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Abstract

The Tidal Evolution of Dark Matter Substructure and the Significance of Halo-to-Halo Assembly History

Variance

Sheridan B. Green

2021

Accurately predicting the abundance and structural evolution of dark matter subhaloes is crucial for un-

derstanding galaxy formation, large-scale structure, and constraining the nature of dark matter. Due to

the nonlinear nature of subhalo evolution, cosmological #-body simulations remain its primary method of

investigation. Subhaloes in such simulations have recently been shown to still be heavily impacted by arti-

ficial disruption, diminishing the information content (at small scales) of the simulations and all derivative

semi-analytical models calibrated against them.

A model of the evolved subhalo density structure Our recent release of the DASH library of high-

resolution, idealized #-body simulations of the tidal evolution of subhaloes (unhindered by numerical

over-merging due to discreteness noise or force softening) enables a more accurate calibration of semi-

analytical treatments of dark matter substructure evolution. We use DASH to calibrate a highly accurate,

simply parametrized empirical model of the evolved subhalo density profile (ESHDP), which captures the

impact of tidal heating and stripping. By testing previous findings that the structural evolution of a tidally

truncated subhalo depends solely on the fraction of mass stripped, independent of the details of the strip-

ping, we identify an additional dependence on the initial subhalo concentration. We provide significantly

improved fitting functions for the subhalo density profiles and structural parameters (+max and Amax) that

are unimpeded by numerical systematics and applicable to a wide range of parameter space.

A model of the build-up and evolution of dark matter substructure By combining our ESHDP model

with a physicallymotivated prescription for the subhalomass stripping rate, we introduce a state-of-the-art

model of the mass evolution of individual subhaloes. This model has been calibrated to reproduce the mass

trajectories of subhaloes in the DASH simulations. We incorporate this treatment of the subhalo internal

structure and mass evolution into the recently released SatGen semi-analytical model. SatGen combines

(i) analytical halo merger trees, (ii) a recipe for initial subhalo orbits at infall, (iii) an orbit integrator (which

captures dynamical friction), and (iv) our DASH-calibrated tidal evolution model in order to ultimately cap-

ture the build-up and evolution of populations of dark matter substructure. We also develop a model of

artificial disruption that reproduces the statistical properties of disruption in the Bolshoi simulation. Using



the DASH-calibrated SatGen framework, we generate independent predictions for key quantities in small-

scale cosmology, including the evolved subhalo mass function, subhalo radial abundance, and the substruc-

ture mass fraction and study how these quantities are impacted by artificial disruption andmass resolution

limits. We find that artificial disruption affects these quantities at the 10−20% level, ameliorating previous

concerns that it may suppress the SHMF by asmuch as a factor of two. We demonstrate that semi-analytical

substructure modeling must include orbit integration in order to properly account for splashback haloes,

which make up roughly half of the subhalo population. We show that the resolution limit of #-body simu-

lations, rather than artificial disruption, is the primary cause of the radial bias in subhalo number density

found in dark matter-only simulations. Hence, we conclude that the mass resolution remains the primary

limitation of using such simulations to study subhaloes.

The impact of a galactic disc on the subhalo population Numerical simulations have shown that the

formation of a central disc can drastically reduce the abundance of substructure compared to a darkmatter-

only simulation, which has been attributed to enhanced destruction of substructure due to disc shocking.

We examine the impact of discs on substructure using SatGen. Using a sample of 10,000 merger trees of

Milky-Way like haloes, we study the demographics of subhaloes that are evolved under a range of composite

halo–disc potentials with unprecedented statistical power. We find that the overall subhalo abundance is

relatively insensitive to properties of the disc aside from its total mass. For a disc that contains 5% of "vir,

the mean subhalo abundance within Avir is suppressed by .10% relative to the no-disc case, a difference

that is dwarfed by halo-to-halo variance. For the same disc mass, the abundance of subhaloes within 50

kpc is reduced by ∼30%. We argue that the disc mainly drives excess mass loss for subhaloes with small

pericentric radii and that the impact of disc shocking is negligible.

The three subhalo-focused studies described above constitute the primary thrust of this dissertation.

However, the analytical Monte Carlo merger tree method, which is a key component of SatGen, has addi-

tional utility beyond the realm of subhalo studies. Indeed, an overarching theme of this program is that

variation in assembly histories propagates to substantial halo-to-halo variance inmany quantities of astro-

physical and cosmological interest. We expand on this motif in the following two studies.

The impact of assembly history variance on cluster scaling relations X-ray and microwave cluster

scaling relations are immensely valuable for cosmological analysis. However, their power is limited by as-

trophysical systematics that bias mass estimates and introduce additional scatter. Turbulence injected into

the intracluster medium via mass assembly contributes substantially to cluster non-thermal pressure sup-

port, a significant source of such uncertainties. We use an analyticalmodel to compute the assembly-driven

non-thermal pressure profiles of haloes based on Monte Carlo-generated accretion histories (leveraging



the same method that is used to generate merger trees in SatGen). We introduce a fitting function for

the average non-thermal pressure fraction profile, which exhibits minimal dependence on redshift at fixed

peak height. Using the model, we predict deviations from self-similarity and the intrinsic scatter in the

Sunyaev–Zel’dovich effect observable-mass scaling relation (.SZ − ") due solely to inter-cluster variation

in mass accretion histories. We study the dependence of .SZ − " on aperture radius, cosmology, redshift,

and mass limit. The model predicts 5 − 9% scatter in .SZ − " at I = 0, increasing as the aperture used to

compute .SZ increases from '500c to 5'500c. The predicted scatter lies slightly below that of studies based

on non-radiative hydro-simulations, illustrating that assembly history variance is likely responsible for a

substantial fraction of scatter in .SZ − " . This should be regarded as a lower bound, which will likely in-

crease with the use of an updated gas density model that incorporates a more realistic response to halo

assembly. As redshift increases,.SZ − " deviates more from self-similarity and scatter increases. We show

that the.SZ−" residuals correlate strongly with the recent halomass accretion rate, potentially providing

an opportunity to infer the latter.

Estimating cluster masses via machine learning We present a machine-learning approach for estimat-

ing galaxy cluster masses, trained using both Chandra and eROSITAmock X-ray observations of 2041 clusters

from the Magneticum simulations. We train a random forest (RF) regressor, an ensemble learning method

based on decision tree regression, to predict cluster masses using an input feature set. The feature set uses

core-excisedX-ray luminosity and a variety ofmorphological parameters, including surface brightness con-

centration, smoothness, asymmetry, power ratios, and ellipticity. The regressor is cross-validated and cal-

ibrated on a training sample of 1615 clusters (80% of sample), and then results are reported as applied to a

test sample of 426 clusters (20% of sample). This procedure is performed for two differentmock observation

series in an effort to bracket the potential enhancement in mass predictions that can be made possible by

including dynamical state information. The first series is computed from idealized Chandra-like mock clus-

ter observations, with high spatial resolution, long exposure time (1Ms), and the absence of background.

The second series is computed from realistic-condition eROSITAmocks with lower spatial resolution, short

exposures (2 ks), instrument effects, and background photons modeled. We report a 20% reduction in the

mass estimation scatter when either series is used in our RF model compared to a standard regression model

that only employs core-excised luminosity. The morphological parameters that hold the highest feature

importance are smoothness, asymmetry, and surface brightness concentration. Hence these parameters,

which encode the dynamical state of the cluster, can be used to make more accurate predictions of cluster

masses in upcoming surveys, offering a crucial step forward for cosmological analyses.
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Chapter 1

Introduction

1.1 Cosmological structure formation

T
he cosmological footprint of dark matter was first identified nearly 90 years ago during

Fritz Zwicky’s studyof the virialization of theComacluster (Zwicky, 1933), wherehenoted

that the cluster had an extremely insufficient stellar mass relative to the amount neces-

sary to keep the system gravitationally bound. Like many revolutionary paradigm shifts

before, it took the astronomy community quite some time to accept the existence of dark matter. Further

work by Ostriker & Peebles (1973) and others in the 1970s demonstrated that, indeed, even the behavior of

satellite galaxies around ordinary galaxies such as the Milky Way demands the existence of a massive dark

halo.

Several decades of theoretical work coupled with exquisite measurements of temperature fluctuations

in the cosmic microwave background (CMB) by the COBE, WMAP, and Planck satellites (e.g., Mather et al.,

1990; Spergel et al., 2003; Planck Collaboration et al., 2014a) have since cemented the presence of dark mat-

ter in our Universe. The mass ratio between baryonic matter (i.e., all matter coupled to photons) and dark

matter is roughly 1:5, making dark matter a substantial fraction of the cosmic energy density. Many mod-

els have been proposed to explain the nature of dark matter, ranging from massive compact halo objects

(MACHOs; e.g., Alcock et al., 2000) that simply include baryonic objects that are too faint to see (such as

brown dwarfs and black holes) to more exotic solutions such as modified Newtonian dynamics (MOND; e.g.,

Milgrom, 1983), which varies the relationship between force and gravitational acceleration as a function of

the local density. However, thanks to contemporaneous progress in theoretical and experimental particle

physics, the majority of the research community has since settled down on the hypothesis that darkmatter
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is composed of an elementary particle, several favorites of which currently include sterile neutrinos (for a

review, see Boyarsky et al., 2019), weakly interacting massive particles (WIMPs; see Jungman et al., 1996),

and ultra-light axion-like bosons (Hui et al., 2017), among others. These particles are separated into cate-

gories (cold, warm, and hot) based on their free-streaming velocities (i.e., the thermal velocity at freeze-out

for thermally produced particles).

Several outstanding issues still remain in particle physics and the proposed particles that solve these

problems have varying potential to also serve as a dark matter candidate. For example, the existence of a

sterile neutrino of sufficient mass to simultaneously serve as dark matter would naturally explain the neu-

trinomass hierarchy. The presence of axion darkmatterwould simultaneously solve the strong CP problem.

AWIMP, which is usually expected to be the lightest supersymmetric partner (typically a neutralino) or the

lightest Kaluza-Klein particle in universal extra dimension theories, would help solve the hierarchy problem

and potentially identify the best beyond-the-Standard Model (BSM) theory to continue pursuing. Recently,

there has been limited progress in experimental particle physics towards successfully detecting any such

predicted darkmatter candidate. Fortunately, however, astronomical observations can be used to constrain

the properties of dark matter structure, which in turn can also be used to constrain its underlying nature.

In the standard cosmological model, the primordial density field, d(x), is seededwith (potentially Gaus-

sian) initial density perturbations, which are described by the overdensity field, X(x) = (d(x) − d̄)/d̄,

where d̄ is the background energy density, which is the same as the critical density in a flat cosmology

(e.g., Dodelson, 2003). The initial power spectrum of these perturbations is nearly scale-invariant, i.e.,

%i (:) = 〈|X(k) |2〉 ∝ :=, = ≈ 1, : is the wavenumber, and X(k) is the Fourier transform of X(x). The initial

perturbations are very small in amplitude and, thus, their early evolution can be modeled independently

using a linear approximation. Once a particular mode enters the cosmic horizon, it undergoes dynamical

evolution according to, schematically,

d2X

dC2
+ [Pressure − Gravity]X = 0. (1.1)

Pressure and gravity are at constant odds with one another. When gravity dominates, overdensities experi-

ence growth; when pressure wins, X undergoes oscillations. The pressure term is significant for baryons but

is negligible for cold dark matter (CDM). The dominant component of the cosmic energy density controls

the rate at which overdensities grow, with X ∝ � (C). In the early radiation-dominated era, � (C) ∝ ln[0(C)],

where 0(C) is the scale factor. During the period of matter domination, modes grow much more rapidly,

with � (C) ∝ 0(C). Because of this, the transition from logarithmic to linear growth at the epoch of matter–

radiation equality impresses a characteristic feature into the power spectrum at : ≈ :eq, the horizon scale
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at equality. Furthermore, Silk damping (for baryons; Silk, 1968) and free-streaming damping (for collision-

less dark matter; negligible for CDM) suppress power on small scales. These scale-dependent effects are

captured in the “transfer function”, ) (:). Thus, the linearly evolved power spectrum is related to the ini-

tial power spectrum according to

%(:, C) = %i (:))2 (:)�2 (C). (1.2)

The shape of the primordial power spectrum, %i (:), is predicted by a model of the early Universe. The

most widely accepted family of such models is based on cosmic inflation (Guth & Pi, 1982), during which

the scale factor experiences exponential growth that causes quantum fluctuations to become permanently

impressed into the highly stretched density field. Linear theory successfully captures the subsequent evo-

lution of the perturbations after inflation. However, the normalization of %i (:), and thus %(:, C), is not

predicted by the model and must be fit to observations. Typically, the observable used in order to properly

set this normalization is a proxy for the variance of the density field within randomly placed spheres of

radii ', which we write as

f2 (') = 1
2c2

∫
%(:),̂2

' (:):2d: (1.3)

(e.g., Mo et al., 2010). Here, ,̂' (:) is the Fourier transform of the spherical top-hat window function (i.e., a

step function with constant, nonzero value only for A ≤ '). By convention, ' is taken to be 8ℎ−1 Mpc such

that f8 ≡ f(' = 8ℎ−1 Mpc) sets the normalization. Observations of the spatial distribution of galaxies and

of temperature fluctuations in the CMB provide two different means to measure f8, which is of order unity.

Once the perturbations grow to be sufficiently large, linear theory begins to break down. At this point,

higher-order perturbation theories (e.g., Peebles, 1980; Bernardeau, 1994) can be of some limited use. How-

ever, the advent of high-performance computing systems over the past several decades has enabled the use

of computationally expensive numerical approaches, primarily the #-body simulation. The linear power

spectrum, in conjunction with the Zel’dovich approximation (Zel’Dovich, 1970), is used to generate a ran-

dom set of initial positions and velocities for the dark matter particles in the simulation (at a high redshift,

Ii). These particles then undergo gravitational evolution until I = 0 such that their final spatial distri-

bution can be compared to observational proxies for the dark matter distribution. Cosmological #-body

simulations have proven to be incredibly powerful for placing constraints on darkmatter models and, more

broadly, models of cosmology. In particular, comparisons between the small-scale clustering of dark matter

(from simulations) and observed clustering of galaxies has placed strong constraints on the thermal ve-

locity of the particle (see e.g., Primack & Gross, 2001; Lovell et al., 2012), ruling out most “hot” and some

“warm” dark matter models and placing preference towards CDM. Discrepancies between simulations and

galaxy surveys on large scales (Efstathiou et al., 1990) signaled the need for an additional component in
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the cosmological model. Indeed, after Type Ia supernovae observations demonstrated that the Universe is

expanding at an accelerating rate (Riess et al., 1998), a cosmological constant (Λ, also known as “dark en-

ergy”) was incorporated into the standard model of cosmology. In this Λ cold dark matter (ΛCDM) model,

structure forms hierarchically as self-bound clumps of dark matter (haloes) merge together to form ever

larger systems. We elaborate on the consequences of this assembly process below.1

1.2 Dark matter haloes

After a density perturbation grows sufficiently large in magnitude (X ≈ 1), it enters the non-linear regime.

We can explore the subsequent evolution, which eventually proceeds to gravitational collapse, using the

idealized “spherical collapse model” (Gunn & Gott, 1972). This model follows the evolution of a spherical

top-hat overdensity in an expanding Einstein–de Sitter (EdS) universe (i.e., matter-dominated and flat). By

studying the equation ofmotion of this perturbation, it can be shown that the top-hat initially expands until

it reaches a “turn-around radius” and then subsequently undergoes gravitational collapse (i.e., approaches

a singularity with infinite overdensity). The most useful component of the spherical collapse model is its

prediction of the time of collapse. This time can be plugged in to the linear theory prediction of perturbation

growth (i.e., X(C) ∝ � (C) ∝ 0(C) ∝ C2/3 in the matter-dominated era) in order to demonstrate that regions

in the linearly extrapolated density field with X ≥ Xc = 1.686 should have undergone non-linear gravitational

collapse (see e.g., Mo et al., 2010). This approach can be used to estimate the time (or redshift) of collapse (Cc)

as well, since a perturbation should begin to undergo collapse when X(Cc) = X2� (today)/� (Cc). In reality,

the linear theory-based estimate of the critical overdensity for collapse (Xc) drastically underestimates the

true overdensity of a non-linearly collapsed object. A simple application of the virial theorem to the result of

the spherical collapse model can be used to show that dark matter overdensities collapse to form virialized

objects with Δvir ≡ X(Cc) ≈ 178 in an EdS cosmology. In a ΛCDM cosmology (i.e., flat with roughly 70%

dark energy and 30% matter), the virial overdensity is around Δvir ≈ 100 (Bryan & Norman, 1998). These

quasi-equilibrium objects are referred to as haloes. The boundary of the halo is typically defined to be the

radius, Avir, within which the mean density is equal to Δvir times the critical density — the mass enclosed

within this radius is referred to as the “virial mass” of the halo, "vir.

The formation of CDM haloes proceeds in a hierarchical fashion: small objects form first, with larger

systems forming as the product of mergers and the “smooth accretion” of previously unbound material. In

1974, (Press & Schechter, 1974) presented a statistical model of halo abundance, which counts the regions

1. The studies contained within this dissertation build directly off of the PhD work of Jiang (2016). As such, we draw heavily upon
the introductory material of Jiang (2016) and delve into advancements that have been made in the field since 2016 when relevant.
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in an initially Gaussian overdensity field linearly extrapolated to today with X ≥ Xc (from the spherical

collapse model). The abundance is determined as a function of halo mass by counting the collapsed regions

of the smoothed density field (using a smoothing scale, ', that corresponds to the halo mass,"). The Press–

Schechtermass function, which gives the comoving number density of haloes betweenmass" and"+d" ,

is written as

=(", C) d" =

√
2
c

d̄

"2
Xc (C)
f(") exp

(
−

X2
c (C)

2f2 (")

)����d lnf(")
d ln"

���� d", (1.4)

which we emphasize only depends on time via Xc (C) ≡ 1.686/� (C) (normalized such that � (C) = 1 today)

and only depends on halo mass via f("). Note that f(") is simply f('), where ' is the radius of the

Lagrangian volume corresponding to " ; i.e., " = 4
3c'

3 d̄. By introducing the halo “peak height”, a ≡

Xc (C)/f("), one can show that the mass function is purely a function of a, which absorbs all dependence

on time, mass, cosmology, and power spectrum into one variable.

The Press–Schechter formalism was extended by Bond et al. (1991) and Lacey & Cole (1993) into what

is now known as, conveniently, the extended Press–Schechter (EPS) theory. The EPS framework, based on

excursion set formalism, provides the necessary firepower to compute the conditionalmass function (CMF),

5 ("1 |"2), which expresses the fraction of mass in haloes of mass"2 at C2 that is contributed by progenitor

haloes of mass "1 < "2 at an earlier time C1 < C2. The CMF serves as the basis of (semi-)analytical Monte

Carlo algorithms that have been developed to generate random halo mass accretion histories (MAHs; e.g.,

Cole et al., 2000; Parkinson et al., 2008); these MAHs are used as a component in a variety of modeling

frameworks (see Section 1.3.3). Themethod is referred to as semi-analytical because the overall merger rate

is typically calibrated to reproduce the halo statistics of cosmological simulations. The statistics of these

random MAH realizations play a central role in this dissertation. As we will show, the large halo-to-halo

variance in MAHs (at fixed halo mass) propagates to large halo-to-halo variance in a wide range of statistics

of astrophysical significance.

Whilemuch can be accomplished via semi-analyticalmodeling techniques (and indeed, such is the focus

of this dissertation), a large fraction of that which has been learned about dark matter haloes over the past

few decades is attributed to cosmological #-body simulations, such as the Aquarius (Springel et al., 2008)

and Bolshoi (Klypin et al., 2011) simulations. For example, simulations have been used to show that CDM

haloes have a nearly universal structure, with a spherically-averaged density profile of

d(A) = ds(
A
As

) (
1 + A

As

)2 (1.5)

(the NFW profile, named after Navarro et al., 1997), although we note that other profiles exist in the liter-
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ature (e.g., Einasto, 1965; Dekel et al., 2017). Here, As is the “scale radius”, which characterizes the region

where the log-slope of the density profile transitions from -1 to -3, and ds is the associated scale density.

The (As, ds) can be mapped to ("vir, 2), where "vir is the halo virial mass and 2 ≡ Avir/As is the concentra-

tion. Here, ds =
"vir
4cA3

s
[ln(1 + 2) − 2/(1 + 2)]−1. The concentration is closely connected to halo age, and

thus halo mass, which results in a fairly tight concentration–mass relation (e.g., Prada et al., 2012; Dutton

& Macciò, 2014) and concentration–formation time relation (e.g., Wechsler et al., 2002; Zhao et al., 2009).

The reason for such a connection is simple: less massive haloes form earlier when the background density

is higher. As a consequence, the central densities of smaller haloes must be larger, with more of the total

mass concentrated near the halo center at present day. Hence, 2 tends to increase as "vir decreases.

The sophistication of most semi-analytical models stops here — haloes are often assumed to be smooth,

spherically symmetric objects with no angular momentum. For many applications, these are reasonable

assumptions to make. However, cosmological simulations have demonstrated that haloes are typically not

spherically symmetric but are instead triaxial (e.g., Jing & Suto, 2002). Indeed, observations appear to con-

firm that, while low-mass groups tend to be spherical, high-mass groups are often more prolate (e.g., Wang

et al., 2008). The formation of massive haloes is a rather anistropic process; mass is preferentially fed to the

halo along cosmic filaments (e.g., Libeskind et al., 2013). Haloes also tend to have non-negligible spin (i.e.,

angular momentum) that is also associated with its position in the cosmic web (e.g., Aragón-Calvo et al.,

2007). Lastly, due to the hierarchical assembly process of CDM haloes, these systems are abundant with

substructure, the central focus of this dissertation.

1.3 Halo substructure

1.3.1 Evolution processes

When two haloes merge, the remnant of the smaller body lives on as a subhalo, orbiting within its host as

it is subjected to destructive forces. However, it was not until the late 1990s that cosmological simulations

achieved sufficient resolution to consistently resolve these subhaloes (e.g., Ghigna et al., 1998; Tormen et al.,

1998). Further increases in computational power have enabled a wealth of studies aimed at quantifying the

substructure abundance in cosmological simulations (e.g., Springel et al., 2008; Giocoli et al., 2010; Klypin

et al., 2011; van den Bosch, 2017). These studies have reported relatively consistent results: the subhalo

mass function (SHMF), which describes the number of subhaloes (of mass <) within a host (of mass ") per

logarithmic mass bin, tends to follow d#/d ln(</") ∝ (</")−(0.7−1.0) . The SHMF is expected to follow

such a power law down to the free-streaming mass, which is roughly an Earth mass for typical CDMmodels
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and is much larger for WDM (∼ 109 "� ; e.g., Lovell et al., 2014). The power law slope of the SHMF is a result

of (i) the nearly scale-invariant power spectrum, which sets the shape of the “field” halomass function, and

(ii) the dynamical processes undergone by subhaloes post-merger. These processes include tidal stripping,

tidal heating, and dynamical friction due to the host. We elaborate on these processes below. However, we

note that two additional second-order processes, whichwewill not discuss further, include tidal heating via

impulsive encounters with other subhaloes (referred to as harassment) and self-friction due to previously

stripped subhalo material.

An orbiting subhalo experiencesmass loss via tidal stripping, a process bywhichmaterial that lies beyond

the Hill surface of the subhalo is peeled off and transferred to the host. In reality, this zero-acceleration

surface is not spherical (e.g., Tollet et al., 2017). However, models of the “tidal radius”, which assumes a

spherical Hill surface, are often quite accurate. The simplest example assumes two point masses, < (sub-

halo) and " (host halo), separated by a distance of '. The Roche limit tidal radius, At, of < is the distance

from < where the tidal force from " overtakes the self-gravity of <, which is At = '( <2" )
1/3. After gener-

alizing to non-circular orbits and extended mass profiles for the host and subhalo, King (1962) provides an

approximation of the tidal radius as

At =

[
�<(< At)
Ω2 − d2Φ

d'2 |X

]1/3

=

[
<(< At)/" (< ')

2 + Ω2'3

�" (<') −
d ln"
d ln' |'

]1/3

, (1.6)

where the second equality is valid when themass profile of the host is spherically symmetric. Here,Ω is the

instantaneous angular velocity of the subhalo with respect to the host center, X is the host-centric position

of the subhalo, <(< A) and " (< ') are the enclosed mass profiles of the subhalo and host, and Φ is the

gravitational potential of the host. In general, At ∝ '; hence, subhaloes that penetrate close to the host

center during their pericentric passage are the most vulnerable to mass stripping. As we will demonstrate

in this dissertation, a relatively simplemodel of tidal stripping, which employs the King (1962) prescription,

can serve as the core component of a highly accurate model of subhalo mass loss.

The pericentric passage of a subhalo is a high-speed event, during which the fast change in the host

potential drives a conversion of orbital energy into subhalo internal energy. The energy injected into the

subhalo by tidal heating has been estimated via the impulse approximation (Spitzer, 1958) by Gnedin et al.

(1999a) to be

Δ� =
4
3
�2<

(
"

{p

)2 〈A2〉
'4

p
5 ('p)Cad (1.7)

(e.g., Mo et al., 2010). Here, 'p is the radius of orbital pericenter (i.e., the impact parameter), {p is the

velocity of the subhalo at pericentric passage, 〈A2〉 is the mass-weighted mean A2 of the subhalo, 5 ('p) is a
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factor that takes into account the extendedmass distribution of the host (Gnedin et al., 1999b), and Cad is an

additional factor that takes into account the adiabatic shielding of particles near the subhalo center (Gnedin

& Ostriker, 1999). In general, 5 ('p) ranges from unity when 'p is large to zero when 'p tends towards

zero. When this is combined with the fact that Δ� ∝ '−4
p , it can be shown that Δ� attains a maximum

when 'p is roughly the half-mass radius of the host. Due to the impulsive nature of the encounter, the

energy added to the subhalo only changes the particle velocities but leaves the initial positions (and thus

the subhalo potential) intact. Hence, after an impulsive heating event, the subhalo revirializes: the depth of

its potential well decreases and it “puffs up” such that the central density decreases and material becomes

distributed further out.

This energy injection can be put into context by comparing it to the internal binding energy of the

subhalo prior to the encounter. For a NFW subhalo that is truncated at its virial radius, the binding energy

is �b = − 1
2<+

2
v 5E (2), where < is the subhalo virial mass, +v is the circular velocity at its virial radius,

and 5E (2) is a simple function of the halo concentration (Mo et al., 1998). Tidal heating can easily inject

Δ� ∼ |�b | into the subhalo during a pericentric passage. Indeed, van den Bosch et al. (2018) computed

Δ�/|�b | for newly accreted subhaloes in the Bolshoi simulation, finding a median value of 1.9 and extreme

ratios as large as 100. The naive assumption is that subhaloes that experience an injection of energy with

Δ� ≥ |�b | should be destroyed. However, Δ� only specifies the total energy injected into the subhalo but

does not specify how the energy is distributed radially. Indeed, prior to integrating to get Δ� , it can be

shown that 〈Δ�〉(A) ∝ A2 — the particles in the outskirts of the subhalo receive the majority of the energy

injection. Combining this with the impact of adiabatic shielding, one can conclude that NFW subhaloes

should be nearly impossible to fully disrupt via tidal heating. As we discuss at length in chapter 4, the

incorrect assumption that Δ� ∼ |�b | implies subhalo disruption has been used to justify the results of

numerical simulations in the past (e.g., Gonzalez-Casado et al., 1994; D’Onghia et al., 2010).

The previously described processes capture the evolution of the internal structure of the subhalo. Dy-

namical friction (DF), on the other hand, is responsible for mergers and the subsequent evolution of the

subhalo orbit. In particular, DF causes subhaloes, globular clusters, and black holes alike to lose orbital an-

gular momentum and ultimately sink to the centers of their host systems. The most frequently used DF

formalism was introduced by Chandrasekhar (1943), which is based on the highly idealized case of a point

mass (<) moving through an infinite uniform sea of background particles (with infinitesimalmasses). Here,

the background particles are deflected by the subject, forming a wake that imparts a drag force on the sub-

ject. While this is actually an incorrect description of the underlying cause of DF, the resulting model has

proven quite successful at predicting the timescales of a range of astrophysical merger processes (for more

sophisticated models of DF, see, e.g., Colpi et al., 1999; Banik & van den Bosch, 2021). By considering grav-
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itational interactions between the subject and background particles as individual two-body encounters,

Chandrasekhar summed over all such encounters in order to compute the net frictional force acting on the

subject:

LDF = −
4c�2<2

{2 lnΛ d(< {) {
{
. (1.8)

Here, { is the relative velocity of< with respect to the background, d(< {) is the density of background par-

ticles with a speed below {, and lnΛ is the Coulomb logarithm. The background particles are often assumed

to follow a Maxwell-Boltzmann distribution. A variety of forms have been used for the Coulomb logarithm,

such as lnΛ = ln(1max/1min), with 1max and 1min the maximum andminimum impact parameters between

the subject and the background particles that contribute to the DF drag. For the purpose of estimating the

merger timescale of dark matter subhaloes in cosmological simulations, lnΛ = ln(1 + "/<), where " is

themass of the host halo, has been shown to serve as a successful ‘fudge factor’ (Boylan-Kolchin et al., 2008;

Jiang et al., 2008). Since LDF ∝ <2, DF only has a significant impact on the orbits of massive subhaloes.

Indeed, subhaloes with < . 0.01" do not experience significant orbital decay over a Hubble time (e.g.,

Taffoni et al., 2003).

1.3.2 Artificial disruption

The history of dark matter substructure in cosmological simulations has been somewhat tumultuous. As

discussed above, prior to the late 1990s (e.g., Ghigna et al., 1998), cosmological simulations did not have suf-

ficiently high resolution to resolve subhaloes and suffered from numerical ‘overmerging’. The underlying

causes of overmerging have been attributed to particle–subhalo two-body heating (e.g., Carlberg, 1994; van

Kampen, 1995) and inadequate softening of forces (e.g., Moore et al., 1996; Klypin et al., 1999a). However,

as available computational power increased and cosmological simulations began to leverage higher reso-

lutions than ever before, the problem of insufficient substructure turned into the opposite problem of too

much substructure (e.g., Klypin et al., 1999b; Moore et al., 1999). This “missing satellite problem” was origi-

nally thought to be a serious issue for the viability ofΛCDM (for a review, see e.g., Bullock & Boylan-Kolchin,

2017) but has since been solved via developments in our understanding of the galaxy–halo connection (e.g.,

Kim et al., 2018).

Unfortunately, numerical overmerging has not yet been fully eradicated from high-resolution cosmo-

logical simulations and its impact is now much more subtle. The insufficient resolution of small subhaloes

can still adversely impact the overall subhalo statistics, which introduces significant roadblocks for progress

in small-scale clustering studies (e.g., Moster et al., 2018) and semi-analytical models of galaxy formation

(e.g., Kitzbichler &White, 2008). In an effort to combat the impact of overmerging, simulation studies tend
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to only consider subhaloes above a limit of ∼50− 100 particles. This particle limit has been estimated based

on the convergence of subhalo mass functions across various simulations (e.g., Springel et al., 2008; Onions

et al., 2012). Recently, van den Bosch (2017) performed a comprehensive study of the evolution pathways

of subhaloes in the state-of-the-art Bolshoi simulation. The author found that subhaloes disrupt at a rate

of roughly 13% per Gyr, which implies that ∼65% of subhaloes accreted at I = 1 will have been disrupted

by the present day (Han et al., 2016; Jiang & van den Bosch, 2017). Furthermore, 20% of all subhalo disrup-

tion occurs above the 50 particle “convergence limit”. These findings beg the question: what fraction of

subhalo disruption seen in simulations is real, physical disruption and what fraction is still due to artificial

disruption (i.e., overmerging)?

In van den Bosch et al. (2018), the authors set out to address this question. Using both analytical ar-

guments and idealized #-body simulations, the authors assessed the impact of tidal stripping and heating

(the twomain disruptive processes) on NFW subhaloes. The found that NFW subhaloes can experience tidal

shocks that are manymultiples of their binding energy and still survive. Furthermore, they demonstrated

that a subhalo will survive when a large fraction of its outer mass is instantaneously stripped, even when

the remnant has positive binding energy. Thus, the authors concluded that physical disruption of CDM sub-

haloes should be exceedingly rare, consistent with previous analytical studies (e.g., Peñarrubia et al., 2010),

with the implication being that the majority of disruption seen in cosmological simulations is likely to be

artificial. In a follow-up study, van den Bosch&Ogiya (2018) ran a suite of idealized simulations of individual

#-body NFW subhaloes orbiting within a static, analytical host halo potential in order to assess the condi-

tions necessary for artificial disruption to take place. By varying the mass resolution (i.e., the number of

particles that make up the initial subhalo) and the force softening length across the different simulations,

the authors demonstrated that the bound remnant of a sufficiently resolved subhalo should survive per-

petually (in the absence of baryonic physics). A large number of subhaloes in state-of-the-art cosmological

simulations lie in the region of numerical parameter space that corresponds to being inadequately resolved.

These subhaloes are subject to runaway instabilities driven by discreteness noise. Ultimately, van den Bosch

& Ogiya (2018) doubled down on their previous conclusion: the majority of subhalo disruption in simula-

tions must be artificial. As we discuss below, this puts considerable limitation on the utility of cosmological

simulations and also adversely impacts various simulation-calibrated semi-analytical models.

1.3.3 Modeling approaches

Due to the non-linear nature of hierarchical structure formation, a fully analytical prescription of the build-

up and subsequent evolution of substructure has proven to be intractable. Because of this, cosmological
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#-body simulations have been the primary method of studying subhalo populations. Unfortunately, as we

discuss above, these simulations still suffer from numerical limitations that can impact the predicted sub-

halo statistics. This can be mitigated by increasing the simulation resolution, which comes at the cost of

increasing the computational demands and greatly reducing the sample size of host systems available for

analysis. Semi-analytical modeling is an alternative approach that attempts to leverage various effective

models of subhalo evolution processes (Section 1.3.1) in order to predict subhalo statistics in a computa-

tionally efficient manner while yielding much larger host halo sample sizes and circumventing some of the

numerical limitations of #-body simulations (such as the mass resolution of individual subhaloes). Much

like simulations, these semi-analytical models are capable of generating “subhalo catalogs”, which provide

time series of the mass, position, velocity, and various internal properties for each subhalo as it evolves

within its host. A wide range of semi-analytical models have been presented in the literature (e.g., Taylor

& Babul, 2001; Peñarrubia & Benson, 2005; van den Bosch et al., 2005b; Zentner et al., 2005a; Kampakoglou

& Benson, 2007; Pullen et al., 2014; Jiang & van den Bosch, 2016), the majority of which share a core set of

components:

• Analytical merger trees that are generated using EPS theory-based algorithms (e.g., Cole et al., 2000;

Parkinson et al., 2008; Benson, 2017).

• Amodel that describes the distribution of orbital properties of infalling subhaloes, which can be used

to sample initial orbits (e.g., Jiang et al., 2015; Li et al., 2020).

• An orbit integrator, which includes a prescription for dynamical friction (e.g., Chandrasekhar, 1943).

• Models of the density structure of the host and (initial) subhaloes (e.g., Navarro et al., 1997).

• A model that captures the response of the subhalo internal structure to tidal heating and stripping

(e.g., Hayashi et al., 2003; Peñarrubia et al., 2008).

• A prescription for subhalo mass-loss (e.g., Zentner et al., 2005a).

Several of the components in a semi-analytical model have free parameters that are calibrated such

that the predicted subhalo statistics are in good agreement with cosmological simulations. In particular,

the mass-loss rate is tuned to reproduce the subhalo mass function and the merger tree algorithm is fit to

correctly capture the conditional mass function. This procedure introduces an obvious limitation — any

systematic biases in the simulation results will propagate through to the semi-analytical model results via

the calibration. In particular, if simulations still suffer from a significant amount of artificial subhalo dis-

ruption, this will adversely bias, e.g., the inferred mass-loss rate. These problems were hinted at in Jiang

(2016), which prompted the subsequent development of a new, modular semi-analytical modeling frame-
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work (SatGen) that ultimately serves as the cornerstone of this dissertation (Jiang et al., 2021). As we will

show, a significant part of our work is aimed at calibrating this model such that its results are not adversely

impacted by any potential numerical overmerging that may still impact cosmological simulations. Because

of the simulation-independent nature of this model, we are also able to use it to provide a complementary

assessment of the state of artificial disruption in such simulations.

1.4 Observational constraints

The population of dark matter subhaloes is intimately connected to the underlying particle nature of dark

matter. As discussed above, CDM models predict a SHMF that follows a power law down to Earth masses

(∼10−6 "�). On the other hand, WDM results in a suppression of low-mass subhaloes (with < . 109 "�)

due to its larger free-streaming velocity (e.g., Lovell et al., 2014; Bose et al., 2017). However, substructure

is not only sensitive to the dark matter temperature. For example, a minimal dark sector that consists of

a massive particle and a “dark photon” would allow for self-interactions, which would reduce the inner

halo density slope to create a “core” (e.g., Kaplinghat et al., 2016). Unlike NFW haloes, cored haloes are less

resilient to the impact of tides (Peñarrubia et al., 2010); hence, a self-interacting darkmatter (SIDM) particle

would result in an overall reduction in subhalo abundance. If the particle was instead an ultra-light boson

(i.e., fuzzy dark matter [FDM]), the halo center would consist of a Bose–Einstein condensate “soliton” with

a radius of order kpc; in this case, the halo center would also be cored, ultimately suppressing substructure

(e.g., Robles et al., 2017; Burkert, 2020). Furthermore, the formation history and abundance of haloes and

subhaloes alike is sensitive to the cosmology, most directly the matter energy density (i.e.,Ωm).

Clearly, any observational constraints placed on the abundance and structure of dark matter subhaloes

would map to constraints on the particle nature of dark matter and/or the underlying cosmology. Hence, a

variety of observational probes are currently being employed to search for signatures of substructure. Since

(satellite) galaxies are expected to form and residewithin darkmatter (sub)haloes (e.g.,White & Rees, 1978),

there exists a direct link between the observed abundance of galaxies and the inferred abundance of haloes.

The “galaxy–halo connection” is typically codified via the halo occupation distribution (HOD; e.g., Zheng

et al., 2005) or the conditional luminosity function (CLF; e.g., van den Bosch et al., 2013), models which are

calibrated by comparing mock galaxy catalogs (generated by populating haloes from cosmological #-body

simulations with galaxies) to samples from large-scale surveys. These models assume that the galaxy lu-

minosity is only a function of halo mass, which is an oversimplification due to assembly bias. For example,

galaxies are also sensitive to the halo formation history (e.g., Zentner et al., 2014; Mao et al., 2015) and en-

vironment (e.g., Croton et al., 2007). Recently, however, sophisticated forward modeling-based approaches
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to Milky Way satellite galaxy abundance matching have been used to place some of the tightest constraints

to date on non-CDM dark matter models (Nadler et al., 2021).

Gaps identified in stellar streams have begun to stand out as potential smoking-gun indicators of the

presence of darkmatter subhaloes (e.g., Erkal et al., 2016; Banik et al., 2019; Bonaca et al., 2020). For example,

Bonaca et al. (2020) used high-resolution spectroscopy of stars in a spur of the GD-1 stellar stream to localize

the orbit of a perturber, which could be either a globular cluster or a compact subhalo. On the theoretical

side, Erkal et al. (2016) modeled encounters between stellar streams and CDM subhaloes in order to predict

the expected number and size of gaps, concluding that the current quantity of observed gaps is consistent

with ΛCDM predictions. However, future stream studies, made possible by Gaia (Gaia Collaboration et al.,

2016), should be sensitive enough to place much tighter constraints.

Substructure can also be probed via gravitational lensing distortions. Subhaloes in the lens halo can

significantly perturb themagnification pattern of the source, which depends on the second derivative of the

lens potential. Spatially extended background sources formarcs in the lensed image. Subhaloes near the arc

distort the lensed image relative to that predicted for the case of a smooth lens, which enables this approach

to both localize the perturbing subhalo and estimate its mass (down tomasses of 108−109 "� Vegetti et al.,

2014; Hezaveh et al., 2016). Multiply lensed point sources (e.g., quasars) yield different observables, namely

the image positions and magnification ratios between the images. These “flux ratios” are highly sensitive

to the impact of subhaloes on the second derivative of the lens potential, enabling the localization andmass

estimate of subhaloes down to ∼107 "� . Recently, Gilman et al. (2020a) used eight quadruple-image lenses

to place tight upper bounds on the free-streaming mass (and thus the dark matter particle mass), greatly

disfavoring WDMmodels.

The prevailing CDM particle model is the WIMP, which is searched for via both direct and indirect de-

tection experiments. Direct approaches involve placing sensitive detectors deep underground and waiting

for passing dark matter particles to undergo scattering events with the detector material (e.g., Schumann,

2019). Indirect approaches (e.g., Stref & Lavalle, 2017; Somalwar et al., 2021), on the other hand, attempt

to search for W-ray signals of particle annihilation or decay in astrophysical sources that are expected to

be dark matter-rich (e.g., the center of the Milky Way or its satellite galaxies). Because annihilation is a

two-body process, its signal is proportional to the square of the darkmatter density. Hence, the presence of

compact subhaloes can greatly boost the expected annihilation signal. The total annihilation flux is directly

proportional to the �-factor, which captures the spatial distribution of dark matter along the line of sight

as

� =

∫
Ω

∫
los
d2 [A (\,D, ;)]d;dΩ. (1.9)
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Here, d is the density profile of the observed halo,Ω is the solid angle, and the radius from the center of the

halo, A , depends on the angle of observation, \, and distance to the halo along the line of sight,D. The total

�-factor of a host system of mass " that contains subhaloes is boosted to � (") = [1 + �(",<cut)] �̃ ("),

where �̃ (") is the contribution from the smooth host halo. Hence, the contribution from subhaloes down

to the cut-off mass, <cut, is

�(",<cut) �̃ (") =
∫

d#
d<

� (<)d<, (1.10)

where d#/d< is the subhalo mass function. We emphasize that this is the total contribution by subhaloes

taken over an entire host halo. In reality, the subhalo contribution itself is a function of the distance of

the observation from the host center since the subhalo distribution is radially dependent. The boost factor

can be considerably larger than unity, indicating that subhaloes contribute more to the total annihilation

signal than the smooth host halo background itself. However, �(",<cut) is highly uncertain — it is ex-

tremely sensitive to the properties of subhaloes below the resolution limit of cosmological simulations and

varies greatly with <cut, which depends on the dark matter particle model. For example, Strigari et al.

(2007) finds that, for a " = 108 "� host halo (corresponding to a dwarf spheroidal galaxy), �(") . 41

if <cut = 10−13 "� but �(") . 2 if <cut = 10−2 "� . Clearly, due to the limitations of simulations, semi-

analytical models of substructure must play a considerable role in making accurate model predictions for

CDM �-factors and boost factors (e.g., Bartels & Ando, 2015) in order to use W-ray observations to success-

fully constrain dark matter properties (primarily the WIMP mass and annihilation cross section).

As this wide variety of subhalo-sensitive observational techniques matures, it is becoming increasingly

important that predictions of subhalo abundance and structure are accurate and true representations of

the underlying model (be it CDM, WDM, SIDM, or FDM). These predictions must include robust estimations

of the halo-to-halo variance in quantities of interest in order to be useful for inference. Thus, predictive

models must be able to circumvent the current limitations of simulation-based approaches, most crucially

the mass resolution limit and small host halo sample sizes.

1.5 Structure of this dissertation

In this dissertation, we build an improved semi-analytical model of dark matter substructure evolution

and use it to assess various limitations of current-generation cosmological #-body simulations. This work

begins in chapter 2 (originally published in Green & van den Bosch, 2019), where we develop a state-of-

the-art model of the tidally evolved subhalo density profile (ESHDP), which captures the joint effects of

tidal heating and stripping on the subhalo structure. We calibrate this model using a large suite of high-
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resolution idealized #-body simulations of individual subhaloes orbiting within a static, analytical host

halo potential that are free from the influence of artificial disruption (the DASH simulations, described in

Appendix A and introduced in Ogiya et al., 2019).

Followingour initial release of theSatGen semi-analyticalmodeling framework (described inAppendixB

and introduced in Jiang et al., 2021), we set out to improve it in several key ways. In chapter 3 (originally

published in Green et al., 2021a), we use our ESHDP model to build a prescription for the subhalo mass-loss

rate that is calibrated to reproduce the mass evolution of DASH subhaloes. We then augment SatGen by

incorporating into it our ESHDP and mass-loss models, improving the dynamical friction routine, and in-

troducing a sophisticated model of the orbits of infalling subhaloes. By cataloguing all instances of subhalo

disruption in the Bolshoi simulation (Klypin et al., 2011), we construct a probabilistic framework for artificial

disruption that can be applied to SatGen results in order to emulate a simulation. Using the “disruption-

free” semi-analytical model, we generate ensembles of subhalo populations for host haloes of a range of

masses. We compare subhalo mass functions, radial profiles, and substructure mass fractions between the

model and Bolshoi, demonstrating that when we apply the probabilistic model of artificial disruption, we

are able to reproduce the simulation results with exquisite accuracy. We place estimates on the overall im-

pact of artificial disruption on simulated subhalo populations and argue that SatGen provides a promising

complementary approach to #-body simulations for future subhalo studies.

