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Abstract

Integrative Computational Methodologies on Single Cell Datasets

Wenxuan Deng

2021

High throughput single cell sequencing has seen exciting developments in recent years. With

its high resolution characterization of genetics, genomics, proteomics, and epigenomics features,

single cell data offer more insights on the underlying biological processes than those from bulk se-

quencing data. The most well developed single cell technologies are single cell RNA-seq (scRNA-

seq) on transcriptomics and flow cytometry on proteomics. Many multi-omics single cell sequenc-

ing platforms have also emerged recently, such as CITE-seq, which profiles both epitope and tran-

scriptome simultaneously. But some well known limitations of single cell data, such as batch

variations, shallow sequencing depth, and sparsity also present many challenges. Many compu-

tational approaches built on machine learning and deep learning methods have been proposed to

address these challenges. In this dissertation, I present three computational methods for joint anal-

ysis of single cell sequencing data either by multi-omics integration or joint analysis of multiple

datasets.

In the first chapter, we focus on single cell proteomics data, specifically, the antibody pro-

filing of CITE-seq and cytometry by time of flight (CyTOF) applied to single cells to measure

surface marker abundance. Although CyTOF has high accuracy and was introduced earlier than

scRNA-seq, there is a lack of computational methods on cell type classification and annotations

for these data. We propose a novel automated cell type annotation tool by incorporating CITE-seq

data from the same tissue, publicly available annotated scRNA-seq data, and prior knowledge of

surface markers in the literature. Our new method, called automated single cell proteomics data

annotation approach (ProtAnno), is based on non-negative matrix factorization. We demonstrate

the annotation accuracy and robustness of ProtAnno through extensive applications, especially for
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peripheral blood mononuclear cells (PBMC).

The second chapter introduces an integrative method improving bulk sequencing data decom-

position into cell type proportions by harmonizing scRNA-seq data across multiple tissues or mul-

tiple studies. As a Bayesian model, our method, called tranSig, is able to construct a more reliable

signature matrix for decomposition by borrowing information from other tissues and/or studies.

Our method can be considered an add-on step in cell type decomposition. Our method can bet-

ter derive signature gene matrix and better characterize the biological heterogeneity from bulk

sequencing datasets.

Finally, in the last chapter, we propose a method to jointly analyze scRNA-seq data with sum-

mary statistics from genome wide association studies (GWAS). Our method generates a set of

SNP (single nucelotide polymorphism)-level weight scores for each cell type or tissue type using

scRNA-seq atlas. These scores are combined with risk allele effect sizes to decompose poly-

genic risk score (PRS) into cell types or tissue types. We show through enrichment analysis and

phenome-wide association study (PheWAS) that the decomposed PRSs can better explain the bio-

logical mechanisms of genetic effects on complex traits mediated through transcription regulation

and the differences across cell types and tissues.
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A.1 ProtAnno optimization properties. A) ProtAnno convergence for six simulation

scenarios. The x-axis represents iteration number. The y-axis represents log loss
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scriptomics data on annotation in the ProtAnno model with only transcriptomics

penalization, AS. The x-axis represents the correlation between transcriptomics

predicted signature matrix AS and true protein signature matrix W . The y-axis
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Chapter 1

ProtAnno, an Automated Cell Type
Annotation Tool for Single Cell Proteomics

Data that integrates information from
Multiple Reference Sources

Abstract

Compared with sequencing-based global genomic profiling, cytometry labels targeted surface

markers on millions of cells in parallel either by conjugated rare earth metal particles or Unique

Molecular Identifier (UMI) barcodes. Correct annotation of these cells to specific cell types is a

key step in the analysis of these data. However, there is no computational tool that automatically

annotates single cell proteomics data for cell type inference. In this chapter, we propose an au-

tomated single cell proteomics data annotation approach called ProtAnno to facilitate cell type

assignments without laborious manual gating. ProtAnno is designed to incorporate information

from annotated single cell RNA-seq (scRNA-seq), CITE-seq, and prior data knowledge (which

can be imprecise) on biomarkers for different cell types. We have performed extensive simula-

tions to demonstrate the accuracy and robustness of ProtAnno. For several single cell proteomics
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datasets that have been manually labeled, ProtAnno was able to correctly label most single cells. In

summary, ProtAnno offers an accurate and robust tool to automate cell type annotations for large

single cell proteomics datasets, and the analysis of such annotated cell types can offer valuable

biological insights.

Keywords: CyTOF; scRNA-seq; CITE-seq; Gating; Data Integration.

1.1 Introduction

Recent years have seen the developments of many single cell platforms [1] that have enabled re-

searchers to collect high throughput -omics profiles at the individual cell level, including genomics

[2][3], transcriptomics [4], proteomics [5], and [6]. These data can reveal biological heterogeneity

across different biological conditions. They offer a direct approach to studying cell type composi-

tions and functional cell states. The most well-developed platforms are scRNA-seq for transcrip-

tomics and flow cytometry (CyTOF) [7][8][9] for proteomics. Notably, the rise of scRNA-seq has

generated rich data and resources on single cell transcriptomics [10][11].

In addition to collecting single cell data for one specific -oimcs data type, it is possible to

collect multi-omics data simultaneously at the single cell level, e.g., CITE-seq [12] that measures

mRNA and antibody counts simultaneously by UMI barcode. These data can characterize the

cellular relationship between transcript and cell surface marker abundance. Methods have been

developed to bridge these two types of omics data. For example, cTP-net [13] is a transfer learning

approach under a deep learning framework to predict surface protein levels from scRNA-seq data.

The generation of diverse types of single cell data poses many computational challenges due to

their high dimensionality and large sample sizes. In this chapter, we focus on the annotation of

single cell proteomics data to their corresponding cell types, which is a critical step in single cell

analysis.

A major advantage of single cell proteomics data compared with scRNA-seq data is their high
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sensitivity and specificity. Based on surface marker expression patterns, manual gating can be used

to identify different cell populations by the expression distributions. However, cell type labeling

by manual gating on single cell data is labor intensive and subjective as it highly depends on the

expert who annotates the cells. Although some methods can analyze these data based on state-

of-the-art machine learning methods [14][15][16] for clustering cells, most of these methods are

unsupervised and unable to identify cell populations automatically.

For scRNA-seq data, a number of methods have been developed to assign cells to different cell

types based on expression profiles. For example, SingleR [17] trains on an extensive collection

of large annotated reference transcriptomics single cell data. Preliminary labeling by SingleR can

vastly accelerate cell type inference. However, there is no similar automated tool for single cell

proteomics data annotation. A recently developed tool named CellGrid [18] applied the same idea

to CyTOF data but needed a large number of labeled proteomics datasets as input. However, there

is a lack of labeled single cell proteomics data although well-annotated scRNA-seq data are more

broadly available. For the CITE-seq data, it is still necessary to annotate the transcriptomics and

proteomics data separately.

To overcome the lack of labeled single cell proteomics data, we introduce an automated single

cell proteomics data annotation approach called ProtAnno, based on non-negative matrix fac-

torization (NMF) to incorporate data from different reference sources. The only essential input of

ProtAnno is some prior knowledge on cell type-specific biomarkers. To further improve annotation

accuracy, ProtAnno can take advantage of publicly available CITE-seq data and annotated scRNA-

seq data. This enables ProtAnno to perform cell type annotation with no prior characterization

between cell types and surface proteins by leveraging these external references.

We have evaluated the performance of ProtAnno through simulations under different settings.

The results showed the robustness of ProtAnno to biological variability, technical noise, cell type

number, and incomplete and inaccurate expert knowledge. We then applied ProtAnno to three real

datasets: peripheral blood mononuclear cell (PBMC) paired stimulated B cell receptor CyTOF

data, PBMC CITE-seq data from healthy subjects, and longitudinal whole blood covid-19 CyTOF
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data grouped by patients’ disease severity. In the analyses of these real data, ProtAnno provided

fast and accurate labeling as demonstrated through comparisons with manual annotations or down-

stream biological investigations. In summary, ProtAnno is a computationally efficient and statis-

tically robust approach for automated cell type annotation when only limited expert knowledge is

available for single cell proteomics data.

1.2 Methods

1.2.1 Automated Single cell Proteomics Data Annotation Model

The workflow is sketched in Fig 1.1. ProtAnno deconvolutes the proteomic expression profile

X ∈ RD×C into the product of the cell type-specific signature matrix, W ∈ RD×K , and cell type

assignment matrix, H ∈ RK×C , i.e. X = WH. In the model, we have D surface markers for C

cells in the proteomics data, e.g., the cytometry data and antibody profile in CITE-seq. We denote

K as the number of cell types. The columns of W are matched with the known cell types in

the same order. Due to the non-negative requirement on the estimations of W and H , ProtAnno

implemented NMF for solving X = WH .

In ProtAnno, we integrate information from both prior knowledge encoded in a matrix A0 and

relationship between protein markers and RNA-seq data encoded in a matrix A. In our model, we

denote A ∈ RD×G as the protein-RNA association matrix inferred from a CITE-seq data by elastic

net [39], where G is the number of genes considered. A desirable CITE-seq data should include a

large number of measured antibodies. ProtAnno implements two internal dictionary-like CITE-seq

datasets from [19] and [20]. Both datasets have more than 180 antibody tags. The transcriptome

signature matrix S ∈ RG×K is generated by well-annotated scRNA-seq data. The K columns

of S should be matched with W . We recommend using the denoised scRNA-seq data to impute

drop-out events for better annotation. Specifically, we deploy SAVERx [21] for imputation due to
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its superior performance.

The expert knowledge matrix A0 ∈ RD×K is designed based on known cell type surface mark-

ers. A0 is a discrete matrix containing three possible values, +1, −1, and 0. If biomarker i should

have high expression level in cell type j, we set Aij0 = 1; if the biomarker is not expressed in

this cell type, Aij0 = −1; and if there is no constraint on the biomarker and cell type, then we set

Aij0 = 0.

To estimate the signature matrixW in the order of given cell type list, ProtAnno adds constraint

on W with respect to the above two proteomic signature matrices, AS and A0.

With all the notations introduced above, the ProtAnno model is formulated as follows:

min
W≥0,H≥0

L(W,H) =
1

2
‖ X −WH ‖2

F −λ1tr(W
TAS)− λ2tr(W

TA0)

+
µ

2
‖ W ‖2

F +
η

2
‖ 1TkH − 1TN ‖2

2

(1.1)

Note that ProtAnno adds regularization penalty on W and H to improve performance. We use

1K and 1N to denote the K-dimensional and N -dimensional column vectors with all-ones. The

fourth term in ProtAnno is to control the scale of W , and the last term is to force the column sum

of H to be 1.

We optimize this overall objective function based on the multiplicative update algorithm [22][23]

to guarantee non-negativity. The algorithm requires the specifications of the penalty parameters,

λ1, λ2, µ, and η. In each iteration, ProtAnno updates W by rows and H by columns. The details of
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ProtAnno are provided in Algorithm 1.

Algorithm 1: ProtAnno Optimization Algorithm
Result: Optimal non-negative W and H

Model input: Normalized expression profile matrix X , discrete prior knowledge matrix

A0, public labeled single cell expression profile, and penalty parameters λ1, λ2, µ, η;

Step 1: set t = 0 and generate intial non-negative W and H with all ones;

Step 2: Update W by rows and H by column:

wt+1
ij = wtij

[xHT ]+j + λ1[(AS)i]
+
j + λ2[(A0)i]

+
j

[wi(HHT + µI)]j + [xHT ]−j + λ1[(AS)i]
−
j + λ2[(A0)i]

−
j

ht+1
j = htj

[W Tx]+j + η1k

[(W TW + η1k1Tk )ht]j + [W Tx]−j

(1.2)

Step 3: Update t = t+ 1 until the convergence or reaching the given iteration times.

It can be shown that the algorithm converges in theory with the details of the theorems and

converging rates provided in the supplementary materials B.2.

1.2.2 Choices of Penalty Parameters

Since the penalty parameter values are critical to ProtAnno, we developed the following algorithm

to tune their values iteratively.

To ensure that ProtAnno can group expression profiles into reasonable clusters, we use the de-

fault unsupervised Louvain algorithm for preliminary clustering. We then set the initial parameterη

by the KKT condition; and then search the initial λ1, λ2, and µ values by choosing from among

0.1, 1, 10, and 100. To find the initial λ1 and λ2 values, we maximize the ARI between the Louvain

clusterings and ProtAnno results. We consider a novel index to select the initial value for µ:

D(µ) := Xmean −Wmean (1.3)
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The above function considers the difference between the mean values of X and W . The main

purpose of D(µ) is to ensure that W is on approximately the same scale as X . Otherwise, the

deconvolution would be unstable since we penalize the column summation of H to make the cell

type proportion estimations meaningful.

To set more precise penalty terms, ProtAnno uses binary search to determine the final optimal

output as detailed in Algorithm 2, and allows the specified search depth depending on the running

time. If the final ARI is lower than 0.75, the algorithm will restart the binary search at higher

resolution.

Algorithm 2: ProtAnno Parameter Automated Tuning Algorithm
Result: Optimal penalty parameters: λ1, λ2, µ, η

Model input: Normalized expression profile matrix X , discrete prior knowledge matrix

A0, public labeled single cell expression profile;

Step 1: Estimate Louvain cluster;

Step 2: Initialize W and H by an arbitrary optimization, and initialize η by KKT

conditions:

η :=‖ (W TWH −W TX)/(1K1TKH − 1K1TN) ‖median (1.4)

Step 3:Initialized λ1 and λ2 by choosing from (0.1, 1, 10, 100) and minimizing Adjusted

Rank Index (ARI) with Louvain clustering;

Step 4:Initialized µ by estimated signature matrix W reliability by a developed metric:

D(µ) := Xmean −Wmean (1.5)

Step 5: Select the best λ1, λ2 and µ by binary search;

Step 6 (Optional):If the final ARI with Louvain cluster is still lower than 0.75, we re-do

the binary search on all the penalty parameters.
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1.3 Results

1.3.1 Simulation Setup

In the following, we describe how we simulated the protein expression profiles for each single

cell. We first generated the entries in the expert matrix A0 from a multinomial distribution with

three categories, +1, −1, and 0, corresponding to biomarker knowledge for a cell type, i.e., high

expression, no expression, and no information. The matrix will be built with the angles between

vectors as large as possible, so that the simulated single cell expression profile is a nonnegative

linear combination of the proteomics signature matrix [22]. To achieve it, we generate 100 matri-

ces randomly and minmax the inner products between column vectors to get the optimal one. This

design captures the nature of signature genes. However, the prior knowledge may not be in line

with true relationships between markers and cell types due to technical and biological variations.

We, therefore, regenerated an intermediate discrete matrix Ã0 based on A0 containing three possi-

ble discrete values, 2 (high expression), 1 (low expression), and 0 (no expression), by random walk

and the protocols observed in real data (details in Methods). We then derived the signature matrix

W based on Ã0 from two truncated normal distributions with high and low mean values, respec-

tively, and varying relationships between variances and means that reflect the signal noise ratio

for a biomarker. The difference of the means of the two truncated normal distributions together

with their variances dictate the informativeness of a specific biomarker for cell type specification.

The proteomics expression profile X was sampled from the truncated normal distributions based

on the signature matrix that defines the mean and associated variance for each biomarker in each

cell type. Finally, to simulate the predicted proteomics signature matrix from transcriptomics data,

which is the product of the protein-RNA association matrix A, and the transcriptomics signature

matrix S, [AS], we sampled the element [AS]ij in the matrix with mean Wij , the expression level

of signature gene i in cell type j, and variance Wij/(2 ∗ corr). A smaller corr results in a weaker

correlation between the two proteomics signature matrices. All the simulation details can be found
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in Materials and Methods.

1.3.2 Model performances and comparisons

We considered six simulation scenarios to cover a wide range of biological and technical variations

in real data, with data quality varying from high (scenario 1) to low (scenario 6). We tuned the

parameters of the normal distributions to decrease the cell type distinction and enlarge the expres-

sion profile divergence. To simulate the situations when AS or A0 is too noisy to have a good

prediction power, we also added more uncertainty to AS and A0 that led to a lower correlation

with real signature matrix W . The overall noise increased from scenario 1 to 6. In scenario 5, we

increased the noisy level of expert matrix A0 so that it is more aberrant compared with the single

cell proteomics data expression pattern. In addition, the correlation of W and AS was set at only

0.2. These large noises from references would reduce the annotation accuracy. Furthermore, we

increased expression profile variations by lowering the mean-variance ratio in scenario 6, making

the annotation more challenging. All the parameters settings and details are listed in Table A.1. In

the columns, big w mean and big tau w are the mean and standard error of the truncated normal

distribution for high expression biomarker; small w mean and small tau w are the mean and stan-

dard error of the truncated normal distribution for low expression biomarker; p.0 is the probability

of random walk from 0 in A0 to 2 in A1; q.0 is the probability of random walk from 0 in A0 to 1

in A1; p.neg1 is the probability of random walk from -1 in A0 to 2 in A1; q.neg1 is the probability

of random walk from -1 in A0 to 2 in A1; mean var ratio is signal noise ratio of a celltype-specific

biomarker expression; corr is correlation of W and AS

We compared the performance of six models: the full ProtAnno model, the ProtAnno model

without transcriptomics information AS, the ProtAnno model without expert knowledge A0, the

unsupervised ProtAnno model, the unsupervised Louvain clustering, and cell type assignment by

non-negative least squares (NNLS) when the protein signature matrix W is known. The last one

is the best result an NMF model can achieve. We consider five metrics for annotation accuracy:
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Adjusted Rand Index (ARI), annotation accuracy assigned by the largest value for every single

cell, Normalized Mutual Information (NMI), cosine similarity between the estimated and real as-

signment, and Average Silhouette Width.

The simulation results in Fig 1.2A show that the full ProtAnno model achieved the best anno-

tation accuracy, especially compared with the NNLS model. Specifically, from scenarios 1 to 4,

ProtAnno was able to achieve the same performance an NNLS model could have when the true

signature matrix is known. These results suggest the importance of having precise information for

A0 and AS. Besides the full ProtAnno model, the partial ProtAnno model with the expert matrix

had the second-best performance, just slightly worse than the full model. The partial ProtAnno

model only having the transcriptomics reference was not competitive with the first two models.

But it was still much better than the unsupervised clustering, even in terms of ARI and NMI. In

general, both full and partial ProtAnno models could obtain accurate cell type assignments even in

the presence of considerable noise.

We investigated the numerical convergence of ProtAnno in our simulation studies. Fig 1.2B

shows an example of ProtAnno cell type assignment in a UMAP plot with 29 cell types, where

the accuracy was 98.8%. The high agreement of clustering between the real labels (left) and the

ProtAnno annotation (right) demonstrates the power of ProtAnno.

1.3.3 Algorithm convergence and robustness

ProtAnno generally converges after 100 iterations (Supp A.1A). To filter the high confidence an-

notation, the subsetting step will keep the cell whose estimated H is greater than 0.5 after column

normalization. The subsetting step was able to slightly enhance the annotation accuracy (Supp

A.1B).

ProtAnno’s robustness was investigated with respect to three parameters: mean-variance ratio

(Fig 1.3A), correlation between W and AS (Fig 1.3A, supp A.1C), and cell type number K (Fig
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1.3C). Since a protein with a higher mean expression level tends to have a higher variance, we used

mean-variance ratio to characterize the signal noise ratio of a protein. As expected, the prediction

accuracy dropped with a reduced mean-variance ratio (Fig 1.3A). Overall, the full ProtAnno model

was very robust even when the AS prediction power was weak (supp A.1C), implying the critical

role of A0. We also explored how the transcriptomics information AS could help the annotation

when A0 is not available (supp A.1C). The accuracy rate was almost linearly associated with the

prediction correlation. Therefore, scRNA-seq data and dictionary CITE-seq data with high quality

are essential for the good performance of the partial ProtAnno model when no reliable expert

knowledge is available. As for the impact of the number of cell types, ProtAnno was robust to the

large cell type number as long as the cell counts of each cell population were more than 100 in our

simulation (Fig 1.2B, Fig 1.3C).

The good performance of ProtAnno depends on the appropriate choices of the penalty parame-

ters. Simulation results suggest that our proposed parameter tuning algorithm was able to find good

penalty values (Fig 1.3D, Supp A.1D) as shown in the relationship between algorithm performance

and tuning parameter values in these figures in most cases.

