, 2009.

[39] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim, Jen-
nifer Rexford, Robert Soulé, and Hakim Weatherspoon. Whippersnapper: A p4
language benchmark suite. In Proceedings of the Symposium on SDN Research,
pages 95–101. ACM, 2017.

[40] Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana Kompella.
Towards an elastic distributed sdn controller. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages 7–12,
2013.

[41] Salvatore D’Oro, Francesco Restuccia, Tommaso Melodia, and Sergio Palazzo.
Low-complexity distributed radio access network slicing: Algorithms and exper-
imental results. IEEE/ACM Transactions on Networking (TON), 26(6):2815–2828,
2018.

[42] Sinem Coleri Ergen. Zigbee/ieee 802.15. 4 summary. UC Berkeley, September,
10(17):11, 2004.

[43] Melike Erol-Kantarci and Sukhmani Sukhmani. Caching and computing at the edge
for mobile augmented reality and virtual reality (ar/vr) in 5g. Ad Hoc Networks,
pages 169–177, 2018.

[44] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: an intellectual
history of programmable networks. ACM SIGCOMM Computer Communication
Review, 44(2):87–98, 2014.

[45] U. Feige, V. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular
functions. In in Proc. IEEE FOCS, 2011.

[46] M. Feldman, J. Naor, and R. Schwartz. Nonmonotone submodular maximization
via a structural continuous greedy algorithm. In in Proc. ICALP, 2011.

127

[47] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. Orion: Ran slic-
ing for a flexible and cost-effective multi-service mobile network architecture. In
Proceedings of the 23rd annual international conference on mobile computing and
networking, pages 127–140, 2017.

[48] Xenofon Foukas, Navid Nikaein, Mohamed M Kassem, Mahesh K Marina, and
Kimon Kontovasilis. Flexran: A flexible and programmable platform for software-
defined radio access networks. In Proceedings of the 12th International on Con-
ference on emerging Networking EXperiments and Technologies, pages 427–441,
2016.

[49] Kevin Fu and Wenyuan Xu. Risks of trusting the physics of sensors. Communica-
tions of the ACM, 61(2):20–23, 2018.

[50] Vojislav Gajić, Jianwei Huang, and Bixio Rimoldi. Competition of wireless
providers for atomic users. IEEE/ACM Transactions on Networking, 22(2):512–
525, 2014.

[51] Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio Palazzo. Sdn-
wise: Design, prototyping and experimentation of a stateful sdn solution for wire-
less sensor networks. In 2015 IEEE Conference on Computer Communications
(INFOCOM), pages 513–521. IEEE.

[52] Pablo Caballero Garces, Albert Banchs, Gustavo de Veciana, and Xavier Costa-
Pérez. Network slicing games: Enabling customization in multi-tenant mobile net-
works. CoRR, abs/1612.08446, 2016.

[53] S. O. Gharan and J. Vondrak. Submodular maximization by simulated annealing.
In in Proc. ACM/SIAM SODA, 2011.

[54] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem to
a 0-1 linear program. Operations Research, vol 22, no. 1, pp. 180-182, 1974.

[55] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McK-
eown, and Scott Shenker. Nox: towards an operating system for networks. ACM
SIGCOMM Computer Communication Review, 38(3):105–110, 2008.

[56] M. Guo and P. Bhattacharya. Controller Placement for Improving Resilience of
Software-defined Networks. IEEE ICNDC, 2013.

[57] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, and H. J. Chao. Improving the
performance of load balancing in software-defined networks through load variance-
based synchronization. Computer Networks, vol. 68, pp. 95-109, 2014.

[58] Ummy Habiba and Ekram Hossain. Auction mechanisms for virtualization in 5g
cellular networks: Basics, trends, and open challenges. IEEE Communications
Surveys & Tutorials, 20(3):2264–2293, 2018.

128

[59] Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR,
1994.

[60] B. Heller, R. Sherwood, and N. McKeown. The controller placement problem. In
in Proc. HotSDN, 2012.

[61] A. Hilal, J. N. Chattha, V. Srivastava, M. S. Thompson, A. B. MacKenzie, L. A.
DaSilva, and P. Saraswati. CRAWDAD dataset vt/maniac, 10:15783.

[62] Y. Hu, T. Luo, N. C. Beaulieu, and C. Deng. The energy-aware controller placement
problem in software defined networks. IEEE Communications Letters, vol. 21, no.4,
pp. 741-744, 2017.