Having demonstrated several powerful use cases for SatGen in Jiang et al. (2021) andGreen et al. (2021a),

we continue forward in chapter 4 (originally published inGreen et al., 2021b) by applying the semi-analytical

model to assess the impact of a central galactic disc potential on subhalo populations. Using a set of 10,000

merger trees for Milky Way-mass host haloes, we generate evolved subhalo populations using a variety of

composite halo–disc host potentials. The mean impact of the disc is to suppress the overall abundance of

subhaloes; the strength of this suppression grows as host-centric radius decreases. The level of suppression

that we report is in agreement with prior cosmological and idealized simulation studies. However, our

study is the first of its kind to have access to such a large host halo sample. Because of this, we are able to

demonstrate that the halo-to-halo variance of most substructure statistics (i.e., mass functions and radial

profiles) is far larger than the mean impact on such statistics due to the presence of a disc. By re-evolving

identical trees using different host potentials, we are able to study the differential influence of a disc on

the I = 0 mass of individual subhaloes. Specifically, we show that the disc drives excess subhalo mass loss,

the strength of which increases with decreasing pericentric radius. We argue against the notion that a disc

causes subhalo disruption via disc shocking (first promoted by D’Onghia et al., 2010) and instead use our

results to demonstrate that the chief effect of the disc is simply to increase the central density concentration

of the host, which ultimately promotes excess mass loss via tidal stripping.
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The studies described above constitute the primary aim of this dissertation, which is focused on the

evolution of dark matter subhaloes. However, after demonstrating in chapter 3 and chapter 4 the signif-

icance of halo-to-halo variance for properly interpreting substructure statistics, a slightly broader theme

emerges. The influence of variance in halo mass accretion histories has astrophysical and cosmological

importance that extends beyond subhalo studies. For example, in chapter 5 (originally published in Green

et al., 2020), we employ a Monte Carlo-based mass accretion history generator (also used in SatGen) in

combination with an analytical model of non-thermal pressure production to generate Sunyaev-Zel’dovich

effect (SZ; Sunyaev & Zeldovich, 1972) signal observations for mock galaxy clusters. We demonstrate that

a substantial fraction of the scatter in the halo mass–SZ signal relation that is measured from cosmological

simulations can be reproduced by our simplemodel, thus concluding that variance in clustermass assembly

histories is a primary culprit of such scatter.

In chapter 6 (originally published in Green et al., 2019), we continue our focus on galaxy clusters by ex-

ploring novel approaches to estimating the halo mass from observations. Specifically, we employ a simple

machine learning algorithm (random forest regression) to predict the underlying halo mass given a range

of summary statistics computed frommock X-ray observations of simulated clusters. We find that themost

informative statistics (aside from the most important one, the bolometric luminosity) for mass prediction

include several “morphological parameters”, such as the surface brightness concentration, smoothness,

and asymmetry. These parameters encode important information about the mass accretion history of the

cluster, providing a physical basis for their utility in mass estimation. We demonstrate that a random for-

est model, properly armed with such morphological parameters, can offer a modest improvement in mass

estimation accuracy relative to simple linear regression techniques typically used in observational studies.

We conclude this dissertation by summarizing our key results from each study in chapter 7 and dis-

cussing potential future SatGen-based studies in chapter 8.
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Chapter 2

Density profile evolution

This chapter has been published as an article by Green & van den Bosch (2019) in the Monthly Notices of

the Royal Astronomical Society by Oxford University Press.

2.1 Background

I
n the Λ cold dark matter (ΛCDM) cosmological model of structure formation, primordial

density perturbations with a scale-invariant power spectrum collapse to form virialized

haloes. Due to the negligible free-streaming velocities of CDM, haloes form on all scales,

with smaller perturbations collapsing earlier and subsequently assembling from the bot-

tom up to form more massive haloes. Since 1997, cosmological #-body simulations have shown that the

dense, inner regions of these smaller haloes continue to live on as subhaloes within their hosts after having

been accreted (Tormen et al., 1997; Moore et al., 1998; Ghigna et al., 1998), and these subhaloes themselves

host sub-subhaloes, and so on, forming a complete hierarchy of substructure (Gao et al., 2004; Springel

et al., 2008; Giocoli et al., 2010). As these subhaloes orbit their hosts, they are subjected to various forces

that work to disrupt them, including dynamical friction, tidal stripping and impulsive heating due to the

host, and harassment by other substructure (e.g., Mo et al., 2010; van den Bosch et al., 2018).

The statistics of dark matter (DM) substructure are sensitive to the underlying DM model. In partic-

ular, the DM thermal velocity sets the cutoff scale for low-mass haloes, which in turn impacts the abun-

dance of substructure (e.g., Knebe et al., 2008; Lovell et al., 2014; Colín et al., 2015; Bose et al., 2017), and

the (potentially nonzero) cross-section for DM self-interaction can core out the otherwise cuspy slopes of

subhalo inner density profiles, making them less resilient to the strong tidal forces of the host halo (e.g.,

Burkert, 2000; Vogelsberger et al., 2012; Rocha et al., 2013). The primary observational techniques used to
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probe the properties of DM substructure include gravitational lensing (e.g., Dalal & Kochanek, 2002; Keeton

& Moustakas, 2009; Vegetti et al., 2014; Hezaveh et al., 2016; Gilman et al., 2020a), gaps in stellar streams

(e.g., Carlberg, 2012; Ngan & Carlberg, 2014; Erkal et al., 2016), and indirect detection via DM annihilation

and decay signals (e.g., Strigari et al., 2007; Pieri et al., 2008; Hayashi et al., 2016; Hiroshima et al., 2018;

Delos, 2019). Furthermore, since satellite galaxies are expected to reside within some fraction of the DM

subhaloes, the demographics of DM substructure has a direct correspondence to that of satellite galaxies

(e.g., Vale & Ostriker, 2006; Hearin et al., 2013; Behroozi et al., 2013b; Newton et al., 2018), which ultimately

impacts small-scale clustering statistics (e.g., Benson et al., 2001; Berlind et al., 2003; Kravtsov et al., 2004;

Campbell et al., 2018). Thus, being able to accurately predict the abundance and structural evolution of DM

subhaloes is paramount for using astrophysics to study the particle nature of dark matter.

Due to its high nonlinearity, a purely analytical description of subhalo evolution is impossible, even in

the most idealized of circumstances (for a detailed discussion, see van den Bosch et al., 2018). Hence, the

primary method employed for studying the demographics of DM substructure has been, and remains, cos-

mological #-body simulations. Prior to the late 1990s, numerical simulations did not yet have sufficient

mass and force resolution to resolve surviving populations of subhaloes (Moore et al., 1996; Klypin et al.,

1999a). As increased computational power has enabled access to ever higher resolutions,many convergence

tests have since been performed to validate the results of more recent #-body simulations, demonstrating

consistent subhalo mass functions above a resolution limit of 50-100 particles (e.g., Springel et al., 2008;

Onions et al., 2012; Knebe et al., 2013; van den Bosch & Jiang, 2016; Griffen et al., 2016); however, mass func-

tion convergence is only a necessary, but not sufficient, condition to guarantee the physical correctness

of numerical simulations. Van den Bosch (2017) showed that the complete disruption of subhaloes occurs

very frequently in state-of-the-art simulations, with amass function of disrupted subhaloes that is identical

to that of the surviving population. The inferred disruption rate implies that roughly 65% of subhaloes ac-

creted around I = 1 are disrupted by I = 0 (Han et al., 2016; Jiang& van den Bosch, 2017). Some authors have

argued that complete disruption is a physical consequence of tidal heating and/or tidal stripping (Hayashi

et al., 2003; Taylor & Babul, 2004; Klypin et al., 2015). However, van den Bosch et al. (2018) demonstrated that

neither tidal heating nor tidal stripping are independently sufficient to completely disrupt CDM subhaloes,

a result consistent with the idealized, high-resolution numerical simulations of Peñarrubia et al. (2010).

Van den Bosch & Ogiya (2018) ran a suite of similar, idealized numerical experiments, finding that subhalo

disruption in #-body simulations is largely due to two key numerical details: (i) discreteness noise due to

insufficient particle resolution and (ii) inadequate force softening. The optimal force softening criteria put

forth by van den Bosch & Ogiya (2018) have since been corroborated by Ludlow et al. (2019) and are in good

agreement with the criteria of Zhang et al. (2019).
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This artificial subhalo disruptionmayhave substantial consequences across cosmology and astrophysics.

For example, in small-scale clustering analysis, the uncertainty due to disruption reduces the predictive

power of methods such as subhalo abundance matching (e.g., Vale & Ostriker, 2006; Conroy et al., 2006; Guo

et al., 2010; Hearin et al., 2013), while the reduced abundance of substructure implies that dark matter an-

nihilation boost factors (e.g., Bergström et al., 1999; Ando et al., 2019) may be substantially underestimated.

The all-important, outstanding question is towhat extent this artificial disruption impacts the subhalomass

and/or velocity function predicted by cosmological simulations. The work of van den Bosch & Ogiya (2018)

suggests that the answer is unlikely to come from numerical simulations, as there is no obvious way to cir-

cumvent the numerical issues. Instead, we may hope to gain some insight from semi-analytical models of

the build-up and evolution of dark matter substructure (e.g., Taylor & Babul, 2001; Peñarrubia & Benson,

2005; Zentner et al., 2005a; van den Bosch et al., 2005b; Kampakoglou & Benson, 2007; Gan et al., 2010; Pullen

et al., 2014). The problem, though, is that the lack of a complete theory of tidal evolution implies that these

semi-analytical models need to be calibrated, which is typically done by tuning the model to reproduce the

subhalo mass functions inferred from cosmological #-body simulations. This obviously implies that the

models inherit the shortcomings of the simulations. The main goal of this chapter is to present a model of

the evolution of subhalo density profiles that circumvents this catch-22 situation.

Before describing ourmethodology, though, it is insightful to try to estimate how big of an impact artifi-

cial disruptionmay potentially have. We can do so using the semi-analytical model of Jiang & van den Bosch

(2016), which combines halo merger trees with simple models of the tidal evolution of subhaloes, to predict

the evolved subhalo mass and velocity functions of dark matter substructure (see Jiang & van den Bosch,

2017). The model treats both mass stripping as well as subhalo disruption, the efficiencies of which are cal-

ibrated to reproduce the results of the high-resolution Bolshoi simulation (Klypin et al., 2011). The left-

and right-hand panels of Fig. 2.1 plot the subhalo mass and velocity functions, respectively. The solid cir-

cles indicate the results from the Bolshoi simulation for present-day host haloes with masses in the range

14.0 ≤ log["h/ ℎ−1M�] ≤ 14.5, while the solid line is the model prediction from Jiang & van den Bosch

(2016). Since the latter is calibrated against the former, it should not come as a surprise that the model fits

the simulation data well. However, as discussed at length in Jiang & van den Bosch (2016), crucial for this

success is the separate treatment of subhalo disruption. We can now use this model to predict what the

subhalo mass and velocity functions would look like under the assumption that all disruption is artificial.

To that extent, we rerun the same model, this time turning off disruption; in this case, subhaloes continue

to experience mass loss rather than fully disrupt. The resulting mass and velocity functions are indicated

by the dashed curves. Clearly, artificial disruption does not merely impact the mass/velocity functions at

the lowmass end, close to the resolution limit of the simulation; rather, the mass and velocity functions are
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Figure 2.1: Subhalo mass (left) and velocity (right) functions for host haloes with masses in the range 14.0 ≤
log["h/ ℎ−1M�] ≤ 14.5. Symbols indicate the results obtained from the Bolshoi simulation (Klypin et al.,
2011), whereas the solid lines are the results obtained from the semi-analytical model of Jiang & van den
Bosch (2016). The latter includesmodels for subhalomass loss and subhalo disruption that have been tuned
to specifically reproduce the subhalo mass and velocity functions of the Bolshoi simulation. The dashed
lines show the predictions of the same model, but with subhalo disruption turned off. The inference is that
if the majority of subhalo disruption is artificial, as claimed by several recent studies (Peñarrubia et al.,
2010; van den Bosch et al., 2018; van den Bosch & Ogiya, 2018), state-of-the-art cosmological simulations
may under-predict the abundance of subhaloes by as much as a factor of two (blue arrows). See text for a
more detailed discussion.

boosted globally by factors of ∼ 2 and ∼ 2.5, respectively. If these admittedly crude predictions are even

remotely correct, the implications are far-reaching. It suggests that state-of-the-art cosmological simu-

lations systematically under-predict the abundance of substructure by as much as a factor of two, which,

interestingly, is precisely what is needed to solve the ‘galaxy clustering crisis’ in subhalo abundancematch-

ing (Campbell et al., 2018). At the very least, these results signal the need to carefully examine the tidal

evolution of subhaloes in more detail, which is the core-motivation behind the study presented here.

Semi-analytical models of the build-up and evolution of dark matter substructure consist of three main

ingredients: (i) a halo merger tree, which quantifies the subhalo masses and redshifts at accretion, (ii) a

model of the orbital evolution, including dynamical friction and self-friction (Miller et al., 2020), and (iii) a

model that describes how themass and density profile of a subhalo evolves subject to the tidal forces that it

experiences. Semi-analytical merger tree algorithms are calibrated using merger histories from cosmolog-

ical simulations, which depend on the halo properties at infall and are therefore less sensitive to the effects

of artificial disruption than the evolution of individual subhaloes. On the other hand, the evolution of the

subhalo density profile typically requires a model of how the bound mass of the subhalo evolves with time

and how this affects the subhalo’s density profile. Neither of these can be treated analytically from first

principles, and the models therefore typically rely on parametrized treatments that somehow need to be

calibrated. In order to prevent the catch-22 situation eluded to above, in Ogiya et al. (2019) we introduced

the Dynamical Aspects of SubHaloes (DASH) database, a large library of idealized, high-resolution #-body
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simulations of the tidal evolution of individual subhaloes. These simulations cover a wide range of relevant

subhalo parameters (i.e., orbital energy and angular momentum at infall and halo concentrations) and are

evolved with sufficient numerical resolution to assuage the impact of discreteness noise and insufficient

force softening. As a next step towards building a more accurate semi-analytical treatment of dark matter

substructure evolution, the present chapter sets out to develop a new model of the tidal evolution of the

subhalo density profile, calibrated against DASH and therefore unimpeded by numerical artifacts, that is

applicable to a far wider range of subhalo parameter space than that of previous works (Hayashi et al., 2003;

Peñarrubia et al., 2010; Drakos et al., 2017).

This chapter is organized as follows: Section 2.2 provides an overview of the DASH simulation database.

In Section 2.3, we describe the methods used for building and calibrating our model of the evolved subhalo

density profile and then quantify the model’s capability of reproducing simulated subhalo density profiles.

In Section 2.4, we demonstrate themodel’s performance at capturing the evolution of the subhalo structural

parameters,+max and Amax. Lastly, in Section 2.5, we summarize the results and discuss future work.

2.2 The DASH database

The DASH library1 (Ogiya et al., 2019) is a suite of idealized, collisionless #-body simulations that follow the

evolution of an individual #-body subhalo as it orbits within the fixed, analytical potential of its host halo.

Both the fixed host halo and the initial subhalo are spherically symmetric, eachwith aNavarro-Frenk-White

(NFW; Navarro et al., 1997) density profile:

dNFW (A) = d0

(
A

As

)−1 (
1 + A

As

)−2

, (2.1)

where themodel parameters As and d0 are the characteristic scale radius and density, respectively. The halo

virial radius Avir is defined to be the radius within which the average density is Δvir = 200 times the critical

density of the Universe dcrit. The corresponding virial mass is defined as "vir =
4c
3 ΔvirdcritA

3
vir. The halo

concentration is defined as 2 ≡ Avir/As, and the virial velocity as+vir ≡
√
�"vir/Avir. Throughout this work,

the subscripts ‘h’ and ‘s’ represent quantities associated with the host- and subhaloes, respectively.

The initial conditions are generated assuming that the NFW subhalo has an isotropic velocity distribu-

tion, such that the phase-space distribution function (DF) depends only on energy. The simulations are per-

formed with a tree code (Barnes & Hut, 1986) developed for graphics processing unit (GPU) clusters (Ogiya

et al., 2013). Each subhalo is initially made up of 1,048,576 particles, forces are softened with a Plummer

1. https://cosmo.oca.eu/dash/
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equivalent length n = 0.0003Avir,s, and the opening angle of the tree is set to \ = 0.7. Orbits are integrated

with the second-order leapfrog scheme with a global, adaptive time step ΔC =
√
n/0max, with 0max the max-

imum, absolute acceleration among all particles at that time. As demonstrated in van den Bosch & Ogiya

(2018), these parameters are sufficient to properly resolve the subhalo evolution.

For each simulation, the library contains various data about the subhalo evolution at 301 snapshots,

with a physical time interval between each of 0.12 Gyr. This corresponds to a total evolution time of 36 Gyr,

or 2.5 to 12 radial periods depending on the orbital configuration. The subhalo is initially placed at the

apocenter of its orbit. At each timestep, DASH contains the radial profiles of the subhalo density, enclosed

mass, and radial/tangential velocity dispersion, as well as its bulk position, velocity, bound mass fraction

5b (C), and half-mass radius Aℎ (C) (see Appendix A of van den Bosch et al. (2018) for details on how these

quantities are computed). The radial profiles are computed for 40 logarithmically-spaced radial bins, which

span −2.95 ≤ log(A/Avir,s) ≤ 0.95. While all DASH simulations initially meet the numerical reliability

criteria of van den Bosch & Ogiya (2018), the simulations can become unreliable as the boundmass fraction

becomes small. In this work, we only consider simulation snapshots that meet the following two reliability

criteria, introduced in van den Bosch & Ogiya (2018), each of which can be computed using Ah (C) and 5b (C).

The first criterion, motivated by Power et al. (2003), demands that the softening length be sufficiently small

to resolve the maximum particle accelerations, a requirement given by

5b (C) > 1.79
22

s

5 (2s)

(
n

Avir,s

) (
Ah (C)
Avir,s

)
. (2.2)

The second criterion, related to discreteness noise, states that the number of bound particles in the subhalo

must exceed #crit = 80#0.2, with # the initial number of particles in the subhalo. Once the bound particle

count falls below this value, the subhalo experiences a discreteness-driven runaway instability resulting in

artificial disruption. In the DASH database, this requirement translates to

5b (C) = 1.22 × 10−3. (2.3)

We note that over 99.5% of the DASH simulation snapshots meet the requirements of equations (2.2) and

(2.3).

In addition to excluding snapshots that do not meet the numerical reliability criteria, we also perform

several additional preprocessing steps. We exclude snapshots that are within the 10% of the orbital period

centered around pericentric passage in order to avoid intervals where 5b (C) is changing rapidly and the
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boundedness designation of individual particles is less reliable.2 Additionally, only subhalo radial density

profile points in the range 0.01 ≤ A/Avir,s ≤ 1 are used for analysis; this innermost radius corresponds to

∼3 times the softening length, inside of which the density profile is not reliable.

The database contains 2,253 simulations of subhaloes orbiting within host haloes with an initial host-

to-subhalo mass ratio of"vir,h/"vir,s = 1000, a ratio sufficiently large that the effects of dynamical friction

(Chandrasekhar, 1943) can safely be neglected. Furthermore, due to the self-similar nature of subhalo evo-

lution, the simulations apply generally to initial configurations with "vir,h/"vir,s & 100, regardless of the

absolute value of "vir,h. The simulations spread a four-dimensional parameter space of host- and subhalo

concentrations and initial orbital configurations, as illustrated by Figs. 2 and 4 in Ogiya et al. (2019). The

concentrations 2h and 2s cover the range 3.1 ≤ 2 ≤ 31.5, with the majority of the simulations devoted to

the host- and subhalo concentrations (and ratios between the two) most commonly seen in cosmological

simulations for haloes roughly in the range of 107 < "vir/(ℎ−1"�) < 1015, determined using the method

described in Section 2.2.3 of Ogiya et al. (2019). The initial orbital configuration is parametrized by two di-

mensionless analogs to energy and angular momentum: Gc ≡ Ac (�)/Avir,h, where Ac (�) is the radius of the

circular orbit of energy � , and the circularity [ = !/!c (�), where ! is the initial orbital angular momen-

tum and !c (�) is the angular momentum of the corresponding circular orbit with the same energy. The

orbital parameters are sampled in the range 0 ≤ [ ≤ 1 (linearly) and 0.5 ≤ Gc ≤ 2 (logarithmically). The

majority of the simulations are devoted to orbital parameters near the peak of the probability distribution

seen at infall in cosmological simulations (Jiang et al., 2015).

2.3 Evolved subhalo density profile

The objective of this chapter is to calibrate a model of the evolution of the subhalo density profile against

the DASH simulations. As described above, the DASH database consists of 2,253 simulations, each of which

has 301 snapshots of time evolution over several orbital periods. At each of these snapshots, various radial

profiles and global subhalo properties are stored. After performing the preprocessing steps described pre-

viously, the calibration dataset consists of a total of roughly 6 × 105 snapshots of subhalo evolution labeled

by (i) the initial configurations, which span the parameter space of 2h, 2s, Gc, and [ values, and by (ii) the

bound fractions 5b (C), which span roughly three orders of magnitude (∼10−3 to 1). At each of these snap-

shots, we compute the ratio of the evolved subhalo density profile relative to the initial subhalo density

profile, which we refer to as the transfer function � (A, C) = d(A, C)/d(A, C = 0), where d(A, C = 0) is the NFW

2. When this selection criterion is removed, our results remain qualitatively the same and we find that the variance in the residuals
between our best-fit model and the DASH density profiles (as in Fig. 2.4) increases slightly at large subhalo radii.
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profile of equation (2.1). The transfer function is stored for 20 radial bins spanning 0.01 ≤ A/Avir,s ≤ 1 at

each snapshot. This calibration dataset is immense, including over 10million distinct data points of subhalo

transfer functions.

The studies of Hayashi et al. (2003, hereafter H03) and Peñarrubia et al. (2008) argued that the subhalo

density profiles depend solely on the density profile at infall and the total amount ofmass lost thereafter. In

particular, H03 describes the evolved density profile in terms of a transfer function, �H03 (A | 5b), which im-

plies that the density profiles of subhaloes are insensitive to how andwhen they have lost their mass. Based

on the same principle, Peñarrubia et al. (2010, hereafter P10) provides a prescription to obtain a transfer

function based off of their “tidal track” fitting function for the structural parameters normalized by their

initial values, +max
+max,i
( 5b) and Amax

Amax,i
( 5b). Here +max is the maximum circular velocity and Amax is the associ-

ated radius. Based on the DASH database, though, we find that the residuals between these models and the

DASH transfer functions exhibit a significant, systematic correlation with the initial subhalo concentration,

2s. Neither H03 nor P10 observed this dependence, as both works only considered subhaloes with a single

value for the concentration (2s = 10 and 23.1, respectively). In addition, we find that the dependence on

2s is much stronger than on any of 2h, Gc, or [, which illustrates that while the evolved subhalo density

profile depends on both the total amount of mass lost since infall and the initial profile (encoded by 2s), the

evolution is indeed independent of the details of the stripping (which depends on the external potential,

encoded by 2h, and the subhalo’s orbit, encoded by Gc and [).

Both H03 and P10 find that tidal evolutionmodifies the subhalo density profile in twomain ways: (i) the

outer density profile begins to dropoffmuchmore steeplywith radius, transitioning from thed log d/d log A =

−3 that is characteristic of the NFWprofile at infall to d log d/d log A = −(5−6), and (ii) the central densities

slowly decrease with time as more and more mass is stripped away. The latter is mainly a consequence of

the subhalo re-virializing in response to its mass loss. In addition, some of the reduction in central density

arisesmore directly from the stripping of particles onhighly eccentric orbits, which contributemass to both

the center and the outskirts. The impact of tidal shocking on the central densities is negligible as the short

dynamical times in the dense centers imply adiabatic shielding (Gnedin & Ostriker, 1999; van den Bosch

et al., 2018). Informed by these previous findings, and considering the newly-identified 2s-dependence, we

seek to describe the evolution of the subhalo density profile in terms of a transfer function � (A | 5b, 2s) that

depends both on the initial subhalo concentration and the fraction of mass that has been stripped since

infall.

Thus, the model-building procedure is largely one of exploratory data analysis and optimization. For

calibrating candidate models of � (A | 5b, 2s), we employ a cost function that is the sum of squared logarith-
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mic residuals between the DASH transfer functions and those predicted by the model:

� ()) =
#sim∑
8

#snap∑
9

#rad∑
:

{
log

[
�D (A: |C 9 , {2h, 2s, Gc, [}8)

]
− log

[
�m (A: | 5b (C 9 ), 2s, ))

]}2

(2.4)

Here, ) denotes the free parameters of the model, and the sums run over all #sim simulations, #snap snap-

shots, and #rad radial bins included in the preprocessed calibration dataset. �D denotes the DASH transfer

functions, which are labeled by the orbital parameters and halo concentrations at infall, snapshot num-

ber, and radial bin. �m denotes the model transfer function, which only depends on the radial bin, bound

fraction, initial subhalo concentration, and free model parameters. The adaptive Nelder-Mead downhill

simplex method (Gao & Han, 2012) is used for model optimization due to its reliability and generalization

to high-dimensional parameter spaces.

The DASH database does not contain a flat distribution of simulations across 2h, 2s, Gc, and [, but rather

consists of proportionally more simulations in the regions of parameter space that are more probable. Fur-

thermore, the snapshots present in our calibration dataset do not contain a flat distribution in 5b, as there

are far fewer snapshots of subhaloes with low 5b than for the highest values. Thus, by using our flat cost

function, which weights all radial bins and all snapshots equally, the calibrated model will perform best in

the regions of parameter space that are most commonly found in cosmological simulations.

After testing a variety of functional forms for � (A | 5b, 2s, )), we find that the transfer function is quite

well described by

� (A | 5b, 2s, )) =
d(A, C)

d(A, C = 0) =
5te

1 +
(
Ã
[ Ãvir,s−Ãte
Ãvir,sÃte

] ) X , (2.5)

which is a generalized form of the transfer function used in H03, which is given by �H03 (A | 5b) = 5te [1 +

(Ã/Ãs)3]−1. Here, Ã = A/As, such that all radii that appear in the transfer function are normalized to the

initial NFW scale radius. The transfer function model contains three parameters:

5te = 5
01

(
2s
10

)02

b 2
03 (1− 5b)04

s , (2.6)

Ãte = Ãvir,s 5
11

(
2s
10

)12

b 2
13 (1− 5b)14

s exp
[
15

( 2s

10
)16 (1 − 5b)

]
, (2.7)

and

X = 20 5
21

(
2s
10

)22

b 2
23 (1− 5b)24

s . (2.8)
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These parametrizations were motivated based on power series expansions in log( 5b) and log(2s) for the

logarithms of 5te, Ãte, and X. Additional coupling between 5b and 2s was added and the functional forms

were further adjusted through trial and error in order to maximally reduce the cost function in equation

(2.4).

Clearly, 5te describes how the normalization of the inner density profile evolves. The other two pa-

rameters describe the steepening of the outer density profile. The tidal truncation radius Ãte is related to

the radius where the power-law begins to transition from NFW to a steeper, tidally stripped profile. The

power-law slope at large radii is governed by X, such that

� (A) ∝ A−X =⇒ d(A) ∝ A−(3+X) for Ã � Ãte. (2.9)

This transfer function has several desirable, physically-motivated properties. Firstly, when 5b = 1, the

transfer function is unity for all radii, which is consistent with the fact that no tidal evolution has occurred

yet. Furthermore, the truncation radius Ate starts at the virial radius and shrinks inwards only as the subhalo

is tidally stripped.

Each of these three model parameters is itself parametrized to be a function of 2s and 5b. In total, the

15 free parameters to calibrate are encoded in ) as

) = {01, 02, 03, 04, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24}. (2.10)

We calibrate this model against the DASH simulations using the cost function and method described above,

and the best fit parameters are listed in Table 2.1. Additionally, the dependence of the three functional pa-

rameters, 5te, Ate, and X, on 5b and 2s can be seen in Fig. 2.2. Importantly, unlike the polynomial expansions

used in H03, our power-law parametrizations of 5te, Ate, and X are well-behaved down to arbitrarily low 5b.

Such a property will be crucial for using the model in a semi-analytic prescription for evolving subhalo

populations, which, in the absence of an explicit mechanism for subhalo disruption, will continue to evolve

subhaloes down to 5b below the resolution limit of DASH. For applications that do not depend on physically

realistic extrapolation outside of the DASH 5b parameter space, an alternative, promising strategy for pre-

dicting the evolved subhalo density profile could involve employing a machine learning algorithm, such as

random forest regression (Breiman, 2001). In agreement with previous works, our calibratedmodel demon-

strates that the majority of the evolved subhalo density profiles are indeed well-described by d ∝ A−(5−6)

(i.e., X ≈ 2 − 3). In particular, the outer density profile falls off more rapidly as subhalo concentration

decreases.
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Figure 2.2: The dependence of the transfer function model (equation [2.5]) functional parameters ( 5te, Ãte,
and X, described by equations [2.6]–[2.8]) on the subhalo concentration 2s and bound fraction 5b. For the
majority of the 5b-2s parameter space, X ≈ 2 − 3, resulting in a stripped subhalo density profile with
d log d/d log A = −(5 − 6), in agreement with previous idealized simulations (H03; P10). As the subhalo
is increasingly stripped, X increases and the outer profile drops off more steeply.
Since d(A) ∝ 5te, the overall normalization of the density profile decreases as mass is stripped. The tidal

truncation radius, Ate, roughly corresponds to the radius where the profile transitions to
d log d/d log A = −(3 + X); this radius is smaller for subhaloes that are initially more concentrated.
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01 0.338 11 0.448 20 2.779
02 0.000 12 0.272 21 −0.035
03 0.157 13 −0.199 22 −0.337
04 1.337 14 0.011 23 −0.099

15 −1.119 24 0.415
16 0.093

Table 2.1: The best-fit parameters for the transfer function, � (A | 5b, 2s) (equation [2.5]). These parameters
are used to describe the dependence of the model’s functional parameters (i.e., 5te, Ãte, and X, described by
equations [2.6]–[2.8]) on the subhalo concentration 2s and bound fraction 5b. The best-fit value for param-
eter 02 is consistent with zero, but the parameter was kept in order to maintain a consistent parametric
form between 5te and the other functional parameters.

In Fig. 2.3, we compare our calibrated model to the DASH simulation transfer functions. Specifically,

we first select a particular 2s, then bin the DASH simulation snapshots by 5b, which includes simulations

over the parameter space of 2h, Gc, and [ values. We plot these binned transfer functions versus radius,

showing the medians and 16/84 percentiles for different ranges in 5b, as indicated. Our model transfer

function is specified by 2s, 5b (which is equal to the 5b logarithmic bin center used for the DASH data), and

the radius. The model demonstrates good agreement with the DASH simulation transfer functions across a

large dynamic range in 5b and over the relevant 2s parameter space. To highlight our improved model and

emphasize the benefits of using a large library such as DASH for data-drivenmodel building, we overplot the

transfer functions of H03 and P10. As described above, these models for the transfer function depend only

on 5b. The model of P10, which was only calibrated to reproduce the structural parameters of subhaloes

with 2s = 23.1, is able to capture the outer density profile of highly-stripped subhaloes with 2s = 25 quite

well, whereas it fails to reproduce the corresponding inner density profiles. For the subhaloes with 2s = 10,

the P10 model is better able to capture the inner density profile. The model of H03, which was calibrated

only for subhaloes with 2s = 10, performs better for low 2s, but is not able to capture the inner profile

normalization as well as our model, especially for highly-stripped haloes. An accurate model of the subhalo

transfer function needs to depend on the initial density profile (encoded by 2s), as is clear from the fact

that both the models of H03 and P10 perform much worse in the 2s = 25 case than in the 2s = 10 case.

By incorporating dependence on 2s into our transfer function model, we are able to better reproduce the

DASH simulation transfer functions for both example initial subhalo concentrations. We also emphasize

the benefit of using a variable outer power law (X ≈ 2−3) for the transfer function. In most cases, the outer

slope of our transfer function model is bracketed by the values advocated in H03 (X = 3) and P10 (X = 2),

enabling a more faithful reproduction of the outer profile across a broad range of 5b and 2s.

In Fig. 2.4, we plot the residuals between ourmodel and the DASH simulation transfer functions, binned

by radius and by each of 5b, 2s, 2h, Gc, and [. We find that there is no significant systematic correlation
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Figure 2.3: Comparison between evolved density profile models and the DASH simulations as a function of
radius for 2s = 25 (left) and 2s = 5 (right), binned by 5b. All DASH simulation snapshots for subhaloes with
the specified 2s that meet the preprocessing criteria (i.e., are numerically reliable and away from pericen-
ter) and have 5b within the listed range are included. The open circles represent the median density profile
transfer function value for theDASH simulationswithin the radial bin and 5b range, and error bars represent
16/84 percentiles. The 5b bins are progressively shifted horizontally for viewing in order to avoid overlap-
ping error bars, but the true radii correspond to those of the lightest bin in 5b. The solid vertical lines denote
As. For a large range of 2s values, the model accurately reproduces the tidally stripped subhalo density pro-
file. The variable outer profile slope X, described by equation (2.8), enables our model to better capture the
outer density profile than H03 and P10, which use a fixed outer profile scaling of d log d/d log A = −6 or
d log d/d log A = −5, respectively.

between the residuals and 2s or 2h. At the outer subhalo radii (A & 0.4Avir,s), the residuals increase for the

most boundorbits (low Gc) and exhibit aweak dependence on [. Note also that themodel is least accurate for

the lowest bound mass fractions (i.e., 5b <∼ 0.01). Only a small fraction of all snapshots in DASH correspond

to such small 5b values, all of which have small 2s. Consequently, this rare part of parameter space receives

little weight in the optimization of the cost function, resulting in a less accurate fit. Note, though, that in

each case the systematic offsets remain small compared to the halo-to-halo variance.

In the bottom right panel of Fig. 2.4, we give a final demonstration of the overall improvement of our

model at reproducing the subhalo transfer functions of DASH compared to previous works. We plot the

residuals between the various models and the DASH simulation transfer functions, now binned only by ra-

dius. These radial bins include all snapshots across the entire DASH dataset. Clearly, our updated prescrip-

tion for the transfer function significantly improves upon previous work, as demonstrated by its nearly

negligible bias at all radii and substantially reduced scatter. In particular, the addition of a variable power-

law slope in the transfer function eliminates the strong bias at large radii seen in the residuals of the other

two models. Thus, our model, calibrated on a massive dataset that is less prone to the numerical artifacts

that plague cosmological simulations, provides the best predictions to date for the evolution of the subhalo
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Figure 2.4: Residuals between the model and DASH simulation transfer functions (�m and �D, respectively)
as a function of radius, binned by 5b (top left), 2s (bottom left), 2h (top middle), Gc (bottom middle), and [ (top
right). The bottom right plot compares the residuals between ourmodel and the DASH simulations (blue dots)
to the residuals between each of themodels of H03 (red dots) and P10 (black dots) and the DASH simulations.
Lines indicate themedian residual and the error bars represent the 16/84 percentiles in each radial bin. The
radii used for each value of the varied parameter (i.e., 5b, 2s, 2h, Gc, [, or themodel) are progressively shifted
horizontally for viewing, but the true radii correspond to those of the lightest-coloured curves (or the curve
corresponding to ‘this work’ in the bottom right plot). See the text for a detailed discussion.
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density profile. This tool will be a key ingredient in future semi-analytical models of dark matter substruc-

ture evolution.

2.4 Structural parameter evolution

Using the transfer function prescription developed above, one can easily compute the evolved subhalo den-

sity profile as d(A | 5b, 2s) = � (A | 5b, 2s) dNFW (A |2s). Using the evolved profile, the radius of the maximum

circular velocity, Amax, can be found by solving A3d(A) −
∫ A

0 A ′2d(A ′)3A ′ = 0 for A . The associated maximum

circular velocity is+max =
√
�" (< Amax)/Amax.

P10 find that the structural parameters of subhaloes, +max and Amax, follow well-defined “tidal tracks”

that only depend on 5b and the initial slope of the inner subhalo density profile. They calibrate a simple

functional form for+max/+max,8 ( 5b) and Amax/Amax,8 ( 5b) based on their idealized subhalo simulations. They

show that the functional form is accurate down to 5b ≈ 0.001 in their simulations. While their simulations

span a variety of initial inner density profile slopes, all simulated subhaloes have 2s = 23.1. On the other

hand, H03, who only analyzed idealized subhalo simulations with 2s = 10, report that +max ∝ 5
1/3

b ; this

result is inconsistent with the large cosmological simulations analyzed in Jiang & van den Bosch (2016) (see

their Fig. 3) and, as we show below, is also inconsistent with DASH. The transfer function �H03 (A |2s) of H03

can also be used to calculate the evolution of the subhalo structural parameters, yielding a different relation

that is more consistent with other models and the DASH data.

In addition to reproducing the evolved subhalo density profile, the performance of the model can also

be quantified by its ability to reproduce the evolved structural parameters. For the initial values, we use

the structural parameters of an NFW halo: +max,8 = 0.465+vir
√
2/ 5 (2) and Amax,8 = 2.163As (here, 5 (2) =

ln[1 + 2] − 2/[1 + 2]). In order to reduce the computational load of this analysis, we restrict ourselves to

only the snapshots at apocentric passage, which still provides between 2–12 data points per simulation in

the DASH database and a total of∼9,000 snapshots. For each snapshot, we compute the empirical structural

parameters using the enclosed mass profile stored in DASH. The circular velocity profile is computed for

each radial bin as+c (A) =
√
�" (< A)/A and then the structural parameters are determined from a fourth-

order spline interpolation of this profile. Using each snapshot’s associated values of 5b and 2s, the model

predictions are calculated using the method described at the start of this section for our prescription and

the one of H03. The predictions of P10 can be computed directly from their “tidal track” formula (their

equation [8]).

In Fig. 2.5, we compare the model predictions for the structural parameters to the DASH results. Our

model accuracy has minimal dependence on the stripped fraction, as evidenced by a similar level of scatter
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Figure 2.5: Scatter plots comparing the model predictions of the structural parameters normalized by their
initial values, +max/+max,8 (left) and Amax/Amax,8 (right), to those of all DASH subhaloes at their apocentric
passages. The results of our model are coloured by (the logarithm of) the subhalo concentration, demon-
strating that the prediction’s accuracy has minimal dependence on 2s. For comparison, the corresponding
predictions from the models of H03 and P10 are also plotted (black stars and gray crosses, respectively),
highlighting their increased scatter.

down to low+max/+max,8 and Amax/Amax,8 . Additionally, the accuracy of our structural parameter predictions

exhibits no residual dependence on the initial subhalo concentration. We overplot the predictions of H03

and P10, highlighting the significant improvementmade by ourmodel. In particular, much of the additional

scatter in these prior models is due to the lack of 2s-dependence, which we illustrate below. In Fig. 2.6, we

plot the DASH structural parameters against 5b, coloured by the initial subhalo concentration. This plot

demonstrates that at fixed 5b, both +max and Amax are larger for greater 2s, a trend that is exquisitely cap-

tured by our model due to the addition of 2s-dependence in the transfer function. A comparison between

our model and the �H03 (A | 5b)-based structural parameter predictions illustrates the importance of using

power law-based parametrizations in 5b. By parametrizing the model’s functional parameters ( 5te, Ate, and

X) as power laws in 5b and 2s, the transfer function and structural parameter predictions are well-behaved

down to arbitrarily low 5b, unlike the model of H03, which uses a fitting function that is a polynomial ex-

pansion in log( 5b).

Overall, our model’s ability to accurately reproduce the evolved subhalo density profiles and associated

structural parameters across awide range of subhalo parameter space represents an important step towards

building a more accurate model of dark matter substructure evolution.

In order to aid the building of such models, we provide additional fitting functions for +max/+max,8 and

Amax/Amax,8 . We use the same “tidal track” formula introduced in Peñarrubia et al. (2008) and used in P10:

- ( 5b, 2s) =
2` 5 [b
(1 + 5b)`

, (2.11)
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Figure 2.6: Scatter plots of+max/+max,8 (left) and Amax/Amax,8 (right) from all DASH subhalo snapshots at apoc-
entric passages plotted against 5b and coloured by (the logarithm of) 2s. Overplotted are the model predic-
tions of H03, P10, and this work (equations [2.12]-[2.13]). H03 reports that +max ∝ 5

1/3
b and also provides a

transfer function �H03 (A |2s) that can be used to determine the structural parameters that results in a dif-
ferent relation. The latter are poorly behaved at small 5b due to the model’s use of fitting functions that are
polynomial expansions in log( 5b). The P10 predictions come directly from their “tidal track” fitting func-
tion (their equation [8]). The structural parameters can be determined using our transfer function model,
which has dependence on 2s. As evidenced by the DASH data, such 2s-dependence is necessary in order to
accurately capture the evolution of+max and Amax.

where ` = `( 5b, 2s), [ = [( 5b, 2s), and - denotes either +max/+max,8 or Amax/Amax,8 . P10 fit constants to

each of the two functional parameters, ` and [; we introduce dependence on both 5b and 2s and instead

write them as:

`( 5b, 2s) = ?0 + ?12
?2
s log( 5b) + ?32

?4
s , (2.12)

and

[( 5b, 2s) = @0 + @12
@2
s log( 5b). (2.13)

The free parameters, p and q, are fit to reproduce ourmodel results for each of+max/+max,8 and Amax/Amax,8 ;

the resulting values are listed inTable 2.2. Thefitting function agreeswith ourmodel to. 1% for+max/+max,8

and . 3% for Amax/Amax,8 over the range −3 ≤ log( 5b) ≤ 0 and 3.1 ≤ 2s ≤ 31.5. Both the full transfer

function model and the structural parameter fitting functions are well-behaved down to arbitrarily low 5b,

which is a crucial characteristic for use in a semi-analytical model without disruption.

2.5 Summary and discussion

The evolution of dark matter haloes is predominantly studied through cosmological #-body simulations.

These simulations show that haloes in virial equilibrium have universal density profiles (e.g., Navarro et al.,

1997) and maintain a population of subhaloes that contain roughly 10% of the total halo mass (e.g., Ghigna
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+max/+max,8 Amax/Amax,8
?0 2.980 @0 0.176 ?0 1.021 @0 −0.525
?1 0.310 @1 −0.008 ?1 1.463 @1 −0.065
?2 −0.223 @2 0.452 ?2 0.099 @2 0.083
?3 −3.308 ?3 −4.643
?4 −0.079 ?4 −0.250

Table 2.2: The parameters of the fitting function for the subhalo structural parameters normalized by their
initial values, +max/+max,8 and Amax/Amax,8 (equation [2.11]), calibrated to agree with our transfer function
model. These parameters encode the dependence of the model’s functional parameters, ` and [, on the
subhalo concentration 2s and bound fraction 5b (equations [2.12]–[2.13]).

et al., 1998; Gao et al., 2004; Giocoli et al., 2010). It has been shown that a large fraction of such subhaloes

present in these simulations are completely disrupted within only a few orbital periods (Han et al., 2016;

van den Bosch, 2017). Recently, several works have employed a combination of physical arguments and

idealized simulations to claim that much of this subhalo disruption is artificial (Peñarrubia et al., 2010; van

den Bosch et al., 2018; van den Bosch & Ogiya, 2018), indicating that the classical ‘over-merging’ problem

(e.g., Katz & White, 1993; Moore et al., 1996) may still plague modern cosmological simulations. Specifi-

cally, van den Bosch & Ogiya (2018) showed that artificial disruption is primarily due to discreteness noise

and inadequate force softening, a numerical issue that has been able to elude standard convergence tests.

Hence, alternative approaches to studying the statistics of dark matter substructure are essential in order

to cross-check the results of state-of-the-art simulations; only this will guarantee our ability to extractmax-

imum information content that can be used for constraining the nature of dark matter and furthering the

small-scale cosmology program.

As a promising alternative to #-body simulations, the semi-analytical modeling approach combines

analytical halo merger trees, built using extended Press-Schechter theory (Bond et al., 1991), with a pre-

scription for the tidal evolution of individual subhaloes as they orbit their host. This approach has been

employed in a variety of previous models of substructure evolution (Taylor & Babul, 2001; van den Bosch

et al., 2005b; Peñarrubia & Benson, 2005; Zentner et al., 2005a; Diemand et al., 2007; Kampakoglou & Ben-

son, 2007; Gan et al., 2010; Pullen et al., 2014; Jiang & van den Bosch, 2016). These benefit from not being

directly obstructed by the same numerical issues present in cosmological simulations. However, due to the

lack of a fully analytical description of tidal evolution, these models still must be calibrated in some way

against cosmological simulations (hence semi-analytical). The free parameters of the model are typically

determined by tuning the results to reproduce the empirical subhalo mass functions of cosmological sim-

ulations. Clearly, if a large fraction of subhaloes in the simulations are subject to spurious disruption, then

the semi-analytical models are calibrated against artificially suppressed subhalomass functions, ultimately

inheriting the same inadequacies of the simulations.
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In an attempt to circumvent this issue, Ogiya et al. (2019) introduced theDASH subhalo evolutiondatabase,

a suite of 2,253 idealized, high-resolution #-body simulations of individual subhaloes orbiting within a

static, analytical host halo. These simulations are unimpaired by artificial disruption, with over 99.5% of

the roughly 6 × 105 snapshots in the database passing the conservative numerical reliability criteria of

van den Bosch & Ogiya (2018). The library samples the entire region of parameter space (i.e., initial orbital

configurations and host-/subhalo concentrations) consistent with dark matter substructure observed in

cosmological simulations.

This work represents the first phase of a research program devoted to building a semi-analytical model

of dark matter substructure evolution that is calibrated against the DASH database and thus unobstructed

by artificial disruption. In particular, this program will enable a calculation of the evolved subhalo mass

function that is entirely independent of cosmological simulations, yielding a powerful method for validat-

ing the (small-scale) results of such simulations. In this chapter, we present an updated prescription for the

evolution of the subhalo density profile. Previous such models by H03 and P10 only depend on the fraction

of matter that has become unbound from the subhalo since infall (described by 5b). We find that the resid-

uals between these 5b-only models and the DASH subhalo density profiles correlate significantly with the

subhalo concentration 2s. Hence, we propose a more general model that depends both on 5b and the initial

profile at infall (described by 2s). This evolved subhalo density profile is described by the transfer func-

tion � (A | 5b, 2s) = d(A, C)/d(A, C = 0), where we assume d(A, C = 0) = dNFW (A). Our model of this transfer

function can be easily implemented in future semi-analytical models, as it has a simple algebraic form and

is described fully by a set of parameters calibrated against the DASH simulations (see equations [2.5]-[2.8]

and Table 2.1). As demonstrated in Section 2.3 and Section 2.4, our model is able to reproduce far more

accurately the density profiles and structural parameters of evolved subhaloes than the models of previ-

ous work. In addition, we provide a fitting function for the evolving structural parameters, described by

equations (2.11)–(2.13) and Table 2.2.

