
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Yale Graduate School of Arts and Sciences Dissertations 

Fall 10-1-2021 

Pairwise hydrodynamic interactions of permeable particles and Pairwise hydrodynamic interactions of permeable particles and 

flow-induced structuring in dilute suspensions flow-induced structuring in dilute suspensions 

Rodrigo Bento Reboucas 
Yale University Graduate School of Arts and Sciences, rodrigobentoo@gmail.com 

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations 

Recommended Citation Recommended Citation 
Reboucas, Rodrigo Bento, "Pairwise hydrodynamic interactions of permeable particles and flow-induced 
structuring in dilute suspensions" (2021). Yale Graduate School of Arts and Sciences Dissertations. 396. 
https://elischolar.library.yale.edu/gsas_dissertations/396 

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly 
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations 
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more 
information, please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/396?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


Abstract

Pairwise Hydrodynamic Interactions of Permeable Particles and Flow-Induced

Structuring in Dilute Suspensions

Rodrigo Bento Reboucas

2021

The study of particle-level interactions in suspension flows enables a better under-

standing and control of systems where suspensions play a key role. Examples include

the physiology of blood flow microcirculation, flow-induced segregation of polydis-

perse suspensions, particle aggregation in marine environments, and filtration pro-

cesses, to name a few. In these systems, a detailed description of the hydrodynamic

interactions between the particles and between the particles and fluid boundaries

characterize the evolution of the suspension microstructure. Typically, the character-

istic size of the particles is small compared to the imposed flow length scale, and hence

low-Reynolds-number conditions usually apply. In the dilute regime, pair-interactions

between smooth, rigid and spherical particles yield symmetric particle trajectories

with zero net cross-flow displacements and thus no structuring. However, short-range

phenomena including material specific forces, e.g., electrostatic repulsion and van der

Waals attraction, and physical properties of the particles, e.g., particle permeability,

surface roughness, and interface mobility, break the symmetry of particle trajectories

resulting in net particle displacements and hence particle structuring.

This thesis contains a detailed analysis of the near-contact motion of permeable

particles in the limit of weak surface permeability where Darcy’s law is used to de-

scribe the flow in the permeable medium. A full set of resistance and mobility func-

tions that relates particle motion to forces, torques, and stresslets acting on the

particles are calculated. Results show that non-zero values of particle permeability

qualitatively alter the near-contact particle motion, removing the classical lubrication



resistance between approaching smooth impermeable spheres that prevents particle

contact under the action of a finite force without the need for nonhydrodynamic in-

terparticle forces (van der Waals attraction). Particle permeability also qualitatively

alters the tangential motion of particles, providing access to non-singular rolling mo-

tion of particles along walls. This analysis may help to predict the capacity for

crossflow filtration devices. Analytical closed-form expressions are derived for binary

collision rates for permeable particles in Brownian motion, gravity sedimentation, uni-

axial straining, and shear flow. Here, the solution of the analogous problem of binary

collision rates of particles with small-amplitude surface roughness provide accurate

approximations for the collision rates of permeable particles for all aggregation mech-

anisms considered herein. Finally, a pairwise hydrodynamic theory is presented for

flow-induced particle distributions in dilute polydisperse suspensions. Diffusive fluxes

and a drift velocity in non-homogeneous shear flows are obtained from a Boltzmann-

like master equation. A boundary-layer analysis in regions of vanishing shear rates

(e.g., centerline of a channel flow) overcomes the failure of the current theories that

predict aphysical singular behavior. The analysis presented herein yields non-singular

particle distributions that qualitatively resemble experimental results in the literature.

Results for bidisperse suspensions show that size segregation occurs in Poiseuille flow

leading to relative enrichment of larger or smaller species at the centerline, depending

on the size ratio, relative number densities, and physical properties of the particles.
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Chapter 1

Introduction

Particle suspensions are present in a broad range of natural phenomena and constitute

an essential part of industrial applications. Examples encompass blood flow in the

microcirculation [1], sensation of food and digestion [2, 3], flow-induced demixing in

polydisperse suspensions [4, 5], particle filtration processes [6], and particle aggrega-

tion in wastewater treatment [7,8] and in marine environments [9]. Understanding the

role of suspensions in these systems require knowledge of the hydrodynamic interac-

tions between the particles and between the particles and fluid boundaries. Typically,

particles are suspended in a fluid subjected to an imposed flow and the physical prop-

erties of the particles characterize the evolution of the suspension microstructure.

In general, the characteristic size of the suspended particles is small compared

to the imposed flow length scale, and hence low-Reynolds-number conditions usually

apply. Highly-ordered particle structure is verified in non-colloidal suspensions where

Brownian motion is negligible. Under dilute conditions, particle pair-interactions are

uncorrelated on the particle scale yielding symmetric (time-reversible) trajectories for

smooth, impermeable, and rigid spheres. This is a consequence of the linearity of the

Stokes equations leading to zero cross-flow net displacements of the particles includ-

ing the limit of vanishing separations between their surfaces. In this limit, classical
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lubrication resistance hinders particle relative motion preventing contact configura-

tions under the action of a finite force. Short-range phenomena including material

specific forces, e.g., electrostatic repulsion and van der Waals attraction, and physical

phenomena, e.g., small amplitude surface asperities, weak surface permeability, and

interface mobility, break the symmetry of particle trajectories yielding non-zero net

particle displacements. Herein, we assume cross-flow net displacements of particles as

the dominant mechanism for particle transport and hence flow-induced structuring.

In order to calculate particle transport and study the stability of particle suspen-

sions, knowledge of particle motion is key. Under Stokes regime, particle motion is

fully specified by a linear relation between forces, torques, and stresslets acting on the

particles and their respective velocities and rates of strain (for deformable particles).

This relationship is defined by mobility functions when moments on the particles

are specified, or by resistance functions when particle velocities are known. Those

functions depend on particle geometry, particle physical properties, and interparticle

separation [10]. Due to the radial symmetry of spherical particles, resistance and mo-

bility functions can be analyzed in two modes of interactions: axisymmetric motion

along the line-of-centers and asymmetric motion perpendicular to the line-of-centers.

Analytical and numerical schemes for calculating these functions are available in the

specialized literature [11]. For a given pair interaction, integration of particle veloci-

ties yields deterministic particle trajectories as quadratures of mobility functions.

In this thesis, we study dilute suspensions of spherical particles with short-range

symmetry-breaking mechanisms that lead to particle structuring. Examples include

permeable particles with weak surface permeability, rough particles with small surface

asperities, and clean high-surface-tension drops. Typically, a boundary-layer problem

is set by a separation of characteristic length scales in two regions: (i) inner region

where particle surface phenomena qualitatively alters the near-contact motion of the

particles, and (ii) outer flow region where a classical description of smooth, rigid
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spheres applies.

Chapters 2 and 3 present a complete set of resistance and mobility functions

for the near-contact motion of permeable particles in the asymptotic limit of weak

permeability. The permeable medium is treated as a semi-infinite domain where

Darcy’s law is used to describe fluid flow. Lubrication analyses for the axisymmetric

problem (Chapter 2) and asymmetric problem (Chapter 3) yield non-local integral

equations for the radial pressure distribution in the gap between the particles. In both

problems, non-zero particle permeability qualitatively alters the near-contact motion,

removing the classical singular lubrication force and resulting in particle contact in

finite times under the action of a finite force. In Chapter 2, the formulation allows for

particles with distinct particle radii, permeabilities, and slip coefficients, including

permeable and impermeable particles and spherical drops. In Chapter 3, we show

that permeability additively affects the transverse lubrication resistances and that a

particle in contact with a permeable half-space rolls without slipping under the action

of a tangential constant force; particles in contact with an impermeable half-space

roll with slipping under the same conditions.

In Chapter 4, binary collision rates are calculated for permeable particles under-

going (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial straining flow and

(iv) shear flow. Darcy’s law is used to describe the flow inside the permeable parti-

cles and no-slip boundary conditions are applied at particle surfaces. A leading-order

asymptotic solution of the problem is developed for the weak permeability regime.

The resulting collision rates are given by quadrature of the pair mobility functions for

permeable particles in the near-contact lubrication region and size-ratio-dependent

parameters obtained from standard hard-sphere pair mobility functions. Collision

rates in shear flow vanish below a critical permeability value that increases with di-

minishing size ratio. The analogous problem of pair collision rates of particles with

small-amplitude surface roughness is also analyzed. We show that the formulas for the
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collision rates of rough particles provide accurate analytical approximations for the

collision rates of permeable particles for all four aggregation mechanisms considered.

In Chapter 5, we develop a pairwise hydrodynamic theory for flow-induced particle

distributions in polydisperse suspensions in flows of the form v = v(y)ex, including

simple shear and planar Poiseuille flow. Coupled diffusive fluxes and a drift velocity

are extracted from a Boltzmann-like master equation. A boundary layer is shown to

form in regions where the shear rate vanishes and the thickness is set by the radius of

the upstream collision cross-section for pair interactions. An analysis of this region

yields a linearly vanishing drift velocity and non-vanishing diffusivities at the point

where the shear rate vanishes thus circumventing the source of the singular particle

distribution predicted by the usual diffusive flux model. Outside of the boundary

layer, the stationary particle distribution has a universal power-law form. Trajecto-

ries for particles with symmetry-breaking contact interactions (e.g., rough particles,

emulsion drops, permeable particles) are analytically integrated to yield particle dis-

placements in terms of quadratures of mobility functions for spherical particles. This

analytical displacement results are used in the calculation of particle distributions in

planar Poiseuille flows. Our results illustrate the nonsingular particle distributions

that result from the boundary layer analysis. Results for bidisperse suspensions show

that relative enrichment of larger or smaller species is possible, depending on the size

ratio, relative number densities, and the physical properties of the particles.

The introduction of each chapter presents a detailed literature review of each topic

studied herein.
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Chapter 2

Near-contact approach of two

permeable spheres

2.1 Introduction

Interest in the hydrodynamics of particles with permeable media is motivated by par-

ticle filtration processes, where suspended particles interact with a porous filter or frit

or with a porous cake of captured particles [12–14]. Permeable particles formed by

flocculation of smaller particles and drops arise in applications such as waste water

treatment [7,8]. In other applications, permeable particles are used to enhance mass

transport in packed bed [15] and fluidized catalytic reactors [16], and in chromatogra-

phy columns [17,18]. The design and construction of equipment for these applications

requires an understanding of the hydrodynamic interactions of suspended permeable

particles.

Fluid flow in a homogeneous, permeable material is usually described using Darcy’s

law [19]. According to Darcy’s law, the fluid velocity is proportional to the pressure

gradient with proportionality k/µ, where µ is the viscosity of the fluid, and k is the

permeability of the material that typically scales with the square of the pore size.
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Darcy’s law is appropriate when the length scale set by velocity gradients is much

larger than the pore-scale. Typically, this situation is realized in materials with a

high solid-phase volume fraction, e.g., flow through a packing of solid particles where

the pore-scale is set by the particle size. Brinkman’s equation, by contrast, is an ap-

propriate description for permeable materials with very dilute solid networks where

the pore scale tends to set the length scale of velocity gradients [20–22]. An example

of the latter is flow through a dilute fibrous packing where the pore scale, and scale

of velocity gradients, are set by the distance between fibers, not their diameter.

Early works that relied on Darcy’s law assumed that no-slip boundary condi-

tions apply at the interface between the permeable material and the free fluid re-

gion [23, 24]. There have been several investigations of the appropriate boundary

conditions at this interface [25–30]. No-slip and slip-velocity boundary conditions are

most frequently used. According to the slip-velocity boundary condition proposed by

Beavers & Joseph [25] and by Saffman [26], the tangential velocity on the boundary

of a permeable material is proportional to the tangential stress.

A significant amount of work has focused on analyses of suspended spherical par-

ticles moving toward thin, permeable layers as a model for particle capture in fil-

tration [31–36]. In these studies, it was assumed that the fluid velocity normal to

the permeable layer is proportional to the local pressure difference across the layer

with proportionality k′/µ, where k′ is the permeance, a characteristic property of the

layer. Radial flow within the permeable layer was neglected. An important finding in

the foregoing studies is that permeable boundaries provide a cut-off for the lubrica-

tion resistance allowing contact under the action of a finite force. This is in contrast

to the case for impermeable boundaries where contact is prevented by the singular

lubrication resistance.

Hydrodynamic interactions between impermeable particles with permeable half-

spaces [37,38]; permeable particles and impermeable walls [39–41]; between two per-
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meable particles [42–44]; and between permeable particles with impermeable cores

[45, 46] have been studied. A few of these works used Brinkman’s equation to de-

scribe the flow inside the permeable medium [39,45, 46], the remainder used Darcy’s

law; comparisons show that similar results were obtained [45]. Several studies consid-

ered the axisymmetric near-contact motion of the particles. The results demonstrate

non-singular lubrication resistance [37–39, 41], as seen for particles interacting with

thin permeable layers discussed in the preceding paragraph. However, the bispherical-

coordinate calculations and the collocation method used for these studies converge

slowly for near-contact configurations and become singular at contact. Calculations

using tangent-sphere coordinates can provide the contact force but are limited to zero

gap width [37].

The lubrication analysis presented herein provides a bridge between prior studies

by providing efficient calculations for the lubrication resistance of near-contact and

contact configurations of permeable particles. The flow in the permeable medium is

governed by Darcy’s law; no-slip and slip-velocity boundary conditions are considered

on the boundary of the permeable medium. The formulation allows for arbitrary ratios

of particle radii, permeabilities, and slip coefficients. Accordingly, the analysis encom-

passes pairwise near-contact configurations of permeable and impermeable particles,

and configurations of permeable particles with spherical drops. The zero-size-ratio

limit describes the interactions of particles and drops with permeable half-spaces and

fluid interfaces. Scaling arguments for the lubrication problem are presented in Sec-

tion §2, and the governing equations are derived in §3. Section §4 contains analytical

and numerical results. The lubrication resistance and contact force are compared

with previous calculations in §5.
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2.2 Lubrication Scaling

The scaling argument presented below for the lubrication flow between spherical par-

ticles explains the qualitative effect of particle permeability.

(a) (b)

h(r)

z

r
h0

a1

−W
2

W
2

a2

k1

k2

Figure 2.1: Schematic showing (a) two particles with radii and permeabilities ai and
ki (i=1,2), respectively, with velocities ±1

2
W , and separated by a gap h0; (b) profile

of near-contact region between the particles showing cylindrical coordinate system.

Lubrication theory is used to describe the axisymmetric near-contact motion be-

tween two permeable spheres in a fluid with viscosity µ. A cylindrical coordinate

system (r, z) is invoked with z-coordinate coinciding with the symmetry axis, and

radial coordinate r is distance from the axis, as shown in figure 2.1. The spheres are

separated by a gap h0, and W = −dh0/dt is the magnitude of the relative velocity of

the spheres.

The gap width h0 sets the length scale for gradients of the fluid velocity in the

z-direction, and W sets the scale for the magnitude of the fluid velocity in the z-

direction. A distinct lateral length scale L describes variations of the fluid velocity in

the radial direction,

a� L� h0 . (2.1)

Under this assumption, the radial velocity scale is WL/h0 according to the continuity

8



equation, and, by the Navier-Stokes equations, the characteristic pressure in the gap

is given by

pc ∼ µWa3L−4 . (2.2)

Close to the symmetry axis, the profile of the gap between spherical particles is

approximately parabolic,

h = h0 +
r2

2a
, (2.3)

where a1 and a2 are the sphere radii, and a is the reduced radius (a−1 = a−1
1 + a−1

2 ).

This geometry suggests the lateral length scale

L0 = (h0a)1/2 , (2.4)

which lies in the range (2.1) required for lubrication theory and for the order of

approximation of expansion (2.3), provided that (h0/a)1/2 � 1. For impermeable

spheres, the appropriate lateral lubrication length scale is L0.

The time scale for the near-contact motion is

t0 =
h0

W
. (2.5)

A second time scale enters the near-contact motion between permeable spheres given

by tk = h0/j, where j is the magnitude of the flux according to Darcy’s law, j =

k∇p̂/µ, and ∇p̂ is the intraparticle pressure gradient. Inside the permeable particles,

pressure variations are the same order of magnitude in the radial and axial directions,

and by the continuity of the pressure across the particle surface, ∇p̂ ∼ pc/L, where

pc is the characteristic pressure in the gap between the particles. Combining these

estimates with the scaling (2.2) and taking L = L0 for the lateral length scale, yields

the second time scale,

tk = t0K
−1

(
L0

a

)5

. (2.6)
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Here, K = k/a2 is the dimensionless permeability. This result can be re-written as

tk
t0

=

(
L0

Lk

)5

, (2.7)

thereby defining a second lateral length scale,

Lk = aK1/5 . (2.8)

Herein, small permeabilities,

K1/5 � 1 (2.9)

are assumed so that Lk lies in the required range (2.1). (Moreover, Lk exceeds the

pore scale, aK1/2, as required for the use of Darcy’s law.)

The ratio of the above time or length scales defines a parameter q that characterizes

the near-contact motion of permeable spheres,

q = (tk/t0)2/5 = (L0/Lk)
2 =

h0

a
K−2/5 . (2.10)

The shortest of the two time scales, and correspondingly the longest of the two length

scales, controls the near-contact motion. For q � 1, near-contact motion results

primarily by fluid flow from the gap between the particles; for q � 1, near-contact

motion results primarily from fluid flow into the permeable particles. The cross-over

between these regimes occurs for q = O(1).

The last expression on the right side of Eq. (2.10), obtained by inserting Eqs. (2.4)

and (2.8), indicates that the parameter q can be interpreted as a re-scaled gap width,

i.e., h0/a normalized by K2/5. This interpretation indicates that particle permeability

becomes important for h0/a < K2/5. Under the assumption of small permeabilities

(2.9), this transition occurs within the lubrication regime.

Given that the force driving the near-contact motion is balanced by the pressure
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in the lubrication region, F ∼ pcL
2, and using Eq. (2.2) yields

F ∼ µWa3L−2 , (2.11)

where L = max(L0, Lk). Taking L = L0 recovers the classical singular lubrication

resistance that characterizes the near-contact motion of impermeable spheres,

F ∼ µWa2h−1
0 , (2.12)

and thus W ∼ F (µa)−1(h0/a), indicating that the gap decays exponentially in time

under the action of a constant force but contact does not occur. Ultimately, however,

when the gap between the particles diminishes so that max(L0, Lk) = Lk, the non-

singular, gap-independent force is

F ∼ µaWK−2/5 , (2.13)

according to Eqs. (2.8) and (2.11). Here, W ∼ F (µa)−1K2/5, indicating that the

relative velocity between permeable spheres approaches a constant value under the

action of a constant force and contact occurs in finite time.

2.3 Lubrication Formulation

Here, a lubrication formulation is presented for the near-contact motion of two per-

meable particles. The formulation accounts for the fluid flux j into the particles

described by Darcy’s law with the Beavers-Joseph boundary condition to account for

the slip at the interface of a permeable medium. The particle size ratio is arbitrary;

hence the limiting case of a particle approaching a half-space is recovered. As shown
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below, it is convenient to define the mean permeability

k =
1

2
(k1 + k2) (2.14)

to accommodate particles with distinct permeabilities. Accordingly, the dimensionless

mean permeability is defined

K = k/a2 . (2.15)

Two sets of dimensionless lubrication variables are defined corresponding to the

choice of characteristic length: (a) classical lubrication variables for impermeable

spheres defined in terms of the length scale L0,

r̄ =
r

L0

, z̄ =
za

L2
0

, v̄ =
vL0

Wa
, w̄ =

w

W
, p̄ =

pL4
0

µWa3
, j̄ =

j

W
q5/2 ,

(2.16)

and (b) permeable-sphere lubrication variables defined in terms of the length scale

Lk,

r̃ =
r

Lk
, z̃ =

za

L2
k

, ṽ =
vLk
Wa

, w̃ =
w

W
, p̃ =

pL4
k

µWa3
, j̃ =

j

W
.

(2.17)

Here, (r, z) is the cylindrical coordinate system defined in figure 2.1; v and w are

the corresponding radial and axial components of the fluid velocity in the lubrication

region. The dimensionless axial velocity is unaffected by the characteristic length

because it is nondimensionalized by relative velocity of the particles, W . The pa-

rameter q is defined by Eq. (2.10). The dimensionless intraparticle flux j̄ or j̃ in

Eqs. (3.3)-(2.17) is obtained using the characteristic magnitude,

j ∼ k

µ

pc
L
, (2.18)

where pc is given by Eq. (2.2) and L is given by L0 or Lk, respectively.
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2.3.1 Formulation in classical lubrication variables

The formulation is presented here in terms of the classical lubrication variables for

impermeable spheres (3.3). The resulting leading-order lubrication equation that

governs the pressure in the near-contact region between permeable particles is

2 q−5/2 j̄[p̄]− 1 =
1

r̄

d

dr̄

[
r̄
dp̄

dr̄

h̄3

12
g

(
α̂1

qh̄
,
α̂2

qh̄

)]
,

dp̄

dr̄

∣∣∣∣
r̄=0

= 0 , lim
r̄→∞

p̄(r̄) = 0 ,

(2.19)

where the dimensionless form of the gap profile (2.3) is

h̄ = 1 +
r̄2

2
, (2.20)

and 2j̄ is the total flux of fluid into the particles. The following paragraphs extend

the description of the terms appearing in (2.19).

The tangential fluid velocity on the permeable particle surfaces obeys the Beavers-

Joseph slip-velocity boundary condition vs = αk1/2µ−1τ where τ is the tangential

stress on the particle surface, and α is the slip coefficient [25,26]. The slip parameters

α̂i (i = 1, 2) that appear in Eq. (2.19) are defined as

α̂i = αiK
1/2
i K−2/5 , (2.21)

where αi and Ki = ki/a
2, respectively, are the slip coefficient and dimensionless per-

meability of particle i, and K is the dimensionless mean permeability (3.36). The

radial velocity profile is derived in Appendix A.2, where it is shown that the term

multiplying r̄ in the square brackets on the right side of Eq. (2.19) is the radial

flux (A.2.5) recast in dimensionless variables (3.3). The function g, derived in Ap-

pendix A.2, accounts for velocity slip on the particle surfaces and is given by

g(x1, x2) =
1 + 4x1 + 4x2 + 12x1x2

1 + x1 + x2

. (2.22)
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For particles with equal slip parameters, α̂2 = α̂1, Eq. (2.22) reduces to

g = 1 + 6x1 . (2.23)

The total flux of fluid into the particle surfaces is given by Darcy’s law,

2 j =
k1

µ

∂p̂1

∂n
+
k2

µ

∂p̂2

∂n
, (2.24)

where p̂1 and p̂2 are the intraparticle pressure fields that satisfy Laplace’s equation,

the gradients are evaluated on the particle surfaces, and n is in the outward normal

direction. Continuity of the pressure field across the particle surfaces imposes the

length scale L on the intraparticle pressure fields. Given that L� a, the intraparticle

pressures decay quadratically to zero away from the particle surfaces according to

Eq. (A.1.5). Thus, to leading order, the intraparticle pressure fields obey Laplace’s

equation in a semi-infinite region.

Moreover, the intraparticle pressure fields p̂1 and p̂2 are equal because they are

forced only by the radial pressure distribution in the gap and pressure variations across

the gap (i.e., z-direction) are negligible according to the lubrication approximation.

Thus, Eq. (2.24) simplifies to

j =
k

µ

∂p̂

∂n
, (2.25)

indicating that the total intraparticle flux depends only on the mean permeability

(2.14).

As shown in Appendix A.1, the pressure gradient at the particle surfaces can be

expressed as a boundary integral of radial pressure variations in the gap between

the particles. Inserting the result given by Eqs. (A.1.8)-(A.1.10) into Eq. (2.25) and
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non-dimensionalizing, yields the flux,

j̄[p̄](r̄) = −
∫ ∞

0

1

r′
d

dr′

(
r′
dp̄

dr′

)
φ(r′/r̄) dr′ . (2.26)

This result demonstrates the non-local character of the lubrication problem for perme-

able particles, i.e., the local flux into the particles depends on the pressure distribution

over the entire lubrication region.

Inserting Eq. (2.26) into Eq. (2.19) defines an integro-differential equation for the

pressure in the lubrication region between the particles. The classical description for

impermeable spheres is recovered for q →∞ but the formulation is singular for q → 0,

corresponding to particles in contact. An alternate formulation that is non-singular

for particles in contact is obtained using the permeable-sphere lubrication variables.

2.3.2 Formulation in permeable sphere lubrication variables

In terms of permeable-sphere lubrication variables (2.17), Eqs. (2.19) and (2.26) be-

come

2 j̃[p̃]− 1 =
1

r̃

d

dr̃

[
r̃
dp̃

dr̃

h̃3

12
g

(
α̂1

h̃
,
α̂2

h̃

)]
,

dp̃

dr̃

∣∣∣∣
r̃=0

= 0 , lim
r̃→∞

p̃(r̃) = 0 , (2.27)

and

j̃[p̃](r̃) = −
∫ ∞

0

1

r′
d

dr′

(
r′
dp̃

dr′

)
φ(r′/r̃) dr′ . (2.28)

In these variables, the parameter q appears only in the dimensionless gap profile,

h̃ = q +
r̃2

2
. (2.29)

The solution for particles in contact is obtained by setting q = 0.
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2.3.3 Near-contact motion of a spherical drop and a perme-

able particle

The lubrication formulation for the near-contact motion between a spherical drop

with a fully-mobile interface and a particle with permeability k1 and slip coefficient

α1 is obtained in the limit α2 →∞ [47]. In this limit, Eq. (2.22) reduces to

g = 4(1 + 3x1) , drop . (2.30)

Given that the drop is impermeable, k = 1
2
k1. Accordingly, the dimensionless lubri-

cation formulations (2.19) and (2.27) for this problem are

2 q−5/2 j̄[p̄]− 1 =
1

r̄

d

dr̄

[
r̄
dp̄

dr̄

h̄3

3

(
1 + 3

α̂1

qh̄

)]
,

dp̄

dr̄

∣∣∣∣
r̄=0

= 0 , lim
r̄→∞

p̄(r̄) = 0 ,

(2.31)

and

2 j̃[p̃]− 1 =
1

r̃

d

dr̃

[
r̃
dp̃

dr̃

h̃3

3

(
1 + 3

α̂1

h̃

)]
,

dp̃

dr̃

∣∣∣∣
r̃=0

= 0 , lim
r̃→∞

p̃(r̃) = 0 , (2.32)

where h̄, j̄, j̃ and h̃ are given by Eqs. (2.20), (2.26), (2.28) and (2.29), respectively.

Although these equations differ from Eqs. (2.19), (2.26) and (2.27), (2.28), their

solutions can be derived from the latter for the case of two permeable particles with

equal slip parameters using the following transformation,

Lk → 22/5L′k , p→ 1

4
p′ , α̂1 → 21/5α̂′ . (2.33)

Under this transformation, the dimensionless variables and parameters undergo the

transformations,

r̄ → r̄′ , h̄→ h̄′ , p̄→ 1

4
p̄′ , (2.34)
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r̃ = 2−2/5r̃′ , h̃ = 2−4/5h̃′ , p̃→ 2−2/5p̃′ , (2.35)

q → 2−4/5q′ . (2.36)

Inserting transformations (2.33)-(2.36) into Eqs. (2.31)-(2.32) yields Eqs. (2.19) and

(2.27), with g given by Eq. (2.23), that describe the near-contact motion of two

particles with parameters q′ and α̂1 = α̂2 = α̂′.

Embedded in formula (2.30) are three assumptions: (i) surface tension gradients,

i.e., Marangoni stresses, are absent; (ii) tangential stresses in the gap dominate viscous

stresses associated with the fluid flow inside the drop; and (iii) capillary pressure dom-

inates the lubrication pressure (2.2) so that drop deformation is negligible. Respec-

tively, the latter two assumptions require λµWL−1 � µWh−1
0 and µWa3L−4 � γa−1,

where γ is the coefficient of interfacial tension, λµ is the drop-phase viscosity, and

L = max(L0, Lk). Given definitions (2.4) and (2.8), these restrictions impose upper

bounds on the viscosity ratio, λ, and Bond number, Bo = F/(γa),

λ� (a/h0)1/2 max
[
1, q−1/2

]
, Bo� K2/5 max

[
1, q2

]
. (2.37a, b)

Under conditions described by Eq. (2.37a), the system is independent of viscosity

ratio. Provided that Bo � K2/5, the neglect of drop deformation is uniformly valid

in gap. This contrasts with the usual near-contact motion of drops with impermeable

surfaces where deformation always becomes important at sufficiently small gaps.

2.4 Results

The results presented in Sections 2.4.1-2.4.4 are for the case of no-slip boundary

conditions on the surfaces of permeable particles. Under no-slip conditions, only

the mean permeability (2.14) enters the problem and the behavior of the system

is characterized by a single parameter, q. The effect of velocity slip at the surface
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of permeable particles is considered in Section 2.4.5. Extension of the results to

describe the lubrication resistance for drops and permeable particles is presented in

Section 2.4.6.

2.4.1 Limiting asymptotic results

Large and small values of q

Large q describes conditions where the effect of permeability on near-contact motion

is weak. For q � 1, Eq. (2.19) can be solved by a regular perturbation to obtain an

expansion for the pressure in integer powers of q−5/2,

p̄(r̄, q) = p̄(0)(r̄) + q−5/2 p̄(1)(r̄) +O(q−5) , (2.38)

and

j̄(r̄) = j̄(0)(r̄) +O(q−5/2) . (2.39)

The leading-order pressure distribution is

p̄(0)(r̄) =
3

h̄2(r̄)
, (2.40)

corresponding to impermeable spheres, and the leading-order intraparticle flux is

derived from it,

j̄(0)(r̄) = −
∫ ∞

0

1

r′
d

dr′

(
r′
dp̄(0)

dr′

)
φ(r′/r̄) dr′ . (2.41)

The first-order perturbation problem for the pressure distribution is

1

r̄

d

dr̄

[
r̄
dp̄(1)

dr̄

h̄3

12

]
= 2 j̄(0)(r̄) ,

dp̄(1)

dr̄

∣∣∣∣
r̄=0

= 0 , lim
r̄→∞

p̄(1)(r̄) = 0 , (2.42)

where j̄(0)(r̄) is given by Eq.(2.41). Solving this boundary value problem and inte-
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grating by parts yields,

p̄(1)(r̄) = 12

[∫ ∞
r̄

u(r′)j̄(0)(r′)r′dr′ + u(r̄)

∫ r̄

0

j̄(0)(r′)r′dr′
]
, (2.43)

where

u(r̄) =
2h̄(r̄) + 1

2h̄2(r̄)
+ log

(
h̄(r̄)− 1

h̄(r̄)

)
. (2.44)

Small q describes conditions where the intraparticle flux qualitatively affects near-

contact motion. For q � 1, the pressure has an expansion in integer powers of q that

can be derived by solving Eq. (2.27) with a regular perturbation,

p̃(r̃, q) = p̃(0)(r̃) +O(q) , (2.45)

where p̃(0)(r̃) is obtained by solving Eq. (2.27) with q = 0, corresponding to particles

in contact.