[63] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan. Reliability-aware controller
placement for software-defined networks. In in Proc. IFIP/IEEE IM, 2013.

[64] V. P. Il’ev. An approximation guarantee of the greedy descent algorithm for min-
imizing a supermodular set function. Discrete Applied Mathematics, vol. 114, no.
1-3, pp. 131-146, 2001.

[65] Intel. Intel dpdk: Data plane development kit.

[66] George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas. A double-
auction mechanism for mobile data-offloading markets. IEEE/ACM Transactions
on Networking (TON), 23(5):1634–1647, 2015.

[67] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. In
in Proc. Journal of the ACM (JACM), vol. 48, no. 2,, pages 274–296, 2001.

[68] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan. ACM SIGCOMM Computer
Communication Review, 43(4):3–14, 2013.

[69] Nadeem Javaid, Arshad Sher, Hina Nasir, and Nadra Guizani. Intelligence in iot-
based 5g networks: Opportunities and challenges. IEEE Communications Maga-
zine, 56(10):94–100, 2018.

[70] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia. On the controller placement for
designing a distributed sdn control layer. In in Proc. IFIP Networking, 2014.

[71] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. Softcell: Scalable
and flexible cellular core network architecture. In Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies, pages 163–174.

[72] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–.

129

[73] Saehoon Kang and Wonyong Yoon. Sdn-based resource allocation for hetero-
geneous lte and wlan multi-radio networks. The Journal of Supercomputing,
72(4):1342–1362, 2016.

[74] Sukhveer Kaur, Japinder Singh, and Navtej Singh Ghumman. Network programma-
bility using pox controller. In Proc. Int. Conf. Commun., Comput. Syst.(ICCCS),
volume 138, pages 134–138, 2014.

[75] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control for communi-
cation networks: shadow prices, proportional fairness and stability. Journal of the
Operational Research society, 49(3):237–252, 1998.

[76] Hongseok Kim and Marina Thottan. A two-stage market model for microgrid power
transactions via aggregators. Bell Labs Technical Journal, 16(3):101–107, 2011.

[77] Hyojoon Kim and Nick Feamster. Improving network management with software
defined networking. IEEE Communications Magazine, 51(2):114–119, 2013.

[78] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[79] Hlabishi I Kobo, Adnan M Abu-Mahfouz, and Gerhard P Hancke. A survey on
software-defined wireless sensor networks: Challenges and design requirements.
5:1872–1899.

[80] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
Ddos in the iot: Mirai and other botnets. Computer, 50(7):80–84, 2017.

[81] A Koshibe, A Baid, and Ivan Seskar. Towards distributed hierarchical sdn control
plane. In 2014 International Science and Technology Conference (Modern Net-
working Technologies)(MoNeTeC), pages 1–5. IEEE.

[82] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. In Proc. of
the IEEE, vol. 103, no. 1,, pages 14–76, 2015.

[83] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham. On using bargaining game for
optimal placement of sdn controllers. In in Proc. IEEE ICC, 2016.

[84] Maciej Kuźniar, Peter Perešı́ni, and Dejan Kostić. What you need to know about
sdn flow tables. In International Conference on Passive and Active Network Mea-
surement, pages 347–359. Springer, 2015.

[85] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoff-
mann. Heuristic approaches to the controller placement problem in large scale sdn
networks. IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 4-17, 2015.

130

[86] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6, New York, NY,
USA, 2010. ACM.

[87] Arash Habibi Lashkari, Andi Fitriah A Kadir, Hugo Gonzalez, Kenneth Fon Mbah,
and Ali A Ghorbani. Towards a network-based framework for android malware de-
tection and characterization. In 2017 15th Annual Conference on Privacy, Security
and Trust (PST), pages 233–23309. IEEE, 2017.

[88] Anhtuan Le, Jonathan Loo, Yuan Luo, and Aboubaker Lasebae. The impacts of
internal threats towards routing protocol for low power and lossy network perfor-
mance. In 2013 IEEE Symposium on Computers and Communications (ISCC),
pages 000789–000794. IEEE, 2013.

[89] Joohyun Lee, Yung Yi, Song Chong, and Youngmi Jin. Economics of wifi offload-
ing: Trading delay for cellular capacity. IEEE Transactions on Wireless Communi-
cations, 13(3):1540–1554, 2014.