In the next chapter in this series (Section 3, which is published in Green et al., 2021a), we utilize the DASH

library and our prescription for the evolved subhalo density profile to build a simple, physically-motivated

model of the mass evolution of dark matter subhaloes. We will then combine this subhalo evolution model

with accurate halo merger trees (e.g., Parkinson et al., 2008; Jiang & van den Bosch, 2014) to predict the

evolved subhalo mass function of CDM haloes, a result that is completely free from the effects of artificial

disruption. This will allow us to verify the predictions of Fig. 2.1 and determine whether or not the sub-

halo mass and velocity functions have indeed been severely underestimated. The results of this upcoming

work will serve as an important check on the reliability of subhalo statistics derived from state-of-the-art

cosmological simulations.
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Chapter 3

Impact of artificial disruption

This chapter has been published as an article by Green et al. (2021a) in the Monthly Notices of the Royal

Astronomical Society by Oxford University Press.

3.1 Background

T
he standardΛ cold dark matter (ΛCDM) cosmological model predicts that structure forms

as the consequence of primordial dark matter overdensities that collapse to form self-

bound haloes. Smaller perturbations collapse earlier and merge to form larger haloes,

resulting in a hierarchical halo assembly process that spans all mass scales. By studying

halo evolution via cosmological #-body simulations, it is clear that the tightly bound central regions of

smaller haloes survive the merger process, persisting as orbiting subhaloes within the treacherous envi-

ronment of their host halo, where they are subjected to dynamical friction and disruptive tidal forces (e.g.,

Mo et al., 2010). Neglecting the impact of baryonic physics, this merger process is roughly self-similar due

to the scale-free nature of gravitational collapse, ultimately resulting in an entire hierarchy of substructure,

where subhaloes themselves host sub-subhaloes, and so on all the way down (Tormen et al., 1997; Gao et al.,

2004; Kravtsov et al., 2004; Giocoli et al., 2010).

The population statistics of dark matter (DM) substructure are most often summarized in terms of sub-

halomass functions (SHMFs) and radial profiles; these summary statistics depend heavily on the underlying

particle nature of DM. For example, the free-streaming cutoff scale, set by the DM thermal velocity, impacts

the low-mass end of the SHMF (e.g., Knebe et al., 2008; Lovell et al., 2014; Colín et al., 2015; Bose et al., 2017),

while non-negligible DM self-interactions result in cored inner halo density profiles (e.g., Burkert, 2000; Vo-

gelsberger et al., 2012; Rocha et al., 2013), which impacts the survivability of substructure in the presence
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of tides (e.g., Peñarrubia et al., 2010). The predictions of substructure demographics made by these vari-

ous dark matter models differ primarily at the low mass end. Consequently, many observational searches

are underway in the attempt to constrain the abundance of lowmass substructure, leveraging gravitational

lensing (e.g., Dalal & Kochanek, 2002; Keeton&Moustakas, 2009; Vegetti et al., 2014; Shu et al., 2015; Hezaveh

et al., 2016; Gilman et al., 2020b; Vattis et al., 2020), indirect detection via DM annihilation to W-rays or decay

signals (e.g., Strigari et al., 2007; Pieri et al., 2008; Hayashi et al., 2016; Hiroshima et al., 2018; Delos, 2019;

Facchinetti et al., 2020; Rico, 2020; Somalwar et al., 2021), and gaps in stellar streams (e.g., Carlberg, 2012;

Ngan & Carlberg, 2014; Erkal et al., 2016; Bonaca et al., 2020; Necib et al., 2020), among other approaches.

Since satellite galaxies are inferred to live within subhaloes, with their respective properties related via

the galaxy-halo connection, DM substructure statistics are intimately connected to satellite galaxy abun-

dances (e.g., Vale & Ostriker, 2006; Hearin et al., 2013; Behroozi et al., 2013b; Newton et al., 2018; Nadler

et al., 2019, 2021, 2020) and thus can be used to constrain cosmology through their impact on small-scale

clustering statistics (e.g., Benson et al., 2001; Berlind et al., 2003; van den Bosch et al., 2005a; Lange et al.,

2019; van den Bosch et al., 2019). Clearly, accurately modeling the evolution of DM subhalo populations is a

prerequisite for their use as a cosmological probe and as a tool to study the particle nature of dark matter.

Unfortunately, since the evolution of DM substructure is highly non-linear, modeling all but the most ide-

alized circumstances has proven analytically intractable. Thus, to date, cosmological #-body simulations

have been the most common avenue used for studying the demographics of DM substructure.

In recent years, cosmological simulations have successfully and repeatedly passed an important con-

vergence test: as resolution is varied, the SHMFs remain in agreement above the 50–100 particle limit (e.g.,

Springel et al., 2008; Onions et al., 2012; Knebe et al., 2013; van den Bosch & Jiang, 2016; Griffen et al.,

2016; Ludlow et al., 2019). While this is promising, the physical correctness of cosmological simulations

is not guaranteed by the convergence of mass functions alone. Using the state-of-the-art Bolshoi simula-

tion (Klypin et al., 2011), van den Bosch (2017) found that the evolved SHMF of surviving subhaloes looks

identical to the SHMF of disintegrated subhaloes, noting that total subhalo disruption is prevalent. The

inferred disruption rates from various studies are extremely high, with roughly 55-65% (90%) of subhaloes

accreted at I = 1 (2) being disrupted by the present day (Han et al., 2016; van den Bosch, 2017; Jiang & van

den Bosch, 2017). Hayashi et al. (2003) has shown that the total binding energy of a halo that is instan-

taneously stripped down to a sufficiently small radius (encompassing roughly 5–10% of the original mass)

can be positive; hence, the authors suggested that such systems could disrupt spontaneously. Motivated by

this analysis, subsequent works have incorporated physical disruption via tidal stripping and heating into

their models or used such an argument as a justification for their results (Zentner & Bullock, 2003; Taylor &

Babul, 2004; Klypin et al., 2015; Garrison-Kimmel et al., 2017). Recently, however, van den Bosch et al. (2018)
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demonstrated that the boundedness of a subhalo remnant does not depend solely on the total binding en-

ergy, but rather on the radial distribution of the binding energies of the constituent particles. In fact, by

using idealized simulations with sufficiently high resolution, van den Bosch et al. (2018) showed that it is

possible for a self-bound remnant to survive even after 99.9% of the original mass has been stripped. More

broadly, the study used analytical arguments to show that neither tidal heating nor tidal stripping alone are

capable of causing complete physical disruption of cuspy CDM subhaloes (consistent with earlier work by

Peñarrubia et al., 2010). As a follow-up, van den Bosch & Ogiya (2018) ran a suite of idealized numerical sim-

ulations, concluding that disruption of #-body subhaloes in cosmological simulations is largely numerical

in nature and can be primarily attributed to (i) discreteness noise caused by insufficient particle resolution

and (ii) inadequate softening of gravitational forces (see Mansfield & Avestruz 2020 for a recent analysis

of the impact of the force softening scale on various halo properties). In agreement with these findings,

van den Bosch (2017) assessed that approximately 80% of subhalo disruption in the Bolshoi simulation is

most likely numerical in nature (see Section 3.2.5 below for details).

If the majority of subhalo disruption in cosmological simulations is indeed numerical, the implications

for small-scale cosmology and astrophysics are profound. For example, a disruption-driven reduction in

subhalo statistics would result in systematic biases in predictions from subhalo abundance matching (e.g.,

Conroy et al., 2006; Vale & Ostriker, 2006; Guo et al., 2010; Hearin et al., 2013; Chaves-Montero et al., 2016).

Semi-analytical models of galaxy and darkmatter substructure evolution (e.g., Taylor & Babul, 2001; Peñar-

rubia & Benson, 2005; Zentner et al., 2005a; Diemand et al., 2007; Kampakoglou & Benson, 2007; Gan et al.,

2010; Pullen et al., 2014; Jiang & van den Bosch, 2016; Benson, 2020; Jiang et al., 2021; Yang et al., 2020) have

historically been calibrated to reproduce the results of cosmological simulations and thus end up having

inherited any systematic issues present in such simulations. As a specific example, Jiang & van den Bosch

(2016) constructed a semi-analytical model that accurately matches the statistics of subhaloes in the Bolshoi

simulation by simply tuning an orbit-averaged mass-loss rate and including an empirical model of subhalo

disruption that, by construction, reproduces the disruption demographics in the simulation. As shown in

Green & van den Bosch (2019, hereafter GB19), in the absence of such disruption, the normalization of the

evolved SHMF predictions from Jiang & van den Bosch (2016) is boosted by a factor of two. Hence, depend-

ing on the fraction of subhalo disruption in cosmological simulations that is indeed artificial, it remains

possible that such simulations (and derivative semi-analytical models) may be underestimating subhalo

abundances by up to a factor of two. Such a systematic bias would have serious implications for dark mat-

ter indirect detection searches and could help explain the ‘galaxy clustering crisis’ in subhalo abundance

matching (Campbell et al., 2018), since both of these applications, among others, depend heavily on evolved

SHMFs from simulations. As long as the effects of artificial disruption remain as an unknown variable in the
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analysis of cosmological simulations, wewill be unable to extract themaximumamount of cosmological and

astrophysical information content that will soon be made available in various large upcoming surveys, in-

cluding DESI, LSST, EUCLID, andWFIRST. Clearly, there is still work to be done towards better understanding

the tidal evolution of DM substructure, hence the motivation of the present study.

Recently, we released SatGen (Jiang et al., 2021), a semi-analytical modeling framework for studying

galaxy and DM substructure evolution. The core components of the dark matter-only side of the frame-

work include prescriptions for (i) analytical merger trees (Cole et al., 2000; Parkinson et al., 2008; Benson,

2017), from which the internal properties of subhaloes at accretion are derived, (ii) orbital parameter dis-

tributions for infalling subhaloes (Zentner et al., 2005a; Wetzel, 2011; Jiang et al., 2015; Li et al., 2020), (iii)

the integration of subhalo orbits, including dynamical friction (Chandrasekhar, 1943), (iv) the evolved sub-

halo density profile, which captures how the internal structure of the subhalo responds to tidal heating

and stripping (e.g., Hayashi et al., 2003; Peñarrubia et al., 2010; Drakos et al., 2017; Green & van den Bosch,

2019; Errani & Navarro, 2021), and (v) the instantaneous mass-loss rate, which depends on the structure of

both the host- and subhalo in addition to the orbit (e.g., Drakos et al., 2020, this work). In contrast to Jiang

& van den Bosch (2016), which followed van den Bosch et al. (2005b) by only considering orbit-averaged

subhalo evolution, SatGen integrates individual subhalo orbits, thereby allowing for a proper treatment

of splashback haloes (e.g., Ludlow et al., 2009; Aung et al., 2021; Diemer, 2021, 2020; Fong & Han, 2021). As

we will show, this treatment of splashback haloes is crucial for properly comparing model predictions with

simulation results.

The goal of this work is to build a semi-analytical model of substructure evolution that is independent

of any tidal evolution-related numerical artifacts that may be present in cosmological simulations. Thus, in

Ogiya et al. (2019), we introduced theDynamical Aspects of SubHaloes (DASH) database, a large library of ide-

alized, high-resolution #-body simulations of the tidal evolution of individual subhaloes. This simulation

library has two key strengths: (i) the simulations span a wide range of parameter space, varying the ini-

tial orbital parameters and host- and subhalo concentrations and (ii) the live #-body subhaloes satisfy the

strict set of convergence criteria laid out in van den Bosch & Ogiya (2018), suppressing numerical artifacts

caused by discreteness noise and inadequate force softening. In GB19, we used DASH to calibrate a highly

accurate, simply parametrized empirical model of the evolved subhalo density profile (ESHDP), which is

unimpeded by numerical artifacts and is applicable to a far wider range of subhalo parameter space than

that of previous works (Hayashi et al., 2003; Peñarrubia et al., 2010; Drakos et al., 2017). In this work, we use

the results of GB19 as a component in a simple, physically motivated model of the instantaneous mass-loss

rate. After calibrating this model to faithfully reproduce the subhalo mass trajectories across the range of

DASH simulations, we incorporate it into SatGen, yielding the aforementioned artifact-free semi-analytical
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model. We use this tool to make predictions for evolved subhalo mass functions, radial profiles, and sub-

structure mass fractions and compare these findings to Bolshoi as an independent attempt to quantify the

impact of artificial disruption on the abundance of dark matter subhaloes in cosmological simulations.

This chapter is organized as follows. In Section 3.2, we describe our methods, giving an overview of

SatGen and our modifications, which include the incorporation of the Li et al. (2020) orbital parameter

model (summarized in Section 3.2.2), the ESHDP model of GB19, and an improved, DASH-calibrated mass-

loss rate. We also detail our procedures for modeling the impact of artificial disruption and calibrating the

dynamical friction strength. In Section 3.3, wepresent the results of our augmentedSatGenmodel, focusing

on SHMFs, radial profiles, substructuremass fractions, and the numerical disruption rate in simulations. We

conclude in Section 3.4 by summarizing our research program, highlighting the updates made to SatGen,

and discussing our findings and their implications.

The cosmology used throughout this work is consistent with that of the Bolshoi simulation (Klypin et al.,

2011): Ωm = 0.270, ΩΛ = 0.730, Ωb = 0.0469, ℎ = 0.7, f8 = 0.82, and =s = 0.985. The halo mass is defined

as the mass enclosed within the virial radius, Avir, inside of which the mean density is equal to Δvir (I) times

the critical density. For the ΛCDM cosmology adopted in this work, Δvir (I = 0) ≈ 100 and is otherwise

well-described by the fitting formula presented by Bryan & Norman (1998). Throughout, we use < and

" to denote subhalo and host halo masses, respectively. We use ; and A to reference subhalo- and host

halo-centric radii, respectively. Projected radii are indicated by upper-case letters. The base-10 logarithm

is denoted by log and the natural logarithm is denoted by ln.

3.2 Methods

Our work builds on the original SatGenmodel that is presented in Jiang et al. (2021); we refer the reader to

that paper for any additional model details that are omitted below. In what follows, we highlight the salient

features of SatGen and discuss in greater detail the new modifications that we make as part of this study.

Fig. 3.1 presents a schematic flowchart that summarizes all of the individual components of our framework.

3.2.1 Merger trees

Given an input that includes host halo virialmass,"0, redshift of observation, I0, andunderlying cosmology,

SatGen generates a user-defined number of halomerger trees that specify the subhalomasses and redshifts

at which they are accreted by the main progenitor of each halo. Merger trees are constructed using the

methodof Parkinson et al. (2008), which is amodified version of theGALFORM ‘binarymethodwith accretion’
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Given:
Halo of mass "vir
Redshift I0
Cosmology

Merger trees:
Generated via Parkinson et al. (2008)
algorithm, updated from Cole et al.
(2000) and recalibrated by Benson
(2017); halo concentrations via Zhao
et al. (2009)

Initial orbits (Section 3.2.2):
Sampled via universal orbital dis-
tribution of infalling subhaloes
from Li et al. (2020)

Density profiles (Section 3.2.4.1):
Haloes initialized as NFW density pro-
files and updated via Green & van den
Bosch (2019) transfer function that ac-
counts for tidal stripping and heating

Orbit integration (Secs. 3.2.3, 3.2.6):
Subhaloes orbit hierarchically within
evolving host halo potentials, inte-
grated via 4th-order Runge–Kutta
method; dynamical friction according
to Chandrasekhar (1943) prescription,
with aDF ∝ VDF, a corrective factor

Subhalo mass loss (Section 3.2.4.2):
Instantaneous tidal radius, ;t, com-
puted via King (1962); stripping occurs
at rate ¤< = −U<(> ;t)/Cchar (A ) , with
U calibrated against the DASH simula-
tions of Ogiya et al. (2019)

Output:
<(I) , r(I) , v(I) per subhalo
Evolved SHMF
Radial subhalo abundance
Optional: List of ‘artificially dis-
rupted’ subhaloes (Section 3.2.5)

Figure 3.1: A flowchart that summarizes the SatGen framework employed in this study.

introduced by Cole et al. (2000). As demonstrated in Jiang & van den Bosch (2014) and van den Bosch et al.

(2014), this method yields results that are in excellent agreement with numerical simulations.1 As detailed

in Jiang et al. (2021), we use the Parkinson et al. (2008)methodwith the updated set of parameters advocated

for by Benson (2017) that are applicable to the Bryan & Norman (1998) virial halo mass definition. Each

merger tree is characterized by a minimum progenitor mass, "res, which we set to be a fixed fraction, kres,

of the final host halo mass, i.e., "res = kres"0. The value of kres used varies depending on the application

and is specified accordingly. Following Parkinson et al. (2008), the merger tree is sampled using small time

steps of ΔI ≈ 10−3; however, in order to reduce memory usage, the tree is subsequently down-sampled

to a temporal resolution of ΔC = min[0.1Cdyn (I), 0.06 Gyr], where Cdyn (I) =
√

3c/[16�Δvir (I)dc (I)] is the

redshift-dependent halo dynamical time (see Jiang & van den Bosch, 2016). The maximum time step of 0.06

Gyr is motivated by convergence tests ran during the calibration of our subhalo mass-loss model, which we

discuss in Section 3.2.4.2.

Both host haloes and subhaloes at accretion are assumed to follow a Navarro-Frenk-White density pro-

file (hereafter NFW; Navarro et al., 1997) with a concentration parameter, 2vir,2 that depends on mass and

redshift (or time) according to the model introduced by Zhao et al. (2009):

2vir ("vir, C) = 4.0

[
1 +

(
C

3.75C0.04

)8.4
]1/8

. (3.1)

Thus, the concentration of the halo at a proper time, C, is determined based on the time at which its main

1. As an aside, we acknowledge that several components of themodel, including the analytical merger tree algorithm and the orbital
parameter distribution model, are still calibrated to agree with cosmological simulations. However, the calibration of these compo-
nents only depend on properties of unevolved subhaloes (i.e., prior to accretion) and hence are not adversely impacted by any artifacts
that may manifest in their subsequent tidal evolution.

2. We use 2vir,h and 2vir,s to refer to host- and subhalo concentrations, respectively.
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progenitor has accumulated amass of 0.04"vir (C), denoted C0.04. Each branch of themerger tree has its own

virial mass accretion history, "vir (C), that tracks the halo from the time that it attains a mass of 0.04"res =

0.04kres"0 until the time that it merges into a more massive halo. Note that in order to have well-defined

concentrations for all progenitor haloes down to a ‘leaf mass’ of "res, we track the main progenitor branch

of each leaf further back in time down to 0.04"res.

SatGen tracks subhaloes of all orders. The main branch, which follows the main progenitor of the I = I0

host halo back in time, is considered to be order-0. Subhaloes that are directly accreted onto the main host

are order-1. These subhaloes themselves can host sub-subhaloes, which are order-2, and so on. We use an

inclusive mass definition in our merger trees, which means that the summed mass of all order-: subhaloes

is included in the mass of their order-(: − 1) host. In some of our results (e.g., the SHMFs), we consider

subhaloes of all orders; however, due to the inclusive mass definition, we only consider order-1 subhaloes

for other results (e.g., the substructure mass fraction).

3.2.2 Initial orbits

Here, we describe our approach for initializing subhalo orbits. We specify the initial phase space coordinates

of the infalling subhalo as

{A, \, q, {A , {\ , {q} = {Avir, \, q,−{ cos W, { sin W cos X, { sin W sin X}. (3.2)

We assume that subhalo infall occurs isotropically, and therefore select an initial azimuthal angle, q, uni-

formly from [0, 2c) and an initial polar angle, \, by sampling cos \ uniformly from [0, 1). In order to de-

termine the initial velocity vector, the degrees of freedom of which are the speed, {, the angle between the

velocity vector and the (negative of the) position vector, W, and an additional angle that sets the orientation

of the orbital plane, X, we use the universal model of Li et al. (2020), which has been calibrated using a large

suite of cosmological simulations.

For all first infall events (i.e., for a given subhalo, only considering the first time a subhalo enters into the

host virial radius) aggregated across all of the simulations and over a wide range of redshift snapshots, Li

et al. (2020) find that D ≡ {/+vir,h (here, +vir,h denotes the instantaneous virial velocity of the host) is well-

described by a universal log-normal distribution that is peaked near unity and is independent of subhalo

mass and redshift, I:

?(D) dD =
1

√
2cf1

exp

[
− ln2 (D/`1)

2f2
1

]
dD
D
. (3.3)

Here, `1 = 1.2 and f1 = 0.2. They also find that mergers with larger "vir (instantaneous virial mass of
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the host) and/or b ≡ <acc/"vir result in more radial subhalo orbits, which is mainly attributed to grav-

itational focusing. By rewriting the host mass, "vir, in terms of its corresponding density peak height,

a ≡ Xc (I)/f("vir), where Xc (I) is the critical overdensity of collapse and f2 (") is the mass variance, the

authors find that the distribution of infall angles is redshift-independent and only depends on D, a, and b.

Specifically, cos2 W follows an exponential distribution,

?(cos2 W | D, a, b) d cos2 W =
Z

4Z − 1
exp

(
Z cos2 W

)
d cos2 W, (3.4)

where

Z = 00 exp

[
− ln2 (D/`2)

2f2
1

]
+ �(D + 1) + �,

� = 01a + 02Z
2 + 03aZ

2 , and

� = 10 + 11Z
2 ,

(3.5)

and the best-fit parameters are (00, 01, 02, 03, 10, 11, `2, 2) = (0.89, 0.3,−3.33, 0.56,−1.44, 9.60, 1.04, 0.43).

We use equations (3.3)–(3.5) to sample the initial { and W for each subhalo at infall. In order to set the

orientation of the orbital plane, we assume isotropy and therefore draw X uniformly from [0, 2c).

Using the D distribution of Li et al. (2020) results in a substantial fraction of sampled orbits with initial

orbital energies that lie above the maximum value sampled in the DASH simulations (corresponding to

Gc = 2). This fraction has a slight dependence on the host concentration. For example, for 2vir,h = 10, a total

of 25% of subhaloes have Gc > 2 at infall and 2% are initially unbound (i.e., { at infall is larger than the escape

velocity). Fortunately, the performance of our DASH-calibrated evolved subhalo density profile model and

mass-loss prescription both exhibit minimal dependence on the orbital parameters. We emphasize that the

combined impact of dynamical friction and the growth of the host potential results in continuous reduction

of the subhalo orbital energy, lowering Gc over time. These effects also drive subhaloes that are initially

unbound to eventually become bound after infall; thus, we include these initially unbound orbits in the

SatGen subhalo population.

3.2.3 Orbit integration

Upon accretion, the initial orbital configuration (i.e., location on the virial sphere, orientation of the orbital

plane, and the initial velocity vector) of each subhalo is drawnat randomusing the state-of-the-art universal

infall model of Li et al. (2020, see Section 3.2.2 for details). Note that this is a significant and important

improvement over the approach taken in the originalSatGenpaper, where itwas assumed that all subhaloes
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initially have an orbital energy of �orb = +
2
vir,h/2+Φh (Avir), where+vir,h andΦh are the instantaneous virial

velocity and potential of the host halo, and a specific orbital angular momentum of !orb = [Avir+vir, where

[ ∈ [0, 1] is drawn from a simple sinusoidal probability distribution, ?([) = c sin(c[)/2.

Subhalo orbits are subsequently integrated according to the evolving potential of the immediate host

and a simple prescription for dynamical friction. In particular, subhaloes are treated as point masses with

phase space coordinates that are updated at each time step by integrating the following equation ofmotion:

¥r = −∇Φh + aDF. (3.6)

The integration is performed using a fourth-order Runge–Kuttamethod. Here, r is the host-centric position

vector of the subhalo and aDF is the acceleration due to dynamical friction (DF). The latter is modeled using

the standard approach of Chandrasekhar (1943), which gives the acceleration as

aDF = −4c�2< lnΛd(r)� (< {) {
{3 (3.7)

(see Mo et al., 2010). Here, lnΛ = ln("/<) is the Coulomb logarithm, " and < are the instantaneous

masses of the host and subhalo, respectively, d(r) is the host NFW density profile, { is the relative velocity

of the subhalo with respect to the host, and � (< {) is the fraction of local host particles contributing to

dynamical friction. The velocity distribution of the background particles is assumed to be Maxwellian and

isotropic such that

� (< {rel) = erf (-) − 2-
√
c

e−-
2
. (3.8)

Here, - ≡ {rel/(
√

2f), where f(r) is the one-dimensional isotropic velocity dispersion of the host, which

we compute using the Jeans equation for hydrostatic equilibrium in a spherical system (e.g., Binney &

Tremaine, 2008). We use the orbital velocity of the subhalo for {rel, ignoring the spin of the host halo.

Because of its simplicity and ability to produce results in reasonable agreement with simulations, equa-

tion (3.7) has long been the standard approach for capturing dynamical friction in semi-analytical models.

However, it is based on a number of assumptions (i.e., a point particle moving in an isotropic, homogeneous

background of field particles) that are clearly not justified when modeling the orbital evolution of dark

matter subhaloes. In order to account for these (and other, see Mo et al., 2010) inherent shortcomings, we

multiply aDF by a corrective factor, VDF, of order unity. We treat VDF as a free parameter, which allows us to

adjust the overall strength of dynamical friction (see Section 3.2.6).
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3.2.4 Tidal stripping

As a subhalo orbits its host, it is subjected to tidal stripping and tidal shock heating. As discussed in detail

in van den Bosch et al. (2018), neither of these processes can be rigorously treated analytically. Conse-

quently, all previous semi-analytical models of subhalo evolution have calibrated their treatments using

cosmological simulations, thereby inheriting any shortcomings present within such simulations (i.e., ar-

tificial disruption). The primary goal of this work is to build a semi-analytical model of DM substructure

evolution that is calibrated in a way such that its results are not sensitive to such numerical artifacts. We

achieve this by calibrating our model against DASH, a large suite of idealized, high-resolution #-body sim-

ulations that track individual, live #-body subhaloes as they orbit a fixed, analytical host halo potential

(Ogiya et al., 2019). Both the host halo and the initial #-body subhalo in DASH are modeled as spherical

NFW haloes. DASH consists of 2,253 simulations spanning a wide range of relevant parameter space, in-

cluding initial orbital energy and angular momentum, as well as the concentration parameters of both the

host- and subhalo. The library consists of various data products generated from each simulation, including

the phase space coordinates of the subhalo centre-of-mass, the subhalo radial density profile, d(;, C), and

the bound mass fraction, 5bound ≡ <(C)/<acc, where <acc is the initial subhalo virial mass (i.e., the subhalo

mass at accretion), each of which are recorded over 301 snapshots of time. Below, we use these results to

calibrate a model that describes the evolution of the density profiles (Section 3.2.4.1) and bound masses

(Section 3.2.4.2) of subhaloes as they orbit their host (note that the former is required for modeling the

latter).

3.2.4.1 The evolved subhalo density profile (ESHDP)

In GB19, we used DASH to calibrate a model that describes how the internal structure of a subhalo evolves

in response to tidal stripping and heating. In particular, motivated by the work of Hayashi et al. (2003)

and Peñarrubia et al. (2010), GB19 present a ‘transfer function’ that describes the density profile of a tidally

stripped subhalo as a function of its initial density profile and its instantaneous boundmass fraction, 5bound.

Consequently, the density profile of a subhalo at any time, C, is given by

ds (;, C) = � (; | 5bound (C), 2vir,s) ds (;, Cacc), (3.9)
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where 2vir,s is the concentration of the subhalo at accretion and Cacc denotes the time of accretion. The DASH-

calibrated transfer function is given by

� (; | 5bound, 2vir,s) =
5te

1 +
(
;
;s

[
;vir−;te
;vir;te

] ) X . (3.10)

Here, 5te, ;te, and X are all expressed as fitting functions that depend on both 5bound and 2vir,s (see equa-

tions [6]–[8] and Table 1 of GB19; note that ;te ≡ Ate), whereas ;s and ;vir are the scale radius and virial radius

of the NFW subhalo at accretion.3 The transfer function describes how the outer density profile of the sub-

halo steepens from d ln d/d ln ; = −3 (i.e., the outer slope of the initial NFW profile) to roughly −(5 − 6) as

the initial subhalo mass is stripped away. In addition, the central density of the subhalo is lowered as 5bound

decreases, which is primarily a consequence of re-virialization in response to mass loss.

3.2.4.2 Mass-loss rate

A common approach to modeling the combined impact of tidal stripping and heating (e.g., Taffoni et al.,

2003; Zentner & Bullock, 2003; Oguri & Lee, 2004; Zentner et al., 2005a; Pullen et al., 2014), which we adopt

as well, is to assume that over each time step, ΔC, some portion, Δ<, of the subhalo mass outside of its

instantaneous tidal radius, ;t, is stripped away. In particular, we set

Δ< = −U ΔC

Cchar
<(> ;t) . (3.11)

Here, U is a fudge factor that controls the stripping efficiency,

Cchar =

√
3c

16�d̄h (A)
(3.12)

is the characteristic orbital time of the subhalo (identical to the dynamical time introduced in Section 3.2.1),

with A the instantaneous, host-centric radius of the subhalo and d̄h (A) the mean density of the host halo

within A , and

;t = A

[
<(< ;t)/" (< A)

2 + Ω2 (C)A3

�" (<A ) −
d ln"
d ln A

��
A

]1/3

(3.13)

(King, 1962), withΩ(C) = |r × { |/A2 the instantaneous angular orbital velocity of the subhalo. We have also

experimentedwith other definitions of Cchar and ;t but find that this combination, when used in conjunction

3. The dependence on 2vir,s went unnoticed in Hayashi et al. (2003) and Peñarrubia et al. (2010), both of which only studied subhaloes
with a single concentration (2vir,s = 10 and 23.1, respectively).
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with equation (3.11), is able to reproduce the DASH results most accurately.4

We use the <(C)/<acc trajectories from the DASH simulations to calibrate U as follows. Given the data

products from a particular DASH simulation, we create interpolators for A (C),Ω(C), and<(C)/<acc. In order

to avoid transient behavior in the simulations that results from the instantaneous introduction of a subhalo

into its host potential (see Ogiya et al., 2019), we initialize our model based on the properties of the DASH

subhalo at the beginning of its second orbit (i.e., after it has returned to apocentre for the first time). Given

a choice for ΔC and U, we evolve <(C)/<acc using equation (3.11), where we set <(> ;t) = <(C) − <(< ;t).

Here, <(< ;t) is computed using the ESHDP of equation (3.9), which depends on the instantaneous value

of <(C)/<acc and the initial 2vir,s,5 and we demand that Δ< ≥ 0 such that the subhalo mass decreases

monotonically. For each combination of simulation (indexed by 8) and U value, we compute a cost function,

� (8 |U), which is simply the mean squared residual in log[<(C 9 )/<acc] between our model and DASH aver-

aged over all =apo,8 apocentric passages subsequent to the initialization of our model (indexed by 9). We

then determine the total cost for a given U by computing the mean of the� (8 |U) taken over all of the DASH

simulations, which can be written explicitly as

� (U) =
=sim∑
8

� (8 |U)
=sim

=

=sim∑
8

=apo,8∑
9

log2 [<model,8 (C 9 )/<DASH,8 (C 9 )]
=sim=apo,8

. (3.14)

We emphasize that this cost function weighs each simulation equally, which is motivated by the fact that

DASH samples theparameter space of orbits andhalo concentrations according to a cosmological simulation-

inferred joint probability distribution. The cost function depends somewhat on the time step used to in-

tegrate the model predictions (see equation [3.11]), but we find that the results converge with ΔC = 0.06

Gyr, which we adopt throughout as the maximum time step for integrating the evolution of the subhalo in

SatGen.

We find that � (U) is minimized for U ' 0.6, for which the root-mean-square error in the apocentric

mass predictions is 0.097 dex. In order to look for any secondary parametric dependence that the optimal

U may have, we determine the best-fit U on a per-simulation basis, which we denote U8 . We then look

at the correlation between U8 and the concentrations of the host- and subhalo as well as with the orbital

parameters. We find that U8 depends strongly on 2vir,s/2vir,h. By binning the simulations by 2vir,s/2vir,h and

4. The tidal radius is only an approximation of the zero-velocity surface, which itself is neither spherical nor infinitesimally thin,
and different authors often adopt different definitions. See Read et al. (2006a), Tollet et al. (2017), and van den Bosch et al. (2018) for
detailed discussions.

5. This enclosed mass profile is not analytical. Hence, in SatGen, we provide an interpolator for <(< ;)/<acc (and f (;) , the one-
dimensional isotropic velocity dispersion), which is itself a function of ;, <(C)/<acc, and 2vir,s. We interpolate over log[<(C)/<acc ]
and log(2vir,s) using cubic B-splines and patch the surfaces together in log(;)-space linearly.
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taking the median U8 in each bin, we find a power-law relation that is well fit by

U = 0.55
( 2vir,s/2vir,h

2

)−1/3
. (3.15)

This relation captures the fact that subhaloes that are more compact relative to their host are more re-

silient to stripping. We adopt this parametrization of U in SatGen, emphasizing that, for typical values of

2vir,s/2vir,h, the concentration-dependence has a <∼ 30% effect. In determining U, we use the instantaneous

host 2vir,h (which evolves as long as the host itself has not yet become a subhalo) whereas the subhalo 2vir,s

is fixed to its value at infall.

Although it is tempting to compare our best-fit value for U to that of previous semi-analytical models

that rely on equation (3.11), such a comparison is frustrated by the fact that different studies have used

different forms for Cchar and/or ;t (see van den Bosch et al. 2018; Drakos et al. 2020 for detailed discussions).

In addition, none of the previous studies have accounted for the detailed evolution of the subhalo density

profile (as in, e.g., equation [3.9]), rendering such a comparison moot. We do emphasize, though, that by

calibrating ourmodel to the idealized DASH simulations, rather than to cosmological simulations, such as in

Zentner et al. (2005a) and Pullen et al. (2014), our calibration is not adversely impacted by potential issues

resulting from artificial disruption.

Fig. 3.2 compares the <(C)/<acc trajectories of several DASH simulations (black lines) to predictions

based on our mass-loss model (red lines). In each case, 2vir,h = 5, 2vir,s = 10, and the orbital energy, � , is

that of a circular orbit at the virial radius of the host (i.e., Gc ≡ Ac (�)/Avir = 1, where Ac (�) is the radius

of a circular orbit with energy �). Different panels correspond to different values of the orbital circularity,

[ ≡ !/!c (�), as indicated, where ! is the orbital angular momentum and !c (�) is the angular momentum

of a circular orbit with the same orbital energy as that of the subhalo. Clearly, our model tracks the DASH

<(C)/<acc curves quite faithfully over ∼5 radial orbital periods. Importantly, the performance of the model

is strong over the full range of [, spanning from orbits that are close to radial ([ = 0.1) to those that are

close to circular ([ = 0.9), a feat that has proven difficult for previous semi-analytical models of subhalo

mass evolution (cf. Peñarrubia et al., 2010; Drakos et al., 2020). Although not shown, we emphasize that the

model performs comparably for other configurations as well. In particular, the concentration dependence

built into the parametrization of the stripping efficiency (i.e., equation [3.15]) considerably improves the

predictions made for systems with 2vir,s/2vir,h ratios that deviate significantly from two.

We use the mass-loss model to predict the mass evolution of every simulated DASH subhalo. In Fig. 3.3,

we plot the time evolution of the median and standard deviation of the log-residuals between our model

predictions and the DASH mass trajectories. We find that the mass-loss model performs well over the full
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Figure 3.2: A comparison between our calibrated mass-loss model predictions and the DASH <(C)/<acc tra-
jectories of several simulations. The times are normalized by the radial orbital period, Cr. We fix 2vir,h = 5,
2vir,s = 10, and Gc = 1 (these parameters are typical of systems seen in cosmological simulations; see, e.g.,
Ogiya et al., 2019), demonstrating that the model performance is strong over a wide range of circularity
values, ranging from highly elliptical ([ = 0.1) to nearly circular orbits ([ = 0.9).

parameter space, with minimal bias and scatter for longer than a Hubble time. After 15 Gyr of evolution,

the scatter in the log-residuals of our mass-loss model reaches only 0.04 dex; hence, the impact of mass

evolution error will be subdominant to the intrinsic halo-to-halo variance in our quantities of interest.

3.2.4.3 Stripping of higher-order substructure

In addition to the treatment of subhalo mass loss, SatGen also implements a procedure for the splashback

release of higher-order subhaloes. Specifically, each time step that an order-: subhalo lies outside of the

tidal radius of its order-(: − 1) host, it has a probability of min[UΔC/Cchar (A), 1] of being released from its

host and becoming an order-(: − 1) subhalo. Here, U and Cchar (A) are computed for the order-(: − 1) host

with respect to its order-(: − 2) parent, which is responsible for stripping off the order-: subhalo. In the

event of release, the phase space coordinates of the subhalo with respect to its new, order-(: − 2) host

are the superposition of its original coordinates with respect to its old, order-(: − 1) host and those of

the old host with respect to the order-(: − 2) system. The remaining bound mass of the original, order-:

subhalo is instantaneously removed from the mass of its old, order-(: − 1) parent in order to enforce mass

conservation.
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Figure 3.3: The time evolution of themedian and standard deviation of the log-residuals between ourmass-
loss model predictions and the simulated mass trajectories taken over the ensemble of DASH simulations.
The model performs well over the full parameter space, with minimal bias and scatter for longer than a
Hubble time.

3.2.4.4 Resolution limits

As discussed in Section 3.2.1, SatGen has a merger tree resolution limit, which sets the smallest subhalo

mass at accretion to kres"0. Such a limit is necessary in order to maintain computational feasibility, as

the size of the merger tree grows exponentially with decreasing kres. However, once accreted, a subhalo is

evolved in SatGen for as long as its mass < ≥ qres <acc. Here, qres is the imposed resolution limit for the

boundmass fraction. Our default is to set qres = kres, which ensures that the least (most) massive subhaloes

are tracked down to < = qreskres"0 (< = kres"0). In what follows, both resolution limits are adjusted

depending on the specific topic that is under investigation.

3.2.5 Artificial disruption

Recently, van den Bosch et al. (2018) and van den Bosch & Ogiya (2018) carried out a comprehensive ana-

lytical and numerical study focused on subhalo disruption. Using simple, physical arguments, the authors

demonstrate that the inner remnant of a NFW subhalo should survive even when tidal shock heating has

injected an amount of energy that is many multiples of the binding energy of the subhalo and/or tidal

stripping has removed more than 99.9% of the initial subhalo mass. This claim is confirmed using idealized

#-body simulations of subhalo evolution (similar to DASH), with the authors concluding that the majority

of subhalo disruption seen in cosmological simulations is numerical in nature.

Let us use Bolshoi as our example cosmological simulation for considering the rate of artificial disruption.

Van den Bosch (2017) used the merger trees from Bolshoi to separate subhalo evolution into several unique

channels. Of these channels, the disruption (D) andwithering (W) branches pertain specifically to numerical

subhalo disruption. A subhalo in one snapshot that evolves along the D channel has no descendent at any

subsequent snapshot. On the other hand, a subhalo that evolves along the W channel has a descendent in
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the subsequent snapshot that falls below the 50 particle resolution limit imposed by the author. By studying

these branches, van den Bosch (2017) concludes that artificial disruption (D) occurs at a rate of 2.4%/Gyr

and falling below the mass limit (W) occurs at a rate of ∼10%/Gyr. When combined, the total numerical

disruption (W + D) rate in Bolshoi is roughly 13%/Gyr, resulting in ∼65% of subhaloes accreted at I = 1 being

numerically disrupted by the present day, in good agreement with independent estimates made by Han

et al. (2016) and Jiang & van den Bosch (2017). As long as simulations have a finite number of particles,

the W channel will exist. However, its significance diminishes as simulation resolution limits move toward

smaller halomasses that are below all scales of interest. The D channel, on the other hand, ismore alarming,

since it represents subhaloes, often well above the mass limit, that simply disappear from the merger tree.

The 2.4%/Gyr of the D channel translates to roughly 20% of subhaloes accreted at I = 1 being (artificially)

disrupted by I = 0.

In order to assess the overall significance of numerical disruption, we aim to model both the impact of

theW branch in isolation as well as the impact of both theW and D channels in combination on the SatGen

results. As introduced in Section 3.2.4.2, the W branch subhaloes in SatGen are simply those with a final

mass that has fallen below the merger tree resolution limit, kres"0. Although even SatGen has an imposed

resolution limit on how far down in </<acc it tracks a subhalo, we can nevertheless make reasonable pre-

dictions in the absence of withering by considering all subhaloes with </<acc ≥ qres = 10−5, which we

refer to as the “wither-free” fiducial model. Whenever withering is considered, the subhalo mass limit is

set to kres"0 instead.

A key goal of this work is to assess the impact of artificial disruption on the subhalo demographics in

cosmological simulations. We are able to do so by adding a model of artificial disruption into SatGen and

adjusting its strength (if needed) such that the SatGen predictions (which are inherently free of artificial

disruption) reproduce the abundance of subhaloes in a simulation such as Bolshoi. This feat also requires

properly accounting for the mass resolution limit (withering) of the simulation of interest. We implement

a version of the artificial disruption mechanism used in Jiang & van den Bosch (2016), which itself is based

on the prescription of Taylor & Babul (2004). A subhalo is marked as artificially disrupted when its mass,

<(C), falls below its ‘disruption mass’, given by

<dis = <acc (< 5dis;s) = <acc
5 ( 5dis)
5 (2vir,s)

. (3.16)

Here, <acc (< ;) denotes the enclosed NFWmass profile of the subhalo at accretion, and 5 (G) = ln(1 + G) −

G/(1+G). The sensitivity of haloes to artificial disruption is set by 5dis, which represents the effective radius

that a halo can be stripped down to before being disrupted. Under this prescription, haloes with a larger
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initial concentration are more resilient to disruption. This approach to modeling (artificial) disruption has

been employed in previous semi-analytical models (e.g., Hayashi et al., 2003; Taylor & Babul, 2004; Zentner

et al., 2005a), with 5dis ranging from 0.1 to 2.0.

Rather than select a fixed value for 5dis, Jiang & van den Bosch (2016) randomly sampled 5dis for each

subhalo from a universal log-normal distribution. We augment this approach by calibrating a more general

model of 5dis that takes into account a dependence on <acc that we identify in the Bolshoi subhaloes. Us-

ing all halo catalogues from Bolshoi6 with I ≥ 0.0148,7 we extract <acc, 2vir,s, and <dis from all D channel

subhaloes from which the 5dis of each corresponding subhalo is calculated. We find that the distribution

of 5dis has minimal dependence on redshift and host halo mass, but has a strong dependence on <acc. As

shown in Fig. 3.4, when binned by <acc, the 5dis distribution is roughly log-normal with a log-mean, `, and

log-variance, f2, that increases and decreases, respectively, with decreasing <acc. This indicates that sub-

haloes that are more massive at accretion are less likely to undergo artificial disruption. However, note

that this trend in<acc-space appears to saturate at the massive end. Motivated by these findings, we model

5dis (<acc) as a log-normal with

` = � + �
[
1 +

(
log(<acc) + �

)−2
]−1/2

, and

f = � + �` + �`2 .

(3.17)

Using maximum likelihood estimation, we obtain the best-fit parameters of

(�, �, �, �, �, �) = (3.08,−3.26,−8.89, 0.38,−0.51, 0.40). (3.18)

The corresponding best-fit model is indicated as solid lines in Fig. 3.4 and captures all of the salient details

of the data.

When modeling artificial disruption in SatGen, we randomly draw a value of 5dis from the log-normal

distribution described by equation (3.17) for each subhalo at accretion. Subsequently, the subhalo ismarked

as artificially disrupted once itsmass drops below its assigned<dis, which is computed using equation (3.16).

By applying this artificial disruption mechanism, SatGen is able to faithfully reproduce the statistics of

the Bolshoi D branch subhaloes. We caution that this particular treatment of artificial disruption is only

applicable to Bolshoi. Readers interested in modeling artificial disruption in another simulation must first

characterize the corresponding 5dis statistics of the particular simulation.

6. Available at http://www.slac.stanford.edu/ behroozi/Bolshoi_Catalogs/

7. We omit using the several snapshots closer to I = 0 in order to avoid contaminating the D branch with instances of snapshot-
limited failed phantom-patching (see discussion in van den Bosch, 2017).
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Figure 3.4: The log( 5dis) distribution of disrupted Bolshoi subhaloes. Here, 5dis is a proxy for the mass below
which a particular subhalo is artificially disrupted in the simulation (see equation [3.16]). Each color denotes
a different <acc bin. The points are calculated using all Bolshoi subhaloes that disrupt at I ≥ 0.0148. The
solid curves correspond to our model that is fit to the Bolshoi disruption data (equation [3.17]). The 5dis are
distributed log-normal, with ` decreasing (and f increasing) as <acc is increased (up to a saturation point,
above which the distribution remains fixed).

3.2.6 Dynamical friction strength

In order to calibrate the overall efficiency of dynamical friction, which we quantify through the correction

factor, VDF, we seek ameasurementmade from cosmological simulations that is both sensitive to dynamical

friction and insensitive to any underlying artificial disruption. In van den Bosch et al. (2016), the authors

study the segregation of subhaloes in Bolshoi. They measure the mean host-centric radius of subhaloes,

〈A/Avir〉, as a function of their redshift of accretion, Iacc.

Plotting 〈A/Avir〉 (averaged over thousands of subhaloes) as a function of Iacc (see Fig. 7 in van den Bosch

et al., 2016) reveals the characteristics of an orbit (for Iacc <∼ 0.5). Subhaloes accreted at Iacc ∼ 0.1 have just

reached pericentre for the first time, while those that are at their first apocentric passage since accretion

typically were accreted around Iacc ∼ 0.25. Note that phase mixing, which is primarily driven by variance

in the orbital periods of subhaloes at infall,8 results in a lack of orbital coherence for subhaloes accreted

before Iacc ∼ 0.5; this is made apparent by the lack of clear apo- or pericentric passages in 〈A/Avir〉 at high

Iacc. Interestingly, the 〈A/Avir〉(Iacc) curves show a clear dependence on <acc/"0. In particular, subhaloes

with larger <acc/"0 reach a smaller apocentric 〈A/Avir〉 at Iacc ∼ 0.25 than their less massive counterparts

(see Fig. 10 in van den Bosch et al., 2016, which is reproduced as the dashed lines in Fig. 3.5). This is a

manifestation of dynamical friction, which allows us to calibrate VDF as follows.9

8. The efficiency of phase mixing is further enhanced by dynamical friction, which impacts the subhalo orbit differently depending
on<acc, and variance in the host mass accretion history, which itself affects the evolution of the subhalo orbit between infall and the
present day.