Far-field pressure and intraparticle flux

By the analysis presented in Appendix A.3, the far-field flux and pressure distributions

are

j̄(r̄) = −3 f̄(q) r̄−3 +O(r̄−5) , (2.46)

p̄(r̄)− p̄(0)(r̄) = −576

7
f̄(q) r̄−7q−5/2 +O(r̄−9 log r̄) , (2.47)

where p̄(0)(r̄) is the pressure distribution corresponding to impermeable spheres (2.40),

and f̄ is the dimensionless lubrication resistance (2.51a) that depends on the pressure

distribution over the entire lubrication region, reflecting the intrinsically non-local

character of the problem.
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Near-field intraparticle flux

The intraparticle flux is largest near the symmetry axis, r � max(L0, Lk). For q � 1,

the near-field intraparticle flux is

2j̄(r̄) =
9π

2
√

2
−O(r̄2q−7/2) , (2.48)

which is obtained by inserting the leading-order pressure profile (2.40) and the Green’s

function expansion (A.1.14) into boundary integral (2.26). For q � 1, the near-field

flux is obtained by expanding Eq. (2.27) to yield

2j̃(r̃) = 1−O(r̃6)−O(q3) . (2.49)

This result indicates that fluid near the symmetry axis flows into the particles rather

than radially out of the gap between them.

2.4.2 Pressure and Flux Distributions

The pressure and intraparticle flux distributions in the lubrication region are depicted

in figures 2.2 and 2.3. These results were obtained by numerical solution of Eqs.(2.19)

and (2.27). The large-q expansions (2.38)-(2.39) are shown for the case q = 5.

The inset of figure 2.2 shows that the pressure field is insensitive to particle per-

meability in the far-field, consistent with Eq. (2.47). The maximum intraparticle flux

observed in figure 2.3(a) for q →∞ agrees with the prediction value (2.48), and the

intraparticle flux profile corresponding to q = 0 in figure 2.3(b) shows a broad region

where fluid enters the permeable particle, consistent with Eq. (2.49). The results

in figure 2.3 show regions of negative flux, i.e., fluid flux emerging from the parti-

cle interior. This observation is consistent with zero net flux into the particles (i.e.,∫∞
0
j(r)rdr = 0), a consequence of the intraparticle pressure field obeying Laplace’s
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equation, as shown in Appendix A.1. Non-monotonic flux distributions have been

found in similar problems [48].

2.4.3 Lubrication and Contact Force

Integrating the pressure distribution obtained by solving Eq. (2.19) or (2.27) yields

the hydrodynamic force, F ,

F

6πµaW
=
( a
L

)2

f(q) , (2.50)

where f is the dimensionless resistance coefficient corresponding to characteristic

length L. Resistance coefficients f̄ and f̃ , corresponding to classical and permeable-

sphere lubrication length scales L0 and Lk, respectively, are defined

f̄(q) =
1

3

∫ ∞
0

p̄ r̄ dr̄ , f̃(q) =
1

3

∫ ∞
0

p̃ r̃ dr̃ . (2.51a, b)

The resistance coefficients are related, f̄ = qf̃ , according to Eqs. (2.10) and (2.50).

Figure 2.4 shows the resistance coefficients as functions of q; dashed lines depict the

limiting formulas given below.

Inserting the pressure distribution for impermeable spheres (2.40) into Eq. (2.51a)

yields f̄ = 1, corresponding to the classical Reynolds lubrication force F0 = 6πµa2W/h0.

Retaining the next term in the large-q expansion (2.38) yields

f̄(q) = 1− c q−5/2 +O(q−5) , (2.52)

where c
.
= 1.8402. According to definition (2.10), the result implies that the lubrica-

tion force between particles is reduced in proportion to their mean permeability, i.e.,

f̄ = 1− c ka1/2h
−5/2
0 .
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Integrating the solution of Eq. (2.27) in formula (2.51b) yields

f̃(q) = f̃ (0)
c −Dq +O(q2) (2.53)

for q � 1, where f̃
(0)
c is the contact resistance,

f̃ (0)
c

.
= 0.7507 , (2.54)

corresponding to q = 0, and D
.
= 0.224 is the first-order correction. By contrast

to the singular lubrication force between impermeable spheres, the lubrication force

between permeable spheres with mean dimensionless permeability K attains a finite

maximum value at contact,

Fc = 6πµaWK−2/5f̃ (0)
c , (2.55)

consistent with the scaling (2.13).

Permeable and Impermeable Particles

The near-contact motion between a particle with permeability k1 and an imperme-

able particle (k2 = 0) is interesting because it describes the capture of impermeable

particles at the interface of a porous medium (e.g., filter thicker than Lk) and the

near-contact motion of a permeable particle towards an impermeable wall. This case

is encompassed by the above results given that only the mean permeability k = 1
2
k1

enters the formulation under no-slip boundary conditions.

2.4.4 Contact time

Here, the contact time is calculated for two permeable particles under the action of

a constant force along their centerline. The contact time tc for two particles brought
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together from an arbitrary surface-to-surface separation h∞ has two contributions,

t̄c = t̄∞ + t̄0 , (2.56)

where the overbar denotes time normalized by the Stokes time 6πµa2/F . The time

t̄∞ represents the time required to bring the particles from the initial separation h∞

to a gap h0 that lies in the range

K2/5 � h0

a
� 1 , (2.57)

and t̄0 is the time required for the gap to decrease from h0 to contact in the lubrication

regime. For h0 in the range (2.57), q0 = (h0/a)K−2/5 � 1, thus t̄∞ is insensitive to

particle permeability and can be accurately approximated by the time required for

impermeable spheres to move from their initial separation h∞ to a separation h0.

Accordingly,

t̄∞ = C∞ − log(h0/a) , (2.58)

where C∞ is determined by the hydrodynamics of impermeable spheres and depends

only on the initial separation. By contrast, t̄0 is sensitive to the particle permeability.

Taking W = −dh0/dt and integrating Eq. (2.50) yields

t̄0(q0) =

∫ q0

0

f̄(q)

q
dq . (2.59)

This calculation can be re-written to isolate the dependence on q0, given that q0 � 1

and f̄ → 1 for large q. Rewriting Eq. (2.59) and combining with Eqs. (2.56), (2.58),

and (2.10) yields a formula for the contact time

t̄c = C∞ − log
(
C0K

2/5
)

+O(K) , (2.60)
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where

C0 = exp

[
−
∫ 1

0

f̄(q)

q
dq −

∫ ∞
1

f̄(q)− 1

q
dq

]
.
= 0.7224 . (2.61)

Accordingly, the contact time between permeable spheres under the action of a con-

stant force is finite, consistent with the discussion below Eq. (2.13).

Rough particles

The contact time for impermeable spheres with small amplitude roughness δ � a is

t̄c = C∞ − log(δ/a) , (2.62)

where C∞ depends only on the initial separation, h∞, as defined above. This result is

obtained by assuming that hydrodynamic interactions are identical to smooth spheres,

except that contact occurs at a finite separation, δ [49, 50]. This simple model for

roughness describes particles with a sparse coating of asperities [51].

An equivalent roughness, δeq, can be defined as the roughness amplitude that

yields the same contact time for rough and permeable spheres under the action of

a constant force. Equating the contact time predicted by Eqs. (2.60) and (2.62) for

permeable and rough particles, respectively, yields

δeq/a = C0K
2/5 , (2.63)

where C0 has the numerical value given in Eq. (2.61).

2.4.5 Effect of Velocity Slip

Here, the effect of velocity slip at the surfaces of the permeable particles is explored.

Extensions of the large-q and far-field expansions for finite slip are presented in Sec-

tions 2.4.5 and 2.4.5. The effect of slip on the contact force and contact time are
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presented in Sections 2.4.5 and 2.4.5. The connection to the problem of impermeable

particles with slip-velocity boundary conditions is discussed in Section 2.4.5.

Large-q expansion with finite slip

Solving Eq. (2.19) by a regular perturbation for q � 1 with finite slip requires an

expansion of Eq. (2.22) for small values of its arguments. The resulting expansion is

p̄(r̄, q, α̂1, α̂2) = p̄0(r̄, q) + p̄α(r̄, q, α̂1, α̂2) , (2.64)

where p̄0(r̄, q) is the expansion Eq. (2.38) for no-slip conditions, and p̄α(r̄, q, α̂1, α̂2) is

the expansion

p̄α(r̄, q, α̂1, α̂2) = q−1 p̄(1)
α (r̄, α̂1, α̂2) + q−2p̄(2)

α (r̄, α̂1, α̂2) + q−3 p̄(3)
α (r̄, α̂1, α̂2) +O(q−4) ,

(2.65)

where

p̄(1)
α (r̄, α̂1, α̂2) = −12

h̄3
α̂m , (2.66a)

p̄(2)
α (r̄, α̂1, α̂2) =

18

h̄4
(4α̂2

m − α̂m α̂r) , (2.66b)

p̄(3)
α (r̄, α̂1, α̂2) = −144

5

1

h̄5
(16α̂3

m − 7α̂2
mα̂r) . (2.66c)

Here,

α̂m =
1

2
(α̂1 + α̂2) (2.67)

and

α̂−1
r =

1

2

(
α̂−1

1 + α̂−1
2

)
(2.68)

are the mean and reduced slip parameters, respectively, both assumed to be O(1).

The leading-order intraparticle flux (2.41) is unaffected by slip for q � 1.
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Inserting expansion (2.64) into Eq. (2.51a) yields

f̄(q, α̂1, α̂2) = f̄0(q) + f̄α(q, α̂1, α̂2) , (2.69)

where f̄0(q) is given by expansion (2.52), and

f̄α(q, α̂1, α̂2) = q−1 f̄ (1)
α (α̂1, α̂2) + q−2f̄ (2)

α (α̂1, α̂2) + q−3 f̄ (3)
α (α̂1, α̂2) + o(q−3) , (2.70)

with

f̄ (1)
α (α̂1, α̂2) = −2α̂m , (2.71a)

f̄ (2)
α (α̂1, α̂2) = 2 (4α̂2

m − α̂rα̂m) , (2.71b)

f̄ (3)
α (α̂1, α̂2) = −12

5
(16α̂3

m − 7α̂rα̂
2
m) . (2.71c)

These results indicate that the lubrication resistance for permeable and imperme-

able particles with slip-velocity boundary conditions coincide up to O(q−2); the effect

of intraparticle flux enters at O(q−5/2).

Far-field expansion with finite slip

At leading order, the far-field intraparticle flux is affected by velocity slip only through

the resistance coefficient f̄(q, α̂1, α̂2) and is thus given by Eq.(2.46). By the analysis

presented in Appendix A.3, the far-field pressure distribution, extended for finite slip,

is

p̄(r̄)− p̄(0)(r̄) = −96q−1α̂mr̄
−6 − 576

7
f̄(q, α̂1, α̂2) r̄−7q−5/2 +O(r̄−8) , (2.72)

where p̄(0)(r̄) is the pressure distribution corresponding to impermeable spheres with

no-slip boundary conditions (2.40). The result indicates that the effect of slip domi-
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nates the effect of permeability in the far-field.

Contact Force

The effect of slip on the contact resistance f̃c is shown in figure 2.5 for two special

cases:

α̂1 = 0 , (1)

α̂2 = α̂1 . (2)

(2.73)

Typically, case (1) describes the near-contact interaction of permeable and imper-

meable particles, discussed in Section 2.4.3; case (2) typically describes near-contact

interactions between particles with equal permeability and slip coefficients, according

to the coupling between these parameters indicated by Eq. (2.21).

Figure 2.5 shows the numerical results obtained by solving Eqs. (2.27)-(2.28) with

g given by

g =
1 + 4x2

1 + x2

(2.74)

for case (1), and by Eq. (2.23) for case (2).

For small values of the slip parameters, Eq. (2.22) is expanded for xi � 1 (i = 1, 2)

to obtain

g = 1 + 3(x1 + x2) +O(x2
i ) . (2.75)

This form indicates that the contact resistance, f̃c(α̂1, α̂2), has the regular expansion

f̃c(α̂1, α̂2) = f̃ (0)
c − Aα̂m +O(α̂2

i ) (2.76)

for α̂m � 1, where α̂m is the mean slip parameter (2.67), f̃
(0)
c is the contact resistance

under no-slip conditions (2.54), and A ≈ 0.445; the predictions are shown in figure 2.5.
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For α̂r � 1, the contact force has the asymptotic form

f̃c(α̂1, α̂2) =
5

9α̂r

[log α̂r +B(α̂2/α̂1)] +O(α̂−2
r log α̂r) , (2.77)

according to the derivation given in Appendix A.4, where α̂r is the reduced slip param-

eter (2.68) and the coefficient B is obtained numerically. For equal slip parameters

(i.e., case (2)), B(1) ≈ −0.17 and the resulting asymptote is shown in figure 2.5.

A different situation arises for α̂2 � 1 with α̂1 = O(1) because α̂r = O(1) so that

formula (2.77) does not apply. The limit α̂2 → ∞ corresponds to the near-contact

motion between a spherical drop and a permeable particle with slip parameter α̂1

which has contact resistance

f̃ (d)
c (α̂1) = 2−6/5f̃c(2

−1/5α̂1) , (2.78)

according to Eq. (2.87b). Here, f̃c(α̂) is the contact resistance for permeable particles

with equal slip parameters. Using this result and assuming the form (2.77) for the

finite α̂2 correction, yields

f̃c(α̂1, α̂2) = 2−6/5f̃c(2
−1/5α̂1) +

A1(α̂1)

α̂2

[log α̂2 +B1(α̂1)] +O(α−2
2 logα2) , α̂2 � 1 ,

(2.79)

where the coefficients A1 and B1 are obtained numerically. For case (1) (i.e., α1 = 0),

the coefficients have the values A1 ≈ 0.35, B1 ≈ 0.43, and f̃c(0) = f̃
(0)
c given by

Eq. (2.54). The resulting asymptote is shown in figure 2.5.

Impermeable particles with slip-velocity boundary conditions

The classical first-order lubrication problem for the near-contact motion between

impermeable particles with slip-velocity boundary conditions [52] is presented in Ap-

pendix A.5. Here, the results for permeable and impermeable particles with slip-
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velocity boundary conditions are compared for the case of particles with equal slip

parameters.

The comparison requires taking the slip-length in Eq. (A.5.2) as

λs = αk1/2 , (2.80)

consistent with Beavers-Joseph boundary conditions (A.2.2), yielding the slip param-

eter for impermeable particles,

m = 6α̂/q . (2.81)

Inserting this definition into the small-m expansion (A.5.7) for the resistance f̄ recov-

ers the first 3 terms of the large-q expansion (2.70)-(2.71) for permeable particles with

equal slip parameters. Similarly, a small-m expansion of the pressure (A.5.3) recovers

expansion (2.65)-(2.66) for the case of equal slip parameters. Also, the leading-order,

far-field correction to the pressure, p̄ − p̄(0), is the same for permeable and imper-

meable particles, as seen by inserting Eq. (2.81) into the expansion Eq. (A.5.4) and

comparing the result to Eq. (2.72) for equal slip parameters.

By contrast to the non-singular contact resistance for permeable particles, f̃(q, α̂) =

f̃c(α̂) for q → 0, presented above in Section 2.4.5, the resistance for impermeable par-

ticles with equal slip coefficients is log-singular at contact,

f̃(q, α̂) =
1

3α̂

[
log

(
6α̂

q

)
− 1

]
, q → 0 , (2.82)

according to Eqs. (A.5.6) and (2.81).

The foregoing comparison shows that for large gaps, h0/a � K2/5 (i.e., q � 1),

permeable particles with slip can be approximated as impermeable particles with

slip-velocity boundary conditions [53] but this approximation breaks down at small

gaps, h0/a = O(K2/5), where the intraparticle flux becomes significant.
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Contact time

In this section, the effect of velocity slip on the contact time between permeable

particles under the action of a constant force is explored for the case of equal slip

parameters α̂1 = α̂2 = α̂. In this case, formula (2.60) becomes

t̄c = C∞ − log
(
C(α̂)K2/5

)
+O(α̂K2/5) , (2.83)

where C(α̂) describes the reduction in contact time resulting from velocity slip and

is given by

C(α̂) = exp

[
−
∫ 1

0

f̄(q, α̂)

q
dq −

∫ ∞
1

f̄(q, α̂)− 1

q
dq

]
. (2.84)

The results in figure 2.6 show that C(α̂) is approximately linear. For α̂� 1, the

contact time (2.83) is controlled by particle permeability with

C(α̂) = C0 +O(α̂) , (2.85)

where C0 has the numerical value reported in Eq. (2.61), and the constant of pro-

portionality is approximately 1.15. For α̂ � 1, the contact time is controlled by the

slip-velocity with

C(α̂) = 6e−3/2α̂ +O(1) , (2.86)

according to Eqs. (2.80) and (A.5.11), and the constant is approximately 0.1. The

equivalent roughness, defined by Eq. (2.63), can be extended for slip-velocity bound-

ary conditions by inserting C(α̂) in place of C0.

The above results demonstrate that the classical non-integrable lubrication sin-

gularity is removed by either of two mechanisms: non-zero particle permeability, or

non-zero slip velocity.

30



2.4.6 Permeable Particles and Drops with Fully-Mobile In-

terfaces

As shown in Section 2.3.3, the results for a spherical drop with a fully-mobile interface

and a particle with permeability k1 and slip parameter α̂1 can be obtained from the

results for a pair of permeable particles using transformation (2.33). Accordingly,

the resistance functions f̄ (d)(α̂1) and f̃ (d)(α̂1), for a spherical drop and a permeable

particle, are given by

f̄ (d)(q, α̂1) =
1

4
f̄(24/5q, 2−1/5α̂1) , f̃ (d)(q, α̂1) = 2−6/5f̃(24/5q, 2−1/5α̂1) , (2.87a, b)

where f̄(q, α̂) and f̃(q, α̂) are the resistance functions for permeable particles with

equal slip parameters.

Formulas (2.87a,b) extend the foregoing results for the lubrication resistance be-

tween permeable particles with equal slip parameters to the case of a spherical drop

and a permeable particle with slip parameter α̂1. This includes the results for α̂1 = 0

shown in figure 2.4 and Eqs. (2.52)-(2.54), and, by setting α̂2 = α̂1, also includes the

results shown in figure 2.5 (curve 2) and Eqs. (2.70) and (2.76)-(2.77).

According to formula (2.87a) and the analysis presented in Sections 2.4.4 and

2.4.5, the contact time between a spherical drop and a permeable particle is

t̄c = C ′∞ − log
(
C ′(α̂1)K2/5

)
, (2.88)

where

C ′(α̂) =
[
C(2−1/5α̂)

]1/4
. (2.89)

Here, C(α̂) is defined by Eq. (2.84) and plotted in figure 2.6. The parameter C ′∞

is determined by the hydrodynamic interactions between a spherical drop and an

impermeable sphere; it depends only on the initial separation and the viscosity ratio
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of the drop.

The contact time between a spherical drop and a rough particle is similarly mod-

ified t̄c = C ′∞ − log(δ/a)1/4 thus the equivalent roughness for a permeable particle is

the same for its interaction with a spherical particle or a drop.

2.5 Comparison with previous work

In this section, the lubrication resistance obtained from this work is compared to

prior bispherical-coordinate calculations by Burganos et al. [41] and tangent-sphere-

coordinate calculations by Sherwood [37]. The former calculations describe the mo-

tion of a permeable sphere toward an impermeable wall, the later describes the contact

force of an impermeable sphere at the interface of a semi-infinite permeable medium.

The results presented in figure 2.7(a) show close agreement between the lubrication

theory and the bispherical-coordinate calculations of Burganos et al.. Errors of the

lubrication approximation, defined by

∆ =
Fex − Flub

Fex

, (2.90)

are shown in figure 2.7(b), where Fex is the exact result from bispherical coordinate

calculations [41], and Flub is the lubrication approximation. The results show that

errors increase with gap width and permeability, as expected. When recast in terms

of lubrication variables, the bispherical-coordinate calculations cluster onto a single

curve in the regime where the lubrication theory is expected to apply (i.e., (h0/a)1/2 �

1 and K1/5 � 1) as seen in figure 2.8. For a fixed value of the slip coefficient,

the lubrication theory predicts a weak, 1/10-power dependence on the permeability

accordingly to Eq. 2.21, however, this is not discernible in the exact calculations.

In terms of K = 1
2
K1, the contact force reported by Sherwood [37] for an imper-

meable sphere in point contact with a permeable half-space, with K
1/5
1 � 1 under
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no-slip boundary conditions, is given by Eq. (2.55) with coefficient f̃
(0)
c = 0.27; this

is in contrast to the value f̃
(0)
c

.
= 0.7507 determined herein. We have been unable to

reconcile this discrepancy (J.D. Sherwood, personal communication).
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Figure 2.2: Pressure distribution between permeable particles with no-slip boundary
conditions, q as indicated; classical (a) and permeable-sphere (b) lubrication variables;
two-term large-q expansion (2.38) for q = 5 (dashed line); inset: curves depicting
p̄(0)(r̄)− p̄(r̄), far-field expansion (2.47) (dash-dotted lines).
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Figure 2.3: Intraparticle flux distribution into permeable particles with no-slip bound-
ary conditions and q as indicated in terms of classical (a) and permeable-sphere (b)
lubrication variables; leading-order large-q expansion (2.39) (dash-dotted line) in (a)
and curve for q = 5 (dashed line) in (b); insets show 2j̄r̄3 (a) and 2j̃r̃3 (b) with
far-field expansion (2.46) (dashed lines).
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Figure 2.4: Hydrodynamic resistance coefficients (2.51) versus q for permeable par-
ticles with no-slip boundary conditions; formulas (2.52)-(2.53) for large and small q
(dashed lines).
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Figure 2.5: Contact resistance as a function of slip parameter; α̂1 = 0 (case 1),
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Figure 2.6: Effect of slip parameter on contact time for permeable particles; numerical
evaluation (solid line), Eqs.(2.85)-(2.86) (dashed lines).
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Chapter 3

Resistance and Mobility Functions

for the Near-Contact motion of

Permeable Particles

3.1 Introduction

Understanding particle filtration and particle flocculation require an understanding

of the hydrodynamic interactions of permeable particles and particles with a per-

meable medium [7, 8, 12–14]. The operation and design of packed-bed and fluidized

reactors [15, 16] and chromatography columns [17, 18] also relies on a fundamental

understanding of the hydrodynamics of permeable particles.

Fluid flow in a homogeneous, permeable material is usually described using Darcy’s

law [19], whereby the fluid velocity v in a permeable medium is given by

v = −k
µ
∇p , (3.1)

where k is the permeability, µ is the fluid viscosity, and ∇p is the local pressure

gradient. The permeability scales with the square of the pore size and Darcy’s law is

40



appropriate when the length scale set by pressure gradients is much larger than the

pore-scale. This condition is usually satisfied in materials with a dense pore structure,

e.g., flow through a packing of solid particles where the particle size sets the pore-

scale. Brinkman’s equation [54] is more appropriate for materials with very dilute

solid networks (e.g., fibrous materials) [20–22]. There have been several investigations

of the appropriate boundary condition at the boundary of a permeable material and

the free fluid region [25–30] but the no-slip boundary condition is most frequently

used.

Hydrodynamic interactions between impermeable particles with thin permeable

layers [31–36] and with permeable half-spaces [37, 38]; between permeable particles

and impermeable walls [39–41]; and between two permeable particles [42–44] have

been investigated. In most of these studies, Darcy’s law was used to describe the

fluid flow in the permeable medium and no-slip boundary conditions were applied at

the interface. Prior studies predict an enhanced axisymmetric near-contact motion

between permeable particles or boundaries [31–39,41]. In a recent analysis of the near-

contact motion between permeable particles under weak permeability conditions, we

explain these findings, showing that the relative velocity between permeable particles

under the action of a constant force becomes independent of the gap at sufficiently

small gaps. This allows particle-particle contact, in contrast to the linear dependence

on gap for impermeable particles that becomes singular at contact [55].

The forces, torques, and stresses acting on a pair of hydrodynamically interact-

ing particles are linearly related to their type of motion through a set of resistance

functions that depend on the particle-geometry configuration and obey the Lorentz

reciprocal theorem [56]. The resistance functions of spherical particles can be ex-

pressed using one or two scalar functions that depend on particle separation and size

ratio [57, 58]. Here, we extend our previous lubrication analysis [55] to the case of

asymmetric, transverse motion and use the general resistance framework for spheri-
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cal particles [11] to derive the complete set of resistance functions that describe the

near-contact motion of rigid permeable particles. The flow in the permeable medium

is governed by Darcy’s law, no-slip boundary conditions are applied on the particle

surfaces, and weak permeability conditions are assumed. The formulation allows for

arbitrary ratios of particle radii and permeabilities. The governing equations are de-

rived in §2. An integro-differential Reynolds lubrication equation that governs the

pressure distribution is derived and solved numerically in §3. The form of the resis-

tance functions that describe the near-contact motion are presented in Section §4 in

terms of an additive contribution to the resistance functions for impermeable par-

ticles. The additive contribution depends on the pressure distribution between the

particles. Mobility functions derived from the lubrication resistance functions are pre-

sented in Section §5, including the special case of a particle undergoing near-contact

translation parallel to a wall or a permeable half-space under the action of an applied

force or an imposed shear-flow. Concluding remarks are presented in §6.

3.2 Problem formulation

The transverse motion of two permeable spherical particles separated by a small gap

h0 in a fluid with viscosity µ is considered here. Particle 1 has radius a1 and particle

2 has radius a2 = κa1. The lubrication approximation holds when h0 � a where

a = a1a2/(a1 + a2) is the reduced radius.

3.2.1 Lubrication equations for transverse motions of perme-

able particles

A cylindrical coordinate system (r, θ, z) is used with z-coordinate coincident with the

line-of-centers of the two particles, and with z = 0 at the surface of particle 2 shown

in figure 3.1. A Cartesian coordinate system (x, y, z) is also defined with the same
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Figure 3.1: Schematic showing two particles with radii and permeabilities ai and ki
(i=1,2), respectively, separated by a gap h0; translational and angular velocities U1

and ω1, as indicated, where particle 2 is stationary. The Cartesian and cylindrical
coordinate systems are shown.

origin, x-coordinate aligned θ = 0, and y aligned with θ = π/2. In the near-contact

region where r � a, the surfaces of the particles are approximately parabolic; the

surface of particle 1 corresponds to z = h0 + r2/(2a1), and the surface of particle 2

corresponds to z = −r2/(2a2).

The leading-order lubrication equations for transverse motion of the particles are

∂2v̄r
∂z̄2

=
∂p̄

∂r̄
,

∂2v̄θ
∂z̄2

=
1

r̄

∂p̄

∂θ
,

∂p̄

∂z̄
= 0 ,

1

r̄

∂

∂r̄
(r̄v̄r) +

1

r̄

∂v̄θ
∂θ

+
∂v̄z
∂z̄

= 0 . (3.2)

The over-bars denote dimensionless variables defined by

r̄ =
r

L1

, z̄ =
za1

L2
1

, v̄r =
vr
U0

, v̄θ =
vθ
U0

, w̄ =
wa1

U0L1

, p̄ =
pL3

1

µU0a2
1

, (3.3)

where L1 =
√
a1h0 is the characteristic lateral lengthscale set by the geometry of the

near-contact region, and U0 is a characteristic velocity magnitude that depends on

the boundary conditions of the problem.

Only two transverse motions need consideration: (a) transverse motion of particle
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1 with velocity in the x-direction (i.e., θ = 0) and magnitude U1, and (b) rotation of

particle 1 with angular velocity in the positive y-direction with magnitude ω1. Particle

2 is stationary in both problems. The resistances corresponding to the translation and

rotation of particle 2 are obtained by relabelling and symmetry, and ultimately the

resistances of all transverse motions are derived by the analysis of these two problems

in §3.4. Boundary conditions for these two problems are

z̄ = z̄1(r̄) :


v̄r = (Ū1 − ω̄1) cos θ , v̄θ = −(Ū1 − ω̄1) sin θ

v̄z = −ω̄1r̄ cos θ + j̄1[p̄](r̄, θ)

, (3.4)

z̄ = z̄2(r̄) : v̄r = v̄θ = 0 , v̄z = −j̄2[p̄](r̄, θ) , (3.5)

where z̄1 and z̄2 define the surfaces of particles 1 and 2, respectively,

z̄1 = 1 +
1

2
r̄2 , z̄2 = − 1

2κ
r̄2 . (3.6)

Here, Ū1 = U1/U0 and ω̄1 = ω1a1/U0 are the dimensionless translational and rota-

tional velocities of particle 1.

The quantities j1, j2 are the fluxes of fluid into the surfaces of the permeable

particles that are linear functionals of the pressure distribution in the near-contact

region. The fluxes are made dimensionless by the characteristic velocity in the z-

direction, U0L1/a1,

j̄i =
jia1

U0L1

, i = 1, 2 . (3.7)

Boundary conditions (3.4)-(3.5) are compatible to the following θ-dependence re-

lations

v̄r = Ū(r̄, z̄) cos θ , v̄θ = V̄ (r̄, z̄) sin θ , v̄z = W̄ (r̄, z̄) cos θ , (3.8a)
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p̄ = P̄ (r̄) cos θ , j̄i = J̄i[P̄ ](r̄) cos θ , i = 1, 2 . (3.8b)

Inserting these forms into the lubrication equations (3.2) and boundary conditions

(3.4)-(3.5) yields,

∂2Ū

∂z̄2
= P̄ ′ ,

∂2V̄

∂z̄2
= − P̄

r̄
, (3.9a, b)

∂Ū

∂r̄
+

1

r̄

(
Ū + V̄

)
+
∂W̄

∂z̄
= 0 , (3.10)

z̄ = z̄1(r̄) :


Ū = (Ū1 − ω̄1) , V̄ = −(Ū1 − ω̄1) ,

W̄ = −ω̄1r̄ + J̄1[P̄ ](r̄).