[90] Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong. Mobile data
offloading: How much can wifi deliver? In Proceedings of the 6th International
COnference, page 26. ACM, 2010.

[91] Ying Loong Lee, Jonathan Loo, Teong Chee Chuah, and Li-Chun Wang. Dynamic
network slicing for multitenant heterogeneous cloud radio access networks. IEEE
Transactions on Wireless Communications, 17(4):2146–2161, 2018.

[92] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann. Logically cen-
tralized? state distribution trade-offs in software defined networks. ACM HotSDN,
2012.

[93] Chuanhuang Li, Yan Wu, Xiaoyong Yuan, Zhengjun Sun, Weiming Wang, Xi-
aolin Li, and Liang Gong. Detection and defense of ddos attack–based on deep
learning in openflow-based sdn. International Journal of Communication Systems,
31(5):e3497, 2018.

[94] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location prob-
lem. In in Proc. Information and Computation, vol. 222,, pages 45–58, 2013.

[95] Yong Li, Guolong Su, Pan Hui, Depeng Jin, Li Su, and Lieguang Zeng. Multiple
mobile data offloading through delay tolerant networks. In Proceedings of the 6th
ACM workshop on Challenged networks, pages 43–48. ACM, 2011.

[96] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. Accelerating distributed reinforcement learning with in-switch computing.
2019.

131

[97] Libelium. Waspmote, n.d.

[98] Yi-Bing Lin, Shie-Yuan Wang, Ching-Chun Huang, and Chia-Ming Wu. The sdn
approach for the aggregation/disaggregation of sensor data. Sensors, 18(7):2025,
2018.

[99] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Computing, pages 1–14, 2017.

[100] Tie Luo, Hwee-Pink Tan, and Tony QS Quek. Sensor openflow: Enabling software-
defined wireless sensor networks. IEEE Communications letters, 16(11):1896–
1899, 2012.

[101] Anthea Mayzaud, Remi Badonnel, and Isabelle Chrisment. A taxonomy of at-
tacks in rpl-based internet of things. International Journal of Network Security,
18(3):459–473, 2016.

[102] Bradley McDanel, Surat Teerapittayanon, and HT Kung. Embedded binarized neu-
ral networks. arXiv preprint arXiv:1709.02260, 2017.

[103] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[104] Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine
learning without centralized training data. Google Research Blog, 3, 2017.

[105] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight: Towards
a model-driven sdn controller architecture. In Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, pages
1–6. IEEE.

[106] Daniele Midi, Antonino Rullo, Anand Mudgerikar, and Elisa Bertino. Kalis—a
system for knowledge-driven adaptable intrusion detection for the internet of things.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 656–666. IEEE, 2017.

[107] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza
Sadeghi, and Sasu Tarkoma. Iot sentinel: Automated device-type identification
for security enforcement in iot. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 2177–2184. IEEE, 2017.

[108] C Mims. Forget’the cloud’;’the fog’is tech’s future. The Wall Street Journal, 2014.

132

[109] Masoud Moshref, Apoorv Bhargava, Adhip Gupta, Minlan Yu, and Ramesh Govin-
dan. Flow-level state transition as a new switch primitive for sdn. In Proceedings
of the third workshop on Hot topics in software defined networking, pages 61–66,
2014.

[110] Wojciech Muła, Nathan Kurz, and Daniel Lemire. Faster population counts using
avx2 instructions. The Computer Journal, 61(1):111–120, 2017.

[111] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcellos.
Survivor: an Enhanced Controller Placement Strategy for Improving SDN Surviv-
ability. IEEE GLOBECOM, 2014.

[112] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop on
Embedded networked sensors, pages 78–82, 2007.

[113] A. Muqaddas, A. Bianco, P. Giaccone, and G. Maier. Inter-controller traffic in onos
clusters for sdn networks. In in Proc. IEEE ICC, 2016.

[114] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, ICML’10, pages 807–814, USA, 2010.
Omnipress.

[115] Saurav Nanda, Faheem Zafari, Casimer DeCusatis, Eric Wedaa, and Baijian Yang.
Predicting network attack patterns in sdn using machine learning approach. In 2016
IEEE Conference on Network Function Virtualization and Software Defined Net-
works (NFV-SDN), pages 167–172. IEEE, 2016.