9. Since artificial disruption is rare for subhaloes that were only accreted recently, this feature is not significantly impacted by
artificial disruption.
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We construct a set of ∼45,000 merger trees (with kres = 10−3) with host masses consistent with the

∼9,000 host halo sample used in van den Bosch et al. (2016) — we augment our sample by generating five

trees per unique host mass. We evolve the subhaloes with SatGen, repeating the procedure for several

values of VDF covering the range [0, 1.5]. We apply the same selection function as used in van denBosch et al.

(2016): we only consider subhaloes with <(I = 0)/"0 ≥ 10−3, <acc/"0 ≥ 10−2, and <(I = 0)/<acc ≥ 10−1.

We first bin the subhaloes by <acc/"0 and then compute 〈A/Avir〉 in Iacc bins, which are chosen such that

the number of subhaloes in each bin is the same.

Fig. 3.5 shows the resulting 〈A/Avir〉 − Iacc relation for four values of VDF as indicated. Clearly, when

VDF = 0.75, SatGen is able to very closely reproduce the simulation results. For VDF = 0.5 (1.0), SatGen

yields apocentric 〈A/Avir〉 that are too large (small) relative to Bolshoi, with the disagreement being more

significant for the subhaloes with larger <acc/"0 that are more strongly influenced by dynamical friction.

These findings are independent of whether or not we incorporate artificial disruption using the method

described in Section 3.2.5, which is consistent with the notion that the 〈A/Avir〉 − Iacc relation should be

relatively insensitive to artificial disruption (at least for Iacc <∼ 0.5). Hence, in what follows, we adopt VDF =

0.75 as our fiducial dynamical friction strength. In Section 3.3.3, we quantify the impact of VDF on our

substructure mass fraction predictions (by comparing to the ‘natural’ case of VDF = 1), demonstrating that

our results are insensitive to its exact value.

3.3 Results

Given a host halo mass, "0, target redshift, I0, and requested number of individual trees, #tree, SatGen

produces #tree subhalo catalogs at each redshift time step until I0. These catalogs trace the mass and phase

space coordinates of each subhalo over its evolution. In this section, we present the results of these SatGen

subhalo catalogs and make comparisons to Bolshoi. We begin by studying SHMFs (and subhalo maximum

circular velocity functions), comparing SatGen results with and without the artificial disruption mecha-

nism and discuss the significant impact of splashback subhaloes (Section 3.3.1). In Section 3.3.2, we proceed

to incorporate position data by calculating the radial profile and the (projected) enclosed substructuremass

fraction, �sub (< '). In Section 3.3.3, we quantify how 5sub (< Avir) varies with both "0 and resolution limit,

kres. We also quantify the impact of model parameters (i.e., stripping efficiency and DF strength) on 5sub

predictions. Lastly, in Section 3.3.4, we estimate the total rate of numerical disruption that occurs via the

W and D channels modeled by SatGen, which we compare to the numerical disruption rate of Bolshoi haloes

(as measured by van den Bosch, 2017).
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Figure 3.5: A comparison between the 〈A/Avir〉 − Iacc relation of Bolshoi subhaloes binned by infall mass rela-
tive to I = 0 host mass,<acc/"0 (dashed curves, reproduced from Fig. 10 in van den Bosch et al., 2016), and
analogous predictions by SatGen (solid curves). Each panel corresponds to a different value of VDF (indi-
cated in the bottom-left of each panel), which controls the strength of dynamical friction (see Section 3.2.3).
We adopt VDF = 0.75 as the fiducial value used in SatGen, since this yields the best agreement with respect
to the peak values of 〈A/Avir〉 at Iacc ∼ 0.25, which corresponds to the first apocentric passage since infall.

3.3.1 Subhalo mass/velocity functions

We turn our attention to the SatGen predictions of the subhalo mass function for a 1014.2 ℎ−1M� host. In

a cosmological simulation, the SHMF, d#/d log(</"0), is calculated using subhaloes of all orders enclosed

within the virial radius of the host. Note that since we use an inclusive mass definition and consider all

orders of substructure, the total substructure mass is not the mass-weighted integral of the SHMF. The left-

hand panel of Fig. 3.6 shows the mean SHMF computed from 10,000 trees (with kres = 10−4). For compar-

ison, the filled symbols indicate the mean SHMF of the 282 Bolshoi host haloes with log("0/[ ℎ−1M�]) ∈

[14.0, 14.5] (with a mean of 14.2). On the high-</"0 end, the Bolshoi SHMF is somewhat noisy due to lim-

ited halo statistics. However, a comparison at the low-</"0 end illustrates that SatGen predicts a ∼ 0.1

dex enhancement in the SHMF relative to Bolshoi.

If the primary cause of the disagreement between the SatGen and Bolshoi SHMFs is artificial disruption,

then the application of our artificial disruptionmechanism (Section 3.2.5) should result in better agreement

between the model and simulation results. Indeed, Fig. 3.6 shows that “turning on” D channel disruption

suppresses the SatGen SHMFby∼ 0.05−0.1 dex at low</"0, bringing it into closer agreementwith Bolshoi.

Restricting to −3.9 ≤ log(</"0) ≤ −0.8, we fit a power-law to the SHMF of the form d#/d log(</"0) ∝
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Figure 3.6: The subhalo mass function (SHMF; left) and subhalo maximum circular velocity function (SHVF;
right) predictions for a host halo with "0 = 1014.2 ℎ−1M� at I = 0 (and virial velocity at I = 0 de-
noted by +vir,h). The SatGen results are averages taken over 10,000 merger trees generated with kres =

10−4. These results are compared to the same quantities computed from 282 Bolshoi host haloes with
log("0/[ ℎ−1M�]) ∈ [14.0, 14.5] (with a mean of 14.2), which are shown as gray squares. The fiducial
SatGen predictions (black lines) are used as the baseline for comparison in the residual plots. In the “fidu-
cial + splashback” case (dashed black lines), we include subhaloes in the SHMF that are in the merger tree
but instantaneously lie outside of the host Avir at I = 0. Lastly, the “disruption on” case (green lines) demon-
strates the impact of our artificial disruption mechanism (Section 3.2.5), which is calibrated to reproduce
the statistical properties of Bolshoi subhalo disruption (D channel). At the low-</"0 end, artificial disrup-
tion suppresses the SatGen SHMF by ∼ 0.05 − 0.1 dex, which brings our predictions into good agreement
with Bolshoi. For </"0 . 10−2.5, nearly half of the subhaloes lie outside Avir (consistent with Bakels et al.,
2021).
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�(</"0)� . For the fiducial SatGen results, we find � = −1.066 and � = −0.885, whereas the disruption

mechanism slightly suppresses both the normalization and the magnitude of the slope, resulting in � =

−1.085 and � = −0.868.10 The reduced slope is a consequence of the <acc-dependence of our artificial

disruption model. Note that the Bolshoi SHMF is too noisy to compute a reliable estimate of the slope over

the same mass range, but it agrees well visually with the SatGen “disruption on” results.

Thus far, these results suggest that artificial disruption has, at most, a ∼ 20% impact on the SHMF of

well-resolved host haloes, with the difference being strongest at low </"0. We discuss more quantita-

tively the impact of disruption and its dependence on halo mass relative to the simulation resolution limit

in Section 3.3.3, which focuses on the substructuremass fraction. Themodest decrease in the SHMFnormal-

ization due to disruption predicted by SatGen is considerably smaller than the factor-of-two suppression

suggested by the GB19-interpretation of the Jiang & van den Bosch (2016)model. This is because their orbit-

averaged model did not take into account the impact of splashback haloes, which are subhaloes that have

previously fallen within the host Avir (thus becoming included in the halo merger tree) but instantaneously

lie outside of Avir at I = 0 (and therefore are typically not included in simulation-based measurements of

the SHMF). Benson (2017) briefly discusses this limitation of standard EPS-based approaches to substruc-

ture modeling, concluding that a full dynamical model (such as SatGen) is necessary in order to properly

account for splashback haloes. In Fig. 3.6, we illustrate that when splashback haloes are included in the

SHMF, the subhalo abundance is enhanced by ∼ 0.2 − 0.25 dex on the low-</"0 end relative to the fidu-

cial model. When the “fiducial + splashback” curve is compared directly to Bolshoi, we find the same ∼ 0.3

dex (factor of two) difference as GB19. This highlights the importance of properly accounting for splash-

back haloes by integrating subhalo orbits. Consistent with these predictions, Bakels et al. (2021) recently

reported that roughly half of all subhaloes lie outside of 1.2A200c (approximately Avir) in a sample of galaxy-

to group-mass host haloes studied in a cosmological simulation (consistent with previous work by, e.g., Gill

et al., 2004; Ludlow et al., 2009).

In addition to mass, another property of subhaloes that is often used (especially in subhalo abundance

matching, e.g., Trujillo-Gomez et al., 2011; Reddick et al., 2013; Hearin et al., 2013; Zentner et al., 2014) is its

maximum circular velocity,+max. Hence, we also present results for the subhalo maximum circular velocity

function (SHVF), d#/d ln(+max/+vir,h), where +vir,h denotes the virial velocity of the host halo at I = 0.

Since the enclosed mass profile corresponding to the GB19 ESHDP is not analytical, we compute +max by

10. These SHMF slopes are consistent with previous work, which typically find −1.0 . � . −0.8 (e.g., Boylan-Kolchin et al., 2010;
Gao et al., 2012; van den Bosch & Jiang, 2016).
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multiplying the subhalo’s maximum circular velocity at accretion,

+max,acc =

√
�<acc

;vir
×

0.216 2vir,s

5 (2vir,s)
(3.19)

(Bullock et al., 2001), by the ‘tidal track’ (Peñarrubia et al., 2008) expression for +max/+max,acc, given by

equation (11) in GB19. This tidal track itself is a function of both </<acc and 2vir,s, as given by equations

(12) and (13) in GB19.

Using the same 10,000 trees as those used to compute the SHMF, we obtain the SHVF shown in the right-

hand panel of Fig. 3.6. Just as for the SHMF, the filled symbols indicate the corresponding result computed

from the 282 Bolshoi host haloes with log("0/[ ℎ−1M�]) ∈ [14.0, 14.5]. As is evident, the abundance of

subhaloes with log(+max/+vir,h) <∼ − 0.4 predicted by SatGen is about 0.15 dex higher than that of Bolshoi.

However, when including artificial disruption, the SatGen predictions once again agree closely with the

simulation results.

3.3.2 Radial profiles

Having looked at the subhalo mass and velocity functions, we proceed to incorporate additional spatial

information by considering several other quantities of interest. First, we measure the subhalo radial distri-

bution, d#̃/dG3 |sub, as the number of subhaloes per unit shell volume as a function of G = A/Avir, which we

normalize to unity at Avir. We assess the radial bias of the subhaloes by comparing d#̃/dG3 |sub to the NFW

profile of the host halo, d#̃/dG3 |NFW, which we also write as a function of G and normalize to unity at Avir.

The ‘bias function’ is simply the ratio between d#̃/dG3 |sub and d#̃/dG3 |NFW, which tends to unity when the

subhalo distribution is unbiased with respect to the density profile of the host. We incorporate subhaloes

of all orders when computing d#̃/dG3 |sub. The second quantity of interest is the fraction of mass enclosed

within a given projected host-centric radius that is bound in subhaloes. We define this quantity as

�sub (< -) =
1

" (< -)
∑
-8<-

<8 , (3.20)

where - = '/'vir, ' is the projected radius, the sum runs over all first-order subhaloes (due to the inclusive

mass definition) with projected radii within ', and " (< ') is the projected mass profile of the NFW host

halo (see Golse & Kneib, 2002). Finally, in Section 3.3.3, we focus on 5sub (< Avir), which is computed in the

same way as �sub except that three-dimensional radii are used instead.
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Figure 3.7: The subhalo radial profile (including subhaloes of all orders), d#̃/dG3 |sub (left), normalized to
unity at Avir and the bias function (right), which quantifies how the radial profile differs from thehost density
profile. The SatGen results are computed from 2,000 merger trees of systems with "0 = 1014.2 ℎ−1M� at
I = 0 and a merger tree resolution limit of kres = 10−4.37, consistent with the Bolshoi resolution limit for
hosts of the same mass. The lines represent the sample means and the shaded regions denote the 16–
84 percentiles taken over the sample, which quantify the halo-to-halo variance. The fiducial result (red)
includes all subhaloes with </<acc ≥ 10−5 (approximating the lack of a resolution limit), whereas the
“withering” result (blue) mimics the Bolshoi mass limit by only including subhaloes down to < = kres"0.
Lastly, “withering + disruption” (green) additionally includes the statistical treatment of artificial disruption
(Section 3.2.5). The same quantities are computed from the 282 Bolshoihost haloeswith log("0/[ℎ−1M�]) ∈
[14.0, 14.5] (black squares). When artificial disruption andwithering are taken into account, SatGen is able
to exquisitely reproduce the Bolshoi bias function. In the absence of such numerical limitations, SatGen
predicts a nearly unbiased radial profile (in agreement with Han et al., 2016).

3.3.2.1 Number density and radial bias profiles

We begin by studying d#̃/dG3 |sub and the corresponding bias function in Fig. 3.7. Since we aim to make

direct comparisons to Bolshoi, we set kres = <res,B/"0, where <res,B = 109.83 ℎ−1M� corresponds to the

50-particle halo limit that we impose on the Bolshoi results. For "0 = 1014.2 ℎ−1M� , this corresponds to

log(kres) = −4.37. We compare themean results obtained from 2,000 SatGen trees with themean of the 282

Bolshoi host haloes with log("0/[ ℎ−1M�]) ∈ [14.0, 14.5]. The shaded regions denote the 16–84 percentiles

of the halo-to-halo variance. The SatGen results are shown for three cases. The “fiducial” result considers

all subhaloes with </<acc ≥ qres = 10−5, whereas the “withering” result is limited to subhaloes with

< ≥ kres"0. Lastly, the “withering + disruption” result includes the impact of the artificial disruption

mechanism and thus can be compared directly to Bolshoi.

The radial profile of Bolshoi subhaloes becomes increasingly biased towards the central region of the

host, something that has been pointed out in numerous previous studies (e.g., Diemand et al., 2004; Springel

et al., 2008; Han et al., 2016). The Bolshoi radial profile and bias function are reproduced exquisitely by

SatGen, but only when the impact of both withering and artificial disruption are included. Modeling the
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simulation mass limit alone is sufficient to reproduce the Bolshoimean curves within the halo-to-halo vari-

ance of SatGen; however, when artificial disruption is also taken into account, themean curves are brought

into near perfect agreement. Artificial disruption further suppresses themean d#̃/dG3 |sub by roughly a fac-

tor of two in the central region of the host. When all subhaloes can instead evolve down to </<acc = 10−5,

regardless of <acc, we find that the radial bias is completely eliminated. In fact, we obtain a slight over-

abundance of subhaloes towards the centre. This is due to dynamical friction, as we obtain a fully unbiased

radial profile when we set VDF = 0 (i.e., no dynamical friction). We note that Han et al. (2016) report a

similar finding in the Aquarius simulations (Springel et al., 2008). By following the most-bound particle at

accretion of all subhaloes (regardless of whether or not the subhalo survives to the present day), they find

a dynamical friction-driven overabundance of subhalo remnants in the halo centre that decreases towards

a fully unbiased profile as <acc decreases. Taken together with SatGen, these results demonstrate that the

chief cause of the dearth of subhaloes in the central regions of haloes is the limiting mass resolution of the

simulation. It is neither physical nor primarily amanifestation of artificial disruption; the latter onlymakes

a relatively modest impact.

3.3.2.2 Projected enclosed substructure fraction

Fig. 3.8 compares the �sub (< -) predictions of SatGen to the results of Bolshoi.11 We use the same SatGen

data, simulationdata, andplotting conventions as in Fig. 3.7, with the only difference being that the curves/points

correspond to samplemedians. Since the (projected) enclosed substructuremass fraction, �sub (< -), is sim-

ply a mass-weighted radial profile, and since SatGen reproduces both the SHMF and radial profile of Bolshoi

subhaloes, it should come as little surprise that the model also succeeds at predicting �sub (< -). Once

again, when we include the effects of both withering and artificial disruption, the model predictions are

in nearly perfect agreement with Bolshoi. Without accounting for artificial disruption, the median Bolshoi

�sub (< -) curve barely lies within the halo-to-halo variance of the withering-only prediction (for small -).

Similar to d#̃/dG3 |sub, at - ≈ 0.1, artificial disruption suppresses themedian �sub by roughly a factor of two.

The difference between the fiducial and withering-only model prediction is quite small, which lies in stark

contrast to the number density profile. The reason for this is that the enhanced resolution of the fiducial

model predominantly results in an increased abundance of highly stripped low-<acc subhaloes, which con-

tribute little to the total substructure mass but make up a substantial portion of the number density. As we

discuss in Section 3.3.3, the substructure mass fraction is primarily sensitive to the merger tree resolution

11. Since the simulation halo catalogs are constructed such that subhaloes must be instantaneously located within the virial radius
of their host, we also only consider SatGen subhaloes within the three-dimensional virial extent of the host halo when computing
�sub (< - ) .
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Figure 3.8: The fraction of mass enclosed within a given projected host-centric radius that is bound in first-
order subhaloes, �sub (< -), as defined in equation (3.20). The same SatGen predictions, Bolshoi results,
and plotting conventions are used as in Fig. 3.7, with the exception being that the curves/points instead
correspond to the sample medians. When both withering and artificial disruption are emulated, SatGen
closely reproduces the Bolshoi �sub (< -) profile. The substructure mass fraction is only weakly enhanced
by the additional resolution in </<acc-space afforded by the fiducial model, but it is reasonably sensitive
to kres (see Section 3.3.3).

(kres).

3.3.2.3 Dependence of d#̃/dG3 |sub on subhalo properties

We have demonstrated that by properly modeling the effects of withering and artificial disruption on the

subhalo population, SatGen can successfully reproduce the radial distribution of simulated subhaloes. We

now take a closer look at the d#̃/dG3 |sub predictions of our fiducial model in the absence of these numerical

depletion channels. Here, we analyze the results of 2,000 SatGen trees with "0 = 1014.2 ℎ−1M� at I = 0

and kres = qres = 10−5. Thus, the lowest-<acc subhaloes are tracked all the way down to 104.2 ℎ−1M� . In

Fig. 3.9, we plot the mean d#̃/dG3 |sub computed using subhaloes from these trees while varying the lower

limit of several properties: (i) <acc/"0, (ii) </<acc, (iii) +peak/+vir,h, where +peak is the peak +max attained

by the subhalo over its life (in SatGen, this is equivalent to the +max at accretion, +max,acc), (iv) +max/+peak,

(v) </"0, and (vi) log(1 + Iacc). For comparison, we also plot the mean Bolshoi d#̃/dG3 |sub computed using

all subhaloes (i.e., the same as in Fig. 3.7) in each panel. Lastly, in order to facilitate a comparison with the

segregation study of van den Bosch et al. (2016), we also compute the Spearman rank correlation coeffi-

cient, As, between A/Avir and each of the six properties computed with all subhaloes (denoted As,all) and with

subhaloes that would survive Bolshoiwithering (< > <res,B) and artificial disruption (denoted As,W+D, which

can be directly compared to the Bolshoi results, As,B).

The normalized radial profile is nearly independent of <acc/"0 and +peak/+vir,h. When both withering
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Figure 3.9: The subhalo radial profiles for 2,000 SatGen trees with "0 = 1014.2 ℎ−1M� at I = 0 and
kres = qres = 10−5. In each panel, the subhaloes are segmented by a different property and the mean
d#̃/dG3 |sub is computed for each lower bound. In order to assess the amount of bias, we plot the mean den-
sity profile of the host in each panel (dotted line). We overplot themean Bolshoi radial profile of all subhaloes
in each panel (black squares). We compute the Spearman coefficient between A/Avir and each property for
all subhaloes (As,all) and the subhaloes that would survive Bolshoiwithering and artificial disruption (As,W+D).
There is little dependence on <acc/"0 and +peak/+vir,h. As evidenced by the </<acc and +max/+peak pan-
els, highly-stripped subhaloes follow the host density profile with little bias whereas minimally-stripped
systems are less commonly found in the halo centre. Similarly, massive, recently accreted subhaloes are bi-
ased towards the outer halo whereas the inclusion of older, less massive subhaloes leads to a more unbiased
profile. Withering and artificial disruption tend to weaken (or reverse) the Spearman correlation between
each property and A/Avir, bringing our As,W+D into good agreement with Bolshoi (As,B, as computed in van den
Bosch et al., 2016).
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and artificial disruption are taken into account, we find that As for each of these properties is consistentwith

the corresponding Bolshoi result reported by van den Bosch et al. (2016). The </<acc, </"0, +max/+peak,

and log(1 + Iacc) panels all tell a similar story: older, less massive, and highly-stripped subhaloes follow the

host potential with minimal bias. However, recently accreted, massive, and minimally-stripped systems

are biased towards the halo outskirts. These trends are weakened by withering and artificial disruption,

bringing the As,W+D for each into good agreement with van den Bosch et al. (2016).

Taken together, SatGen predicts that the full subhalo population should exhibit little bias with respect

to the host. The dearth of subhaloes in the halo centre, which is found universally in dark matter-only

simulations (e.g., Ghigna et al., 1998; Springel et al., 2001; Diemand et al., 2004; Springel et al., 2008; Han

et al., 2016), is a result of inadequate resolution that causes the non-physical elimination of old, highly-

stripped subhalo remnants that should be abundant in the host core.

3.3.3 Substructure mass fractions

We denote the fraction of matter bound into subhaloes within the virial radius of the host as 5sub (< Avir). In

this section, we study how the SatGen predictions of 5sub (< Avir) vary with resolution limit, set by kres, and

how they are affected by artificial disruption. In what follows, we write 5sub (kres) to represent the value of

5sub (< Avir) computed from first-order subhaloes with < > kres"0. Written explicitly,

5sub (kres) =
1
"0

∑
A<Avir

<>kres"0

<8 , (3.21)

where the summation runs over first-order subhaloes only. We conclude the section by demonstrating

that 5sub is insensitive to small changes in the stripping efficiency parameter, U, and the dynamical friction

strength, VDF.

3.3.3.1 Comparison of 5sub (kres) to Bolshoi

Webegin by demonstrating thekres-dependence of 5sub. Here, we include artificial disruption in theSatGen

predictions in order to facilitate comparisonswith Bolshoi. In Fig. 3.10, we plot 5sub (kres) for several different

halo masses. The SatGen predictions are obtained using 10,000 trees (with kres = 10−4) of haloes with

"0 = 1011−14 ℎ−1M� at I = 0. The Bolshoi results are computed from the 8815, 4713, 1138, and 244 host haloes

with"0 = 1011±0.01, 1012±0.02, 1013±0.04, and 1014±0.1 ℎ−1M� at I = 0. For eachhalomass, weonly showresults

down to the kres that corresponds to the 50-particle Bolshoimass limit. As is evident, when combined with

the Bolshoi-calibrated artificial disruption mechanism, SatGen is able to accurately reproduce the subhalo
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Figure 3.10: The average fraction of mass bound in subhaloes with < > kres"0 within Avir of host haloes of
a given "0, as defined in equation (3.21). The SatGen predictions are generated using 10,000 trees for each
halo mass and are suppressed via the artificial disruption model (Section 3.2.5). The masses in the legend
are reported in log("0/[ ℎ−1M�]). We plot the curves down to the kres that corresponds to the Bolshoi 50-
particle mass limit for each "0. The model predictions agree well with the simulation results over a range
of "0.

statistics (and their resolution dependence) of simulated haloes over several orders of magnitude in mass.

There is some tension forkres >∼ 0.1, indicating that the SHMFs of SatGen and Bolshoidisagree at themassive

end. However, this likely reflects uncertainties with the (sub)halo finder used to analyze the simulation

results rather than a shortcoming of SatGen (see van den Bosch & Jiang 2016 for a detailed discussion).

3.3.3.2 Mass-dependence and halo-to-halo variance of 5sub

Fig. 3.11 plots 5sub (kres = 10−4) as a function of host halo mass. These results have been obtained using

10,000 trees each (with kres = 10−4) for haloes with log("0/[ ℎ−1M�]) ∈ [11, 15] at I = 0. Note that we

have not included our treatment of artificial disruption here and the results are thus intended to reflect

estimates of the true subhalo mass fractions in the absence of numerical artifacts. The left-hand panel

shows the mean, median and 16–84 percentiles for both first- and second-order subhaloes, as indicated,

whereas the right-hand panel plots the corresponding cumulative distribution functions.

Overall, the trends shown are consistent with the orbit-averaged model used by Jiang & van den Bosch

(2017): 5sub increases with "0 and the halo-to-halo variance decreases slightly with "0. As discussed in

detail in Jiang & van den Bosch (2017), this halo-to-halo variance is predominately driven by variance in

the halo mass accretion histories (see also e.g., Giocoli et al., 2010; Green et al., 2020). The second-order 5sub

also increases with "0, has much larger log-scatter than the total 5sub, and its mean is smaller by a factor

of ≈ 15 − 30. This difference between first- and second-order 5sub is considerably larger than predicted by

Jiang & van den Bosch (2017), which is primarily due to the fact that SatGen allows higher-order subhaloes
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Figure 3.11: The total (first-order) and second-order 5sub (kres = 10−4) predictions of SatGen in the absence
of artificial disruption. The mean, median, and 16–84 percentile halo-to-halo variance of 5sub (left) as well
as the corresponding cumulative distribution function (right) are computed using 10,000 trees of haloes
with "0 = 1011−15 ℎ−1M� at I = 0. The masses in the legend are reported in log("0/[ ℎ−1M�]). Due
to the inclusive mass definition, the first-order 5sub includes the mass of subhaloes of all-orders, whereas
the second-order 5sub includes the mass of subhaloes of order-2 and higher. For comparison, we plot the
gravitational lensing estimate of 5sub (kres = 10−3) for the Coma cluster measured by Okabe et al. (2014),
finding excellent agreement with our model predictions.

to be stripped from their parent subhalo (see Section 3.2.4.3).

For comparison, we also plot the result of Okabe et al. (2014), who used weak gravitational lensing to in-

fer 5sub = 0.226+0.111
−0.085 for the Coma cluster,

12 which is assumed to have amass of"0 = 8.92+20.05
−5.17 ×1014 ℎ−1M�

(Okabe et al., 2010). Our SatGen predictions are in excellent agreement with this measurement, demon-

strating consistency between observations and the ΛCDM paradigm.

3.3.3.3 Impact of disruption on 5sub

Overall, the results of previous subsections illustrate that artificial disruption impacts subhalo statistics

less significantly than the factor of two suggested by GB19. We now formalize this by comparing SatGen

predictions of 5sub (kres = <res,B/"0) with and without the impact of artificial disruption included (but

with the same degree of withering in both cases since kres is fixed). For this test, we use 10,000 trees with

kres = 10−4 and"0 = 1012 and 1013 ℎ−1M� as well as 2,000 trees with kres = 10−5 and"0 = 1014.2 ℎ−1M� in

order to estimate 5sub (kres = <res,B/"0) with and without disruption.13 We find that artificial disruption

results in a relative suppression of 5sub (kres = <res,B/"0) by 8%, 10%, and 12% for "0 = 1012, 1013, and

12. This subhalo mass fraction is measured with kres = 10−3, rather than 10−4. As shown in Fig. 3.10, the mean 5sub (kres = 10−3) is
<∼ 0.1 dex smaller than 5sub (kres = 10−4) for high-mass host haloes, which is negligible compared to both the halo-to-halo variance
and the measurement error.

13. Note that we need additional resolution for the high-mass case in order to resolve the merger trees down to<res,B.
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1014.2 ℎ−1M� , respectively. Indeed, this level of suppression is significantly less than a factor of two (i.e.,

50%). As already discussed in Section 3.3.1, the primary reason that the GB19 estimate of the artificial

disruption impact is much larger is that the orbit-averagedmodel on which their estimate is based does not

account for splashback haloes (i.e., the fact that at anymoment in time about half of all haloes ever accreted

by the host are located outside of the virial radius).

3.3.3.4 Insensitivity of 5sub to the model parameter choices

The substructure mass fraction is a useful summary statistic for illustrating how sensitive SatGen is to

our model parameters (the stripping efficiency, U, and the dynamical friction strength, VDF). For this test,

we once again focus on "0 = 1014.2 ℎ−1M� haloes. We use 10,000 trees with kres = 10−4 and evolve the

subhaloes using each of the following cases: (i) our fiducial parameters (VDF = 0.75 and U = U(2vir,s/2vir,h)

described by equation [3.15]), (ii) fiducial VDF = 0.75 and fixed U = 0.6, and (iii) fiducial U = U(2vir,s/2vir,h)

and the ‘natural’ VDF = 1.0 (i.e., Chandrasekhar dynamical friction without a correction factor). As our

benchmark, we consider the fractional change in the mean 5sub (kres = 10−4) relative to the fiducial case.

Setting U = 0.6 results in a 2% relative increase in 5sub relative to fiducial. Increasing VDF from 0.75 to

1.0 results in a ∼ 4% relative decrease in 5sub. The level of impact on other statistics (i.e., SHMF, radial

profiles) is comparable. Hence, we conclude that our model predictions are reliable at the level of a few

percent and that the uncertainties are small in comparison to the halo-to-halo variance. The sensitivity

to these parameters is also significantly smaller than the impact of artificial disruption on the results of

cosmological simulations, making SatGen a more reliable alternative for studying the substructure of dark

matter haloes.

3.3.4 Total W + D disruption rate

The artificial disruption mechanism of Section 3.2.5 is constructed such that the D channel population of

SatGen subhaloes has an 5dis distribution consistentwith that of Bolshoi. However, this alone is not sufficient

to guarantee that theW+Dnumerical disruption rate of SatGen subhaloes is in agreementwith the 13%/Gyr

that van den Bosch (2017) measured from the W + D channel Bolshoi subhaloes. In order to make a fair

comparison between the SatGen W + D disruption rate and Bolshoi, we run the following test. Starting

with the same sample of Bolshoi host halo masses (at I ∼ 0) as used in van den Bosch (2017), we randomly

sub-sample 40,000 masses from the total of ∼160,000. Rather than use a fixed kres, we instead set kres =

<res,B/"0, where <res,B = 109.83 ℎ−1M� is the 50-particle Bolshoi resolution mass. Following the procedure

of van den Bosch (2017), we determine theW + D disruption rate bymeasuring the fraction of the subhaloes
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present at I = 0.0174 (i.e., 240 Myr ago) that have been disrupted (either via the W or D channel) by I = 0.

In particular, our I = 0.0174 sample consists of all subhaloes that have merged with the host, have a mass

above both<res,B and the assigned<dis (i.e., it has neither disrupted nor withered by I = 0.0174), and have

an instantaneous orbital radius within Avir of the host centre.

The subset of this sample with a I = 0mass below either <res,B or its assigned <dis are counted as hav-

ing numerically disrupted between I = 0.0174 and I = 0. We convert this disruption fraction into a rate

by dividing it by the 240 Myr time interval considered. Using this approach, we determine that the com-

bination of withering and our artificial disruption mechanism yields a W + D numerical disruption rate of

∼16.7%/Gyr, which is only slightly larger than the 13%/Gyr that van den Bosch (2017) measured in Bolshoi.

Hence, we conclude that our implementation of artificial disruption in SatGen accurately reproduces this

numerical artifact in the Bolshoi simulation. However, we caution that it may not adequately describe arti-

ficial disruption in other simulations, each of which is likely to have subtly different disruption statistics.

The real strength of SatGen is not its ability to reproduce the results of cosmological simulations but rather

to make reliable predictions that are free from the numerical limitations that hamper such simulations.

3.4 Summary and Discussion

This work represents the culmination of several previous studies aimed at quantifying the impact of arti-

ficial disruption on state-of-the-art dark matter-only cosmological simulations. Studying the evolution of

Bolshoi subhaloes, van den Bosch (2017) found that the combined effect of the finite mass resolution (i.e.,

withering) and artificial disruption results in rapid depletion of the subhalo population. In the follow-up

studies of van den Bosch et al. (2018) and van den Bosch & Ogiya (2018), the authors used a combination

of analytical arguments and idealized numerical experiments to demonstrate that complete physical dis-

ruption of ΛCDM subhalo remnants is exceedingly rare, concluding that the majority of disruption seen

in cosmological simulations must be numerical in nature. Following this, Ogiya et al. (2019) released the

DASH library of high-resolution idealized simulations of halo mergers. This data release marked the begin-

ning of a research program focused on developing a new semi-analytical model of subhalo evolution that

is calibrated independently of cosmological simulations, enabling its predictions to be free of the effects of

artificial disruption. Thus, GB19 used DASH to construct an accurate model of the evolved subhalo density

profile, which is a simple function of the initial profile and the fraction of mass lost since infall (similar to

the approaches of, e.g., Hayashi et al., 2003; Peñarrubia et al., 2010; Drakos et al., 2017; Errani & Navarro,

2021). Additionally, using the orbit-averaged subhalo evolution model and artificial disruption mechanism

of Jiang & van den Bosch (2016), GB19 inferred that artificial disruption could potentially be responsible for
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suppressing the SHMF normalization by as much as a factor of two. Recently, Jiang et al. (2021) released

the SatGen library, a new semi-analytical modeling framework for studying subhalo and satellite galaxy

evolution in a full dynamical context (i.e., the orbits of individual subhaloes are integrated instead of using

an orbit-averaged approach).

In the present chapter, we used SatGen as a scaffolding to develop a comprehensive model of substruc-

ture evolution that is not adversely impacted by the limitations of artificial disruption and simulation reso-

lution limits. To this end, we made several modifications and improvements to SatGen, which we summa-

rize below:

• The initial orbits of infalling subhaloes are sampled using the state-of-the-art model of Li et al. (2020)

(see Section 3.2.2). This model marks an improvement over previous approaches (e.g., Zentner et al.,

2005a; Wetzel, 2011; Jiang et al., 2015) because it is expressed as a general function of the host halo

peak height and host-to-subhalo mass ratio. Furthermore, the free parameters of the model were fit

using a large simulation suite.

• The evolved subhalo density profiles (ESHDPs) are characterizedusing themodel of GB19 (Section 3.2.4.1).

At infall, subhaloes are assumed to have NFW profiles. However, as mass is stripped and </<acc de-

creases, the profile becomes tidally truncated in a manner consistent with the evolution of DASH

subhaloes.

• In line with the original SatGen implementation, the instantaneous subhalo mass-loss rate (Sec-

tion 3.2.4.2) is written according to equation (3.11), which depends on the King (1962) tidal radius

(computed using the ESHDPs), the local dynamical time, and the “stripping efficiency”, U. We re-

calibrated U (equation [3.15]) so that the mass-loss model accurately reproduces the <(C)/<acc tra-

jectories of DASH subhaloes.

• The strength of the (Chandrasekhar) dynamical friction is controlled by a correction factor, VDF, which

we calibrate such that SatGen reproduces the <acc/"0-dependence of the 〈A/Avir〉 − Iacc relation of

Bolshoi subhaloes (Section 3.2.6). We have demonstrated that the resulting best-fit value (VDF = 0.75)

is not adversely affected by artificial disruption in the Bolshoi simulation.

• In order to assess the impact of artificial disruption on simulations, we developed a model that re-

produces the statistical properties of disruption in Bolshoi that can be optionally applied to SatGen

results. We found that the 5dis distribution of disrupted (D channel) Bolshoi subhaloes iswell-described

by a family of log-normal distributions, the parameters of which are functions of<acc (Section 3.2.5).
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• SatGen is ideally suited to assess the impact of the resolution limit of numerical simulations by only

including subhaloes with a final mass that lies above the merger tree resolution (i.e., < > kres"0).

In addition, by instead allowing each subhalo to evolve down to arbitrary qres = </<acc (here, we

have used values as low as qres = 10−5), SatGen canmodel the subhalo population with an effectively

“arbitrary resolution”.

We used this updated model to predict subhalo mass andmaximum circular velocity functions, number

density profiles, radial bias profiles, and substructure mass fractions. We considered the effect of both the

simulation mass limit and artificial disruption on each quantity and studied the dependence of 5sub on host

halo mass. We summarize our most notable findings below:

• When the effects of both withering and artificial disruption are included, SatGen yields subhalo de-

mographics in excellent agreement with Bolshoi.

• Artificial disruption only results in a ∼ 8 − 12% suppression of 5sub (< Avir) and a ∼ 20% suppres-

sion of the SHMF. While still significant, this greatly ameliorates previous concerns that the overall

abundance of dark matter subhaloes could be artificially suppressed by a factor of two. However, the

impact of artificial disruption is more pronounced at smaller host-centric radii, where it halves both

�sub (< -) and d#̃/dG3 |sub within ∼ 0.1Avir.

• By comparing the SHMF computed by including only subhaloes within Avir (i.e., consistent with sim-

ulation approaches) to the SHMF computed by including all surviving subhaloes ever accreted by the

host, we infer that splashback haloes make up roughly half of the total subhalo population. This is

in good agreement with results from several simulation studies (e.g., Gill et al., 2004; Ludlow et al.,

2009; Bakels et al., 2021). Hence, it is essential that semi-analytical models of subhalo and satellite

galaxy evolution properly account for the splashback population. This is naturally achieved with full

dynamical models, such as SatGen, which integrate the orbits of individual subhaloes. At the same

time, it indicates a serious limitation of orbit-averaged approaches, such as those used in van den

Bosch et al. (2005b) and Jiang & van den Bosch (2016).

• Wehave demonstrated that the radial bias in the subhalo number density (i.e., the dearth of subhaloes

in the halo centre relative to the host density profile), a feature that is consistently present in dark

matter-only simulations (e.g., Ghigna et al., 1998; Springel et al., 2001; Diemand et al., 2004; Springel

et al., 2008; Han et al., 2016), is predominantly an artifact of the simulationmass resolution (at least in

the absence of baryonic processes) and not of artificial disruption. The latter only slightly enhances

the bias and is subdominant to the impact of the mass resolution. By allowing subhaloes to evolve
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down to arbitrarily low </<acc (as opposed to having a fixed absolute mass limit), the radial bias

is completely eliminated. In fact, dynamical friction causes a slight enhancement of the subhalo

number density relative to the host profile near the halo centre, which marks a complete reversal of

the trend seen in simulations.

Although the model presented here is able to accurately reproduce the subhalo statistics of a cosmo-

logical simulation when its numerical limitations are properly taken into account, the true strength of the

updated version of SatGen presented here lies in the fact that it can be used to predict subhalo demograph-

ics with an arbitrarily high resolution and in the absence of artificial disruption. We have therefore made

the updated code publicly available in the hope that it will enable/accommodate a wide variety of future

research programs. For example, SatGen could prove a powerful tool to investigate claimed discrepancies

between simulations and observations regarding the abundance and central concentration of dark mat-

ter substructure (e.g., Carlsten et al., 2020; Meneghetti et al., 2020) and/or the dark matter deficiency of

associated satellite galaxies (e.g., Ogiya, 2018; Jackson et al., 2021).
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Chapter 4

Impact of the galactic disc

This chapter has been accepted for publication as an article by Green et al. (2021b) in the Monthly Notices

of the Royal Astronomical Society by Oxford University Press and was in press at the time of completion of

this dissertation.

4.1 Background

T
he substructure present in darkmatter (DM) haloes is the outcome of a hierarchical assem-

bly process combined with tidal and impulsive forces that work to dissolve it. Since the

particle nature of DM impacts the mass function and density profiles of DM haloes, it also

affects the demographics of its substructure. For example, if DM is “warm”, the abun-

dance of low-mass subhaloes is suppressed relative to that which is predicted for cold dark matter (e.g.,

Lovell et al., 2014; Bose et al., 2017). If DM undergoes significant self-interaction, or is an ultra-light boson,

the inner halo density profile becomes cored (e.g., Kaplinghat et al., 2016; Robles et al., 2017; Burkert, 2020)

and is less resilient to tidal forces (Peñarrubia et al., 2010), resulting in an overall suppression of substruc-

ture. This powerful potential to place constraints on DM has prompted various observational attempts to

quantify the abundance of DM substructure, including searches for gaps in stellar streams (e.g., Erkal et al.,

2016; Banik et al., 2019; Bonaca et al., 2020), measurements of gravitational lensing distortions (e.g., Vegetti

et al., 2014; Hezaveh et al., 2016; Nierenberg et al., 2017), indirect detection studies that search for DM an-

nihilation signals (e.g., Stref & Lavalle, 2017; Somalwar et al., 2021), and measurements of the abundance of

satellite galaxies (via the galaxy–halo connection; e.g., Nadler et al., 2021).

In order to fully leverage these observations to constrain DMmicrophysics, it is prudent that we are able

to accurately predict subhalo abundances for the different DMmodels. Arguably, the bestway to account for
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all the relevant, strongly non-linear physical processes is to use full cosmo-hydrodynamical simulations of

galaxy formation (e.g., Wetzel et al., 2016; Pillepich et al., 2018) at a resolution sufficient to resolve substruc-

ture in the relevant mass range. Unfortunately, the computationally demanding nature of such simulations

as well as the uncertainties related to sub-grid physics modeling represent significant roadblocks for their

use in such a task. As a consequence, DM-only cosmological simulations (e.g., Springel et al., 2008; Klypin

et al., 2011) are typically used as a less expensive alternative. However, these simulation-based approaches

are still adversely impacted by artificial subhalo disruption and limited mass resolution (van den Bosch,

2017; van den Bosch & Ogiya, 2018; Green et al., 2021a). Semi-analytical models (SAMs; e.g., Taylor & Babul,

2004; Zentner et al., 2005a; Jiang & van den Bosch, 2016; Jiang et al., 2021) provide attractive alternatives for

predicting the substructure abundance in a manner that is both computationally efficient and insensitive

to the particular numerical limitations of #-body simulations.

Unfortunately, DM-only simulations and SAMs typically do not account for the impact of baryons on the

subhalo population, which can be quite important. For example, the aforementioned observational probes

are most sensitive to the inner halo, where the central galaxy significantly influences the host potential.

Several studies have demonstrated that a central galactic disc suppresses the overall subhalo abundance.

For example, D’Onghia et al. (2010) grew an analytical disc potential in a high-resolution cosmological zoom-

in simulation of a Milky Way-like (MW) halo and showed that substructure in the inner regions of the halo

is efficiently destroyed, which they ascribed to disc shocking. More recently, Garrison-Kimmel et al. (2017)

found that the suppression in subhalo abundance seen in a full physics simulation relative to a DM-only

realization of the same halo can be reproduced by simply embedding a disc potential within the DM-only

halo. Both Peñarrubia et al. (2010) and Errani et al. (2017) used idealized simulations to examine the impact

of a central disc on the abundance of subhaloes, confirming once more that the presence of a disc can

significantly deplete the subhalo population, especially towards the centre of the halo.

Since a disc potential drives additional subhalo mass loss, its presence must be properly accounted for

in any successful substructure modeling endeavor. However, to date, no study has been able to assess the

impact of the disc on subhalo populations in a statisticallymeaningful way. Recently, we introduced SatGen

(Jiang et al., 2021), a SAM framework that can rapidly generate random substructure realizations, thereby

enabling a robust treatment of the halo-to-halo variance. As shown in Jiang & van den Bosch (2017), this

variance can be very large and is strongly correlated with the formation time and concentration of the

host halo (see also Zentner et al., 2005a; Giocoli et al., 2010). Furthermore, SatGen can be used to isolate

the influence of the disc from assembly history variation by studying how subhaloes from the samemerger

tree evolve under different host potentials. Due to its speed, SatGen is also ideal for assessing how sensitive

the subhalo statistics are to parameters of the disc model via sweeps of the parameter space.
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In this chapter, we use SatGen to investigate the differential impact of a galactic disc potential on the

subhalo populations of Milky Way-like haloes. We initially explored the influence of a disc in Jiang et al.

(2021) — here, we build upon this pilot study by greatly boosting the size of our halo sample, exploring a

wide range of discmodels, and incorporating amore sophisticated subhalo tidal evolutionmodel. While our

findings are in good agreement with the simulation results of Errani et al. (2017) and Garrison-Kimmel et al.

(2017), our ability to study a large halo sample and, thus, probe the halo-to-halo variance sheds new light

on the statistical relevance of these results. We track individual subhaloes and illustrate how their masses

are altered due to an embedded central disc. We also search for the presence of a disc-driven angular bias

in the spatial distribution of subhaloes, as well as show that the overall subhalo abundance is relatively in-

sensitive to the size and growth history of the disc and is only affected by the disc mass. This manuscript

is organized as follows. In Section 4.2, we first provide an overview of our semi-analytical modeling frame-

work. The results are presented in Section 4.4, which is followed by a detailed discussion (Section 4.5) as to

whether “disc shocking” or enhanced tidal stripping serves as the dominant disc-driven subhalo depletion

mechanism. Finally, in Section 4.6, we summarize our findings and motivate future work.

Throughout this work, the halo mass is defined as the mass enclosed within the virial radius, Avir, inside

of which the mean density is equal to Δvir (I) times the critical density. For the Λ cold dark matter (ΛCDM)

cosmology that we adopt (ℎ = 0.7, Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.0465, f8 = 0.8, =s = 1.0), Δvir (I = 0) ≈ 100

and is otherwise well-described by the fitting formula presented by Bryan & Norman (1998). Throughout,

we use< and " to denote subhalo and host halo masses, respectively. We use ; and A to reference subhalo-

and host halo-centric radii, respectively. The base-10 logarithm is denoted by log and the natural logarithm

is denoted by ln.

4.2 Semi-analytical methods

This study employs the SatGen semi-analytical modeling framework that is presented by Jiang et al. (2021).

In particular, we use the model of subhalo tidal evolution recently developed by Green & van den Bosch

(2019) and Green et al. (2021a). This model has been calibrated using the Dynamical Aspects of Subhaloes ide-

alized simulation library (hereafter DASH; Ogiya et al., 2019) to accurately reproduce the bound mass and

density profiles of simulated #-body subhaloes as they orbit within an analytical host potential. We refer

the reader to these papers for a comprehensive description of the model. In short, SatGen combines pre-

scriptions for (i) analytical halomerger trees (Parkinson et al., 2008), (ii) subhalo orbit initialization (Li et al.,

2020), (iii) orbit integration, including dynamical friction (Chandrasekhar, 1943), (iv) density profile evolu-

tion (Green & van den Bosch, 2019), and (v) tidal mass-loss (Green et al., 2021a) in order to generate subhalo
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catalogs (which include both mass and position information) for ensembles of host halo realizations.