(3.11)

z̄ = z̄2(r̄) : Ū = V̄ = 0 , W̄ = −J̄2[P ](r̄) , (3.12)

Note that P̄ depends only on r̄, and the prime in Eq. (3.9) denotes a derivative.

Integrating the equations (3.9 a,b) with boundary conditions (3.11)-(3.12) for Ū

and V̄ yields

Ū =
1

2
P̄ ′(r̄)(z̄ − z̄1(r̄))(z̄ − z̄2(r̄)) +

Ū1 − ω̄1

h̄(r̄)
(z̄ − z̄2(r̄)) , (3.13a)

V̄ = − 1

2r̄
P̄ (r̄)(z̄ − z̄1(r̄))(z̄ − z̄2(r̄))− Ū1 − ω̄1

h̄(r̄)
(z̄ − z̄2(r̄)) , (3.13b)

where

h̄(r̄) = z̄1 − z̄2 = 1 +
1

2
(1 + κ−1)r̄2 . (3.14)

Inserting these results into the continuity equation (3.10) and integrating using

the boundary conditions for W̄ , yields the Reynolds lubrication equation,

1

12 r̄

(
r̄P̄ ′ h̄3

)′ − 1

12 r̄2
P̄ h̄3 − 2 J̄

[
P̄
]

= −A
∗

2
r̄ , (3.15a)
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which satisfies the homogeneous boundary conditions,

P̄ (0) = P̄ (∞) = 0 , (3.15b)

and, A∗ is the constant,

A∗ =
(
Ū1 + ω̄1

)
− κ−1

(
Ū1 − ω̄1

)
. (3.16)

The quantity 2J̄ = J̄1 + J̄2 is the combined flux into both particles. For impermeable

spheres, i.e., J̄ = 0, the solution of Eq.(3.15) is

P̄0(κ, r̄) =
6

5

A∗

1 + κ−1

r̄

h̄2
. (3.17)

3.2.2 Forces, torques and stresslets

The forces, torques, and stresslets on each of the spheres are calculated using the

relations [59,60],

Fx1

πµU0a1

=

∫ R̄0

0

[
−P̄ r +

(
∂V̄

∂z̄
− ∂Ū

∂z̄

)
z̄=z̄1

]
rdr , (3.18)

Fx2

πµU0a1

=

∫ R̄0

0

[
−P̄ rκ−1 +

(
∂Ū

∂z̄
− ∂V̄

∂z̄

)
z̄=z̄2

]
rdr , (3.19)

Ty1

πµU0a2
1

=

∫ R̄0

0

(
∂Ū

∂z̄
− ∂V̄

∂z̄

)
z̄=z̄1

rdr , (3.20)

Ty2

πµU0a2
1

=

∫ R̄0

0

(
∂Ū

∂z̄
− ∂V̄

∂z̄

)
z̄=z̄2

κ rdr , (3.21)
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Sxz,1
πµU0a2

1

=

∫ R̄0

0

[
P̄ r +

1

2

(
∂Ū

∂z̄
− ∂V̄

∂z̄

)
z̄=z̄1

]
rdr , (3.22)

Sxz,2
πµU0a2

1

=

∫ R̄0

0

[
−P̄ rκ−1 +

1

2

(
∂Ū

∂z̄
− ∂V̄

∂z̄

)
z̄=z̄2

]
κ rdr , (3.23)

where the upper limit of integration R̄0 = O(
√
a1/h0) and thus lies in the matching

region between the lubrication and outer regions.

Inserting Eqs. (3.13 a, b) into Eqs. (3.18)-(3.23) and integrating by parts to sep-

arate the pressure contributions yields,

Fx1

πµU0a1

=
κ−1 − 1

κ−1 + 1

A∗

2
[I1 − (1 + κ−1)−2 IK ]− 2BI2 , (3.24)

Fx2

πµU0a1

=
1− κ−1

1 + κ−1

A∗

2
[I1 − (1 + κ−1)−2 IK ] + 2BI2 , (3.25)

Ty1

πµU0a2
1

= −A
∗

2
[I1 − (1 + κ−1)−2 IK ] + 2BI2 , (3.26)

Ty2

πµU0a2
1

=
κ

2
A∗[I1 − (1 + κ−1)−2 IK ] + 2κBI2 , (3.27)

Sxz,1
πµU0a2

1

=
3− κ−1

1 + κ−1

A∗

4
[I1 − (1 + κ−1)−2 IK ] +BI2 , (3.28)

Sxz,2
πµU0a2

1

=
κ− 3

κ−1 + 1

A∗

4
[I1 − (1 + κ−1)−2 IK ] + κBI2 , (3.29)

where A is defined by Eq. (3.16) and B is given by,

B =
(
Ū1 − ω̄1

)
. (3.30)
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Here, we define the integrals

I1(ξ, κ) =

∫ R̄0

0

P̄ ∗0 r
2dr , I2(ξ, κ) =

∫ R̄0

0

r

h̄
dr , (3.31)

and

IK(ξ, κ,K) = (1 + κ−1)2

∫ ∞
0

(P̄ ∗0 − P̄ ∗)r2dr , (3.32)

where the pressure is factored as

P̄ =
A∗

1 + κ−1
P̄ ∗ , (3.33)

and ξ = h0/ā is the gap normalized by the average radius, ā = 1
2
(a1 + a2).

This rearrangement of Eqs. (3.18)-(3.23) is useful because it isolates the influence

of particle permeability. The integrals I1 and I2 describe the dynamics of impermeable

spherical particles; only the permeability integral, IK , depends on the permeability.

The upper limit for IK can be extended to infinity indicating that permeability does

not affect flow in the matching region.

3.3 Solution of the Reynolds equation

In this section, an integro-differential equation is derived for the pressure that allows

evaluation of the permeability integral, IK . Numerical and asymptotic limiting re-

sults are presented. As shown below, the permeability integral depends on a single

parameter,

IK(ξ, κ,K) = g(q) , (3.34)

where q is defined

q = K−2/5h0

a
. (3.35)
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Here, K is the dimensionless permeability,

K = k/a2 , (3.36)

k is the mean permeability,

k =
1

2
(k1 + k2) , (3.37)

and a = a1a2/(a1 + a2) is the reduced radius.

To obtain the functional form (3.34), we rescale the lubrication equation (3.15)

using the variables,

r̂ =
r

L0

, ẑ =
za

L2
0

, P̂ =
pL3

0

µU0a2
, Ĵ =

Ja

U0L0

q5/2 , (3.38)

where

L0 =
√
ah0 , (3.39)

is the length scale set by the geometry of the near-contact region (3.14), and a is

the reduced radius. The scaling for the particle flux is obtained using the order-of-

magnitude estimate, J ∼ kp/µL0 where p ∼ µU0a
2/L3

0 is the magnitude of pressure in

the near-contact region. In terms of these variables, the Reynolds lubrication problem

(3.15) becomes

1

12 r̂

(
r̂P̂ ∗′ ĥ3

)′
− 1

12 r̂2
P̂ ∗ĥ3 − 2 q−5/2Ĵ

[
P̂ ∗
]

= −1

2
r̂ , P̂ ∗(0) = P̂ ∗(∞) = 0 ,

(3.40)

where

ĥ(r̄) = 1 +
1

2
r̂2 (3.41)

is the gap profile, and

g(q) =

∫ ∞
0

(P̂ ∗0 − P̂ ∗)r2dr (3.42)
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is the permeability integral (3.32). Here, P̂ ∗ is the factored pressure, related to P̂ by

Eq. (3.33), and

P̂ ∗0 (r̂) =
6

5

r̂

ĥ2
, (3.43)

is solution of Eq. (3.40) corresponding to impermeable spheres, i.e., Ĵ = 0, which is

consistent with Eq. (3.17) via (3.33).

As shown in Appendix B.1, the flux depends only on the mean permeability (3.37)

and is expressed as a boundary integral of the pressure distribution in the gap between

the particles,

Ĵ [P̂ ∗](r̂) = −
∫ ∞

0

w[P̂ ∗](r′)φ(r′/r̂) dr′ , (3.44)

where

w[P̂ ∗](r) =
d

dr

[
1

r

d

dr

(
rP̂ ∗

)]
, (3.45)

and the Green’s function, φ(x), is defined by Eq.(B.1.13).

3.3.1 Permeability integral

Results for the permeability integral, g(q), presented in figure 3.2, were obtained by a

numerical solution of the Reynolds equation (3.40). The limiting behaviors for small

and large q, derived in Appendix B.2, are

g(q) = −12

5
log q + c1 + c2q +O(q2) , q � 1 , (3.46)

with c1
.
= −0.48 and c2

.
= −1.5, and

g(q) = b1q
−5/2 +O

(
q−5
)
, q � 1 , (3.47)

with b1
.
= 2.12.
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3.4 Transverse resistance functions for permeable

spheres

Rearranging Eqs.(3.24)-(3.29) to isolate the type of motion yields the forces, torques,

and stresslets in terms of resistance functions. The notation and general definition of

resistance functions used in the literature is followed [11,58]. The results are

− Fx1

πµU0a1

= 6Y A
11Ū1 + 4Y B

11 ω̄1 , (3.48)

− Fx2

πµU0a1

= 3(1 + κ)Y A
21Ū1 + (1 + κ)2Y B

12 ω̄1 , (3.49)

− Ty1

πµU0a2
1

= 4Y B
11 Ū1 + 8Y C

11 ω̄1 , (3.50)

− Ty2

πµU0a2
1

= (1 + κ)2 Y B
21 Ū1 + (1 + κ)3 Y C

21 ω̄1 , (3.51)

− Sxz,1
πµU0a2

1

= −4Y G
11 Ū1 + 8Y H

11 ω̄1 , (3.52)

and

− Sxz,2
πµU0a2

1

= −(1 + κ)2 Y G
21 Ū1 + (1 + κ)3 Y H

21 ω̄1 . (3.53)

Using symmetry relations and the Lorentz reciprocal theorem, the grand resistance

matrix can be derived from this set of of resistance functions, as shown in Ap-

pendix B.3.

The leading-order resistance functions are

Y R
αβ(ξ, κ, q) = Y R,0

αβ (ξ, κ)− gRαβ(κ) g(q) +O
(
ξ log ξ−1

)
, (3.54)
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where the superscript R refers to one of the resistance tensors in the resistance ma-

trix B.3.1. The functions Y R,0
αβ are the classical resistance functions for impermeable

spheres (B.3.4)-(B.3.13) [57, 59, 60]. Eq.(3.54) indicates that particle permeability

additively affects the transverse resistance functions. Permeability enters only in the

permeability integral, g(q), defined by (3.32) and (3.34) with a separable size-ratio

dependence through the functions gRαβ given by

gA11 =
κ

12

(κ− 1)2

(κ+ 1)3
, gA21 = −κ

6

(κ− 1)2

(κ+ 1)4
, (3.55)

gB11 =
κ

8

(κ− 1)

(κ+ 1)2
, gB21 = −κ

2

2

κ− 1

(κ+ 1)4
, (3.56)

gC11 =
κ

16(1 + κ)
, gC21 = − κ2

2(1 + κ)4
, (3.57)

gG11 =
(3κ− 1)(κ− 1)κ

16(1 + κ)3
, gG21 =

(κ− 3)(κ− 1)κ2

4(1 + κ)5
, (3.58)

gH11 =
κ

32

1− 3κ

(1 + κ)2
, gH21 = −κ

2

4

κ− 3

(1 + κ)5
. (3.59)

3.5 Mobility functions

Here, we present pairwise mobilities of permeable particles defined by the relative

velocity of the particles U12 = U2 −U1 under the actions of forces and an imposed

flow [61,62],

U12 = [G(s)r̂r̂ +H(s) (I− r̂r̂)] ·U∞12,0 (3.60)

+ [L(s)r̂r̂ +M(s) (I− r̂r̂)] ·U∞12,g

+E∞ · r + ω∞ × r− [A(s)r̂r̂ +B(s) (I− r̂r̂)] · E∞ · r .
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Here, r = x2−x1 is the vector between the particle centers, r̂ = r/|r| is a unit vector

along the line-of-centers, I is the identity tensor, and s = |r|/ā is the center-to-center

separation normalized by the average radius, ā = 1
2
(a1 + a2). The quantities E∞ and

ω∞ are the imposed rate-of-strain and vorticity in the fluid, and U∞12,0 and U∞12,g are,

respectively, the relative velocities in the absence of hydrodynamic interactions (i.e.,

s→∞) under the action of equal and opposite forces and under the action of gravity,

U∞12,0 =
F2 − F1

6πµa
, U∞12,g =

2 (a2
2γ − a2

1) ∆ρ1 g

9µ
, (3.61)

where F1 = −F2, a is the reduced radius, g is the acceleration of gravity, ∆ρi = ρi−ρ

is the difference between the density of particle i (i = 1, 2) and the density of the

fluid, and

γ =
∆ρ2

∆ρ1

, (3.62)

is the ratio of particle density differences.

Equation (4.4) defines the pairwise axisymmetric and transverse mobility functions

G,L,A and H,M,B, respectively. According to their definitions, G,H,L and M tend

to unity at large separations, whereas A and B vanish for s→∞. The pair mobilities

depend on the center-to-center separation, s, size ratio, κ, and permeability, K. (L

and M also depend on the density difference ratio, γ.) For the weak permeability

regime K � 1 considered herein, mobilities corresponding to impermeable particles

can be used outside of the near-contact region with O(K) error.

The near-contact axisymmetric mobilities, G,L,A were derived from our recent

analysis [55] by the procedure described below. The near-contact mobilities H,M,B

for transverse motion were obtained by inverting the resistance matrix (B.3.1). Out-

side of the near-contact region, mobilities were calculated using a code provided

by A.Z. Zinchenko [63] based on a bispherical-coordinate solution for impermeable

spheres [64].
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3.5.1 Axisymmetric mobilities

In a recent axisymmetric analysis for the near-contact motion of permeable particles

[55], we obtained

G =
(1 + κ)2

2κ

ξ

f(q)
=

ε

f(q)
, ε� 1 , (3.63)

where ε = h0/a is the gap normalized by the reduced radius, q is the permeability

parameter defined by Eq. (4.30), and f̄ is the solution of an axisymmetric integrod-

ifferential Reynolds lubrication equation analogous to Eq. (3.40). For q � 1,

G =
(
1 + b0q

−5/2 +O(q−5)
)
ε , (3.64)

where b0
.
= 1.8402, recovering the result for impermeable particles for q → ∞. For

q � 1, the mobility assumes the limiting form,

G =
(
c0 + c1q +O(q2)

)
K2/5 , (3.65)

where c0
.
= 1.332, and c1

.
= .397. This result indicates that the particles undergo a

constant approach velocity at close contact under the action of a constant force.

In the near-contact region, L and 1 − A are proportional to G, motivating the

definition of the modified mobility functions L̂ and Â1,

L̂(ε, κ, q) =
L(ε, κ, q)

F̂
(g)
c (κ)

= Â1(ε, κ, q) =
1− A(ε, κ, q)

F̂
(E)
c (κ)

= G(ε, q) , (3.66)

where F̂
(g)
c and F̂

(E)
c are dimensionless contact forces, obtained by the procedure

described in Appendix B.4 and given by Eqs. (B.4.3)-(B.4.4). These forces arise

between two spheres in point-contact, migrating along their line-of-centers in gravity-

driven motion, and in axisymmetric straining flow, respectively. The mobility function

L also depends on the ratio of the particle density differences, γ. Representative values
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for the contact forces are provided in Table C.1.

Axisymmetric mobilities G, L̂, and Â are shown in figure 3.3 as a function of gap.

Part (a) of the figure demonstrates the common behavior of the modified axisym-

metric mobilities (3.66); permeability qualitatively changes the near-contact motion

for h0/a ≤ O(K2/5), corresponding to q ≤ O(1). Part (b) of figure 3.3 shows the

universal near-contact behavior predicted by combining Eqs.(3.63) and (3.66),

GK−2/5 = Â1K
−2/5 = L̂K−2/5 =

q

f(q)
. (3.67)

3.5.2 Transverse mobilities

The transverse mobilities H, M and B have the near-contact form

Λ(ξ, κ,K) =
λ1 + λ2 log ξ−1 + λ3

[
log ξ−1 − 5

12
g(q)

]
log ξ−1 + λ6g(q)

λ4 + λ5 log ξ−1 +
[
log ξ−1 − 5

12
g(q)

]
log ξ−1 + λ7g(q)

, (3.68)

where the size-ratio-dependent numerical coefficients are listed in Tables 3.5.2, 3.5.2,

and 3.5.2, respectively. The results shown in figure 3.4 demonstrate that permeability

quantitatively affects the transverse mobilities H,M and B, for ξ < K2/5. Inserting

(3.46) into (4.33) and taking the limit as ξ → 0 yields the contact values of the

transverse mobilities,

Λc(κ,K) = λ3
logK−1 + λ′1
logK−1 + λ′2

, ξ = 0 , (3.69)

where Λc is the contact value of the transverse mobility function H, M , or B, and

the coefficients λ′1 and λ′2 are given by

λ′1 = 6λ6λ
−1
3 +

5

2
λ2λ

−1
3 −

5

2
log ν−25

24
c1 , λ′2 = 6λ7+

5

2
λ5−

5

2
log ν−25

24
c1 , (3.70a, b)
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where ν = 2κ(1 + κ)−2 and c1
.
= −0.48 from Eq. (3.46). For convenience, values

for λ′1 and λ′2 are listed in Table 3.5.2. Contact values for impermeable particles are

given by λ3. According to formula (3.69), Λc increases for K > 0 if λ′1 > λ′2 and

decreases if λ′1 < λ′2. The values in Table 3.5.2 indicate that contact mobilities H and

M increase with K whereas B decreases, consistent with results shown in figure 3.4.

Given that H = M = 1 and B = 0 in the absence of hydrodynamic interactions, these

observations indicate that particle permeability always diminishes the strength of hy-

drodynamic pair interactions. Even very small values of permeability can significantly

affect tangential near-contact motion because its effect decays only logarithmically.

Permeability has the largest effect for extreme size ratios and no effect for equal

size particles because no lubrication pressure is generated by the motion. This is

seen in figure 3.4 (a, c) and in the contact values for the mobilities (3.69), given that

λ′1 = λ′2 for κ = 1, according to Table 3.5.2.

A universal near-contact regime corresponding to Eq. (3.67) for axisymmetric

mobilities does not exist for the transverse mobilities; transverse mobilities depend

on gap, size ratio, and permeability for q ≤ O(1).

κ λ1 λ2 λ3 λ4 λ5 λ6 λ7

1 5.087 2.967 .4010 6.325 6.043 -.4514 -.5613
0.9 5.066 2.969 .3997 6.272. 6.036 -.4514 -.5589
0.75 4.921 2.980 .3911 5.927 5.985 -.4508 -.5428
0.6 4.555 2.995 .3696 5.105 5.831 -.4479 -.5020
0.5 4.100 2.993 .3432 4.177 5.599 -.4425 -.4509
0.4 3.387 2.956 .3027 2.877 5.163 -.4313 -.3686
0.3 2.317 2.849 .2443 1.222 4.378 -.4103 -.2378
0.25 1.623 2.756 .2080 0.3221 3.796 -.3951 -.1465
0.125 -0.6696 2.393 .1033 -1.540 1.516 -0.3451 .2069

Table 3.1: Coefficients of transverse mobility H given by Eq. (4.33).
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κ λ1 λ2 λ3 λ4 λ5 λ6 λ7

0.9 3.128 2.1402 .2206 6.272 6.036 -.2745 -.5589
0.75 2.942 2.104 .2075 5.926 5.985 -.2661 -.5428
0.6 2.529 2.022 .1794 5.105 5.831 -.2477 -.5020
0.5 2.074 1.915 .1497 4.177 5.599 -.2267 -.4509
0.4 1.461 1.736 .1114 2.877 5.163 -.1965 -.3686
0.3 .7212 1.461 .06812 1.222 4.378 -.1560 -.2378
0.25 .3448 1.276 .04718 .3221 3.796 -.1326 -.1465
0.125 -.3928 .6909 9.123× 10−3 -1.540 1.516 -.06637 .2069

Table 3.2: Coefficients of transverse mobility M (γ = 1) given by Eq. (4.33).

κ λ1 λ2 λ3 λ4 λ5 λ6 λ7

1 -1.902 1.501 .4060 6.325 6.043 .1688 -.5613
0.9 -1.894 1.496 .4106 6.272. 6.036 .1686 -.5589
0.75 -1.842 1.465 .4403 5.926 5.985 .1681 -.5428
0.6 -1.716 1.378 .5089 5.105 5.831 .1682 -.5020
0.5 -1.566 1.262 .5831 4.177 5.599 .1711 -.4509
0.4 -1.348 1.063 .6822 2.877 5.163 .1816 -.3686
0.3 -1.059 .7307 .7987 1.222 4.378 .2112 -.2378
0.25 -.8967 .4932 .8572 .3231 3.796 .2403 -.1465
0.125 -.5606 -.4511 .9707 -1.540 1.516 .4213 .2069

Table 3.3: Coefficients of transverse mobility B given by Eq. (4.33).

Mobility of a particle moving parallel to a wall

In this section, the motion of a sphere in close-contact with a wall is considered,

corresponding to the limit κ → ∞. Two problems are considered: (I) motion of a

particle in a quiescent fluid under the action of an imposed force F = F0 ex parallel

to the wall and (II) motion of a force-free particle in an imposed shear-flow parallel

to the wall, U∞ = E∞z ex. The particle is torque-free in both problems.

The resistance formulation for problems (I) and (II), derived from the general

resistance formulation (B.3.1) for the particle-wall configuration (κ→∞), is

− Fx1

πµU0a1

= 6Y A,∞
11 Ū1 + 4Y B,∞

11 ω̄1 − (6Y A,∞
11 + 2Y B,∞

11 − 4Y G,∞
11 )Ē∞ , (3.71)
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H M (γ = 1) B
κ λ′1 λ′2 λ′1 λ′2 λ′1 λ′2
1 0 0 - - 0 0

0.9 14.03 13.98 19.03 13.98 13.81 13.98
0.75 14.42 13.99 19.94 13.99 12.89 13.99
0.6 15.39 13.96 22.29 13.96 12.33 13.85
0.5 16.59 13.82 25.43 13.82 9.697 13.82
0.4 18.60 13.44 31.18 13.44 8.232 13.44
0.3 22.17 12.61 42.98 12.61 6.963 12.61
0.25 25.08 11.96 54.09 11.96 6.471 11.96
0.125 42.42 9.585 150.3 9.585 5.997 9.585

Table 3.4: Coefficients for the contact values of transverse mobilities given by (3.69).

− Ty1

πµU0a2
1

= 4Y B,∞
11 Ū1 + 8Y C,∞

11 ω̄1 − (4Y B,∞
11 + 4Y C,∞

11 + 8Y H,∞
11 )Ē∞ , (3.72)

where a1 is radius of the sphere, Ē∞ = E∞a1/U0 is the dimensionless shear rate, and

Y R,∞
11 are the resistance functions (3.54) corresponding to the limit κ→∞,

Y A,∞
11 = −g(q)

12
+

8

15
log ε−1 + AY,∞11 +O(ε log ε−1) , (3.73)

Y B,∞
11 = −g(q)

8
− 1

5
log ε−1 +BY,∞

11 +O(ε log ε−1) , (3.74)

Y C,∞
11 = −g(q)

16
+

2

5
log ε−1 + CY,∞

11 +O(ε log ε−1) . (3.75)

Y G,∞
11 = − 3

16
g(q) +

7

10
log ε−1 +GY,∞

11 +O(ε log ε−1) . (3.76)

Y H,∞
11 =

3

32
g(q)− 1

10
log ε−1 +HY,∞

11 +O(ε log ε−1) . (3.77)

Here, ε = h0/a1 is the gap, and RY,∞
11 are the matching constants to the outer solution

for this geometry [60,65].

The translational and rotational mobilities of the particle are determined by the

solution of equations (3.71)-(3.72) for problems (I) and (II). The results have the form
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of (4.33) with λ3 = 0,

V̄1 =
c0 + c1 log ε−1 + c2g(q)

c3 + c4 log ε−1 +
[
log ε−1 − 5

12
g(q)

]
log ε−1 + c5g(q)

, (3.78)

where V̄1 = Ū1 or ω̄1 and U0 = (6πµa1)−1F0 for problem (I) and U0 = E∞a1 for

problem (II). The numerical coefficients appearing in (3.78) are listed in Table 3.5.2 for

both problems, and the results are plotted in figure 3.5. The results for impermeable

spheres [60, 65,66] are recovered for g = 0, corresponding to q � 1.

Inserting Eq.(3.46) into (3.78) yields a simplified analytical mobility formula de-

picted by dashed lines in figure 3.5. Evaluating the result at contact yields,

Ū1 = ω̄1 =
d1

logK−1 + d2

, (3.79)

where d1 = 3.125, d1 = 7.280 for problems (I), (II), respectively, and d2 = 6.666 for

both problems. The result indicates that permeable particles roll without slipping

at contact, as seen in figure 3.5, and the effect of permeability decays slowly. By

contrast, impermeable particles become stationary at contact and exhibit a slipping

approach to contact with Ū1 > ω̄1 [65, 66].

Ū1

Problem c0 c1 c2 c3 c4 c5

(I) 1.909 2.000 −.3125 1.590 3.1881 −.3008
(II) 2.649 3.716 −.3348 1.590 3.1881 −.3008

ω̄1

c0 c1 c2 c3 c4 c5

(I) −.9475 .5000 .3125 1.590 3.1881 −.3008
(II) .6513 2.109 .3348 1.590 3.1881 −.3008

Table 3.5: Coefficients for particle velocity parallel to wall (3.78).
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3.6 Conclusions

A lubrication analysis is presented for permeable spherical particles in the weak per-

meability regime, K � 1. Only the mean permeability enters the problem and the

size ratio is arbitrary. The complete resistance matrix is derived for transverse mo-

tions complementing the recent axisymmetric analysis [55]. Near-contact mobilities

depend on gap width, size ratio, and permeability.

Mobilities describing axisymmetric relative particle motion have a universal near-

contact behavior described by a universal function f(q) multiplied by a function of

size ratio, where q = K2/5h0/a, and f(q) is described elsewhere [55]. Axisymmetric

mobilities approach a non-vanishing values at contact, proportional to K2/5. By

contrast to impermeable particles, contact occurs in finite time under the action of a

constant force.

Particle permeability enhances near-contact, transverse relative motion because

it releases some of the lubrication pressure. Resistances for permeable particles are

given by the classical resistance functions for impermeable particles plus the product

of a universal one-parameter function, g(q), times a rational function of size ratio. The

function g(q) is obtained by solving an integro-differential form of the Reynolds lubri-

cation equation. Even very small values of permeability can be significant because its

effect decays logarithmically. Relative particle motions that do not generate pressure

are unaffected by particle permeability, e.g., dumbbell rotation of the particle pair.

Permeability qualitatively alters particle mobility for extreme size ratios, providing

access to non-singular rolling motion. A permeable particle in point-contact with a

planar boundary rolls without slipping under the action of a constant force with a

velocity that varies inversely with logK−1. This also occurs for a particle subjected

to an imposed shear flow tangent to the boundary. This finding may have relevance

to cross-flow particle filtration.
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Note

The authors are grateful to Dr. A. Z. Zinchenko [63] for the use of his bispherical

coordinate code for computing pair mobilities of impermeable spheres, and to Dr. D.

J. Jeffrey [67] for the use of his program available online for resistance functions used

herein to obtain the matching constants for the resistance functions of impermeable

spheres.
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Figure 3.2: Permeability integral g(q), defined by Eq. (3.34); numerical solution (solid
curve) and asymptotic limits (3.46)-(3.47) (dashed curves).
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Figure 3.3: (a) Axisymmetric mobility functions G, Â1, and L̂ (γ = 1) from exact
bispherical coordinate solution [63] versus gap, ε, for size ratios κ = 0.5 (solid lines),
κ = 0.75 (dash-dotted lines) (curves for κ = 0.5, and κ = 0.75 are indistinguishible
for G); lubrication solution for K = 0, and K = 10−7 (solid lines); (b) universal
near-contact behavior (3.67) versus permeability parameter, q; small- and large-q
asymptotes given by Eqs. (3.64)-(3.65) (dashed lines).
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Figure 3.4: Transverse mobility functions H (a), M (γ = 1) (b), and B (c) from exact
bispherical coordinate solution [63] (solid lines) and lubrication solutions for K = 0
and K = 10−7 (dashed lines) versus gap, ξ, for size ratios indicated.
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Figure 3.5: Translational and rotational velocities of a particle moving parallel to a
plane wall under the action of a force (a), and in shear flow (b); mobility formula (3.78)
(solid lines); simplified mobility formula for q � 1 obtained by inserting Eq. (3.46)
into (3.78) (dashed lines); permeabilities as labelled.

65



Chapter 4

Collision rates of permeable

particles in Brownian motion,

gravity sedimentation, and linear

flows

4.1 Introduction

The aggregation of particles suspended in fluids has been the subject of intense the-

oretical and practical investigations for over a century. Examples of applications

encompass deep-bed granular filtration [6], rain-drop formation [68, 69], and particle

coagulation in marine environments, e.g. marine“snow” [9, 70, 71]. A fundamental

description of the rates of particle encounters is crucial in properly characterizing the

resulting suspension stability and particle microstructure.

The rate of coagulation in a dilute dispersion of impermeable particles was first

investigated by Smoluchoswski in 1917 [72] who proposed a model for analyzing in-

terparticle encounters, neglecting hydrodynamic interactions and assuming a sticking
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force at contact. Fuchs [73] proposed a correction to Smoluchowski’s model for elec-

trically charged aerosol particles. Spielman [74], Valioulis & List [75], and Kim &

Zukoski [76] analyzed perikinetic (Brownian) coagulation of spherical colloidal par-

ticles, accounting for pairwise hydrodynamic interactions and non-hydrodynamic in-

terparticle forces, such as van der Waals attraction and electrostatic repulsion.