Finally, we can rewrite the ProtAnno objective function in an equivalent form as (see supple-

mentary materials B.3):

min
W≥0,H≥0

1

2
‖ X −WH ‖2

F +
µ

4
‖ W − 2λ1

µ
(AS) ‖2

F

+
µ

4
‖ W − 2λ2

µ
A0 ‖2

F +
η

2
‖ 1TkH − 1TN ‖2

F .

(1.6)

The above objective function form illustrates the imposed relationships between W , AS, and

A0. The second penalty terms will force the ratio of elements in matrices W and AS to be ap-

proximately equal to 2λ1
µ

. Specifically, the ratio of Wij/ [AS]ij should be approximately 2λ1
µ

for

any entry with row index i and column index j. Similarly, the ratio of W and A0 should be ap-

proximately 2λ2
µ

. Therefore, we empirically examined whether the ratios of matched elements in
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Marker memory B cells naïve B cells CD4 T-cells CD8 T-cells DC monocytes NK cells

CD3 -1 -1 1 1 -1 -1 -1

CD45 1 1 1 1 1 1 1

CD4 0 0 1 -1 0 0 0

CD20 1 1 0 0 -1 -1 -1

CD33 0 0 0 0 0.5 1 0

CD123 0 0 0 0 1 0 0

CD14 0 0 0 0 -1 1 -1

IgM 1 -1 0 0 0 0 0

HLA-DR 0 0 0 0 1 0 -1

CD7 0 0 1 1 0 0 1

Table 1.1: A0 for BCR application.

matrices W and AS (or A0) approached the theoretical ones (Supp A.2A, A.2B). The figures show

that the empirical distribution of these ratios compared with 2λ1
µ

and 2λ2
µ

, suggesting that estimated

W was close to 2λ1
µ

(AS) and 2λ2
µ
A0 at the same time.

1.3.4 Application to paired stimulated B cell receptor/Fc receptor cross-

linker (BCR) cytometry data

We first evaluated ProtAnno’s performance on a benchmarking BCR CyTOF dataset with eight

paired samples from PBMC in [24]. Compared with the reference group, the B cell population was

stimulated by BCR in the treatment group. All the samples were collected from healthy individuals,

and 10 cell type markers were measured in a total of 172791 cells. This dataset was labeled in [25]

after the authors applied an unsupervised clustering method FlowSOM [15] and manually merged

clusters. We evaluated the assignments of these cells to five major cell types based on the 10 cell

type markers. Other inputs, the association matrix and the transcriptomics signature matrix S, were
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generated by the CITE-seq data in [20]. To match with annotated cell types by Nowicka et al., we

manually gated the five major cell types in the scRNA-seq. We also constructed an expert-guided

matrix A0 (Table 1.1). ProtAnno assigned a cell to the cell type with the largest value in matrix H .

The overall median accuracy of ProtAnno for this data set was 83% (Fig 1.4A) across the

samples. For most of the samples, the accuracy could be as high as 80% to 85% (Supp3), except

an outlier, patient 8, with decreased the average. For this data set, even the partial ProtAnno with

only A0 or only AS could achieve an accuracy of over 70% overall. The subsetting step could

slightly improve accuracy by keeping high-confidence cells (Supp A.3, Supp A.4). Because the

BCR dataset does not have clear clustering patterns, making it challenging to annotate cells. This

can be seen in the UMAP plot, where some of the cells from different cell types are located in the

same region (Fig 1.4E). Similar observation was made in the benchmarking study of unsupervised

clustering accuracy by [26]. At the lowest clustering resolution of 9 clusters, the false positive rate

was around 20%, where unsupervised clustering could not achieve accurate annotation. Therefore,

an overall accuracy of 80% may be considered satisfactory for this dataset. We further investigated

the misclassification patterns by the confusion matrix for patient 1 in the stimulated group (Fig

1.4B). It can be seen that most of the cells could be correctly assigned by ProtAnno. However,

some of the natural killer cells (NK cells) were annotated as CD8 T cells. That is partly because

the BCR data did not measure the biomarker CD8, which offers important information for CD8 T

cell assignment. For this data set, the only biomarker that was informative to distinguish these two

cell populations is CD3, which makes computational annotation difficult. The UMAP plot also

shows that the annotation is highly consistent with the manually annotated cell types, although the

boundary of NK cells and CD8 T cells is hard to recognize (Fig 1.4E).

Since many genes had significant differential expression levels across groups in the BCR

dataset, we studied the W matrix variations to test whether ProtAnno could accurately estimate the

signature matrix. The most differential expression directions in the stimulated group by ProtAnno

are consistent with prior biological knowledge (Fig 1.4C). For example, biomarker HLA-DR had

a significantly elevated expression in most cell types after BCR stimulation. The inferred cell
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type proportions also suggest that ProtAnno can provide an accurate estimation in the comparative

study. For example, the proportions of naive B cells were lower in the stimulated group (Fig 1.4D).

These downstream analyses suggest accurate annotation by ProtAnno.

1.3.5 Application to PBMC CITE-seq data

To investigate the performance of ProtAnno on the proteomic expression profile in CITE-seq data,

we analyzed a PBMC CITE-seq dataset reported in [27]. This dataset measured 10 surface markers

in 1372 cells from a healthy subject. We used ProtAnno to annotate 1153 cells with six cell types,

because we cannot annotate the other 219 cells to any cell type based on the available limited 10

markers. These cells were manually labeled and the details are provided in the online methods and

materials 1.5.4. We used the CITE-seq data in [19] to derive the transcriptomics signature matrix

and the CITE-seq data in [20] to obtain the association matrix and construct A0(Table 1.4). The

automated annotation accuracy was around 99% with 100% accuracy for most cell types, except

for non-classical monocytes. ProtAnno failed to recognize this cell type since it is a rare population

whose cell type proportion is below 1% (Fig 1.5A). These results suggest that ProtAnno could be

applied to multiple single cell proteomics sequencing platforms, though cytometry and CITE-seq

are different technologies with distinct features.

1.3.6 Application to longitudinal whole blood covid-19 cytometry data

Finally, we applied ProtAnno to a longitudinal whole blood covid-19 CyTOF data set reported in

[28]. This dataset included 37 adult covid-19 patients classified into ICU, non-ICU, and recovery

groups. All the hospitalized (ICU and non-ICU) patients were measured at multiple time points.

Each sample had 15, 000 ∼ 20, 000 cells. The authors used an in-house annotation method Cell-

Grid [18] to train a subtyping strategy with high resolution to annotate over 50 cell types. Since

we do not have access to such a large training CyTOF dataset and comprehensive knowledge on
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Marker CD4+T cell CD8+T cells naïve B cells NK cell
classical 

monocytes
non-classical 
monocytes

CD154 0 0 0 0 1 1

CD4 1 -1 0 0 0 0

CD56 0 0 0 1 -1 -1

CD3 1 1 -1 -1 -1 -1

CD19 0 0 1 -1 -1 -1

CD14 0 0 0 -1 1 -1

CD11c 0 0 0 1 0 0

CD8 -1 1 0 0 0 0

CD16 0 0 0 1 -1 1

CD127 1 1 0 0 0 0

Table 1.2: A0 for PBMC CITE-seq application.

biomarkers, we selected 23 surface markers to define 17 common cell types in whole blood. For

this dataset, we only considered the partial ProtAnno model with A0 since there is no whole blood

CITE-seq dataset available (Table ??). Since we do not have ground truth on cell type annota-

tions, we primarily evaluated the performance of ProtAnno through downstream analysis. More

specifically, we studied the cell counts and cell types of neutrophils and lymphocytes.

The neutrophiles are strongly positively correlated with patient disease severity [29]. In this

dataset, we treated the patient group as the severity indicator. In the ProtAnno results, the neu-

trophil cell counts of recovery patients were significantly lower than those of the hospitalized

patients (Fig 1.5B, 1.5C) with the Wilcoxon test p-value smaller than 0.05 for both raw output and

subsetting output of ProtAnno, consistent with our expectation. It is also known that the inflamma-

tory symptoms are dramatically elevated in severe cases [30][31][32][33]. Longitudinal analysis of

this dataset showed a slight decrease of neutrophils proportions over time after admission, except

with one patient, COV-34, having a slight increase at the end of the study (Fig 1.5D, 1.5E). The
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marker CD8 T CD4 T Mem Treg Naive Treg gdT Naive B Memory B Plasmablast NK pDC mDC Monocyte Eosinophil Neutrophil MAIT CD16+ Basophil CD16- Basophil

CD3 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1

IgD 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0

CD20 0 0 0 0 0 1 1 -1 -1 -1 -1 -1 0 0 0 0 0

CD4 -1 1 1 1 -1 0 0 0 0 0 0 0 0 0 -1 0 0

CD8a 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

CD11c 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0

CD16 0 0 0 0 0 0 0 0 0 -1 -1 0 0 1 0 1 -1

CD14 0 0 0 0 0 0 0 0 -1 -1 -1 1 0 -1 0 0 0

CD45RA 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

CD127 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

CD33 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

CD24 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1

TCRgd 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CD123 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 1 1

CD56 0 0 0 0 0 0 0 0 1 -1 -1 -1 -1 -1 1 0 0

CD25 -1 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

HLA-DR 0 0 0 0 0 0 0 0 -1 1 1 0 0 0 0 0 0

CD161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

CD28 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

CD38 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

CD27 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0

CD55 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Siglec-8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Table 1.3: A0 for whole blood covid-19 cytometry application.

changes between day 1 to day 12 were significant, especially for the ICU group with a p-value of

0.029. These results suggest that most ICU patients were recovered after treatment.

In contrast, the lymphocyte proportion is expected to decline in severe covid-19 patients. Lym-

phopenia has been used as a biomarker to define a patient’s morbidity [34][35][36]. When we

applied ProtAnno to infer CD4 T and CD8 T cells, although there was no statistically significant

difference across groups, the CD4 T cell count was indeed elevated if the patients recovered (Fig

1.5F). In the longitudinal curves of cell counts, almost all the patients had increased CD4 T cell

and CD8 T cell counts after treatment (Fig 1.5G). This implies that the lymphopenia was alleviated

by treatment.

The analysis of this data set shows the usefulness of ProtAnno even when the data are highly

noisy.
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1.4 Discussion

In this chapter, we have developed a computationally efficient and statistically robust method,

ProtAnno, for automated annotation for single cell proteomic data. Using protein expression pro-

files, this computationally efficient method annotates cells based on cell type information gathered

through (imprecise) prior knowledge, publicly annotated single cell datasets, and CITE-seq data.

ProtAnno only requires simple and accessible references, e.g. publicly annotated scRNA-seq.

When only limited references are available, ProtAnno can be applied either without prior bio-

logical knowledge or public transcriptomics references. ProtAnno can also resolve heterogeneity

among cell populations. For instance, ProtAnno was able to detect signature matrix variations

across different sample groups in the BCR study. In real data applications, we showed that we

can gain biological insights through downstream analysis, such as cell type-specific differential

expression analysis and cell type proportion comparisons after annotations by ProtAnno.

Simulation results showed that ProtAnno is robust to the number of cell types and noises in

cytometry and CITE-seq antibody expression profiles. However, ProtAnno may be limited to

major cell types and unstable when the data are very noisy. Specifically, it is common that the

single cell data does not have a clear separated clustering. For example, ProtAnno does not always

have a reliable assignment for all samples (supp A.3). When a specific cell type is hard to recognize

even for manual gating, ProtAnno may misclassify its entire cell subpopulation. The annotation

performance also dropped substantially in simulations with large noise in X and/or more limited

information from references A0 and AS. Therefore, ProtAnno may be suitable for preliminary

assignments and may require manual inspection.

Future work can incorporate hierarchical cell type structure to enhance the classification resolu-

tion and accuracy. Specifically, ProtAnno could be extended with multiple layers for classification.

The cell populations with low resolution, i.e., neutrophils and lymphocytes, could be identified

first, and the cell subtypes, i.e., naive CD4 T cell and memory CD8 T cell, can be classified in

the next few steps. Additionally, some steps in the parameter tuning algorithm could be replaced
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by advanced computational clustering methods, i.e., FlowSOM [15] and SPADE [37]. This may

be helpful when the boundaries of cell types are unclear. Lastly, although ProtAnno does not

need training data, a more unbiased association matrix inferred from more data could be a helpful

add-on item to ProtAnno.

In summary, ProtAnno can provide a robust preliminary automated cell type annotation. Its

performance could be further improved through adopting more advanced clustering approaches

and more reliable references.

1.5 Materials and Methods

1.5.1 Optimization Procedure

Step 1: Update w with Lagrangian Multiplier

In this step, we update the K-dimensional non-negative row vector wi. Thus we have the new

loss function by adding the Lagrangian multiplier as equation. Here to discriminate the primary

constraint optimization with the dual Lagrangian function, we use E to denote the latter.

min
wi≥0

L(wi;H) =
1

2
‖ xi − wiH ‖2

F −λ1tr(w
T
i (AS)i)− λ2tr(w

T
i (A0)i) +

µ

2
‖ wi ‖2 . (1.7)

min
wi

E(wi;H) =
1

2
‖ xi−wiH ‖2

F −λ1tr(w
T
i (AS)i)−λ2tr(w

T
i (A0)i)+

µ

2
‖ wi ‖2 +Φwi. (1.8)

Here xi and wi are the ith row of X and W , respectively. To minimize the loss function by
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updating row wi, we have

OE(wi;H) = wi(HH
T + µI)− xiHT − λ1(AS)i − λ2(A0)i + Φ. (1.9)

By using the property of Φwi = 0, we have

wijOE(wi;H)j = wij[wi(HH
T + µI)− xiHT − λ1(AS)i − λ2(A0)i + Φ

= wij[wi(HH
T + µI)− xiHT − λ1(AS)i]j − λ2(A0)i]j.

(1.10)

We set the derivative to be zero. To get the non-negative minimizer, we decompose the items

that are not non-negative in into positive and negative parts as:

xiH
T = [xiH

T ]+ − [xiH
T ]−λ1(AS)i = [λ1(AS)i]

+ − [λ1(AS)i]
−λ2(A0)i

= [λ2(A0)i]
+ − [λ2(A0)i]

−.
(1.11)

By simple algebra, we have the following equation

wij([wi(HH
T + µI)] + [xiH

T ]− + [λ1(AS)i]
− + [λ2(A0)i]

−)j = wij([xiH
T ]+ + [λ1(AS)i]

+

+ [λ2(A0)i]
+)j.

(1.12)
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Thus, we update wi by

wt+1
ij = wtij

[xHT ]+j + λ1[(AS)i]
+
j + λ2[(A0)i]

+
j

[wi(HHT + µI)]j + [xHT ]−j + λ1[(AS)i]
−
j + λ2[(A0)i]

−
j + 10−16

. (1.13)

Step 2: Update H with multiplicative update algorithm

In this step, we optimize h column-wise.

min
hj≥0

L(hj;W ) =
1

2
‖ xj −Whj ‖2

F +
η

2
‖ 1TKhj − 1TN ‖2

2, (1.14)

where W is the constant matrix and xj is the j-th column vector of X . Similarly, by adding the

Lagrangian multiplier, we have the following equations:

min
hj

E(hj;W ) =
1

2
‖ xj −Whj ‖2

F +
η

2
‖ 1TKhj − 1TN ‖2

2 +Φhj (1.15)

and

OE(hj;W ) = (W TW + η1K1TK)hj −W Txj − η1K + ΦhijOE(hj;W ) = 0. (1.16)

We can update by

ht+1
j = htj

[W Tx]+j + η1k

[(W TW + η1K1TK)ht]j + [W Tx]−j + 10−16
. (1.17)
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1.5.2 Simulation Details

The expert matrix A0 was generated from a multinomial distribution containing three categories,

+1, −1, and 0. We generated 100 matrices A0 and selected the optimal one that had the smallest

inner product between the vectors by minimax. Such construction can more likely enable the

expression profile X to be a nonnegative linear combination of basis vectors.

In most cases, the expert matrix may be biased. We therefore generated an intermediate discrete

matrix Ã0 with three possible discrete values, 2, 1, and 0, to represent the expert knowledge matrix

used. They were matched with three biomarker distributions within a cell population: high, low,

and no expression. In practice, if the entry in A0 was 1, the corresponding gene would have high

expression levels in real data from our observations. Thus, the corresponding element in Ã0 kept

the value, 1. However, if the entry in A0 was −1, it is possible to have low or medium expression

level instead of no expression completely. In some rare instances, the corresponding gene might

even have high expression. Therefore, the values of −1 would random walk to 1 with probability

q−1 and to 2 with probability p−1in Ã0. If the entry inA0 was 0, then the distribution was uncertain.

In this case, the values of 0 would random walk to 1 with probability q0 and to 2 with probability

p0 in Ã0. This generated the new discrete matrix Ã0 based on the above random walk protocols to

distinguish the different biomarkers behaviors.

Next, the signature matrix W was generated based on Ã0 from two positive truncated normal

distributions with different expectations. When the entry in Ã0 was 2, the corresponding signature

gene average expression was sampled from a positive truncated normal distribution with a large

mean; when the entry in Ã0 was 1, the corresponding signature gene average expression was

sampled from a half-normal distribution with a small mean; otherwise, it was set to 0.1.

After randomly simulating the cell type labels for each single cell in the proteomics expres-

sion profile X , the expression level was sampled from normal distributions with the expectation

of average signature gene expression in W and variance calculated from sampled mean and the
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specified mean-variance ratio.

1.5.3 Annotation metrics

ARI was calculated using the function adjustedRandIndex from the R package mclust [38]. For

NMI, the ground truth and the predicted label for each cell were converted into one-hot vectors

and the function NMI in the R package aricode [39] was used to calculate the NMI for each cell.

The reported result was the average across all the cells. Cosine similarity was calculated by first

computing the cosine measure between the ground truth one-hot vector and the cluster assignment

vector using the cosine function from the lsa package in R, and finally averaging over all the cells.

ASW was calculated using the batch sil function in the R package kBET [40].

1.5.4 Real Datasets and processing

The BCR CyTOF dataset was downloaded through the HDCytoData [41] R package. The cell types

were labeled by [25] and could be accessed by the HDCytoData package. The CITE-seq data

in [27] were downloaded from GEO with accession ID GSE148665. The longitudinal covid-19

CyTOF data were downloaded from (https://brodinlab.com/data-repository/).

The two dictionary CITE-seq datasets in [19] and [20] would be available after they publish the

data. The CITE-seq data in [27] and [20] were manually labeled after the preliminary results by

SingleR [17]. The expert-guided matrices were obtained from the biomarker panels in [19].