Both the host halo and the initial subhaloes (i.e., at infall) are assumed to have Navarro et al. (1997,

hereafter NFW) density profiles with concentrations computed via the model of Zhao et al. (2009). Each

subhalo is integrated along its orbit and experiences tidal mass loss, which is given by

Δ<

ΔC
= −U<(> ;t)

Cchar
. (4.1)

Here, Cchar is the characteristic orbital time of the subhalo, <(> ;) is the subhalo mass that lies outside of

radius ;, with ;t denoting the instantaneous tidal radius (defined below), and U is a calibrated parameter

that controls the stripping efficiency. Motivated by the work of Hayashi et al. (2003) and Peñarrubia et al.

(2008), the density profiles of stripped subhaloes are modelled according to

d(;, C) = � (; | 5b (C), 2vir,s) d(;, Cacc), (4.2)

where 5b (C) is the bound mass fraction of the subhalo, 2vir,s is the concentration of the subhalo at accretion,

and Cacc denotes the time of accretion. For the ‘transfer function’, � (;), we use the model of Green & van

den Bosch (2019), which has been carefully calibrated against the DASH simulations.

The galactic disc, when included, is positioned at the centre of the host halo and modeled with the

axisymmetric Miyamoto & Nagai (1975, hereafter MN) density profile, which has three parameters: (i) the

radial scale length, 0d, (ii) vertical scale height, 1d, and (iii)mass,"d. Wewrite 0d = 50 ["vir (I)/"0]V0Avir,0,

"d = 5" ["vir (I)/"0]V""0, and set 1d to be a fixed fraction of 0d. Here, "vir (I) is the mass accretion

history of the host halo, "0 = "vir (I = 0), and Avir,0 is the virial radius of the host at I = 0. In this work, we

restrict ourselves to host haloes that reach a virial mass of "0 = 1012 ℎ−1"� at I = 0, which corresponds

to Avir,0 ≈ 290 kpc. Our fiducial, Milky Way-like disc is described by 50 = 0.0125, 1d/0d = 0.08, V0 = 1/3,

5" = 0.05, and V" = 1, such that the disc mass grows linearly with "vir (I) and the scale length grows

linearly with Avir (I), in good agreement with both empirical constraints (Kravtsov, 2013) and simulation

results (Jiang et al., 2019a). The disc properties at I = 0 are 0d ≈ 3.6 kpc, 1d ≈ 0.3 kpc (i.e., a relatively thin

disc), and "d = 5 × 1010 ℎ−1"� , reminiscent of the Milky Way. The parametrization chosen is sufficiently

flexible to enable us to study the impact of the disc growth history and structure on the subhalo population

by simply varying 50, V0, 5" , V" , and 1d/0d. As we show in Section 4.4.5, though, the results are relatively

insensitive to all but the final disc mass ( 5" ). We emphasize that the total mass of the halo–disc system

enclosed within Avir (I) sums to "vir (I). In order to achieve this, we simply multiply the host NFW density

profile by ["vir (I) − "d (I)]/"vir (I).
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The merger tree resolution, which sets the lower limit on the subhalo accretion mass, corresponds to

<res ≥ 108 ℎ−1"� . All subhaloes are evolved until their mass falls below < = 10−5<acc. All results are

averaged over 10,000 host halo merger tree realizations. Specifically, we use the same set of merger trees

throughout in order to isolate the differential impact of the disc from the effect of assembly history varia-

tion.

In order to strengthen the performance of ourmass-lossmodelwith composite halo–disc hosts, wemake

two changes to SatGen relative to its specification in Jiang et al. (2021) and Green et al. (2021a). Since we are

working with an axisymmetric potential, we make the following substitution for the tidal radius definition:

;t =

[
<(< ;t)/" (< A)

2 + Ω2A3

�" (<A ) −
d ln"
d ln A |A

]1/3

⇒ ;t =

[
�<(< ;t)
Ω2 − d2Φ

d A2 |r

]1/3

. (4.3)

Here,Ω is the instantaneous angular velocity of the subhalo andΦ is the gravitational potential of the host

halo–disc system. Note that these two definitions of ;t, introduced by King (1962), are identical when the

host potential is spherically symmetric. However, the definition on the right is more general, as it does not

depend on spherical averages of the host properties. To wit, the radial derivative of an axisymmetric po-

tential is dΦ
dA =

mΦ
m'

d'
dA +

mΦ
mI

dI
dA . Hence, for spherical hosts, the mass-loss model of equation (4.1), which was

calibrated using the definition on the left, remains unchanged after this substitution. The second change is

with regards to the mass-loss coefficient, U, which is a function of the ratio between the host and subhalo

concentrations (see Green et al., 2021a). In order to account for the modified mass distribution in the pres-

ence of a disc, we modify the host concentration used to compute U according to the following procedure.

We define a new scale radius, As,d, as the radius within which the enclosed mass of the combined halo–disc

system is the same as thatwhich is enclosedwithin the scale radius of theNFWhalo-only host. Themodified

host concentration is simply Avir/As,d, which is somewhat larger than the halo-only concentration due to the

compactness of the disc. Note that, unlike Jiang et al. (2021), we omit the effect of adiabatic contraction on

the host concentration since we are interested in studying relative disc-driven subhalo depletion. However,

we emphasize that a baryon-driven increase in the DM concentration is degenerate with an increased disc

mass, which we demonstrate in Section 4.4.6.

Since we calibrated our mass-loss model using the DASH simulations, which only include spherical NFW

host haloes, we must verify that the prescription remains valid for subhaloes that evolve in the combined

presence of a NFW halo and a MN disc. To this end, we run an additional set of idealized simulations and

compare the predictions of our mass-loss model (with the substituted ;t definition and modified host con-

centration definition) to the mass trajectories of the simulated subhaloes. The simulation methods and

model comparison results are described in Section 4.3. In summary, we find that, after making the two
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aforementioned modifications, the model generalizes well to combined halo–disc potentials and, thus, we

proceed to use this modified version of SatGen in this work.

4.3 Idealized simulations

In order to verify that the Green et al. (2021a) mass-loss model, which is given by equation (4.1), can be used

to accurately describe subhalo evolution in a combined halo–disc host system, we run a set of idealized

simulations that serve as the ground truth for comparison to our model predictions. We use the same

procedure as used for the DASH simulations (Ogiya et al., 2019). In particular, all simulations are run using

the #-body code OTOO+ (Ogiya et al., 2013), which is a GPU-accelerated tree code. The simulations follow

the evolution of a live #-body subhalo (initially a NFW halo composed of # = 106 particles) as it orbits

within a static NFW host halo potential (with initial sub-to-host mass ratio of </" = 10−3) for 36 Gyr.

In contrast to DASH, the host system in our test suite of simulations is composed of a NFW halo with

an embedded MN disc. The host halo has a concentration of 2vir,h = 10 and the subhalo has an initial

concentration of 2vir,s = 20, which is consistent with a typical minor merger with a Milky Way-like host.

For simplicity, we only consider orbits with orbital energy equal to that of a circular orbit at the virial

radius of the host, which coincides with the peak of the orbital energy distribution of infalling subhaloes in

cosmological simulations (e.g., Li et al., 2020).

When constructing our simulation suite, we vary several parameters, which control properties of the

disc, the inclination of the initial subhalo orbit with respect to the disc, and the radius of orbital pericentre.

The fraction of the host mass in the disc is set by 5" ≡ "d/"vir ∈ [0.0, 0.02, 0.05, 0.1]. In order to preserve

the total mass enclosedwithin Avir, wemultiply the host halo density profile by 1− 5" . The disc scale length

is varied over 50 ≡ 0d/Avir ∈ [0.007, 0.0125, 0.025], with 50 = 0.0125 corresponding to 0d ≈ 3.5 kpc for the

Milky Way-mass host, while the disc scale height is controlled by varying 1d/0d ∈ [0.02, 0.06, 0.2]. We

consider seven orbital inclinations with 8 ∈ [0, 15, 30, 45, 60, 75, 90] degrees, where 8 is the angle between

the orbital plane and the disc (i.e., 8 = 0◦ results in a subhalo that orbits in the plane of the disc). The final

parameter is the orbital angular momentum, which we adjust such that the pericentric radius, Ap, of the

subhalo orbit in the no-disc configuration is equal to 15, 25, or 50 kpc.

Given the orbital energy, angularmomentum, and inclination angle, we initialize the subhalo at its apoc-

entre. Note that we use the same initial position and velocity regardless of the disc properties. Hence, the

true Ap attained by the subhalo varies slightly with 5" , 50, and 1d/0d.

Thus, our test suite spans 5" , 50, 1d/0d, 8, and Ap. We follow the procedure laid out in Section 2.3.2

of Green et al. (2021a) to generate mass-loss model predictions and make comparisons to the bound-mass

77



10−2

10−1

100

lo
g[
m

(t
)/
m

ac
c]

cvir,s = 20

cvir,h = 10

rp = 15 kpc

10−1

100

lo
g[
m

(t
)/
m

ac
c]

i = 45◦

ad/rvir = 0.0125

bd/ad = 0.06

rp = 25 kpc

0 1 2 3 4 5
t/Tr

10−1

100

lo
g[
m

(t
)/
m

ac
c]

rp = 50 kpc

Md/Mvir

No disk

0.02

0.05

0.10

Figure 4.1: A comparisonbetween theGreen et al. (2021a)mass-lossmodel predictions (dashed lines) and the
<(C)/<acc trajectories of several simulated subhaloes (solid lines). The times are normalized by the radial
orbital period, )A . The host and subhalo concentrations, disc shape, orbital inclination, and orbital energy
are held fixed. The model performs well over the full range of disc masses and down to small pericentric
radii (Ap).

trajectories, <(C)/<acc, of the simulated subhaloes. The performance of the model is illustrated in Fig. 4.1,

which compares the simulation and model results for the case of a fiducial MW-like disc shape and an in-

clined subhalo orbit with 8 = 45◦. Clearly, the model accurately captures the subhalo mass evolution for

all "d/"vir and Ap considered. When averaged over the full test suite, we find that our model remains

unbiased with relatively low scatter in the log-residuals (less than a factor of two larger than that of the

halo-only case) for longer than a Hubble time, indicating that mass evolution error will be subdominant to

the halo-to-halo variance. Hence, the mass-loss model successfully captures the additional loss of mass due

to the presence of a disc, validating its use in SatGen for the present study.
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4.4 Results

4.4.1 Subhalo mass functions

We begin by assessing the impact of the disc on the abundance of subhaloes as a function of their mass.

Fig. 4.2 plots the cumulative subhalo mass functions (SHMF), # (> </"0), for the disc-less case (blue lines)

as well as for several disc configurations, each with our fiducial 50, V0, and V" , but with different values of

the discmass fraction, 5" , as indicated. The range of discmass fractions covered ( 5" ∈ [0.025, 0.05, 0.075, 0.1])

is motivated by estimates of the stellar mass–halo mass relation (see e.g., Moster et al., 2010; More et al.,

2011; Behroozi et al., 2019). The dark and light shaded regions denote the 16 − 84 and 2.5 − 97.5 percentile

intervals, respectively, of the individual SHMFs in the halo-only (i.e., no-disc) case, highlighting the typical

halo-to-halo variance. The SHMFs in the left panel include subhaloes of all orders1 that have an instanta-

neous host-centric radius at I = 0 of A < Avir,0. In order to emphasize the pronounced effect of the disc in

the halo centre, the SHMFs in the right panel are restricted to subhaloes with A < 50 kpc. Clearly, the disc

results in a suppression of the subhalo abundance that is proportional to the disc mass fraction, 5" . How-

ever, the halo-to-halo variance in the SHMF is dramatically larger than the difference between the mean

SHMFs from the various disc configurations (this finding is also present throughout the results of Jiang

et al., 2021). The most massive disc, with 5" = 0.1, results in a ∼0.09 dex (18%) suppression in the A < Avir,0

SHMF at the low-mass end, which decreases slightly with increasing </"0. Our results are in excellent

agreement with the idealized simulations of Errani et al. (2017), who report a 20% suppression in the SHMF

of a cuspy Milky Way-mass halo due to the presence of a disc with 5" = 0.1 (note that they also find the

effect to be reduced at the high-mass end of the SHMF). The factor of suppression due to the disc is greatly

increased when we restrict the SHMF to subhaloes with A < 50 kpc. For example, the 5" = 0.1 disc drives a

∼0.25 dex (∼44%) decrease in subhaloes within 50 kpc, which is consistent with D’Onghia et al. (2010). Our

mean results are also in excellent agreement with Jiang et al. (2021), indicating an overall insensitivity to

our differing subhalo tidal evolution models.2

We find that the slope of the A < Avir,0 SHMF changes very little with 5" , ranging from −0.91 in the

disc-less case to −0.89 in the 5" = 0.1 configuration. The same is true of the A < 50 kpc SHMF, which has a

slope of −0.81 in the disc-less case and −0.79when 5" = 0.1. Taken together, these results imply that mass

segregation (or the lack thereof, cf. van den Bosch et al., 2016) is not greatly impacted by the disc. However,

1. A subhalo of order = is hosted by a (sub)halo of order = − 1, with host haloes corresponding to order 0.

2. Note that Jiang et al. (2021) also account for the fact that the subhalo density profile may be affected by baryons prior to infall.
However, this only affects the small fraction of subhaloes that host bright satellites, the analysis of which is beyond the scope of this
study.
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because of the slight 5" -dependence of the slope, the A < Avir,0 SHMF residuals exhibit a small amount of

mass-dependence, especially for the larger 5" . In order to gauge how this plays out at the low mass end

(i.e., log(</"0) < −4), we generated 2,000 merger trees with enhanced resolution (<acc ≥ 107 ℎ−1"�)

and evolved the subhaloes using each of the five configurations introduced in Fig. 4.2. We report that the

residuals for 10−5 ≤ </"0 ≤ 10−4 flatten off and are consistent with their values at </"0 = 10−4. This

convergence of the slopes in the low-</"0 limit indicates that the additional dynamical friction due to the

disc, which only impacts more massive subhaloes, is the most likely cause of the minor 5" -dependence of

the SHMF slope.

In order to aid our evaluation of the significance of “disc shocking”, we consider a case where the MN

disc is replaced by a spherical componentwith a nearly equivalent spherically enclosedmass profile. Specif-

ically, we fit the " (< A) of an Einasto (1965) profile to the " (< A) of a MN disc with 1d/0d = 0.08. Using

the notation of Jiang et al. (2021, Appendix A3), the parameters of the resultant Einasto (1965) halo are

"tot = "d (i.e., the total mass of the system is unchanged), = = 2.13, and 22 = 43.7. The concentration

is defined with respect to the I = 0 virial mass definition. Using this convention, the mass and size of the

spherical substitute grow identically to that of the disc by simply holding "tot = "d. The Einasto (1965)

sphere is slightly more centrally concentrated — its enclosed mass is ∼12% larger than that of the disc at

A ≈ 60d, with the " (< A) of the two systems converging as A increases. We evolve the subhaloes in this

composite halo–sphere host with 5" = 0.1, presenting the resulting SHMF as dashed lines in Fig. 4.2. The

results agree quite well with those of the 5" = 0.1 disc. The slightly increased central concentration of the

spherical replacement appears to drive a minor increase in the overall mass loss relative to the disc. This

agreement between the impact of a disc and a spherical replacement is also reported by Garrison-Kimmel

et al. (2017). We elaborate on the implications of this finding in Section 4.5.

4.4.2 Radial profiles

In Fig. 4.3, we shift our attention to the cumulative radial subhalo abundance profile, # (< A/Avir,0). Here,

we restrict ourselves to two different subsets of the subhalo population. In the left panel, we only count

subhaloes that have a maximum circular velocity at accretion,+max,acc, that is greater than 30 km/s, which

roughly captures the population of subhaloes that could themselves host galaxies. We note that all such

subhaloes with </<acc > 10−5 are included; however, we find that the results presented throughout this

work are qualitatively insensitive to the choice of</<acc used as the cut-off for inclusion. In the right panel,

we instead include all subhaloes with instantaneous mass at I = 0 of < > 108 ℎ−1"� . Once again, the dark

and light shaded regions indicate the 68% and 95% halo-to-halo variance intervals in the no-disc case. The
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Figure 4.2: The subhalo mass function, which includes subhaloes of all orders with a I = 0 host-centric
radius of (left) A < Avir,0 or (right) A < 50 kpc. The curves denote the mean SHMF taken over 10,000 trees
whereas the dark and light shaded regions correspond to the 16 − 84 and 2.5 − 97.5percentiles, respectively,
of the individual (halo-only) trees. The different curves illustrate the dependence of the final disc mass on
the subhalo population. The suppression of the subhalo abundance is proportional to the disc mass and
is much larger in the halo centre. The dashed lines correspond to the replacement of the 5" = 0.1 disc
with an Einasto (1965) sphere that has a nearly equivalent enclosed mass profile. The agreement between
these dashed lines and the corresponding 5" = 0.1 disc curves demonstrates the insignificance of “disc
shocking”.

mean profile of each disc configuration is again enclosed within the halo-to-halo variance of the disc-less

profile. The radial profiles further illustrate the enhanced impact of the disc on subhalo statistics towards

the halo centre, as the mean profiles are increasingly suppressed with decreasing A/Avir,0. This effect is

strongest on the population with+max,acc > 30 km/s, which is reduced by roughly 0.7 dex (≈ 80%) within 20

kpc of the halo centre when 5" = 0.1. In comparison to all subhaloes with< > 108 ℎ−1"� , the population

with +max,acc > 30 km/s is composed of a larger fraction of initially massive subhaloes, which experience

stronger dynamical friction and, thus, enhanced tidal stripping. We find that the fractional impact of the

disc on the radial profiles of the two simulated systems studied by Garrison-Kimmel et al. (2017) is within

the halo-to-halo variance of our log-residuals (see also Jiang et al., 2021). Once again, the replacement of

the disc with a nearly equivalent Einasto (1965) sphere results in a radial profile that agrees exquisitely well

with that of the 5" = 0.1 disc.

4.4.3 Enhanced tidal stripping

By using the same merger tree realizations for all of the halo–disc configurations, SatGen enables us to

directly assess the impact of the disc on individual subhaloes. In Fig. 4.4, we use a log-density heatmap to
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Figure 4.3: The cumulative radial subhalo abundance profile, which includes subhaloes of all orders with
(left) +max,acc > 30 km/s and </<acc > 10−5 or (right) < > 108 ℎ−1"� at I = 0. The meanings of the
curves and shaded regions are consistent with those of Fig. 4.2. The disc dramatically reduces the mean
abundance of galaxy-hosting subhalo candidates in the halo interior. Nonetheless, the mean curves of all
disc configurations lie within the halo-to-halo variance of the disc-less results.

show the distribution of changes in subhalo mass relative to the no-disc (nd) configuration, expressed via

the ratio <d/<nd, as a function of the most recent orbital pericentric radius, Ap. Each panel corresponds to

a different final disc mass, as indicated. We also plot the median <d/<nd in each Ap bin in order to better

highlight the trend. The Ap are measured directly from the subhalo position data stored in the SatGen

snapshots. For the purpose of this plot, we measure the Ap of each subhalo from the disc-less configuration.

However, we acknowledge that the Ap of each subhalo is slightly reduced in the presence of a disc,3 an effect

which itself drives aminor enhancement inmass loss. The population of subhaloes included in this analysis

have+max,acc > 30 km/s, are first-order at I = 0, have A < Avir,0 and</<acc > 10−5 at I = 0 in both the halo-

only and halo–disc configuration, and must have experienced at least one pericentric passage. The figure

clearly demonstrates that subhaloes that pass closer to the halo centre experience greater mass loss due

to the enhanced central density of the halo–disc system than those that are confined to the halo outskirts.

While the median <d/<nd begins to deviate from unity for Ap . 50 − 75 kpc in all cases, there is a minor

indication that the influence of the disc extends out to further radii as its mass is increased. At Ap ≈ 15

kpc, a disc with 5" = 0.025 (0.1) drives an additional ∼25% (70%) loss of subhalo mass on the median.

These results are consistent with a similar analysis by Jiang et al. (2021), although we emphasize that we

have used a rather different subhalo selection function in this work. Note that the introduction of the disc

slightly changes the orbital period, and hence the orbital phase at I = 0, of all subhaloes— this effect results

3. For example, the median (top 1%) reduction in Ap due to the 5" = 0.1 disc is 0.004 dex (0.045 dex).
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ues. The most recent pericentric radius, Ap, is measured directly from the SatGen outputs of the halo-only
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median <d/<nd in each Ap bin, whereas the error bars correspond to the 68% interval of halo-to-halo vari-
ance. The disc enhances themass loss of subhaloes that pass near the halo centre while having little impact
on those with large-Ap orbits.

in a small fraction of cases where the subhalo mass is actually larger than its counterpart in the disc-less

realization at I = 0.

In simulation-based subhalo studies, the particle resolution imposes a fixed lowermass limit on the sub-

halo population. An unfortunate limitation of this approach is that a subhalo is typically inferred to have

been “disrupted” after its mass falls below this limit. We have argued in previous studies (van den Bosch &

Ogiya, 2018; Green et al., 2021a) that much of this disruption is not physical and is instead a consequence

of the simulation mass limit and artificially enhanced by runaway numerical instabilities. Hence, it is in-

structive to impose a fixed mass limit on the SatGen results in order to study the properties of subhaloes

whose status as “disrupted” can be specifically traced to the presence of a disc. Here, we define the set of

no-disc “survivors” to be all first-order subhaloes with </"0 > 10−4 and A < Avir,0 at I = 0 in the no-disc

realization. The “disrupted” group is the subset of the “survivors” that instead have </"0 < 10−4 at I = 0

in the halo–disc realization with 5" = 0.1 (i.e., the disruption of these subhaloes can be attributed to the

presence of the disc). In Fig. 4.5, we present the normalized distributions of several orbital and accretion

properties of subhaloes in these two groups. Subhaloes that are most vulnerable to additional disc-driven

mass loss, and hence would be preferentially “disrupted” by the disc in a simulation, are simply those on

more radial orbits (i.e., smaller circularity, [, as defined in Wetzel, 2011) that pass closer to the halo centre
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Figure 4.5: From left to right, the normalized distributions of the instantaneous orbital circularity, [, radius
of first pericentric passage, Ap, subhalo concentration at accretion, 2vir,s, and redshift of accretion, Iacc,
for two groups of subhaloes in the no-disc configuration. The “survivors” group consists of all first-order
subhaloes with </"0 > 10−4 and A < Avir,0 at I = 0 in the no-disc configuration. The “disrupted” group is
the subset of the no-disc “survivors” that have “disrupted” (i.e., </"0 < 10−4 at I = 0) in the composite
halo–disc configuration with 5" = 0.1. The subhaloes that do not survive the additional disc-driven mass
loss tend to be on more radial orbits that penetrate more closely into the host centre (smaller mean [ and
Ap), are less centrally concentrated, and are typically accreted earlier than the no-disc “survivors”.

(smaller Ap), are less centrally concentrated at accretion (smaller 2vir,s), and have undergone tidal evolution

for a longer period of time (larger Iacc). We expand on the implications of these relatively intuitive findings

in the discussion of “disc shocking” (Section 4.5). Note that a consequence of the preferential “disruption”

of radially orbiting subhaloes due to the introduction of the disc is a minor change in the subhalo velocity

anisotropy towards more circular orbits. The velocity anisotropy profiles predicted by SatGen will be the

focus of an upcoming follow-up study.

4.4.4 Azimuthal bias of subhaloes

It is well known that satellite galaxies are preferentially distributed along the major axis of their central

host galaxy (e.g., Brainerd, 2005; Yang et al., 2006; Azzaro et al., 2007). This “azimuthal bias” is typically

interpreted as implying that central galaxies are aligned with their host haloes. In particular, numerous

studies have pointed out that subhaloes in DM simulations are preferentially distributed along the major

axis of their host halo (e.g., Knebe et al., 2004; Libeskind et al., 2005; Zentner et al., 2005b). Although a small

part of this alignment can be attributed to the preferred direction of subhalo accretion along large-scale

filaments (e.g., Aubert et al., 2004; Faltenbacher et al., 2008; Morinaga & Ishiyama, 2020), it is mainly due to

the fact that host haloes themselves are not spherical (e.g., Wang et al., 2005; Agustsson & Brainerd, 2006;

Wang et al., 2008). Hence, as long as central galaxies are roughly aligned with their host haloes, this non-

spherical distribution of subhaloes naturally explains the azimuthal bias in the observed distribution of

satellite galaxies (e.g., Agustsson & Brainerd, 2006; Kang et al., 2007).

However, since the central galaxy influences the tidal evolution of the subhaloes, an alternative expla-
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nation for the azimuthal bias may be that the central (disc) galaxy preferentially destroys satellite galaxies

along more polar-inclined orbits. This would introduce deviations from azimuthal symmetry even when

the host halo is spherical and subhaloes are accreted isotropically (as in SatGen).

In order to explore this, we search for an angular bias in our predicted subhalo population as a function

of disc mass. In SatGen, the cylindrical I-axis is the disc axis of symmetry; hence, a disc-driven bias should

manifest itself in the form of an asymmetry in the number of polar subhaloes, with | cos(\) | > 0.5, and

planar subhaloes, with | cos(\) | < 0.5, where \ is the host-centric spherical polar angle. We restrict our

sample to first-order subhaloes with </"0 > 10−4 at I = 0 that lie within 50 kpc of the host centre, but

we emphasize that we considered a range of subhalo selection functions and bounding radii and found

qualitatively identical results. In order to compute a robust estimate of the mean polar subhalo fraction,

〈# ( | cos(\) | > 0.5)/#〉, and its uncertainty, we stack our subhalo sample over the ensemble of hosts and

perform bootstrap resampling. For each disc mass, we generate 2,000 bootstrap estimates of # ( | cos(\) | >

0.5)/# and present the 2.5–97.5 percentile intervals in Fig. 4.6. Note the complete lack of any significant

azimuthal bias; on average, there are equal numbers of ‘polar’ and ‘planar’ subhaloes.

We ascribe this lack of azimuthal bias to two effects. First of all, the mass loss of subhaloes depends only

weakly on the (polar) angle of incidence between the orientation of the disc and the subhalo orbit. This

is demonstrated explicitly in Fig. 4.7, which shows the <(C)/<acc trajectories of subhaloes in idealized #-

body simulations (see Section 4.3 for details). Different curves correspond to different orbital inclinations,

8 = 90◦−\, of the initial orbital plane, as indicated, with all other parameters keptfixed. Note that the chosen

orbit is highly eccentric, with a small pericentric radius of Ap = 25 kpc and orbital circularity of [ = 0.244.

For comparison, the blue curve shows the corresponding result in the absence of a central disc and the green

curve corresponds to the case where the disc has been replaced by a Plummer (1911) sphere with a nearly

equivalent spherically enclosedmass profile, which we discuss in Section 4.5.4 Note that more planar orbits

(i.e., those with smaller 8) result in slightlymoremass loss. Hence, if anything, disc-driven disruption should

result in a deficit of planar satellites relative to polar satellites, opposite to the trend seen in observational

data. The fact that no azimuthal bias emerges is owed to the fact that in an axisymmetric potential the

subhalo is not confined to an orbital plane; unlike an orbit in a spherical potential, its polar angle evolves

with time. This washes out the weak dependence on the (initial) inclination seen in Fig. 4.7.

To summarize, we conclude that the angular bias observed in the azimuthal distribution of satellite

galaxies does not have its origin in a disc-driven preferential disruption of subhaloes along more polar-

4. The Plummer scale length that yields the best match to the spherically enclosed mass profile of the MN disc (when 1d/0d = 0.06)
is n ≈ 0.920d. The total mass of the two systems is identical but the Plummer (1911) sphere is slightly more centrally concentrated —
its enclosed mass is ∼10% larger than that of the disc at A ≈ 100d.
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Figure 4.6: The polar subhalo fraction as a function of the disc mass fraction. The sample includes first-
order subhaloes with </"0 > 10−4 at I = 0 that lie within 50 kpc of the host centre and is stacked over the
ensemble of hosts. The estimated uncertainty range of the fraction of polar subhaloes, which have host-
centric polar angles that satisfy | cos(\) | > 0.5 (i.e., those in the green region of the schematic in the upper
right), is computed via bootstrap resampling. The error bars denote the 2.5–97.5 percentile intervals of the
2,000 bootstrap estimates of the polar fraction. We find no statistically significant disc-driven azimuthal
bias in subhalo positions, regardless of disc mass.

inclined orbits. Rather, it is simply due to the central galaxy being aligned with the moment of inertia of

the non-spherical host halo combined with the existence of a preferred direction of subhalo accretion due

to large-scale filaments.

4.4.5 Dependence on disc parameters

In all previous results, we have studied disc configurations with various final masses (controlled by 5" )

but with only the fiducial 50, V0, V" , and 1d/0d. In Fig. 4.8, we use a summary statistic to demonstrate

that our results are insensitive to these other parameters, which control the disc growth and size. For each

disc configuration, we compute the mean number of subhaloes (with +max,acc > 30 km/s and </<acc >

10−5) enclosed within 50 kpc of the halo centre at I = 0 (averaged over all 10,000 trees), which we denote

〈# (A < 50 kpc)〉. In panels 1, 2, 3, 5, and 6, we vary one of the disc parameters, fixing the other four to

a set of baseline values ( 50 = 0.0125, V0 = 1/3, 5" = 0.1, V" = 1, and 1d/0d = 0.08). Note that we

use the large 5" = 0.1 for our baseline in order to enhance the sensitivity of our results to the other disc

parameters. We explore the impact of adiabatic contraction of the host halo in the remaining three panels,

which we discuss in Section 4.4.6. For comparison, the horizontal lines indicate the 〈# (A < 50 kpc)〉 of the

no-disc configuration, while the gray shaded regions mark the corresponding 68% and 95% halo-to-halo

variance intervals. Once again, the mean result lies within the disc-less halo-to-halo variance for every disc

configuration studied. Clearly, themean subhalo abundancewithin 50 kpc isminimally impacted by the disc

scale height and the rate at which the disc grows (both in physical size andmass) relative to the host halo. It
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Figure 4.7: The <(C)/<acc trajectories of subhaloes in idealized #-body simulations (see Section 4.3). The
times are normalized by the radial orbital period, )A . The disc mass, disc shape, host and subhalo concen-
trations, orbital energy, and orbital angular momentum are all held fixed as we vary the orbital inclination
angle from 0◦ (the orbit is in the plane of the disc) to 90◦ (perpendicular to the plane of the disc). As the
orbit becomes less inclined, the cumulative mass loss increases, but the overall inclination dependence is
weak. Replacing the disc potential with a Plummer (1911) sphere (with the same total mass and a nearly
equivalent spherically enclosed mass profile) yields greater mass loss than those of the inclined orbits in
the presence of a disc, demonstrating the insignificance of “disc shocking”.

is only slightly sensitive to the disc scale length; a more compact disc suppresses more subhaloes. However,

the discmass is the only parameter that has a strong effect on 〈# (A < 50 kpc)〉—themean abundance drops

by 23% (56%) relative to the disc-less case when 5" = 0.025 (0.1). For comparison, the replacement of the

5" = 0.1 disc with an Einasto (1965) sphere drives a 59% suppression in 〈# (A < 50 kpc)〉 relative to the

disc-less case. This finding is in excellent agreement with the cosmological simulation study of Garrison-

Kimmel et al. (2017), who embed a variety of different disc potentials into their host haloes, finding that

only the total mass of the disc has a significant impact on the resulting subhalo statistics.

4.4.6 Adiabatic contraction of the host

Thus far, we have neglected to consider the adiabatic contraction of the host halo due to the formation of

the galactic disc. This simplification has enabled us to assess the relative impact of a disc potential on the

subhalo population while keeping all other properties of the host consistent with its disc-less counterpart.

In addition, proper modeling of adiabatic contraction due to the growth of an axisymmetric potential itself

remains an open problem. For example, the ‘standard’ adiabatic invariant, A" (A), originally suggested

by Barnes & White (1984) and Blumenthal et al. (1986) and often used in modeling disc galaxies and their

rotation curves (e.g., Mo et al., 1998; van den Bosch & Swaters, 2001), is only valid for unrealistic, completely

spherical systems in which all particles move on circular orbits. Furthermore, the fact that the scatter in

the Tully–Fisher relation is independent of size (e.g., Courteau & Rix, 1999; Courteau et al., 2007) has been
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Figure 4.8: The mean abundance of subhaloes with +max,acc > 30 km/s and </<acc > 10−5 enclosed within
50 kpc of the halo centre at I = 0, averaged over all 10,000 merger trees. In panels 1, 2, 3, 5, and 6, we vary
one disc parameter, which includes (i) the disc scale length, 0d (I = 0), which is set by 50, (ii) the disc scale
height, which is expressed as a fraction of the scale length, 1d/0d, (iii) the power law slope of 0d (I), V0,
(iv) the power law slope of "d (I), V" , and (v) the disc mass fraction, "d (I = 0)/"0, which is set by 5" .
The red star corresponds to the baseline disc configuration ( 50 = 0.0125, V0 = 1/3, 5" = 0.10, V" = 1,
and 1d/0d = 0.08) around which the parameters are varied. The green cross indicates the spherical Einasto
(1965) substitute for the baseline disc. The blue line denotes the 〈# (A < 50 kpc)〉 of the halo-only config-
uration, which is surrounded by its 68% and 95% halo-to-halo variance intervals (dark and light shaded
regions, respectively). Consistent with Garrison-Kimmel et al. (2017), only the disc mass has a strong im-
pact on the subhalo statistics. Panel 4 displays the relationship (and corresponding quadratic fit) between
the mass fraction of a central galactic potential and the corresponding boost in the NFW concentration of
the host due to adiabatic contraction seen in the cosmological simulations of Kelley et al. (2019). This host
contraction due to the disc is accounted for in the orange triangles in panel 6. The impact of an increased
host concentration in the absence of a disc is shown in panel 7. The degeneracy between host contraction
(without a disc) and a disc potential (both with and without adiabatic contraction) is demonstrated in panel
8 — increasing the disc mass fraction by 0.01 and ignoring (accounting for) adiabatic contraction due to the
disc has the same effect on 〈# (A < 50 kpc)〉 as that of a 10% (15.5%) increase in the host concentration.
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used to argue that disc formation cannot be associated with significant halo contraction (e.g., Dutton et al.,

2007), which might have its origin in non-adiabatic processes operating during disc formation (see e.g.,

El-Zant et al., 2001b; Tonini et al., 2006).

Despite these issues, we now proceed to investigate how adding (adiabatic) contraction of the host halo

due to the assembly of the disc impacts the subhalo population. Rather than assuming a particular adiabatic

invariant, we consider a simplified model of the halo contraction based on the simulation results of Kelley

et al. (2019). These authors run a suite of twelve dark matter-only cosmological zoom-in simulations, each

of which is centred on a different Milky Way-like halo. They then re-run each of the simulations with an

embeddedgalactic potential, which growsover time, placed at the centre of eachhalo. Theyfit aNFWprofile

to each host halo at I = 0 in both the halo-only and halo–disc configurations and report the concentrations

(2vir,DMO and 2vir, respectively). In panel 4 of Fig. 4.8, we plot the ratio, 2vir/2vir,DMO, as a function of the

fraction of mass in the embedded potential, "gal (I = 0)/"vir. Note that Kelley et al. (2019) model the

galaxy as a composite potential that consists of a stellar disc, a gaseous disc, and a stellar bulge; we define

"gal to be the combined mass of these three systems and compare it directly with the mass of our single-

component stellar disc. Clearly, when the central galaxy makes up a larger fraction of the total host mass,

the host experiences greater contraction, which corresponds to a larger 2vir/2vir,DMO. We fit a quadratic to

the relationship, demanding the physical constraint that 2vir/2vir,DMO = 1 when "gal (I = 0)/"vir = 0. We

use this fit as the basis of our adiabatic contraction model.

We emulate adiabatic contraction using the following approach. Given the 5" of the disc potential of

interest, we look up the corresponding 2vir/2vir,DMO using the fit in panel 4 of Fig. 4.8. Our composite host

system is exactly the same as before except that the concentration of the NFW host halo is multiplied by

the corresponding value of 2vir/2vir,DMO at all times during the evolution of the subhaloes. For 5" = 0.05

(0.1), the host concentration is boosted by a factor of 1.24 (1.60). Note that the total mass of the compos-

ite system enclosed within Avir remains unchanged. In panel 6 of Fig. 4.8, the orange triangles show the

mean subhalo abundance within 50 kpc of the host centre, 〈# (A < 50 kpc)〉 (a good summary of the overall

influence of the disc), as a function of 5" when the host concentration is boosted in order to account for

adiabatic contraction. These can be directly compared to the case without adiabatic contraction for each

5" , denoted by the black circles. As expected, as the disc becomes more massive, the relative impact of

the host contraction becomes more significant. Relative to the halo-only host, the 5" = 0.05 (0.1) disc

suppresses 〈# (A < 50 kpc)〉 by 37% (56%) without adiabatic contraction and by 47% (70%) when the host

concentrations are boosted according to the Kelley et al. (2019) model. Note that the 〈# (A < 50 kpc)〉 of the

most massive disc remains within the halo-to-halo variance of the halo-only configuration even when adi-

abatic contraction is taken into account, further demonstrating the importance of such variance in subhalo
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statistics.

In Section 4.2, we claimed that the impact of adiabatic contraction is degenerate with simply increasing

the disc mass. The reason for this is simple: increasing the disc mass increases the central concentration of

the host mass, which is the same result as that of adiabatic contraction. In panel 7 of Fig. 4.8, we consider

how 〈# (A < 50 kpc)〉 of the halo-only configuration is suppressed if we boost the host concentration by a

constant factor at all times during subhalo evolution. In the absence of a disc, boosting the host concentra-

tion by a factor of 1.6 drives a 40% reduction in 〈# (A < 50 kpc)〉. This level of adiabatic contraction is seen

in systems with a disc with 5" = 0.1, which itself suppresses 〈# (A < 50 kpc)〉 by 56% without the concen-

tration boost. Hence, the effect of the disc itself and the adiabatic contraction that it brings about are both

of similar importance, although the disc drives slightly more subhalo suppression. Since the host contrac-

tion and disc mass are degenerate, we can use both of panels 6 and 7 in Fig. 4.8 in order to understand the

relationship between disc-driven suppression (bothwith andwithout also accounting for adiabatic contrac-

tion; in terms of 〈# (A < 50 kpc)〉) and concentration boost-driven suppression (in the absence of a disc).

We interpolate between both the black circles and orange triangles in panel 6 and the black circles in panel

7 and then perform the following: for each value of "d (I = 0)/"0 (separately with and without adiabatic

contraction), we find the value of the host 2vir multiplier (without a disc) that corresponds to the same

〈# (A < 50 kpc)〉. These two relationships are shown in panel 8 of Fig. 4.8 alongside nearly perfect linear

fits. In terms of 〈# (A < 50 kpc)〉, increasing the disc mass fraction by 0.01 and ignoring (accounting for)

adiabatic contraction due to the disc has the same effect as a 10% (15.5%) increase in the host concentra-

tion. Hence, the impact of a disc potential can be roughly emulated by simply making the host halo more

concentrated.

4.5 Discussion

As we have seen, the presence of a central disc galaxy causes a suppression in the abundance of subhaloes.

OurSatGen-based results are in good agreementwithprevious results basedon#-body simulations (D’Onghia

et al., 2010; Garrison-Kimmel et al., 2017; Errani et al., 2017; Sawala et al., 2017; Kelley et al., 2019), both qual-

itatively and quantitatively. However, we disagree with D’Onghia et al. (2010) and Garrison-Kimmel et al.

(2017) with regards to the importance and origin of this disc-induced substructure depletion. In particu-

lar, contrary to these previous studies, we argue that the presence of a disc does not cause actual, physical

disruption of substructure. Rather, it merely causes enhanced stripping. We emphasize that this is not

just a semantic issue; rather, it is the difference between having no substructure within the inner 30 kpc of

the Milky Way and having thousands of low mass subhaloes (a small fraction of which may host a satellite
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galaxy) with reduced mass compared to a case without a disc.

In particular, D’Onghia et al. (2010) argued that subhaloes that pass near a central disc galaxy will be

destroyed due to impulsive “disc shocking”. Whenever a subhalo passes through the plane of a disc at

sufficiently high speed, its internal energywill increase by an amountΔ� that can be calculated analytically

(Ostriker et al., 1972; Binney & Tremaine, 2008). The crux of the argument made by D’Onghia et al. (2010)

is that whenever this Δ� exceeds the binding energy of the subhalo, |�b |, the subhalo is ‘certain’ to be

disrupted. They proceed to show that this condition is met by a significant fraction (∼15%) of subhaloes in

a realistic, MW-like system.

However, as shown in van den Bosch et al. (2018), it is incorrect to assume that Δ� > |�b | will result

in disruption. What matters is not only the total energy injected but also how that energy is distributed

over the constituent particles. Since Δ� ∝ ;2, the particles in the outskirts of the subhalo, which need little

energy to escape, receive the bulk of the energy injection whereas the particles near the subhalo centre,

which need a large amount of energy to escape, receive virtually no energy. As a consequence, subhaloes

can actually experience a tidal shock that exceeds many multiples of their binding energy and still survive.

In fact, van den Bosch et al. (2018) show that subhaloes with a NFW profile that experience a tidal shock

with Δ�/|�b | = 1 (10) only lose roughly 20% (55%) of their mass.

Another argument against disc shocking is the fact that in most cases it is subdominant to ‘halo shock-

ing’, which is tidal heating due to a high speed pericentric passage with respect to the host halo itself.

Indeed, van den Bosch et al. (2018) showed that the average Δ�/|�b | of a subhalo due to its first pericen-

tric passage in a (disc-less) host halo is about ∼1.9, which is larger than the average Δ�/|�b | due to disc

shocking. This is consistent with D’Onghia et al. (2010), who showed that halo shocking dominates over

disc shocking in a typical MW-like system except for subhaloes with pericentric radii smaller than ∼10 kpc.

The insignificance of disc shocking is also evident from Fig. 4.7. If disc shocking were indeed the domi-

nant factor in disc-driven subhalo depletion, then a subhalo on a highly inclined orbit (relative to the disc)

should experience more mass loss than a subhalo whose orbit is confined to the plane of the disc. How-

ever, Fig. 4.7 demonstrates that the exact opposite trend is seen in our idealized #-body simulations (see

Section 4.3), which is nicely reproduced by our tidal stripping model that is implemented in SatGen. Fur-

thermore, replacing the disc potential with an equivalent Plummer (1911) sphere in an idealized simulation

(see Fig. 4.7) results in greater mass loss than those of the inclined orbits in the presence of a disc. This is

consistent with our SatGen results, where Figs. 4.2, 4.3, and 4.8 demonstrate that subhalo statistics are gen-

erally insensitive to the replacement of the disc with a spherical system that has an equivalent spherically

enclosed mass profile.

In fact, our tidal stripping-based mass-loss model successfully reproduces the subhalo mass evolution
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of the idealized halo-only DASH simulations, our new composite halo–disc simulations (Section 4.3), and

a wide range of results from the Bolshoi cosmological simulations (Green et al., 2021a) without an explicit

prescription for tidal shocking. The model relies upon the tight empirical relationship between the stripped

subhalo density profile and the bound mass fraction, which is independent of the details of how the mass

was lost (e.g., Hayashi et al., 2003; Peñarrubia et al., 2008; Green & van den Bosch, 2019). The accuracy of our

mass-loss model and the strength of the density profile–mass fraction relationship would be substantially

reduced if tidal shocking dominated for some orbits (i.e., small Ap) and tidal stripping dominated for others

(i.e., large Ap).

Based on all of these considerations, we conclude that disc shocking plays, at most, a minor role in the

substructure suppression caused by a disc potential. Instead, the presence of a disc greatly increases the

central mass concentration of the host, which results in an overall increase in tidal stripping that becomes

increasingly significant as Ap becomes smaller. This net increase in subhalo mass loss effectively shifts the

mean SHMF to the left (see Fig. 4.2). The total subhalo abundance above a particular simulation mass limit

is decreased. However, considering the fact that a NFW subhalo should never fully disrupt (see e.g., van

den Bosch et al., 2018; Errani & Peñarrubia, 2020; Errani & Navarro, 2021), we emphasize that this reduced

abundance is not due to “disruption”, but is instead a consequence of enhanced mass loss combined with a

fixed resolution limit.

4.6 Summary

The demographics of DM substructure depend on both the particle nature of DM and the gravitational in-

teraction between DM and baryons. Hence, in order to understand the dependence on the former, we must

be able to properly account for the latter. Much progress has been made towards correctly capturing the

manner in which baryons shape the overall DM distribution (e.g., D’Onghia et al., 2010; Zolotov et al., 2012;

Brooks et al., 2013; Garrison-Kimmel et al., 2017; Sawala et al., 2017; Kelley et al., 2019). However, a common

limitation of these studies is that they are all based on expensive cosmological simulations, which has lim-

ited their ability to consider statistically complete halo samples and properly contextualize results in terms

of the corresponding halo-to-halo variance. The primary finding of these works is clear: the presence of a

galactic disc suppresses subhalo abundance, an effect that becomes stronger towards the halo centre. Since

the suppression also increases with increasing disc mass, properly accounting for this disc-driven subhalo

depletion is especially important forMilkyWay-mass systems, which sit at the peak of the stellarmass–halo

mass relation.

In this chapter, we used the SatGen semi-analyticalmodeling framework to assess the impact of a galac-
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tic disc potential on the DM subhalo demographics of MW-like hosts. This method is not impacted by issues

related to numerical disruption, which still hamper the results of #-body simulations, and allows for the

construction of large halo samples, which enables unprecedented statistical power. Using an ensemble of

10,000 merger trees with "0 = 1012 ℎ−1"� , we generated an equally large sample of evolved subhalo pop-

ulations using a range of different composite halo–disc potentials. This approach allowed us to isolate the

differential influence of the disc by controlling for assembly history variance. Leveraging the computa-

tional efficiency of SatGen, we explored a wide range of disc parameter space, spanning the disc mass,

size, and formation history. We used the resulting subhalo catalogs to study subhalo mass functions and

radial abundance profiles. We also measured the relative impact of the disc on the I = 0mass of individual

subhaloes as well as examined whether disc-driven subhalo depletion gives rise to an azimuthal bias in the

spatial distribution of the subhalo population. Our most notable findings are summarized as follows:

• For a disc mass fraction of 5" = 0.05, which is a typical value for a Milky Way-size halo, the normal-

ization of the mean SHMF (of subhaloes with A < Avir,0) is suppressed by . 10% relative to the no-disc

case. When only considering subhaloes within 50 kpc of the halo centre, the mean SHMF normaliza-

tion is decreased by ∼30%. The level of substructure suppression increases with disc mass. However,

the mean disc-driven impact on the SHMF is dwarfed by the halo-to-halo variance in all cases.