Curtis & Hocking [77], Arp & Mason [78], Zeichner & Schowalter [79], Van de Ven

& Mason [80], and Adler [81] studied orthokinetic coagulation: particle coagulation in

suspensions undergoing prescribed flows, including shear flow, and uniaxial straining

flow. Particle coagulation in more general flows has also been considered [82–84]. In

these studies, pairwise hydrodynamic interactions and non-hydrodynamic interparti-

cle forces [85] were incorporated in a trajectory analysis [61, 62, 86–88]. Coagulation

of sedimenting particles has also been analyzed using trajectory calculations that

incorporate hydrodynamic interactions and interparticle forces [89–92].

The foregoing analyses only consider pairwise particle interactions, thus their ap-

plication is limited to semi-dilute suspensions. Pairwise coagulation rates are usually

expressed in dimensionless form as a collision efficiency, E, i.e., the rate of coagu-

lation normalized by the coagulation rate in the absence of hydrodynamic and non-

hydrodynamic forces (i.e., as predicted by the Smoluchowski’s theory [72]); stability

ratio is defined as the reciprocal of the collision efficiency, E−1.

Davis and co-workers investigated the effects of hydrodynamic interactions and

interparticle forces on the collision efficiency of spherical drops in Brownian motion,

sedimentation [93], linear flows [94, 95], and particle flotation by bubbles or drops

[96]. These studies show that interfacial mobility significantly enhances the collision

efficiency of drops compared to rigid particles.

The analyses in most of the foregoing studies is relegated to either the small- or

large-Peclet number limit. Exceptions include Zinchencko & Davis [97] and Bal [98,99]

who investigated coagulation rates in colloidal suspensions by the combination of
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Brownian motion and shear flow at arbitrary Peclet numbers, and Zinchenko & Davis

[100] and Ramirez et.al. [101] who evaluated coagulation rates by the combination of

Brownian motion and sedimentation at arbitrary Peclet number.

Due to the classical lubrication singularity for vanishing surface-to-surface sep-

arations, h0 → 0 (i.e., contact), collisions between smooth spherical (impermeable)

particles are possible only in the presence of material-specific non-hydrodynamic at-

tractive forces (e.g. van der Waals forces), or generic physical phenomena, including

surface roughness or particle permeability [55] that lead to a break-down of the lu-

brication singularity at contact.

Particles with surface roughness amplitude δa are usually treated as impermeable

spheres, where the surface-to-surface separation is restricted according to h0 ≥ δa,

contact occurs at h0 = δa, and the roughness amplitude is assumed to be small

compared to the particle size, δ � 1 [49, 64, 102]. Two limits for the coefficient of

contact friction have been considered: zero and infinite, corresponding respectively, to

perfect slip and no-slip, but the results are insensitive to this choice [50,103] because

the viscous transverse lubrication resistance dominates the contact friction.

The collision efficiency of permeable particles date back to 1967 when Sutherland

[104] proposed a geometric model for the formation of high-porosity aggregates based

on Smoluchowski’s diffusion equation. Following this previous work, a significant body

of research has been focused on aggregate formation and collision rates of particle

aggregates (flocs) that are usually modeled as fractals with highly-porous structure.

Generally, Brinkman’s equation [54] is favored for describing the flow inside highly

porous aggregates [20–22, 39]. Neale et al. [105] proposed a correction factor to the

Stokes drag on a settling permeable sphere to account for permeable effects and

examined the assumption that an isolated high-porosity aggregate may be modeled

as an impermeable body [106]. Adler [107] analyzed streamlines using Brinkman’s

equation for the flow inside permeable spheres to predict aggregation-disaggregation
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dynamics. Further theoretical and experimental works on the aggregation kinetics of

fractal aggregates with radially varying permeability showed that collision efficiencies

decreased with the fractal dimension while the viscous drag increased [108–111].

Bäbler et al. [44] used the method of reflections [42] to study the pairwise hy-

drodynamic interactions of high-porosity aggregates in linear flows using Brinkman’s

equation to describe flow inside the aggregate. Collision efficiencies were estimated

from a trajectory analysis with and without van der Waals forces. The same au-

thor used the foregoing trajectory analysis scheme to explore the collision efficiency

of aggregates accounting for fractal dimension, internal structure, and interparticle

forces [112]. Near-field and lubrication interactions were unresolved in these studies,

and perhaps justified, by the restriction to high particle porosities.

Problems involving thin permeable layers or membranes have been extensively

studied [31, 32, 34–36,113], including the collision efficiency for particles captured by

drops with a permeable interface [114]. In these problems, the thin permeable layer

reduces to a normal velocity boundary condition. Core-shell particles comprised of

a comparatively thin, highly-porous shell and impermable core have been analyzed

using Brinkman’s equation to describe the fluid flow in the shell [45,46], and collision

efficiencies have been calculated [115].

Most of the above studies focus on the high-porosity regime, relevant to particle

flocs, and thin permeable layers that reduce to a boundary condition for the velocity.

Darcy’s law [19] is more appropriate for describing the flow inside the particles with

moderate and low permeabilities. While Brinkman’s equation is compatible with no-

slip boundary conditions, slip-velocity boundary conditions [25,26,28] are appropriate

for Darcy’s law although no-slip boundary conditions are often used. Hydrodynamic

pair interactions between particles with moderate permeabilities have been computed

in bispherical coordinates, using Darcy’s law to describe the flow inside the particles,

and applying slip-velocity boundary conditions on particle surfaces. [40,41,43].
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Reboucas & Loewenberg [55, 116] developed a lubrication analysis for permeable

spheres in close contact, h0/a� 1, under weak permeability conditions,

K = k/a2 � 1 . (4.1)

Here, h0 is the surface-to-surface separation, a = a1a2(a1+a2)−1 is the reduced radius,

k is the mean permeability of the particles,

k =
1

2
(k1 + k2) , (4.2)

and K is the dimensionless permeability. Their analysis showed that axisymmetric

mobilities for weakly permeable particles are qualitatively affected for gap widths

h0/a = O(K2/5), and, by contrast with impermeable spheres, have non-zero O(K2/5)

contact values. Accordingly, particle contact is predicted to occur in finite time

under the action of a constant force, leading to finite collision efficiencies even in the

absence of non-hydrodynamic forces or surface roughness. This is partially off-set by

the discovery that permeability causes particles to spend less time in close contact

because transverse hydrodynamic interactions are also reduced [116].

The weak permeability limit, K → 0, is singular. Particle permeability affects

trajectories at O(1) within a thin, O(K2/5) boundary layer that forms in the near-

contact region, but has only an O(K) effect for h0/a � K2/5. Surface roughness is

an analogous physical phenomenon that circumvents the lubrication singularity and

forms a δ-thickness boundary layer in the zero-roughness-limit. These situations are

similar to the O(AH/µa
2U∞12 )1/2 thickness boundary layer that forms in the near-

contact region for impermeable particles in limit of weak van der Waals forces, AH →

0, where AH is the Hamaker constant, U∞12 is the relative velocity of the particles at

large separations, a is the particle size, and µ is the fluid viscosity [90,117].

In this chapter, the collision efficiency of permeable particles is analyzed for aggre-
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gation in Brownian motion, gravity sedimentation, uniaxial straining flow, and shear

flow, each separately considered. Weak permeability conditions (4.1) are assumed.

Darcy’s law is used to describe the intraparticle flow, and no-slip boundary conditions

are applied at the particle surfaces. Collision efficiencies are derived for spheres with

small-amplitude surface roughness and the two problems are shown to be analogous

through the definition of an equivalent roughness for permeable particles. The result-

ing formulas provide accurate closed-form analytical approximations for the collision

efficiencies of permeable spheres. The focus here is on the physical mechanism of

particle permeability thus van der Waals attraction is included only for collision ef-

ficiencies in Brownian motion and neglected in calculations of collision efficiencies in

flow and sedimentation under the assumption of large Peclet numbers. The problem

is formulated in §2 and the assumptions are discussed. Collision efficiency formulas

are derived for permeable particles in §3 and for rough particles in §4. The results

are graphically presented and discussed in §5.

4.2 Problem formulation

In a dilute suspension, the pair-distribution function, p12, is governed by the steady-

state Fokker-Plank equation,

∇· (p12V 12) = 0 , (4.3)

where V 12 is the relative velocity of the particles. Particles are assumed to aggregate

on contact thus p12 = 0 on a spherical contact surface with radius r = a1 + a2, where

a1 and a2 are the particle radii; far from the contact surface, p12 = 1.
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The relative velocity of the particles is given by [61,62],

V12 = −D(0)
12 [G(s)r̂r̂ +H(s) (I− r̂r̂)] · ∇

(
log p12(r) +

Φ12(s)

kBT

)
+ [L(s)r̂r̂ +M(s) (I− r̂r̂)] ·V(0)

12,g

+E∞ · r + ω∞ × r− [A(s)r̂r̂ +B(s) (I− r̂r̂)] · E∞ · r . (4.4)

Here, r = r2 − r1 is the vector between the particle centers, r̂ = r/|r| is a unit vector

along the line-of-centers, I is the identity tensor, and s = |r|/ā is the center-to-center

separation normalized by the average radius (4.10). The quantities E∞ and ω∞ are

the imposed rate-of-strain and vorticity in the fluid. The quantities kB and T are

Boltzmann’s constant and absolute temperature; Φ12 is the interparticle potential.

The quantities D
(0)
12 and V

(0)
12,g are, respectively, the Stokes-Einstein-Sutherland rela-

tive diffusivity and gravitational particle velocities in the absence of hydrodynamic

interactions (i.e., s→∞),

D
(0)
12 = kBT

(
m

(0)
1 +m

(0)
2

)
, V

(0)
12,g =

∣∣∣F1,gm
(0)
1 − F2,gm

(0)
2

∣∣∣ , (4.5)

where

m
(0)
i =

1 +Ki

6πµai
(i = 1, 2) (4.6)

are the hydrodynamic mobilities of isolated permeable particles in Stokes flow with

no-slip boundary conditions, and

Fi,g =
4π

3
a3
i∆ρg (i = 1, 2) (4.7)

are the net gravity forces acting on the particles. Here, ki are the particle perme-

abilities and Ki = ki/a
2
i are the dimensionless permeabilities, µ is the fluid viscosity,

∆ρ is the excess particle density (assumed the same for both particles), and g is the
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acceleration of gravity.

Equation (4.4) defines the pairwise axisymmetric and transverse mobility functions

G,L,A and H,M,B, respectively. According to their definitions, G,H,L and M tend

to unity at large separations, whereas A and B vanish for s→∞. The pair mobilities

depend on the center-to-center separation s, particle permeabilities Ki (i = 1, 2), and

size ratio κ = a2/a1. The linear superposition inherent in the form of the relative

particle velocity (4.4) is predicated on the assumption of small Reynolds numbers,

Re =
ρV

(0)
12 a

µ
� 1 , (4.8)

where V
(0)

12 = |V(0)
12 |, and ρ is the fluid density.

For the weak permeability regime K � 1 considered herein, particle mobilities

are affected only by the mean permeability (4.1) in the near-contact region and are

equal to the mobilities of impermeable particles outside of this region. Impermeable

particles with small-amplitude surface roughness, δ � 1, will also be analyzed because

of the useful analogy it provides. In this case, impermeable mobility functions apply

everywhere away from the contact surface at r = a1 + a2 + δa, where a is the reduced

radius (4.11). For either of these cases, isolated mobilities for impermeable spheres,

(6πµai)
−1 (i = 1, 2), can be used in place of the isolated mobilities for permeable

spheres (4.6). Accordingly, (4.5) simplifies to

D
(0)
12 =

kBT

6πµa
, V

(0)
12,g =

2 (a2
1 − a2

2) ∆ρg

9µ
. (4.9)

Different length normalizations are convenient in different contexts. For conve-
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nience, these are summarized here. The average and reduced radius are defined

ā =
1

2
(a1 + a2) =

1

2
a1 (1 + κ) , (4.10)

a = a1a2 (a1 + a2)−1 = a1κ (1 + κ)−1 = νā , (4.11)

where κ = a2/a1 denotes the size ratio and ν is the conversion factor between the

average and reduced radius which arises in the analysis to follow,

ν =
a

ā
= 2κ (1 + κ)−2 . (4.12)

The center-to-center separation r and surface-to-surface separation h0 are both rele-

vant, and two corresponding dimensionless lengths are used,

s =
r

ā
, (4.13)

and

ε =
h0

a
; ξ = s− 2 =

h0

ā
= νε . (4.14)

4.2.1 Van der Waals attraction

Herein, consideration of interparticle forces is limited to the unretarded van der Waals

potential [118],

Φ12 = AHΦ̄12 , (4.15)

where AH is the Hamaker constant, and Φ̄12 is the dimensionless potential,

Φ̄12(s) = −1

6

(
8κ

(κ+ 1)2 (s2 − 4)
+

8κ

(κ+ 1)2s2 − 4(1− κ)2
+ log

[
(κ+ 1)2 (s2 − 4)

(κ+ 1)2s2 − 4(1− κ)

])
,

(4.16)
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which has the singular form at contact,

Φ̄12(ξ) = − ν

6ξ
+O(log ξ) , ξ � 1 , (4.17)

where κ, ξ, and ν are defined above.

The dimensionless Hamaker parameter,

ĀH = AH/kBT . (4.18)

characterizes the relative strength of van der Waals attraction in Brownian motion;

typically ĀH = O(1). The relative strength of van der Waals interactions for non-

diffusing particles, aggregating under gravity-driven sedimentation or in a prescribed

flow, is characterized by the parameter QH which is related to the Peclet number,

QH =
Pe

ĀH
, Pe =

µV
(0)

12 a
2

kBT
, (4.19)

where V
(0)

12 is given by (4.9) for sedimentation and V
(0)

12 = E∞a for particles in flow,

where E∞ is the imposed strain-rate. Often, Pe� 1 and thus QH � 1. Consider, for

example, 30µm particles in a fluid with viscosity µ = .01 Pa · s with Ā ≈ 1 for two

situations: (i) sedimenting in normal gravity with ∆ρ/ρ = 2, and (ii) in shear flow

with shear-rate E∞ = 10 s−1. For both of these cases, QH ≈ 106 (and Re ≈ .001,

where the Reynolds number is defined by Eq. (4.8)).

Even for QH � 1, van der Waal attraction can be important because of its singular

behavior (4.17). Balancing the O(µV
(0)

12 a) viscous and O(AHah
−2
0 ) van der Waals

forces acting on particles in close-contact yields the O(AH/µa
2U∞12 )1/2 boundary layer

associated with weak van der Waals attraction [90, 117]. Comparing to the O(K2/5)

boundary layer associated with particle permeability [55] indicates that van der Waals
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attraction is negligible if

K � Q
−5/4
H . (4.20)

Van der Waals attraction is included in our analysis of aggregation in Brownian

motion because ĀH = O(1) is typical. However, van der Waals attraction is omitted

in our collision efficiency calculations for non-diffusing particles aggregating under

sedimentation or in an imposed flow under the assumption that Eq. (4.20) holds.

Herein, the focus is on permeability and surface roughness as physical mechanisms

that give rise to non-zero collision rates in the absence of non-hydrodynamic forces.

The complimentary regime of particle collisions mediated by colloidal forces has been

the subject of numerous classical investigations, such as those discussed in the Intro-

duction.

4.2.2 Collision efficiencies

In this section, pairwise aggregation rates are defined and the classical formulas for

collision efficiencies, given in terms of pair mobility functions, are recalled for particles

in Brownian motion, gravity sedimentation, and in imposed uniaxial straining and

shear flows; each case is separately considered.

The pairwise aggregation rate of particles Jx is given by the integral of the flux

over the contact surface at r = rc,

Jx = −n1n2

∫
rc

p12V12 · n dS (4.21)

where rc = a1 + a2 + δa for particles with surface roughness, otherwise rc = a1 + a2.

Here, ni (i = 1, 2) are the upstream number densities of the particles, and subscript

x = B, g, st, sh, respectively, will be used to denote aggregation in Brownian motion,

gravity sedimentation, straining flow, and shear flow. Collision efficiencies are defined
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as

Ex = Jx/J
(0)
x , (4.22)

where J
(0)
x is the aggregation rate in the absence of hydrodynamic interactions (i.e.,

G = H = L = M = 1 & A = B = 0). Collision rates under these conditions are

given by [72]

J
(0)
B = 4πn1n2D

(0)
12 (a1 + a2) , J (0)

g = n1n2V
(0)

12,gπ(a1 + a2)2 (4.23a, b)

for aggregation in Brownian motion and gravity sedimentation, and

J
(0)
st =

8π

3
√

3
n1n2E∞(a1 + a2)3 , J

(0)
sh =

4

3
n1n2E∞(a1 + a2)3 (4.24a, b)

for aggregation in uniaxial straining flow and shear flow. Here, D
(0)
12 and V

(0)
12,g are

given by Eq. (4.9), and E∞ is the imposed strain-rate.

Collision efficiencies are obtained for each aggegration mechanism, by appropri-

ately simplifying the relative particle velocity (4.4), inserting it into Eq. (4.3), and

integrating with with boundary conditions,

p12(sc) = 0 , and p12(∞) = 1 , (4.25)

where sc = rc/ā.

The collision efficiency for Brownian motion is obtained by simplifying Eq. (4.4)

for neutrally-buoyant particles in a quiescent fluid (i.e., V
(0)

12,g = E∞ = ω∞ = 0).

Integrating the resulting radial velocity in Eq. (4.3) and applying boundary conditions

(4.25) yields [74],

EB = 1/IB(sc) , IB(s) = 2

∫ ∞
s

eĀH Φ̄(s)

s2G(s)
ds . (4.26a, b)
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As indicated, van der Waals attraction is retained in the above formula for the binary

collision efficiency of particles in Brownian motion. The formulas below for collision

efficiencies in sedimentation and linear flows are derived with van der Waals attraction

omitted, as discussed in §4.2.1.

The collision efficiency for gravity sedimentation is obtained by inserting Eq. (4.4)

simplified for non-diffusing particles in a quiescent fluid (i.e., D
(0)
12 = E∞ = ω∞ = 0)

into Eq.(4.3). Dividing the resulting components of the relative velocity normal, and

parallel, to the line-of-centers, and integrating the critical trajectory upstream from

the equator of the contact surface to determine the radius of the upstream collision

cross-section, yields [62, 90]

Eg = e2Ig(sc) , Ig(s) =

∫ ∞
s

L(s)−M(s)

L(s)

ds

s
. (4.27a, b)

The collision efficiency for uniaxial straining flow is similarly obtained after inserting

Eq. (4.4), simplified for non-diffusing, neutrally-buoyant particles in an axisymmetric

flow (i.e., D
(0)
12 = V

(0)
12,g = ω∞ = 0), into Eq.(4.3). The result is [61,87,94],

Est = e−3Ist(sc) , Ist(s) =

∫ ∞
s

A(s)−B(s)

1− A(s)

ds

s
. (4.28a, b)

A more complicated picture arises in shear flow due to the existence of nearby recir-

culating (closed) particle trajectories that do not contribute to particle aggregation at

steady-state and must be subtracted from the net particle flux on the contact surface.

The collision efficiency in this case is given by [94]

Esh =
(
e−2Ist(sc) − Ish(sc)

)3/2
, Ish(s) =

1

4

∫ ∞
s

e−2Ist
B(s)

1− A(s)
s ds , (4.29a, b)

where e−2Ist − Ish > 0 is assumed; for e−2Ist − Ish ≤ 0, Esh ≡ 0.
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4.2.3 Permeable particles

For permeable particles, the pairwise mobilities that appear in Eq. (4.4) depend on

particle separation, size ratio, and the permeability parameter q,

q = εK−2/5 = ν−1ξK−2/5 , (4.30)

where, K is the dimensionless mean permeability, and ε is the dimensionless gap

(4.14).

Under weak permeability conditions (4.1), particle mobilities are approximately

the same as those for impermeable particles with O(K) error for q � 1, but they

are qualitatively altered for q = O(1). The near-contact axisymmetric mobilities for

permeable particles exhibit a simplified, separable dependence on permeability [116],

Gξ = ν−1 ξ

f(q)
, Lξ = Rg(κ)

ξ

f(q)
, Aξ = 1−Rst(κ)

ξ

f(q)
, (4.31a, b, c)

where Rg and Rst, respectively, are dimensionless contact resistances that arise for

particles in point-contact migrating parallel to their line-of-centers in gravity and

uniaxial straining flow. The function f(q) is the numerical solution of an axisymmetric

Reynolds lubrication equation [55] that has the asymptotic properties,

f(q) = c1q − c2q
2 +O(q2), q � 1 ; f(q) = 1− c3 q

−5/2 +O(q−5), q � 1 ,

(4.32a, b)

where c1
.
= .7507, c2

.
= .224, and c3

.
= 1.8402. Inserting Eqs. (4.30) and (4.32a)

into Eq. (4.31) reveals that the axisymmetric mobilities of permeable particles have

non-zero O(K2/5) contact values by contrast to impermeable particles [116]. This is

why permeable particles can aggregate even in the absence of interparticle forces.
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The transverse mobilities M and B have the lubrication forms

Mξ =
m1 +m2 log ξ−1 +m3

[
log ξ−1 − 5

12
g(q)

]
log ξ−1 +m6g(q)

m4 +m5 log ξ−1 +
[
log ξ−1 − 5

12
g(q)

]
log ξ−1 +m7g(q)

, (4.33a)

Bξ =
b1 + b2 log ξ−1 + b3

[
log ξ−1 − 5

12
g(q)

]
log ξ−1 + b6g(q)

b4 + b5 log ξ−1 +
[
log ξ−1 − 5

12
g(q)

]
log ξ−1 + b7g(q)

, (4.33b)

where the coefficients mi and bi (i = 1-9) depend on size ratio. The function g(q) is

the numerical solution of a transverse Reynolds lubrication equation [116] with the

asymptotic properties,

g(q) = −12

5
log q + c4 +O(q), q � 1 ; g(q) = c5q

−5/2 +O
(
q−5
)
, q � 1,

(4.34a, b)

with c4
.
= −0.48 and c5

.
= 2.12. Inserting the limiting result (4.34a) for q → 0 into

Eq. (4.33), yields permeability-dependent contact values for the transverse mobilities

[116].

The lubrication forms of the classical mobility functions are

Gξ,0 = ν−1ξ , Lξ,0 = Rg(κ) ξ , Aξ,0 = 1−Rst(κ) ξ , (4.35a, b, c)

and

Mξ,0 =
m1 +m2 log ξ−1 +m3 log2ξ−1

m4 +m5 log ξ−1 + log2ξ−1
, (4.36a)

Bξ,0 =
b1 + b2 log ξ−1 + b3 log2ξ−1

b4 + b5 log ξ−1 + log2ξ−1
. (4.36b)

These results are recovered from formulas (4.31) and (4.33) by setting f = 1 and

g = 0, corresponding to q →∞, according to Eqs. (4.32 b) and (4.34 b).

Away from the near-contact region, the particle mobilities are approximated by

the mobilities of impermeable particles, denoted by G0, L0, A0,M0, B0, under the

assumption of weak permeablity, as discussed above.
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4.3 Collision efficiency formulas for permeable par-

ticles

In this section, a leading-order asymptotic formulation is presented for the compu-

tation of collision efficiencies of weakly permeable particles. Collision efficiencies are

determined by the values of the collision efficiency integrals (4.26)-(4.29) on the con-

tact surface at s = 2. The formulation employs a uniformly valid approximation of

the integrands in Eqs. (4.26b)-(4.29b) for K � 1. The resulting collision efficiencies

are given by a quadrature of lubrication approximations for the mobility functions of

permeable particles in the near-contact region, and size-ratio-dependent parameters

are derived from standard hard-sphere mobilities. Details of the generic derivation are

provided in Appendix C.1, and the procedure for evaluating the formulas is provided

in Appendix C.2.

4.3.1 Collision efficiency for Brownian motion

The binary collision efficiency for permeable particles undergoing Brownian motion

is given by Eq. (4.26). The collision efficiency integral IB is evaluated on the contact

surface by the procedure described in Appendix C.1.1. For integral (4.26b), the

required functions are

Q(s) = G(s) , P (s) =
2eĀH Φ̄(s)

s2
, (4.37a, b)

and correspondingly, by Eqs. (4.31a) and (4.17),

Qξ =
ν−1ξ

f(q)
, Pξ =

e−
νĀH

6ξ

2
. (4.38a, b)
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The corresponding function, G0, for impermeable spheres is also required, and in the

lubrication regime is given by Eq. (4.35a). The required indefinite integral (C.1.11)

is

FB(x) = ν

∫ x

0

e−
νĀH

6ξ
dξ

2ξ
=
ν

2
E1

(
νĀH
6x

)
, (4.39)

where E1 =
∫∞
x
e−tdt/t is the exponential integral.

Inserting Eqs. (4.37)-(4.39) into Eq. (C.1.12) and the result into Eq. (4.26) yields

the collision efficiency,

E
(k)
B =

[
ΓB + Λ

(0)
B −

ν

2
E1(Ak)

]−1

, (4.40)

where

ΓB = lim
ξ→0

[∫ ∞
ξ

2eĀH Φ̄(t)

(2 + t)2G(t)
dt+

ν

2
E1

(
νĀH
6ξ

)]
, (4.41)

=

∫ ∞
0

2eĀH Φ̄(t)

(2 + t)2G(t)
dt , ĀH > 0 , (4.42)

and

Λ
(0)
B =

ν

2

[∫ ∞
1

e−Ak/q [f(q)− 1]
dq

q
+

∫ 1

0

e−Ak/qf(q)
dq

q

]
. (4.43)

Here, the parameter Ak is the modified Hamaker parameter for permeable particles,

Ak =
ĀH

6K2/5
. (4.44)

For Ak � 1, Eqs. (4.37b), (4.38b) and (4.39) reduce to

P (s) =
2

s2
, Pξ =

1

2
, (4.45a, b)
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and

FB,0(x) =
ν

2
log x , (4.46)

yielding the collision efficiency,

E
(k)
B =

[
ΓB,0 + Λ

(0)
B,0 −

ν

2
log νK2/5

]−1

, Ak � 1 , (4.47)

where

ΓB,0 = lim
ξ→0

[∫ ∞
ξ

2

(2 + t)2G(t)
dt+

ν

2
log ξ

]
, (4.48)

and

Λ
(0)
B,0 =

ν

2

[∫ ∞
1

[f(q)− 1]
dq

q
+

∫ 1

0

f(q)
dq

q

]
.
= 0.1626 ν . (4.49)

Here, ΓB,0 depends only on size ratio, and ν−1Λ
(0)
B,0 has the indicated constant value.

The numerical value of this integral was previously computed to determine the contact

time between permeable particles under the action of a constant force [55, Eq.(4.24)].

The effect of particle permeability vanishes in the complementary limit of strong

van der Waals attraction, Āk � 1, and the classical result E
(0)
B for impermeable

spheres is recovered,

E
(0)
B = Γ−1

B , (4.50)

with ΓB given by Eq.(4.42).

4.3.2 Collision efficiency for sedimentation

The collision efficiency for permeable particles undergoing sedimentation is given by

Eq. (4.27). The collision efficiency integral Ig is evaluated on the contact surface

by the procedure described in Appendix C.1.1. For integral (4.27b), the required

functions are

Q(s) = L(s) , P (s) = (L(s)−M(s)) s−1 , (4.51)
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and from Eqs.(4.31b) and (4.33a), the lubrication forms are

Qξ = Rg
ξ

f(q)
, Pξ = −1

2
Mξ(ξ, q) . (4.52)

The corresponding functions, L0 and M0, for impermeable spheres are also required;

their lubrication forms are given by Eqs.(4.35b) and (4.36a). Here, the required

indefinite integral (C.1.11) is

Fg(x) = − 1

Rg

∫ x

Mξ,0(t)
dt

2t
= log fg(x) , (4.53)

and fg(x) is given by Eq. (C.1.30) in Appendix C.1.4. Inserting this result with

Eqs. (4.51)-(4.52) into (C.1.12) yields the collision efficiency integral evaluated on the

contact surface,

I(k)
g (sc) = Γg + Λ(0)

g − log fg(νK
2/5) , (4.54)

where

Γg = lim
ξ→0

[∫ ∞
ξ

L0(t)−M0(t)

(2 + t)L0(t)
dt+ log fg(ξ)

]
, (4.55)

Λ(0)
g = − 1

2Rg

[∫ ∞
1

[Mξ(ξ, q)f(q)−Mξ,0(ξ)]
dq

q
+

∫ 1

0

Mξ(ξ, q)f(q)
dq

q

]
. (4.56)

Inserting this result into Eq. (4.27) yields the collision efficiency,

E(k)
g =

[
e
−
(

Γg+Λ
(0)
g

)
fg
(
νK2/5

)]−2

. (4.57)

4.3.3 Collision efficiency for uniaxial strain

The collision efficiency for permeable particles in uniaxial strain is given by Eq. (4.28).