[116] Mohamad Nazrin Napiah, Mohd Yamani Idna Bin Idris, Roziana Ramli, and Ismail
Ahmedy. Compression header analyzer intrusion detection system (cha-ids) for
6lowpan communication protocol. IEEE Access, 6:16623–16638, 2018.

[117] Jorge Navarro-Ortiz, Pablo Romero-Diaz, Sandra Sendra, Pablo Ameigeiras, Juan J
Ramos-Munoz, and Juan M Lopez-Soler. A survey on 5g usage scenarios and traffic
models. IEEE Communications Surveys & Tutorials, 22(2):905–929, 2020.

[118] A. Neumann, E. López, and L. Navarro. An evaluation of BMX6 for Community
Wireless Networks. CNBuB, 2012.

[119] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Minh Hoang Dang,
N. Asokan, and Ahmad-Reza Sadeghi. Dı̈ot: A crowdsourced self-learning ap-
proach for detecting compromised iot devices. CoRR, abs/1804.07474, 2018.

[120] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond
Knopp, and Christian Bonnet. Openairinterface: A flexible platform for 5g research.
SIGCOMM Comput. Commun. Rev., 44(5):33–38, 2014.

133

[121] Noam Nisan and Amir Ronen. Algorithmic mechanism design (extended abstract).
In Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
STOC ’99, pages 129–140, 1999.

[122] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, New York, NY, USA, 2007.

[123] Y. E. Oktian, S. Lee, H. Lee, and J. Lam. Distributed sdn controller system: A
survey on design choice. Computer Networks, vol. 121, no. 5, pp. 100-111, 2017.

[124] D. Ongaro and J. K. Ousterhout. In Search of an Understandable Consensus Algo-
rithm. in USENIX Annual Technical Conference, 2014.

[125] Edward J Oughton, William Lehr, Konstantinos Katsaros, Ioannis Selinis, Dean
Bubley, and Julius Kusuma. Revisiting wireless internet connectivity: 5g vs wi-fi
6. arXiv preprint arXiv:2010.11601, 2020.

[126] A. Panda, C. Scott, and A. Ghodsi al. Cap for networks. ACM HotSDN, 2013.

[127] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker. Scl: Simplifying
distributed sdn control planes. USENIX NSDI, 2017.

[128] Stefano Paris, Fabio Martisnon, Ilario Filippini, and Lin Clien. A bandwidth trading
marketplace for mobile data offloading. In 2013 Proceedings IEEE INFOCOM,
pages 430–434. IEEE, 2013.

[129] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[130] Mugen Peng, Shi Yan, Kecheng Zhang, and Chonggang Wang. Fog-computing-
based radio access networks: Issues and challenges. Ieee Network, 30(4):46–53,
2016.

[131] Kostas Pentikousis, Yan Wang, and Weihua Hu. Mobileflow: Toward software-
defined mobile networks. IEEE Communications magazine, 51(7):44–53, 2013.

[132] Charles Perkins, Elizabeth Belding-Royer, and Samir Das. Rfc3561: Ad hoc on-
demand distance vector (aodv) routing, 2003.

[133] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design
and implementation of open vswitch. In 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15), pages 117–130, 2015.

[134] Pavan Pongle and Gurunath Chavan. A survey: Attacks on rpl and 6lowpan in
iot. In 2015 International Conference on Pervasive Computing (ICPC), pages 1–6.
IEEE, 2015.

134

[135] Petar Popovski, Kasper Fløe Trillingsgaard, Osvaldo Simeone, and Giuseppe
Durisi. 5g wireless network slicing for embb, urllc, and mmtc: A communication-
theoretic view. IEEE Access, 6:55765–55779, 2018.

[136] Konstantinos Poularakis, George Iosifidis, and Leandros Tassiulas. Deploying
carrier-grade wifi: Offload traffic, not money. In Proceedings of the 17th ACM
International Symposium on Mobile Ad Hoc Networking and Computing, pages
131–140. ACM, 2016.

[137] Konstantinos Poularakis, Qiaofeng Qin, Liang Ma, Sastry Kompella, Kin K Leung,
and Leandros Tassiulas. Learning the optimal synchronization rates in distributed
sdn control architectures. In IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pages 1099–1107. IEEE, 2019.