• The disc has a considerably larger influence on the subhalo abundance near the halo centre, as evi-

denced by themean radial subhalo abundance profiles. For example, themean abundance of potential

galaxy-hosting subhaloes (with +max,acc > 30 km/s) is suppressed by ∼40% within 50 kpc of the halo

centre relative to the no-disc case when 5" = 0.05 but is reduced by ∼60% within 20 kpc. The mean

effect of the disc on the radial profile is again eclipsed by the halo-to-halo variance.

• By tracking individual subhaloes across different host halo–disc configurations, we have shown that

the presence of a central disc causes excess subhalo mass loss, the strength of which increases with

decreasing pericentric radius. For example, at Ap ≈ 50 kpc (20 kpc), a disc with 5" = 0.05 drives an

additional ∼15% (40%) loss of subhalo mass on the median.

• By imposing a fixed mass resolution limit (</"0 > 10−4), consistent with simulation-based subhalo

studies, we analyzed the orbital and accretion properties of subhaloes that survive until I = 0 in the

absence of a disc but are “disrupted” (i.e., their < falls below the mass cut) by I = 0 in the composite

host halo–disc case. On average, these disc-disrupted subhaloes are found to have smaller Ap and 2vir,s

than the overall sample.

• The presence of the disc does not cause an azimuthal bias in the spatial distribution of subhaloes for
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any of the disc masses considered ( 5" ≤ 0.1). Therefore, the observed alignment of satellite galaxies

with the orientation of their central host is not driven by the presence of a disc, but is instead an

outcome of galaxy-halo alignment in non-spherical haloes.

• The overall amplitude of disc-driven subhalo depletion is relatively insensitive to the size of the disc

and its detailed formation history (both in terms of its size and mass). Rather, it depends almost ex-

clusively on the final mass of the disc. The replacement of the disc with a spherical system, which has

a nearly equivalent spherically enclosed mass profile, of the same total mass yields subhalo statistics

that are in excellent agreement with the analogous halo–disc configuration.

• We demonstrated that the impact of a disc potential can be emulated by simply increasing the con-

centration of the host halo. Increasing the disc mass fraction by 0.01 and ignoring (accounting for)

adiabatic contraction due to the disc has the same impact on 〈# (A < 50 kpc)〉 as boosting the host

concentration by 10% (15.5%). Adiabatic contraction of the host due to the formation of the galactic

disc only has a significant effect on the overall subhalo abundance when the disc mass fraction is

large.

Overall, our SatGen-based results are in excellent agreement (both qualitatively and quantitatively)

with previous results based on #-body simulations (D’Onghia et al., 2010; Garrison-Kimmel et al., 2017; Er-

rani et al., 2017; Sawala et al., 2017; Kelley et al., 2019). However, as discussed in detail in Section 4.5, we

disagree with the notion promoted by D’Onghia et al. (2010) and Garrison-Kimmel et al. (2017) that the disc

causes actual disruption of subhaloes via impulsive disc shocking. Rather, the disc simply increases the

density in the central region of the halo, which promotes excess mass loss. When this enhanced mass loss

results in the subhalo mass dropping below the resolution limit of a numerical simulation, the subhalo ap-

pears to have been disrupted; in reality, it would continue to survive with a reducedmass (and should never

fully disrupt; see e.g., van den Bosch et al., 2018; Errani & Peñarrubia, 2020; Errani & Navarro, 2021). Another

new insight that has emerged from this study relates to the overall importance of disc-driven subhalo de-

pletion. By using a large ensemble of merger trees, we were able to demonstrate that the impact of the

disc is small compared to the expected halo-to-halo variance, even for the most massive discs considered.

Hence, when using the abundance of satellite galaxies or subhaloes in a single system, such as the Milky

Way, it is more important to account for halo-to-halo variance than the impact of the central galaxy when

making inferences.
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Chapter 5

Sunyaev-Zel’dovich effect

This chapter has been published as an article by Green et al. (2020) in the Monthly Notices of the Royal

Astronomical Society by Oxford University Press.

5.1 Background

G
alaxy clusters are the largest gravitationally bound objects in the Universe, forming hi-

erarchically through accretion at the intersection of cosmic filaments. Their mass- and

redshift-distribution is intimately connected to theunderlying cosmologicalmodel. Hence,

a precise approach to linking cluster observables (such as X-ray luminosity or the Sun-

yaev&Zeldovich (SZ; 1972) effect in themicrowave) to the underlying halomass is essential for using cluster

counts as a cosmological probe (Allen et al., 2011; Pratt et al., 2019, for a recent review).

In the upcoming years, the observed X-ray and SZ cluster samples are forecast to grow tremendously.

In the X-ray, the recently-launched eROSITA mission is set to discover &106 groups and clusters (Pillepich

et al., 2018). In the microwave, the Simons Observatory — planned to begin observations in the early 2020s

— will detect the SZ signal of &105 clusters out to high redshifts (Ade et al., 2019), a catalog that will even-

tually be augmented to &106 objects by the next-generation CMB-S4 project (Abazajian et al., 2019). The

statistical precision of these surveys will enable unprecedentedly tight cosmological constraints, further

stress-testing the standard model of cosmology and potentially illuminating the signal of massive neutri-

nos or dynamical dark energy. Unlocking the full statistical potential of these surveys necessitates the

mitigation of systematic uncertainties associated with cluster gas physics, motivating the development of

new halo mass proxies with reduced intrinsic scatter and bias relative to current techniques.

The X-ray luminosity, !- , is a direct, low-cost mass estimator, but it suffers from high intrinsic scatter
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due to poorly-understood cluster core physics. This scatter can be reduced via core-excision (Maughan,

2007; Mantz et al., 2018) or modeling (Käfer et al., 2020) at the cost of sacrificing a significant fraction of the

total X-ray photon distribution that comes from the cluster core regions. The integrated SZ signal, .SZ, is

predicted to have a low intrinsic scatter (10 − 15% at fixed mass, e.g., Nagai, 2006; Battaglia et al., 2012) and

is much less sensitive to cluster core physics, as the SZ signal arises from the gas permeating throughout

the virialized region of galaxy clusters. The product of the X-ray core-excised spectral temperature and gas

mass, .- (Kravtsov et al., 2006), has comparable scatter to .SZ, but is only obtainable with high-resolution,

long-exposure observations of massive, nearby clusters.

Both X-ray and SZ mass proxies are also subject to scatter due to inter-cluster variance in halo mass ac-

cretion histories (MAHs; e.g., Hoekstra et al., 2012; Krause et al., 2012; Barnes et al., 2017b), which results in

the presence of varying levels of non-thermal pressure support (Lau et al., 2009; Nelson et al., 2014b). How-

ever, the X-ray signal is further afflicted by cooling and heatingmechanisms (Stanek et al., 2010), gas clump-

ing (e.g., Nagai & Lau, 2011; Zhuravleva et al., 2013; Khedekar et al., 2013), temperature inhomogeneities

(e.g., Rasia et al., 2014), and the cluster dynamical state (e.g., Ventimiglia et al., 2008), whereas the SZ signal

is expected to be less sensitive to these details (e.g., Motl et al., 2005; Wik et al., 2008; Eckert et al., 2015, but

see also Marrone et al. 2012). Recent machine learning-based efforts have illustrated that the scatter can

be reduced by accounting for the dynamical state via full X-ray images (Ntampaka et al., 2019a) or sum-

mary statistics of the cluster morphology (Green et al., 2019). Understanding the covariance among these

multiple observables will be important for constraining cosmological parameters using multi-wavelength

cluster surveys (Stanek et al., 2010).

In addition to introducing scatter, non-thermal pressure support is responsible for a substantial bias

that adversely impacts X-ray- and SZ-based mass proxies. These masses are typically estimated under the

assumption of hydrostatic equilibrium (HSE) between the gravitational potential and the observed thermal

pressure, which is used in lieu of the total pressure. Because of this assumption, the presence of non-thermal

pressure in the cluster introduces a HSEmass bias, resulting in observed X-ray/SZ-basedmasses that are up

to 30% lower than the corresponding gravitational lensing-based masses (e.g., Zhang et al., 2010; Mahdavi

et al., 2013; von der Linden et al., 2014b; Applegate et al., 2014; Hoekstra et al., 2015; Medezinski et al., 2018;

Miyatake et al., 2019). Recent observational studies, however, have shown that this bias ismuch lower for re-

laxed populations of clusters that have not recently experienced a significant merger event (e.g., Applegate

et al., 2016; Eckert et al., 2019; Ettori et al., 2019; Ghirardini et al., 2019).

To date, the HSE mass biases of simulated clusters have been estimated to be 5− 40% (e.g., Evrard, 1990;

Rasia et al., 2006; Nagai et al., 2007; Lau et al., 2009; Battaglia et al., 2012; Lau et al., 2013; Nelson et al., 2014a;

Shi et al., 2016; Biffi et al., 2016; Henson et al., 2017; Ansarifard et al., 2020; Barnes et al., 2021), revealing that
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bulk and turbulent intracluster gas motions driven by halo mergers and accretion are likely the dominant

source of non-thermal pressure (e.g., Nelson et al., 2012; Avestruz et al., 2016; Shi et al., 2018, 2020) (the

potential implications of other sources are discussed in Section 5.4). Measurements of optical weak lensing

masses via background galaxies (e.g., Dietrich et al., 2019) and CMB lensingmasses (e.g., Raghunathan et al.,

2019) may provide a method of calibrating the cluster mass scales and mitigating the HSE bias problem.

Aswe approach the low-noise, high-resolution frontier of CMB survey science (Mroczkowski et al., 2019),

the SZ effect offers promising potential as a cosmological probe. In contrast to X-ray mass proxies, the SZ-

based approach suffers from fewer astrophysical systematics and has greater sensitivity to high-redshifts

and cluster outskirts. However, as discussed above, assembly-driven non-thermal pressure support is a

dominant systematic impeding SZ science. Hydrodynamical simulations demonstrate that the cluster out-

skirts, which contribute the majority of the thermal SZ (tSZ) signal, have non-thermal pressure support

similar in magnitude to the thermal pressure (e.g., Nelson et al., 2014b; Vazza et al., 2018; Walker et al.,

2019, for a recent review). In addition to contributing to the scatter and bias in.SZ-based mass estimation,

non-thermal pressure also impacts the tSZ angular power spectrum,�; , which is extremely sensitive to the

matter density fluctuation amplitude,�; ∝ f7−8
8 (Komatsu & Seljak, 2002). Simulation studies have demon-

strated that properly accounting for non-thermal pressure can change the SZ power spectrum amplitude

by ∼60% (Battaglia et al., 2010; Shaw et al., 2010; Trac et al., 2011), impacting constraints on f8 and dark

energy (Bolliet et al., 2018). Cross-correlation analyses of SZ, lensing, and galaxy surveys have also been

used to constrain the HSE mass bias (e.g., Makiya et al., 2018, 2020; Osato et al., 2020) as well as the roles

of AGN feedback and non-thermal pressure of the warm-hot diffuse baryons in groups and clusters (e.g.,

Van Waerbeke et al., 2014; Battaglia et al., 2015; Hojjati et al., 2017; Osato et al., 2018). Hence, accurately

characterizing the average non-thermal pressure profile as a function of cluster mass and redshift is crucial

for both subjugating the HSE mass bias problem and using auto- and cross-correlation statistics from up-

coming SZ surveys for cosmology. In addition, studying how diversity in halo assembly drives the scatter

in the non-thermal pressure support and SZ signal may inform techniques for constructing a more pow-

erful, lower-scatter SZ-based mass proxy that could ultimately strengthen next-generation cosmological

analyses.

In this chapter, we study analytically the impact of structure formation-generated turbulence on the

scatter in the SZ effect observable-mass scaling relation (.SZ − "). This is made possible by combining the

Komatsu & Seljak (2001) model of the cluster total pressure and gas density profiles, the Shi & Komatsu

(2014) analytical model of the mass assembly-driven non-thermal pressure profiles, and both average halo

MAHs (van den Bosch et al., 2014) and individual Monte Carlo-generated MAHs (Parkinson et al., 2008).

Along theway, we identify a near-universality of the average non-thermal pressure fraction profiles, 5nth (A),
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at fixed peak height that was first hinted at in the simulations of Nelson et al. (2014b). We then calculate the

impact of mass assembly on the HSE mass bias, finding that the average bias should increase considerably

with both halo mass and redshift due to larger rates of recent mass accretion. Using the thermal pressure

profiles computed for various cluster samples, we investigate the slope, normalization, and intrinsic scatter

of the .SZ − " relation and its dependence on aperture radius, redshift, cosmology, and halo mass limit.

Importantly, we show that a substantial fraction of the scatter seen in simulated and observed .SZ − "

relations can be attributed to inter-cluster variance in the MAHs. Lastly, we identify a strong correlation

between the.SZ −" residuals and the recent halo mass accretion rate over the previous dynamical time, a

relationship that may enable estimation of the accretion rate in observed clusters.

This chapter is organized as follows. In Section 5.2, we describe our methodology, briefly reviewing

models of the cluster gas and thermal pressure profiles and the MAHs as well as defining our observables

of interest. In Section 5.3, we lay out the results of our analyses, including the predictions for cluster non-

thermal pressure profiles (Section 5.3.1), HSE mass biases (Section 5.3.2), observable-mass relationships

(Section 5.3.3), and the connection between .SZ − " residuals and the recent halo mass accretion rate

(Section 5.3.4). We discuss the implications of the model in Section 5.4, concluding with a summary of our

findings and a forecast of future work in Section 5.5.

The fiducial cosmology used throughout this work is consistent with the Planck Collaboration et al.

(2020) results: Ωm = 0.311, ΩΛ = 0.689, Ωbℎ
2 = 0.0224, ℎ = 0.677, f8 = 0.810, and =s = 0.967. The base-10

logarithm is denoted by log and the natural logarithm is denoted by ln. Much of the analysis utilizes the

colossus Python package (Diemer, 2018).

5.2 Methods

In this section, we present our analytical framework that we use to model the impact of the assembly his-

tory on cluster observables. We first present the theoretical model of the observable-mass scaling relations

(Section 5.2.1), which is based on the Kaiser (1986) self-similarmodel. The cluster observables considered in

this study are all functions of the gas density, temperature, and thermal pressure in the intraclustermedium

(ICM). In Section 5.2.2, we describe the techniques used to generate the MAHs of individual clusters (Cole

et al., 2000; Parkinson et al., 2008) and their population averages (van den Bosch et al., 2014), enabling us

to study both mean trends and quantify inter-cluster variance. We assume that the gas density and total

pressure are well-described by themodel of Komatsu & Seljak (2001), which we present in Section 5.2.3. The

thermal pressure is obtained from the total by subtracting off the non-thermal component, which we com-

pute using the model of Shi & Komatsu (2014), presented in Section 5.2.4. We assume throughout that the

98



Given:
Halo of mass "vir
Redshift I0

Zhao et al. 2009 +
van den Bosch et al. 2014
Input: "vir, I0
Output: "vir (I) , 2vir (I)

Navarro et al. 1997 +
Komatsu & Seljak 2001
Input: "vir (I) , 2vir (I)
Output: dgas (A , I) , %tot (A , I)

Shi & Komatsu 2014
Input: dgas (A , I) , %tot (A , I)
Output: 5nth (A , I)

Generate Observables:
Input: dgas (A , I0) , %tot (A , I0) , 5nth (A , I0)
Output: "gas (< A ) , )mg (< A ) , .SZ (< ')

Figure 5.1: A flowchart that summarizes our theoretical framework. For each halo with a virial mass of"vir
observed at a redshift of I0, the mass accretion history and concentration history are generated following
Section 5.2.2. This is input into the gas model (Section 5.2.3), which assumes hydrostatic equilibrium, in
order to generate the gas density and total pressure profiles throughout the accretion history. The non-
thermal pressure fraction profile is then generated following Section 5.2.4. Lastly, the gas density profile
and total/non-thermal pressure profiles are used to generate the observables: gas mass, temperature, and
integrated SZ signal.

non-thermal pressure is entirely due to turbulence generated during the cluster’s mass assembly. Lastly, we

lay out ourmethods used to compute and quantify the properties of cluster scaling relations in Section 5.2.5.

The model framework is summarized in Fig. 5.1.

5.2.1 Observables and self-similar scaling relations

Our main goal is to model the scaling relation between the observable, cylindrically-integrated SZ signal,

.SZ, and the observationally inferred cluster mass. As discussed below, the SZ signal is proportional to both

the cluster gasmass,"gas, and the gasmass-weighted temperature,)mg. We therefore also analyze the scal-

ing relations between these quantities and cluster mass. We study the dependence of all of these scaling

relations on the aperture radius, Aap, for which we use multiples of A500c and A200m.1 In what follows, we use

' to denote two-dimensional projected distances and A to denote three-dimensional distances; in partic-

ular, 'ap and Aap are used to indicate the aperture radii used for cylindrically- and spherically-integrated

quantities, respectively. The total enclosed halo mass is denoted " (< Aap). We emphasize that throughout

this study we always use the same aperture to compute both the total enclosed halo mass and the clus-

ter observables; however, when studying a cylindrically-integrated observable, we shall still compare it to

the spherically enclosed halo mass using the same numerical values for both Aap and 'ap. The three main

observables considered in this chapter are .SZ (< 'ap), "gas (< Aap), and )mg (< Aap).2 Computing these

quantities requires a model of the thermal pressure and gas density profiles, %th (A) and dgas (A), which we
1. Note that A500c is the radius inside of which themean density is equal to 500 times the critical density, dc (I) , whereas within A200m,

the mean density is 200 times the mean matter density, dm (I) . For cluster mass scales, the virial radius is Avir ≈ 2A500c ≈ 0.8A200m at
I = 0.

2. Note that of"gas,)mg, and.SZ, only.SZ is computed as a two-dimensional projected quantity in this work — hence, our)mg and
"gas are not direct observables, but studying these spherically-integrated quantities is still illuminatingwith regards to understanding
the.SZ −" relation.
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describe in Sections 5.2.3 and 5.2.4, respectively.

The self-similar model developed by Kaiser (1986) is a simple model of cluster evolution based on three

assumptions: (i) clusters form from peaks in the initial density field of an Einstein–de Sitter universe with

Ωm = 1, (ii) the amplitude of the primordial density fluctuations varies with spatial scale as a power law,

and (iii) processes that impact cluster formation do not introduce additional physical scales to the problem

(Kravtsov & Borgani, 2012). Under these assumptions, the gravitational collapse of galaxy clusters is self-

similar. However, various astrophysical processes, such as turbulence, introduce additional physical scales,

which result in cluster evolution that deviates from self-similarity. Before we investigate how non-thermal

pressure support causes deviations from self-similarity, we briefly describe how the relevant observables

(i.e., "gas, )mg, and .SZ) scale in the Kaiser (1986) model.

Given a particular overdensity definition, cluster mass and radius are interchangeable via

"Δ = (4c/3)ΔdG (I)A3
Δ
, (5.1)

whereΔ is the overdensity factor. When haloes are defined with respect to amultiple of the critical density,

dG (I) ≡ dc (I) ∝ �2 (I) = Ωm (1+ I)3 +ΩΛ, whereas when they are defined with respect to the meanmatter

density, dG (I) ≡ dm (I) ∝ (1 + I)3.

The Kaiser (1986) model assumes that the density profile of the gas, dgas (A), is self-similar and that its

normalization is such that, for fixed Aap, the ratio between the enclosed gas mass, given by

"gas (< Aap) = 4c
∫ Aap

0
dgas (A)A2dA, (5.2)

and the enclosed total mass," (< Aap), is independent of halo mass. As we will see, the halo concentration-

mass relation introduces an additional mass-dependence that causes the gas profile shapes to deviate from

self-similarity. However, for large Aap, the assumption of a fixed "gas (< Aap)/" (< Aap) is still reasonable

because recent findings in both simulations and observations have found that the cumulative gas mass

fraction approaches the cosmic baryon fraction at or below ∼(1 − 2)A200m (e.g., Kravtsov et al., 2005; Ettori

et al., 2006; Planelles et al., 2013; Eckert et al., 2013; Mantz et al., 2014; Morandi et al., 2015) for clusters

with "500c & 1014 ℎ−1"� at 0 . I . 1. This assumption is less realistic for lower mass haloes, where gas

depletion due to feedback becomes significant.

The Kaiser (1986) model assumes that the gas is in HSE with the gravitational potential and that the

logarithmic slopes of the gas density and thermal pressure profiles are independent of halo mass. Hence,
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from the HSE equation,
1

dgas (A)
d%(A)

dA
= −dΦ(A)

dA
=
�" (< A)

A2 , (5.3)

where %(A) = %th (A) in the absence of non-thermal pressure, and assuming an ideal gas, we have that

" (< A) = − :B ) (A) A
`<p �

[
d ln)
d ln A

+
d ln dgas

d ln A

]
, (5.4)

where `<p is themean particle mass. This equation can be used to solve for) (A) given" (< A) and dgas (A),

from which we compute the spherically-integrated gas mass-weighted temperature

)mg (< Aap) =
4c

"gas (< Aap)

∫ Aap

0
dgas (A) ) (A) A2 dA . (5.5)

For the self-similar gas density profile assumed in the Kaiser (1986) model, this yields the following scaling

relation

)mg (< Aap) ∝ " (< Aap)2/3 [ΔdG (I)]1/3 . (5.6)

Note the dependence on ΔdG (I), which introduces a redshift dependence in the normalization of this scal-

ing relation between cluster temperature and mass.

Lastly, to compute the cylindrically-integrated SZ signal,.(/ (< 'ap), we first calculate the Compton-H

parameter by integrating the thermal pressure of the gas along the line-of-sight using

HSZ (') = 2
∫ Ab

'

=e (A)
:B)e (A)
<e22 fT

A dA
√
A2 − '2

, (5.7)

where :B,<e, 2, and fT are standard constants and =e (A) and)e (A) denote the electron gas number density

and temperature profiles. The line-of-sight integration is performed out to Ab ≡ 2A200m, which is roughly

consistent with the radius of the accretion shock beyondwhich the pressure profile rapidly drops to the am-

bient pressure of the intergalactic medium (see e.g., Molnar et al., 2009; Lau et al., 2015). We then integrate

HSZ (') over the aperture using

.SZ (< 'ap) = 2c
∫ 'ap

0
HSZ (')' d'. (5.8)

As can be seen from equation (5.7), the SZ signal is proportional to the product of the gas density and
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Quantity Mass Slope Overdensity Slope
.SZ (< 'ap) 5/3 1/3
"gas (< Aap) 1 0
)mg (< Aap) 2/3 1/3

Table 5.1: The observable cluster quantities studied in this work alongside their predicted power-law co-
efficients with respect to halo mass and spherical overdensity according to the self-similar model. The
integrated Sunyaev-Zel’dovich signal, .SZ, is calculated within a projected aperture, whereas the gas mass,
"gas, and gas mass-weighted temperature, )mg, are computed within a spherical aperture.

temperature. Hence, the self-similar Kaiser (1986) model predicts that

.SZ (< 'ap) ∝ "gas (< Aap) )mg (< Aap)

∝ " (< Aap)5/3 [ΔdG (I)]1/3 .
(5.9)

In Section 5.3.3, we study the deviations of these observable-mass relations from self-similarity due

to the injection of turbulence via mass assembly. The observable quantities and their self-similar scaling

relations are summarized in Table 5.1.

5.2.2 Mass accretion histories

We assume that the dark matter distribution of haloes follow the Navarro-Frenk-White (NFW) density pro-

file (Navarro et al., 1997) with enclosed mass

" (< A) = "vir
5 (2virA/Avir)
5 (2vir)

, (5.10)

where "vir, Avir, and 2vir are the halo virial mass, radius, and concentration,3 respectively, and 5 (G) =

ln(1 + G) − G/(1 + G).

The mass assembly history, "vir (I), tracks the main branch of the halo, which is the branch of the halo

merger tree that follows themain progenitor of themain progenitor of themain progenitor and so on (halo

merger trees are discussed in detail in Section 2.1 of Jiang & van den Bosch, 2016). We compute individual

MAHs using the merger tree method described in Parkinson et al. (2008), a Monte Carlo approach based on

the extended Press–Schechter (EPS; Bond et al., 1991) formalism, which the method comparison project of

Jiang & van den Bosch (2014) finds to perform the best at reproducing merger trees in simulations.

The EPS formalism gives the progenitor mass function (PMF), =("p, I2 |"1, I1) d"p, which specifies the

average number of progenitor haloes with amass of"p±d"p/2 present at I2 that merge into a descendant

3. "vir is the mass enclosed within Avir, inside of which the mean density is equal to Δvir (I) times the critical density. At I = 0,
Δvir (I) ≈ 100, and is otherwise well-described by Bryan & Norman (1998) for general I and cosmology. The concentration is 2vir =

Avir/As, with As the NFW scale radius.
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halo with a mass of "1 at I1 < I2. Given a target halo mass of "vir,0 at redshift of observation I0, one

can sample a set of progenitor halo masses from the PMF, "p,1, "p,2, ..., "p,# , that at a previous time of

I1 = I0+ΔI satisfy
∑#
8=1 "p,8 = "vir,0. Beginning at I0, themerger tree is constructed bywalking backwards

in timewith a temporal resolution ofΔI (which need not be constant along the tree), at each point sampling

the progenitors of each descendant down to a mass resolution of"res. This"res is typically a fixed fraction

of the target halomass, whichwe denotekres = "res/"vir,0; throughout this work, we use amass resolution

ofkres = 10−4. The Parkinson et al. (2008)method generatesmerger trees based on the ‘binarymethodwith

accretion’ of Cole et al. (2000) alongside a PMFmodified from EPS theory to reproduce the merger statistics

of the Millennium Simulation (Springel et al., 2005). For the construction of the tree, we use the timestep

schedule motivated in Parkinson et al. (2008), which corresponds to ΔI ≈ 10−3. However, as discussed in

Section 2.2 of van den Bosch et al. (2014), for the purpose of computational efficiency, we down-sample the

temporal resolution of the merger tree outputs to a timestep of ΔC = 0.1Cff (I). The free-fall time for a halo

with a critical overdensity of 200 at a redshift of I, Cff (I) ∝ (1 + I)−3/2, is on the order of the halo dynamical

time. Hence, there is little information added by using a smaller ΔC; we have verified that our subsequent

results are converged with respect to the merger tree timestep.

These Monte Carlo MAHs are used in our analysis of the observable-mass relations in Sections 5.3.3

and 5.3.4. When we are interested in the average properties of a given halo of mass "vir,0 at redshift of

observation I0, we use the ‘universal model’ of the average MAH described in van den Bosch et al. (2014)

(see their Section 4.1 and Appendix C). In this case, we also trace the MAH back to the redshift that satisfies

kres = 10−4 = " (I)/"vir,0. The average MAHs are used to study the properties of 5nth (A) and the HSE bias

in Sections 5.3.1 and 5.3.2.

For illustrative purposes, in Fig. 5.2, we showmany differentMonte Carlo-generated"vir (I) trajectories

for haloes with log("vir (I = 0)/[ℎ−1"�]) = 14. In addition, we overplot the average MAH predicted by

the van den Bosch et al. (2014) model for a halo of the same mass, demonstrating good agreement.

Concentrations are determined using the model of Zhao et al. (2009) as modified by van den Bosch et al.

(2014) to accurately reproduce the concentrations seen in Bolshoi. The halo concentrations are given by

2vir ("vir, C) = 4.0

[
1 +

(
C

3.40C0.04

)6.5
]1/8

. (5.11)

At proper time C, the halo has mass "vir (C). The time C0.04 is the proper time at which the halo’s progenitor

has accumulated a mass of 0.04"vir (C), which can be computed directly from the MAH. If 0.04"vir (C) <

kres"vir,0, we set 2vir (C) = 4, which is the lower bound in the Zhao et al. (2009) model that all haloes tend

toward at high I; we have verified that our results are insensitive to this choice. Note that each halo has
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Figure 5.2: Example mass accretion histories, "vir (I), for haloes with a final mass of log("vir (I =

0)/[ℎ−1"�]) = 14. The black, dashed lines correspond to individual MAHs generated by the Monte Carlo
method of Parkinson et al. (2008) whereas the thick, red line represents the ‘universal model’ of the average
MAH developed in van den Bosch et al. (2014). The individual MAHs are essential for studying the scatter
in the observable-mass scaling relations (Sections 5.3.3 and 5.3.4), whereas the average MAH is used for
studying properties of the non-thermal pressure fractions and HSE mass bias (Sections 5.3.1 and 5.3.2).

a 2vir (C) trajectory determined solely by its MAH. We have verified that the main results of this work are

insensitive to the specific 2vir ("vir, I) model used (we isolate the effect of the 2vir ("vir, I) relation on our

results in Section 5.3.3).

When discussing the effect of themass assembly history on deviations from the self-similar observable-

mass relations, it is convenient to use a summary statistic of "vir (I) that captures the mass accretion rate

(MAR) over a finite period of time. Throughout, we use the definition of the MAR introduced in Diemer

(2017), which encapsulates the change in "200m over one dynamical (or crossing) time, Cdyn = 2A200m/{200m,

where {200m is the circular velocity at A200m. This MAR is written as

Γ =
log["200m (0obs)] − log["200m (01)]

log(0obs) − log(01)
, (5.12)

where 0obs = (1 + I)−1 corresponds to the redshift of observation I and 01 = 0(Cobs − Cdyn) is the scale

factor one dynamical time prior to observation. In practice, the MAHs are discretely sampled in time, so

we approximate 01 and"200m (01) as the value of the scale factor andmass at the timestep that is closest to

C (01) in the MAH output. Note that the halo concentration anti-correlates with Γ—more relaxed systems

tend to be more highly concentrated.

5.2.3 Total pressure and gas density profiles

Assuming the dark matter halo is well-described by the NFW density profile, Komatsu & Seljak (2001, here-

after KS01) develop a polytropic gas model for clusters in HSE where the thermal pressure is %th (A) ∝
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dgas (A)) (A) ∝ dgas (A)W , with W the polytropic index (note that this is different than the adiabatic coeffi-

cient).

However, by studying simulated galaxy clusters, Shaw et al. (2010) find that a polytropicmodel describes

the total pressure profile, %tot (A), better than %th (A). Specifically, Shaw et al. (2010) report that %tot (A) fol-

lows a polytropewith fixed W = 1.2 over four decades in dgas (A), indicating that W does not varywith cluster-

centric radius. Hence, we use the model of KS01 to compute %tot (A) ∝ dgas (A))eff (A) ∝ dgas (A)W . Here,

)eff (A) is an effective temperature profile that accounts for both the thermal and non-thermal pressure,

which we write as )eff (A) ≡ )eff ,0\ (A). The resulting total pressure and gas density are thus parameterized

as

%tot (A) = %0\ (A)
W

W−1 and dgas (A) = d0\ (A)
1
W−1 , (5.13)

where all of %0, d0, and \ (A) depend on "vir and 2vir.4 In addition, for reasons explained below, we have

that W = W(2vir). Plugging these parameterizations into the HSE equation (equation [5.3]), where we now

use %(A) = %tot (A), yields

\ (A, "vir, 2vir) = 1 + W − 1
W

d0

%0
[Φ(0) −Φ(A)] , (5.14)

withΦ(A) the NFW gravitational potential profile, given by

Φ(A) = −�"vir

Avir

2vir

5 (2vir)
ln(1 + 2virA/Avir)

2virA/Avir
. (5.15)

A core assumption of KS01 is that the gas density profile traces the dark matter density profile in the

outer halo. Under this assumption, the normalization of the mass-temperature relation (or, when %tot ≠

%th, the mass-effective-temperature relation; i.e., %0/d0 ∝ )eff ,0) is determined by asserting that the slope

of the dark matter and gas density profiles are the same at some matching radius, A∗. In order for the gas

profile to trace the dark matter profile over a large radial range (Avir/2 < A < 2Avir), their slopes must

agree for a range of A∗. Since the value of %0/d0 should not depend on the choice of A∗, the polytropic

index, W, is set such that %0/d0 is independent of A∗ (in other words, W solves d(%0/d0)/dA∗ = 0). Since the

shape of the dark matter density profile depends on halo mass via the mass-concentration relation, both W

and %0/d0 also depend on 2vir. We follow KS01, adopting their polynomial fitting functions given by their

equations (25) and (26). Both W and %0/d0 grow with 2vir and thus tend to be lower in disturbed systems

with high MAR.

Motivated by the discussion of "gas (< Aap)/" (< Aap) in Section 5.2.1, we set the normalization of
4. The native mass definition of the KS01 gas model and our MAH models (Section 5.2.2) is that of Δvir (I) . We convert between

mass and radius definitions using the concentration model in equation (5.11) and adopt the ‘200m’ and ‘500c’ mass conventions for
comparisons with various simulation and observational results.
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dgas (A) such that "gas (< 2A200m) is equal to the cosmic baryon fraction Ωb/Ωm times " (< 2A200m); our

results are insensitive to the exact radius used to set this normalization.

5.2.4 Non-thermal pressure profile

In order to calculate cluster observables, we need to disentangle %th (A) from %tot (A) = %th (A) + %nth (A),

where %nth (A) is the non-thermal pressure. We determine the non-thermal pressure by following the ana-

lyticalmodel of Shi & Komatsu (2014, hereafter SK14). From the KS01 total pressure and gas density profiles,

we calculate the total velocity dispersion of the gas (per degree of freedom) as

f2
tot (A, "vir, 2vir) = %tot (A)/dgas (A) = (%0/d0)\ (A). (5.16)

We emphasize that f2
tot evolves in time due to changing mass and concentration, i.e., "vir (I) and 2vir (I).

The ansatz of SK14 is that the turbulent energy (per unit mass per degree of freedom), f2
nth (A), dissipates

on a timescale proportional to the eddy turn-over time of the largest eddies, which is in turn proportional

to the local orbital time, Cdis (A) = VCorb (A)/2, and a fraction [ of the total energy injected into the cluster

via mass growth is converted into turbulence. Based on this ansatz, the non-thermal energy evolves as

df2
nth

dC
= −

f2
nth

Cdis
+ [

df2
tot

dC
. (5.17)

The free parameters are calibrated against cosmological simulations in Shi et al. (2015) to V = 1 and [ = 0.7,

which we adopt throughout. Determining f2
nth at redshift I is an initial value problem; SK14 find that the

results are insensitive to the initial redshift, I8 , and initial f2
nth, opting to use I8 = 6 and f2

nth (A, I8) =

[f2
tot (A, I8). Rather than begin at a fixed I8 , our initial redshift varies based on the I8 that satisfies " (I8) =

kres"vir,0. For example, for kres = 10−4, haloes in the mass range 12 ≤ log("vir (I = 0)/[ℎ−1"�]) ≤ 15.5

have a I8 that varies from 5 − 20, with a distribution that peaks at I8 = 10. Hence, our initial conditions use

kres = 10−4 and f2
nth (A, I8) = [f

2
tot (A, I8).5 We have verified that our subsequent results do not change if we

decrease kres (i.e., increase I8); additionally, we have verified that at kres = 10−4, the results are insensitive

to the initial f2
nth (A, I8) profile used. This is because at the corresponding sufficiently high initial redshift,

the time between I8 and I is manymultiples of the initial Cdis (A) (i.e., 15−104 times) for all A and I of interest,

dissipating away the initial value of f2
nth. Note that f

2
nth is evolved independently for each cluster-centric

radius A .

5. We also impose the physical constraint that whenever f2
nth (A , C 9−1) < −df2

nth (A , C 9−1) , then f2
nth (A , C 9 ) = 0 rather than be-

coming negative; this can happen occasionally near the halo center, where Cdis is small.
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The timestep used in the f2
nth evolution is the same as that of the merger tree, which corresponds to

10% of the instantaneous cluster free-fall time at a critical overdensity of 200. At each timestep, the halo

mass and concentration are updated based on the MAH model described above in Section 5.2.2. The up-

dated "vir (I 9 ) and 2vir (I 9 ) result in updated W(2vir), (%0/d0) (2vir), and Φ(A, "vir, 2vir), which we can use

to compute f2
tot (A, I 9 ). We then compute

df2
tot

dC
(A, I 9 ) =

f2
tot (A, I 9 ) − f2

tot (A, I 9−1)
C (I 9 ) − C (I 9−1)

, (5.18)

after which we can compute df2
nth/dC to get our updated f

2
nth (A, I 9 ). Note that different"vir (I) and 2vir (I)

trajectories thus result in different (df2
tot/dC) (A, I) trajectories. Hence, for fixed"vir at observation redshift

I, all variance in the f2
nth profiles is due to inter-cluster differences in MAHs. We have checked our results for

convergencewith respect to timestep in thef2
nth evolution, finding that thefinalf

2
nth change insignificantly

when the size of the timestep is reduced by a factor of five.

With f2
nth (A) computed, we define the non-thermal energy fraction as 5nth (A) = f2

nth (A)/f
2
tot (A). The

thermal pressure profile is then %th (A) = [1− 5nth (A)]%tot (A).6 From %th (A) and dgas (A), we can compute the

aforementioned cluster observables. In addition, we explore the mass and redshift dependence of the non-

thermal pressure fraction and its implications for the HSEmass bias in Sections 5.3.1 and 5.3.2, respectively.

We emphasize that all results have been tested for convergence with respect to (i) the temporal res-

olution of the MAH and associated f2
nth equation integration, (ii) the initial conditions used for the inte-

gration of f2
nth (i.e., f

2
nth (A, I8) and kres), (iii) the spatial resolution of the cluster profiles used to integrate

the observables, and, where relevant, (iv) the number of MC-generated MAH realizations used to compute

observable-mass relationships.

5.2.5 Quantifying scaling relations

In our analysis of cluster scaling relations, we study individual, Monte Carlo-generated haloMAHs using the

merger tree method of Parkinson et al. (2008). For each redshift of observation and cosmology considered,

we generate 10,000 MAHs for haloes sampled uniformly in the mass range 12 ≤ log("vir (I)/[ℎ−1"�]) ≤

15.5. For consistency with other studies, our analysis uses the mass range of 14 ≤ log("200m/[ℎ−1"�]) ≤

15.6 (a total of ∼4,500 clusters), but we use the lower-mass systems to check for any dependence on the

mass cutoff in the scaling relations (as well as study how properties of Γ depend on halo mass in Fig. 5.3).

In the cluster mass regime, our assumption of a mass-independent "gas (< Aap)/" (< Aap) ratio is well-

6. Note that the temperature is related to the effective temperature (Section 5.2.3) via) (A ) = [1 − 5nth (A ) ])eff (A ) .
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justified (see the discussion in Sections 5.2.1 and 5.2.3). For each MAH, the 5nth (A) profile is evolved to the

redshift of observation. Then, spanning a range of apertures, Aap, we compute the observables,"gas (< Aap),

)mg (< Aap), and .SZ (< 'ap), and the corresponding halo mass, " (< Aap). We aim to elucidate how the

slope, normalization, and scatter of the observable-mass relationships evolve with redshift and depend on

aperture and cosmology. Note that we use the same aperture to calculate both the observable and the enclosed

mass. It is sometimes the case in observational studies that the mass is measured within one aperture (e.g.,

A500c) and the observable is measured within a larger aperture (e.g., .SZ [< 5'500c]), which can introduce

additional effects due to the mass-concentration relation. We emphasize that in the limit that 5nth = 0,

the observables are computed purely from the KS01 model with %th = %tot, yielding the self-similar cluster

scaling relations discussed in Section 5.2.1 with no scatter or deviation aside from that due to the mass-

concentration relationship; thus, all scatter is due to the variance in the halo MAHs and its impact on the

5nth profile and halo concentrations. In particular, increased 5nth will result in )mg and .SZ decreasing and

falling below the self-similar curve.

For each observable, -obs (< Aap), we compute the best-fit power-law relationship

-obs (< Aap) = 10U
(
" (< Aap)
[1014ℎ−1"�]

)V
, (5.19)

with U the normalization and V the power-law slope. We then compute the (natural) logarithmic residuals

as

R = ln(-obs,true) − ln(-obs,fit), (5.20)

where -obs,fit is computed from equation (5.19) given the " (< Aap) of each halo.7

We find that the ln-residuals for the)mg−" and.SZ−" relations are not normally distributed due to a

strong left-skew (i.e., there is a long tail towards large, negative R). As we illustrate in Section 5.3.4, this is

directly due to a right-skew in the recent MARs of the haloes and a correlation between Γ and non-thermal

pressure support, which ultimately suppresses.SZ. As shown in Fig. 5.3, themean of and variance inΓ grows

with both halo mass and redshift for MAHs generated via the Parkinson et al. (2008) method; this is directly

responsible for a variety of trends in Section 5.3. Note that part of the strong right-skew is due to the fact

that the MAR is bounded from below by zero, but is not bounded from above. A deviation from normality

(and log-normality) of the residual distribution of .SZ − " in the form of a left-skew is also seen, albeit to

a milder degree, in the non-radiative (NR) hydrodynamically-simulated clusters of Battaglia et al. (2012)

(see their Fig. 22), indicating that in the absence of additional sources of non-thermal pressure beyond that

7. Note that our residual definition is opposite in sign to that which is normally used in the literature. As we show in Section 5.3.4,
R as defined in equation (5.20) correlates with the halo MAR.
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Figure 5.3: The mean of and dispersion in halo MARs, Γ (defined in equation [5.12]), as a function of halo
mass and redshift for halo MAHs generated via the Parkinson et al. (2008) method. The Γ distribution is
skewed (most strongly at low "200m and I); hence, “dispersion” is defined as half of the 16 − 84 percentile
range. Note that both the mean of and dispersion in Γ grow with "200m and I. These trends are ultimately
responsible for the same trends seen in the non-thermal pressure fractions (Section 5.3.1) and for the in-
creased scatter and decreased normalization in the scaling relations as I increases (Section 5.3.3).

109



introduced due to the halo assembly history, the residual distribution does indeed reflect the distribution

of halo MARs. However, with the addition of radiative cooling, star formation, supernovae feedback, and

AGN feedback, Battaglia et al. (2012) find that the residual distribution of .SZ − " approaches normality

(not log-normality). The relationship between the MAR and the.SZ −" residuals will be discussed in more

detail in Section 5.3.4.

The correlation between Γ and non-thermal pressure support also causes the scatter in the scaling re-

lations to increase systematically with halo mass. Regardless of the ln-residual distribution’s deviation

from normality and heteroscedasticity, ordinary least squares remains the best linear unbiased estimator

of the mass-observable regression coefficients (Plackett, 1950). These details, however, do affect how we

should report the scatter seen in the observable-mass relations. Typically, in analysis of both simulated

and observed clusters, the residual distribution is assumed to be log-normal with mean zero. Under this

assumption, one can simply report the scatter as the standard deviation of the ln-residuals, fR , which ap-

proximates the fractional/percent scatter, fΔ-/- , to within 5% (10%) accuracy for fR ≤ 0.1 (0.2). Due to

the substantial deviation from log-normality in our case and in an effort to make comparisons to results in

the literature, we report scatter instead based on half of the 16 − 84 percentile range of R. Our reported

percent scatters are smaller by roughly 1% (in absolute units, not relative) than they would be if we instead

used the standard deviation of the ln-residuals.

5.3 Results

We start this section off by exploring the non-thermal pressure fraction profiles of the average cluster ob-

served with a given mass at a particular redshift (Section 5.3.1). We then study the resulting average HSE

mass bias introduced due to non-thermal pressure support (and its dependence on halo mass and redshift)

in Section 5.3.2. We proceed to calculate the scaling relations of samples of individual clusters, studying

their dependence on aperture radius, cosmology, redshift, and halo mass limit in Section 5.3.3. Lastly, we

identify a strong correlation between the halo MAR and the .SZ − " residual in Section 5.3.4, briefly dis-

cussing the potential utility of such a relationship.

5.3.1 Non-thermal pressure fractions

Since the cornerstone of our analysis is the SK14 model of the non-thermal pressure, we first study its

predicted 5nth (A) profiles for an average cluster of mass "200m observed at I using the ‘universal model’

of the MAH from van den Bosch et al. (2014). In Fig. 5.4, we plot the 5nth (A) profiles for clusters of several

different masses as a function of A/A200m. The choice of A200m is motivated by Nelson et al. (2014b), who
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I 0 1 2 3
a200m log("200m/[ℎ−1"�])
1.16 13.00 11.61 10.30 9.11
2.01 14.20 13.13 12.14 11.27
4.10 15.40 14.60 13.88 13.27

Table 5.2: The peak heights studied in Fig. 5.4 and the corresponding halo masses at each redshift.

find that the 5nth (A/A200m) profiles of their sample of NR hydrodynamically-simulated galaxy clusters is

universal throughout their time evolution (this will be discussed more below); this universality is absent

when normalized by A200c.

In the left panels of Fig. 5.4, we hold "200m fixed and show how the 5nth radial profile changes with

observation redshift. As halo mass increases, the non-thermal pressure fraction increases. This can be

explained by the fact that higher mass haloes assemble at later times (e.g., Lacey & Cole, 1993; van den

Bosch, 2002; Li et al., 2008); hence, their recent MAR will be higher than that of lower mass haloes (cf.

Fig. 5.3). More non-thermal energy has been recently injected into a system with a higher recent MAR,

which results in a larger 5nth. We also see that at fixed halo mass, 5nth is larger for clusters observed at

higher redshift. This can be explained similarly to the previous point: in order for a halo to obtain amass of

" by I1 > I2, it must have accreted mass more rapidly than a halo with a mass of" at I2 (cf. Fig. 5.3). Note

that the fraction of non-thermal pressure is substantial, especially in the cluster outskirts — 5nth surpasses

50% by around ∼A200m for high-mass haloes and haloes at large I.