The analysis is closely analogous to that given above for gravity-induced collisions.
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The collision efficiency integral (4.28b) is evaluated on the contact surface by the

procedure described in Appendix C.1.1. In this case, the required functions are

Q(s) = 1− A(s) , P (s) = (A(s)−B(s)) s−1 . (4.58)

From Eqs.(4.31c) and and (4.33b), the lubrication forms are

Qξ = Rst
ξ

f(q)
, Pξ =

1

2
B′ξ(ξ, q) , (4.59)

where we define,

B′ = 1−B . (4.60)

The corresponding functions, 1 − A0 and B0, for impermeable spheres are also re-

quired, and their lubrication forms are given by Eqs.(4.35c) and (4.36b). The required

indefinite integral (C.1.11) is

Fst(x) =
1

Rst

∫ x

B′ξ,0(t)
dt

2t
= log fst(x) , (4.61)

and fst(x) is given by Eq. (C.1.31) and B′ε,0 is defined by Eq. (4.60). Inserting this

result with Eqs. (4.58)-(4.59) into (C.1.12) yields the collision efficiency integral eval-

uated on the contact surface,

I
(k)
st (sc) = Γst + Λ

(0)
st − log fst(νK

2/5) , (4.62)

where

Γst = lim
ξ→0

[∫ ∞
ξ

A0(t)−B0(t)

(2 + t) [1− A0(t)]
dt+ log fst(ξ)

]
, (4.63)

and

Λ
(0)
st =

1

2Rst

[∫ ∞
1

[
B′ξ(ξ, q)f(q)−B′ξ,0(ξ)

] dq
q

+

∫ 1

0

B′ξ(ξ, q)f(q)
dq

q

]
. (4.64)

85



Inserting this result into Eq. (4.28) yields the collision efficiency,

E
(k)
st =

[
e
−
(

Γst+Λ
(0)
st

)
fst
(
νK2/5

)]3

. (4.65)

4.3.4 Collision efficiency for shear flow

Contact values for two collision efficiency integrals are needed for the collision effi-

ciency of particles in shear flow, according to Eq. (4.29). This includes Ist(sc), as

analyzed above, and Ish(sc), analyzed below by the procedure described in Appendix

C.1.1. The required functions for Ish(sc) are

Q(s) = 1− A(s) , P (s) =
1

4
e−2Ist(s)B(s)s . (4.66)

Here, evaluation of the collision efficiency integral Ist is required away from the contact

surface which is facilitated by the procedure described in Appendix C.1.3. The lubri-

cation forms of Eq. (4.66) are obtained using Eqs. (C.1.22)-(C.1.23) and Eqs. (4.31c)

and (4.33b),

Qξ = Rst
ξ

f(q)
, Pξ =

1

2

(
e−(Γst+Λst(q))fst(νK

2/5)
)2
Bξ(ξ, q) , ξ = O(K2/5) ,

(4.67)

and

Qξ,0 = Rst ξ , Pξ,0 =
1

2

(
e−Γstfst(ξ)

)2
Bξ,0(ξ) , K2/5 � ξ � 1 , (4.68)

where Γst is given by Eq. (4.63) and fst(ξ) is given by Eq. (C.1.31). The function

Λst(q) is generically defined by Eq. (C.1.24) and is, in this case, given by

Λst(q) =
1

2Rst

[∫ ∞
1

[
B′ξ(ξ, q

′)f(q′)−B′ξ,0(ξ)
] dq′
q′

+

∫ 1

q

B′ξ(ξ, q
′)f(q′)

dq′

q′

]
, (4.69)
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where B′ is defined by Eq. (4.60). The additional indefinite integral (C.1.11), needed

for evaluating Ish on the contact surface is

Fsh(ξ) =
e−2Γst

2Rst

∫ ξ

ξ0

f 2
st(t)Bξ,0(t)

dt

t
, (4.70)

where ξ0 is an arbitrary constant.

Inserting the above elements into (C.1.12) yields the collision efficiency integral

evaluated on the contact surface,

I
(k)
sh (sc) = Γsh + Λ

(0)
sh − Fsh

(
νK2/5

)
, (4.71)

where

Γsh = lim
ξ→0

[∫ ∞
ξ

e−2Ist,0(t)B0(t)

4 [1− A0(t)]
(2 + t)dt+ Fsh(ξ)

]
, (4.72)

and

Λ
(0)
sh =

e−2Γst

2Rst

[∫ ∞
1

[
e−2Λst(q)f 2

st

(
νK2/5

)
Bξ(ξ, q)f(q)− f 2

st (ξ)Bξ,0(ξ)
] dq
q

+

∫ 1

0

e−2Λst(q)f 2
st

(
νK2/5

)
Bξ(ξ, q)f(q)

dq

q

]
. (4.73)

Note that the value of ξ0 used in Eq. (4.70) affects the value of Γsh but not the value

of I
(k)
sh (sc).

Inserting this result together with Eqs. (4.62) into Eq. (4.29) yields

E
(k)
sh =

[(
e
−
(

Γst+Λ
(0)
st

)
fst
(
νK2/5

))2

−
(

Γsh + Λ
(0)
sh − Fsh

(
νK2/5

))]3/2

, (4.74)

where the quantity inside the square brackets is assumed to be positive, otherwise

Esh = 0. In shear flow, there exists a positive, size-ratio-dependent critical perme-

87



ability, K∗, below which Esh = 0. The critical permeability is a root of the equation

(
e
−
(

Γst+Λ
(0)
st∗

)
fst
(
νK2/5
∗
))2

−
(

Γsh + Λ
(0)
sh∗ − Fsh

(
νK2/5
∗
))

= 0 , (4.75)

where Λ
(0)
st∗ and Λ

(0)
sh∗ denote evaluation at K = K∗. The existence of a critical perme-

ability is analogous to the critical roughness below which particle contact does not

occur in shear [88].

4.4 Collision efficiency formulas for rough parti-

cles

Aggregation of particles with small-amplitude surface roughness δ � 1 is considered

in this section because of the qualitative similarity to the aggregation of permeable

particles. Rough particles also have axisymmetric mobilities with non-zero contact

values and can thus undergo aggregation in the absence of non-hydrodynamic inter-

particle forces. The O(δ) boundary layer that forms in the limit of small-amplitude

roughness is analogous to the O(K2/5) boundary layer formed with permeable parti-

cles in the weak-permeability limit (4.1).

The axisymmetric mobilities of particles with surface roughness have non-zero

O(δ) contact values because the contact surface is, by definition, at a non-zero surface-

to-surface separation, ε = δ; the contact values are obtained by inserting ε = δ into the

near-contact mobilities for impermeable particles Eqs. (4.35)-(4.36). For separations

ε > δ, the mobilities of rough particles are identical to those for smooth, impermeable

particles [49,64,102].
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4.4.1 Collision efficiencies for rough particles

As shown in Appendix C.1.2, values of collision efficiency integrals at the contact

surface, s = 2 + νδ, for particles with small-amplitude surface roughness, δ, are

directly obtained from the contact values of collision efficiency integrals for permeable

particles by making the substitution:

Λ(0) → F (νK2/5)− F (νδ) . (4.76)

This result is supported by Eq. (C.1.25). By this procedure, the collision efficiencies

for particles with small-amplitude surface roughness are derived below. A direct

derivation of the formulas is presented in Appendix C.1.2, and parameters needed for

evaluating the formulas are provided in Appendix C.2.

Brownian motion

By the procedure described above, using substitution (4.76), the collision efficiency

for rough particles in Brownian motion is derived from Eq. (4.40), and is given by

E
(δ)
B =

[
ΓB −

ν

2
E1(Aδ)

]−1

, (4.77)

where ΓB is given by Eq. (4.42), E1(x) is the exponential integral, and Aδ is the

modified Hamaker parameter for rough particles,

Aδ =
ĀH
6δ

. (4.78)

For Aδ � 1, Eq. (4.77) reduces to

E
(δ)
B =

[
ΓB,0 −

ν

2
log νδ

]−1

, Aδ � 1 , (4.79)
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where ΓB,0 is given by Eq. (4.48). The classical result (4.50) is recovered for Aδ � 1;

surface roughness has negligible effect under these conditions.

Gravity sedimentation

The collision efficiency for rough particles undergoing sedimentation, derived from

Eq. (4.57) by substitution (4.76), is

E(δ)
g =

(
e−Γgfg(νδ)

)−2
, (4.80)

where fg is defined by Eq. (C.1.30) and Γg is given by Eq. (4.55).

Uniaxial strain

The collision efficiency for rough particles in uniaxial strain, derived from Eq. (4.62)

by substitution (4.76), is

E
(δ)
st =

(
e−Γstfst(νδ)

)3
, (4.81)

where fst is defined by Eq. (C.1.31) and Γst is given by Eq. (4.63).

Shear flow

By the same procedure, substituting Eq. (4.76) into Eq. (4.75), the collision efficiency

of rough particles in shear flow is given by

E
(δ)
sh =

[(
e−Γstfst(νδ)

)2 − (Γsh − Fsh(νδ))
]3/2

, (4.82)

where fst is given by Eq. (C.1.31), Γst by Eq. (4.63), Γsh by (4.72), and Fsh by (4.70).

The size-ratio-dependent critical roughness, δ∗, below which E
(δ)
sh = 0 [88], is a

root of the equation obtained by making the same substitution into Eq.(4.75), i.e.,

(
e−Γstfst(νδ∗)

)2 − (Γsh − Fsh(νδ∗)) = 0 . (4.83)
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4.4.2 Equivalent roughness

The qualitative similarity between weakly-permeable particles and particles with

small-amplitude surface roughness suggests the introduction of an equivalent rough-

ness δeq defined by setting the corresponding collision efficiencies equal, E(δeq) = E(k).

Equating the collision efficiency for permeable and rough particles, by equating con-

tact values for the collision efficiency integrals (C.1.12) and (C.1.20) yields

F (νδeq)− F (νK2/5) + Λ(0) = 0 . (4.84)

This result suggests δeq ≈ ckK
2/5, reflecting the respective boundary layer thicknesses

for the two problems, where the coefficient ck would be expected to depend on the

aggregation mechanism and size ratio of the particles. Inserting this scaling and

Eqs. (4.86), (C.1.11), and (C.1.14) into Eq. (4.84) yields an equation for the roughness

coefficient, ck,

∫ ck

1

Pξ,0(ξ)
dq

q
+

∫ ∞
1

[Pξ(ξ, q)f(q)− Pξ,0(ξ)]
dq

q
+

∫ 1

0

Pξ(ξ, q)f(q)
dq

q
= 0 . (4.85)

This relationship is not generally invertible except for constant Pξ, and, under these

conditions, ck will be independent of size ratio. These conditions are met for parti-

cle aggregation under Brownian motion in the absence of van der Waals attraction,

according to Eq. (4.45b). Inserting Eqs. (4.45b) and (4.49) into relation (4.85) yields

δeq = ckK
2/5 , ck = e−2ν−1Λ

(0)
B,0

.
= 0.7224 . (4.86)

The collision efficiency of particles with permeability K under Brownian motion with-

out van der Waals attraction is thus rigorously related to the collision efficiency of

particles with surface roughness δeq; the result is independent of size ratio. Defining

equivalent roughness by equating collision rates in Brownian motion is mathematically
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equivalent to equating the contact time between permeable and rough particles un-

der the action of a constant force directed along their line-of-centers starting from an

arbitrary separation outside of the lubrication region (cf. [55, Eqs.(4.24) and (4.26)]).

Equation (4.86) holds for constant Pξ in Eq. (4.85). Non-constant Pξ arises be-

cause of the oblique near-contact trajectories that determine collision efficiencies in

sedimentation, uniaxial strain, and in shear flow. The transverse mobilities M and

B are insensitive to permeability thus Pξ ≈ Pξ,0 [116] but the logarithmic behavior

of Pξ,0 at ξ = 0, resulting from the lubrication forms of the transverse mobilities

(4.36), suggests that, while the scaling of Eq. (4.86) is expected to hold, the rough-

ness coefficient, ck, may be sensitive to the aggregation mechanism, size ratio, and the

Hamaker constant (Brownian motion). However, the results presented below contra-

dict this conclusion and support the robustness of Eq. (4.86) for all four aggregation

mechanisms and parameter ranges considered herein.

4.5 Numerical Results and Discussion

In this section, numerical results are presented for collision efficiencies of permeable

particles undergoing (i) Brownian motion, (ii) gravity sedimentation, (iii) uniaxial

straining flow, and (iv) shear flow. In the latter case, results are also presented for

the critical permeability below which Esh = 0. The corresponding results for rough

particles are also presented using the relationship (4.86). The procedure for evaluating

the collision efficiencies is described in Appendix C.2.

Figures 4.1-4.5 reveal very close quantitative agreement between the results for

permeable and rough particles using an equivalent roughness defined by (4.86) for all

four aggregation mechanisms over a wide range of parameter values; in most cases, the

curves for permeable particles and particles with equivalent roughness are virtually

indistinguishable.
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The dotted lines in figure 4.3 depict results for permeable particles obtained us-

ing the axisymmetric lubrication formula (4.31c) for permeable particles with the

transverse lubrication formula (4.36b) for impermeable particles (i.e., in place of

Eq. (4.33b)). Particle permeability has no effect on the transverse pair mobility

of equal size particles, a modest effect on unequal size particles, and it qualitatively

affects the near-contact motion for extreme size ratios [116]. A comparison of the

dotted and solid lines in figure 4.3, however, indicates that effect of permeability on

the transverse mobility is barely perceptible even for κ = .125. This finding demon-

strates the insensitivity of collision efficiencies to the transverse mobility and provides

a plausible explanation for the robustness of the proposed equivalent roughness (4.86)

for permeable particles.

Bäbler et. al. (2006) [44] calculated collision efficiencies for permeable particles

in shear flow in complementary high-permeability regime, K = O(1). A reliable

quantitative comparison to their results is not possible due to the disparity of the

regimes considered. However, results for the largest permeabilities presented in figure

4.4 appear to be in approximate agreement with the predictions of Bäbler et. al.

(2006) for permeabilities in the smallest range they considered.

Permeability and roughness are analogous generic mechanisms that allow particle

aggregation without the need for interparticle forces. Simplified asymptotic formu-

las for binary collision rates were derived for weak permeability and small-amplitude

roughness. A quantitative relation between permeable and rough particles is estab-

lished through an equivalent roughness, allowing use of the simpler explicit formulas

for rough particles as approximations for the aggregation rate of permeable particles.
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The authors are grateful to Dr. A. Z. Zinchenko [63] for the use of his bispherical

coordinate code for computing pair mobilities of impermeable spheres, and to Dr. D.

J. Jeffrey [67] for the use of his program available online for resistance functions used

herein to obtain the matching constants for the resistance functions of impermeable

spheres.
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Figure 4.1: Collision efficiencies for particles in Brownian motion, permeable parti-
cles (4.40) (solid lines), rough particles (4.77) with A−1

δ = ckA
−1
k with ck given by

Eq. (4.86) (dashed lines), size ratios indicated, and ĀH = 10−4; weak van der Waals
formula (4.47) (dotted lines).
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Figure 4.2: Collision efficiencies for particles undergoing sedimentation, permeable
particles (4.57) (solid lines), rough particles (4.80) with δeq given by Eq. (4.86) (dashed
lines); size ratios indicated.
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Figure 4.3: Collision efficiencies for particles in uniaxial straining flow, permeable par-
ticles (4.65) (solid lines), rough particles (4.81) with δeq given by Eq. (4.86) (dashed
lines), permeable particles using impermeable transverse mobility function Bξ,0 (dot-
ted lines); size ratios indicated.
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Figure 4.4: Collision efficiencies for particles in shear flow, permeable (4.74) (solid
lines), and rough particles (4.82) with δeq given by Eq. (4.86) (dashed lines); size
ratios indicated.
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Figure 4.5: Size ratio versus critical permeability (4.75) (solid lines) and critical
roughness (4.83) with δeq given by Eq. (4.86) (dashed lines).
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Chapter 5

A pairwise hydrodynamic theory

for flow-induced particle transport

in shear and pressure-driven flows

5.1 Introduction

Particles in a fluid subjected to a bulk deformation interact with each other hydro-

dynamically, modifying the rheology of suspensions, and can lead to flow-induced

microstructuring [119–123]. Flow-induced microstructure in flowing suspensions is a

key to understanding a diverse range of natural phenomena and is fundamental to

the engineering design of these systems. Flow-induced microstructure is important in

materials processing, such as the production of particle-filled polymers [124–126], and

ceramic tape casting [127]. Rheology and microstructure affect the sensation of food

and digestion [2, 3]. Flow-induced demixing in polydisperse suspensions is a useful

separation technique [4, 5].

The effects of suspension microstructure are especially pronounced in tightly-

confined flows as arise in microfluidic devices [128–131] and hydrofracturing [132,133].
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Blood flow in the microcirculation depends critically on the coupled rheology and

flow-induced microstructure [1]. The Fahraeus-Lindqvist effect refers to the con-

comitant reduction in hematocrit and viscosity in capillaries and small vessels (i.e.,

arterioles, venules). In their classical paper, Fahraeus and Lindqvist [134] explain

these phenomena in terms of the migration of red blood cells (erythrocytes) to the

region of faster-moving fluid at the center of the capillary where velocity gradients

are smaller. This mechanism is important for reducing the workload on the heart and

helps to understand the detrimental effects of certain diseased states (e.g., malaria,

sickle-cell anemia) that disrupt this mechanism by altering the mechanical proper-

ties of red blood cells [135–137]. This phenomenon continues to be an active area of

study [138–140].

Investigations of flow-induced structuring have focused on suspensions of spherical

particles suspended in Newtownian liquids. Low-Reynolds-number conditions usu-

ally apply, based on the small size of the suspended particles in typical applications.

Accordingly, fluid motion is governed by the Stokes equations [141]. Early studies

include experimental measurements [142,143] and computer simulations [144,145] of

self-diffusion of marked tracer particles in sheared suspensions. Eckstein et. al. [142]

proposed a self-diffusivity, Ds ∼ γ̇a2, resulting from O(a) random particle displace-

ments with zero mean due to uncorrelated hydrodynamic interactions between parti-

cles occurring at a rate of γ̇, where a is the particle radius, γ̇ is the magnitude of the

shear-rate, and the proportionality depends on the volume fraction. Leighton and

Acrivos [146] proposed the existence of a cross-flow particle flux down the particle

concentration gradient with a similarly scaled diffusivity, D ∼ Ds, and a particle drift

velocity, V , from high to low shear stress [147]. This theoretical framework was used

to explain the anomolous time-varying viscosity previously observed by Gadala-Maria

and Acrivos [147, 148] and provides the basis for the diffusive flux model of suspen-

sions where the microstructure is predicted by a phenomenological particle transport
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equation and is coupled to the suspension rheology [149]. The diffusive flux model

has been subsequently used to describe the flow-induced microstructure and rheology

of suspensions and emulsions [150–152].

An alternate suspension balance model was developed where particle fluxes result

from particle stresses [153, 154]. The suspension balance model has also been widely

used to explore the flow-induced microstructure and rheology of suspensions [155–

159]. The suspension balance and diffusive flux models are similar; moreover, the

diffusive flux model can be derived from the suspension balance model [153,160].

Both models have difficulty describing flows at points where the local shear-rate

vanishes, e.g., at the center of a Poiseuille flow. At these points, the predicted particle

concentration profile has an unphysical cusp but the issue can be remedied through

the use of an ad hoc non-local shear-rate or the imposition of a maximum particle

packing fraction. Away from these singular points, the predicted particle concentra-

tion profiles are in general agreement with experimental measurements [156,161–163],

including predictions of size segregation in bidisperse suspensions with enrichment of

larger particles in regions of low shear-rate [164–166] seen in experiments [167–169].

However, the prediction that particle enrichment can be manipulated, even reversed,

to yield the enrichment of smaller particles in low-shear-rate regions has not been

observed.

Kinetic theory models have been used to predict particle segregation in suspen-

sions of polydisperse systems with complex, deformable particles [170–178]. Some of

these studies focused on margination, the size segregation that occurs in the vicinity

of a no-slip boundary; others explored size segregation that occurs in small channels,

several particle diameters wide (e.g., arterioles, venules). The results further a funda-

mental understanding of the Fahraeus-Lindqvist effect and related phenomena such

as plasma skimming [179, 180], showing that smaller, stiffer particles (e.g., platelets,

neutrophils) accumulate near bounding walls of a channel with larger and more de-
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formable particles (e.g., erythrocytes) migrating away. These models are inherently

pairwise descriptions and thus, in principle, restricted to semi-dilute systems although

they may represent a reasonable coarse-graining for suspensions with modest particle

volume fraction [181–184]. This is more likely to be true for soft particles because par-

ticle deformation tends to suppress highly-correlated phenomena, such as jamming.

These descriptions involve computationally intensive boundary integral simulations

of pair trajectories of deformable particles to determine the resulting displacements

that yield the collision kernel of the kinetic theory model. The resulting Boltzmann

equation can be directly integrated to yield the particle distributions, or the collision

kernel can be expanded for smoothly varying spatial distributions of particles, ex-

tracting diffusive particle fluxes and drift velocities resulting from pair interactions.

This yields a phenomenological particle transport equation similar to the diffusive

flux model.

Pairwise hydrodynamic interactions of force- and torque-free, spherical particles

in shear flow under creeping flow conditions are well-understood and analytically

tractable [87, 185–188]. By the linearity of the Stokes equations and by symmetry,

pair interactions between spherical particles on open trajectories in shear flow are

reversible, yielding zero net cross-flow displacements of the particles; however, there

are diverse phenomena that can break the symmetry of pair trajectories in shear flow,

leading to non-zero net displacements. It is generally accepted that particle displace-

ments resulting from irreversible pair interactions are the dominant mechanism for

particle transport [146,149].

Mechanisms that break the symmetry of pair interactions include the perturbative

effects that slightly affect hydrodynamic pair interactions and short-range phenom-

ena that qualitatively affect the motion of particles when they are in near-contact

with surface-to-surface separations h0 � a but have a negligible effect at larger sep-

arations. Short-range phenomena involve symmetry-breaking “contact” interactions
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between particles on narrowly offset streamlines of the flow. The classical lubrication

singularity between smooth spherical particles hinders the near-contact approach of

particles in the compressive quadrant of the shear flow, preventing contact, and acts

symmetrically slowing the separation of the particles in the extensional quadrant of

the flow. Contact interactions break the symmetry of pair interactions in shear flow

because they involve a compressive force that prevents particle overlap in the com-

pressive quadrant of the flow without a compensating tensile force in the extensional

quadrant.

The prototypical example of a short-range mechanism for contact interactions is

small-amplitude surface roughness, d � a, that prevents surface-to-surface parti-

cle separations less than d. [49, 102, 103, 189, 190]. Other examples of particles with

short-range contact interactions include particles with weak permeability [55,116,191],

particles stabilized by screened electrostatic interactions [94,192], and emulsion drops

under high-surface-tension conditions [151,193]. Particle-scale deformation associated

with stronger flows is an example of a perturbative mechanism, affecting hydrody-

namic interactions at O(a) separations, and breaking the symmetry of more distant,

non-contacting pair trajectories [194–197]. It is worth noting that qualitatively sim-

ilar results are predicted under high-surface-tension conditions where displacements

result from short-range contact interactions [193].

In this chapter, we present a simplified theory for flow-induced structuring in

particle suspensions based on pair interactions between particles. Starting from a

Boltzmann-type master equation, particle fluxes are derived for the cross-flow hydro-

dynamic particle transport in flows such as shear and planar Poiseuille flow. A general

analysis is presented for the boundary layer that forms in regions where the shear rate

vanishes and for the stationary particle distributions that form away from these re-

gions. Cross-stream displacements for particles that undergo symmetry-breaking,

contact interactions are formulated in terms of quadratures of mobility functions for
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spherical particles. Using this result, transport coefficients are explicitly calculated for

rough particles and emulsion drops and results are presented for particle distributions

and calculated for monodisperse and bidisperse suspensions.

The general formulation of the problem, including the Boltzmann equation is pre-

sented in § 5.2, transport coefficients are derived in §5.3 including an analysis of the

region where shear rates vanish. General results for stationary particle distributions

are derived in §5.4 that are independent of the character of the pair interactions

between particles. Trajectories of particles that undergo contact interactions are an-

alytically integrated in §5.5 to yield particle displacements formulated as quadratures

of standard mobility functions. The results from §5.4 and §5.5 are combined in §5.6

to obtain spatial distributions of rough particles and emulsion drops in mono- and

bidisperse mixtures. Concluding remarks are made in §5.7.

5.2 Boltzmann formulation

We consider particle transport in a polydisperse suspension of non-Brownian neutrally-

buoyant particles in 2d unidirectional flows,

v = v(X2)e1 , (5.1)

where (X1, X2, X3) describes a Cartesian coordinate system and ek (k = 1, 2, 3) are

the corresponding unit vectors. Velocity fields (5.1) include simple shear and planar

Poiseuille flow.

The particle distribution evolves in the plane perpendicular to the fluid velocity

according to a Boltzmann-type master equation [171,174]

∂ni
∂t

= −∇ · Fi , (5.2)

103



where ni(X2, X3) is the number density of type-i particles (i = 1, 2, · · · ,m), and

Fik(X2, X3) (k = 2, 3) is the flux of type-i particles in the k-direction resulting from

pairwise “collisions” with other particles,

Fik(X2, X3) =
m∑
j=1

Fijk . (5.3)

Here, Fijk is the contribution to the flux Fik from collisions with type-j particles

(j = 1, 2, ...,m) given by the Boltzmann collision integral,

Fijk =

∫ ∞
−∞

dx−∞3

∫ ∞
−∞

dx−∞2

∫ 0

−∆Xij
k

ni(X
i,−∞
k )nj(X

j,−∞
k )

∣∣vij∣∣ dX i,−∞
k , (5.4)

where X i,−∞
k is the distance of particle i from the plane Xk where the flux is eval-

uated, and ∆X ij
k is the displacement of particle i in the k-direction due to its bi-

nary encounter with particle j. Prior to a pair interaction, particles are widely

separated in the X1-direction (i.e., flow direction) with uncorrelated initial posi-

tions (X i,−∞
2 , X i,−∞

3 ) and (Xj,−∞
2 , Xj,−∞

3 ) in the cross-flow plane. The relative ini-

tial position in the cross-flow plane, i.e., the trajectory offset, is defined, x−∞k =

Xj,−∞
k − X i,−∞

k , (k = 2, 3). Formula (5.4) is obtained using the odd symmetry of

particle displacements with respect to trajectory offset,

∆X ij
k

(
−x−∞k

)
= −∆X ij

k

(
x−∞k

)
. (5.5)

Particle displacements are, moreover, symmetric with respect to complementary co-

ordinates, i.e.,

∆X ij
2 (−x−∞3 ) = ∆X ij

2 (x−∞3 ) , ∆X ij
3 (−x−∞2 ) = ∆X ij

3 (x−∞2 ) . (5.6)
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The widely-separated particles approach with velocity magnitude,

|vij| =
∣∣v(Xj,−∞

2 , Xj,−∞
3 )− v(X i,−∞

2 , X i,−∞
3 )

∣∣ , (5.7)

where v(X2, X3) is the prescribed velocity (5.1).

Cross-flow convection, such as particle migration away from solid boundaries,

is outside the scope of our study, and is omitted from Eq. (5.2). For suspensions

contained by boundaries that are impermeable to the particles, stationary particle

distributions are governed by

Fi = 0 . (5.8)

5.3 Particle transport

5.3.1 Local transport coefficients

Here, we analyze particle transport in suspensions undergoing flows with velocity (5.1)

and derive diffusive and drift fluxes, i.e., fluxes proportional to the local concentration

gradients of particle species and a flux associated with a drift velocity of particles from

high to low shear rates. Local transport coefficients for these fluxes are obtained.

The diffusive fluxes have been derived previously [198] and a drift velocity has been

extracted from a Boltzmann collision integral [177]. A brief derivation is provided

below for completeness and uniformity.

The diffusive and drift fluxes are obtained by evaluating the collision flux (5.4)

for perturbative variations in number densities and relative velocities. The number

densities and shear-rates are expanded up to linear variations,

ni = ni0 +
3∑

k=2

∂ni
∂Xk

Xk +O(X2
k) , (5.9)
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γ̇ = γ̇0 +
dγ̇

dX2

X2 +O(X2
2 ) , (5.10)

where γ̇0 and ni0, respectively, are the local shear-rate-magnitude and number densi-

ties of the particles at Xk = 0 (k = 2, 3); the quantities dγ̇/dX2 and ∂ni/∂Xk are the

corresponding local values of the derivatives. In general, the relative velocity (5.7)

becomes

|vij| = |x−∞2 |
∣∣∣∣γ̇0 +

dγ̇

dX2

[
X i,−∞

2 +
1

2
x−∞2

]∣∣∣∣ . (5.11)

The development presented here assumes a non-vanishing shear rate,

γ̇0 >

∣∣∣∣ dγ̇dX2

∣∣∣∣ ∣∣∣∣X i,−∞
2 +

1

2
x−∞2

∣∣∣∣ , (5.12)

so that the relative velocity (5.11) reduces to

|vij| = |x−∞2 |
(
γ̇0 +

dγ̇

dX2

[
X i,−∞

2 +
1

2
x−∞2

])
. (5.13)

The case of vanishing shear rates is analyzed in the next section.

Inserting Eqs.(5.9)-(5.10) into the flux (5.4) and integrating in X i,−∞
k yields the

net flux of type-i particles,

Fik = F
(c)
ik + δk2F

(γ̇)
i2 , (5.14)

where F
(c)
ik are the diffusive fluxes

F
(c)
ik = −Ds

ik

dni
dXk

−
m∑
j=1

(
Dijk

dnj
dXk

)
, (5.15)

and F
(γ̇)
i2 is the drift flux

F
(γ̇)
i2 = −ni0Vi

dγ̇

dX2

. (5.16)

The Kronecker delta δpq in Eq. (5.14) indicates that there is a drift flux in the

X2−direction only.
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The above diffusivities and the drift-velocity-coefficient are defined by

Ds
ik = γ̇0

m∑
j=1

nj0 I
A
ijk , (5.17)

Dijk = γ̇0 ni0
(
IAijk + IBijk

)
, (5.18)

Vi =
m∑
j=1

nj0

(
IAij2 +

1

2
IBij2

)
, (5.19)

where IAijk, I
B
ijk are integrals over the cross-flow plane,

IAijk =
1

2

∫ ∞
−∞

∫ ∞
−∞
|x−∞2 |(∆X ij

k )2dx−∞2 dx−∞3 , (5.20)

IBijk = −
∫ ∞
−∞

∫ ∞
−∞
|x−∞2 |x−∞k ∆X ij

k dx
−∞
2 dx−∞3 . (5.21)

Both integrals are intrinsically positive given the symmetry of particle displacements

(5.5).

The self diffusivity of type-i particles, Ds
ik, defined by Eq. (5.17), can be directly

obtained as a sum of the rate of mean squared displacements from random encounters

with all particle species. Diffusive fluxes occur in the both the velocity gradient and

vorticity directions and have contributions from concentration gradients of all species;

a non-zero diffusive flux of a species with uniform concentration can be generated by

a gradient of another species. This formulation of the diffusive fluxes concurs with

that presented by Zarraga & Leighton (2001).