[138] Qiaofeng Qin, Nakjung Choi, Muntasir Raihan Rahman, Marina Thottan, and Le-
andros Tassiulas. Network slicing in heterogeneous software-defined rans. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications, pages 2371–
2380. IEEE, 2020.

[139] Qiaofeng Qin, Konstantinos Poularakis, George Iosifidis, Sastry Kompella, and
Leandros Tassiulas. Sdn controller placement with delay-overhead balancing in
wireless edge networks. IEEE Transactions on Network and Service Management,
15(4):1446–1459, 2018.

[140] Qiaofeng Qin, Konstantinos Poularakis, Kin K Leung, and Leandros Tassiulas.
Line-speed and scalable intrusion detection at the network edge via federated learn-
ing. In 2020 IFIP Networking Conference (Networking), pages 352–360. IEEE,
2020.

[141] Qiaofeng Qin, Konstantinos Poularakis, and Leandros Tassiulas. A learning ap-
proach with programmable data plane towards iot security. In 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS), pages 410–
420. IEEE.

[142] Veselin Rakocevic, John Griffiths, and Graham Cope. Performance analysis of
bandwidth allocation schemes in multiservice ip networks using utility functions.
In Teletraffic Science and Engineering, volume 4, pages 233–243. Elsevier, 2001.

[143] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In Euro-
pean Conference on Computer Vision, pages 525–542. Springer, 2016.

[144] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha. Optimal Controller Placement
in Software Defined Networks (SDN) Using a Non-zero-sum Game. IEEE WoW-
MoM, 2014.

135

[145] R. Van Renesse, D. Dumitriu, V. Gough, and C. Thomas. Efficient reconciliation
and flow control for anti-entropy protocols. In in Proc. ACM Workshop on Large-
Scale Distributed Systems and Middleware, 2008.

[146] Roberto Riggio, Mahesh K Marina, Julius Schulz-Zander, Slawomir Kuklinski, and
Tinku Rasheed. Programming abstractions for software-defined wireless networks.
IEEE Transactions on Network and Service Management, 12(2):146–162, 2015.

[147] Roberto Riggio, Daniele Miorandi, and Imrich Chlamtac. Airtime deficit round
robin (adrr) packet scheduling algorithm. In 2008 5th IEEE International Confer-
ence on Mobile Ad Hoc and Sensor Systems, pages 647–652. IEEE, 2008.

[148] Giorgio Roffo, Simone Melzi, and Marco Cristani. Infinite feature selection. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 4202–
4210, 2015.

[149] Tim Roughgarden. Selfish Routing and the Price of Anarchy. The MIT Press, 2005.

[150] S.-C.-Lin, P. Wang, I. F. Akyildiz, and M. Luo. Towards optimal network planning
for software-defined networks. IEEE Transactions on Mobile Computing, 2018.

[151] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer. Towards adaptive state consistency
in distributed sdn control plane. IEEE ICC, 2017.

[152] A. Sallahi and M. St-Hilaire. Optimal model for the controller placement problem
in software defined networks. IEEE Communications Letters, vol. 19, no.1, pp.
30-33, 2015.

[153] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. In-network computation is a dumb idea whose time has come. In Pro-
ceedings of the 16th ACM Workshop on Hot Topics in Networks, pages 150–156,
2017.

[154] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and Pe-
ter Richtárik. Scaling distributed machine learning with in-network aggregation.
arXiv preprint arXiv:1903.06701, 2019.

[155] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster, Nick
McKeown, and Jennifer Rexford. Pisces: A programmable, protocol-independent
software switch. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
525–538, 2016.

[156] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization. In ICISSP,
pages 108–116, 2018.

136

[157] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[158] D. Shmoys, E. Tardos, and K. Aardal. Approximation algorithms for facility loca-
tion problems. In in Proc. ACM STOC, 1997.

[159] Yasser Shoukry, Paul Martin, Yair Yona, Suhas Diggavi, and Mani Srivastava. Py-
cra: Physical challenge-response authentication for active sensors under spoofing
attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1004–1015. ACM, 2015.

[160] A. Singla, S. Tschiatschek, and A. Krause. Noisy submodular maximization via
adaptive sampling with applications to crowdsourced image collection summariza-
tion. AAAI, 2016.

[161] Giuseppe Siracusano and Roberto Bifulco. In-network neural networks. arXiv
preprint arXiv:1801.05731, 2018.