All the proteomics data were normalized by arcsinh function with cofactor 5. We cleaned and

gated the longitudinal CyTOF data by the R package flowCore to filter the intact cells. When

processing the association matrix from CITE-seq and transcriptomics signature matrix, all the

scRNA-seq data are denoised by SAVERX [21]. The transcriptomics gene list for each application

contains the matched protein-coding transcript genes (Table 4) and the top highly variable genes

generated by the Seurat package [42].
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marker Gene_1 Gene_2 Gene_3

CD112 (Nectin-2) NECTIN2

CD11a ITGAL

CD123 IL3RA

CD127 (IL-7RÎ±) IL7R

CD14 CD14

CD15 (SSEA-1) FUT4

CD155 (PVR) PVR

CD158b (KIR2DL2/L3, NKAT2) KIR2DL2

CD158e1 (KIR3DL1, NKB1) KIR3DL1

CD16 FCGR3A

CD163 CD163

CD169 (Sialoadhesin, Siglec-1) SIGLEC1

CD18 ITGB2

CD19 CD19

CD193 (CCR3) CCR3

CD194 (CCR4) CCR4

CD196 (CCR6) CCR6

CD1c CD1C

CD2 CD2

CD20 MS4A1

CD21 CR2

CD22 CD22

CD226 (DNAM-1) CD226

CD235ab GYPA

CD244 (2B4) CD244

CD25 IL2RA

CD268 (BAFF-R) TNFRSF13C

CD27 CD27

CD278 (ICOS) ICOS

CD279 (PD-1) PDCD1

CD29 ITGB1

CD3 CD3E

CD305 (LAIR1) LAIR1

CD31 PECAM1

CD314 (NKG2D) KLRK1

CD32 FCGR2A FCGR2B

CD328 (Siglec-7) SIGLEC7

CD33 CD33

CD335 (NKp46) NCR1

CD337 (NKp30) NCR3

CD35 CR1

CD36 CD36

CD366 (Tim-3) HAVCR2

CD38 CD38

CD39 ENTPD1

CD4 CD4

CD41 ITGA2B

CD45RA PTPRC

CD45RO PTPRC

CD47 CD47

CD49b ITGA2

CD49d ITGA4

CD49f ITGA6

CD5 CD5

CD52 CD52

CD54 ICAM1

CD56 (NCAM) NCAM1

CD57 Recombinant B3GAT1

CD62L SELL

CD62P (P-Selectin) SELP

CD64 FCGR1A

CD66b CEACAM8

CD69 CD69

CD7 CD7

CD71 TFRC

CD73 (Ecto-5'-nucleotidase) NT5E

CD8 CD8A

CD94 KLRD1

CD95 (Fas) FAS

CD96 (TACTILE) CD96

CLEC12A CLEC12A

FcÎµRIÎ± FCER1

HLA-A,B,C na

HLA-DR HLA-DRA

Ig light chain Îº na

Ig light chain Î» na

IgD IGHD

IgM IGHM

KLRG1 (MAFA) KLRG1

TCR VÎ´2 TRDV2

TCR Î±/Î² TRAC TRBC1 TRBC2

TIGIT (VSTM3) TIGIT

CD197 (CCR7) CCR7

CD11c ITGAX

CD183 (CXCR3) CXCR3

CD185 (CXCR5) CXCR5

CD24 CD24

CD138 (Syndecan-1) SDC1

CD141 (Thrombomodulin) THBD

Table 1.4: Protein-coding surface marker and transcript matching table.
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Figure 1.1: Model overview. ProtAnno first generates a protein-RNA association matrix A trained
on CITE-seq dictionary by Elastic Net and a transcriptome signature matrix S from scRNA-seq
with cell type annotations. The product of A and S is the predicted protein level signature matrix
based on mRNA counts. The other input is the discrete matrix A0 to represent the general expert
biomarker knowledge. The loss function is an NMF optimization program on protein expression
matrix to deconvolute into estimated protein signature matrix W and cell type assignment matrix
H , with penalizations on AS and A0 and regularizations on W scale and column sum of H . The
matrix H could be optionally trimmed to the cells which have high-confidence assignment in the
presence of high noise in X . The final annotations of ProtAnno are based on the largest value of
H column-wise.
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A

Fig.2

B

Figure 1.2: ProtAnno simulation benchmarking results. A) Comparisons of benchmarking anno-
tation results under six simulation models. The x-axis lists the six models; the y-axis shows the
annotation metric values. B) An example of ProtAnno annotation when the number of cell types
K = 29. The left panel is the UMAP plot on true labels; the right panel is the UMAP plot of
ProtAnno annotations.
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A

D

Fig.3

B C

Figure 1.3: ProtAnno model robustness evaluations. A) The relationship between ProtAnno an-
notation accuracy and expression variation. The x-axis represents the expected ratio of mean and
variance. A higher value indicates lower expression variation. The y-axis shows the values of
annotation metrics. The curves represent the results from 100 simulations for each mean-variance
ratio value. B) The effect of transcriptomics data on a full ProtAnno model. The x-axis represents
the correlation between transcriptomics predicted signature matrix AS and real protein signature
matrix W . The y-axis represents the value of annotation metrics. C) ProtAnno robustness as a
function of cell type number K. The x-axis represents cell type number that varies from 3 to
40. The y-axis represents the value of annotation metrics. D) Evaluation of parameter tuning algo-
rithm. The x-axis represents the change of λ1 from 0 to 5 under six simulation scenarios. The color
represents different annotation metrics. The y-axis represents the value of annotation metrics. The
red vertical line represents the optimal λ1 by the parameter tuning algorithm for each simulation
scenario.
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C

E Truth

Prediction

Fig.4
Figure 1.4: ProtAnno results on BCR cytometry data. A) Benchmarking ProtAnno on five labeled
cell types. The x-axis lists the four ProtAnno models; the y-axis is the annotation metric value. B)
Confusion matrix of ProtAnno annotation on BCR stimulated patient 1. The y-axis is the ProtAnno
results compared with the true cell type labels as a reference in the x-axis. C) The boxplots of
estimated signature expression in W . The x-axis represents the cell type and the y-axis is the
distribution of values in the signature matrix across patients within groups. The first two columns
are ProtAnno annotation results in the stimulated and unstimulated BCR groups and the last two
columns are the true average signature expression distributions.D) Cell type proportions boxplots.
In this figure, we compare cell type proportions estimated by ProtAnno with true proportions. The
first two columns are ProtAnno annotation results in the stimulated and unstimulated BCR groups
and the last two columns are the true cell type proportions in these two groups.E) The UMAP plot.
The upper panel is the true annotation; the lower panel is the assignment by ProtAnno.
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Figure 1.5: ProtAnno results on PBMC CITE-seq data and temporal whole blood covid-19 cytom-
etry data. A) The UMAP plot of the proteomic data in the PBMC CITE-seq study in Wang et al.
(2020)(X. Wang et al. 2020). The left panel is the true annotation; the right panel is the assignment
by ProtAnno. The UMAP projections are colored by the cell types. B) and C) Boxplots of cell
type counts of neutrophil cells from the whole blood covid-19 study in Rodriguez et al. (2020)(Ro-
driguez et al. 2020) by ProtAnno across different patient groups i.e., ICU, non-ICU, and recovery
patients. B) is the raw output of ProtAnno. C) is the subsetted output of ProtAnno for keeping
high-confidence assignments only. The paired Wilcoxon test p-values are shown on the top of the
figures. D) Neutrophil cell counts estimation by ProtAnno over the days after admission. The color
represents the patient who has the longitudinal cytometry data. E) Neutrophil cell type proportions
estimated by ProtAnno over the days after admission. Two curves represent the ICU and non-ICU
patient groups. F) Boxplots of CD4 T cell and CD8 T cell counts across groups (ICU, non-ICU,
and recovery patients). G) CD4 T and CD8 T cell type proportions estimation by ProtAnno over
the days after admission. The color represents the patient who has the longitudinal cytometry data.
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Chapter 2

A Novel Bayesian Framework for
Harmonizing Information across Tissues

and Studies to Increase Cell Type
Deconvolution Accuracy

Abstract

Computational cell type deconvolution on mixture transcriptomics data can reveal cell type pro-

portion heterogeneity across bulk samples. One critical factor for accurate deconvolution is the

reference signature matrix for different cell types. Compared to the reference signature matrices

inferred from cell lines, rapidly accumulating data from single-cell RNA-sequencing (scRNA-seq)

provide another rich resource for deriving cell type signatures. However, there are challenges in

scRNA-seq data because of the high biological and technical noises. In this chapter, we introduce

a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by

leveraging shared cell type-specific expression patterns across multiple tissues and studies. Our

simulations show the robustness of tranSig with the number of signature genes and tissues speci-

fied in the model. The applications of tranSig to bulk RNA sequencing data from peripheral blood,
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bronchoalveolar lavage, and aorta data demonstrate its accuracy and power to characterize biolog-

ical heterogeneity across groups. In summary, tranSig offers an accurate and robust approach for

defining gene expression signatures of different cell types, facilitating in silico cell type deconvo-

lutions.

Key words: cell type deconvolution; scRNA-seq; reference signature matrix; harmonize informa-

tion

2.0.1 Introduction

Characterizing cell type composition in tissues can help better understand disease pathogenesis

and progression. Traditional approaches for inferring cell type proportions, such as flow cytometry

[43][44][45] and immunohistochemistry (IHC) [46][47], involve complicated protocols, expensive

antibodies, high end platforms, and expertise. As these approaches are mainly based on antigen-

antibody reaction, they are limited to the specificity of antibodies. In addition, techniques such

as cytometry-based platforms may not always yield accurate cell type proportions due to different

preservation rates across cell types [48]. With the rapid development of RNA sequencing (RNA-

seq) technologies and accumulation of bulk RNA-seq data in recent years, there has been a surge of

computational deconvolution methods [49][50][51] to factorize tissue-level RNA-seq data on their

mixture gene expression profiles (MGEP) to infer cellular compositions. One critical component

of these methods is the signature expression profiles (signature matrix) of known cell types largely

derived from RNA-seq data of enriched or purified cell populations [52][53][54]. However, the

cell types are limited to the well-defined ones, and it is hard to incorporate less-studied cell types

or subtypes.

With the development of single cell RNA sequencing (scRNA-seq) technologies [52][53][54],

transcriptomes can be characterized at the single cell resolution. Recent years have seen the appli-

cations of scRNA-seq to study cell types [55][56], embryonic and organic development [57][58][59],

disease mechanisms, and many other fields [60][61]. There is a rapid accumulation of single cell
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datasets, with several cell atlas projects, such as Human Cell Atlas (HCA) [10][62] and Human

Cell Landscape (HCL) [63], aiming to construct and cover the primary tissues of healthy donors.

These single cell datasets and bulk RNA-seq data can facilitate cell type deconvolution through the

development of a more accurate signature matrix at higher resolution. However, scRNA-seq data

are more sparse and noisier than bulk RNA-seq data, and there are platform differences between

scRNA-seq and bulk RNA-seq data. Furthermore, although cell type proportions can be directly

obtained from scRNA-seq data, these estimates may be biased due to different capture rates across

cell types.

Existing computational cell type deconvolution methods can be divided into two categories

based on the references used to derive cell type signatures. The first category utilizes the signature

matrix derived from bulk RNA-seq data, with CIBERSORT [50] as one representative. The second

category includes methods that use scRNA-seq data to derive the signature matrix. For example,

CIBERSORTx leverages single cell data and offers both S mode and B mode to address the tech-

nical differences between scRNA-seq and bulk RNA-seq data. Another popular method, MuSiC

[64], aims to select the signature genes by multi-subject comparisons, which are used in the sub-

sequent deconvolution. However, all these methods focus on using data from a specific tissue in

a specific study, and are not able to capitalize on shared patterns for the same cell type across dif-

ferent tissues and studies. For example, immune cells show conserved cross-tissue transcriptomes

[65][66] across tissues and developmental stages, and such shared patterns may provide additional

information for signature matrix construction.

Here, we propose a novel Bayesian framework, called tranSig, to better infer a signature matrix

from scRNA-seq data by leveraging cross-tissue information. Through benchmarking comparisons

and real applications on peripheral blood, bronchoalveolar lavage, and aortic aneurysm, we show

that tranSig can facilitate more accurate estimates of cell proportions and better interpretations of

the pathogenesis of diseases.
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2.1 Methods

To leverage information from multiple single cell references, we have developed a new framework,

called tranSig, based on transfer learning to handle cross-platform and cross-tissue variations to

derive a more accurate signature matrix for downstream cell type deconvolution (Fig 2.1).

As mentioned above, the existing methods mostly generate their signature matrices based on

one scRNA-seq dataset from the target tissue. Due to the challenges of eliminating technical

batch effects and discriminating biological differences, people are reluctant to integrate data from

multiple tissues, or studies on the same tissue. In contrast, in tranSig, we assemble the target tissue

data with various reference datasets from other tissues or studies. Specifically, we consider the

Human Cell Landscape (HCL) [63] and manually cleaned the cell type annotations to cover 25

adult and five fetal tissue types as sources for both target and reference tissues. We project the

reference scRNA-seq datasets on the target one by adopting the matrix factorization-based single

cell batch correction method, LIGER [67][68]. Although this may alleviate some batch effects, it

is still necessary to identify the remaining cross-dataset variations after batch-effect correction and

remove tissue-specific signatures in the reference datasets. To accomplish this, as detailed in the

Methods section, we compare every reference signature matrix with the target signature matrix to

select cell type-conserved signature that may share the common distribution with the target tissue.

Finally, we only keep the cell type-specific expression profiles in references that have a similar

distribution with the target tissue.

Our hierarchical Bayesian model considers the batch effect-corrected single cell expression

profile after batch correction, xt ∈ RD×Mt where Mt denotes the number of cells in the scRNA-

seq dataset, and t denotes the tissue type. When gene d = 1, . . . , D in cell type k from reference

tissue t shares the common distribution with the target tissue and is selected in the last step,

xtdck ∼ N(wtdk,
1

τxd
) (2.1)
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where xtdck is the expression level of gene d in the ckth cell of cell type k from tissue t, ck indexes

the individual cells of cell type k, explainwtdk and τxd is the gene-specific precision for the Gaussian

distribution. We usewt ∈ RD×K , where t = 0, 1, . . . , T , to denote the intermediate dataset-specific

signature matrix for tissue t. The tranSig model assumes that the intermediate dataset-specific sig-

natures,wtdk, share the same tissue-specific mixture Gaussian distribution across t. Mathematically,

for every signature gene d and cell type k, the corresponding value in the signature matrix follows

the mixture Gaussian distribution

wtdk ∼ N(v0
dk ∗ γ0

dk,
1

τw
) (2.2)

where γ0
dk is a binary variable indicating whether gene d is a signature gene thus has non-zero

expression for cell type k in the target tissue t = 0, and v0
dk is the continuous part when the gene

is estimated to be a non-zero expressed signature as γ0
dk = 1. And τw is the shared precision for

all wtdk. Overall, our model outputs the final tranSig signature matrix as estimated v0 � γ0, which

is the element-wise product of matrices v0and γ0. We implemented the State-Augmentation for

Marginal Estimation (SAME) [69] to accelerate the algorithm.

To better align bulk RNA-seq data with the signature matrix inferred from single cell refer-

ences, we perform batch correction similar to that of the CIBERSORTx S mode [70] and utilize

the pseudo bulk mixtures derived from scRNA-seq for more accurate estimates in real applications.

We generate the pseudo bulk mixtures by sampling from the single cell references, and implement

the empirical Bayes (EB) batch-effect removal model, Combat [71], to adjust bulk RNA-seq mix-

tures to single cell dataset of the target tissue. The adjusted bulk RNA-seq data are taken as the

input for downstream deconvolution along with the tranSig signature matrix.

We view the tranSig framework as an add-on step for cell type deconvolution. Therefore, it can

be coupled with any existing cell type deconvolution methods, e.g. NNLS and CIBERSORTx, to

estimate cell type proportions.
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2.2 Results

2.2.1 Robustness evaluation through simulations

We have performed simulations to evaluate the robustness of our proposed tranSig model. Since

it is challenging to simulate cross-platform or cross-tissue effects, we focused on testing the ro-

bustness assuming that both bulk RNA-seq and multi-tissue scRNA-seq batch-effects have been

successfully removed.

We assumed that the true signature matrix of the target tissue t = 0 contains two parts: the

binary matrix γ0 indicating whether each gene is an expressed cell type-specific signature gene,

and the continuous matrix v0 quantifying the average expression levels of signature genes. The

signatures from all the input single cell datasets, including both the target and reference datasets,

share the same underlying distribution, which is the product of v0 and γ0. Specifically, we simu-

lated wtdk from a Gaussian distribution with mean v0
dk ∗ γ0

dk and let wtdk be the mean of Gaussian

distribution of xtdkck .

We note the possibility that an expressed signature gene may not be detected due to the low

sequencing depth of scRNA-seq and other factors. The droplet-based single cell RNA-seq can

theoretically detect 5000 genes per cell as the saturated number of detected genes [72], but the

number of detected genes in each cell is often lower in published studies due to the sequencing

depth (median number of detected genes: 256-602 in HCL; 1973 in ATAA [73]). Therefore, in our

simulations, we set the expression level for an expressed gene to be zero with a certain probability,

which corresponds to the undetected rate. A higher undetected rate can result in a loss of more

signature information when constructing the empirical signature matrix by averaging the single

cell expression profile grouped by cell types. We evaluated the performance of the tranSig model

combined with both NNLS and CIBERSORTx [50] compared with other methods, including Mu-

SiC [64], CIBERSORTx with input empirical signature matrix (empirical + CIBERSORTx), and
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NNLS from MuSiC without weights.

We investigated how the undetected rate and signature gene number can affect cell type decon-

volution and the results are shown in Fig 2.2A. We can see that tranSig combined with CIBER-

SORTx (tranSig + CIBERSORTx) outperformed the other methods with higher correlation be-

tween the true and estimated cell type proportions. In the left panel, the performance of tranSig +

CIBERSORTx was most stable with different undetected rates. When constructing a signature ma-

trix by differential expression (DE) analysis, the number of signature genes depends on the method

and threshold selected in DE analysis. We investigated how the number of signature genes could

influence the cell type proportion estimation to evaluate the robustness of our method. The right

panel in Fig 2.2A shows that the two tranSig methods and CIBERSORTx have good performance

with a relatively small number of signature genes, e.g. 150. In contrast, MuSiC and NNLS in the

MuSiC R package require multiple subjects and cross-subject variation in single cell expression

profiles to have good performance.

We also show the scatter plots of the true and estimated cell type proportions to illustrate tran-

Sig’s performances across cell types (Fig 2.2B). When there were eight cell types, 500 signature

genes, and an undetected rate of 25%, two tranSig methods with CIBERSORTx and NNLS had

the best estimation, and all points centered around a single line. CIBERSORTx also had relatively

good performance but was not as accurate. All the methods could not infer the proportions of rare

cell types (less than 10%) well. The two tranSig methods tended to overestimate more prevalent

cell type proportions while underestimate rare cell type proportions.

2.2.2 Bulk peripheral blood (PB) deconvolution to handle cross-tissue and

cross-platform variations

To evaluate the performance of tranSig on real data, we first analyzed PB that is composed of easily

distinguishable immune cells, including monocytes, neutrophils, T cells, B cells, and others. We

35



applied tranSig to bulk RNA-seq data of whole blood from 12 healthy adults to estimate cell type

proportions [70]. For single cell references, we took the PB as the target tissue, and bone mar-

row (BM), cord blood (CB), lung, kidney, and liver as the reference tissues. The union of highly

expressed genes (HEGs) of each cell type in each tissue was considered as the signature gene list

(details in Methods). NNLS, CIBERSORTx, and quadratic programming [74] were used for de-

convolution analysis. The correlations between the estimated cell type proportions and the “ground

truth” obtained from flow cytometry were calculated to assess the deconvolution performance. As

shown in Fig 2.3A, tranSig had more accurate estimation than that based on the empirical signature

matrix for all three deconvolution methods. Among three deconvolution methods, both NNLS and

CIBERSORTx had more accurate proportion estimates for most cell types with tranSig. Overall,

tranSig + CIBERSORTx was most consistent.

Within the tranSig framework, we made adjustments to both single cell references and bulk

RNA-seq expression profiles and evaluated these adjustments in real applications of PB decon-

volutions (Fig A.8). With LIGER implementation, the shared signature genes cross tissues were

selected and improved the deconvolution results of tranSig. For the technical batch correction, the

bulk mixture adjusted to the space of scRNA-seq as input of deconvolution increases the accuracy

of tranSig. In addition, we compared the two types of single cell expression profiles (i.e., raw

counts and transcripts per million (TPM) normalization) as the input of the tranSig model. The

results suggest that using raw counts as the input may be superior to TPM normalization due to

the estimation of τxd in the tranSig model. Therefore, we used the raw counts as the input of the

tranSig model in all subsequent analyses, unless stated otherwise.

To systematically benchmark the performance of different methods (Fig 2.3B), we imple-

mented MuSiC and CIBERSORTx with the S mode and B mode. Overall, the performance of

tranSig + CIBERSORTx was superior to other methods for this dataset. It is interesting to note that

all three CIBERSORTx modes, including disabled batch correction mode, S mode, and B mode,

accurately estimated the proportions of B cells and T cells but failed to estimate those of mono-

cytes and neutrophils. Because of HCL datasets were generated by Microwell-seq as a UMI-based
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sequencing, the deconvolution results show that the S mode may substantially improve the overall

estimation accuracy but perform poorly for neutrophils and monocytes (Fig A.7). Specifically, the

estimated neutrophil proportions were smaller than 10% when the ground truth was around 60%.

For MuSiC, although the proportions of neutrophils, T cells, and B cells were accurately estimated,

the performance of monocyte estimation was worse than either tranSig or CIBERSORTx. Taken

together, the cell type deconvolution with tranSig by CIBERSORTx achieved higher accuracy as

well as less variance among cell types than the other methods.