The drift velocities describe the migration of particles from regions of high shear

rates. Gradients of the shear-rate-magnitude γ̇ generate an oppositely-directed flux.

By symmetry, gradients of the shear-rate-magnitude do not contribute to the diffusive

flux.

The O(r−3) far-field velocity gradients of force-free particles perturb the trajec-

tories of deformable particles, where r is distance between the particles normalized
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θ

r−∞

x−∞3

x−∞2

Figure 5.1: Cylindrical coordinate system for cross-flow plane.

by particle size. Integrated along an open trajectory, this perturbation produces pair

displacements ∆X ij
k = O(r−∞)−2 for widely offset trajectories, r−∞ � 1, where r−∞

is the radial relative trajectory coordinate, defined in figure 5.1. Accordingly, integral

(5.21) is divergent. The self-diffusivity of deformable particles can be computed from

pair interactions because integral (5.20) converges [193], but the evaluation of the

diffusive and drift fluxes (5.15) and (5.16) requires a numerical cut-off [173,175],

∆X ij
k = 0 , r−∞ > rijc , (5.22)

where rijc = rjic . With this cut-off, integrals (5.20)-(5.21) become

IAijk =
1

2

∫ 2π

0

∫ rijc

0

|r−∞ sin θ|(∆X ij
k )2 r−∞dr−∞dθ , (5.23)

IBijk = −
∫ 2π

0

∫ rijc

0

|r−∞ sin θ|x−∞k ∆X ij
k r
−∞dr−∞dθ . (5.24)

where (r−∞, θ) is a cylindrical coordinates system with x−∞2 = r−∞ sin θ and x−∞3 =

r−∞ cos θ, as shown in figure 5.1.

As discussed in §5.5, the outer boundary (5.22) applies rigorously for spherical

particles that undergo contact interactions. Such particles have circular upstream

collision cross-sections [94, 189].
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5.3.2 Particle transport at points of vanishing shear rate

Here, the analysis of particle transport developed in the previous section is extended

to regions where the shear rate vanishes linearly. Accordingly, we consider regions

where the velocity is locally quadratic,

v = v0 +
γ′2
2
X2

2 , (5.25)

where γ′2 is the magnitude of the shear-rate gradient and v0 is an arbitrary local

velocity that can be ignored since only velocity differences are significant. The corre-

sponding magnitude of the shear rate and its gradient are given by

γ̇0 = γ′2 |X2| ,
dγ̇

dX2

= sign (X2) γ′2 . (5.26a, b)

An example is the velocity field at the center of planar Poiseuille flow in a channel of

half-width H, where v is given by Eq. (5.1) with

v = V0

[
1−

(
X2

H

)2
]
. (5.27)

Here, v0 = V0 is the velocity at centerline, X2 = 0, and the magnitude of the shear

rate is given by Eq. (5.26) with γ′2 = 2V0H
−2.

Inserting Eq. (5.26) into Eq. (5.11) yields the relative velocity magnitude,

|vij| = γ̇′2 |x−∞2 |
∣∣∣∣X2 +X i,−∞

2 +
1

2
x−∞2

∣∣∣∣ . (5.28)

For |X2| > X ij
c , the result reduces to the form of Eq. (5.13),

|vij| = γ̇′2 |x−∞2 |
(
|X2|+ sign(X2)

[
X i,−∞

2 +
1

2
x−∞2

])
, |X2| > X ij

c , (5.29)
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where X ij
c is the half-width of the excluded region

X ij
c = max

∣∣∣∣X i,−∞
2 +

1

2
x−∞2

∣∣∣∣ ≤ ∆X ij
2,max +

1

2
rijc . (5.30)

Here, ∆X ij
2,max is the maximum displacement magnitude of a type-i particle by a pair

interaction with a type-j particle and is thus the upper bound for |X i,−∞
2 |; the radius

of the collision cross-section, rijc , is the upper bound for |x−∞2 |. In general, ∆X ij
2,max,

and thus X ij
c , are O(rijc ). For spherical particles that undergo contact interactions,

X ij
c ≤ rijc , as discussed in §5.5.

For |X2| > X ij
c , the local analysis presented in §5.3.1 applies with shear-rate

magnitude and gradient given by Eq. (5.26). Accordingly, a linearly-varying diffusive

flux and constant drift velocity are obtained according to Eqs. (5.15)-(5.19). However,

for |X2| < X ij
c , the relative velocity, vij, changes sign within the maximum range of

particle displacements, ∆X ij
2,max, that contribute to the particle flux. Within this

region, Eq. (5.28) must be used to describe the magnitude of the relative velocity.

The use of Eq. (5.29) is inconsistent and leads to incorrect results. For example,

inserting the linearly-varying diffusive flux balanced by the constant drift velocity,

obtained by the local analysis, into Eq. (5.14) and then (5.8) yields,

X2 n
dn

dX2

= −Mn2 , (5.31)

where M > 0 is a positive constant. A singular distribution, n ≈ |X2|−M is thus

obtained, as pointed out by Leighton & Acrivos (1987) [146].

The region |X2| < X ij
c defines a boundary layer within which the transport coef-

ficients exhibit a more complex dependence on position X2. By retaining the relative

velocity magnitude (5.28) in this region, we obtain the essential dependence of the

transport coefficients required to avoid the spurious singularity at X2 = 0 without

resorting to an ad hoc local averaging of the shear-rate or imposition of a maximum
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packing fraction.

Particle transport in the vorticity direction (k = 3) does not have a singular

behavior because there is no drift velocity, so the local analysis presented in §5.3.1 is

uniformly valid.

According to the derivation provided in Appendix D.1, the particle flux in the

velocity gradient direction is given by

Fi2(X2) = F
(c)
i2 (X2) + F

(γ̇)
i2 (X2) , (5.32)

where the diffusive and drift fluxes are

F
(c)
i2 (X2) = −Ds

i2(X2)
dni
dX2

−
m∑
j=1

(
Dij2(X2)

dnj
dX2

)
, (5.33)

F
(γ̇)
i2 (X2) = −γ′2 ni0Vi(X2) , (5.34)

the diffusivities and drift-velocity-coefficient are

Ds
i2(X2) = γ′2|X2|

m∑
j=1

nj0I
(1)
ij (X2) , (5.35)

Dij2(X2) = γ′2|X2|ni0I(2)
ij (X2) , (5.36)

Vi(X2) =
m∑
j=1

nj0I
(3)
ij (X2) , (5.37)

and the integrals I
(1)
ij , I

(2)
ij , I

(3)
ij are given by

I
(1)
ij (X2) =

1

2

1

|X2|

∫ π

0

∫ rc

0

r−∞ sin θ

[∫ −∆Xij
2

0

(∣∣∣∣X i,−∞
2 +

1

2
r−∞ sin θ −X2

∣∣∣∣
+

∣∣∣∣X i,−∞
2 +

1

2
r−∞ sin θ +X2

∣∣∣∣)X i,−∞
2 dX i,−∞

2

]
r−∞dr−∞dθ .

(5.38)
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I
(2)
ij (X2) =

1

2

1

|X2|

∫ π

0

∫ rc

0

r−∞ sin θ

[∫ −∆Xij
2

0

(∣∣∣∣X i,−∞
2 +

1

2
r−∞ sin θ −X2

∣∣∣∣
+

∣∣∣∣X i,−∞
2 +

1

2
r−∞ sin θ +X2

∣∣∣∣)(
x−∞2 +X i,−∞

2

)
dX i,−∞

2

]
r−∞dr−∞dθ ,

(5.39)

I
(3)
ij (X2) =

1

2

∫ π

0

∫ rc

0

r−∞ sin θ

[∫ −∆Xij
2

0

(∣∣∣∣X i,−∞
2 +

1

2
r−∞ sin θ +X2

∣∣∣∣
−
∣∣∣∣X i,−∞

2 +
1

2
r−∞ sin θ −X2

∣∣∣∣) dX i,−∞
2

]
r−∞dr−∞dθ ,

(5.40)

where (r−∞, θ) are the cylindrical coordinates defined in figure 5.1. Note that−∆X ij
2 ≥

0, as explained below Eq. (D.1.2). Carrying out the indicated X i,−∞
2 integrations in

Eqs. (5.38)-(5.40) leads to Eqs. (D.1.9)-(D.1.11).

For |X2| ≥ X ij
c , integrals (5.38)-(5.40) reduce to their local forms,

I
(1)
ij → IAij2 , I

(2)
ij → IAij2 + IBij2 , I

(3)
ij → sign(X2) (IAij2 +

1

2
IBij2) , |X2| ≥ X ij

c .

(5.41)

as shown in Appendix D.1. Accordingly, the transport coefficients (5.35)-(5.37) reduce

to their corresponding local forms, Eqs. (5.17)-(5.19), with the shear-rate magnitude

and its gradient given by Eqs. (5.26a,b).

An important observation is that |X2|I(1)
ij and |X2|I(2)

ij are even functions of X2

and tend to a nonzero constant for X2 → 0, whereas I
(3)
ij is an odd function and varies

linearly for X2 → 0. Accordingly, the resulting drift velocity coefficient (5.37) varies

linearly and the diffusivities have non-vanishing values for X2 → 0. Thus, particle
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transport is governed by an equation of the form,

n
dn

dX2

= −MX2 n
2 , |X2| → 0 , (5.42)

instead of Eq. (5.31), yielding the nonsingular behavior n ≈ n0− 1
2
MX2

2 , where M > 0

and n0 is the number density at X2 = 0. Hence, the source of the classical singular

particle distribution, described above, is eliminated.

5.4 Stationary particle distributions: general re-

sults

The results are presented in this section are independent of the character of pairwise

particle interactions. Specific results for particles that undergo short-range contact

interactions are presented in §5.6.

5.4.1 One-dimensional particle distribution

First, we present a stationary solution for the particle distribution in a polydisperse

suspension in a flow with a power-law shear-rate magnitude,

γ̇ = C1X
β
2 , (5.43)

where β and C1 are arbitrary nonzero constants. Here, we restrict our attention to

regions where the shear-rate is non-vanishing, thus X2 > 0 is assumed.

Inserting Eqs. (5.14)-(5.19) into Eq. (5.8) yields

m∑
j=1

(
γ̇
[
IAij2 njn

′
i +
(
IAij2 + IBij2

)
nin

′
j

]
+ γ̇′

[
ninj(I

A
ij2 + 1

2
IBij2)

])
= 0 (5.44)

for i = 1, 2, · · · ,m, where primes are used to denote X2-derivatives.
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A power-law particle distribution

ni(X2) = ciX
−β/2
2 , (5.45)

is seen to satisfy Eq. (5.44) with arbitrary coefficients ci. This is a general result that

holds independent of the details of pairwise particle interactions in a given system.

Note that the effect of particle interactions exactly cancel, i.e., the spatial distribution

of each particle species is unaffected by the presence of the others. This feature breaks

down in regions where the shear-rate vanishes, as seen below.

5.4.2 Planar Poiseuille flow

Here, we consider the steady-state particle distribution in quadratic flows (5.25),

including regions X2 → 0, where the shear-rate vanishes.

Polydisperse suspension

Inserting Eqs. (5.32)-(5.37) into Eq. (5.8) yields the equation governing the stationary

particle distribution,

m∑
j=1

(
|X2|

[
I

(1)
ij (X2)njn

′
i + I

(2)
ij (X2)nin

′
j

]
+ I

(3)
ij (X2)ninj

)
= 0 , |X2| < Xc .

(5.46)

In a polydisperse system, each binary interaction has a distinct boundary layer half-

thickness, X ij
c , determined by Eq. (5.30), and Xc is the maximum of these, i.e.,

Xc = sup
{
X ij
c

}
. (5.47)

For |X2| < Xc, spatial distributions of particle species are coupled, unlike the

situation considered in §5.4.1. However, Eq. (5.46) decouples in the outer region,
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|X2| > Xc, reducing to Eq. (5.44), according to Eq. (5.41), and thus obeys the

distribution given by Eq. (5.45) with β = 1,

ni(X2) = ciX
−1/2
2 , (5.48)

where constants ci are determined by global boundary conditions for the problem.

In principle, the constants are coupled through the boundary layer region but the

coupling is weak in wide channels, as shown below.

Monodisperse particle distribution

For m = 1, Eq. (5.46) reduces to the linear equation,

D(y)n̄′ + V(y)n̄ = 0 , (5.49)

where the transport coefficients are

D(y) = |y|
(
I

(1)
11 (y) + I

(2)
11 (y)

)
, V(y) = I

(3)
11 (y) . (5.50a, b)

Here, the dimensionless variables are defined,

y = X2/Xc , n̄ = n/nc , (5.51a, b)

where nc = n(Xc), and primes in Eq. (5.49) denote derivatives with respect to y.

Integrating Eq.(5.49) and setting n̄(1) = 1, consistent with Eq. (5.51b), yields

n̄(y) = exp

(∫ 1

|y|

V(t)

D(t)
dt

)
. (5.52)
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For |y| > 1, the transport coefficients (5.50) reduce to their local forms,

D(y) = |y|
(
2IA112 + IB112

)
, V(y) = sign(y)

(
IA112 +

1

2
IB112

)
, (5.53a, b)

according to Eq. (5.41), and thus

n̄(y) = y−1/2 , (5.54)

consistent with Eq. (5.48).

The number density, n(Xc), used to define the dimensionless number density

(5.51b), is determined by particle conservation,

q n∞ =

∫ H1

0

v(x)n(x)dx , (5.55)

where n∞ is the prescribed average number density, v(x) is the velocity (5.27), q =

2
3
V0H is the corresponding volume flow, and H is the half-width of the channel. The

upper bound H1 = H−a used for the conservation relation (5.55) reflects the excluded

volume within one radius of the channel walls.

Applying boundary condition (5.55) yields

nc
n∞

= 5
12
ε−1/2

[
1− 5

8
∆n̄ ε1/2 +O(ε2)

]−1
, (5.56)

where ε = Xc/H ≈ a/H is assumed to be small compared to unity. The quantity

∆n̄ is the (average) deficit of particles in the center region compared to the singular

distribution (5.54) obtained using local transport coefficients,

∆n̄ = −
∫ 1

0

[
n̄(y)− y−1/2

]
dy . (5.57)

Excluded volume at the walls of the channel affects the amplitude of the particle
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distribution at O(ε2), the same as the order of error as that induced by neglecting

particle-wall hydrodynamic interactions. Details of the modified transport coefficients

in the central region enter the conservation relation through the particle deficit, ∆n̄,

and have a more slowly-decaying O(ε1/2) effect on the amplitude of the particle dis-

tribution in wide channels. To leading order, particle conservation is controlled by

the outer region, according to Eqs. (5.54)-(5.56),

nc = 5
12
ε−1/2n∞ , and n/n∞ = 5

12
ỹ−1/2 , (5.58a, b)

where ỹ = X2/H, indicating that the particle distribution away from the center ac-

quires the length set by the the channel width. In the wide-channel regime, the

leading-order outer particle distribution in a polydisperse suspension has the corre-

sponding form,

nic = 5
12
ε−1/2ni∞ , and ni/ni∞ = 5

12
ỹ−1/2 , (5.59a, b)

where ni∞ are the prescribed number densities of the particle species, and nic =

ni(Xc). The result indicates that the distributions of particle species are decoupled

from each other in the outer region, |X2| > Xc.

5.5 Particle displacements

5.5.1 Contact interactions

Particles that undergo short-range symmetry-breaking “contact” interactions in shear-

flow are considered here, specifically, particles with surface roughness, permeable

particles, and emulsion drops. Pair trajectories of such particles are analytically inte-

grated to yield formulas for binary cross-stream particle displacements ∆X12
k , ∆X21

k

(k = 2, 3) involving integrals of the standard pair mobility functions for spherical par-
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ticles. Here, ∆X12
k refers to the displacement of particle-1 resulting from its collision

with particle-2 and visa versa for ∆X21
k . The particles have radii a1 and a2, and the

size ratio κ = a2/a1 < 1 is assumed. The particles are assumed to be non-Brownian

and neutrally buoyant. Creeping flow conditions are considered, and particle inertia

is neglected.

According to the usual model for rough particles, surface asperities with size d

transmit a normal inter-particle contact force between rigid particles that prevents

surface-to-surface particle separations less than d but do not exert a tensile force

upon separation. Here, δ̄ = d/ā is the dimensionless roughness amplitude, ā = (a1 +

a2)/2 is the average particle radius, and δ̄ � 1 is assumed. Particle permeability is

another short-range, symmetry-breaking mechanism. The dimensionless permeability

is defined K̄ = k/ā2, where k is the permeability and Darcy’s law is used to describe

the intraparticle flow. Weak permeability alleviates the lubrication pressure between

particles, allowing particle contact, h0 = 0, but otherwise has little effect on the pair

interaction [55]. Under the assumption that the particles are rigid and not cohesive,

the effect of weak permeability closely resembles small-amplitude particle roughness

[191]. The small, flattened thin film that forms in the near-contact region between

approximately spherical emulsion drops in apparent contact, h0 ≈ 0, under high-

surface-tension-conditions is a third short-range mechanism that breaks the symmetry

of pair trajectories. Slow drainage from the film prevents drop coalescence in the

compressional quadrant of the flow [199–203]. The film quickly reverts as the drops

rotate into the extensional quadrant of the flow and has little effect on their separation

[151,193]. This model is characterized by a drop- to continuous-phase viscosity ratio,

λ. Marangoni stresses are neglected.

Relative particle trajectories emanate from x1 → −∞ (+∞) for x−∞2 > 0 (< 0) in

the coordinate system defined by figure 5.2. Apart from the contact interactions, tra-

jectories are accurately described using standard pair mobility functions for spherical
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Figure 5.2: Spherical coordinate system for pair trajectories.

particles (or drops) in shear flow [87, 187, 188]. Accordingly, particles with short-

range contact interactions have circular upstream collision cross-sections, defined by

Eq. (5.22), where r12
c depends on size ratio, and on the roughness, permeability, or

drop- to continuous-phase viscosity ratio, respectively, for rough or permeable par-

ticles or drops [94, 189, 191]. Trajectories with offsets r−∞ > r12
c are reversible, i.e.,

∆X12
k = ∆X21

k = 0.

Pair trajectories with upstream trajectory offsets, r−∞ < r12
c , reach the contact

surface, defined by s = s∗, where s = r/ā is the center-to-center separation, r,

normalized by the average particle radius. For permeable particles and high-surface-

tension drops, s∗ = 2; for particles with surface roughness, s = 2 + δ̄. On the contact

surface, the particles undergo relative rotation through the compressional quadrant of

the flow and separate at the equator (cosφ = 0), under the assumption that cohesive

forces are absent. The motion on the contact surface is described by a subset of

the trajectory equations corresponding to zero relative radial velocity. An example

of a contacting pair trajectory for particles with surface roughness is illustrated in

figure 5.3.

Below a critical roughness, the collision cross-section for rough particles vanishes;
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similarly, there exists a critical permeability below which r12
c = 0. The values of these

critical parameters increase with diminishing size ratio [191, 204]. Likewise, drops

have a critical viscosity ratio beyond which r12
c = 0, and the critical viscosity ratio

decreases with diminishing size ratio [200]. Equivalently, there exists a finite critical

size ratio ratio, κ∗, below which r12
c = 0 for fixed values of particle roughness or

permeability, or drop viscosity ratio.

5.5.2 Particle trajectories

In a linear flow under creeping flow conditions, the trajectories of non-Brownian,

neutrally-buoyant, inertialess particles with labels 1 and 2 are described by [186]

V1 = V
(∞)
1 − [A1(s)r̂r̂ +B1(s) (I− r̂r̂)] · E · r̂ (5.60)

and

V2 = V
(∞)
2 − [A2(s)r̂r̂ +B2(s) (I− r̂r̂)] · E · r̂ (5.61)

where, r = X(2)−X(1) is the vector between the particle centers as shown in figure 5.2,

r̂ = r/|r| is a unit vector along the line-of-centers, I is the identity tensor, and

s = |r|/ā is the center-to-center separation normalized by the average radius. The

undisturbed particle velocities are V
(∞)
i = E ·X(i) + ω ×X(i) (i = 1, 2), where E is

the rate of strain, and ω is the angular velocity. In simple shear flow,

E = γ̇


0 1/2 0

1/2 0 0

0 0 0

 , ω = γ̇

(
0, 0, −1/2

)
, (5.62)

where γ̇ is the magnitude of the local shear rate. In Eqs. (5.60) and (5.61), Ai

and Bi (i = 1, 2), respectively, are mobility functions that incorporate the effect of

hydrodynamic interactions on the particle velocities parallel and normal to the line-
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of-centers of the pair [87, 185–188]. Mobility functions depend also on the particle

size ratio κ = a2/a1, and for spherical drops, also on the drop-to-continuous phase

viscosity ratio, λ.

The particle displacements ∆X12
k and ∆X21

k (k = 2, 3) are conveniently expressed

in terms of relative and pair displacements, ∆xk and ∆x̄k,

∆X12
k =

1

2
(∆x̄k −∆xk) , ∆X21

k =
1

2
(∆x̄k + ∆xk) , (5.63)

where

xk = X
(2)
k −X

(1)
k , x̄k = X

(1)
k +X

(2)
k , (5.64)

are, respectively, the relative and pair positions.

On contacting trajectories (cf., figures 5.3-5.4), particles reach the contact surface

(ii), move along the contact surface in the compressional quadrant of the flow (ii-iii)

(dotted lines in figure 5.3), and separate at the edge of the compressional quadrant

(iii), i.e., at φ = π/2. A contact force prevents particle overlap on the contact-surface-

portion of trajectories (ii-iii).

These segments of the relative and pair trajectories are analytically integrated be-

low, treating the relative and pair motion separately. The former has been previously

analyzed in classical works [186, 188], as indicated; integration of the pair trajectory

is new. Both are presented below for completeness.
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5.5.3 Trajectory integration

The relative motion of the particles are described by the trajectory equations [186],

ds

dt
= (1− A)s sin2 θ sinφ cosφ (5.65)

dθ

dt
= (1−B) sin θ cos θ sinφ cosφ (5.66)

dφ

dt
= −1

2
+

1

2
(1−B) cos 2φ , (5.67)

where the spherical coordinates defined in figure 5.2 are used. The pair motion of the

particles is described by

dx̄1

dt
= x̄2 −

[
Bp x2

2
+ (Ap −Bp)

x2
1 x2

s2

]
, (5.68)

dx̄2

dt
= −

[
Bp x1

2
+ (Ap −Bp)

x1 x
2
2

s2

]
, (5.69)

dx̄3

dt
= − (Ap −Bp)

x1 x2 x3

s2
. (5.70)

Here, t is strain, and x and x̄, respectively, are the relative and pair positions (5.64).

The relative and pair mobilities are M = M2 −M1 and Mp = M1 +M2, respectively,

where M = A or B. Only differences of the pair position, ∆x̄, are significant, and

by symmetry, we can restrict our attention to relative positions x in the positive

quarter-plane. Accordingly, the initial conditions are

x
(i)
1 = −∞ , x

(i)
2 , x

(i)
3 ≥ 0 ; x̄

(i)
1 = x̄

(i)
2 = x̄

(i)
3 = 0 . (5.71a, b)

Integrating Eqs.(5.65)-(5.67) with initial conditions (5.71a) yields [94, 186]

x2(s) = ϕ(s)
[
(x∞2 )2 + Ψ(s)

]1/2
, (5.72)
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x3(s) = x∞3 ϕ(s) , (5.73)

x1(s) = ∓
√
s2 − x2

2 − x2
3 (5.74)

where x∞2 and x∞3 are the cross-flow coordinates of the far-field relative position of

the particles at s→∞. The functions ϕ(s) and Ψ(s) are given by

ϕ(s) = exp

[∫ ∞
s

A(s′)−B(s′)

1− A(s′)

d s′

s′

]
, (5.75)

and

Ψ(s) =

∫ ∞
s

B(s′)s′

[1− A(s′)]ϕ2(s′)
ds′. (5.76)

The minus sign applies in Eq. (5.74) for π/2 < φ < π; the + sign applies for 0 < φ <

π/2.

Dividing Eqs.(5.69)-(5.70) by (5.65) and integrating yields the pair positions

x̄2(s) = x̄∞2 + Ψ̄(s, x∞2 ) , (5.77)

and

x̄3(s) = x̄∞3 + ϕ̄(s, x∞3 ) , (5.78)

where x̄∞2 and x̄∞3 are the corresponding coordinates of the far-field pair position.

The functions ϕ̄(s, x∞3 ) and Ψ̄(s, x∞2 ) are defined

ϕ̄(s, x∞3 ) =

∫ ∞
s

[Ap(s
′)−Bp(s

′)]x3(s′, x∞3 )

[1− A(s′)] s′
ds′, (5.79)
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and

Ψ̄(s, x∞2 ) =

∫ ∞
s

[
Bp(s

′) s′

2 [1− A(s′)] x2(s′, x∞2 )
+

[Ap(s
′)−Bp(s

′)]x2(s′, x∞2 )

[1− A(s′)] s′

]
ds′ , (5.80)

where x2(s, x∞2 ) and x3(s, x∞3 ) are defined by Eqs. (5.72)-(5.73). The streamwise

coordinate of the pair position, x̄1, does not affect the cross-flow particle distribution.

Trajectories on contact surface

On the contact surface s = s∗ in the compressional quadrant of the flow, the relative

trajectory is described by setting the relative radial velocity to zero. The polar and

azimuthal angles (θ, φ) evolve according to Eqs. (5.66)-(5.67) over the range,

π

2
≤ φ ≤ φ0 , (5.81)

where (θ0, φ0) is the initial point of contact (point (ii) in figures 5.3-5.4); separation

occurs at φ = π/2 (point (iii)). Dividing the two equations and integrating yields

[205],

θ1(φ) = tan−1

(
tan θ0

√
1−B∗1 cos(2φ0)

1−B∗1 cos 2φ

)
, (5.82)

where B∗1 = 1−B(s∗).

The pair motion on the contact surface is obtained by dividing Eqs. (5.69) and

(5.70) by Eq. (5.67) and integrating the range (5.81) to yield,

x̄∗2(φ) = x̄∗2(φ0) + Ω(φ) , (5.83)

and

x̄∗3(φ) = x̄∗3(φ0) + χ(φ) , (5.84)
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where the functions Ω(φ) and χ(φ) are defined by

Ω(φ) =

∫ φ

φ0

[r̂2
3(φ′)− 1]

[
B∗p r̂1(φ′) + 2(A′p −B∗p)r̂1(φ′)r̂2

2(φ′)
]

1
2
B∗ [2 r̂2

2(φ′) + r̂2
3(φ′)− 1]− r̂2

2(φ′)
dφ′ , (5.85)

and

χ(φ) =

∫ φ

φ0

[r̂2
3(φ′)− 1]

[
2 (A′p −B∗p)r̂1(φ′)r̂2(φ′)r̂3(φ′)

]
1
2
B∗ [2 r̂2

2(φ′) + r̂2
3(φ′)− 1]− r̂2

2(φ′)
dφ′ . (5.86)

Here, mobility functions B∗p and B∗ are evaluated at s = s∗; A′p is the modified contact

mobility, derived below, that encompasses the correction resulting from the action of

the contact force. The relative position vector on the contact surface is given by

r̂ = (sin [θ1(φ)] cosφ, sin [θ1(φ)] sinφ, cos [θ1(φ)]) , (5.87)

where θ1(φ) is given by Eq. (5.82).

The contact force, Fc, that prevents particle overlap is determined by the force

balance,

V12 · r̂ = 2(1− A∗)(E : r̂r̂)− Fc
µā2γ̇

G∗ = 0 , (5.88)

where µ is the continuous phase viscosity, and G∗ is the relative radial mobility

function evaluated at contact. The contact force modifies the pair velocity for unequal

size particles,

Vp
12 · r̂ = −2A∗p(E : r̂r̂)− Fc

µā2γ̇
G∗p , (5.89)

where G∗p is the pair radial mobility function evaluated at contact. Substituting the

normal force derived from Eq. (5.88) into (5.89) yields

Vp
12 · r̂ = −2A′p(E : r̂r̂) , (5.90)

where A′p = A∗p + (1 − A∗)G∗p/G
∗ is the modified axisymmetric pair mobility that

appears in formulas (5.85)-(5.86) [198]. The modified mobility represents a higher-
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order correction, e.g., an O(δ̄) correction for rough particles. A contact force is not

calculated for drops because 1− A∗ = 0.

Examples of trajectories on the contact surface

Examples of contacting trajectories are shown in figures 5.3-5.4. For moderate viscos-

ity ratios, drops have considerably larger collision cross-sections and correspondingly

larger displacements than rough particles, as seen in figure 5.4. Drop trajectories also

deflect more in the vorticity direction.

Models for rough particles include a coefficient of friction to describe tangential

forces transmitted by surface asperities at contact, h0 = d [102,103,189]. The limiting

cases of zero- or infinite-friction-coefficient correspond, respectively, to evaluating the

contact tangential mobility as B∗ = B(2 + δ̄) or as B∗ = B(2). Similar predictions

are obtained in these two limits, as seen in figure 5.4b (compare solid and dash-

dotted lines). An explanation for this finding is the dominant role of the viscous

lubrication resistance. The zero-friction-coefficient model was used for all subsequent

rough-particle calculations presented herein.

Recently, the following hydrodynamic equivalence between particle roughness and

particle permeability was proposed [55],

δ̄ ←→ .7224 ν1/5K̄2/5 . (5.91)

where δ̄ and K̄ are the dimensionless particle roughness and permeability (i.e., nondi-

mensionalized by the average drop radius), and ν = 2κ/(1+κ)2. This relation is based

on the contact time between particles under the action of a constant force. It was

subsequently found to hold accurately for colliding pair trajectories in several types

of flow, including shear flow for a wide range of size ratios [191]. The trajectory for

permeable particles shown in figure 5.4b (dotted line) lies between the two trajecto-
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ries corresponding to zero and infinite friction and supports the use of relation (5.91)

also for trajectories on the contact surface. It follows that particle displacements, and

thus particle transport, of permeable particles can be inferred from results for rough

particles.

5.5.4 Net cross-flow displacements

The indefinite trajectory integrals derived in §5.5.3 are combined here to yield formu-

las for the net relative- and pair-displacements in terms of the pair mobility functions.