We now explore the dependence of 5nth (A/A200m) on peak height, a200m = Xc (I)/f("200m).8 In the right

panels of Fig. 5.4, we hold a200m fixed to several different values and show how 5nth (A/A200m) evolves with

redshift in each case (i.e., "200m is varied with I such that a200m remains constant). As is apparent, there is

far less redshift evolution at fixed peak height than at fixedmass. We overplot the fitting function of Nelson

et al. (2014b) for their universal 5nth (A/A200m) profile, finding that for the peak height consistent with the

I = 0 cluster masses studied in their work (a200m ≈ 4), the predictions of the SK14 model agree well with

what is seen in the simulations. There is an exception to this agreement, however, in the central regions of

the clusters, where the model underpredicts the non-thermal pressure fraction compared to that seen in

the Nelson et al. (2014b) simulations. As discussed in Shi et al. (2015), this is likely due to (i) the model’s as-

sumption of a one-to-one relationship between the cluster radius and the turbulence dissipation timescale

(note that this assumption is the primary source of the 5nth radial dependence) and (ii) the potential need

to incorporate radius and redshift dependence into [ to properly model the relative importance of high-

Mach accretion shocks and low-Mach internal shocks. Recently, Shi et al. (2018) found that the turbulence

8. Here, Xc (I) = Xc (I = 0)/�+ (I) is the critical overdensity for collapse (Gunn & Gott, 1972), �+ (I) is the linear growth factor
normalized to unity at I = 0, and f ("200m) is the RMS mass fluctuation in a Lagrangian volume corresponding to"200m.
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Figure 5.4: The non-thermal pressure fraction profiles of clusters, 5nth (A/A200m), as predicted by the SK14
model combined with the ‘universal model’ of the MAH from van den Bosch et al. (2014). (left) Each panel
holds the cluster mass, "200m, fixed and varies the redshift of observation. As either "200m or I increases,
the non-thermal pressure fraction increases due to the increased recent mass accretion rate. (right) Each
panel holds the peak height, a200m, fixed such that the I = 0 mass is the same as that in the corresponding
left panel. The masses corresponding to each peak height at the different redshifts are listed in Table 5.2.
There is minimal redshift evolution in 5nth (A/A200m) at fixed peak height. The ‘universal profile’ seen in
the simulated clusters of Nelson et al. (2014b) is over-plot (dot-dashed line), illustrating the peak height-
dependence that was not seen in their cluster sample due to their limited I = 0 mass range. Our fitting
function described by equation (5.21) and Table 5.3 (dotted line) incorporates a200m-dependence and repro-
duces the SK14 model at I = 1 at roughly 10% accuracy in the radial range of 0.2 ≤ A/A200m ≤ 2.0.
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dissipation timescale measured in simulations is indeed shorter at smaller cluster radii and suggested that

this is the case due to the stronger density stratification in the cluster core. Following this, Shi & Zhang

(2019) confirmed the role of the density stratification and indicated that the buoyancy time (CBV (A); i.e.,

the inverse of the Brunt-Väisälä frequency) may more accurately capture the timescale of turbulence dis-

sipation. The buoyancy time is nearly the same as the orbital time outside of the cluster core; however,

for non-cool-core clusters, the core in the cluster entropy profile results in a core in the buoyancy time

profile (i.e., CBV approaches a constant, non-zero value as A → 0). We find that using CBV for the turbulence

dissipation timescale causes the 5nth profiles to change by less than 10% outside of the cluster core region

(.0.2A200m) relative to the fiducial case of Corb — this propagates to a difference of only a few percent in our

subsequent .SZ model predictions, since the signal is dominated by the cluster outskirts.

The model does not predict a universal 5nth (A/A200m) profile, which clearly has a dependence on a200m

that, to good approximation, accounts for the dependence on both "200m and I. At first, this appears to be

at odds with the simulated clusters studied in Nelson et al. (2014b). However, they studied the evolution of

a cluster sample through time, with "200m only spanning half an order of magnitude in the range 14.8 <

log("200m/[ℎ−1"�]) < 15.4 at I = 0. This detail, combined with their use of a I-dependent mass cutoff

for the cluster sample, likely resulted in the Nelson et al. (2014b) sample spanning an insufficient range in

a200m to isolate evolution in redshift from universality in 5nth (A/A200m) at fixed a200m.

Motivated by our finding that, to good approximation, 5nth = 5nth (A/A200m |a200m), we present a fitting

function for the non-thermal pressure fraction that includes this a200m-dependence:

5nth (Ã |a) = 1 −
[
�
(
1 + 4−(Ã/�)�

) ( a
4.1

) �

(1+[Ã/� ]� )
]
. (5.21)

Here, a = a200m and Ã = A/A200m. The parameters of this function are calibrated to match the I = 1 predic-

tions of the model across 1.0 ≤ a200m ≤ 4.2 and are listed in Table 5.3. The fit, shown as dotted curves in

Fig. 5.4, is accurate to roughly 10% over the radial range of 0.2 ≤ A/A200m ≤ 2.0. In a future work, we will

further explore this a200m-dependence and the sensitivity of the 5nth (A/A200m) predictions to cosmology and

more realistic definitions of the turbulence dissipation timescale.

5.3.2 Hydrostatic mass bias

As discussed in the introduction, cluster mass inferences based on X-ray and SZ observations are typically

made under the assumption of HSE between the observed thermal pressure profile and the gravitational po-

tential. The true clustermass, however, is related to the total pressure profile, and thus any unaccounted-for

sources of non-thermal pressure result in underprediction of the cluster mass. The 5nth profiles predicted
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Parameter Value
� 0.495
� 0.719
� 1.417
� −0.166
� 0.265
� −2.116

Table 5.3: Calibrated parameters of the 5nth (A/A200m, a200m) fitting function described by equation (5.21),
which reproduces the model non-thermal pressure fractions to roughly 10% accuracy in the radial range of
0.2 ≤ A/A200m ≤ 2.0 at I = 1. Note that there is only a weak redshift dependence in the model predictions,
as can be seen in Fig. 5.4, so this fitting function can be easily used to make rough predictions regardless of
redshift.

by the SK14 model can be used to estimate the corresponding HSE mass bias.

From the HSE equation (i.e., equation [5.3]), one can compute howmuch the true mass, " , is underpre-

dicted ("HSE) as a function of mass and redshift. Assuming an accurate determination of the gas density

and thermal pressure profiles, which can be made possible through the combination of X-ray and SZ obser-

vations (e.g., Ameglio et al., 2009; Eckert et al., 2019; Ettori et al., 2019), this underprediction is written as

"HSE (< A)
" (< A) =

d%th/dA
d%tot/dA

= [1 − 5nth (A)] − %tot (A)
d 5nth/dA
d%tot/dA

. (5.22)

Since d%tot/dA is negative and d 5nth/dA is positive, this ratio should always be larger than 1 − 5nth (A) for

measurements of mass enclosed within A . Note that this estimate of the HSE bias neglects potential effects

due to the deviation from spherical symmetry and projection effects. In Fig. 5.5, we plot the predictions for

"HSE
500c/"500c as a function of "500c and redshift of observation. We use Aap = A500c (≈ 0.4A200m) since this is

the aperturemost commonly used for X-ray-based clustermass estimation. At this radius, the SK14model is

in good agreementwith the 5nth profiles of the simulated clusters of Nelson et al. (2014b), which only include

NR hydrodynamics. Hence, additional sources of non-thermal pressure due to magnetic fields, cosmic rays,

supernova feedback, among others, are not included and thus, we expect these estimates of the magnitude

of the HSE bias to be lower bounds. The SK14 model predicts that the magnitude of the HSE bias increases

considerably with cluster mass and observation redshift. At I = 0, HSE-based masses underestimate the

true masses by less than 10% even for the highest mass clusters. However, at I ∼ 2 − 3, the HSE bias results

in substantial underprediction of the true mass, by roughly 20% at group scales and as much as 30−40% for

high-mass clusters.

In the I = 0.25 simulated cluster sample from the BAHAMAS (McCarthy et al., 2017) andMACSIS (Barnes

et al., 2017a) hydrodynamic simulations studied in Henson et al. (2017), which include star formation, radia-

tive cooling, and feedback from supernovae and AGN (hereafter referred to as “full-physics” simulations),
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Figure 5.5: The HSE mass bias for"500c, computed using equation (5.22), as predicted using the SK14 model
of the non-thermal pressure. The “bias” increases as"HSE

500c/"500c decreases. These results are roughly con-
sistent with the simulated clusters studied in Henson et al. (2017, at I = 0.25, hatched black box), although
our results can be considered lower bounds, as sources of non-thermal pressure in addition to those due
to mass assembly are not modeled and will increase the bias. The mass bias increases substantially with
redshift, motivating further simulation studies focused on the HSE bias redshift evolution.

the HSE bias found is "HSE
500c/"500c ≈ 0.8 − 0.9 in the mass range 14 ≤ log("500c/[ℎ−1"�]) ≤ 15.5. Their

bias is only marginally larger than that predicted by our model (Fig. 5.5), which is most likely due to the

additional sources of non-thermal pressure captured in the full-physics simulations. Similarly, Ansarifard

et al. (2020) reports a median of "HSE
500c/"500c ≈ 0.9 for simulated clusters at I = 0 in a similar mass range.

On the other hand, using synthetic X-ray observations, Barnes et al. (2021) report biases as significant as

"HSE
500c/"500c ≈ 0.7 for simulated clusters at I = 0.1 with log("500c/"�) ≈ 15.3 — they find that this is

primarily due to the use of a single temperature fit to the full cluster spectrum. Additionally, Hurier &

Angulo (2018) report a similar bias of 0.73 ± 0.07 when using CMB lensing to estimate cluster masses, al-

though they find no significant dependence on mass or redshift. For reference, a larger bias is necessary

("HSE
500c/"500c ≈ 0.6) in order to resolve the tension between cosmological parameter estimates based on

the cluster mass function and cosmic microwave background approaches (Salvati et al., 2019).

We emphasize that these calculations are based on the average MAH for a cluster observed with a given

mass and redshift. Clusters that are more disturbed (i.e., have a higher recent MAR) will generally have

larger biases than the average, as their non-thermal pressure fraction will be larger. In fact, the difference

between the HSE bias of an individual cluster and the average (at fixed halo mass and redshift) should cor-

relate with the MAR; as we discuss in Section 5.3.4, a strong correlation also arises between the residuals of

the.SZ −" relation and the MAR. To date, we are not aware of any simulation studies that characterize the

evolution of the HSE bias over a reasonably large range of redshifts. Based on the results of Fig. 5.5, such a

study is warranted, as the redshift dependence of the HSE bias predicted will be important to account for
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in cluster count analyses that include high-I cluster samples from future surveys.

5.3.3 Cluster scaling relations

Having demonstrated that the average 5nth profiles (and resultant HSE biases) predicted by the SK14 model

are in good agreement with predictions from hydrodynamical simulations, we proceed to use the model

to study the cluster scaling relationships. In Fig. 5.6, we plot the best fit normalization, slope, and percent

scatter for the I = 0 relations as a function of Aap. In order to provide insight into the model predictions

and disentangle the nonlinear interactions between its various components, we calculate the cluster ob-

servables in three different ways. First, we compute cluster observables using the “full model” described

in Sections 5.2.3 and 5.2.4. We then repeat the calculations while holding the halo concentrations fixed to

2vir = 5 (referred to as the “fixed 2vir model”), isolating the impact of the mass-concentration relation. Go-

ing further, we perform a third set of calculations: while continuing to hold 2vir fixed, we now also replace

the radius-dependent turbulence dissipation timescale with its value at A200m (i.e., Cdis (A) = Cdis (A200m); re-

ferred to as the “fixed 2vir and Cdis model”). This elucidates the impact of the radial dependence of Cdis (A).

Note that in this final case, the 5nth profile is nearly constant with radius for a given halo and all variation

in 5nth between haloes is due to variation in MAHs.

5.3.3.1 "gas − " relation

Beginning with the "gas − " relation (middle column of Fig. 5.6), our model predicts no scatter in the

absence of a MAH-dependence on the concentration. This is simply due to our use of the KS01 model for

dgas, whichhasnodependence on thehaloMAHor 5nth but only on 2vir (the implications of this are discussed

in more detail in Sections 5.3.3.3 and 5.3.3.6). In the full model, the scatter goes to zero and the slope

goes to unity as Aap → 2A200m; this is simply due to our chosen gas density normalization that "gas (<

2A200m) = (Ωb/Ωm)" (< 2A200m). The effect of the mass-concentration relation and its intrinsic scatter on

the shape of both the dark matter and gas density profiles is responsible for the small change in slope (and

increase in scatter) of "gas −" as aperture radius decreases (see e.g., Fujita & Aung, 2019). Even with fixed

concentrations, the difference between the gas and dark matter density profile shapes is responsible for a

slight dependence on Aap in the "gas − " normalization.

5.3.3.2 )mg − " relation

Next, we direct our attention to the mass-weighted temperature, )mg (left-hand column of Fig. 5.6). In the

fixed 2vir and Cdis model, the scatter and slope are independent of aperture. More-massive clusters have
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Figure 5.6: The best fit normalization, slope, and percent scatter (i.e., half of the 16−84 percentile interval of
R) of the I = 0 observable-mass relations, described by equation (5.19) for )mg (< Arap) −" (< Aap), "gas (<
Arap) − " (< Aap), and .SZ (< 'ap) − " (< Aap). The fit parameters are shown as a function of the aperture
radius, Aap, in units of A200m; note that the same aperture is used to compute both the observable and the total
mass. In these fits, ∼4,500 clusters in the mass range 14 ≤ log("200m/[ℎ−1"�]) ≤ 15.6 are used. The black
dashed lines indicate the slopes predicted by the self-similar relations. The observables are computed using
the “full model” described in Sections 5.2.3 and 5.2.4 (black curves) as well as two simplified models, one of
which holds 2vir = 5 fixed (red curves) in order to isolate the effects of the mass-concentration relation and
another that holds both 2vir = 5 fixed and replaces the radius-dependent turbulence dissipation timescale
with its value at A200m (blue curves), isolating the interaction between Aap and the radius-dependence of
5nth (A). See the main text in Section 5.3.3 for detailed explanations of the trends with Aap.
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larger MAR, which drives larger 5nth (see the left panels of Fig. 5.4). For 5nth independent of radius, we have

that )mg ∝ (1 − 5nth), which, combined with the fact that 5nth grows with halo mass, results in the slope

of )mg − " lying below that of self-similarity. In this simplified model, the aperture-independent scatter

in )mg − " is also driven solely by variation in halo MAHs and is most sensitive to the mass evolution over

the previous dynamical time. Moving on to the fixed 2vir model, we notice that incorporation of a radius-

dependent Cdis (A) introduces a dependence on aperture into the slope and scatter of )mg −" . Higher mass

clusters tend to have 5nth (A) profiles that are overall larger inmagnitude and growmore rapidly with radius

(most notably in the inner radii; see once again the left panels of Fig. 5.4). Hence, their temperature profiles

will be more suppressed overall relative to self-similarity. In addition, since d 5nth (A)/dA increases with halo

mass (in the inner radii), the slope of )mg − " decreases further from self-similarity as Aap increases. The

scatter in 5nth (A) grows with radius due to the radially increasing Cdis (A); because of this, the scatter in

)mg − " grows with aperture radius. Lastly, by looking at the full model, we see two effects due to the

mass-concentration relation. First, 2vir (", I) results in further reduction in the )mg − " slope away from

self-similarity. Additionally, the variance in 2vir (", I) propagates to additional scatter in )mg − " that

becomes more substantial as Aap increases. Finally, the normalization of the )mg − " relation decreases

with increasing aperture for a simple reason. Since the cluster temperature decreases with radius, the

mass-weighted temperature must decrease as the aperture radius increases. In addition, the pivot mass

used for the relations is " (< Aap) = 1014ℎ−1"� regardless of aperture. Hence, this pivot mass at larger Aap

corresponds to a smaller total (virial) mass and thus a lower temperature normalization.

5.3.3.3 .SZ − " relation

Lastly, we turn to the integrated SZ signal, .SZ (right-hand column of Fig. 5.6). Since .SZ is simply the

cylindrically-integrated pressure profile, to good approximation .SZ ∝ "gas)mg. This relationship bares

out straightforwardly in Fig. 5.6, as the slope of the .SZ − " relation evolves roughly as the sum of the

slopes of the)mg −" and"gas −" relations. For the smallest values of Aap, we have verified that the slight

disagreement between the slope of .SZ − " and the sum of the )mg − " and "gas − " slopes is simply

due to projection effects that manifest due to the different impact of halo concentrations on spherically-

and cylindrically-integrated quantities. The clusters from the NR hydrodynamics simulations of Stanek

et al. (2010) yield a .SZ (< A200c) − "200c relation slope of 1.651 ± 0.003. For comparison, and noting that

A200c ≈ 0.6A200m, we find a slope in .SZ (< '200c) − "200c of roughly 1.635 (note that this reduces slightly

to 1.63 if we instead compute .SZ (< A200c) − "200c with a spherically-integrated .SZ, which is not shown).

In our calculations, the only source of scatter in "gas − " is the mass-concentration relation. However, as
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Figure 5.7: The best fit normalization, slope, and percent scatter of the .SZ (< 'ap) − " (< Aap) relation,
with masses scaled by the self-similarity evolution factor, (1 + I)3/5. The fit parameters are shown as a
function of Aap and different curves illustrate the redshift evolution from I = 0 to I = 3. In these fits,
∼4,500 clusters uniformly distributed in the mass range 14 ≤ log("200m (I)/[ℎ−1"�]) ≤ 15.6 are used for
each I. As observation redshift increases, the slope and normalization tend to decrease while the scatter
increases. The interaction of the redshift-dependence of the mass-concentration relation is responsible
for the apparent trend-reversals around Aap ≈ A200m. Similar results have been seen in hydrodynamics
simulations (e.g., Nagai, 2006; Battaglia et al., 2012; Le Brun et al., 2017; Planelles et al., 2017).

described above, the variance in the cluster MAHs drives the scatter in )mg −" and increases considerably

with aperture. Thus, in our model, the scatter in the.SZ − " relation is driven predominantly by the scat-

ter in the )mg − " relation. A more realistic model of the gas density profile that incorporates additional

baryonic processes will introduce additional variance into"gas−" , as well as stronger covariance between

"gas and)mg (see e.g., Stanek et al., 2010), which will ultimately increase the scatter in.SZ −" . Hence, our

scatter estimates should be regarded as lower bounds (see additional discussion in Section 5.3.3.6). Regard-

ing the reduction in normalization and slope of.SZ −" with increasing aperture, we find similar trends to

those reported in Nagai (2006).

5.3.3.4 Redshift evolution

Having explored the non-linear interactions between aperture radius, halo concentration, and turbulence

dissipation timescales in our model, we move on to study the redshift evolution of .SZ − " . In Fig. 5.7, we

plot the best fit normalization, slope, and percent scatter for the .SZ − " scaling relation as a function of

Aap for different samples of clusters observed at 0 ≤ I ≤ 3. When using a spherical overdensity definition

relative to the mean matter density (such as A200m), the full self-similar scaling relation is .SZ ∝ "5/3 (1 +

I) = [" (1 + I)3/5]5/3 (see Section 5.2.1). Thus, scaling the masses by (1 + I)3/5 accounts for the redshift

evolution predicted by the self-similar model. Any additional redshift evolution in the normalization or
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slope of.SZ−" (1+I)3/5 indicates I-dependent deviations fromself-similarity. Themodel predicts some rich

trendswith observation redshift. The normalization of.SZ−" (1+I)3/5 decreases slightlywith increasing I,

with the decrease being larger when a larger Aap is used. This is simply due to the fact that at earlier times,

halo MARs were generally higher (see Fig. 5.3), resulting in an overall increase in non-thermal pressure

support due to turbulence, and thus suppression in .SZ, with increasing I (as in Fig. 5.4). For Aap . A200m,

the slope of the relation decreases with increasing I. This is due to the fact that 5nth in the inner regions

increases more strongly with I in more massive haloes (this can be seen in the left panels of Fig. 5.4). The

apparent trend-reversal at larger aperture radii is caused by themass-concentration relation and its redshift

evolution. The model also predicts that scatter in.SZ −" increases with I, which is directly a consequence

of the increased variance in halo MARs at earlier times (see Fig. 5.3).

These redshift evolution trends are in overall agreementwith predictions fromNRhydrodynamical sim-

ulations, most clearly with regards to the scatter evolution. The studies by Battaglia et al. (2012), Le Brun

et al. (2017), and Planelles et al. (2017) all find that the scatter in.SZ − " increases slightly with increasing

I in their NR simulations (although only for high-mass clusters in the case of Le Brun et al. 2017). On the

other hand, only Battaglia et al. (2012) finds that the .SZ − " slope tends to decrease slightly away from

self-similarity with I, whereas Le Brun et al. (2017) and Planelles et al. (2017) find minimal redshift evolu-

tion in the slope. The .SZ − " slope increases when going to the full-physics AGN simulations slightly in

Battaglia et al. (2012) and significantly (up to ∼2) in Le Brun et al. (2017), whereas it remains virtually un-

changed in Planelles et al. (2017), highlighting a point of tension between simulation results. These studies

(as well as Nagai, 2006) have reported that the redshift evolution of the normalization shows no significant

deviation from self-similarity when Aap = A500c, consistent with our findings for Aap ≈ 0.4A200m. However,

the predictions of Fig. 5.7 show that deviations from self-similarity are expected to increase in magnitude

when larger aperture radii are employed. This, combined with the current tension between the results of

various simulation studies (particularly with regards to the dependence of the.SZ −" slope on I and AGN

physics), suggests that the redshift evolution (and its dependence on Aap) of cluster scaling relations needs

to be studied in more depth using large cluster counts. In particular, a comparison between NR and full-

physics simulationswill help determinewhether or not the trends due to variance inMAHs predicted by our

model are washed out by additional physical processes (such as AGN and supernova feedback, etc.). With

upcoming surveys pushing to larger cluster counts and higher I, characterizing the redshift evolution of

these scaling relations is of paramount importance. If our model prediction that scatter in the relations in-

creases significantly with redshift is correct, then it will be important to continue to develop lower-scatter

mass proxies with less sensitivity to redshift in order to maximally utilize upcoming high-redshift cluster

data to their full potential for precision cosmology.
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Figure 5.8: The best fit normalization, slope, and percent scatter of the .SZ (< 'ap) − " (< Aap) scaling
relation at I = 0. The fit parameters are shown as a function of the aperture radius, Aap, in units of A200m.
In these fits, ∼4,500 clusters in the mass range 14 ≤ log("200m/[ℎ−1"�]) ≤ 15.6 are used. Each curve
represents a different cosmology, varied about the fiducial Planck Collaboration et al. (2020) cosmological
parameters — the variations in .SZ − " with cosmology are subtle, but the trends we find are consistent
with the simulations of Singh et al. (2020). Our predicted scatter in .SZ − " for Aap = A500c ≈ 0.4A200m (at
I = 0) is only slightly below the scatter seen in the NR hydrodynamical simulations of Pike et al. (2014).
The majority of simulation studies predict scatter in the range of 10 − 16%. Hence, much of the scatter in
.SZ −" is simply due to inter-cluster variation in the mass assembly histories, which drives variance in the
cluster 5nth (A) profiles.

5.3.3.5 Dependence on cosmology and halo mass cutoff

In Fig. 5.8, we consider the impact of single-parameter variations about the fiducial (Planck Collaboration

et al., 2020) cosmology on .SZ − " at I = 0. Over the range of cosmologies studied, we find small but

systematic trends. Recently, Singh et al. (2020) studied the effect of variations in the cosmological param-

eters on X-ray-based cluster scaling relations using full-physics hydrodynamics simulations based on the

Magneticum suite.9 Using an aperture of Aap = Avir, they find that the slope and normalization of .SZ − "

systematically decrease with increasingΩm. We qualitatively reproduce these trends. While the changes to

the properties of the.SZ − " relation due to large changes in the cosmological parameters (relative to the

posterior distributions of the Planck Collaboration et al. 2020 parameters) are small, both the present work

and Singh et al. (2020) illustrate that more accurate models of the cluster scaling relations (and their de-

pendence on cosmology) may eventually provide an additional approach to constraining the cosmological

parameters given large (∼104−105) cluster samples fromnext-generationmissions, such as eROSITA, Simons

Observatory, and CMB-S4. However, for such an approach to be feasible, future analytical gas models must

account for additional significant physical processes (see Section 5.4) and the accuracy of their predictions

9. http://magneticum.org/
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must be validated against simulations that span a realistic range of cosmological parameters.

The level of variation in the slope and scatter of the.SZ−" relation caused by changes in the cosmology

are similar in magnitude to the level of variation imparted due to changing the minimum halo mass cutoff.

In particular, decreasing the minimum halo mass used to compute these relations tends to decrease the

overall scatter in the .SZ − " relation, since the dispersion in Γ is lower for low-mass haloes (see Fig. 5.3).

In addition, a lower mass limit tends to move the slope closer towards self-similarity due to the decrease in

5nth with decreasing halo mass. We find that decreasing the mass cutoff from log("200m/[ℎ−1"�]) ≥ 14

to log("200m/[ℎ−1"�]) ≥ 12 decreases the percent scatter in .SZ (< 'ap) − " (< Aap) by ∼1% (in absolute

units, not relative) and increases its slope by ∼0.01 towards self-similarity. While these changes are small,

this does impart a degeneracy between the mass regime used and the cosmological parameters that may

become important with sufficiently large cluster samples. Importantly, we emphasize that our model does

not include various physical sources of non-thermal pressure support that become increasingly important

for low-mass haloes (e.g., feedback). In addition, it remains unclear how valid our choice of gas density

normalization (i.e., fixed "gas (< 2A200m)/" (< 2A200m) = Ωb/Ωm) is for low-mass haloes. Hence, these

trendswith respect to the halomass cutoffmust be consideredwith reservation. Thehalomass-dependence

of 5nth results in a more complex relation between halo mass and observable than a simple power law can

capture; future analyses should consider employing localized linear regression (e.g., as used in Farahi et al.,

2018; Anbajagane et al., 2020) in order to quantify the mass-dependence of the scaling relation properties.

5.3.3.6 Scatter comparison with simulations and observations

The simplemodel of SK14 demonstrates that a substantial fraction of the total scatter in the.SZ−" relation

is likely to arise from inter-cluster variance in the non-thermal pressure, which in turn arises from variance

in the halo MAHs. There have been numerous studies that address the scatter in the .SZ − " relation

using simulations (da Silva et al., 2004; Nagai, 2006; Stanek et al., 2010; Battaglia et al., 2012; Kay et al., 2012;

Sembolini et al., 2013; Pike et al., 2014; Yu et al., 2015; Hahn et al., 2017; Le Brun et al., 2017; Planelles et al.,

2017; Henden et al., 2019; Singh et al., 2020) as well as observations using both weak-lensing and HSE X-

ray masses (Bonamente et al., 2008; Hoekstra et al., 2012; Marrone et al., 2012; Planck Collaboration et al.,

2014b; Czakon et al., 2015; Sereno et al., 2015; Nagarajan et al., 2019). At I = 0, most simulation studies find

an intrinsic scatter in.SZ at fixedmass of 10−16%when using 'ap = '500c ≈ 0.4'200m. There are indications

in these studies that the scatter increases slightly when going fromNR runs to full-physics simulations with

AGN (see e.g., Battaglia et al., 2012). On the lower end, the.SZ (< '500c)−" (< A500c) relation computed using

the NR simulations of Pike et al. (2014) has a scatter of just 6%. For comparison, the intrinsic scatter in the
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.SZ−" relation predicted by ourmodel, using the same aperture (see Fig. 5.8) andwith the samemass cutoff

(log("200m/[ℎ−1"�]) ≥ 14), is ∼5%. It is important to note that as SZ observation sensitivity increases,

observable-mass scaling relations will be measured using larger apertures, most notably 'ap = 5'500c ≈

2'200m. While our computation illustrates that with this larger aperture the assembly-driven scatter in

.SZ−" increases to 9%, it is possible that contributions to the intrinsic scatter from the cluster core (largely

due to feedback) will be reduced. Hence, the optimal aperture radius that minimizes the intrinsic scatter

in .SZ − " is yet to be determined. Additionally, our model uses a very simple prescription for the gas

density profile, with its only source of halo-to-halo variance, the mass-concentration relation, introducing

less than 1% scatter into "gas − " . Based on the NR simulation results of Stanek et al. (2010), we expect

that by using a gas profile model that incorporates a more realistic response to halo assembly, scatter in

"gas − " should increase (to ∼3.6%) and covariance between "gas and )mg residuals should be significant

(Pearson d = 0.48). Using these estimates, the scatter in our model .SZ − " should increase to 7 − 12% (in

the range of 'ap = '500c − 5'500c), which is even closer to the results of simulation studies.

Observational studies tend to find a higher intrinsic scatter in thewider range of 14−35%, most of which

use 'ap = '500c, but similar results are found with 'ap = '2500c. If a 5% (10%) Gaussian scatter is added to

the cluster masses to mimic observational uncertainties, our predicted scatter in.SZ (< '500c) −" (< A500c)

increases from ∼5% to 10% (18%), which is more consistent with the observed results. The observational

errors, particularly with regards to mass estimation, are still large; hence, the true intrinsic scatter in the

relation is expected to be significantly lower than the values reported in the current observational litera-

ture, further motivating the development of more-accurate mass estimation techniques. However, it is also

possible that additional processes not modeled in the full-physics simulations (e.g., magnetic fields and

cosmic rays) are responsible for some of the additional intrinsic scatter observed.

5.3.4 Mass accretion rate prediction

As discussed in the Section 5.2.5, the model predicts a skewed distribution of the ln-residuals of the.SZ −"

relation due to the skewed distribution of MARs, Γ (see equation [5.12]). In the SK14 model, a high recent

MAR will increase 5nth (A), resulting in a decrease in the magnitude of the observables, )mg and.SZ (at fixed

halomass). In Fig. 5.9, weplot the distributions ofΓ and the ln-residuals,R, computed for the.SZ (< '200m)−

" (< A200m) relation at I = 0. There is a strong left-skew in the R distribution towards over-predictions,

and this skewness is mirrored in the MAR distribution towards a small fraction of haloes with high Γ (i.e.,

disturbed clusters). The skewness in R is present regardless of mass cutoff or aperture employed.

The correspondence between the two distributions suggests that the.SZ −" residual, which is itself an
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Figure 5.9: The distributions of halo MARs, Γ, defined by equation (5.12), and the ln-residuals, R, of
the .SZ − " relation. The scaling relation is computed at I = 0 for clusters in the mass range 14 ≤
log("200m/[ℎ−1"�]) ≤ 15.6. The right-skew of the MAR distribution towards a minority of disturbed
clusters is responsible for the left-skew in the R distribution, as a high MAR increases 5nth and reduces the
magnitude of the observables. The correspondence between the distributions suggests an anti-correlation
between the two quantities (see Fig. 5.10).
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observable quantity, is likely to anti-correlate with the underlying halo MAR. The ability to estimate Γ from

an observable would be powerful since, as discussed in Diemer et al. (2017), Γ is closely connected to the

splashback radius andmass, Asp/A200m and"sp/"200m. The splashback radius has been suggested as a better,

physically-motivated definition for the halo boundary (Adhikari et al., 2014; Diemer & Kravtsov, 2014; More

et al., 2015; Mansfield et al., 2017; Xhakaj et al., 2020), but it has proven difficult thus far to observe Asp for

individual clusters.

In Fig. 5.10, we plot the cluster MARs against their .SZ − " ln-residuals for several different redshifts.

Diemer et al. (2017) present a fitting function for the median MAR seen in cosmological simulations as a

function of I and a200m, whichwedenoteΓ∗ anduse to standardize ourΓ values (i.e.,Γ−Γ∗). There is a strong

trend between the scaling relation ln-residual and themedian-standardizedMAR, with a Pearson d = −0.77

and Spearman AB = −0.82 at I = 0. The slope of the relation tends to increase in magnitude slightly with

I. Importantly, for R = 0, the trend predicts that Γ − Γ∗ ≈ 1; in other words, if the cluster falls on the

best-fit line for the.SZ − " relation, its MAR tends to be around the median for a halo of its mass at I. It is

unclear whether or not such a strong trend between the residuals and haloMAR exists in real clusters, since

previous simulation studies (e.g., Battaglia et al., 2012) have found that the MAR-driven skewness in the

.SZ −" residuals decreases and the distribution approaches normality when additional physics beyond NR

hydrodynamics ismodeled in the simulations. The relationship between the observable.SZ−" ln-residuals

and Γ should be explored in future full-physics simulation studies in order to quantitatively measure the

strength of the Γ − R relation and forecast its predictive power for determining other secondary cluster

properties that have recently been tied to theMAR, such as assembly bias (Sunayama &More, 2019) and the

asphericity of the ICM (Chen et al., 2019).

5.4 Discussion

Our approach assumes that non-thermal pressure is dominated by turbulence generated during mass as-

sembly. The SK14 model of the non-thermal pressure profile does not yet take into account various sec-

ondary effects due to baryonic physics, many of which will likely increase the intrinsic scatter in the scal-

ing relations from what is presented here, especially for low-mass haloes and when small apertures are

used. Radiative cooling and star formation results in the condensation of gas into the center of the cluster,

reducing the baryon budget. Both Shaw et al. (2010) and Flender et al. (2017) modeled this by assuming

that the gas adiabatically contracts or expands due to the change in total gas mass. Feedback due to AGN

and supernovae provide additional sources of turbulence, especially in the inner regions of the cluster (e.g.,

Vazza et al., 2013; Zhuravleva et al., 2014; Chadayammuri et al., 2020). These feedback effects become more
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significant as the halo mass decreases; hence, they must be accurately modeled in order to successfully

quantify the thermodynamic properties of low-mass haloes through stacked measurements from upcom-

ing microwave and X-ray surveys.

Observations of non-thermal X-ray emission and radio haloes (e.g., Million & Allen, 2009; Kale et al.,

2013) imply the presence of additional non-thermal pressure due to cosmic rays and magnetic fields in the

ICM. Substantial turbulent energy can also be injected into the cluster outskirts by the magneto-thermal

instability (Parrish et al., 2008, 2012). Strong constraints have been placed on themagnetic field strength in

the ICM, limiting the magnetic field-associated pressure to be much smaller than the thermal pressure (≈

5%, Dolag & Schindler, 2000; Iapichino & Brüggen, 2012). Observations of W-ray emission in nearby clusters

provide constraints on the pressure due to cosmic ray protons generated from shocks in the ICM to be less

than 2% of the thermal pressure (Ackermann et al., 2014; Shirasaki et al., 2020a). Some simulations, however,

suggest that cosmic rays could provide almost 50% of the total pressure in the cluster cores (Sijacki et al.,

2008). Thus, although the overall additional non-thermal pressure due to magnetic fields and cosmic rays

is likely small, better constraints are still warranted in order to determine the importance of incorporating

their effects into future models of the total non-thermal pressure support.

Throughout our work, we assume spherically symmetric pressure and gas profiles for the clusters. The

observational analysis of Arnaud et al. (2010) has shown that deviations from spherical symmetry and vari-

ations in cluster shapes can lead to scatter in the spherically-averaged pressure profiles. The recent hydro-

dynamical simulation study of Chen et al. (2019) has also reported that deviations from spherical symmetry

increase the scatter in X-ray-based observable-mass scaling relations, additionally illustrating that the el-

lipticity of the ICMmay be seeded by theMAH. Hence, the impact ofmass assembly on the scatter in both SZ

and X-ray observable-mass relations studied using our approach should still be regarded as a lower bound.

The strength of future theoretical models will be greatly increased by incorporating the effect of mass ac-

cretion on triaxiality and cluster shape.

We have also neglected the impact of line-of-sight projection effects on the cluster observables. In par-

ticular, we study some spherically-integrated observables (i.e.,"gas and)mg) and cut off the HSZ (') line-of-

sight integration at 2A200m. However, simulated light cone studies have demonstrated that a non-negligible

fraction of the SZ signal arises from from the warm diffuse gas residing outside of groups and clusters (Hall-

man et al., 2007). Furthermore, Shirasaki et al. (2016) found that the projection of correlated structures

along the line-of-sight introduces additional scatter into the scaling relation between the tSZ effect signal

and the weak lensing mass. Thus, future gas models that aim to be combined with #-body simulations for

efficient production of mock light cones must take into account the impact of the warm-hot intergalactic

medium and other correlated structures along the line-of-sight.
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5.5 Conclusion and future outlook

We quantified the effects of mass assembly-driven turbulence on the .SZ − " scaling relation. This was

accomplished by combining a simple model of the total pressure and gas density profiles, a model of the

evolution of non-thermal pressure, and Monte Carlo-generated halo mass accretion histories. We summa-

rize our most salient findings below:

• The average non-thermal pressure fraction profiles, 5nth (A), tend to increase as halo mass or obser-

vation redshift increases. This is simply due to the fact that (i) higher mass haloes assemble later and

(ii) a higher redshift of observation requires more rapid mass accretion at fixed halo mass.

• When radii are normalized by A200m, themodel predicts 5nth (A/A200m) profiles that exhibit near-universality

in redshift at fixed peak height, a200m. This finding is consistent with the simulation study of Nelson

et al. (2014b). We provide a fitting function for 5nth (A/A200m |a200m) described by equation (5.21) and

Table 5.3.

• As a consequence of 5nth (A) increasing with halo mass and redshift, the model predicts that the mag-

nitude of the average HSE mass bias (i.e., the deviation of the HSE-inferred mass from the true mass)

also experiences these same trends.

• The scatter in the.SZ −" relation due solely to inter-cluster variance in the halo MAHs ranges from

5 − 9%, increasing with aperture radius and I. This should be regarded as a lower bound, as the

scatter will likely increase by a few percent once a more realistic model of the gas density profile is

incorporated. For reference, most NR hydrodynamical simulations predict 10 − 15% scatter. Thus,

our model predicts that assembly-driven turbulence is responsible for a substantial fraction of the

total scatter in .SZ − " .

• The slope of.SZ −" tends to decrease slightly away from the self-similarity slope of 5/3 as aperture,

redshift, or halomass limit increases. This dependence on aperture was also reported in Nagai (2006).

• There are small trends in the slope, normalization, and scatter of.SZ−" with cosmology. The trends

seen in Fig. 5.8 are consistent with those seen in the X-ray observable-mass relations of the simulated

clusters in Singh et al. (2020). The perturbations in.SZ−" due to cosmology are similar inmagnitude

to those seendue to variations in the lowermass cutoffused for computing the relation. This indicates

that careful control of sample selectionwill be essential for any attempt touse cluster scaling relations

to constrain cosmological parameters.
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• The model predicts a skewed distribution of ln-residuals, R, for .SZ − " due to the skewed distribu-

tion of Γ, in agreement with the NR hydrodynamical simulations of Battaglia et al. (2012). We find

that Γ anti-correlates tightly with R (Spearman AB = −0.82 at I = 0), potentially introducing a new

observational approach to estimating the mass accretion rate via .SZ − " .

The non-thermal pressure support present in galaxy clusters must be taken into account in order to

make accurateHSEmass estimates andutilize the full statistical power thatwill be available innext-generation

X-ray and SZ surveys for cluster count-based cosmological analyses. By studying the non-thermal pressure

fraction profile, which is an important component of analyticalmodels of the ICM (Shaw et al., 2010; Flender

et al., 2017), we highlighted the dependence of accretion-driven turbulence on halo mass and redshift. As

survey sensitivity continues to grow, the need to model and correct for the HSEmass bias over a wide range

of halo masses and redshifts (especially smaller group mass haloes and high-redshift systems) is becoming

increasingly important. This work represents a step towards developing a more accurate analytical model

of the hot gas in groups and clusters, whichwill help (i) disentangle the effects of AGN/supernovae feedback

from the non-thermal pressure driven by the structure formation process and (ii) model the cosmological

dependence of the ICM.

The current model of the gas density, developed in KS01, is very simple and does not include any bary-

onic physics. Hence, a promising next step in model development should involve incorporating the effects

of galaxy formation physics into the darkmatter and gas density models (e.g., Schneider et al., 2020), which

would enable the modeling of both galaxy formation and structure formation physics in a unified analyti-

cal framework. In addition, future cosmological simulations should focus on illuminating the importance

of additional physical effects. Idealized simulations may over-predict the non-thermal pressure attributed

to magnetic fields and thermal conduction (Parrish et al., 2012) since the turbulence and shocks generated

by the structure formation process interact non-linearly withmagnetic fields, which can lead to turbulence

that changes non-monotonically with halo mass (McCourt et al., 2013). Modeling the turbulence pressure

caused by additional sources as well as capturing baryonic effects on the dark matter (i.e., halo response

modeling) and ultimately calibrating such models based on simulations will be crucial for combining the

ICM model with models of the galaxy-halo connection and #-body simulations to generate a physically

motivated and computationally efficient framework for interpreting forthcoming multi-wavelength cos-

mological datasets. Such an approach will eventually enable the use of correlation statistics from multi-

wavelength cosmological surveys to constrain cosmology and astrophysics (Shirasaki et al., 2020b).

Currently, the best observations of bulk and turbulentmotions in the ICM are of the Perseus cluster core,

where the Hitomi X-ray observatory has reported high-resolution measurements of emission line Doppler
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shifting and broadening (Hitomi Collaboration et al., 2018; Simionescu et al., 2019b, for a recent review).

In the near future, XRISM/Resolve (Tashiro et al., 2018) and Athena/X-IFU (Barret et al., 2016) will measure

the turbulence in the ICM for many nearby clusters and within the cores of more distant clusters, provid-

ing an opportunity to check the 5nth (A) model, correct for the HSE mass bias, and properly calibrate the

mass scale (Ota et al., 2018). Furthermore, the Lynx X-ray Surveyor (Gaskin et al., 2019) and Cosmic Web

Explorer (Simionescu et al., 2019a) have been proposed as future-generation X-ray telescopes that would

enable exquisite measurements of turbulence out to the halo outskirts of an unprecedentedly large sample

down to the galaxy mass scale.

In the future, millimetre-wave observations may provide a promising and complementary lens into

the thermodynamics of and gas motions in the ICM via the thermal and kinematic SZ effects (see e.g.,

Mroczkowski et al., 2019). Upcoming and proposed microwave instruments, such as the TolTEC camera,10

CCAT-prime,11 CMB-HD (Sehgal et al., 2019), and Voyage2050 (Basu et al., 2021), will enable high-resolution

SZ spectral imaging of clusters. This additional spectral information encodes a measurement of the kine-

matic SZ effect, which can be used to separate the cluster peculiar velocity and internal velocity dispersion

(Inogamov & Sunyaev, 2003; Nagai et al., 2003; Sayers et al., 2019), thus providing a direct measurement of

the non-thermal pressure support. Furthermore, since the strength of the SZ signal is independent of red-

shift, this approach can be used to observe the redshift-dependence of 5nth (A). Lastly, these observations

will facilitate relativistic SZ corrections, which can be leveraged to study temperature structures in the ICM

and mitigate the biases in the derived SZ and X-ray temperatures (see e.g., Chluba et al., 2012, 2013; Lee

et al., 2020).

Finally, previous attempts at measuring the mass accretion rate of clusters via its relationship to the

splashback radius have suffered from systematic uncertainties such as selection and projection effects (Bax-

ter et al., 2017; Busch &White, 2017; Zu et al., 2017). The strong correlation between Γ and the ln-residuals,

R, of the.SZ −" relation highlighted in this study may provide an alternative means to measure the MAR,

provided that the relationship is not washed out by other sources of non-thermal pressure or by observa-

tional errors. In addition to this Γ − R relation, machine learning algorithms may provide an alternative

approach that enables more accurate determinations of both Γ and the cluster mass, employing input fea-

tures such as images of the ICM and summary statistics that quantify the cluster shape (e.g., Green et al.,

2019; Ntampaka et al., 2019a).

10. http://toltec.astro.umass.edu/

11. http://www.ccatobservatory.org/
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Chapter 6

Cluster mass estimation

This chapter has been published as an article by Green et al. (2019) in the Astrophysical Journal by IOP

Publishing.

6.1 Background

G
alaxy clusters are the largest gravitationally bound objects in the universe. They are rare,

with masses & 1014 "� , and their abundance is sensitive to the underlying cosmological

model. Cluster counts can be used to constrain cosmological parameters, provided that

there is an accurate way to connect the cluster observables (such as X-ray luminosity or

temperature) to the underlying dark matter halo mass (for a recent review see Pratt et al., 2019).

Recent cluster-based constraints are in tension with Planck cosmic microwave background (CMB) cos-

mological constraints. For example, Sunyaev-Zeldovich (SZ; Sunyaev & Zeldovich, 1972) surveys find fewer

massive clusters thanwould be expected from the Planckfiducial cosmology (e.g., Planck Collaboration et al.,

2016b). This tension could be explained by amass bias — a systematic under-estimation of X-ray based clus-

ter mass estimates based on the hydrostatic assumption at the level of 30−45% (Planck Collaboration et al.,

2016b; Bolliet et al., 2018; Zubeldia & Challinor, 2019; Makiya et al., 2020). However, a significant mass bias

remains controversial. First, hydrodynamical cosmological simulations predict a hydrostatic mass bias in

the range of 15− 40% (e.g. Rasia et al., 2006; Nagai et al., 2007; Lau et al., 2013; Nelson et al., 2014a; Shi et al.,

2016; Biffi et al., 2016; Henson et al., 2017) due to non-thermal pressure support provided by bulk and turbu-

lent gas motions (e.g. Lau et al., 2009; Nelson et al., 2014b; Shi et al., 2015) and temperature inhomogeneities

in the intracluster medium (ICM) (Rasia et al., 2014). Recent observational results agree that the hydro-

static bias must be small, at least for relaxed systems (e.g. Applegate et al., 2016; Eckert et al., 2019; Ettori
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et al., 2019; Ghirardini et al., 2019). Second, the hydrostatic mass bias may also arise from the instrument-

dependent systematic uncertainties in X-ray temperaturemeasurements (Schellenberger et al., 2015; Israel

et al., 2015). Finally, some cluster- and large-scale structure-based efforts put constraints on cosmological

parameters that are consistent with those from the CMB (e.g., Mantz et al., 2015a; de Haan et al., 2016; Ab-

bott et al., 2018) while others are in tension with them (e.g., Hildebrandt et al., 2020; Joudaki et al., 2020;

Ntampaka et al., 2019b). Given the importance of this problem, concerted efforts are underway to calibrate

the cluster mass scales using optical weak lensing measurements of background galaxies (e.g. von der Lin-

den et al., 2014a; Hoekstra et al., 2015; Applegate et al., 2016; Dietrich et al., 2019) and CMB lensing (e.g.,

Raghunathan et al., 2019).