[162] Giuseppe Siracusano, Davide Sanvito, Salvator Galea, and Roberto Bifulco. Deep
learning inference on commodity network interface cards.

[163] Dipa Soni and Ashwin Makwana. A survey on mqtt: a protocol of internet of
things (iot). In International Conference On Telecommunication, Power Analysis
And Computing Techniques (ICTPACT-2017), volume 20, 2017.

[164] Statista. Internet of things (iot) connected devices installed base worldwide from
2015 to 2025 (in billions).

[165] Z. Su and M. Hamdi. Mdcp: Measurement-aware distributed controller placement
for software defined networks. In in Proc. IEEE ICPADS, 2015.

[166] K. Sudheera, K. Liyanagea, M. Maa, and P. H. J. Chong. Controller placement opti-
mization in hierarchical distributed software defined vehicular networks. Computer
Networks, vol. 135, pp. 226-239, 2018.

[167] Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, Taehong Kim, and Jiy-
oung Kwak. On performance of opendaylight clustering. In 2016 IEEE NetSoft
Conference and Workshops (NetSoft), pages 407–410. IEEE, 2016.

[168] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa
Vazao. Towards programmable enterprise wlans with odin. In Proceedings of the
first workshop on Hot topics in software defined networks, pages 115–120, 2012.

[169] Ajay Tirumala. Iperf: The tcp/udp bandwidth measurement tool. http://dast. nlanr.
net/Projects/Iperf/, 1999.

137

[170] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa Zil-
berman. The case for in-network computing on demand. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, pages 21:1–21:16, New York,
NY, USA, 2019. ACM.

[171] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou. Adaptive resource man-
agement and control in software defined networks. IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 18-33, 2015.

[172] Mostafa Uddin, Sarit Mukherjee, Hyunseok Chang, and TV Lakshman. Sdn-based
multi-protocol edge switching for iot service automation. IEEE Journal on Selected
Areas in Communications, 36(12):2775–2786, 2018.

[173] Md Tanvir Ishtaique ul Huque, Weisheng Si, Guillaume Jourjon, and Vincent
Gramoli. Large-scale dynamic controller placement. IEEE Transactions on Net-
work and Service Management, 14(1):63–76, 2017.

[174] Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. SSW, 125, 2016.

[175] Marian Verhelst and Bert Moons. Embedded deep neural network processing: Al-
gorithmic and processor techniques bring deep learning to iot and edge devices.
IEEE Solid-State Circuits Magazine, 9(4):55–65, 2017.

[176] G. Wang, Y. Zhao, J. Huang, and W. Wang. The controller placement problem in
software defined networking: A survey. IEEE Network, vol. 31, no. 5, pp. 21-27,
2017.

[177] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. End-
to-end encrypted traffic classification with one-dimensional convolution neural net-
works. In 2017 IEEE International Conference on Intelligence and Security Infor-
matics (ISI), pages 43–48. IEEE, 2017.

[178] Zhanyi Wang. The applications of deep learning on traffic identification. BlackHat
USA, 24, 2015.

[179] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. Design,
implementation and evaluation of congestion control for multipath tcp. In NSDI,
volume 11, pages 8–8, 2011.

[180] Zhaoqi Xiong and Noa Zilberman. Do switches dream of machine learning?: To-
ward in-network classification. In Proceedings of the 18th ACM Workshop on Hot
Topics in Networks, HotNets ’19, pages 25–33, New York, NY, USA, 2019. ACM.

[181] H. Xu, Z. Yu, C. Qian, X. Li, and Z. Liu. Minimizing flow statistics collection cost
of sdn using wildcard requests. In in Proc. IEEE Infocom, 2017.

138

[182] Dejun Yang, Xi Fang, and Guoliang Xue. Truthful auction for cooperative commu-
nications. In Proceedings of the Twelfth ACM International Symposium on Mobile
Ad Hoc Networking and Computing, MobiHoc ’11, pages 9:1–9:10, 2011.

[183] Mao Yang, Yong Li, Depeng Jin, Lieguang Zeng, Xin Wu, and Athanasios V Vasi-
lakos. Software-defined and virtualized future mobile and wireless networks: A
survey. 20(1):4–18.