The relative and pair trajectory segments, (i-ii), (ii-iii), and (iii-iv) are schematically

shown in figure 5.3.

From Eqs. (5.72)-(5.73), the relative cross-flow position at the contact point is

x
(ii)
2 = ϕ∗

[(
x

(i)
2

)2

+ Ψ∗
]1/2

, x
(ii)
3 = ϕ∗x

(i)
3 , (5.92a, b)

where ϕ∗ and Ψ∗ are the functions (5.75)-(5.76) evaluated on the contact surface,

s = s∗, and x(i) is the initial condition (5.71a). The polar and azimuthal angles at

the initial contact point (θ0, φ0), are given by

2 cos θ0 = x
(ii)
3 , 2 sin θ0 sinφ0 = x

(ii)
2 . (5.93a, b)

The separation point is given by

x
(iii)
2 = 2 sin

[
θ1

(π
2

)]
x

(iii)
3 = 2 cos

[
θ1

(π
2

)]
, (5.94a, b)

where θ1(x) is the function (5.82). The final relative position of the particles in the
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cross-flow plane is

x
(iv)
2 =

(x(iii)
2

ϕ∗

)2

−Ψ∗

1/2

, x
(iv)
3 =

x
(iii)
3

ϕ∗
. (5.95a, b)

The displacement relations for the pair motion are obtained from Eqs.(5.77)-(5.78)

and (5.83)-(5.84), yielding the pair position

x̄
(ii)
2 = Ψ̄∗(x

(i)
2 ) , x̄

(ii)
3 = ϕ̄∗(x

(i)
3 ) , (5.96a, b)

where ϕ̄∗ and Ψ̄∗ are the functions (5.79)-(5.80) evaluated at s = s∗. Note that

x̄(i) = 0, according to initial condition (5.71b). The separation point is

x̄
(iii)
2 = x̄

(ii)
2 + Ω

(π
2

)
, x̄

(iii)
3 = x̄

(ii)
3 + χ

(π
2

)
, (5.97a, b)

where Ω (x) and χ (x) are the functions (5.85)-(5.86). The final cross-flow pair position

is

x̄
(iv)
2 = x̄

(iii)
2 + Ψ̄∗(x

(iii)
2 ) , x̄

(iv)
3 = x̄

(iii)
3 + ϕ̄∗(x

(iii)
3 ) . (5.98a, b)

Particle displacements

Combining Eq. (5.95a,b) and using
(
x

(iii)
2

)2

+
(
x

(iii)
3

)2

= (s∗)2, we obtain the radius

of the upstream collision cross-section,

r12
c =

[(
s∗

ϕ∗

)2

−Ψ∗

]1/2

. (5.99)

which is related to the collision efficiency, E12, by

r12
c

ā
= 2E

1/3
12 . (5.100)
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Collision efficiencies for rough and permeable particles and drops are available in the

literature [191,200].

Net displacements of each particle are determined by combining the above results

to obtain the net relative and pair displacements,

∆xk = x
(iv)
k − x(i)

k , ∆x̄k = x̄
(iv)
k − x̄(i)

k , (5.101)

and inserting them into Eq. (5.63). Note that x̄
(i)
k = 0, according to Eq. (5.71b).

Examples of individual particle displacements are shown by the contour maps in

figures 5.5 and 5.6. By the symmetry relations (5.5)-(5.6), only a quarter of the

cross-flow plane is shown.

For contact interactions between pairs of inertialess particles in creeping flows,

the maximum displacement magnitudes are achieved for r−∞ → 0 and satisfy

∆X12
2,max + ∆X21

2,max = r12
c . (5.102)

Bounds for the magnitudes of the individual particle displacements are given by

0 < ∆X12
2,max ≤

1

2
r12
c ,

1

2
r12
c ≤ ∆X21

2,max < r12
c , 0 < κ ≤ 1 . (5.103)

For equal size particles,

∆X12
2,max = ∆X21

2,max =
1

2
r12
c , κ = 1 , (5.104)

and for the limiting case of extreme size ratio, we have

∆X12
2,max → 0 , ∆X21

2,max → r12
c , κ→ 0 . (5.105)

Figures 5.7 and 5.8 show maximum particle displacements as a function of size ratio,
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and illustrate relations (5.102)-(5.105). Together, the results in figures 5.5-5.8 show

that drops have larger collision cross-sections and undergo larger displacements than

rough particles. Pair collisions displace the smaller particle much more than the

larger, even for modest size ratios. Particle displacements in the velocity gradient

direction are considerably larger than in the vorticity direction, especially for rough

particles.

Boundary layer thickness

Given that relation (5.102) is attained for r−∞ → 0 and ∆X12
2 = ∆X21

2 = 0 for

r−∞ = r12
c , suggests that Eq. (5.30) can be replaced by the tighter bound,

X ij
c = max

(
∆X ij

2,max,
1

2
rijc

)
(5.106)

for particles that undergo contact interactions, where the indices ij = 12 or 21. Our

results do not depend on this relation but our calculations support it. The relation

is used here to discuss the width of the boundary layer, Xc, that forms where the

shear-rate vanishes.

In a monodisperse suspensions, the boundary layer thickness is set by the collision

cross-section, according to Eq. (5.104),

Xc =
1

2
rc , (5.107)

where rc is used here to denote the collision cross-section for equal-size spheres which

depends on particle roughness or permeability or the drop viscosity ratio. Below the

critical values of these parameters, rc = 0, and particle structuring is not predicted.

In a bidisperse suspension,

Xc = max

(
∆21

2,max,
1

2
r̄c a1

)
, (5.108)
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given that X21
c ≥ X12

c , according to Eq. (5.103). Here, r̄c is the collision cross-section

for equal-size spheres nondimensionalized by the sphere radius. The results shown

in figures 5.7 and 5.8 indicate that the boundary layer thickness is controlled by

heterogeneous pair interactions (i.e., ∆21
2,max > rc) for moderate size ratios, and by the

collision cross-section of the larger particles closer to the critical size ratio, κ∗. For

κ < κ∗, the bidisperse particle distribution reduces to a superposition of monodisperse

distributions with boundary layer thicknesses, a1r̄c and a2r̄c.

5.6 Particle distributions in Poiseuille flow: parti-

cles with contact interactions

Stationary particle distributions are presented here for suspensions in planar Poiseuille

flow (5.27) for systems with particles that undergo contact interactions using the

analysis developed in §5.5. The results here are specific examples of the results

presented in §5.4 for the case of rough particles and emulsion drops, and for permeable

particles through relation (5.91). Variables used in this section are made dimensionless

using the thickness of the boundary layer region at the center of the channel, Xc,

defined by Eq. (5.47).

5.6.1 Particle distribution in monodisperse suspension

Figures 5.9-5.11 show, respectively, transport coefficients (5.50), stationary particle

distributions (5.52), and the average particle deficit (5.57) in the central, boundary

layer region of the flow. The variables defined by Eq. (5.51) are used, and the trans-

port coefficients are nondimensionalized using the characteristic length, Xc, which

is given by Eq. (5.107). Integrals (D.1.9)-(D.1.11), required for the transport coef-

ficients, were numerically evaluated with particle displacements, ∆X12
2 = −∆X21

2 ,

obtained by quadratures of mobility functions, as described in §5.5.4; particle distri-
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butions were obtained by evaluating Eq. (5.52).

The results shown in figure 5.9 demonstrate that the drift velocity but not the

diffusion coefficient, defined by Eq. (5.50), vanishes at the center of the channel, where

the shear-rate vanishes, and shows the corresponding odd and even symmetries of

these quantities. As discussed at the end of §5.3.2, these are the essential features of

the transport coefficients that avoid the classical particle distribution singularity at

points of vanishing shear rate. The dashed lines depict the local form of the transport

coefficients (5.53) for |y| > 1.

Examples of particle distributions for rough particles and emulsion drops are

shown in figure 5.10; the results are barely distinguishable. Similar results were

obtained for other values of roughness and viscosity ratios. Moreover, the average

particle deficit in the boundary layer compared to the singular outer solution (5.57)

is almost constant according to the results shown in figure 5.11. The boundary layer

thickness (5.107) is determined by the details of the contact interactions between

particles, through their effect on the collision cross-section, but the rescaled particle

distribution in the boundary layer is insensitive to these details.

5.6.2 Particle distribution in bidisperse suspension

The stationary particle distributions in a binary mixture are governed by

(
D

(1)
11 (y) n̂1 + D

(2)
11 (y) n̂2

)
n̂′1 +D12(y) n̂1n̂

′
2 +(V11(y) n̂1 + V12(y) n̂2) n̂1 = 0 , (5.109)

D21(y) n̂2n̂
′
1 +
(

D
(1)
22 (y) n̂1 + D

(2)
22 (y) n̂2

)
n̂′2 + (V21(y) n̂1 + V22(y) n̂2) n̂2 = 0 , (5.110)
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as obtained from Eq.(5.46) for m = 2, where the transport coefficients are given by

D
(i)
ii (y) = |y|

(
I

(1)
ii (y) + I

(2)
ii (y)

)
, D

(j)
ii (y) = |y|I(1)

ij (y) , (5.111)

Dij(y) = |y|I(2)
ij (y) , Vij(y) = I

(3)
ij (y) . (5.112)

Here, y is defined by Eq. (5.51 a) with Xc given by Eq. (5.47), and the primes denote

derivatives with respect to y. The dimensionless number densities are defined

n̂i = ni/nc , (5.113)

where nc is the total number density at y = 1, i.e., nc = n1c + n2c, by analogy to

Eq. (5.51 b).

Equations (5.109)-(5.110) are nonlinear (quadratic) equations for n̂1 and n̂2 but

only ratios of number densities are significant; the total number density is not signif-

icant because the suspension volume does not enter. Likewise, only relative volume

fractions, φ̂i at y = 1, not the total volume fraction, φc, are significant,

φ̂i = nicvi/φc , φc =
m∑
j=1

njcvj , (5.114)

where vi is volume of a type-i particle. It follows that Eqs. (5.109)-(5.110) can be

solved with boundary conditions,

n̂1(1) =
φ̂1κ

3

φ̂1κ3 + φ̂2

, n̂2(1) =
φ̂2

φ̂1κ3 + φ̂2

, (5.115)

where κ = a2/a1 is the size ratio. Given the proportionality (5.59) between nic and

the average number densities, ni∞, the foregoing normalization is equivalent to using

the average number densities and volume fractions instead of the values at y = 1.

Particle distributions were obtained by numerical integration of the system (5.109)-
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(5.110) with boundary conditions (5.115) from y = 1 to y = 0, evaluating the integrals

(D.1.9)-(D.1.11) that enter the transport coefficients (5.111)-(5.112) with ∆X ij
2 ob-

tained by quadratures of mobility functions.

For the purposes of presentation and discussion, it is convenient to define number

densities normalized by their individual values, rather than the total number density,

at the edge of the outer region, i.e.,

n̄i =
n̂i
n̂i(1)

=
ni
nic

. (5.116)

For y > 1, we have

n̄i(y) = y−1/2 , (5.117)

according to Eq. (5.48).

The relative enrichment of type-i particles in a polydisperse suspension at the

center of Poiseuille flow is defined,

∆n̄i =

∫ 1

0

[n̄i(y)− n̄(y)] dy , (5.118)

where n̄ is the distribution in a monodisperse suspension (5.52). Note that for y > 1,

n̄i(y)− n̄(y) = 0 by Eqs. (5.54) and (5.117).

Figure 5.12 shows results for particle distributions in a bidisperse system of rough

particles and emulsion drops, including the predictions of separate, non-interacting

monodisperse distributions (5.52).

Figures 5.13-5.14 provide a parametric study of the relative enrichment at the

center of planar Poiseuille flow for bidisperse suspensions. Enrichment of larger par-

ticles is seen for rough particles at all size ratios in part (a) of both figures, whereas

smaller particles are enriched for small size ratios and depleted for larger; the particle

distributions in figures 5.12a-b illustrate each regime. These predictions concur with
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experimental observations that generally show enrichment of larger particles [167,168]

but also enrichment of smaller particles in some systems [169]. By contrast, emulsions

show a depletion of larger drops and an enhancement of smaller drops for most of the

parameter range, as seen in part (b) of figures 5.13-5.14. Figure 5.12c illustrates a

typical drop distribution.

The relative volume fraction, φ̂2, modulates the magnitude of enrichment and

depletion in suspensions of particles and drops but has less effect on selection, i.e.,

which particle is enriched, according to the results shown in figure 5.13.

The particle roughness parameter, δ1 = d/a1, and the viscosity ratio, λ, determine

the collision cross-section and thus the critical size ratio, κ∗, below which no contact

interactions occur. Accordingly, ∆n̄i = 0 for κ < κ∗, as seen in figure 5.14. The

viscosity ratio λ also modulates the magnitude of enrichment and depletion as seen

in part (b) of this figure. Particle roughness has a weaker effect on the magnitude of

enrichment and depletion; figure 5.14a shows that the enrichment of large particles is

almost independent of roughness. This finding may explain the consistency of reports

on the enrichment of large particles in bidisperse suspensions [163–169].

5.7 Conclusions

In this chapter we present a pairwise theory for particle distributions in suspen-

sions undergoing 2d unidirectional flows, including planar Poiseuille and shear flows.

General results from our analysis include a steady-state solution for the particle dis-

tribution in a polydisperse suspension subjected to a power-law shear-rate profile,

and a boundary layer analysis for regions where the shear rate vanishes. A power-law

particle distribution is attained in a power-law shear rate with an exponent equal

to half of the shear-rate exponent and the distribution for each particle species is

unaffected by the presence of the others. The treatment of the boundary layer avoids
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the singular distribution that is usually predicted. The radius of the collision cross-

section emerges as the relevant length scale, and a local analysis of particle transport

is valid immediately outside this region. These results hold for systems with arbitrary

symmetry-breaking pair interactions between particles.

Pair displacements for hydrodynamically-interacting particles that undergo short-

range interactions were reduced to quadratures of mobility functions for spherical par-

ticles or drops. This result qualitatively advances the computational efficiency of these

calculations, making feasible computations that explore the three-dimension parame-

ter space that quantitatively describes relative enrichment in bidisperse suspensions,

albeit for particles with comparatively simple pair interactions. The computations for

each point in figures 5.13-5.14 require approximately 106 particle trajectories each.

The scale of the particle distribution in monodisperse suspensions is set by the

collision cross-section of particles but its shape, i.e., the rescaled distribution, is almost

independent of particle roughness, permeability, or drop viscosity ratio.

Results for bidisperse suspensions show that the enrichment of the larger particles

at the center of Poiseuille flow is a robust result, holding for the entire parameter

space, including particle size ratio, relative volume fraction, and surface roughness.

Small particles are enriched for smaller size ratios and depleted for larger. These

findings are in agreement with the available data [167–169]. Permeable particles

can be expected to follow the same trends through the established equivalence of

permeability and surface roughness [191]. By contrast, drops with mobile interfaces

show robust enrichment of smaller drops and depletion of larger ones at the center of

the flow with the exception of high-viscosity, nearly-equal-size drops that reverse this

trend.

The magnitudes of enrichment and depletion of particle species in bidisperse sus-

pensions are small in most cases, especially for rough particles. This observation

suggests that a perturbation analysis may be useful with number densities of particle
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species expressed as n̄i = n̄
(0)
i + n̄

(1)
i (i = 1, 2), where n̄

(0)
i is the number densities in

a monodisperse suspension of type-i particles and n̄
(1)
i is the perturbation resulting

from heterogeneous ij pair interactions with n̄
(1)
i � n̄

(0)
i assumed. The simpler linear

system governing the perturbations n̄
(1)
i may help to explain the observed trends of

relative enrichment and depletion discussed above.

The time evolution of particle distributions and the possible effect of initial con-

ditions [169] on the resulting stationary particle distributions, and the effect of cross-

streamline trajectories [171,206] induced by wall interactions in smaller channels are

other phenomena that remain to be explored.

Note

The authors are grateful to Dr. A. Z. Zinchenko [63] for the use of his bispherical

coordinate code for computing pair mobilities of impermeable spheres.
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Appendix A

Support material Chapter 2

A.1 Solution of intraparticle pressure in the lubri-

cation region

Here, the normal derivative of the intrapartricle pressure on the boundary of the

particle surface is expressed as a boundary integral of the pressure distribution in the

near-contact region. Dimensional variables are used. By the disparity of the length

scales, L� a, the intraparticle pressure p̂(r, z) obeys Laplace’s equation

∇2p̂ = 0 (A.1.1)

in a semi-infinite region, vanishes for z → −∞, and matches the pressure, p(r), in

the lubrication gap on the boundary at z = 0.

Hankel transformation of Eq. (A.1.1) and boundary conditions yields

d2P̂

dz2
− ω2P̂ = 0 ; P̂ (ω, 0) =

∫ ∞
0

J0(ωr)p(r)rdr , P̂ (ω,−∞) = 0 ,

(A.1.2 a, b, c)

where P̂ (ω, z) =
∫∞

0
J0(ωr)p̂(r, z)rdr is the Hankel-transformed pressure. The solu-
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tion of the transformed problem is

P̂ (ω, z) = P̂ (ω, 0)eωz , (A.1.3)

where P̂ (ω, 0) is the Hankel-transformed pressure distribution in the gap between the

particles (B.1.5b); by the inverse Hankel transform, the intraparticle pressure is given

by

p̂(r, z) =

∫ ∞
0

P̂ (ω, 0)eωzJ0(ωr)ωdω . (A.1.4)

For −z � L,

p̂(r, z) =
F

2π

z

(r2 + z2)3/2
, (A.1.5)

where L is the lateral length scale imposed by the pressure distribution in the near-

contact region. The limiting result is obtained using P̂ (ω, 0) ≈ F/(2π) for ωL � 1,

where F = 2π
∫∞

0
prdr is the lubrication force due to the pressure in the near-contact

region.

From Eq. (A.1.4), the normal derivative of pressure on the particle surface is

∂p̂

∂z

∣∣∣∣
z=0

=

∫ ∞
0

ω2P̂ (ω, 0)J0(ωr)dω . (A.1.6)

Rewriting this result using the identity

− ω2P̂ (ω, 0) =

∫ ∞
0

1

r′
d

dr′

(
r′
dp

dr′

)
J0(ωr′)r′dr′ , (A.1.7)

yields

∂p̂

∂z

∣∣∣∣
z=0

= −
∫ ∞

0

1

r′
d

dr′

(
r′
dp

dr′

)
φ (r′/r) dr′ , (A.1.8)

where

φ (r′/r) = r′
∫ ∞

0

J0(ωr′)J0(ωr) dω (A.1.9)
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is the Green’s function. Rewriting the Bessel function integral in Eq. (A.1.9) yields

φ(x) =
2

π

x

1 + x
K

(
2
√
x

1 + x

)
, (A.1.10)

where x = r′/r, and K is the first-kind elliptic integral,

K(t) =

∫ π
2

0

dθ√
1− t2 sin2θ

. (A.1.11)

Accordingly, the Green’s function obeys the reciprocal relation

φ(1/x) =
φ(x)

x
. (A.1.12)

A series expansion of Eq.(B.1.13) for x� 1 is given by

φ(x) = x+
x3

4
+

9x5

64
+O(x7) , (A.1.13)

and, combining this result with the reciprocal relation (A.1.12), yields

φ(x) = 1 +
1

4
x−2 +

9

64
x−4 +O(x−6) (A.1.14)

for x� 1. At x = 1, the Green’s function has the following log-singular expansion,

φ(x) =− 1

π

[(
1 +

1

2
(x− 1)− 3

16
(x− 1)2

)
log

(
1

8
|x− 1|

)
− 1

2
(x− 1)− 7

16
(x− 1)2

]
+O

[
(1− x)3 log |1− x|

]
+O(1− x)3 . (A.1.15)

As a consequence of the intraparticle pressure field obeying Laplace’s equation

(A.1.1), the integral of the pressure derivative over the surface vanishes, i.e.,

∫ ∞
0

∂p̂

∂z

∣∣∣∣
z=0

rdr = 0 . (A.1.16)
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This result along with Darcy’s law (2.24), implies that there is zero net fluid flux into

the particles, consistent with the results shown in Fig. 2.3.

A.2 Radial flux with Beavers-Joseph boundary con-

ditions

Here, the radial flux between permeable particles with Beavers-Joseph (Saffman) slip-

velocity boundary conditions is calculated, and dimensional variables are used. By

conservation of radial momentum the radial velocity is governed by

µ
d2v

dz2
=
dp

dr
, (A.2.1)

and obeys Beavers-Joseph slip-velocity boundary conditions

v(0) = α1k
1/2
1

dv

dz

∣∣∣∣
z=0

, v(h) = −α2k
1/2
2

dv

dz

∣∣∣∣
z=h

, (A.2.2)

where ki and αi (i = 1, 2) are the permeabilities and slip coefficients for each particle

[25,26].

Solving Eqs. (A.2.1)-(A.2.2) yields

v =
1

2µ

dp

dr
z(z − h) + (v2 − v1)

z

h
+ v1 , (A.2.3)

where v1 and v2 are the velocities at z = 0 and z = h, respectively. Hence,

v1 = −x1

2µ

dp

dr
h2 1 + 2x2

1 + x1 + x2

, v2 = −x2

2µ

dp

dr
h2 1 + 2x1

1 + x1 + x2

, (A.2.4)
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where xi = αik
1/2
i h−1 (i = 1, 2). The resulting radial flux is

∫ h

0

v(z) dz = − 1

12µ

dp

dr
h3 g

(
α1k

1/2
1

h
,
α2k

1/2
2

h

)
, (A.2.5)

and g is a dimensionless function given by Eq. (2.22).

A.3 Far-field pressure distribution

The far-field radial pressure distribution can be obtained from a regular expansion of

Eq.(2.19) in powers of 1/r̄. Inserting the expansion of the Green’s function (A.1.13)

into the intraparticle flux (2.26) gives

j̄[p̄](r̄) = −1

r̄

∫ ∞
0

d

dr′

(
r′
dp̄

dr′

)
dr′ − 1

4r̄3

∫ ∞
0

r′2
d

dr′

(
r′
dp̄

dr′

)
dr′ +O(r̄−5) . (A.3.1)

The first term on the right side vanishes because of the boundary conditions (2.19),

and the second term can be integrated by parts to obtain the far-field intraparticle

flux (2.46). Inserting Eqs.(2.46) into Eq.(2.19) and integrating, yields the far-field

pressure distribution (2.47) for no-slip boundary conditions.

For finite slip on the particle surfaces, the function g must also be expanded for

r̄ � 1 recognizing that xi = α̂iq
−1h̄−1(r̄). Expansion of Eq. (2.22) yields

g(x) = 1 + 12 q−1α̂m r̄
−2 +O(r̄−4) , (A.3.2)

where α̂m is the arithmetic mean slip parameter (2.67). Then, inserting this result

and Eq. (2.46) into Eq.(2.19) and integrating, yields the modified far-field pressure

distribution (2.72).

A similar far-field analysis of Eq.(2.27)-(2.28) leads to the corresponding result in

151



terms of permeable sphere variables (2.17)

j̃(r̃) = −3 f̃(q, α̂1, α̂2) r̃−3 +O(r̃−5) , (A.3.3)

p̃− p̃(0)(r̃) = −96α̂m r̃
−6 − 576

7
f̃(q, α̂1, α̂2) r̃−7 +O(r̃−8) . (A.3.4)

where p̃(0)(r̃) is the pressure distribution corresponding to impermeable spheres (2.40)

recast in permeable sphere variables.

A.4 Contact Force for Large Slip Limit

Here, the limiting solution for the pressure distribution and force is derived for par-

ticles in contact (q = 0) with large values of the reduced slip parameter (2.68).

Expanding Eq. (2.22) for x� 1 yields

g = 12x+O(1) , (A.4.1)

where x = x1x2/(x1 + x2). Inserting this result into Eqs. (2.27)-(2.28) yields a differ-

ential equation for the leading-order pressure,

1

r̃

d

dr̃

(
r̃5dp̃

dr̃

)
= −8α̂−1

r +O(α̂′−2) , (A.4.2)

where α̂r is the reduced slip parameter (2.68). The solution,

p̃ = 2α̂−1
r r̃−2 +O(α̂−2) , (A.4.3)

does not satisfy the boundary conditions at r̃ = 0 or r̃ → ∞ due to boundary

layers that form at r̃ ∼ α̂
−1/3
r where the intraparticle flux balances the flow in the

gap, and at r̃ ∼ α̂
1/2
r where the lubrication solution matches to the outer solution

152



for impermeable particles with slip-velocity boundary conditions. Integrating the

leading-order pressure (A.4.3) with the cut-offs resulting from the boundary layers,

leads to the resistance formula Eq. (2.77).

A.5 Impermeable spheres with slip-velocity bound-

ary conditions

The axisymmetric lubrication problem for a pair of impermeable spheres with slip-

velocity boundary conditions with equal slip coefficients α1 = α2 = α is presented

here. The first-order lubrication solution, obtained by Hocking (1973) [52] and repro-

duced below, provides certain limiting behaviors for permeable particles with slip, as

discussed in Section 2.4.5. A second-order lubrication solution is available [207] but

is not needed because only the leading-order solution is developed in our analysis.

The governing equation for the radial pressure distribution in the gap is

− 1 =
1

r̄

d

dr̄

[
r̄
dp̄

dr̄

h̄3

12

(
1 +

m

h̄

)]
,

dp̄

dr̄

∣∣∣∣
r̄=0

= 0 , lim
r̄→∞

p̄(r̄) = 0 , (A.5.1)

where

m = 6λs/h0 , (A.5.2)

is the slip parameter, and λs is the slip length. The slip length relates the slip-velocity

vs to the tangential stress τ on the particle surfaces, vs = λsτ/µ.

The solution to boundary-value problem (A.5.1) is

p̄(r̄, m) =
6

m

1

h̄(r̄)
+

6

m2
log

h̄(r̄)

h̄(r̄) +m
. (A.5.3)
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Expanding for large r̄ yields the far-field pressure,

p̄(r̄, m)− p̄(0)(r̄) = −16m r̄−6 +O(r̄−8) . (A.5.4)

Inserting this pressure distribution into Eq. (2.51a) yields the hydrodynamic resis-

tance

f̄(m) =
2

m2
[(1 +m) log(1 +m)−m] . (A.5.5)

For m� 1, this result yields

f̄ =
2

m
(logm− 1) , (A.5.6)

indicating that the lubrication force is log-singular at contact, according to Eq. (2.50).

Expanding the resistance (A.5.5) for m� 1, yields

f̄ = 1− m

3
+
m2

6
− m3

10
+O(m4) . (A.5.7)

A.5.1 Contact time

Here, the contact time is calculated for impermeable particles with slip-velocity

boundary conditions. The contact time is given by Eq. (2.56) with t̄∞ defined by

Eq. (2.58) and

t̄0(m0) =

∫ m0

∞

f̄(m)

m
dm . (A.5.8)

Taking

λs
a
� h0

a
� 1 (A.5.9)

ensures that t̄∞ is independent of slip and implies that m0 � 1 so that

t̄0(m0) =
3

2
− logm0 +O(m0) . (A.5.10)
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Combining this result with Eqs. (2.56), (2.58), and (A.5.2) yields

t̄c = C∞ − log 6e−
3
2
λs
a
. (A.5.11)

The result indicates that the contact time between impermeable particles with slip-

velocity boundary conditions is finite for λs > 0.
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Appendix B

Support material Chapter 3

B.1 Derivation of intraparticle flux

In this Appendix, we derive the combined intraparticle flux as a boundary integral

of the pressure distribution in the near-contact region. By Darcy’s law (3.1), the

combined flux is

2j =
k1

µ

∂p1

∂n
+
k2

µ

∂p2

∂n
, (B.1.1)

where p1 and p2 are the intraparticle pressure fields, pressure gradients are evaluated

on the particle surfaces, and n is the outward normal vector. By continuity of pressure

across the particle surfaces, the length scale L and angular dependence (3.8) of the

pressure distribution in the lubrication gap are imposed on the intraparticle pressure

fields. The intraparticle pressure fields satisfy Laplace’s equation and, as shown below,

decay to zero away from the near-contact region inside the particles on the length

scale L. A semi-infinite intraparticle domain can be considered given that L/a� 1,

where a is the reduced radius. Moreover, the intraparticle pressure fields are the same

in each particle because they are forced only by the pressure distributions on their

surfaces in the near-contact region, which are the same because pressure variations

across the gap are negligible according to the leading-order lubrication equations
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(3.2). Accordingly, Eq. (B.1.1) simplifies to

j =
k

µ

∂pi
∂n

, (B.1.2)

where pi denotes the intraparticle pressure. The result indicates that the total intra-

particle flux depends only on the mean permeability (3.37).

According to the foregoing discussion, the intraparticle pressure field has the an-

gular dependence

pi(r, θ, z) = Pi(r, z) cos θ , (B.1.3)

and satisfies Laplace’s equation. Hence, Pi(r, z) satisfies

1

r

∂

∂r

[
1

r

∂

∂r
(rPi)

]
+
∂2Pi
∂z2

= 0 (B.1.4)

in a semi-infinite region, vanishes for z → −∞, and matches the pressure, p(r, θ), in

the lubrication gap at z = 0.

A first-order Hankel transform of this equation with the prescribed boundary

conditions yields

d2Qi

dz2
− ω2Qi = 0 ; Qi(ω, 0) =

∫ ∞
0

J1(ωr)P (r)rdr , Qi(ω,−∞) = 0 ,

(B.1.5 a, b, c)

where Qi(ω, z) =
∫∞

0
J1(ωr)Pi(r, z)rdr is the Hankel-transformed intraparticle pres-

sure, and P (r) is the pressure in the lubrication gap. The solution of the transformed

problem is

Qi(ω, z) = Qi(ω, 0)eωz , (B.1.6)

where Qi(ω, 0) is the Hankel-transformed pressure distribution in the gap between

the particles (B.1.5b); by the inverse Hankel transform, the intraparticle pressure is
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given by

Pi(r, z) =

∫ ∞
0

Qi(ω, 0)eωzJ1(ωr)ωdω . (B.1.7)

For −z � 1,

Pi(r, z) =
3rz I

(r2 + z2)5/2
, (B.1.8)

which is obtained using P (ω, 0) ≈ ωI for ωL0 � 1, where I =
∫∞

0
Pr2dr. This result

confirms the decay of pressure away from the near-contact region.