2.2.3 Bulk bronchoalveolar lavage (BAL) deconvolution in a Sarcoidosis co-

hort to identify dominant cell type

Sometimes the mixture data have only one dominant cell type. We note this case as highly unbal-

anced cell type proportions. It is important for a cell type deconvolution method to identify the

dominant cell type and distinguish it from other cell populations in such cases. To compare the

performance of different methods for this scenario, we considered a Sarcoidosis cohort [75] BAL

bulk RNA-seq dataset in which the proportion of the alveolar macrophages (AM) was around 80%

[76].

We used adult PB in HCL as the target single cell dataset and the other five tissues (adult

adipose, adult BM adult lung, CB, and fetal lung) as reference single cell datasets for joint analysis

in tranSig, since all these five tissues have immune cells as their major cell populations.

The AM is critical to lung inflammation and repairment [77]. They work closely with type I

and II epithelial cells, cellular and functionally different from monocyte-derived macrophages in

PBMC. Therefore, we removed 48 AM differentially expressed genes (Supplementary E.1) from

the signature gene list so that only AM and macrophages commonly shared signature genes would

be used for deconvolution. It can largely reduce the effects brought by the heterogeneity between

AMs and macrophages in PB.
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This data set has macrophages as the largest cell population and lymphocytes as the second

largest. As shown in Fig 2.4, both tranSig and the NNLS model with the empirical signature matrix

estimated the macrophages with proportions of around 70%. However, the latter failed to identify

T cells and estimated the second dominant cell type as dendritic cells with the mean proportion as

high as around 30%, which is unreasonable [75]. In comparison, tranSig successfully recognized

the T cells as another major cell type in BAL.

2.2.4 Bulk aorta deconvolution to depict cellular pathological changes of

aneurysm (AN)

We further assessed whether tranSig deconvolution can reflect the pathological changes of tissues

with results shown in Fig 2.5. We applied tranSig to bulk RNA-seq of aortic or aneurysm [78]

tissues from six healthy donors and six patients with ascending aortic aneurysm. Aortic aneurysm

[79][80] is a permanent and localized dilation of the aorta, and is a fatal vascular disease. The

pathological features [81] of aortic aneurysm were well-studied, including apoptosis of smooth

muscle cells (SMCs) [82], infiltration of immune cells [83] (i.e., macrophages [84][85] and T cells

[86][87], matrix metalloproteinase increase [88] and elastin degradation. First, we took the artery

dataset from HCL as the target tissue and lung, BM, PB, CB, kidney and liver as the reference tis-

sues. Deconvolution with empirical signature matrix by NNLS could infer increased macrophages

and reduced SMCs and stromal cells but missed the signals of other immune cells. As for tranSig,

the deconvolution results showed increased macrophages and T cells, consistent with the inflam-

matory infiltration, and the decreased SMCs and stromal cells, suggestive of SMC apoptosis in the

pathogenesis of aortic aneurysm. Similar to the results of PB deconvolution, CIBERSORTx was

more stable than NNLS. We found that CIBERSORTx failed to estimate immune cells, and there

was no obvious improvement while implementing the S mode or B mode. Because of the lack of

any other subject in the artery dataset from HCL, MuSiC could not be applied in this case. Then

for more fair comparison, we implemented CIBERSORTx and MuSiC on another scRNA-seq ex-

pression profile of aortic tissues [73] from three healthy donors and eight patients with ascending
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aortic aneurysm (ATAA dataset) which had a deeper sequencing depth compared with the artery

dataset from HCL. Similar to the deconvolution with the HCL artery, CIBERSORTx missed im-

mune cells. Almost all cells in the aorta or aneurysm were estimated as SMCs by MuSiC, which

cannot interpret the infiltration of inflammation in the pathogenesis of aortic aneurysm.

Additionally, we took the ATAA dataset as the target tissue and lung, BM, PB, CB, kidney, and

liver from HCL datasets as the reference tissues to evaluate the performance of leveraging infor-

mation across studies and platforms (Fig A.9). Consistent with the above results, deconvolution

with tranSig + CIBERSORTx was more stable than NNLS. As for CIBERSORTx B mode and S

mode, they failed to estimate immune cells similar to the results of HCL. However, by implement-

ing tranSig with CIBERSORTx, the results exhibited reasonable trends of SMC and immune cells,

and the substantial improvement compared with CIBERSORTx further demonstrated the benefit

of tranSig across studies and platforms.

2.3 Discussion

In this study, we have developed tranSig, a novel Bayesian model to better infer signature ma-

trix by transferring learning over multiple scRNA-seq datasets. In the tranSig framework, we use

SAME [69] for statistical inference and estimate a more reliable signature matrix by a Gaussian

mixture prior. Highly expressed genes of cell types are screened as signature genes. tranSig imple-

ments LIGER [67][68] and k-means to integrate cross-tissue and cross-study scRNA-seq datasets.

Specifically, it selects target tissue-specific signature genes from multiple reference tissues. It aims

to integrate informative and conserved signature genes as input of tranSig Bayesian model and

removes the reference tissue-specific genes that have distinct expression distributions compared to

those in the target tissue. Additionally, we adopt Combat [89][90] on bulk RNA-seq mixture and

pseudo-bulk mixture derived from scRNA-seq to correct the batch effects between bulk RNA-seq

and scRNA-seq. The final tranSig signature matrix and batch-effects-corrected bulk RNA-seq can

be paired with NNLS or any other external cell type deconvolution tools, e.g., CIBERSORTx [70]
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and quadratic programming [74], as an add-on method.

To investigate the robustness of the tranSig model, we conducted a number of simulations

under different conditions. Since it is challenging to simulate tissue- and platform-effects, the

applications on simulations mimic the scenario after the initial two-steps batch-effect corrections

of LIGER and Combat, and only examined the performances on signature matrix construction by

the tranSig bayesian model. Simulations demonstrated more stability of tranSig than other methods

(e.g., NNLS, CIBERSORTx, and MuSiC) for different numbers of tissues, signature genes, and

non-zero expression undetected rates (Fig 2.2, Fig A.6). Notably, the robustness to undetected rates

suggests that our approach can handle low data quality single cell datasets due to, for instance, low

sequencing depth.

For the real application of tranSig to PB, we calculated the correlations between the estimated

and “true” cell type proportions. Deconvolution with tranSig by CIBERSORTx was more accurate

and stable. In addition, the effectiveness of LIGER and Combat was evaluated in this case. We

deployed the tranSig pipeline on a BAL bulk data set. The tranSig could successfully identify the

top two dominant cell types: alveolar macrophages and T cells. Although there was still a gap

between the true and estimated cell type proportions of AMs, tranSig was the most accurate one.

Unlike the first two applications, the deconvolution methods did not perform well on the aortic

aneurysm data set which does not have the “true” cell type proportions estimated through sorting

experiments. Therefore, we tried to validate our results indirectly by comparing the estimates

between the normal aorta and aortic aneurysms. Our results showed that tranSig+CIBERSORTx

could interpret the pathological changes of aneurysms, including SMC apoptosis and inflammatory

infiltration.

Based on the simulation and real application results, tranSig+CIBERSORTx performed better

than other methods, specifically when using scRNA-seq datasets with low sequencing depth to

derive a signature matrix. In the tranSig framework, we mainly utilized the HCL datasets generated

by Microwell-seq [91][92] with a low sequencing depth (∼ 500 detected genes in each cell) over 30

main tissues, including rarely studied tissues. Thus, the tranSig framework takes advantage of the
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comprehensive tissue types and overcomes various common technical noises [93][94][95][96][97]

of scRNA-seq, such as the bias caused by insufficient sequencing depth, low capture efficiency,

high drop-out rate, or cell type misclassifications. Thus, the deconvolution results of tranSig are

more robust than other benchmarking methods. Furthermore, we used the ATAA as the target

single cell datasets and other tissues of HCL datasets as references in the real application of aortic

aneurysms, which shows the robustness and effectiveness of tranSig in transferring cross-study and

-platform information.

The tranSig framework requires raw counts in scRNA-seq datasets and TPM normalized data

in bulk RNA-seq. Our Bayesian model allows unnormalized scRNA-seq data input because of

our mixture Gaussian priors. The utilization on raw count matrix of scRNA-seq can also improve

performance over TPM normalized matrix in terms of correlations between estimates and ground

truth (Fig A.8).

We note that the primary goal of tranSig is to harmonize information from other tissues. We

used Gaussian mixture prior distribution to model the tranSig signature matrix v0
dk∗γ0

dk. In the tran-

Sig model, v0
dk is not constrained by non-negativity, better representing the relative relationships

between the signatures and signatures across cell types. As the signature matrix of the tranSig

output, we calculate the average of v0
dk ∗ γ0

dk of the last iteration as the algorithm sampled multiple

v0
dk and γ0

dk in each iteration (details can be found in online methods). Then γ0
dk is considered

as the binary weight suggesting whether we take the genes as signatures, further describing the

relationships between signatures and cell types. Therefore, we can consider tranSig as fine-tuning

and better capturing the relationships between signatures and cell types and between signatures.

It is able to perform cell type deconvolution on rarely-studied tissue when the matched single cell

datasets are lacking.

We note that the appropriate tissue types should be carefully chosen while implementing the

tranSig model. Tissues with similar cellular compositions may provide more information for the

signature matrix. However, incorporating more tissues as input of the tranSig framework may be

time-consuming. Furthermore, tranSig to cross-study datasets requires consistent cell type anno-
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tations. In the current implementation of tranSig, τv needs to be specified and a better choice of

appropriate v can further improve its performance.

In conclusion, tranSig is a novel Bayesian framework to better infer a signature matrix by lever-

aging cross-tissue or -study information. Deconvolution based on the signature matrix inferred by

tranSig may lead to more accurate cell type proportion estimates and gain additional insights from

analyzing bulk sample data. Coupled with HCL data, tranSig is applicable to the deconvolution

of various tissues. In the broader scheme, our approach may be considered as transfer learning.

Future directions can focus on how to better incorporate information by integrative analysis and

design more plausible models to derive signature matrices.

2.4 Online Methods

2.4.1 Single Cell RNA-seq batch correction

To prepare for downstream analysis, we first obtained batch-corrected expression profiles Êi by

comparing every reference single cell dataset i with the target one through LIGER [67]. We then

derived the empirical signature matrix from the reference tissues expression profile Êi by averaging

the expression levels for each cell type to obtain Ŵ t where t = 1, · · · , T , whereT is the number

of reference datasets, and we denote the matrix from the target tissue as Ŵ 0. After comparing

every reference signature matrix Ŵ ti with the target signature matrix Ŵ 0 element-wise, we used

k-means to group all the cell type-specific signature ratios
Ŵ t

ij

Ŵ 0
ij

into three groups. The groups with

ratios close to 1 or 0 will be considered tissue-specific signatures. Therefore, in the reference

dataset, the signatures whose ratio is in the middle range are assumed to share similar expression

patterns with the target tissue and will be taken into the tranSig model.
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2.4.2 tranSig Bayesian model

Given the bulk RNA-seq data of tissue t = 0 of N subjects with D signature genes, Y 0 ∈ RD×N ,

we can do matrix factorization as the product of cell type-specific signature matrix w0 ∈ RD×K

and cell type proportion matrix Z ∈ RK×N whereK is the number of cell types. In general, the cell

type deconvolution methods assume Y 0 = w0 · Z and w0 characterizes the differential signatures

across cell types by averaging the expression levels of signature genes.

Additionally, wtdk is the expected expression level of gene d in cell type k from tissue t, where

t = 0, 1, 2, · · · , T . We also add a sparsity on the signature gene matrix by introducing the Bernoulli

variable γ0
dk. The Gaussian mixture distribution exhibits the mixture heterogeneity of the signature

matrix.

xtdck ∼ N(wtdk,
1

τxd
) (2.3)

wtdk ∼ N(v0
dk ∗ γ0

dk,
1

τw
) (2.4)

The terms in the Gaussian mixture distribution have the following prior specifications.

γ0
dk ∼ Ber(π) (2.5)

v0
dk ∼ N(0,

1

τv
) (2.6)

The prior distributions for the other parameters follow the uninformative conjugate distributions.

The goal of tranSig Bayesian model is to estimate v0
dk and γ0

dk based on the single cell data

from multiple tissues.
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2.4.3 tranSig optimization algorithm

We employed SAME [69] to accelerate the algorithm and estimate the Gaussian mixture priors.

Let θ1 = {w0, w1, · · · , wT} and θ2 = { 1
τe
, 1
τx
, 1
τw
, π, α, v, γ}. We are primarily interested in the

inference of the parameters v and γ in the tranSig matrix.

We set the strictly positive increasing integer sequence as Λ(i) = i. When the iteration i = 0,

we first initiate θ(0)
1 . As the iteration i ≥ 1,

• For k = 1, · · · ,Λ(i), sample θ(i)
2 ∼ p(θ2|y, θ(i−1)

1 )

• Sample θ(i)
1 ∼ qΛ(i)(θ1|y, θ(i)

2 (1), · · · , θ(i)
2 (Λ(i)))

Therefore, in the last iterationM and Λ(M) = M , we have v0
i,M(1), · · · , v0

i,M(M) and γ0
i,M(1), · · · , γ0

i,M(M).

We derive the tranSig matrix by averaging v0
i,M(i) ∗ γ0

i,M(i) across i. This average can enhance

the confidence of tranSig estimation and each γ0
i,M(i) can be considered as the indicator whether

v0
i,M(i) should be taken into account. By comparing with the estimation of v0

dk ∗ γ0
dk in the last

iteration, deconvolution results of averaged v0
dk ∗ γ0

dk substantially improved and showed more

consistent with the ground truth (Fig A.8).

2.4.4 Bulk RNA-seq batch correction

Due to the technical differences between UMI-based scRNA-seq (e.g. Microwell-seq and 10X

genomics) and bulk RNA-seq, the deconvolution by the signature matrix derived from UMI-based

single cell expression profiles is far from ideal. Therefore, we leverage Combat (an empirical

Bayesian batch-effect remove model) and pseudo mixture constructed by single cell expression

profiles to minimize the technical variation. We re-denote bulk RNA-seq Y (t0) to be Y 1 as the first

batch and denote a pseudo mixture to be Y 2 as the second batch. To adjust the raw bulk RNA-seq

44



to the space of scRNA-seq by Combat, the EB model can be formulated as the following

Y 1
gn = αg +B1

g + δ1
gε

1
gn

(2.7)

Y 2
gn = αg +B2

g + δ2
gε

2
gn

(2.8)

where αg is the overall gene expression, Bi
g and δij are the batch- and gene-specific random effects.

By using the parametric model of ComBat, we can get the adjusted bulk RNA-seq data as:

Y 1∗
gn = α̂g + B̂2∗

g + σ̂g
δ̂2∗
g

δ̂1∗
g

(Z1
gn − B̂1∗

g ) (2.9)

where Z1
gn are the standardized data, α̂g is estimated from ordinary least squares (OLS), B̂i∗

g and

δ̂2∗
g are estimated from EB as the first moment of their posterior distribution iteratively.

2.4.5 Pseudo-bulk construction by single cell expression profile

For bulk RNA-seq batch correction, we generated pseudo-bulk expression profiles based on single

cell datasets. Single cell expression profiles were normalized in TPM space, and cells were sam-

pled according to the empirical proportion of each cell type (10,000 times in total). The average of

the 10,000 cells was considered as one pseudo-bulk sample (TPM space).

2.4.6 Simulation Setup

Although we do not assume the signature matrix continuous part v0 to be non-negative, we still

coerce v0
dk to be non-negative in simulation for convenience. We sample v0

dk from half-normal
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distribution and γ0
dk from Bernoulli distribution:

v0
dk ∼ |N(µv,

1

τv
)| (2.10)

γ0
dk ∼ Ber(π) (2.11)

And we set τv = 4, µv = 2, and π = 0.3.

Per the model’s assumptions, the intermediate dataset-specific signature gene matrix in the

first layer wtdk over all the tissues share the same Gaussian distribution with a mean of v0 � γ0.

Therefore, we sample the elements in the matrix wtdk from the following distribution:

wtdk ∼ N(v0
dk ∗ γ0

dk,
1

τw
) ∗ 1{wt

dk≥0.01} + 0.01 ∗ 1{wt
dk<0.01} (2.12)

Here we set τw = 4.

To further simulate single cell data from multiple tissues, we let τxd to be sampled from a

Gamma distribution. Then we have

τxd ∼ Gamma(1, 1) (2.13)

xtdkck ∼ N(wtdk,
1

τxd
)1xtdkck≥0 + 0.001× 1xtdkck<0 (2.14)

where τxd ∼ Gamma(1, 1).

Finally, we simulated cell type fraction matrix z and bulk data Y 0. We sampled z from uniform

distribution to make the summation be 1. Then we have

zkn ∼ Unif(0, 1− Σj<kzjn) (2.15)
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Y 0 = (v0 � γ0) ∗ Z (2.16)

where v0 � γ0 is the tissue-specific tranSig matrix when given a target tissue t = 0.

2.4.7 Benchmarking

We compared the results of the tranSig model with four deconvolution methods, including NNLS,

quadratic programming (QP), CIBERSORTx, and MuSiC. NNLS and QP take the average ex-

pressions of signature genes in each cell type as input, and CIBERSORTx and MuSiC take single

cell expression profiles as input. For CIBERSORTx, S mode and B mode were used to correct

the technical variation between scRNA-seq and bulk RNA-seq. CIBERSORTx deconvolution was

implemented with default parameters, and single cell references were normalized in TPM space

as the CIBERSORTx input. MuSiC needs a number of subjects to select signature genes, thus

“sample” in HCL metadata was used as the MuSiC parameter. However, because there is only one

sample in the artery dataset of HCL, MuSiC cannot be implemented in the aneurysm application.

2.4.8 Data processing

We utilized the published HCL with 60 tissue types as the single cell references to perform de-

convolution on all tissues. We manually cleaned the cell types in the most common 30 tissues

from HCL, including 25 adult tissues, four fetal tissues, and CB. For instance, we annotated all

macrophage subtypes as macrophages to accommodate different annotation resolutions in the 30

tissue-specific single cell datasets. We also removed the cells that did not have a precise annota-

tion, i.e. unknown cell clusters and distal cells in Lung. Overall, there are 96 distinct cell types

across all 30 tissues

To further validate the significance of the tranSig model for biomedical investigations, we used
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bulk RNA-seq of ascending aorta media from healthy donors and aneurysm tissues [73] from

ascending aneurysm patients and compared the cell type proportions corresponding to aneurysm

pathological changes between two groups. To evaluate the effect of the sequencing depth and

single cell platform, we used the single cell dataset from three healthy donors and eight ascending

thoracic aortic aneurysm (ATAA) patients by 10X genomics. The dataset includes main cell types

in the aorta, i.e., endothelial cells, smooth muscle cells, fibroblasts, macrophages, T cells, B cells,

NK cells, mast cells, and plasma cells.

For real applications, bulk RNA-seq of the whole blood from 12 healthy adults from the Stan-

ford Blood Center [70] with group truth validated by FACS and immunofluorescence were used.

The BAL bulk RNA-seq data [75] were obtained from Vukmirovic M. et al. (2021). The sam-

ples were collected from 184 individuals in a sarcoidosis patients cohort by the Genomic Research

in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study [98]. BAL is composed of four

cell populations: alveolar macrophages, eosinophils, lymphocytes, and neutrophils. The mean pro-

portion of alveolar macrophages is 89%. Therefore, a reliable cell type deconvolution tool should

identify the alveolar macrophages as the dominant cell type in bulk RNA-seq data.

The aneurysm bulk RNA-seq data [78] were from Chen et al. (2020). The samples included

aortic tissues from six healthy donors and aneurysm tissues from six patients with ascending aortic

aneurysm. For aortic tissues, each donor had two samples on the middle and distal parts. In terms

of aneurysms, the neck and belly were collected for each patient.

All the bulk datasets were normalized by TPM.

2.4.9 Signature Gene List Construction

Based on the HCL datasets, significantly highly expressed genes of each cell type from the five

tissues (artery, lung, PBMC, BM, and liver) used in the tranSig model were calculated by the

“FindAllMarkers” function of Seurat R package. We set 0.25 as the cutoff for logarithmic fold
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changes, and the positive fold changes are selected by the parameter “only.pos” of “FindAll-

Marker” function. We used the union of these DEGs as the signature gene list for the tranSig

model (Supplementary E.2) which covers most of the immune cells. However, we recommend

generating a customized signature gene list by finding DE genes when the immune cells are not

the only major cell populations in the target tissue.