[184] G. Yao, J. Bi, Y. Li, and L. Guo. On the capacitated controller placement problem
in software defined networks. IEEE Communications Letters, vol. 18, no. 8, pp.
1339-1342, 2014.

[185] Faqir Zarrar Yousaf, Michael Bredel, Sibylle Schaller, and Fabian Schneider. Nfv
and sdn—key technology enablers for 5g networks. IEEE Journal on Selected Areas
in Communications, 35(11):2468–2478, 2017.

[186] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han,
Mingfei Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using
neuron importance score propagation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9194–9203, 2018.

[187] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and
Xinyu Yang. A survey on the edge computing for the internet of things. IEEE
access, 6:6900–6919, 2017.

[188] T. Zhang, P. Giaccone, A. Bianco, and S. D. Domenico. The role of the inter-
controller consensus in the placement of distributed sdn controllers. Computer
Communications, vol. 113, no. 15, pp. 1-13, 2017.

[189] Lei Zhong, Qianyi Huang, Fan Wu, and Guihai Chen. TRADE: A truthful online
combinatorial auction for spectrum allocation in cognitive radio networks. Wireless
Communications and Mobile Computing, 15(9):1320–1330, 2015.

[190] Xia Zhou, Sorabh Gandhi, Subhash Suri, and Haitao Zheng. ebay in the sky:
Strategy-proof wireless spectrum auctions. In Proceedings of the 14th ACM Inter-
national Conference on Mobile Computing and Networking, MobiCom ’08, pages
2–13, 2008.

[191] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore. Netf-
pga sume: Toward 100 gbps as research commodity. IEEE micro, 34(5):32–41,
2014.

139

	A Hybrid SDN-based Architecture for Wireless Networks
	Recommended Citation

	Introduction
	Challenges of Wireless Network Control
	A Softwarized and Hybrid Control Architecture
	Summary of Contributions
	Organization

	Background
	Software-Defined Networking
	Control Plane Approaches
	Distributed SDN Controllers
	Software-Defined Wireless Networks (SDWN)

	Data Plane Approaches
	Programmable Data Planes
	In-Network Computing

	Summary

	Distributed Control Plane: Controller Placement Problem
	Introduction
	Cost Analysis of Controller Clusters
	Control Delay Measurement
	Control Overhead Measurement

	Problem Modeling
	Optimization Algorithms
	Small-Scale Optimal Solution
	Large-Scale Approximate Solution

	Evaluation Results
	Related Works
	Summary

	Distributed Control Plane: Controller Synchronization Problem
	Introduction
	Emulation Studies on the Impact of Synchronization Policies
	Problem Modeling
	Optimization Algorithms
	Evaluation Results
	Related Work
	Summary

	Distributed Control Plane: Orchestrating Heterogeneous Networks
	Introduction
	System Design and Problem Modeling
	Overview
	Service Provider Slicing Agent
	Network Provider Slicing Agent
	Slicing Orchestrator

	Optimization Algorithms
	User Utility Optimization
	Iterative Double Auction
	Social Welfare Improvement

	Evaluation Results
	Testbed Setup
	Small-Scale Experimentation Results
	Large-Scale Simulation Results

	Related Work
	Summary

	Local Intelligence: Learning-enabled Protocol-Independent Packet Classification
	Introduction
	System Design
	Problem Modeling
	Algorithms and Learning Models
	Overview
	Stage 1: Neural Network Structure
	Stage 2: Header Field Definition

	Evaluation Results
	Setup
	Classification (Stage 1) Performance
	Header Field Definition (Stage 2) Performance

	Related Work
	Summary

	Local Intelligence: Binarization Techniques towards Scalability
	Introduction
	System Design
	Challenges
	Design Choices

	Problem Modeling and Algorithms
	Problem Formulation
	Inference: Binarized Neural Networks
	Training: Federated Learning Technique

	Evaluation Results
	Testbed Setup
	Performance of Inference
	Performance of Federated Learning

	Related Work
	Summary

	Conclusions
	Future Work and Open Problems

	Controller Placement: Emulation Setting and Proofs
	Controller Traffic Analysis
	Proof of Lemma 1
	Proof of Lemma 2

	Controller Synchronization: Proofs
	Proof of Theorem 2
	Proof of Theorem 3

	Access Network Orchestration: Prototype Implementation
	Network Security: Prototype Implementation
	P4 Data Plane
	Control Plane and Cloud Server

	Bibliography