From Eq. (B.1.7), the normal derivative of pressure on the particle surface is

∂Pi
∂z

∣∣∣∣
z=0

=

∫ ∞
0

ω2Q(ω, 0)J1(ωr)dω . (B.1.9)

Rewriting this result using the identity

− ω2Q(ω, 0) =

∫ ∞
0

1

r′
d

dr′

[
1

r′
d

dr′
(r′P )

]
J1(ωr′)r′dr′ , (B.1.10)

yields

∂Pi
∂z

∣∣∣∣
z=0

= −
∫ ∞

0

1

r′
d

dr′

[
1

r′
d

dr′
(r′P )

]
φ (r′/r) dr′ , (B.1.11)

where

φ (r′/r) = r′
∫ ∞

0

J1(ωr′)J1(ωr) dω (B.1.12)

is the Green’s function. Then, rewriting the Bessel function integral in Eq. (B.1.12)

yields

φ(x) =
1

π

[
1 + x2

1 + x
K

(
2
√
x

1 + x

)
− (1 + x)E

(
2
√
x

1 + x

)]
, (B.1.13)

where x = r′/r, and K and E are elliptic integrals of the first- and second-kind,

K(t) =

∫ π
2

0

dθ√
1− t2 sin2θ

, E(t) =

∫ π
2

0

√
1− t2 sin2θ dθ . (B.1.14a, b)

Combining Eqs.(B.1.2)-(B.1.3) and (B.1.11) and rescaling the flux according to Eq. (3.38)
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yields the intraparticle flux (3.44)

The Green’s function is seen to satisfy the reciprocal relation,

φ (1/x) =
φ(x)

x
. (B.1.15)

A series expansion of Eq.(B.1.13) for x� 1 yields

φ(x) =
1

2
x2 +

3

16
x4 +O(x6) . (B.1.16)

Combining this result with the reciprocal relation (B.1.15) gives

φ(x) =
1

2
x−1 +

3

16
x−3 +O(x−5) (B.1.17)

for x� 1. The Green’s function has the log singular expansion at x = 1,

φ(x) =− 1

π

[(
1 +

1

2
(x− 1) +

1

16
(x− 1)2

)
log

(
1

8
|x− 1|

)
+ 2 +

1

2
(x− 1)− 3

16
(x− 1)2

]
+O

[
(1− x)3 log |1− x|

]
+O(1− x)3 . (B.1.18)

B.2 Analysis of permeability integral for large and

small q

Here, the permeability integral g(q) is analyzed for the limits small and large values

of the parameter q.

B.2.1 Small q limit

The Reynolds equation (3.40) is singular for q → 0 (i.e., h0 → 0) but a solution for

q = 0 is possible by introducing variables rescaled by a length scale related to the
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permeability rather than the gap width. The parameter q can be written as the ratio

of length scales,

q = (L0/Lk)
2 , (B.2.1)

where L0 is the geometric length scale (3.39), and

Lk = K1/5a (B.2.2)

is a length scale set by the permeability.

The singularity at q = 0 is removed by recasting the problem in terms of dimen-

sionless variables defined using the permeability length Lk,

r̃ =
r

Lk
, z̃ =

za

L2
k

, P̃ ∗ =
pL3

k

µU0a2
, J̃ =

Ja

U0Lk
. (B.2.3)

In these variables, Eqs. (3.40)-(3.43) become

1

12 r̃

(
r̃P̃ ′ h̃3

)′
− 1

12 r̃2
P̃ h̃3 − 2J̃ = − r̃

2
, P̃ ∗(0) = P̃ ∗(∞) = 0 , (B.2.4)

h̃(r̃) = q +
1

2
r̃2 , (B.2.5)

g(q) =

∫ ∞
0

(P̃ ∗0 − P̃ ∗)r2dr , (B.2.6)

and

P̃ ∗0 (r̃) =
6

5

r̃

h̃2
. (B.2.7)

The permeability-scaled Reynolds equation (B.2.4) has regular perturbation solu-

tion for q � 1,

P̃ ∗(r̃, q) = p̃∗0(r̃) +O(q) , (B.2.8)

where p̃∗0(r̃) is the solution with q = 0, corresponding to a contact configuration of the
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particles. Inserting this expansion into Eq. (B.2.9) yields the leading-order behavior,

g(q) =

∫ ∞
0

(P̃ ∗0 − p̃∗0)r2dr +O(q) . (B.2.9)

For convenience, this is rewritten as,

g(q) =

∫ 1

0

P̃ ∗0 r
2dr −

∫ 1

0

p̃∗0r
2dr +

∫ ∞
1

(P̃ ∗0 − p̃∗0)r2dr +O(q) , (B.2.10)

to isolate the log-singular behavior resulting from the integration of P̃ ∗0 (r̃) at r = 0.

Formula (3.46) was obtained by a numerical solution of p̃∗0 and evaluation of integrals

in Eq. (B.2.10), except for the coefficient of the O(q) term, c2, which was obtained

by fitting to the solution at finite q.

B.2.2 Large q limit

For q � 1, the solution of Eq. (3.40) has the form of a regular perturbation,

P̂ ∗(r̂, q) = P̂ ∗0 (r̂) + q−5/2P̂ ∗1 (r̂) +O(q−5) , (B.2.11)

where P̂ ∗0 (r̂) is given by Eq. (3.43). At leading-order for large q, the permeability

integral (3.42) is given by

g(q) = −q−5/2

∫ ∞
0

P̂ ∗1 r
2dr +O(q−5) , (B.2.12)

where the first-order correction field, P̂ ∗1 (r̂), satisfies

1

12 r̂

(
r̂P̂ ∗1

′ ĥ3
)′
− 1

12 r̂2
P̂ ∗1 ĥ

3 = 2 q−5/2Ĵ
[
P̂ ∗0

]
, P̂ ∗1 (0) = P̂ ∗1 (∞) = 0 . (B.2.13)

Formula (3.47) was obtained by a numerical solution of this equation and evaluation

of the integral (B.2.12).
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B.3 Resistance functions

A brief summary of the equations needed for the full description of the resistance

problem is presented in this Appendix. Due to the linearity of the Stokes equations,

forces, Fα, torques, Tα, and stresslets, Sα, exerted by a particle α = 1, 2 on the

surrounding fluid are related to its imposed motion through a resistance matrix [57,

58],



F1

F2

T1

T2

S1

S2


= µ



A11 A12 B̃11 B̃12 G̃11 G̃12

A21 A22 B̃21 B̃22 G̃21 G̃22

B11 B12 C11 C12 H̃11 H̃12

B21 B12 C21 C22 H̃21 H̃22

G11 G12 H11 H12 M11 M12

G21 G22 H21 H22 M21 M22





U1 −U∞(r1)

U2 −U∞(r2)

ω1 − ω∞

ω2 − ω∞

−E∞

−E∞


, (B.3.1)

where A, B, B̃, and C are second-order tensors; G, G̃, H, and H̃ are third-order

tensors; and M is a fourth-order tensor that is irrelevant for rigid particles; µ is the

fluid viscosity. The spheres have linear and angular velocities Uα and ωα, respectively,

and are immersed in a linear ambient flow field,

U∞(r) = U0 + E∞ · r + ω∞ × r , (B.3.2)

where r is the position vector and the centers of the spheres are at rα. The quantities

E∞, ω∞, and U0 are, respectively, the rate-of-strain and vorticity in the fluid, and

the velocity at r = 0. The resistance matrix is symmetric and positive definite by the

Lorentz reciprocal theorem.
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Dimensionless resistance tensors, denoted with a hat, are defined [57,58]

Aαβ = 3π(aα + aβ)Âαβ , (B.3.3a)

Bαβ = π(aα + aβ)2B̂αβ , (B.3.3b)

Cαβ = π(aα + aβ)3Ĉαβ , (B.3.3c)

Gαβ = π(aα + aβ)2Ĝαβ , (B.3.3d)

Hαβ = π(aα + aβ)3Ĥαβ , (B.3.3e)

Mαβ = (5/6)π(aα + aβ)3M̂αβ , (B.3.3f)

where α, β = 1 or 2 indicates particle labelling. The tensors obey symmetry relations

that are inherent to the geometry of the two-sphere configuration. For spherical

particles, the resistance tensors can be decomposed into, at most, two scalar functions

XR
αβ and Y R

αβ that denote particle resistances parallel and perpendicular to the line-

of-centers of the pair. By symmetry, only two resistance functions, i.e. XR
11 and XR

21

or Y R
11 and Y R

21 , are needed (cf., [57, Eq.(1.9)] and [58, Eq.(5)]). Here, R refers to one

of the resistance tensors.

B.3.1 Transverse resistance functions

The individual resistance functions for impermeable spheres shown in Eq.(3.54) are

[11]:

Y A,0
11 = − 1

12

(κ− 1)2

κ(κ+ 1)
I ′1 −

I ′2
3

+ AY11(κ) , (B.3.4)

Y A,0
21 =

1

6

(κ− 1)2

κ(κ+ 1)
I ′1 +

2

3(1 + κ)
I ′2 + AY21(κ) , (B.3.5)

Y B,0
11 =

κ−1 − 1

8
I ′1 +

I ′2
2

+BY
11(κ) , (B.3.6)
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Y B,0
21 =

κ− 1

2(1 + κ)2
I ′1 +

2κ

(1 + κ)2
I ′2 +BY

21(κ) , (B.3.7)

Y C,0
11 = −1 + κ−1

16
I ′1 −

I ′2
4

+ CY
11(κ) , (B.3.8)

Y C,0
21 =

I ′1
2(1 + κ)2

− 2κ

(1 + κ)3
I ′2 + CY

21(κ) , (B.3.9)

Y G,0
11 = −(3κ− 1)(κ− 1)

16κ(1 + κ)
I ′1 −

I ′2
4

+GY
11(κ) , (B.3.10)

Y G,0
21 = −(κ− 3)(κ− 1)

4(1 + κ)3
I ′1 −

κ

(1 + κ)2
I ′2 +GY

21(κ) , (B.3.11)

Y H,0
11 =

3− κ−1

32
I ′1 −

I ′2
8

+HY
11(κ) , (B.3.12)

Y H,0
21 =

κ− 3

4(1 + κ)3
I ′1 −

κ

(1 + κ)3
I ′2 +HY

21(κ) , (B.3.13)

where

I ′1 =
24

5
(1 + κ−1)−2 log ξ−1 , I ′2 =

2

1 + κ−1
log ξ−1 , (B.3.14)

are obtained from integrals (3.31), absorbing all non-singular terms into the matching

constants RY
αβ. These constants depend on size-ratio only and are tabulated in the

literature [11]. In this work, we used the code available online and developed by D.J.

Jeffrey to generate the matching constants for impermeable spheres with finite size

ratio [67] .

B.4 Near-contact axisymmetric mobility functions

In the near-contact regime, the axisymmetric mobility functions L and A are pro-

portional to the G mobility function for permeable spheres (3.63), as indicated by

Eq. (3.66). Here, the calculation of the contact forces is described and a table of

values is provided.
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The contact forces are made dimensionless as

F̂ (g)
c =

F
(g)
c

6πµa U∞12,g

, F̂ (E)
c =

F
(E)
c

6πµa U∞12,E

, (B.4.1)

where U∞12,g is defined by Eq. (3.61), and

U∞12,E = Eā (1− A) , (B.4.2)

is the relative velocity along the line-of-centers of two spheres in a extensional flow,

where ā is the average radius and E is the rate-of-strain.

The contact forces are obtained from a force balance on the particles, taking

account of the drag forces due to pair migration, gravity forces or forces exerted by

the axisymmetric straining flow, and a contact force. The results are [208,209]

F̂ (g)
c =

κ−1 + 1

κ2γ − 1

[
R2 −R1κ

3γ

R1 +R2

]
(B.4.3)

and

F̂ (E)
c =

1

κ

R
(E)
2 R1 −R(E)

1 R2

R1 +R2

, (B.4.4)

where,

R1 = AX11(κ) +
1 + κ

2
AX12(κ) , (B.4.5)

R2 = κAX22(κ) +
1 + κ

2
AX12(κ) , (B.4.6)

R
(E)
1 = AX11 −

κ(1 + κ)

2
AX12 −

2

3
GX

11 −
(1 + κ)2

6
GX

21 + (1 + κ−1)−2 , (B.4.7)

and

R
(E)
2 =

1 + κ

2
AX12 − κ2AX22 −

(1 + κ)2

6
GX

12 +
2

3
κ2GX

22 − (1 + κ−1)−2 . (B.4.8)
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In Eqs.(B.4.5)-(B.4.8), RX
αβ are matching constants for the axisymmetric resistance

functions, XA
αβ and XG

αβ, obtained from the resistance matrix (B.3.1). Below, a table

of values for the contact forces is provided for convenience.

κ 1 .9 .75 .6 .5 .4 .3 .25 .125

F̂
(g)
c - .3862 .3673 .3256 .2825 .2270 .1611 .1260 .04296

F̂
(E)
c 2.038 2.024 1.933 1.730 1.518 1.238 .8982 .7123 .2538

Table B.1: Contact forces for particles migrating in gravity (γ = 1) and in axisym-
metric straining flow.
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Appendix C

Support material Chapter 4

C.1 Asymptotic Evaluation of Collision Efficiency

Integrals

In this Appendix, the collision efficiency integrals (4.26b)-(4.29b) are simplified for

the case of weakly permeable particles and for particles with small-amplitude surface

roughness.

C.1.1 Collision efficiency integrals for weakly permeable par-

ticles

The general approach to simplifying the evaluation of the integrals I
(k)
x (x = B, g, st, sh)

on the contact surface, sc = 2, for weakly permeable particles, K � 1, is to decom-

pose the efficiency integrals into four parts and perform the near-contact integrations

in the gap-width variable ξ,

I(k)(sc) =

∫ ∞
2

P (s, q)

Q(s, q)
ds = I(1) + I(2) + I(3) + I(4) , (C.1.1)
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where the integrals are defined,

I(1) =

∫ ∞
ξ2

P0(ξ)

Q0(ξ)
dξ , (C.1.2)

I(2) =

∫ ξ2

ξ1

Pξ,0(ξ)

Qξ,0(ξ)
dξ , (C.1.3)

I(3) =

∫ ξ2

ξ1

[
Pξ(ξ, q)

Qξ(ξ, q)
− Pξ,0(ξ)

Qξ,0(ξ)

]
dξ , (C.1.4)

I(4) =

∫ ξ1

0

Pξ(ξ, q)

Qξ(ξ, q)
dξ . (C.1.5)

Here, ξ1 and ξ2 satisfy

K2/5 � ξ2 � 1 , ξ1 = d1K
2/5 , (C.1.6)

where d1 is an arbitrary constant. Note that the variable q in integrals I(3) and I(4)

is related to the integration variable, ξ, by Eq. (4.30).

The function Q in the above integrals is one of the axisymmetric mobility func-

tions, G, L, or 1− A, and P is the non-singular remainder of the collision efficiency

integrand, i.e., combinations of the mobility functions as they appear in Eqs. (4.26b)-

(4.29b), including factors of s (and the exponential of the van der Waals potential

in Eq. (4.26b)). The functions P0 and Q0 correspond to the mobility functions for

impermeable particles appropriate for q � 1. The functions Pξ and Qξ are the near-

contact, lubrication forms of P and Q, and Pξ,0 and Qξ,0 are the near-contact forms

of P0 and Q0. The integrands for the collision efficiency integrals of impermeable

spheres have non-integrable singularities, Qξ,0 ∼ ξ, at contact, leading to the diver-

gence of the collision efficiency integrals (and vanishing of collision efficiencies) for
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impermeable spheres. Accordingly, ξ1 > 0 is required for the integration limits of I2

and I3 above.

In the near-contact regime,

Qξ = R
ξ

f(q)
, Qξ,0 = Rξ , (C.1.7a, b)

according to Eqs. (4.31) and (4.35), where R is the size-ratio-dependent contact re-

sistance for the axisymmetric mobility function L or 1 − A; for G, R = ν−1. Here,

the function f(q) has asymptotic properties given by Eq. (4.32). The near-contact

form Pξ corresponds to the lubrication approximation of the integrands, obtained

from Eqs. (4.31) and (4.33) (and Eq.(4.17) for integral (4.26b)).

Inserting Eq. (C.1.7) into integrals (C.1.3)-(C.1.5) and taking account of the as-

sumed orders of magnitude (C.1.6) yields

I(2) =
1

R

∫ ξ2

ξ1

Pξ,0(ξ)
dξ

ξ
= F (ξ2)− F (d1K

2/5) , (C.1.8)

I(3) =
1

R

∫ ∞
d1ν−1

[Pξ(ξ, q)f(q)− Pξ,0(ξ)]
dq

q
, (C.1.9)

I(4) =
1

R

∫ d1ν−1

0

Pξ(ξ, q)f(q)
dq

q
, (C.1.10)

where F is the indefinite integral

F (x) =
1

R

∫ x

Pξ,0(t)
dt

t
. (C.1.11)

Combining the above integrals and integral (C.1.2), taking the limit ξ2 → 0, and
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arbitrarily assigning d1 = ν, yields the desired result,

I(k)(sc) = Γ + Λ(0) − F (νK2/5) , (C.1.12)

where

Γ = lim
ξ→0

[I0(ξ) + F (ξ)] , (C.1.13)

Λ(0) =
1

R

[∫ ∞
1

[Pξ(ξ, q)f(q)− Pξ,0(ξ)]
dq

q
+

∫ 1

0

Pξ(ξ, q)f(q)
dq

q

]
. (C.1.14)

Here, the quantity I0 in Eq. (C.1.13) is the collision efficiency integral for impermeable

particles,

I0(ξ) =

∫ ∞
ξ

P0(t)

Q0(t)
dt . (C.1.15)

Recall that ξ and q in the integrand of Eq. (C.1.14) are related by Eq. (4.30).

C.1.2 Collision efficiency integrals for particles with small-

amplitude roughness

The corresponding analysis for the evaluation of the integrals integrals I
(δ)
x (x =

B, g, st, sh) on the contact surface, sc = 2+νδ, for small-amplitude surface roughness,

δ � 1, is similar to the foregoing analysis for weakly permeable particles but the

situation is simpler because only impermeable sphere mobility functions are required.

In this case, the integrals are decomposed into two parts,

I(δ)(sc) =

∫ ∞
νδ

P0(s)

Q0(s)
ds = I(1) + I(2) , (C.1.16)
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I(1) = I0(ξ1) , (C.1.17)

I(2) =

∫ ξ1

νδ

Pξ,0(ξ)

Qξ,0(ξ)
dξ , (C.1.18)

where I0 is the collision efficiency integral for impermable spheres (C.1.15). Inserting

Eq. (C.1.7b) into the second integral yields

I(2) =
1

R

∫ ξ1

νδ

Pξ,0(ξ)
dξ

ξ
= F (ξ1)− F (νδ) , (C.1.19)

where F (x) is the indefinite integral (C.1.11). Here again, ξ1 > 0 is required to avoid

the singularity of Qξ,0 at contact. Rearranging these integrals and taking the limit,

ξ1 → 0 yields the desired result,

I(δ)(sc) = Γ− F (νδ) , (C.1.20)

where Γ is given by Eq. (C.1.13).

Note that the contact value of the collision efficiency integrals for particles with

surface roughness can be derived from the result for permeable particles by the sub-

stitution (4.76) in Eq. (C.1.12). This result is justified below.

C.1.3 Evaluation of collision efficiency integral away from

contact surface

Results for the evaluation of collision efficiency integrals off the contact surface are

provided here. This is required for the evaluation of collision efficiencies in shear flow.

Outside of the near-contact region, the collision efficiency integral is given by the
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corresponding integral for impermeable particles (C.1.15),

I(ξ) = I0(ξ) , ξ = O(1) . (C.1.21)

Two distinct cases arise for the evaluation of collision efficiency integrals in the near-

contact region,

I(q) = Γ + Λ(q)− F (νK2/5) , ξ = O(K2/5) , (C.1.22)

I(ξ) = Γ− F (ξ) , K2/5 � ξ � 1 . (C.1.23)

Here, F (x) is the integral defined by Eq. (C.1.11), Γ is given by Eq. (C.1.13), and

Λ(q) is the extension of Eq. (C.1.14) for evaluation off of the contact surface,

Λ(q) =
1

R

[∫ ∞
1

[Pξ(ξ, q
′)f(q′)− Pξ,0(ξ)]

dq′

q′
+

∫ 1

q

Pξ(ξ, q
′)f(q′)

dq′

q′

]
. (C.1.24)

Note that Eq. (C.1.23) is actually equivalent to Eq. (C.1.21) according to definition

(C.1.13).

The result for evaluation on the contact surface, (C.1.12), is recovered from

Eq. (C.1.22) for q → 0 given that Eq. (C.1.24) reduces to Eq. (C.1.14). Equa-

tion (C.1.22) reduces to Eq. (C.1.23) for large q, given that

lim
q→∞

Λ(q) = F (νK2/5)− F (ξ) . (C.1.25)

Eq. (C.1.23) corresponds to the formula for rough spheres (C.1.20) with roughness

νδ = ξ. This result justifies Eq. (4.76) because q → ∞ corresponds to K → 0 for

ξ > 0.
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C.1.4 Two indefinite integrals

The two closely-related indefinite integrals, Fg and Fst, defined by Eqs. (4.53) and

(4.61), and needed, respectively, for calculating collision efficiencies in sedimentation

and uniaxial straining flow, are evaluated here. The derivation is similar to that

presented in Davis (1984) [90, Eq.(3.6)]. Both integrals have the form,

F (x) = log f(x) , (C.1.26)

where

f(x) =
xα1

(log2x−1 + d5 log x−1 + d4)α2

(
2 log x−1 + d5 −∆

2 log x−1 + d5 + ∆

)α3

, (C.1.27)

α1 = − d3

2R
, α2 =

d3d5 − d2

4R
, α3 =

2d1 − d2d5 + d3(d2
5 − 2d4)

4R∆
, (C.1.28)

and

∆ = (d2
5 − 4d4)1/2 . (C.1.29)

The arbitrary constant associated with the indefinite integral, F (x), indicates that

cf(x) can also be used, where c is an arbitrary constant; herein, we take c = 1.

For Fg(x), defined by Eq. (4.53),

fg(x) = f(x) , (C.1.30)

with f(x) defined by (C.1.27)-(C.1.29), coefficients given by di = mi (i = 1-5) in

Eq. (4.36a), and R = Rg. For Fst, defined by Eq. (4.61),

fst(x) = x1/(2Rst)f(x) (C.1.31)

with f(x) as defined above, di = bi (i = 1-5) in Eq. (4.36b), and R = Rst.
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C.2 Numerical Evaluation of Collision Efficiency

Formulas

Here, we describe the parameters needed to evaluate the collision efficiency formulas

derived in Chapter 4 and where to find them.

The size-ratio-dependent parametersR and Γ defined by Eqs. (C.1.7) and (C.1.13),

respectively, depend on hard-sphere mobility functions G0, L0, M0, A0, and B0. The

axisymmetric contact resistances, R, were evaluated using the resistance function

code of D.J. Jeffrey [67] by the procedure described in Appendix D of Ref. [116]. The

parameters Γ were evaluated using a bispherical coordinate code provided by A.Z.

Zinchenko [63, 64]. Values of these parameters for several size ratios are provided in

Tables C.1 and C.2 below.

The functions F (x), defined by Eq. (C.1.11) require the size-ratio-dependent co-

efficients for the near-contact lubrication forms (4.36) of the standard hard-sphere

mobility functions Mξ,0 and Bξ,0 which can be found in a text book [11]. For Brown-

ian motion, F (x) does not require these coefficients.

Collision efficiency formulas for permeable particles also require the functions f(q)

and g(q) that enter the lubrication forms (4.31) and (4.33) and the coefficients for Mξ

and Bξ in Eqs. (4.33a,b). The coefficients are provided in Tables 2-3 of Ref. [116] and

tabulations of f(q) and g(q) are provided online [116]. These parameters are needed

for the functions Λ(0) defined by Eq. (C.1.14).

κ 1 .9 .75 .6 .5 .4 .3 .25 .125
Rg - .7745 .7500 .6947 .6357 .5561 .4538 .3939 .2175
Rst 4.077 4.059 3.947 3.691 3.415 3.034 2.530 2.226 1.285

Table C.1: Contact forces for particles migrating in gravity (γ = 1) and in axisym-
metric straining flow.
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κ 1 .9 .75 .6 .5 .4 .3 .25 .125
ΓB,0 1.528 1.526 1.513 1.482 1.449 1.403 1.341 1.301 1.156
Γg - -.080 .0042 .202 .413 .674 .889 .916 .410
Γst -.038 -.045 -.086 -.186 -.299 -.446 -.585 -.618 -.359
Γsh .6099 .6148 .6462 .7228 .8139 .9551 1.173 1.324 1.917

Table C.2: Coefficients Γ for collision efficiencies of particles in Brownian motion,
gravity sedimentation, straining flow and shear flow. Here, Γsh is obtained with Fsh
defined by integral (4.70) with ξ0 = ν10−5.
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Appendix D

Support material Chapter 5

D.1 Derivation of transport coefficients in planar

Poiseuille flows

In this section, we present a derivation of the transport coefficients in the velocity

gradient direction in regions where the shear-rate vanishes. Inserting the relative par-

ticle velocity magnitude (5.28) into the particle flux integral (5.4), and transforming

to the cylindrical coordinate system shown in figure 5.1, yields

Fi2(X2) = γ̇′2

∫ 2π

0

∫ rc

0

r−∞|sin θ|

[∫ 0

−∆Xij
2

ni(X
i,−∞
2 )nj(r

−∞, θ,X i,−∞
2 )∣∣∣∣X2 +X i,−∞

2 +
1

2
r−∞ sin θ

∣∣∣∣ dX i,−∞
2

]
r−∞dr−∞dθ ,

(D.1.1)

where X i,−∞
2 is the distance of particle-i from the plane X2 where the flux is measured.

The intermediate result, given by Eqs. (5.38)-(5.40), is obtained by splitting the

angular θ-integration in Eq. (D.1.1) into two ranges: 0 ≤ θ < π and π ≤ θ < 2π, then

using the symmetry relation (5.5) to consolidate integration to the range 0 ≤ θ < π.
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Accordingly, X i,−∞
2 is restricted to the range

0 < X i,−∞
2 < −∆X ij

2 (D.1.2)

to ensure that type-i particles cross the X2 plane, where −∆X ij
2 ≥ 0 by the restric-

tion to 0 ≤ θ < π. Linear variations in number density (5.9) are inserted but the

complete velocity field is used here, not a linearized approximation, because the latter

is inconsistent in the region where the shear-rate vanishes.

In order to we carry out the X i,−∞
2 integration in Eqs. (5.38)-(5.40) and avoid

integrating over the absolute values, we exploit the symmetry of the problem about

the centerline of the flow, and, without loss of generality, restrict our attention to

X2 ≥ 0. The second absolute value in each integrand is a positive quantity.

Removing the absolute value of the first term of each integrand in Eqs. (5.38)-

(5.39) and the last term of the integrand in Eq. (5.40) requires splitting the range of

the X i,−∞
2 integration,

0 < X i,−∞
2 < X ′2 , and X ′2 < X i,−∞

2 < −∆X ij
2 , (D.1.3)

where

X ′2 = X2 −
1

2
r−∞ sin θ (D.1.4)

with the stipulation

0 ≤ X ′2 ≤ −∆X ij
2 , (D.1.5)

as required by Eq. (D.1.2). Splitting the X i,−∞
2 integrals accordingly yields

I
(1)
ij (X2) =

1

X2

∫ π

0

∫ rc

0

r−∞ sin θ

[∫ X′2

0

X2X
i,−∞
2 dX i,−∞

2

+

∫ −∆Xij
2

X′2

(X i,−∞
2 +

1

2
r−∞ sin θ)X i,−∞

2 dX i,−∞
2

]
r−∞dr−∞dθ .

(D.1.6)
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I
(2)
ij (X2) =

1

X2

∫ π

0

∫ rc

0

r−∞ sin θ

[∫ X′2

0

X2(X i,−∞
2 + r−∞ sin θ)dX i,−∞

2

+

∫ −∆Xij
2

X′2

(X i,−∞
2 +

1

2
r−∞ sin θ)(X i,−∞

2 + r−∞ sin θ)dX i,−∞
2

]
r−∞dr−∞dθ ,

(D.1.7)

I
(3)
ij (X2) =

∫ π

0

∫ rc

0

r−∞ sin θ

[∫ X′2

0

(X i,−∞
2 +

1

2
r−∞ sin θ)dX i,−∞

2

+

∫ −∆Xij
2

X′2

X2 dX
i,−∞
2

]
r−∞dr−∞dθ .

(D.1.8)

In this form, the equations can be integrating in X i,−∞
2 to obtain

I
(1)
ij (X2) =

1

X2

[∫ π

0

∫ rc

0

r−∞ sin θ

[
1

2
X2(X ′2)2 − 1

3

(
(∆X ij

2 )3 + (X ′2)3
)

+
1

4
r−∞ sin θ

(
(∆X ij

2 )2 − (X ′2)2
)]
r−∞dr−∞dθ ,

(D.1.9)

I
(2)
ij (X2) =

1

X2

[∫ π

0

∫ rc

0

r−∞ sin θ

[
(r−∞ sin θ)X2X

′
2 +

1

2
X2(X ′2)2 − 1

3

(
(∆X ij

2 )3 + (X ′2)3
)

+
3

4
r−∞ sin θ

(
(∆X ij

2 )2 − (X ′2)2
)
− 1

2
(r−∞ sin θ)2

(
∆X ij

2 +X ′2
)]
dr−∞dθ ,

(D.1.10)

I
(3)
ij =

∫ π

0

∫ rc

0

r−∞ sin θ

[
1

2
(X ′2)2 +

1

2
(r−∞ sin θ)X ′2

−X2(∆X ij
2 +X ′2)

]
dr−∞dθ .

(D.1.11)

For X2 > X ij
c , X ′2 → −∆X ij

2 , reducing these integrals to their local forms (5.41), and

by symmetry with respect to X2, the same holds also for X2 < −X ij
c . Equation (5.41)

is thereby established.
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