2.4.10 Data Availability

All the data could be downloaded from the GEO database (http://www.ncbi.nlm.nih.

gov/geo/). The HCL can be accessed under the GEO accession number GSE134355. It could

be obtained at http://bis.zju.edu.cn/HCL/ or https://db.cngb.org/HCL/. The

PB bulk data are available through GEO with accession number GSE127472. The GEO accession

number of the BAL dataset is GSE109516. The ATAA dataset can be accessed at GSE155468 and

aorta bulk data at GSE140947.
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Figure 2.1: Illustration of the tranSig framework. The framework starts from selecting signatures
from reference single cell datasets for downstream harmonization. Based on LIGER, we filter out
the genes in reference tissues which are unlikely to share common expression distributions with the
target tissue. After that, all the selected signatures and their corresponding single cell expression
profiles are input into the tranSig Bayesian model to derive a more reliable signature matrix. On
the other hand, we remove batch-effects between the bulk and target single cell datasets based
on Combat to project the bulk data onto the space of target single cell dataset. Finally, the tranSig
signature matrix and the corrected bulk RNA-seq can be coupled with other cell type deconvolution
optimization tools, i.e. NNLS and CIBERSORTx.
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Figure 2.2: Model robustness validations on simulations. A) The curves to evaluate the robustness
of tranSig signature matrix against non-zero expression undetected rate (left) and signature gene
number (right). The colors code the combinations of signature matrix and deconvolution tools.
The vertical lines are error bar of mean ±0.5∗s.d. B) The scatterplots to show the benchmarking
comparisons between the true and estimated labels. The x- and y-axis are the true and estimated
cell type proportions. The colors indicate the cell type labels.
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Figure 2.5: Applications on aorta to depict cellular pathological changes of aneurysm (AN). Jitter
plots of estimated cell type proportions for Chen et al. subjects (aortic tissues from 6 health donors
as control and aneurysm tissues from patients with ascending aortic aneurysm as AN), color coded
by individuals. Color bars on the right annotate the deconvolution methods and single cell ref-
erences, the artery dataset of HCL in red and the ATAA dataset in green. Data are expressed as
means ±s.d.
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Chapter 3

Polygenic Risk Scores Incorporating Single
Cell RNA Sequencing Data Identified Cell

and Tissue Types with Genetically
Regulated Transcriptions Associated with

Complex traits

Abstract

Genome wide association studies (GWAS) have identified numerous regions in the human genome

associated with thousands of complex traits. Polygenic risk scores (PRS) have been developed

for many traits based on GWAS results to identify individuals with high disease risk. Most pub-

lished PRS are based on statistical evidence of association derived from GWAS without leverag-

ing the rich functional information about the markers from either experimental or computational

studies. In this chapter, we describe our efforts to use information offered by the single-cell RNA-

sequencing (scRNA-seq) data to construct PRS to help us identify tissues and cell types most

relevant to complex traits, phenotypes that are genetically correlated through specific tissues and
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cell types, as well as subtypes among the patients. Our basic approach is to decompose the overall

PRS based on cell type and tissue annotations on SNPs using differential expression analysis re-

sults from scRNA-seq data. The decomposed PRSs allow us to identify the cell types and tissues

with strong associations to complex traits through expression regulations. Our method success-

fully identified T cells in the brain as relevant to Alzheimer’s disease (AD), and also implicated

cell types and tissues important for lipids, coronary artery disease (CAD), and artery tissue.

Keywords: scRNA-seq; Decomposed PRS; Genetics; Data Integration.

3.1 Introduction

Genome wide association studies (GWAS) have been very successful to identify associations be-

tween single nucleotide polymorphisms (SNPs) and complex traits[99, 100, 101]. Based on GWAS

results, polygenic risk scores aggregate the risk allele effect sizes across the whole genome to pre-

dict disease risk and has the potential to improve precision medicine. Many statistical and machine

learning methods have been developed, most using only summary statistics due to their easy ac-

cessibility and the retaining of much information for risk prediction. One commonly used tool is

P+T (pruning+thresholding)[102]. It clumps SNPs to remove the effects of linkage disequilibrium

(LD) in the selections of markers for PRS. Another method, PRS-CS, adopts a Bayesian model

to accommodate complex genetic architecture and LD [103]. Incorporating various types of an-

notations can further improve PRS performance, with AnnoPred as a representative approach that

integrates a diversity of functional and tissue-specific annotations[104].

As an individual-level proxy to genetically predicted phenotypes, PRS has many downstream

applications. One potential use is patient subtyping[105, 106, 107]. However, the overall PRS

cannot address disease subtypes as there is only one score for each individual, and we need to

decompose the overall PRS into different components that may correspond to different subtypes.

Some methods have been proposed to derive the components from singular value decomposition
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(SVD) of the PRS across a large number of traits pleiotropic relationships or using pathway in-

formation [108, 109]. Based on the partitioned PRS scores, individuals with high PRSs can be

partitioned into different groups based on the decomposed PRSs.

The rapid development of scRNA-seq technologies also offers another rich data source to study

associations between genes and phenotypes. Many computational methods have been proposed

for classification, differential expression (DE) analysis, trajectory inference, and gene regulation

network based on scRNA-seq data [110, 111, 112, 113]. Efforts have been made to integrate

scRNA-seq data with GWAS data to better understand genetic signals at the cell type and tissue

level. For example, a lipids study conducted DE analysis on scRNA-seq and linkage disequilibrium

score regression (LDSC) to associate cell types with traits[114]. Cell-type Wide Association Study

(cWAS) is a method to learn how genetically-regulated cell type proportions can impact disease

risk through integrated analysis of bulk RNA-seq data, scRNA-seq data, and GWAS data [115].

In this chapter, we attempt to explain PRS based on scRNA-seq data with the potential for

patient subtyping. We propose a novel data integrative analysis framework to derive the cell type-

or tissue-specific decomposed PRSs. The decomposed PRSs can inform us how cell types and

tissues contribute to PRSs through gene expressions. In our method, we first perform DE analysis

on scRNA-seq data and translate the summary statistics of DE analysis to gene-level weight scores.

After mapping SNPs to genes, we derive the SNP-level weight scores through a Bayesian statistical

model. Then, the decomposed PRSs are calculated based on the SNP-level weight scores and

risk allele effect sizes estimated from GWAS. We have applied our framework to multiple GWAS

datasets and the scRNA-seq data from the human cell landscape [63]. We were able to identify

relevant tissues and cell types for lipids, heart disease, and other traits. The decomposed PRSs will

be applied for patient subtyping in the future.
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3.2 Methods

3.2.1 Overview

We start by describing the assumptions of cell type-specific and tissue-specific decomposed PRS,

coupled with annotations based on DE analysis for scRNA-seq data. In general, the transcriptome-

derived overall PRS, which is only based on the SNPs located within gene regions, can be decom-

posed into cell types-specific or tissue-specific PRSs by their DE gene sets. The method is based

on the hypothesis that this transcriptome-derived overall PRS is predictable of complex traits since

gene expression is downstream of genetic risk variants and may partly explain the phenotype het-

erogeneity in the population. Several studies have shown that a significant component of genetic

effects on phenotypes is mediated through expression and identified the relevant tissues and cell

types to the complex traits[116, 117, 118, 119, 120, 121, 122]. The genes differentially expressed

across tissues and cell types are informative about their relevance for diseases. In our framework,

we perform DE analysis on scRNA-seq data across cell types or tissues, which here we briefly de-

noted as groups for simplicity. We consider both the SNPs which are located within the gene region

and SNPs in a neighborhood of 500k base pairs (bp) around the gene but chose to only present the

former one. This is because we found that considering SNPs within the 500 kbp region resulted in

the large overlap across groups (cell types or tissues), and led to similar and uninformative values

of decomposed PRSs. The workflow of our framework is presented in Fig 3.1.

We first conducted DE analysis by marginally regressing gene expressions on the group indica-

tor at the single cell level. The summary statistics from the linear regression DE analysis includes

cell type- or tissue-specific effect sizes β̂ij and the corresponding standard errors se(β̂ij) for gene

i and group j. To minimize the batch effects and other unwanted variations across tissues, we use

the single cell data from the Human Cell Landscape (HCL)[63], which is an atlas for single cell

comparative analysis.

58



DE summary statistics of genes and 
cell type/tissue based on scRNA-seq 

data

Transfer of summary statistics to 
gene-level weight score by iDEA

package
Mapping SNPs to genes

Get normalized SNP-level weight score 
specific to cell type/tissue

Choose independent SNPs by 
clumping through PLINK

Calculate decomposed PRS 

Enrichment analysis

Phenotype-wide association study

Figure 3.1: Overview of our method. We first get the DE genes from the scRNA-seq data and use
the iDEA package to get the gene-level weight scores. To translate gene-level to SNP-level weight
scores, we map SNPs to genes by chromosomal locations, select independent SNPs and normalize
the scores across cell types/tissues. The final decomposed PRSs are then used for downstream
analysis, including enrichment analysis and PheWAS.

These DE summary statistics were then transferred to the gene-level weight score, πij ∈ [0, 1]

to quantify the specificity of gene i to group j. We assumed that the observed effect size β̂ij follows

a Gaussian distribution with the true effect size βij as the mean. To evaluate the DE specificity of

gene i to cell type j or tissue j, we further implemented R package iDEA, which is a Bayesian

framework to use gene set information to improve DE analysis results [123]. More specifically,

iDEA assumes the true effect size following a mixture distributions as follows

βij ∼ Pr(γij = 1)N(0, se(β̂ij)σ̇
2
β) + Pr(γij = 0)σ0 (3.1)

We defined the gene-level weight score as πij = Pr(γij = 1) as the prior probability of gene i to be

a DE gene for cell type j or tissue j. The iDEA package further boosts DE analysis by bundling
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the gene set as the following:

logit(Pr(γij = 1)) = logit(πij)

= log
πij

1− πij

= τ0 + aijτ1

(3.2)

When aij = 1, gene i belongs to the DE gene set of group j. Any scRNA-seq DE methods can

be applied to get the DE gene sets, including t-test, MAST and DESeq2[124, 125].

The posterior inclusion probability (PIP) on gene-level weight score πij was then mapped to

the SNP-level weight score via genomic location. We then selected independent SNPs by doing

clumping with PLINK version 1.90[126].

For SNP k, we assume that a total of jK genes overlap with this SNP and these genes are

denoted as i1, i2, . . . , iK with corresponding lengths ti1 , ti2 , . . . , tiK , respectively. We define the

normalized SNP-level weight score of the kth SNP for group j as

bjk =

πi1j
ti1

+
πi2j
t21

+ · · ·+ πikj

tik

Σp
πi1p
ti1

+
πi2p
t21

+ · · ·+ πikp

tik

(3.3)

where P is summed over all the groups. Therefore, the sum of the normalized SNP-level weight

scores, bjk ∈ [0, 1], across all groups equals one. The weight scores , bk, then were used to get

the decomposed PRS for group j. More specifically, for cell type j or tissue j, the corresponding

PRSj = Σkxkβkb
j
k, where xk is the kth SNP genotype and βk is the risk allele effect size for SNP k

estimated from GWAS. We adopted the P+T method for PRS calculation [103] by clumping SNPs

whose p-values were below 0.05 and R2 was greater than 0.8.

We studied the performance of our cell type-specific and tissue-specific decomposed PRSs by

enrichment analysis and phenome-wide association study (PheWAS). We considered eight traits:

coronary artery disease (CAD), atrial fibrillation (AF), type 2 diabetes (T2D), breast cancer (BC),

60



HDL-cholesterol (HDL), LDL-cholesterol (LDL), total cholesterol (TC), and triglyceride (TG).

We also conducted an additional cell type analysis for AD, which is more distinguishable at the

cell type level.

3.2.2 Enrichment Analysis

To evaluate the performance of the new framework and identify the gene expression-mediated cell

types and tissues, we performed enrichment analysis on nine common traits: AF, T2D, BC, HDL,

LDL, TC, TG, and AD.

We first divided the SNPs by setting a score cutoff for group-specific annotations. Since there

is no gold standard for the scoring setup and the enrichment analysis results may not be robust to

the cutoffs, we varied the cutoff values from 0.1, 0.2, to .9. The enrichment was calculated through

the ratio of group-specific heritability over the overall heritability obtained by the stratified LD

score regression [127]. More specifically, the enrichment ratio is defined as

Enrichment =
total heritability based on the group-specific SNPs

overall annotated SNP coverage
(3.4)

For convenience, we plot heatmaps across cutoff scores and groups, visualize the negative log

p-values, and highlight the significant p-values (p-val < 0.05) by asterisks. Cell types and tissues

having consistent significant p-values across different cutoff scores are considered the relevant

groups to the complex traits.

3.2.3 PheWAS

It is well known that many phenotypes have shared biological pathways. We clustered the de-

composed PRSs based on their correlations with the phenotypes by PheWAS across a multitude
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of traits and diseases. Here, we considered 55 traits and manually clustered them into 14 cate-

gories, including basic, cardiovascular diseases (CVD), family history, immune system, lifestyle,

lipids, liver, metabolism, obesity, protein, respiratory, sex hormone, T2D, and urinary system. The

PheWAS can reveal the similarity among the cell types or tissues due to their similar underlying

biological mechanisms. While comparing with the total PRS (the sum of the decomposed PRSs),

we can also easily identify the dominant group which is the driving risk factor for the traits. The

other advantage is that PheWAS can select a more predictable PRS as a better proxy to a trait, if

there is one, instead of the regular total PRS. It is possible that the aggregation of the decomposed

predictors sometimes is not as competitive as the decomposed ones, which are highly relevant to

the traits.

3.3 Results

Our proposed framework was applied for both cell type- and tissue-level analysis.

For tissue decomposed PRS analysis, we selected 26 tissues in total from HCL to cover the

major parts of the human body and 13 of these tissues as a subset that is considered to have

weak correlations with the phenotypes. Specifically, we focus on the results of 13 tissues since

the normalized SNP-level weight scores are more reliable with these 13 tissues less correlated

therefore better separations of their contributions. We conducted both tissue enrichment analysis

and PheWAS on traits to evaluate our method as well as for novel biological findings.

In addition, we also performed enrichment analysis and PheWAS at the cell type-level. Specif-

ically, we investigated the cell type decomposed PRSs from four common tissues that are critical

for many complex traits, including peripheral blood (PB), heart, brain, and artery.

All the significant findings are summarized in Table 3.1. Eight complex traits are shown in

columns and the rows are grouped by tissue enrichment analysis, tissue PheWAS, cell type enrich-

ment analysis, and cell type PheWAS. The green color highlights the two tissue analyses, while the
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CAD AF T2D BC HCL LDL TC TG

Tissue Analysis
Tissue Enrichment 
Analysis

Artery 
Adrenal Gland

Brain
Adrenal Gland

Kidney

PheWAS
Artery

Pancreas Two groups of 
tissues

Celltype
Analysis

Cell type Enrichment 
Analysis

PB Neutrophil
Proliferating B 
cells

NKT
macrophage

Immune cells Proliferating 
cells

Activated T cells T cells
Activated T cells

Activated T cells
T cells

Proliferating B 
T cells

Heart Dendritic cells
Cardiomyocyte

Smooth muscle
Endothelial

Macrophage
Endothelial

Apoptotic cell Macrophage
Neutrophil

Macrophage
Neutrophil

Brain Endothelial Endothelial T cells
Oligodendrocyte
Epithelial
Neuron

Endothelial Oligodendrocyte
Astrocyte
macrophages
Endothelial

Oligodendrocyte
Microglia
Macrophage

Astrocyte
Oligodendrocyte
Epithelial
Stromal cells

Artery Endothelial
Macrophage
Fibroblast

Fibroblast
Endothelial

Fibroblast
Endothelial
macrophage

Fibroblast
Smooth muscle

Endothelial
Fibroblast

Fibroblast
Endothelial

Endothelial
Fibroblast

Endothelial

PheWAS PB

Heart Macrophage

Brain Endothelial
Stromal cells

Oligodendrocyte
Astrocyte
Macrophage

Macrophage
Oligodendrocyte
Astrocyte

Macrophage
Oligodendrocyte
Astrocyte

Artery Fibroblast
Endothelial

Fibroblast
Endothelial

Table 3.1: Results Summary.

orange and blue colors highlight the cell type enrichment analysis and PheWAS in four common

human tissues. The cell types or tissues are listed in the cells if they were found to be significant.

3.3.1 Enrichment analysis results

The cell type enrichment analysis in the brain identified that the T cell-specific SNPs are en-

riched in AD based on the GWAS results from the International Genomics of Alzheimer’s Project

(IGAP)[128]. The negative log p-values across different cutoff scores are shown in the left panel of

Fig 3.2. It has been demonstrated in many studies that T cell plays an essential role in AD etiology

[129]. The AD patients have a stronger inflammatory response to antigens than healthy individuals

[130]. Notably, T cells are significantly more active and infiltrate in the brain in AD patients due

to the damage[131]. Besides T cells, the other immune cells, such as B cells and neutrophils, also

present enrichment at several cutoff scores, which is also consistent with previous findings on the
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immune cells in AD patients[132, 133, 134].

The tissue enrichment analysis also illustrates that our framework can discover tissues highly

associated with the traits. In the middle panel of Fig 3.2, there is evidence of enrichment of kidneys

for HDL. Kidney regulates the amount and distribution of the HDL particles by HDL metabolism,

specifically, apolipoproteins and enzymes[135]. Previous studies have found that the reduction of

HDL cholesterol concentration is highly related to Chronic kidney disease (CKD)[136]. Although

we did not find the enrichment of heart to AF heritability and have a few NAs due to limited number

of SNPs and computational singularity when we increased the cutoff, we did observe significant

and consistent p-values in the artery and adrenal gland. The most common cause of AF is the

damage of heart and artery. Increasing evidence shows the prevalence of AF in CAD and the high

correlation between them[137, 138, 139, 140]. On the other hand, many groups have studied the

association between AF and endocrine disorder[141, 142], where adrenal disorder has been found

to increase the AF risk[143, 144].

In summary, the significant findings suggest that the proposed framework can discover the

relevant cell types or tissues.

Figure 3.2: Enrichment analysis results. Results for three traits, AD, HDL, and AF, are shown in
this figure. The rows are cell types/tissues and the columns are SNP-level weight score cutoff on
selecting group-specific SNP set. The logrithm of negative p-values are encoded by colors. The
asteroid symbols are pinned on the cell when p-val< 0.05.
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3.3.2 Cell type important for different traits

One benefit of group-specific decomposed PRS is the identification of the groups (cell types or

tissues) which make significant contributions to the overall PRS through gene expression.

Lipids

We conducted cell type enrichment analyses for the four lipids traits in four tissues, including PB,

heart, brain, and artery. The four lipid traits exhibit very similar cell type patterns in all tissues we

studied. Fig 3.3 shows three of them, and we will integrate the results of an artery in the following

section.

The lipids traits have significant and consistent enrichment in several T cells shown in Fig 3.3A.

HDL, LDL, and TC have coherent, strong cell-type-specific heritability in T cells and activated T

cells. T lymphocytes can control the lipids metabolism in blood in several studies[145, 146, 147].

It is essential to learn the underlying mechanism of how T lymphocytes can manage the lipids.

For instance, fatty acid (FA), a component in the biological metabolism process and the precursors

of lipids complex, plays a role in the differentiation and mortality of T cells by deriving energy

and store TG[145]. The proliferation of T cells can also activate lipids synthesis as well as the FA

catabolic pathways[146]. Although TG does not present the significant enrichment in T cell as the

other three lipids traits, we observed that the p-values of enrichment analysis in another immune

cell type, proliferating B cells, are significant (p-val< 0.05) robust to every cutoff score screened.

It has been discussed that the Fc receptor (FcR) participates in the removal of the lipid indirectly

and is strongly related to B cell proliferation[148].

We also observed the high enrichment in macrophages from heart tissue to lipids traits, HDL

and LDL, as shown in Fig 3.3B. The p-values are consistently significant (p-val< 0.05) for HDL

and the strongest enrichment for LDL, although not significant. Thus, we considered the macrophages

from heart disease to be the most genetically relevant cell type in heart to lipids traits through gene
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expression. Extensive studies are investigating the association of macrophages and lipids, espe-

cially in heart disease patients[149, 150, 151]. For instance, the LDL in macrophages can initiate

atherosclerotic lesions, a heart disease[150]. And the increased exposure of macrophages to HDL

can enhance the risk of CAD[151].
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Figure 3.3: Lipids in enrichment analysis. Cell type enrichment analysis of lipids traits in PB (A),
heart (B) and cerebellum of brain(C).

Several cell types in the cerebellum of the brain are also found to be enriched in the lipids traits

from the results shown in Fig 3.3C. We identified oligodendrocytes, macrophages, astrocytes, and

endothelials for HDL; oligodendrocytes, macroglias, and macrophages for LDL; and oligoden-

drocytes, astrocytes, and endothelials for TG. Their common shared cell types, oligodendrocytes,

macrophages, and astrocytes, are also present the strongest correlation with lipids traits in PheWAS

as shown in Fig 3.4. Especially for oligodendrocytes and astrocytes, there are numerous reports on

how they require lipids in the brain [152, 153]. The primary function of oligodendrocytes in the

synthesis of myelin, a lipids-riched membrane structured layer, is to enwrap and insulate nervous

system axons[154, 155, 156].

Astrocytes, the other one of the most abundant cell types in brain, have a substantial contri-
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bution to myelination incorporated with lipids[157, 158]. On the other hand, we also found the

importance of macrophages to lipids traits, and its decomposed PRS is highly correlated with the

ones of oligodendrocytes and astrocytes in the brain. Besides the strong association between the

macrophages and lipids metabolism[159], we also hypothesize that the macrophages which are not

brain-resident may participate in the oligodendrocytes and astrocytes myelination at the transcrip-

tomics level.
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Figure 3.4: PheWAS of lipids traits in PB. The rows are manually grouped traits by their pathways
and biological properties. The columns are dendrogram clustered cell types. The colors repre-
sented the correlations between the phenotypes and decomposed PRS with asteroid symbols when
the Bonferroni corrected p-value< 0.05.

Coronary artery disease

CAD is the leading cause of death[160, 161] and has an enormous health impact worldwide. There-

fore, it is critical to learn about its possible risk factors. Specifically, one can easily ask a question

about how the gene expression reflects the genetic risk factor. Therefore, in this session, we studied

cell type enrichments in CAD by our framework and found signals in heart and brain tissues, two

organs with high associations with CAD trait.
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In Fig 3.5A, the cardiomyocytes and dendritic cells have consistent significant enrichment to

CAD. Cardiomyocytes are the major cell population in the heart by mass. The growth of cardiomy-

ocytes can result in hypertrophic cardiomyopathy (HCM), a heart disease that has high association

with CAD[162, 163]. HCM is also proved to be a significant risk factor of human morbidity and

mortality[164, 165, 166]. Previous reports, including longitudinal studies, have shown that up to

20% HCM patients also suffered from CAD[163, 167, 168, 169]. On the other hand, there are

also some translational applications for CAD targeting cardiomyocyte in development, since the

pharmacological and genetic control of the death of cardiomyocytes can effectively reduce the in-

farction risk to enhance the cardiac function[170]. The other signature cell type is dendritic cells

(DC), which are a key cell population in the immune system with different functions. Especially

DCs are associated with many cardiovascular diseases ranging from hypertension to heart failure

after heart transplantation. DCs are antigen-presenting interplaying with CAD occurrence. In gen-

eral, DCs can activate and regulate the immune system by all types of effect T cells, which is a

typical pathological pattern of CAD[171]. Therefore, our framework indicates that genetics can

increase the CAD risk by gene expression in cardiomyocytes and dendritic cells.

Furthermore, our framework discovered that endothelial cells are enriched in the cerebellum

of the brain to CAD, as shown in Fig 3.5B. The endothelial dysfunction can change the white

matter surrounding the blood vessels in the brain and lead to cerebral small vessel disease (SVD),

a disease that has numerous shared risk factors with CAD, such as aging, hypertension, smoking,

and diabetes[172]. In addition, downstream PheWAS analysis found strong associations between

decomposed CAD PRS of endothelial cells with alkaline phosphatase (ALP), a homodimeric pro-

tein enzyme. A number of studies tried to understand the tissue-nonspecific alkaline phosphatase

(TNAP) and found its high expression in brain microvessels, including brain microvascular en-

dothelial cells (BMECs). The TNAP mouse model demonstrates the critical role of TNAP in

aging, a well-known risk factor of CAD[173]. Integrating the results from both enrichment analy-

sis and PheWAS in the brain, we hypothesize that the dysfunctional endothelial cells can indirectly

influence the CAD risk by changing the blood vessels in the brain.
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Figure 3.5: Analysis on CAD. (A) Cell type enrichment analysis in Heart. (B) Cell type enrichment
analysis and PheWAS in cerebellum of brain.

Artery

As artery is a tissue that plays a role in many common diseases, we also applied our framework

on artery tissue to investigate the cell type-specific decomposed PRS on all eight traits, including

CAD, AF, BC, T2D, and four lipids traits.

The cell type enrichment analysis results shown in Fig 3.6 and PheWAS results shown in Fig 3.7

suggest three major cell types in artery: fibroblasts, endothelial cells, and macrophages. Fibroblasts

have enrichment in the artery to BC; both fibroblasts and endothelial cells have enrichment in AF

and LDL; and for the other five traits, CAD, T2D, HDL, TC, and TG, all three mentioned cell types

have significant enrichment, and the results are robust to the cutoff scores. In PheWAS analysis of

TC and TG, these three cell types also have the most similar strong associations with metabolism

traits compared with the overall PRS, indicating the dominance of them in the artery to CAD from

the genetics perspective.

Vascular fibroblasts, located at the outer layer of the artery, participate in many biological
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Figure 3.6: Artery in Enrichment Analysis. Cell type enrichment anlayis in artery for all eight
common traits figured out the shared significant cell types, fibroblasts, endothelial cells and
macrophages.

processes. A rat aorta model has shown that fibroblasts are involved in the vascular remodeling, the

process of repairmen, and heart diseases, such as hypertension[174]. They also make a significant

contribution to atherosclerosis, a chronic arterial disease[175]. Fibroblasts are involved in the

inflammatory response and are sensitive to the stimulation of angiotensin II (ANG II), which can

increase blood pressure and is a critical factor in hypertension.

The arterial innermost layer is composed of endothelial cells. And endothelial cells generate

numerous cell-surface proteins in artery[176]. Thus, it is not surprising that the gene expression

of endothelial cells takes a dominant intermediary role in the genetic association with multiple

common traits. Endothelial cells participate in many pathological processes, including atheroscle-

rosis and cancer[177]. Previous research also demonstrated that endothelial cells and lipids have

bidirectional interactions. The endothelium is involved in lipids metabolism and, in turn, regulated

and processed by the lipids/lipoprotein on the endothelial cell surface[178, 179].
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Macrophages, which play a central role of many pathological processes in the artery, are

also found to be a significant cell population in our downstream analysis to most traits investi-

gated, especially for the cardiovascular disease such as CAD and atherosclerosis. Macrophages

will participate in the biological processes, for example, inflammatory response and plasticity

promotion[180]. Additionally, macrophages are actively engaged in the development and modifi-

cation of LDL[181]. Other research also figured that macrophages are a critical player in lipid-rich

carotid artery plaque[182].

In summary, if we decompose the overall PRS by the cell types in the artery, we find out these

three cell types mentioned above are the significant contributors to the genetic risk factors in terms

of their gene expression.
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Figure 3.7: Artery in PheWAS. Lipids traits PheWAS in artery discovered the coherent cell types
from enrichment analysis.
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3.3.3 Construct more predictable decomposed PRS

The other important motivation of our framework is to construct more accurate PRS for prediction.

A better decomposed PRS should have stronger correlations with traits in PheWAS compared

with the overall PRS or other decomposed PRS. In Fig 3.8, we show that four novel PRSs more

predictable to traits by decomposing either by tissues or cell types.
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Figure 3.8: Predicable decomposed PRSs. The first three panels show tissue enrichment analysis
for CAD, T2D, and TC, indicating different patterns of decomposed PRS and identifying the more
predicable PRSs compared with other tissues. The last panel is the heart cell type enrichment
analysis for TG and recognizes macrophage decomposed PRS having better prediction powers
than the overall PRS.

We applied the framework to 26 tissues that are representative of the human body. The de-

composed CAD PRS of the artery can better predict the lipids traits compared with other tissues.

This decomposed PRS have the most significant positive correlations with lipids traits, including

cholesterol-lowering medication, apolipoprotein B, cholesterol, LDL, and lipoprotein A. The high

values of these metabolism traits can predict many diseases such as atherosclerotic cardiovascular

disease (CVD). The high decomposed CAD PRS in the artery has a concordance with these traits,

indicating that the high risk of CAD is more likely to be accompanied by high values of unhealthy

cholesterol. On the other hand, it has the strongest negative correlations with HDL and apolipopro-
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tein A (ApoA), which is consistent with the fact that HDL has an inverse association with CAD

risk[183].

A similar analysis in cell type PheWAS of T2D discovered the strong negative correlation be-

tween decomposed T2D PRS in the pancreas and ALP trait. It is well known that intestinal alkaline

phosphatase (IAP) plays an essential anti-inflammatory role in metabolism, and its absence may

lead to hyperglycemia. A study on the mouse also showed that IAP in pancreatic β-cells could be

a possible therapeutic target for T2D[184].

We now discuss the decomposed PRS result for TC. Among all 26 tissues, our framework

discovered two subgroups based on their correlations with metabolic traits and correlation signif-

icance compared with the rest of the tissues. The first subgroup includes colon, duodenum, and

gallbladder. Their decomposed TC PRS have positive correlations with all unhealthy lipids traits,

i.e., TC and LDL, and have opposite correlations with HDL and ApoA. The higher prediction

ability of the decomposed TC PRS in intestinal tissues is reasonable since there are multiple es-

sential pathways involved in intestinal tissues, such as lipids absorption and regulation[185]. On

the contrary, we observed that the other subgroup, including artery, lung, and kidney, have strong

positive correlations with HDL and ApoA, implying that high HDL and ApoA concentrations may

damage tissue functions. HDL and its major component ApoA are usually considered to remove

cholesterol and carry it back to the liver. A cohort study has found a genetic variant within the gene

SCARB1 associated with both high risk of CAD and elevated HDL[186]. This study revealed that

raising HDL in the artery cannot protect against heart disease. Therefore, the higher decomposed

TC PRS is positively associated with HDL and ApoA traits. Similar conclusions were also found

in lung, that elevated HDL will decrease lung function. A previous cohort study identified HDL

accumulation associated with the decrease of forced vital capacity volume (FVC) and forced ex-

piratory volume in the 1 s (FEV1)[187]. Although no literature can explain how decomposed TC

PRS in the kidney is positively associated with HDL and ApoA, there is research studying renal

handling of HDL and how it is involved in kidney damage[135, 136].

Finally, our novel framework suggested that the decomposed TG PRS in heart macrophages
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have better predictions based on its stronger associations with metabolism traits shown in the last

panel of Fig 3.8. Compared with the overall TG PRS shown as the last column of the heatmap,

it has a positive correlation with TG and significant negative correlations with most lipids traits.

Therefore, heart macrophages make the majority of the contribution to the overall PRS prediction

power. But the higher PRS derived from heart macrophage may point to a lower level of other

lipids traits.

3.4 Discussion

This chapter introduces a novel statistical framework integrating scRNA-seq and GWAS data to

gain better biological insights for common diseases through constructing tissue and cell type spe-

cific polygenic risk scores. Our framework aims to understand how traits are associated with SNPs

through gene expression regulation and can facilitate patient subtyping (though not covered in this

chapter). It starts from curating cell type-specific and tissue-specific DE genes from scRNA-seq

data. Through the iDEA package, we obtain gene-level weight scores quantifying the likelihood of

genes to be DE genes. After mapping the SNPs to genes, we derive normalized SNP-level weight

scores that sum up to 1 across cell types/tissues. The final decomposed PRS are calculated based

on the SNP-level weight scores and GWAS summary statistics. The framework was applied to

several common traits either by cell type decomposition or by tissue decomposition.

We conducted two types of downstream analysis: enrichment analysis and PheWAS. The en-

richment analysis utilizes the group-specific SNP lists derived from the framework to get group-

specific heritability compared with the overall one. We considered different cutoff scores of SNP-

level weight scores ranging from 0.1 to 0.9 to select the SNPs. The groups with consistent sig-

nificant signals are considered to be strongly associated with target traits. PheWAS enables us to

figure out the dominant groups that contribute to overall PRS and the groups whose decomposed

PRSs are better proxies for traits prediction. All the results are summarized in Table 3.1.
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We first investigated the reliability of the framework by cell type enrichment analysis in the

brain for AD, and tissue enrichment analysis for HDL and AF. Our framework successfully iden-

tified high heritability enrichment in brain T cells for AD, kidney for HDL, artery, and adrenal

gland for AF. Next, the framework was applied to identify the dominant cell types making signif-

icant contributions to traits. The four lipids traits share similar dominant cell types based on the

results of enrichment analysis and PheWAS. Specifically, multiple types of T cells are enriched

in PB; macrophages and neutrophils are enriched in the heart; oligodendrocytes, astrocytes, and

macrophages are significantly enriched and dominant in the brain. From the results of CAD, we

also identified cardiomyocytes and dendritic cells in the heart and endothelial cells in the brain.

Another interesting finding is the leading cell types of the artery in genetics risk mediated by gene

expression: fibroblasts, endothelial cells, and macrophages. Both enrichment analysis and Phe-

WAS have coherent significant results for these three cell types across all eight common traits we

studied. Finally, we listed the decomposed PRS, which are more predictable than the rest of the

groups or the overall PRS for traits CAD, T2D, TC and TG.

Unlike the classical PRSs, our framework only uses the SNPs selected, annotated, and grouped

by gene transcript. Thus, the decomposed PRS can only explain the differences of PRSs through

gene expression. A probable and critical downstream usage of the decomposed PRS is patient

subtyping. The decomposed PRS may better explain how the cell type- or tissue-specific gene

expression is associated with the disease. The framework can also identify therapeutic targets for

different patient subtypes based on differential decomposed PRSs. Another evaluation is necessary

to see whether our framework can outperform other methods, specifically, LDSC and decomposed

PRSs when pathways annotate the SNPs. In terms of cell type decomposed PRSs, we will add the

analyses on kidney and liver tissues for clinical use, as they play critical roles in many complex

diseases, such as T2D.

We note that our framework can be improved in a number of ways. For example, we can op-

timize the model parameters by deploying different methods to get DE gene summary statistics

and the group-specific DE gene set. For example, it is feasible to replace marginal linear regres-
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sion with joint linear regression. Another possible improvement is to add neighboring genes when

mapping SNPs to genes. In this chapter, we tried the neighborhood of 500kb for genes, but the

group-specific SNP lists overlapped with each other across tissues or cell types, leading to the un-

specificity to groups and the similar decomposed PRSs which are not distinguishable in PheWAS.

However, a smaller neighborhood can be considered to optimize the results rather than only using

the original gene sequence. Besides, the framework only utilizes P+T method for PRS calculation.

A more state-of-the-art risk prediction model, e.g. PRS-CS may better handle SNP effect sizes

from the whole genome instead of clumping SNPs by P+T. Furthermore, we can consider other

SNP-level weight score bjk.

In general, the new framework can bring a new perspective on joint analysis on scRNA-seq

and GWAS. Despite the challenges from the complex biological system, our framework has been

able to suggest how transcriptome can serve as an interpretable intermediate feature between the

genotypes and phenotypes. There are many possibilities for the integrative analysis of multi-omics

data, not only genetics and transcriptomics but also epigenetic, proteomics, and others. They can

better explain how genetic factor impact disease risk and the identifications of disease subtypes.

3.5 Online Methods and Materials

3.5.1 Data Availability

The HCL can be accessed under the GEO accession number GSE134355 at http://bis.

zju.edu.cn/HCL/ or https://db.cngb.org/HCL/. AD GWAS data was obtained from

IGAP. BC GWAS data were accessed from Michailidou, Kyriaki, et al.(2017)[188]. The other

GWAS data were from UK Biobank[189].
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Appendix A

Supplementary Figures and Tables

Scenario 
Number #cell type

#surface 
markers

#single cell 
Proteomics 
cell number #RNA gene big_w_mean big_tau_w

small_w_me
an small_tau_w p.0 q.0 p.neg1 q.neg1

mean_var_r
atio corr

cell type 
proportions 

ratio
1 5 10 2000 100 2 10 0.5 10 0.1 0.2 0.05 0.1 10 0.5 1,2,2,3,3

2 8 10 2000 100 2 8 1 8 0.15 0.3 0.1 0.15 5 0.2
3,1,2,3,3,1,2,

1

3 8 10 2000 100 2 8 1 8 0.15 0.3 0.1 0.15 3 0.3
3,1,2,3,3,1,2,

2

4 8 10 2000 100 2 7 1 7 0.15 0.3 0.1 0.15 3 0.2
3,1,2,3,3,1,2,

3

5 8 10 2000 100 2 7 1 7 0.2 0.4 0.1 0.2 3 0.2
3,1,2,3,3,1,2,

4

6 8 10 2000 100 2 5 1 5 0.2 0.4 0.1 0.2 2 0.2
3,1,2,3,3,1,2,

5

Table A.1: Simulation parameters setting.
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A B

C D

Figure A.1: ProtAnno optimization properties. A) ProtAnno convergence for six simulation sce-
narios. The x-axis represents iteration number. The y-axis represents log loss function values.
B) The subsetting cutoff parameter. The x-axis represents the cutoff value. The y-axis represents
annotation metrics value. C) The impact of transcriptomics data on annotation in the ProtAnno
model with only transcriptomics penalization, AS. The x-axis represents the correlation between
transcriptomics predicted signature matrix AS and true protein signature matrix W . The y-axis
represents the annotation metrics value. D) The evaluation of parameter tuning algorithm. The
x-axis corresponds to λ2 from 0 to 60 under six simulation scenarios. The color represents differ-
ent annotation metrics. The y-axis represents the annotation metrics value. The red vertical line
represents the optimal λ2 by the parameter tuning algorithm for each simulation scenario.
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A

B

Supp.2Figure A.2: Penalization powers in optimization. A) The distribution of ratios between estimated
W and the input, AS. The red vertical line is the median of the distribution. The orange vertical
line is the true ratio in the rewritten optimization algorithm. B) The distribution of ratios between
estimated W and the input, A0. The red vertical line is the median of the distribution. The orange
vertical line is the true ratio in the rewritten optimization algorithm.
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Figure A.3: The prediction power on BCR data. The annotation accuracy barplots across samples
from stimulated (first row) and unstimulated (second row) groups. The columns are the cell type
numbers used (5 cell types in the first column, 6 cell types in the second column, and 7 cell types
in the third column). The color represents the raw output or subsetted output from ProtAnno.
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A B

Figure A.4: Annotation accuracy improvement by subsetting. A) The annotation metrics with
different subsetting cutoffs. The x-axis represents the cutoff value. The y-axis represents the
annotation metric value. B) The numbers of kept cells after subsetting filter. The x-axis represents
the cutoff value. The y-axis represents the remaining cell counts.
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Figure A.5: The violin plots of estimated signature expression in W in a longitudinal covid-19
study by ProtAnno. The x-axis represents the cell type and the y-axis is the distribution of values
in the signature matrix across patients within groups. The colors represent patient groups (ICU and
recovery).
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Figure A.8: Jitter plots of the correlations between estimated cell type proportions and the ground
truth for Newman et al. blood samples (n = 12), with color coded by cell types. Last v ∗ γ is
denoted as the estimates of the last iteration in the tranSig model. tranSig noadj is denoted as
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is implemented on the single cell datasets without LIGER for batch correction. tranSig TPM
represents that single cell expression profiles are normalized in TPM space as the input of the
tranSig framework. Data are presented as means ± s.d.
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Figure A.9: Jitter plots of estimated cell type proportions for Chen et al. subjects (aortic tissues
from 6 health donors as control and aneurysm tissues from patients with ascending aortic aneurysm
as AN), color coded by individuals. Color bars on the right annotate the deconvolution methods
with the ATAA dataset as the single cell reference. Data are expressed as means ± s.d.
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Appendix B

ProtAnno Theoretical Proofs

B.1 Parameter Tuning

To get the optimal penalty parameters λ1,λ2,µ and η, we considered both the KarushKuhn-Tucker

(KKT) condition combined with empirical screening. We first obtained the initial W and H by

setting the arbitrary penalization: λ1 = 1, λ2 = 10, µ = 50 and η = 50. This setting can give an

acceptable result in most cases based on our empirical experiments. The first order derivatives of

loss function are

∇WL(W,H) = W (HHT + µI)−XHT − λ1AS − λ2A0

∇HL(W,H) = −W TX +W TWH + η1K1K1TKH − η1K1TN

(B.1)

We first initialized η by satisfying KKT conditions.

(W (HHT + µI)−XHT − λ1AS − λ2A0)�W = 0

(−W TX +W TWH + η1K1K1TKH − η1K1TN)�H = 0

W (HHT + µI)−XHT − λ1AS − λ2A0 ≥ 0

−W TX +W TWH + η1K1K1TKH − η1K1TN ≥ 0

(B.2)
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by the second sufficient inequality, we set

η :=‖ (W TWH −W TX)/(1K1TKH − 1K1TN) ‖median (B.3)

After getting the initial η, we initialized λ2 and λ1 in order by minimizing Adjusted Rank Index

(ARI) with Louvain clustering. We considered the tuning parameters λ2 and λ1 from 0.1, 1, 10,

and 100. The parameter µ is charging of the scale and penalization power on signature matrix

W . Thus, a smaller µ can result in a larger norm of W . Therefore, we developed a new metric to

evaluate the reliability by the difference between the mean value of expression profile X and the

mean value of signature matrix W . To eliminate the non-Gaussian effects, we also considered the

difference between the median values of X and W . Thus, the new metric is formulated as

D(µ) := (Xmean −Wmean) + (Xmedian −Wmedian) (B.4)

B.2 Theoretical Proofs

Convergence of Algorithms

Lemma B.2.1. For any symmetric nonnegative matrix Q ∈ RK×K and row vector w ∈ RK
+ and

a ∈ RK
≥0, the following matrix

F = diag{(wQ+ a)1

w1

,
(wQ+ a)2

w2

, . . . ,
(wQ+ a)K

wK
} −Q ∈ RK×K (B.5)

is always semi-positive definite.

Proof. We construct a new matrix S ∈ RK×K by Sij = wiFijwj , where Sij is the element of S
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whose row is i and column is j. And we reformulate F to be

Fij =

−Qij, if i 6= j

ΣkwkQik+ai
wi

−Qii, if i = j

(B.6)

For any nonnegative row vector v ∈ RK×K , we have

vSvT = Σi,jviSijvj

= Σi,jviwiFijwjvj

(B.7)

Since row vectors w and v are nonnegative, F is semi-positive definite when S is semi-positive

definite. Therefore, it is sufficient if we can prove S is semi-positive definite. In the following, we

follow equation B.7 and prove that the product is always nonnegative.

vSvT = Σi,jviwiFijwjvj

= Σiviwi
ΣkwkQik + ai

wi
wivi − Σi,jviwiQijwjvj

= Σi(ΣkwkQik)wiv
2
i + Σiaiwiv

2
i − Σi,jviwiQijwjvj

= Σi,jwiwjQijv
2
i + Σiaiwiv

2
i − Σi,jwiwjQijvivj

= Σi,jwiwjQij(v
2
i − vivj) + Σiaiwiv

2
i

=
1

2
Σi,jwiwjQij(v

2
i + v2

j − 2vivj) + Σiaiwiv
2
i

=
1

2
Σi,j|vi − vj|wiQijwj|vi − vj|+ Σiaiwiv

2
i ≥ 0

(B.8)

The first term in the above formula is nonnegative since w is nonnegative and Q is semi-positive

definite. The second term is always greater than or equal to 0 due the nonnegativity of a and w.

Thus, S is a semi-positive definite matrix.
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Theorem B.2.2. Consider the following quadratic optimization problem,

min
w≥0

E(w) =
1

2
‖ x− wH ‖2

F −λ1tr(w
Ta1)− λ2tr(w

Ta2) +
µ

2
‖ w ‖2 (B.9)

which is the loss function for a row vector w ∈ RK . In this optimization problem, H ∈ RK×N

is a constant non-negative matrix, and x, a1, a2 ∈ RK are constant row vectors. The penalty

parameters, λ1, λ2, and µ are positive numbers. The the following update rule

wt+1
j = wtj

[xHT ]+j + λ1[(AS)i]
+
j + λ2[(A0)i]

+
j

[wi(HHT + µI)]j + [xHT ]−j + λ1[a1]−j + λ2[a2]−j
(B.10)

where we denote

x+ =

x, if x ≥ 0

0, if x < 0

x− =

0, if x > 0

−x, if x ≤ 0

(B.11)

converges to its optimal solution with the convergence rate

min
t∈[1,K]

‖ wt+1 − wt ‖≤ 2

µ(K − 1)
E(w0) (B.12)

Proof. To prove that there exists a wt+1 that E(wt+1) ≥ E(wt), we would like to construct an

auxiliary function F (w,wt), s.t.

F (wt, wt) = E(wt)

F (w,wt) ≥ E(w)
(B.13)

Then we have

E(wt) = F (wt, wt) ≥ F (wt+1, wt) ≥ E(wt+1) (B.14)

where wt+1 = arg minw F (w,wt). Thus, the loss function E(wt) is monotonously non-increasing
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w.r.t the iteration t. We define the auxiliary function as the following.

F (w,wt) = E(wt) +∇E(wt)(w − wt)T +
1

2
(w − wt)J(wt)(w − wt)T (B.15)

where

J(wt) = diag(
wt1[HHT + µI]1 + [xHT ]−1 + [λ1a1]−1 + [λ2a2]−1

wt1
,

wt2[HHT + µI]2 + [xHT ]−2 + [λ1a1]−2 + [λ2a2]−2
wt2

,

. . . ,
wtK [HHT + µI]K + [xHT ]−K + [λ1a1]−K + [λ2a2]−K

wtK
)

(B.16)

We can approximate E(wt) based on Taylor expansion.

E(w) = E(wt) +∇E(wt)(w − wt)T +
1

2
(w − wt)∇2E(wt)(w − wt)T (B.17)

where, by simple derivation,

∇E(wt) = wt[HHT + µI] + [xHT ]− + [λ1a1]− + [λ2a2]− − [xHT ]+ − [λ1a1]+ − [λ2a2]+

∇2E(wt) = HHT + µI

(B.18)

Now we can have B.14 satisfied if F (wt+1, wt) ≥ E(wt+1). To get it, we have

F (wt+1, wt)− E(wt+1) =
1

2
(w − wt)[J(wt)−∇2E(wt)](w − wt)T (B.19)

Obviously, ∇2E(wt) = HHT + µI is a positive definite matrix since µ is positive. Furthermore,

the row vector

(xHT )− + [λ1a1]− + [λ2a2]− (B.20)

is always nonnegative. Due to the B.2.1, J(wt) −∇2E(wt) is a semi-positive definite matrix. So

that F (wt+1, wt) ≥ E(wt+1) is always satisfied and E(wt) is nonincreasing w.r.t to t. Next, we

would like to find the optimizer of F (w,wt). To achieve this, we set ∂F (w,wt)
∂w

|w=wt+1 = 0, which
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is equivalent to equation∇E(wt) + (wt+1 − wt)J(wt) = 0. Therefore, we have

wt+1 = wt − J−1(wt)∇E(wt) (B.21)

For each element of wt+1, the above formula can be reformulated as

wt+1
j = wtj − J−1(wt)j∇E(wt)j

= wtj −
wtj

wtj[HH
T + µI]j + [xHT ]−j + [λ1a1]−j + [λ2a2]−j

· [wt[HHT + µI] + [xHT ]− + [λ1a1]− + [λ2a2]− − [xHT ]+ − [λ1a1]+ − [λ2a2]+]

= wtj
[xHT ]+j + λ1[(AS)i]

+
j + λ2[(A0)i]

+
j

[wi(HHT + µI)]j + [xHT ]−j + λ1[a1]−j + λ2[a2]−j

(B.22)

So far we have proved that the above updating rule can make E(wt) nonincreasing w.r.t to the t.

Specifically, we have the lower bound for every element on the diagonal of J matrix.

J(wt)jj =
wtj[HH

T + µI]j + [xHT ]−j + [λ1a1]−j + [λ2a2]−j
wtj

≥ µ (B.23)

Based on B.14 and B.23, we can derive the lower bound of the difference between two loss function

values after one update.

E(wt)− E(wt+1) ≥ F (wt, wt)− F (wt+1, wt)

= ∇F (wt+1, wt)(wt+1 − wt) +
1

2
(wt − wt+1)∇2F (wt+1, wt)(wt − wt+1)T

=
1

2
(wt − wt+1)J(wt)(wt − wt+1)T

≥ µ

2
‖ wt − wt+1 ‖2

(B.24)

since∇F (wt+1, wt) = 0 and∇2F (wt+1, wt) = J(wt). And by accumulating ‖ wt−wt+1 ‖2 from

0 to T − 1, we then can have

E(w0)− E(wK) ≥ µ

2
ΣT−1
t=0 ‖ wt − wt+1 ‖2 (B.25)
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Thus, for any given fixed iteration number T , we can have

min
0≤t≤T

‖ wt − wt+1 ‖2≤ 2

µ(T − 1)
(E(w0)− E(wT )) ≤ 2

µ(T − 1)
E(w0) (B.26)

Theorem B.2.3. Consider the following quadratic optimization problem,

min
w≥0

E(h) =
1

2
‖ x−Wh ‖2

F +
η

2
‖ 1Tk h− 1TN ‖2

2 (B.27)

which is the loss function for a column vector h ∈ RK . In this optimization problem, W ∈ RD×K

is the constant non-negative matrix, and x ∈ RK is a constant column vectors. The penalty

parameter, η is a positive number. The the following update rule

ht+1
j = htj

[W Tx]+j + η1k

[(W TW + η1k1Tk )ht]j + [W Tx]−j
(B.28)

converges to its optimal solution with the convergence rate

min
t∈[1,K]

‖ ht+1 − ht ‖≤ 2

η(K − 1)
E(h0) (B.29)

Proof. To prove that there exists an ht+1 that E(ht+1) ≥ E(ht), we can construct an auxiliary

function F (h, ht), s.t.

F (ht, ht) = E(ht)

F (h, ht) ≥ E(h)
(B.30)

Then we have

E(ht) = F (ht, ht) ≥ F (ht+1, ht) ≥ E(ht+1) (B.31)

where ht+1 = arg minh F (h, ht). Thus, the loss function E(ht) is monotonously non-increasing

w.r.t the iteration t. We define the auxiliary function as the following.

F (h, ht) = E(ht) + (h− ht)T∇E(ht) +
1

2
(h− ht)TJ(ht)(h− ht) (B.32)
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where

J(ht) = diag(
[(W TW + η1K1TK)ht]1 + [W Tx]−1

ht1
,

[(W TW + η1K1TK)ht]2 + [W Tx]−2
ht2

,

. . . ,
[(W TW + η1K1TK)ht]K + [W Tx]−K

htK
)

(B.33)

We can approximate E(ht) based on Taylor expansion.

E(h) = E(ht) + (h− ht)T∇E(ht) +
1

2
(h− ht)T∇2E(ht)(h− ht) (B.34)

where, by simple derivation,

∇E(ht;W ) = (W TW + η1k1
T
k )ht + [W Tx]− − [W Tx]+ − η1K

∇2E(ht) = W TW + η1k1
T
k

(B.35)

Now we can have B.31 satisfied if F (ht+1, ht) ≥ E(ht+1). To get it, we have

F (ht+1, ht)− E(ht+1) =
1

2
(h− ht)T [J(wt)−∇2E(ht)](h− ht) (B.36)

Obviously,∇2E(ht) = W TW+η1k1
T
k is a positive definite matrix since η is positive. Furthermore,

the row vector

(W Tx)− (B.37)

is always nonnegative. Due to the B.2.1, J(ht) − ∇2E(ht) is a semi-positive definite matrix. So

that F (ht+1, ht) ≥ E(ht+1) is always satisfied and E(ht) is nonincreasing w.r.t to t. Nextly, we

would like to find the optimizer of F (h, ht). To achieve this, we set ∂F (h,ht)
∂h
|h=ht+1 = 0, which is

equivalent to equation∇E(ht) + (ht+1 − ht)J(ht) = 0. Therefore, we have

ht+1 = ht − J−1(ht)∇E(ht) (B.38)
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For each element of ht+1, the above formula can be reformulated as

ht+1
j = htj − J−1(ht)j∇E(ht)j

= htj −
htj

[(W TW + η1K1TK)ht]j + [W Tx]−j

· [(W TW + η1k1
T
k )ht + [W Tx]− − [W Tx]+ − η1K ]

= htj
[W Tx]+j + η1k

[(W TW + η1k1Tk )ht]j + [W Tx]−j

(B.39)

So far we have proved that the above updating rule can make E(ht) nonincreasing w.r.t to the t.

Specifically, we have the lower bound for every element on the diagonal of J matrix.

J(ht)jj =
[(W TW + η1K1TK)ht]j + [W Tx]−j

htj
≥ η (B.40)

Based on B.31 and B.40, we can derive the lower bound of the difference between two lose function

values after one update.

E(ht)− E(ht+1) ≥ F (ht, ht)− F (ht+1, ht)

= (ht+1 − ht)T∇F (ht+1, ht) +
1

2
(ht − ht+1)T∇2F (ht+1, ht)(ht − ht+1)

=
1

2
(ht − ht+1)TJ(ht)(ht − ht+1)

≥ η

2
‖ ht − ht+1 ‖2

(B.41)

since ∇F (ht+1, ht) = 0 and ∇2F (ht+1, ht) = J(ht). And by accumulating ‖ ht − ht+1 ‖2 from 0

to T − 1, we have

E(h0)− E(hK) ≥ η

2
ΣT−1
t=0 ‖ ht − ht+1 ‖2 (B.42)

Thus, for any given fixed iteration number T , we have

min
0≤t≤T

‖ ht − ht+1 ‖2≤ 2

η(T − 1)
(E(h0)− E(hT )) ≤ 2

η(T − 1)
E(h0) (B.43)
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B.3 Rewriting the Loss Function

To conduct the parameter analysis and validate the optimization convergence, we rewrote the orig-

inal loss function to a equivalent formula as following.

min
W≥0,H≥0

L(W,H) =
1

2
‖ X −WH ‖2

F −λ1tr(W
TAS)− λ2tr(W

TA0)

+
µ

2
‖ W ‖2

F +
η

2
‖ 1TkH − 1TN ‖2

2

=
1

2
‖ X −WH ‖2

F +
µ

4
tr(WW T )− λ1tr(W

TAS)

+
µ

4
tr(WW T )− λ2tr(W

TA0) +
η

2
‖ 1TkH − 1TN ‖2

2

=
1

2
‖ X −WH ‖2

F +
µ

4
tr(WW T − 4λ1

µ
(W TAS) +

4λ2
1

µ2
(AS)(AS)T )

+
µ

4
tr(WW T − 4λ1

µ
(W TA0) +

4λ2
1

µ2
A0A

T
0 ) +

η

2
‖ 1TkH − 1TN ‖2

2 +constant

=
1

2
‖ X −WH ‖2

F +
µ

4
‖ W − 2λ1

µ
(AS) ‖2

F

+
µ

4
‖ W − 2λ2

µ
A0 ‖2

F + +
η

2
‖ 1TkH − 1TN ‖2

2 +constant

(B.44)
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Appendix C

tranSig optimization algorithm based on
SAME

Let θ1 = {Ŵ (1), . . . , Ŵ (T )} and θ2 = { 1
τe
, 1
τx
, 1
τw
, π, α, V, γ}. Due to the reason that it is not

always easy to have an accurate estimation on the binary variables in the spike-and-slab model, we

grouped our primary interested parameters v and γ in θ2 for multiple estimations in each iteration.

The full model can formulated as

x
(t)
dkck
∼ N(ŵ

(t)
dk ,

1

τxd
)

ŵ
(t)
dk ∼ N(vdk · γdk,

1

τw
)

γdk ∼ Ber(π)

vdk ∼ N(0,
1

τv
)

(C.1)

where v is a continuous variable and γ is a bernoulli variable.
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To infer SAME, we added prior distributions for θ2 as:

τxd = Gamma(αxd , βxd)

τw = Gamma(αw, βw)

π = Beta(απ, βπ)

(C.2)

To make the above prior distributions to be noninformative, here we set all the parameters

α = 0.001 and β = 0.001.

Then the joint distribution is

Pr(Y (t0), X, θ1, θ2) = · ΠtΠdΠkΠckN(x
(t)
dkck
|ŵ(t)

dk ,
1

τxd
) · Gamma(τxd |αxd , βxd)

· ΠtΠdΠkN(ŵ
(t)
dk |vdkγdk,

1

τw
) · Gamma(τw|αw, βw)

· ΠdΠkN(vdk|0,
1

τv
) · ·ΠkΠnN(zkn|0, 1)

· ΠdΠkBer(γdk|π) · Beta(π|απ, βπ)

(C.3)

The log likelihood function can be written as:

log p(Y (t0), X, θ1, θ2) =− ΣtΣdΣkΣck

τxd
2

(x
(t)
dkck
− ŵ(t)

dk )2

− TDK

2
log

2π

τw
− ΣtΣdΣk

τw
2

(ŵ
(t)
dk − vdkγdk)

2

− DK

2
log(

2π

τv
)− ΣdΣk

τvv
2
dk

2

− KN

2
log(2π)− ΣkΣn

z2
kn

2
+ ΣdΣk[γdk log π + (1− γdk) log(1− π)]

(C.4)
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Sample θ2 for Λ(i)

The first step is j = 1, . . . ,Λ(i), θ2(i, j)new ∼ p(θ2|y, θprev1 (i− 1)).

Update γdk(i, j)

We notice that

p(γdk = 1)(i, j)

p(γdk = 0)(i, j)
=

Pr(ŵ(1)
dk , . . . , ŵ

(T )
dk |vdk, γdk = 1, 1

τw
)Pr(vdk|γdk = 1)Pr(γdk = 1)

Pr(ŵ(1)
dk , . . . , ŵ

(T )
dk |vdk, γdk = 0, 1

τw
)Pr(vdk|γdk = 0)Pr(γdk = 0)

=
π(j)N(ŵ

(1)
dk , . . . , ŵ

(T )
dk |vdk, 1

τw(j)
)

(1− π(j))N(ŵ
(1)
dk , . . . , ŵ

(T )
dk |0, 1

τw(j)
)

(C.5)

Then we have

λdk(i, j) = log
p(γdk = 1)(i, j)

p(γdk = 0)(i, j)

= log
π(i, j − 1)

1− π(i, j − 1)
− τw(i, j − 1)

2
Σt(ŵ

(t)
dk (i− 1)− vdk(i, j − 1))2

+
τw(i, j)

2
Σtŵ

(t)
dk

2(i− 1)

(C.6)

Then the Bernoulli distribution φdk(i, j) = p(γdk = 1)(i, j) = 1
1+exp(−λdk(i,j))

.

Update vdk(i, j)

The variational distribution of vdk is a mixture Gaussian model depending on γdk. When γdk =

1, the log likelihood of q distribution is

log p(vdk|γdk = 1)(i, j) = −Σt
τw(i, j − 1)

2
(ŵ

(t)
dk (i− 1)− vdkγdk(i, j))2 − τv(i, j)v

2
dk

2
+ const

(C.7)

It is equivalent with

p(vdk|γdk = 1)(i, j) = N(µvdk(i, j), σ2
vdk

(i, j))

p(vdk|γdk = 0)(i, j) = N(0,
1

τv
)

(C.8)
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where
σ2
vdk

(i, j) = (Tτw(i, j − 1) + τv)
−1

µvdk(i, j) = σ2
vdk

(i, j)τw(i, j − 1)Σtŵ
(t)
dk (i− 1)

τ−1
v = 100

(C.9)

Update π(i, j)

π(i, j) ∼ Beta(απ + ΠdΠkγdk(i, j), βπ +DK − ΠdΠkγdk(i, j)) (C.10)

Update τxd
(i, j)

p(τxd |Y (t0), X, θ
−τxd
1 , θ2) ∝ p(X,W |τxd)p(τxd)

= ΠtΠkΠckN(x
(t)
dkck
|ŵ(t)

dk ,
1

τxd
) · Gamma(τxd |αxd , βxd)

(C.11)

τxd(i, j) ∼ Gamma(
C0

2
+ αxd ,

1

2
ΣtΣkΣck(x

(t)
dkck
− ŵ(t)

dk (i− 1))2 + βxd) (C.12)

Update τw(i, j)

p(τw|Y (t0), X, θ−τw1 , θ2) ∝ p(W,V, γ|τw)p(τw)

= ΠtΠdΠkN(ŵ
(t)
dk |vdkγdk,

1

τw
) · Gamma(τw|αw, βw)

(C.13)

τw(i, j) ∼ Gamma(
TDK

2
+ αw,

1

2
ΣtΣdΣk(ŵ

(t)
dk (i− 1)− vdk(i, j)γdk(i, j))2 + βw) (C.14)
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Sample θ1

In the second step is

θ1(i) ∼ qγ(θ1|y1, θ2(i, 1), . . . , θ2(i,Λ(i))))

∝ Π
Λ(i)
j=1p(θ1|y, θ2(i, j))

(C.15)

We defined q∗(θ1)(i, j) to be the jth marginal posterior distribution of θ1 in the ith iteration.

Update w
(t)
dk(i)

log q∗(ŵ
(t)
dk )(i, j) = −τxd(i, j)

2
Σck(x

(t)
dkck
− w(t)

dk )2 − τw(i, j)

2

(
ŵ

(t)
dk − vdk(i, j)γdk(i, j)

)2

+ const

(C.16)

Thus we have ŵ(t)
dk (i) ∼ N(µ

ŵ
(t)
dk

(i), τ−1

ŵ
(t)
dk

(i))

where

τ
ŵ

(t)
dk

(i) =
∑
Λ(j)

(Ckτxd(i, j) + τw(i, j))

µ
ŵ

(t)
dk

(i) =τ−1

ŵ
(t)
dk

(i)
∑
Λ(j)

(
τxd(i, j)Σckx

(t0)
dkck

+ τw(i, j)vdk(i, j)γdk(i, j)
) (C.17)
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Appendix D

tranSig Bulk and Single Cell Data Batch
Correction

To generate the pseudo-bulk expression profiles for batch-effect correction, the single cell expres-

sion profiles of the target tissue are normalized to the TPM space. The compositions of pseudo-bulk

profiles are set according to a Normal distribution N(µ, σ) for each cell type, whereas µ is set to

the empirical cell proportion of single cell datasets and σ is set to 2µ. After randomly drawing the

fractions of pseudo-bulk profiles from N(µ, σ), the negative values are set to 0, and the fractions

are normalized across cell types so that the summation of fractions is equal to 1. Then, according

to the normalized fractions, the cells are sampled from the single cell profiles with replacement

for 10, 000 times in total. The single cell expression profiles of these cells are averaged as one

sample of pseudo-bulk expression profiles. Next, the process is repeated for N times same with the

sample size of bulk-seq. Combat is performed on the pseudo-bulk Ysc and bulk RNA-seq Y0 in the

subsequent batch correction.

Based on the assumption of Combat, suppose the data contain two batches including ni samples

for each batch i = 1, 2, with signature genes g = 1, 2, · · · , G, in which we denote bulk RNA-seq

to be Y 1 as be the first batch and denote a pseudo mixture to be Y 2 as the second batch. The model

102



is assumed

Y i
gn = αg +Bi

g + δigε
i
gn

where αg is the overall gene expression, Bi
g and δij are the batch- and gene-specific random effects.

εign is normally distributed with mean 0 and variance σ2
g .

First, the data are standardized so that genes have similar overall mean and variance. The

standardized data, Zi
gn is calculated by

Zi
gn =

Y i
gn − α̂g
σ̂g

where α̂g is the estimation of αg, and σ̂g is estimated by σ̂2
g = 1

N
Σin(Y i

gn − α̂g − Bi
g)

2 (N is the

total number of samples).

Then the EB parameters are estimated by parametric empirical priors. We assume Zi
gn ∼

N(Bi
g, δ

i
g

2
), and the prior distributions of the batch effect parameters are assumed asBi

g ∼ N(Y i, τ 2
i )

and δig
2 ∼ InverseGamma(λi, θi).

Based on the assumptions, EB estimates the batch effect parameters by conditional posterior

distribution means

Bi∗
g =

niτ
2
i B̂

i
g + δi∗g

2
Y
i

niτ 2
i + δi∗g

2

and

δig
2

=
θi + 1

2
Σn(Zi

gn −Bi∗
g )2

1
2
ni + λi − 1

After calculating the batch effect estimations, different from the original Combat model, we

only adjust bulk RNA-seq Y 1 to single cell spaceY 2. The adjusted mixture can be calculated by

Y 1∗
gn = α̂g + B̂2∗

g + σ̂g
δ̂2∗
g

δ̂1∗
g

(Z1
gn − B̂1∗

g )
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Notably, we use an equal number of samples from bulk RNA-seq and pseudo mixture in real

applications.
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Appendix E

tranSig Gene List

E.1 tranSig signature gene list

ACTB, ACTG1, AGTRAP, AIF1, ANXA1, ANXA3, ANXA5, AP1S2, APOBEC3A, ARHGDIB,

ARL4C, ARPC1B, ARPC2, ARPC3, ASAH1, ATP6V1F, B2M, BANK1, BCL2A1, BIRC3, BLVRB,

BTG1, C12orf75, C1orf162, C4orf3, C5AR1, CALM1, CALM2, CALR, CAMP, CAPG, CARD16,

CD1C, CD24, CD27, CD36, CD37, CD38, CD3D, CD48, CD53, CD59, CD63, CD74, CD79A,

CD79B, CD99, CDA, CDKN1C, CFD, CFL1, CHCHD2, CLEC10A, CLEC12A, CLEC4E, CLEC7A,

CMC1, COPE, CORO1A, COTL1, COX4I1, COX5B, COX6A1, COX6C, COX7A2, COX7B,

CPVL, CSF3R, CST3, CSTA, CSTB, CTSA, CTSB, CTSC, CTSD, CTSS, CUTA, CUX1, CYBA,

CYBB, CYCS, DAD1, DEFA3, DEFA4, DERL3, DNAJA1, DUSP1, DUSP11, DYNLRB1, DYNLT1,

EAF2, EDF1, EEF1B2, EEF1D, EEF2, EIF1, EMB, ERH, ERP29, EVI2B, FCER1A, FCER1G,

FCGR3A, FCGRT, FCMR, FCN1, FGFBP2, FGL2, FGR, FKBP11, FKBP2, FOLR3, FOS, FPR1,

FTL, GAPDH, GCA, GLIPR1, GLRX, GMFG, GNAS, GNG7, GRN, GSTP1, GTF3A, GZMA,

GZMB, GZMK, HCK, HERPUD1, HINT1, HLA-A, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-

DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HM13,

HMGN1, HMOX1, HSBP1, HSP90AA1, HSP90B1, HSPA5, IFI44L, IFITM1, IFITM2, IFITM3,
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IGLL5, IGSF6, ILF2, IRF7, IRF8, ISG15, ISG20, ITM2B, ITM2C, JAML, JCHAIN, KCTD12,

KDELR2, KLRB1, KLRD1, LCN2, LCP1, LDHB, LGALS2, LILRB2, LIMD2, LMAN2, LSP1,

LST1, LTA4H, LTB, LY6E, LY86, LY96, LYZ, MANF, MCL1, MIF, MNDA, MPEG1, MRPL33,

MRPL52, MS4A1, MS4A6A, MS4A7, MT-ATP6, MT-ATP8, MT-CO2, MT-CO3, MT-CYB, MT-

ND1, MT-ND2, MYDGF, MYL6, MZB1, NAAA, NACA, NAP1L1, NCF2, NDUFA1, NDUFA11,

NDUFA4, NDUFB1, NDUFB4, NDUFB6, NME1, NPC2, NPM1, NUP214, OAZ1, OST4, OSTC,

P4HB, PARK7, PCBP1, PDIA4, PDIA6, PEBP1, PECAM1, PFDN5, PFN1, PGK1, PILRA,

PIM2, PLAC8, PLBD1, PLD4, PLPP5, POMP, POU2F2, PPIA, PPIB, PPT1, PRDX1, PRDX4,

PSAP, PSMA2, PSMA3, PSMB2, PSME2, PYCARD, RABAC1, RACK1, RAN, RETN, RGS2,

RHOA, RHOC, RNASE2, RNASE3, RNASE6, RNASET2, RNF130, ROMO1, RPL10, RPL10A,

RPL11, RPL12, RPL13, RPL13A, RPL14, RPL15, RPL18, RPL18A, RPL19, RPL21, RPL22,

RPL22L1, RPL23, RPL23A, RPL24, RPL27, RPL27A, RPL29, RPL3, RPL30, RPL31, RPL32,

RPL34, RPL35, RPL35A, RPL36, RPL36AL, RPL37, RPL37A, RPL39, RPL4, RPL41, RPL5,

RPL7, RPL7A, RPL8, RPL9, RPLP0, RPLP1, RPLP2, RPN1, RPN2, RPS10, RPS11, RPS12,

RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS2, RPS20, RPS21, RPS23, RPS25,

RPS26, RPS27, RPS27A, RPS28, RPS29, RPS3, RPS3A, RPS4X, RPS5, RPS6, RPS7, RPS8,

RPS9, RPSA, S100A11, S100A12, S100A6, S100A8, S100A9, S100P, SAMHD1, SAT1, SD-

CBP, SDF2L1, SEC11C, SEC61B, SEC61G, SEC62, SELL, SERF2, SERPINA1, SERPINF1,

SH3BGRL, SH3BGRL3, SLC25A6, SLIRP, SMDT1, SNRPD2, SNRPG, SNU13, SNX3, SOD2,

SPCS1, SPCS2, SPCS3, SPI1, SPIB, SRP14, SSR2, SSR3, SSR4, STXBP2, SUB1, SYNGR2,

TAGLN2, TALDO1, TIMP1, TKT, TMBIM6, TMED9, TMEM156, TMEM176B, TMEM258,

TMSB10, TMSB4X, TNFRSF17, TNFSF10, TNFSF13B, TPI1, TRMT112, TSPO, TUBA1B,

TXN, TYMP, UBA52, UBE2J1, UBE2N, UCP2, UFM1, UQCR11, UQCRH, UQCRQ, VAMP8,

VCAN, VPREB3, XBP1, YWHAB, ZFP36L2, ZNF706, ABCB4, ABCB9, ACAP1, ACHE, ACP5,

ADAM28, ADAMDEC1, ADAMTS3, ADRB2, AIM2, ALOX15, ALOX5, AMPD1, ANGPT4,

ANKRD55, APOBEC3G, APOL3, APOL6, AQP9, ARHGAP22, ARRB1, ASGR1, ASGR2,

ATP8B4, AZU1, BACH2, BARX2, BCL11B, BCL7A, BEND5, BFSP1, BHLHE41, BLK, BMP2K,

BPI, BRAF, BRSK2, BST1, BTNL8, C11orf80, C1orf54, C3AR1, C5AR2, CA8, CASP5, CCDC102B,
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CCL1, CCL13, CCL14, CCL17, CCL18, CCL19, CCL20, CCL22, CCL23, CCL4, CCL5, CCL7,

CCL8, CCND2, CCR10, CCR2, CCR3, CCR5, CCR6, CCR7, CD160, CD180, CD19, CD1A,

CD1B, CD1D, CD1E, CD2, CD209, CD22, CD244, CD247, CD28, CD300A, CD33, CD3E,

CD3G, CD4, CD40, CD40LG, CD5, CD6, CD68, CD69, CD7, CD70, CD72, CD80, CD86,

CD8A, CD8B, CD96, CDC25A, CDH12, CDHR1, CDK6, CEACAM3, CEACAM8, CEMP1,

CFP, CHI3L1, CHI3L2, CHST15, CHST7, CLC, CLEC2D, CLEC4A, CLIC2, CMA1, COL8A2,

COLQ, CPA3, CR2, CREB5, CRISP3, CRTAM, CRYBB1, CSF1, CSF2, CST7, CTLA4, CTSG,

CTSW, CXCL10, CXCL11, CXCL13, CXCL3, CXCL5, CXCL9, CXCR1, CXCR2, CXCR5,

CXCR6, CYP27A1, CYP27B1, DACH1, DAPK2, DCSTAMP, DENND5B, DEPDC5, DGKA,

DHRS11, DHX58, DPEP2, DPP4, DSC1, DUSP2, EBI3, EFNA5, EGR2, ELANE, EPB41, EPHA1,

EPN2, ETS1, ETV3, FAM124B, FAM174B, FASLG, FBXL8, FCER2, FCGR2B, FCGR3B, FCRL2,

FES, FFAR2, FLT3LG, FLVCR2, FOSB, FOXP3, FPR2, FPR3, FRK, FRMD4A, FRMD8, FZD2,

FZD3, GAL3ST4, GFI1, GGT5, GIPR, GNLY, GPC4, GPR1, GPR171, GPR18, GPR183, GPR19,

GPR25, GPR65, GRAP2, GYPE, GZMH, GZMM, HAL, HDC, HESX1, HHEX, HIC1, HK3,

HLA-DOB, HNMT, HOXA1, HPGDS, HPSE, HRH1, HSPA6, HTR2B, ICA1, ICOS, IDO1,

IFNG, IL12B, IL12RB2, IL17A, IL18R1, IL18RAP, IL1A, IL1B, IL1RL1, IL21, IL26, IL2RA,

IL2RB, IL3, IL4, IL4R, IL5, IL5RA, IL7, IL7R, ITK, KCNA3, KCNG2, KIR2DL1, KIR2DL4,

KIR2DS4, KIR3DL2, KLRC3, KLRC4, KLRF1, KLRG1, KLRK1, KYNU, LAG3, LAIR2, LAMP3,

LAT, LCK, LEF1, LHCGR, LILRA2, LILRA4, LIME1, LRMP, LTA, LY9, MAK, MAN1A1,

MANEA, MAP3K13, MAP4K1, MAP4K2, MAP9, MARCO, MAST1, MEFV, MEP1A, MGAM,

MICAL3, MMP12, MMP25, MMP9, MROH7, MS4A2, MS4A3, MSC, MXD1, MYB, NAAL-

ADL1, NCR3, NFE2, NIPSNAP3B, NKG7, NLRP3, NME8, NOD2, NOX3, NPAS1, NPIPB15,

NPL, NR4A3, NTRK1, ORC1, OSM, P2RX1, P2RX5, P2RY10, P2RY13, P2RY14, P2RY2,

PADI4, PAQR5, PASK, PBXIP1, PCDHA5, PDCD1, PDCD1LG2, PDE6C, PDK1, PGLYRP1,

PIK3IP1, PKD2L2, PLA1A, PLA2G7, PLCH2, PLEKHF1, PLEKHG3, PMCH, PNOC, PPBP,

PPFIBP1, PRF1, PRG2, PRR5L, PSG2, PTGDR, PTGER2, PTGIR, PTPRG, QPCT, RAB27B,

RALGPS2, RASA3, RASGRP2, RASGRP3, RASSF4, RCAN3, REN, RENBP, REPS2, RGS1,

RGS13, RRP12, RRP9, RSAD2, RYR1, S1PR5, SAMSN1, SCN9A, SEC31B, SERGEF, SH2D1A,
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SIGLEC1, SIK1, SIRPG, SIT1, SKA1, SKAP1, SLAMF1, SLAMF8, SLC12A8, SLC15A3, SLC2A6,

SLC7A10, SLCO5A1, SMPD3, SMPDL3B, SOCS1, SP140, SPAG4, SPOCK2, ST3GAL6, ST6GALNAC4,

ST8SIA1, STAP1, STEAP4, STXBP6, TBX21, TCF7, TCL1A, TEC, TEP1, TGM5, TLR2, TLR7,

TLR8, TMEM255A, TNFAIP6, TNFRSF10C, TNFRSF11A, TNFRSF13B, TNFRSF4, TNFSF14,

TNIP3, TPSAB1, TRAF4, TRAT1, TREM1, TREM2, TREML2, TRIB2, TRPM4, TRPM6, TSHR,

TTC38, TXK, UBASH3A, UPK3A, VILL, VNN1, VNN2, VNN3, WNT5B, WNT7A, ZAP70,

ZBP1, ZBTB10, ZBTB32, ZNF135, ZNF165, ZNF222, ZNF286A, ZNF324, ZNF442, ABCA5,

ABCB1, ABHD5, ACSM3, ADAM19, ADAMTS5, ADI1, AGPAT5, ALAS1, ALPL, ANK3,

AOC2, APOE, ARID4A, ARNT2, ASRGL1, ATP2A1, ATP2B1, BEX1, BMX, C1QA, C1QB,

CA4, CACNA2D3, CALB2, CALML4, CAMK4, CASP1, CD14, CD163, CD207, CDC14B,

CDC42EP4, CDK2AP2, CDR2L, CEACAM1, CES1, CFB, CHMP7, CIB2, CIITA, CLCC1,

CLCF1, CLEC5A, CNNM1, CNOT1, COL4A3, CP, CRISPLD2, CRLF2, CYP4F3, CYSLTR1,

DEFB1, DENND3, DPYD, DUSP4, DYSF, EDN1, EMILIN2, ESPL1, EVL, FARS2, FBLN1,

FCHO1, FGFR3, FLT4, FMO5, FST, FSTL1, FUT3, FXYD6, GAS7, GATA2, GBP1, GCH1,

GFOD1, GIMAP4, GJB1, GLRX2, GP5, GPNMB, HAGH, HAVCR1, HBD, HGD, HOMER2,

HOXA2, HTRA1, IFI27, IFNB1, IFT20, IGFBP2, IL15RA, IL1R2, IL1RAP, IL32, IL6ST, ING2,

IRS1, JRKL, KCNJ15, KIF22, KIR3DL1, KLHL18, KRT19, KRT5, KSR1, LAIR1, LILRA5,

LILRB1, LIMA1, LIMK2, LRP5L, LRRC8D, LSM4, MAG, MAL, MAOA, MAPK7, MAT2B,

MEST, MME, MMP8, MOCS3, MPO, MPPED2, MRPL3, MRPL4, MT1X, MTMR11, MTSS1,

MUC1, MYLIP, NAGA, NBN, NBR1, NDRG2, NEFL, NOTCH4, NPEPPS, NR2E3, NR4A2,

NRG1, NRGN, NUDT1, NUDT18, NXT1, NXT2, OLFM1, ORM1, OSBPL10, PALLD, PANX1,

PAX5, PCGF2, PDGFB, PDK4, PHEX, PI3, PIK3CG, PLAT, POU2AF1, PPA1, PROM1, PRR5,

PSAT1, PTPN13, PTPRK, PTPRS, PTTG2, QPRT, RAB9A, RAMP1, RARRES2, RNASE1,

RNASE4, RNF122, RRAS, S100B, SCRN1, SDC1, SEC63, SERPINF2, SETBP1, SF3A3, SFTPD,

SFXN3, SH3BP2, SIDT1, SIGLEC6, SLC12A3, SLC17A5, SLC1A4, SLC38A1, SLC4A1AP,

SLC6A13, SLC7A7, SLC9A3R1, SLCO2B1, SMARCD3, SOCS2, STAB2, SYNE1, TAGLN,

TBC1D8, TFEC, TGM3, TLL1, TLR5, TMC6, TMEM9B, TMF1, TNFRSF25, TNNI2, TOMM22,

TOMM34, TRAF3IP2, TRAK1, TRIB1, TSPAN7, TUBB6, TULP2, TYRO3, ULK2, WEE1,
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YTHDF3, ZC3H12A, ZDHHC13, ZNF180, ZNF189, ZNF34, ZNF552, ZNF593

E.2 AM differentially expressed genes

.

MARCKS, C15orf48, MCEMP1, PLA2G7, SOD2, GPR183, HP, BASP1, EMP1, CTSL, CCL3,

FOLR3, SDS, TMEM176B, VCAN, TNFAIP6, ZFP36L1, CCL2, CCL20, NEAT1, IFITM3, CD36,

CCL4L2, RNASE1, FNIP2, CCL4, LGMN, TIMP1, HIF1A, CXCL8, CXCL10, MAFB, IER3,

SPP1, G0S2, CCL3L1, SGK1, MT1G, AREG, NFKBIA, CXCL2, CCL18, MT1X, MT2A, CXCL3,

IL1B, HSPA1B, HSPA1A
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