With next-generation observational surveys, such as the eROSITA X-ray survey (Merloni et al., 2012),

soon to come online, massive data releases that will offer immense cosmological model constraining power

are just around the corner. The eROSITA survey is predicted to identify ∼93,000 galaxy clusters at or above

the 50 photon limit with " & 1013.7 ℎ−1 M� (Pillepich et al., 2012, 2018). The product of spectral temper-

ature and gas mass, .- , is one of the lowest scatter mass proxies (Kravtsov et al., 2006). However, many

of the eROSITA observations will be in the regime of low-photon counts, making )- - and .- -based clus-

ter mass estimates inaccessible (Borm et al., 2014). The core-excised luminosity (!-,ex) is another lower-

scatter mass proxy that does not require )- measurements; excluding the still poorly understood cluster

cores (A . 0.15 '500c) reduces the scatter in the.- mass-!-,ex (Maughan, 2007; Pratt et al., 2009) and weak

lensing mass-!-,ex (Mantz et al., 2018) relationships, but does so at the expense of drastically reducing the

photon statistics.

Methods that provide improvements to !- -basedmass estimates for these low-photon eROSITA clusters

could have a steep payoff. Even in the low-signal regime, there are subtle observable signals that can of-

fer key insights for improving cluster mass estimates. Measures of cluster morphology, including surface

brightness concentration (e.g., Santos et al., 2008), centroid shift (e.g., Mohr et al., 1993), andmorphological

composite parameters (e.g., Rasia et al., 2013), provide additional information about a cluster’s dynamical

state (Mantz et al., 2015b), which has been shown to influence the scatter in the mass-)- relationship of

simulated clusters (Ventimiglia et al., 2008), the correlated scatter in the relationship between weak lens-

ingmass and integrated SZ Compton parameter.sph (e.g., Angulo et al., 2012; Marrone et al., 2012; Shirasaki

et al., 2016), and the probability that a cluster is observed (Eckert et al., 2011; Planck Collaboration et al.,

2011; Lovisari et al., 2017).

Modernmachine learning (ML) techniques have been shown to reduce error inmass estimates of galaxy

clusters. The techniques that have been developed use cluster dynamics (Ntampaka et al., 2015, 2016; Ho

et al., 2019), X-ray images (Ntampaka et al., 2019a), and multiple wavelength summary statistics (Armitage
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et al., 2019; Cohn & Battaglia, 2020) as input; similar ML techniques have also been applied to less-massive

galaxy groups (Calderon & Berlind, 2019; Man et al., 2019). These methods hinge on using ML to extract

additional information from complex correlations in themass-observable relationships. Here, we useML to

take advantage of the complex correlations amongmorphological parameters, dynamical state, and cluster

mass to improve mass estimates.

Our new X-ray cluster mass measurement technique utilizes cluster dynamical state information, en-

coded in X-ray morphological parameters, to provide improved, lower-scatter mass estimates relative to

a mass-luminosity linear regression. In addition, we demonstrate that this improvement is obtained even

in low-photon count eROSITA observations, which makes the inclusion of dynamical state information a

promising avenue for future cosmological analyses that depend on robust cluster mass estimates. In Sec-

tion 6.2, we introduce the Magneticum simulations and mock Chandra and eROSITA X-ray observations of

simulated galaxy clusters used in this work. In Section 6.3, we provide an overview of the X-ray morpho-

logical parameters employed as features in our models. In Section 6.4, we describe the preprocessing of the

mock catalog data and several regression methods used to build our models. We summarize the results of

our models in Section 6.5, followed by our conclusions and proposed follow-up work in Section 6.6.

Throughout this chapter, the WMAP7 ΛCDM cosmology (Komatsu et al., 2011) is used: Ωm = 0.272,

ΩΛ = 0.728, Ωb = 0.046, ℎ = 0.704, f8 = 0.809, and =s = 0.963. The base-10 logarithm is denoted by log.

All errors are quoted at the 68% level. The majority of this work is performed using the scikit-learn

(Pedregosa et al., 2011) Python package.

6.2 Hydrodynamical simulations

6.2.1 The Magneticum simulations

Our cluster catalog is built from theMagneticum1 (Dolag et al., 2015; Dolag et al., 2016; Ragagnin et al., 2017)

suite of cosmological hydrodynamical simulations. Magneticum uses a WMAP7 cosmology (Komatsu et al.,

2011) with a range of baryonic physics included (for additional details about the simulations and the in-

cluded baryonic physics, see, e.g., Biffi et al., 2013; Steinborn et al., 2015; Teklu et al., 2015; Steinborn et al.,

2016; Bocquet et al., 2016; Remus et al., 2017).

We select clusters from the Magneticum Box2 and Box2b high-resolution simulations, selected for hav-

ing sufficient resolution and volume to produce a suitable cluster catalog. Box2 has cubic side length of

352ℎ−1 Mpcwith a dark matter particle resolution of "dm = 6.9× 108 ℎ−1 M� and halo catalogs at I = 0.10,

1. https://www.magneticum.org/

132

https://www.magneticum.org/


13.50 13.75 14.00 14.25 14.50 14.75
log(M500c) [M�h−1]

0

50

100

150

200

C
lu

st
er

s
p

er
0.

1
de

x
m

as
s

bi
n

Figure 6.1: Mass function of the cluster sample used in this work. The sample is flat in the range 1013.5 ≤
"500c/(ℎ−1 M�) ≤ 1014.2 and begins decaying in cluster counts for 1014.2 ≤ "500c/(ℎ−1 M�) ≤ 1014.8. This
sample consists of a total of 2,041 clusters. This uniform distribution in log("500c), our predicted quantity,
enables the regression model optimization to equally weight a broad range of cluster masses.

0.14, 0.17, 0.21, 0.25, and 0.29 (as well as higher I, but these are not included in our analysis). Box2b is

larger in volume (640ℎ−1 Mpc on a side), has identical mass resolution, and has cluster catalogs at I = 0.25

and 0.29.

We initially select all clusters according to their spherical overdensitymasses,"500c,2 determined using

the SUBFIND algorithm (Springel et al., 2001; Dolag et al., 2009). All clusters above 1013.5 ℎ−1 M� are initially

included and then subsampled in order to limit the sample to ≤ 230 clusters per 0.1 dex mass bin. The

resulting training catalog has a flat mass function at lower masses, which helps to eliminate mass depen-

dence in the scatter. Above ∼1014.2 ℎ−1 M� , the mass function of this sample falls off, following the mass

function of the simulation (Bocquet et al., 2016). Hence, the sample has a flat mass function in the range

1013.5 ≤ "500c/(ℎ−1 M�) ≤ 1014.2 and a fallingmass function in the range 1014.2 ≤ "500c/(ℎ−1 M�) ≤ 1014.8

(see Fig. 6.1). Redshifts in the range 0.1 ≤ I ≤ 0.21 are roughly equally represented, with ∼300 clusters per

redshift. However, our sample contains ∼450 clusters at I = 0.25 and I = 0.29 due to the addition of Box2b

clusters.

The final cluster sample includes a total of 2,041 clusters in the redshift range 0.1 ≤ I ≤ 0.29, con-

sisting of clusters from both Box2 and Box2b. Within this sample, there are 984 unique clusters, many of

which are observed at multiple redshifts. Based on the assumption of self-similarity (Kravtsov & Borgani,

2012), we verify that the distributions of all relevant features included in themodel exhibitminimal redshift

evolution, justifying our inclusion of multiple snapshots for a particular cluster.

2. We define "500c as the mass enclosed within a sphere of (comoving) radius '500c whose mean density is 500 times the critical
density of the universe at I = 0.
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6.2.2 Mock observations

From the cluster catalog, we create mock Chandra and eROSITA observations, employing the PHOX algorithm

(Biffi et al., 2012, 2013). PHOX models the ICM thermal emission from gas particles by computing the ex-

pected number of photons given a fiducial (and large) exposure time and collecting area. The photon en-

ergies are then projected onto the sky plane along a chosen line of sight and cosmologically redshifted. A

foreground galactic absorption model is applied, and models for Chandra ACIS-I and eROSITA are used to

simulate the actual detections. Further details of the Magneticum implementation of PHOX can be found in

Biffiet al. (2012), Biffi et al. (2013), and the publicly availableMagneticum CosmologicalWeb Portal (Ragagnin

et al., 2017).3

This implementation of PHOX allows the user to select from a number of parameters. For all observa-

tions, we select the ICM-only setting (i.e., AGN are not included as point sources in this work) and employ a

10 Mpc image line-of-sight size to include all relevant correlated structure. We seek to quantify the level of

improvement in cluster mass estimates that can be made possible by incorporating dynamical state infor-

mation, first in an idealized scenario and then in a realistic case thatwill be consistentwith the observations

made in upcoming large, high-throughput surveys such as eROSITA. To this end, our analysis features two

different mock observation series: (i) mocks with Chandra-like angular resolution (“idealized Chandra” for

short) with a Chandra ACIS-I instrument area and field of view (2071 × 2071 pixels, 16.9’ FoV, 0.49” pixel)

and a 1 Ms observing time, in the idealized regime of a flat effective area with respect to photon energy

(600 cm2) and no point spread function (PSF) smearing, as well as (ii) “realistic eROSITA” observations with

an eROSITA instrument area and field of view (384 × 384 pixels, 1.03◦ FoV, 9.7” pixel) with a 2 ks observing

time (Merloni et al., 2012) and instrument response and PSF modeled (see Ragagnin et al. (2017) for further

details regarding eROSITA instrument modeling). To more closely imitate the conditions of the upcoming

eROSITA observations, the “realistic eROSITA” mock images also include background noise. The process by

which this noise is added is described below. The eROSITAmock observations have a median photon count

of∼2000 for clusters observed at I = 0.1 and∼100 for clusters observed at I = 0.29. In contrast, the Chandra

mocks have a median photon count of ∼6 × 105 for clusters observed at I = 0.1 and ∼3 × 104 for clusters

observed at I = 0.29; clearly, derivative quantities computed from the “idealized Chandra” observations will

be affected much less by Poisson noise.

The cluster bolometric luminosities !- are calculated by PHOX using the publicly available X-ray pack-

age XSPEC (Arnaud, 1996). Core-excised luminosities !-,ex are computed as follows: (i) compute the total

observed photon count #tot within '500c, (ii) compute the observed photon count within 0.15'500c, denoted

3. https://c2papcosmosim.uc.lrz.de/
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#ce, and (iii) scale the bolometric luminosity by the ratio of the photon count observed outside of the core

to the total photon count, i.e., !-,ex =
#tot−#ce
#tot

!- . In this work, the core-excised luminosity is used since

it has been shown to have lower intrinsic scatter with the cluster mass (Maughan, 2007; Mantz et al., 2018)

and is less sensitive to the details of the complicated core physics models used in the simulations. We note

that, for the “realistic eROSITA” observations, the core-excised photon count ratios are computed prior to the

addition of background noise. This likely makes our mock luminosities more accurate than in the case of real

eROSITA observations. However, this choice puts the core-excised luminosities from our two observation

series on equal footing, such that the model performance differences between the idealized and realistic

cases will be dominated by the quality of the morphological parameters.

Redshift is not explicitly included as a feature to train the regression models, however the redshift is

used in scaling the luminosity. Thus, the core-excised luminosity used in this work is always appropriately

scaled by the redshift evolution factor, assuming self-similarity, such that we use

!ex,z ≡ !-,ex� (I)−7/3 =
#tot − #ce

#tot
!-� (I)−7/3. (6.1)

In the 0.5 − 2.0 keV energy band, eROSITA anticipates an average photon plus particle background of

2.19 × 10−3 counts B−1 arcmin−2 (Clerc et al., 2018). Thus, for eROSITA, the background is given by a Poisson

distribution with rate _ = 0.113/(2 ks) (Merloni et al., 2012). A unique Poisson background is generated for

and added to each eROSITAmock observation.

6.3 Morphological parameters

In order to encode information about the dynamical state of the cluster into the model, we incorporate

various morphological parameters as features, all of which can be directly calculated from the mock X-ray

images. In the following, we define each of these parameters. We refer the reader to Lotz et al. (2004),

Rasia et al. (2013), and Lovisari et al. (2017) for more in-depth discussion on each of the parameters. Unless

otherwise specified, the aperture used to compute themorphological parameters has a radius of 'ap = '500c

and is centered on the cluster X-ray peak; we discuss the implications for this choice at the end of this

section.

First, the concentration parameter 2 quantifies how centrally concentrated the X-ray emission is within

the cluster, and has been shown by Santos et al. (2008) to be an indicator for the presence of cooling-core

systems at high I. Concentration is defined to be the ratio of the flux within two circular apertures: 0.1'ap

and 'ap (Lovisari et al., 2017).
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The centroid shift parameter | is defined as the variance of the projected separation between the X-ray

peak of the image and the emission centroid obtained within 10 circular apertures of increasing radius up

to 'ap (Lovisari et al., 2017).

The power ratios, introduced by Buote & Tsai (1995), use the ansatz that the X-ray surface brightness

profiles are a good tracer of the cluster’s projected mass distribution. The “power” is encoded in the coef-

ficients of a 2D multiple decomposition of the cluster X-ray image, where higher-order components probe

increasingly smaller scales. The =th-order power ratio %=0 = %=/%0 is, in essence, the ratio between the =th

multipole moments and the 0th multipole moment. In this work, we consider %10, %20, %30, and %40. The

latter two probe large- and small-scale substructures present within the cluster, and thus further convey

dynamical information.

The second power ratio %20 provides ameasurement of the cluster ellipticity. Another ellipticity param-

eter, denoted 4, is also calculated, defined as the ratio between the semiminor and semimajor axis (Lovisari

et al., 2017).

The asymmetry parameter � quantifies the rotational symmetry of the cluster X-ray emission (Lotz

et al., 2004). � is calculated by rotating by 180◦ and self-subtracting the background-subtracted cluster

image from itself, summing the values of the pixels in this image difference and normalizing by the summed

pixels in the original image (Abraham et al., 1996).

The smoothness ( quantifies the degree of small-scale substructure within the cluster (Lotz et al., 2004).

( is calculated by boxcar-smoothing and self-subtracting the background-subtracted cluster image from

itself, again summing the values of the pixels in this image difference and normalizing by the summed

pixels in the original image (Conselice, 2003).

Lastly, the "20 parameter is an analog of concentration (Lotz et al., 2004). The total second-order

moment of the light is a distance-to-center-weighted sum of the flux 58 within all pixels 8 in the cluster,

" =
∑
8 58 [(G8 − G22)2 + (H8 − H22)2], where 22 denotes the cluster center. Then, "20 is computed as the

ratio of the partial second moment "? , which sums over only the brightest pixels that contain 20% of the

cluster light, divided by the total second moment, written as "20 = log("?/").

These morphological parameters encode dynamical state information. For example, disturbed clusters

tend to be asymmetric (high �), clumpy (high (), and not concentrated (low 2). All of the parameters in-

troduced above are calculated for each mock cluster observation, and are used as features in our regression

model.

In the subsequent analysis, we utilize two distinct series of morphological parameters, which are com-

puted from our two mock observations series, described above. The “idealized Chandra” series is computed

from the background-free Chandra observations, using 'ap = '500c. The “realistic eROSITA” series is com-
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Figure 6.2: Distributions of the surface brightness concentration 2, asymmetry �, and smoothness ( com-
puted from the “idealized Chandra” and “realistic eROSITA” mock cluster observation series. Several other
morphological parameters are also employed in the analysis (see Sec. 6.3), but we find that 2, �, and ( are
most important for strengthening the cluster mass model.

puted from the eROSITA observations with added background, also using 'ap = '500c; in this case, the mean

background is subtracted prior to computing the parameters. The former series is intended to give an upper

bound on the expected improvement in cluster mass estimates made possible by including dynamical state

information present in idealized, high spatial resolution (0.5”), and high-photon count observations. The

latter series is intended to give a more realistic estimate of the expected improvement that will be possible

in upcoming cosmological analyses that will be performed with low-photon count cluster observations. We

acknowledge that by using the exact '500c for our aperturewhen computing themorphological parameters,

we are neglecting additional scatter that will be present due to this effect. Also, in the case of the “idealized

Chandra” series, properly including PSF effectswould introduce additional smoothing to these observations.

Hence, our subsequent results will remain as optimistic estimates. As we find below, the most important

morphological parameters are smoothness, asymmetry, and concentration. In Fig. 6.2, we plot the distri-

butions of these three parameters, comparing the “idealized Chandra” and “realistic eROSITA” series. While

we find generally good agreement between the two series, it is clear that the eROSITA cluster observations

result in systematically lower concentrations and higher smoothness parameters.

The lack of high-concentration objects in the eROSITAmocks is due to the broader PSF of eROSITA with

respect to Chandra. Photons originating from the central regions of the observed systems are redistributed

over a wider area, which reduces the concentration with respect to the true value. Since we do not attempt

to correct for PSF smearing by applying PSF deconvolution, our procedure for reconstructing 2 values from

eROSITA mocks underestimates the concentration of highly-peaked objects. While also impacted by the

broader PSF, the shift to larger ( (i.e., less smooth) in the eROSITA mocks is additionally due to both (i) the

lower exposure time, which results in a less “filled in” photon distribution due to Poisson noise, and (ii) the

presence and subtraction of background, which introduces additional Poisson noise.

Additionally, in Fig. 6.3, we show several example Chandra cluster images to demonstrate the morpho-
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Figure 6.3: Sample Chandra-like cluster images illustrating morphological parameter differences. Each im-
age is centered on the cluster X-ray peak and is cropped a side length of 2'500c. All clusters shown have
1014.3 ≤ "500c/(ℎ−1 M�) ≤ 1014.6 at I = 0.1. Top: highly concentrated cluster on the left (2 = 0.37) and
weakly concentrated cluster on the right (2 = 0.04). Middle: Asymmetric cluster on the left (� = 1.49)
and symmetric cluster on the right (� = 0.93). Bottom: Less smooth cluster on the left (( = 1.03) and
more smooth cluster on the right (( = 0.61). Note that a higher value of the smoothness parameter cor-
responds to a cluster whose surface brightness profile is less smooth. When combined, these parameters,
among others (see Sec. 6.3), capture the cluster dynamical state by quantifying details such as the presence
of substructure or tidal distortions.
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logical parameters, in particular the concentration 2, asymmetry �, and smoothness (. All clusters shown

have roughly the same mass, lying in the range 1014.3 ≤ "500c/(ℎ−1 M�) ≤ 1014.6, and are all at the lowest

redshift of I = 0.1. The images are all scaled by the cluster '500c. Clearly, a cluster with a larger concen-

tration has a substantially larger fraction of its flux coming from its core. Furthermore, the asymmetry

parameter is successfully able to capture disturbances or substructure in the cluster that result in reduced

symmetry. The smoothness parameter is capable of quantifying small-scale structures; note that a cluster

with a larger value of ( is overall less smooth, and more likely to contain substructures.

6.4 Analysis methods

6.4.1 Data preprocessing

As stated previously, our sample consists of 2,041mock cluster observations across six redshifts in the range

0.1 ≤ I ≤ 0.29. Each observation consists of many features, including core-excised !ex,z and all of the mor-

phological parameters described in the previous section. The logarithm of the power ratios %80, centroid

shift |, and luminosity are used due to their large dynamic ranges, whereas the remaining features are not

transformed. The regression target for each observation is log("500c) of the cluster.

The sample is then split into a training set that comprises 80% of the observations (1,617 clusters) and a

test set that comprises the remaining 20%of the observations (425 clusters); this train-test split is a common

rule of thumb based on the Pareto principle. The split is performed such that all redshift observations

of each unique cluster are assigned either to the training or test set, but not split between the two. For

optimization of hyperparameters, :-fold cross-validation is employed on the training set, with : = 10. The

folds are generated such that all observations of each unique cluster are confined to only one fold.

Many regression algorithms require the distribution of each observable to be scaled to have roughly zero

mean and unit variance. In order to scale in such a way that is robust to outliers, we subtract the median

and divide by the 1f (16th/84th) percentile range computed over the training set in order to standardize

each feature. The medians and f are stored from the training set such that an identical transformation is

applied to the test set.

6.4.2 Regression methods

The work of Armitage et al. (2019) found that ordinary linear regression (OLR) and ridge regression (RR; Ho-

erl & Kennard 1970) models were able to produce the least scatter in cluster mass estimates using a variety

of X-ray, spectroscopic, and photometric datasets. The authors also tested an ordinary decision tree model
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(Quinlan, 1986), as well as AdaBoost (Freund & Schapire, 1996) and gradient boosted regression (Friedman,

2001), but did not test the popular random forests (RF) regression algorithm (Breiman, 2001). Motivated

by their work, and considering that our feature set of morphological parameters contains different infor-

mation, we will focus our analysis on various linear regression methods and expand by applying random

forest regressors. We train different regression models on our mock catalogs, including a standard mass-

luminosity power law (" − !ex,z), an OLR model, several regularized linear regression models (including

RR and Lasso regression [LR; Tibshirani 1996]), and RF regression models.

Ordinary linear regression is performed as follows. For = clusters, each of which are described by ?

features (i.e., observables), one has a datamatrixX = {x)0 , x)1 , x)2 , ..., x)= }, where each x is a vector of length

?. Each vector of observables x8 is associated with a true logarithmic mass H8 . The mass is predicted as a

linear function of the observables, H8 = x)8 mV+n8 , wheremV is themodel parameter vector of length ? and

n8 is the random error in the model for cluster 8. The best-fit model parameters are chosen by minimizing

the cost function, which is selected to be the sum of squared residuals, �OLR (mV) =
∑=
8=1 (H8 − x)8 mV)2.

In this work, we consider several OLR models. First, we train a simple OLR model with only one feature,

the core-excised luminosity !ex,z. This allowsus to set a baseline for performance and compare the results of

our mock observations in terms of the scatter to an observed mass-luminosity relationship. Then, we train

an OLR model on the full feature set, including core-excised luminosity and all morphological parameters.

In an effort to reduce the feature dimensionality andhighlight themost important features in themodel,

one can use regularized linear regression, where an additional term is added to the cost function that in-

troduces a penalty for models with large ‖mV‖. In ridge regression, the new cost function is of the form

�RR (mV;U) = �OLR (mV) + U2 ‖mV‖
2
2, where ‖ · ‖2 denotes the Euclidean norm. Similarly, in Lasso regression,

the cost function is instead �LR (mV;U) = �OLR (mV) + U‖mV‖1, where ‖ · ‖1 denotes the Manhattan norm.

Regularization acts to reduce the weights of unimportant features in themodel, reducing the capability

of the model to overfit the training data. Lasso regression is a more strictly regularized model than ridge

regression. The hyperparameter U is selected via a grid-search cross-validation (CV) of logarithmically-

spaced U values, where the model performance is evaluated via :-fold CV for each U. In :-fold CV, the

training set is split into : random subsets (split according to unique cluster ID; see Sec. 6.4.1). Then, : − 1

of the subsets are used to train the model, and model predictions are made on the remaining subset. This

process is iterated : times such that predictions are made for all clusters in the training set. The model

performance is quantified by the mean squared error (MSE) of all of the predictions. The CV process is

repeated for all U in the grid, and the U that minimizes the MSE is selected for the training of the final

model, which is trained on the full training set and subsequently applied to the test set.

For our last set of models, we use the non-parametric random forest regression model, which is an en-
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semble technique based on decision trees. RF models reduce the issues of overfitting that are endemic to

decision trees by randomly growing an ensemble of trees, each trained on a different subset of the total

training data, and taking the average of their predictions. Furthermore, RFs increase the tree diversity rel-

ative to a standard decision tree ensemble by splitting each node according to the best feature in a random

subset of the features, instead of the full feature set. This increased tree diversity results in a more general-

izable model that is less prone to overfitting the training set. RFs have several important hyperparameters:

(i) the number of trees in the forest, (ii) the maximum number of features that can be included in one node

splitting condition, (iii) the maximum depth allowed for a tree (i.e., number of decisions that must be made

to reach an output), (iv) the minimum number of samples in the training set at a particular node that are

required in order for the node to split, (v) the minimum number of samples in the training set required to

form a leaf, and (vi) whether or not to use bootstrap resampling (i.e., using “bagging” vs. “pasting”). Re-

ducing the “maximum” hyperparameters (i.e., [ii] and [iii]) or increasing the “minimum” hyperparameters

(i.e., [iv] and [v]) is an effective way to regularize the model and reduce the tendency for overfitting. The

interested reader should refer to Géron (2017) for additional details of variousmachine learning regressors,

including ensemble and tree-based regression.

In this work, we consider several RF models with different sets of hyperparameters and different input

feature sets in order to demonstrate the level of sensitivity that RF models have to the hyperparameters

and to tune an optimal model for future mass predictions. The first is a RF model with the default hyperpa-

rameters from the scikit-learn implementation. The hyperparameters of the secondmodel are optimized

using grid search CV over the six-dimensional parameter space of hyperparameters described above. The

third model includes a reduced set of features (!ex,z, (, �, and 2), but the hyperparameters are also tuned

via grid search CV.

After selecting hyperparameters for the various models using CV on the training set, the final models

are each trained on the entire training set. The models are then applied to predict the masses of the test

set, which we emphasize was never used for either hyperparameter selection or model training, and thus

should represent a true example of the generalization capability of themodels. The entire preprocess-split-

cross-validate-train-test procedure is performed separately for each of the two series of morphological pa-

rameters, i.e., those from the “idealized Chandra” and “realistic eROSITA” observations. In the next section,

we report the results for these final models as applied to the test sets.
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Chandra eROSITA
Correlation A with Correlation A with

Feature log("500c) R log("500c) R
log(!ex,z) 0.927 0.000 0.929 0.000
2 −0.101 −0.041 0.208 −0.146
4 0.060 −0.105 0.071 −0.111
log(|) −0.096 0.195 −0.126 0.228
log(%10) −0.170 0.212 −0.197 0.224
log(%20) −0.140 0.155 −0.308 0.194
log(%30) −0.139 0.146 −0.427 0.198
log(%40) −0.145 0.149 −0.489 0.207
� −0.294 0.034 −0.654 0.131
( −0.493 0.048 −0.795 0.119
"20 0.032 0.116 −0.148 0.148

Table 6.1: Pearson correlation between each observable in the model and (i) the true mass, log("5002), or
(ii) the logarithmicmass residual from amass-luminosity regression,R. These calculationswere performed
using both the “idealized Chandra” and “realistic eROSITA” series of morphological parameters. In both
series, ( and � correlate most strongly with log("500c). The correlations with mass are generally stronger
in the “realistic eROSITA” series. While log(|) and log(%10) correlate most strongly with R in both series,
we find that they are not the most important morphological parameters (rather, (, �, and 2 are).

6.5 Results

For both series of observations, we compute the Pearson correlation coefficient between each observable

and the clustermass, shown inTable 6.1. Additionally, the best fit linear regressionmodel between log("500c)

and log(!ex,z) is used to make mass predictions, and the corresponding mass residuals are then correlated

against the observables, also shown in Table 6.1. The mass residuals R are defined as

R = log("500c,pred) − log("500c,true), (6.2)

where we again emphasize that the base-10 logarithm is used throughout.

After luminosity, the observables that correlate or anti-correlate most strongly with mass are smooth-

ness ( and asymmetry �. The centroid shift | and first power ratio %10 correlate most strongly with the

mass residuals, although these correlations are still quite weak (|A | ≈ 0.2). Thus, the naive expectation is

that | and %10 should be the most important additional features (i.e., after luminosity) in a multivariable

model of the mass. However, as we will show below, this ends up not being the case. We note that while

the ranking of the morphological parameters in terms of their correlation strengths remains close to the

same between the two mock observation series, the strengths are systematically stronger in the “realistic

eROSITA” observations. In particular, the high-order power ratios, smoothness, and asymmetry (i.e., the pa-

rameters that quantify substructure) correlate much more strongly with mass in the eROSITA observations,

which is likely a result of the deviation from a smooth profile driven by Poisson noise in the low-photon
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Figure 6.4: Predicted mass as a function of true mass. Predictions are made using the cross-validation-
tuned RF models, which are separately trained using each of the two morphological parameter series. The
distributions both have low intrinsic scatter X (0.066 dex) and a negligible bias `. The green band corre-
sponds to the 1f scatter, X. The dashed red line shows the best power law fit to the predicted masses,
log("500c,pred/[1014ℎ−1 M�]) = 0 log("500c,true/[1014ℎ−1 M�]) + 1. For true masses above ∼1014.4 ℎ−1 M� ,
the model consistently underpredicts the mass. This is due to the falling mass function of our sample in
the high-mass regime. Additionally, in the case of the Chandra observations, some clusters (indicated as
red points) extend beyond the instrument field of view, which likely contributes to the lower accuracy of
their predictedmasses. Using a training set with a flat mass function that covers the full cluster mass range
of interest will likely ameliorate these underpredictions, resulting in a predicted-to-true slope � closer to
unity.

count regime. On the other hand, the correlations between the Chandra morphological parameters and

the cluster masses are in good qualitative agreement with Lovisari et al. (2017), which, using XMM-Newton

cluster observations, found no significant correlation between the total mass and 2, |, or the power ratios.

The primary model of interest is our cross-validated random forest regressor, which, as we will show

below, performs the best among all of the regression methods tested for both series of morphological pa-

rameters. The mass predictions generated by the random forest model for the 426 clusters in the test set

are shown in Figure 6.4, with the two separate panels corresponding to themodels trained and tested on the

two different series of mock observations. In both cases, it is clear that the model begins to systematically

underpredict the masses of the high-mass clusters with "500c & 1014.4 ℎ−1 M� , which roughly corresponds

to the regime where our sample transitions from a flat to falling mass function. In order to employ this

method to predict the masses of observed clusters, it is crucial that the training sample consists of a flat

mass function that covers the entire range ofmasses of interest. The performance ofmachine learningmod-

els, such as RFs, will greatly improve as larger training samples that are uniform in the prediction (in this

case, the mass) become available, for example from state-of-the-art cosmo-hydrodynamical simulations.

The PDFs of the mass residuals for these cross-validated random forest regression models are shown in

Figure 6.5. Additionally, the 1f intrinsic scatter (i.e., half of the 16th–84th percentile range of R) in the
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Figure 6.5: PDF of mass residuals for the cross-validation-tuned RF models of both the “idealized Chandra”
and “realistic eROSITA” observation series. For comparison, we plot the PDF of mass residuals for the mass-
luminosity relationship, with !ex,z computed using core-excised luminosities from the “idealized Chandra”
observations. In both cases, the RFmodel offers a∼20% reduction in scatter relative to themass-luminosity
approach, with negligible bias.

test set for each of the trained models and both of the observation series are shown in Table 6.2. For our

test sample, the mass residuals of the standard mass-luminosity relationship have a bias of ` = −0.017

dex and 1f scatter of X = 0.081 dex. Interestingly, for both the “idealized Chandra” and “realistic eROSITA”

observations, the mass residuals have virtually negligible biases and 1f intrinsic scatter of X = 0.066 dex,

which amounts to a 20% reduction in scatter relative to themass-luminosity relationship. Table 6.2 demon-

strates that ordinary linear regression with a combined input feature set that includes the luminosity and

all morphological parameters improves only marginally over the single variable mass-luminosity regres-

sion. The incorporation of regularization (i.e., the RR and LRmodels) does not result in an improvedmodel.

The lack of improvement in these linear models after the inclusion of morphological parameters illustrates

that the relationship between cluster morphology and mass is nonlinear and justifies the use of nonlinear

approaches, such as a RF regressor.

In the “idealized Chandra” observations, 140 of the most massive clusters have '500c that extend beyond

the instrument field of view. This results in changes to the morphological parameters calculated for these

clusters; for example, the concentrations will systematically increase (although only slightly since the clus-

ter outskirts have the lowest surface brightness) and parameters that quantify substructure ((, %30, %40)

may deviate from the correct value if substructures lie outside of the field of view. We verified that the

reported scatters are insensitive to the presence or removal of these clusters from the dataset. However,

this effect, in addition to the dearth of high-mass clusters in the training sample, is likely responsible for

the less accurate mass predictions for high-mass clusters (and lower predicted-to-true slope 0) when using

the Chandra observation series.
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Method XiC Xre
" − !ex,z 0.081 0.081
OLR 0.078 0.080
RR 0.078 0.080
LR 0.079 0.081
RF, defaults 0.070 0.067
RF with CV 0.066 0.066
RF, only !ex,z, 2, �, ( 0.070 0.071

Table 6.2: The 1f percentile intrinsic scatter, defined as half of the 16th–84th percentile range of the mass
residualsR, for eachmodel as trained in the textwhen applied to the test set, computed using the “idealized
Chandra” and “realistic eROSITA” mock observation series, denoted XiC and Xre, respectively. The multivari-
able linear models (OLR, RR, LR) improve only marginally relative to the mass-luminosity relation, with
regularization yielding no improvement. The RF models, which capture nonlinear relationships between
the input features and the mass, are able to further reduce the scatter beyond any linear approach.

The intrinsic scatter for core-excised luminosity-based mass estimates in the observational literature

ranges from . 15% for the weak lensing mass-!-,ex relationship (Mantz et al., 2018) to 16–21% for the .-

mass-!- relationship (Maughan, 2007). While the work of Mantz et al. (2018) finds a lower scatter than we

do for our " − !ex,z relation, we note that they employ a mass cutoff of " ≥ 3 × 1014 "� , which results

in a much smaller mass range than covered by our dataset. The scatter in the " − !ex,z mass residuals

for the subset of our clusters with "500c ≥ 3 × 1014 "� is 17%, which is rather close to that of Mantz et al.

(2018). The sample used byMaughan (2007) includes clusters down to 8×1013 "� , which is more consistent

with our cluster sample. Thus, the scatter in the " − !ex,z mass residuals of our full sample, X = 0.081 dex

(20.5% scatter), is consistent with similar such calculations performed using observations of either the .-

mass-!-,ex or weak lensing mass-!-,ex relationships. The current state-of-the-art mass estimation meth-

ods require high-resolution, long-exposure cluster observations with good spatial and spectral resolution,

with the.- approach resulting in 5–7% scatter (Kravtsov et al., 2006). The observational conditions neces-

sary for utilizing the " − .- method will simply not be present for the vast majority of clusters observed

in upcoming surveys such as eROSITA. However, we have demonstrated that our method achieves a 20% im-

provement in clustermass estimates over"−!ex,z even in the low-spatial resolution, short-exposure (2 ks)

conditions of eROSITA observations (X = 0.066 dex, 16%). Since we also find the same level of improvement

for our Chandra observations, which likely places an upper bound on themethod performance, this suggests

that themass-encoding dynamical state information, as quantified by our set of morphological parameters,

remains present even in the short-exposure eROSITA observations.

One metric available for interpreting the results of the random forest model is the feature importance

ranking. For example, in anOLRmodel, the feature importances are roughly quantifiedby themagnitudes of

the regression coefficients. The standardmetric for RF feature importance, and the one that is implemented

in scikit-learn, is the mean decrease in impurity, which measures how effective a feature is at reducing the
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Importance (%)
Feature Chandra eROSITA
!ex,z 74.9 76.2
( 10.0 14.6
� 4.8 2.5
2 3.9 1.5

Table 6.3: The feature importances for the cross-validatedRFmodels, computed based on themeandecrease
in impurity. The remaining morphological parameters are omitted from the table, as their importances
are all . 1%. The smoothness (, asymmetry �, and surface brightness concentration 2 encode the most
additional mass information after the core-excised luminosity !ex,z.

variance of the predictions. Based on this importancemeasurement, the most important features and their

Chandra importances are (after !ex,z, 75%), in decreasing order: smoothness ( (10%), asymmetry � (5%),

and concentration 2 (4%). The ranking of these features are the same for both observation series, with

importance magnitudes being similar, and all other morphological parameters have negligible importance

(. 1%) in both cases (see Table 6.3).

Another measurement of feature importance, known as permutation importance, quantifies the drop in

the '2 score when the values of a feature are permuted over the samples. Thus, the larger the drop in '2

when a feature is permuted, the more important the feature. This metric is considered less biased, as it is

not sensitive to the dynamic range of the input variables; this detail is likely irrelevant since our features

are scaled. When this importance metric is employed, we find the same feature importance ranking as

before for the “realistic eROSITA” parameter series. However, for the “idealized Chandra” series, we find

that, following luminosity, 2 and ( are nearly tied for being most important, followed by �. These three

features are not the highest correlators with mass residual, which goes against the naive expectation that

the most important features after luminosity should correlate the strongest with mass residual. However,

( and � do correlate the most strongly with mass after !ex,z, as seen in Table 6.1. Thus, there must be some

nonlinear relationship between !ex,z, (, �, and 2 (slightly supplemented by the combination of all the other

morphological parameters) that the RF model identifies in order to make the improved mass estimates.

Some of the morphological parameters employed, particularly | and the power ratios, will be more dif-

ficult to measure accurately for eROSITA-observed clusters. Motivated by our finding that (, �, and 2 are

the most important morphological parameters, we consider an additional RF model that is cross-validated

and trained with a reduced feature set that includes only these three parameters and !ex,z. As displayed

in Table 6.2, we find that this reduced model yields a 1f scatter of X = 0.070 for the “idealized Chandra”

series and X = 0.071 for the “realistic eROSITA” series. While this is still a 12–13% improvement over the

mass-luminosity relation, this finding highlights the benefit of including the additional morphological pa-

rameters, even considering that each of them has an importance of . 1%. The combined effect of the
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additional morphological parameters, including 4, |, "20, and the power ratios, is ultimately responsible

for roughly a third of the overall improvement offered by our approach.

6.6 Conclusion

In this work, we have presented a method for estimating cluster masses from mock X-ray observations

of galaxy clusters. The mock observations are generated from 2,041 clusters with masses in the range of

1013.5 ≤ "500c/(ℎ−1 M�) ≤ 1014.8 and over a redshift range of 0.1 ≤ I ≤ 0.29 from the Box2 and Box2b

Magneticum simulations. The mass predictor is based on a random forest regression model, trained with

a feature set that includes only the core-excised luminosity and a set of morphological parameters, all of

which can be computed directly from an X-ray image.

We demonstrate that this method can be used to estimate the masses of galaxy clusters with negligible

bias and a scatter of X = 0.066 dex (16%). This model achieves a 20% reduction in the scatter relative to a

more standard core-excised luminosity power law. Importantly, the same level of improvement is present

both when using idealized, high-resolution, long-exposure (1 Ms) Chandramock observations with no back-

ground and when using realistic, low-resolution, short-exposure (2 ks) eROSITA mock observations with

added background noise. The majority of this improvement comes from three parameters: smoothness (,

asymmetry �, and surface brightness concentration 2. Amore conservativemodel, which includes only the

luminosity and these three parameters, estimates the cluster masses with a scatter of X = 0.070, demon-

strating that a third of the overall improvement comes from the inclusion of the additional morphological

parameters (4, |, "20, and the power ratios). However, it is yet to be seen how additional sources of er-

ror present in real observations will affect the performance of this model; for example, the scatter in '500c

measurements will propagate to increased scatter in the morphological parameters.

While excising the cluster core reduces the scatter in mass estimates, this improvement comes at the

cost of lowering the photon counts used in the analysis. However, even at the eROSITA detection threshold

of ∼30 core-excised photon counts, the statistical uncertainty on !ex,z will be . 20%; hence, the mass

estimate errors from amass-luminosity relationship will be dominated by intrinsic scatter even in the low-

photon limit. Since the dynamical state of the cluster encodes important information that affects mass

errors, the inclusion of morphological parameters, which utilize the full photon distribution, in the mass

model enable more accurate predictions with reduced intrinsic scatter relative to " − !ex,z. However,

we expect that the statistical uncertainty in the mass estimates will still closely follow the corresponding

statistical uncertainty of !ex,z. The relationship between the morphological parameters, the luminosity,

and themass is complicated and nonlinear; we have demonstrated that the nonlinear RF regressionmethod
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offers a substantial improvement over linear models.

Ourmodelwas trained to predict the spherical overdensitymasses,"500c, of galaxy clusters identified in

Magneticum by the SUBFIND algorithm. As demonstrated in the Knebe et al. (2011) halo finder comparison

project, this algorithm is able to estimate the"200cmasses of NFWhost haloes towithin. 3%; more broadly,

all modern halo finders compared in Knebe et al. (2011) are able to determine host halo "200c to within

. 10%. Hence, we expect that uncertainty introduced due to the mass estimates of our simulated clusters

is sub-dominant, but not insignificant, compared to the intrinsic scatter of the " − !ex,z relationship. The

recent FABLE simulations project (Henden et al., 2018), a set of hydrodynamical simulationswith similar sub-

grid physics toMagneticum, reports that the"−!- of simulated clusters is in excellent agreement with the

observed relation based onX-ray hydrostaticmasses. Thus, if there is indeed anX-ray hydrostaticmass bias,

this would indicate that simulated clusters may be too gas-rich, resulting in !- values that are high relative

to weak lensing-calibrated" − !- . In addition, current models of AGN feedback result in simulated cluster

cores that do not match the observed cool-core and non-cool-core cluster populations. Because of this, the

morphological parameters of observed clusters that depend most sensitively on the cluster core (i.e., X-ray

surface brightness concentration) may be biased relative to observations. We expect that these simulation

sources of uncertainty will improve as the hydrostatic mass bias quandary approaches a resolution and as

more sophisticated AGN feedback models are developed.

Random forest models are notoriously bad at extrapolation. We expect that our model’s systematic

underprediction of themasses of clusters in the high-mass tail of the halo mass function will improve when

trained on a cluster sample that is uniform across the full mass range of interest. When large-volume, high-

resolutionhydrodynamical simulations becomeavailable for creating such a training sample, we expect that

this can be used to train a model that predicts well across the entire mass range. This model, once trained

on a sufficiently large simulated sample, could then be applied to a set of Chandra-observed clusters, such

as the HIFLUGCS sample (Zhang et al., 2011), and the predictions could be tested against accurate mass

estimates, such as those based on .- .

ML-based methods of estimating galaxy cluster masses from X-ray observations, including the method

presented here as well as others in the literature (e.g., Ntampaka et al., 2019a), offer a promising step to-

wards extracting the maximum information content present in imminent datasets such as eROSITA. Mod-

ern ML methods will enable the completion of an unprecedentedly accurate cosmic census and position

the halo mass function to be used to place ever stronger cosmological constraints. Ultimately, the con-

tinued progress in cosmological hydrodynamical simulations, both in terms of physical realism and size,

are rapidly facilitating the coming of age of these techniques, which will soon be ready for deployment on

state-of-the-art cluster observation samples.
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Chapter 7

Conclusion

T
he growth and evolution of dark matter structure, on both large and small scales, is highly

dependent upon the underlying particle nature of dark matter. Thus, observational ef-

forts to infer the abundance of dark matter substructure (i.e., subhaloes) can be used to

constrain the dark matter model parameter space. This is, however, only possible if we

are able to make accurate predictions of the expected subhalo abundance given a particular dark matter

model. The tools of the trade used to make such predictions — cosmological #-body simulations, full-

physics cosmo-hydrodynamical simulations, and semi-analytical models — each come with their own set

of limitations (e.g., computational, numerical, statistical, or physical realism). The work laid out in this

dissertation represents a substantial leap towards quantifying the current numerical limitations of cosmo-

logical #-body simulation-based approaches to substructure prediction. To this end, we have built a highly

accurate semi-analytical model of substructure that is not adversely impacted by the numerical limitations

of such simulations. This model, SatGen, is fit to address a range of scientific questions, several of which

we have already tackled. In what follows, we summarize the key conclusions from each of the studies that

constitute this body of work.

A tidally evolved subhalo is determined by its initial state and the fraction of mass lost since infall.

• Using small suites of idealized #-body simulations, Hayashi et al. (2003) and Peñarrubia et al. (2008)

developed simple models that capture the structural evolution of a NFW subhalo due to the tidal

forces of its host. Common to their distinct models is the notion of a “tidal track”, which is based on

the empirical finding that the structure of a tidally evolved subhalo only depends on the fraction of

its initial bound mass that has been lost since infall.
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• In (Ogiya et al., 2019), we introduced the DASH simulation database, which includes 2,253 idealized,

high-resolution #-body simulations of individual subhaloes orbiting within a static, analytical host

potential. These simulations span the parameter space of possible subhalo orbits as well as the host-

and subhalo concentrations. The wealth of data available in this simulation library has enabled us to

calibrate a new model of the tidally evolved subhalo structure.

• We found that the residuals of the Hayashi et al. (2003) and Peñarrubia et al. (2008) evolved density

profile models correlate strongly with the initial subhalo concentration, 2s. This limitation was not

identified in the previous studies because the authors only considered subhaloes of a single 2s. Our

model incorporates this additional 2s-dependence.

• We presented our model of the evolved subhalo density profile (and structural parameters,+max and

Amax) in Green & van den Bosch (2019, presented in chapter 2). This model is both more accurate and

more general than its predecessors — it was calibrated over a wide range of subhalo parameter space

and is sufficiently complex to performwell over this range at capturing the non-linear tidal evolution.

Cosmological #-body simulations still suffer from artificial disruption.

• In Jiang et al. (2021), we introduced a full dynamical semi-analytical model of the build-up and evo-

lution of dark matter subhaloes and satellite galaxies, SatGen. In its present form, the model in-

corporates (i) analytical halo merger trees (Parkinson et al., 2008), (ii) a recipe for initializing subhalo

orbits at infall (Li et al., 2020), (iii) an orbit integrator and a prescription for dynamical friction (Chan-

drasekhar, 1943), and (iv) a DASH-calibrated tidal evolution model (the first component of which is

introduced in Green & van den Bosch, 2019).

• In Green et al. (2021a, presented in chapter 3), we augmented SatGen by incorporating the DASH-

calibrated tidal evolution model. In addition to the density profile model of Green & van den Bosch

(2019), we developed a prescription for subhalo mass-loss (via tidal stripping) that faithfully repro-

duces the mass trajectories of DASH subhaloes.

• By studying the properties at accretion of subhaloes in the Bolshoi simulation (Klypin et al., 2011) that

are subsequently disrupted, we built a simple model (based on Jiang & van den Bosch, 2016) that

captures the statistical properties of artificial disruption. This disruption mechanism can be applied

to SatGen results during post-processing in order to assess the overall significance of such disruption.

• We used the augmented SatGen model to predict subhalo mass functions, number density profiles,

radial bias profiles, and substructure mass fractions for a wide range of host halo masses. We con-

sidered the impact of artificial disruption (captured via our disruption mechanism) as well as the
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simulation mass limit (i.e., “withering”).

• When artificial disruption and withering are both taken into account, SatGen predicts subhalo de-

mographics that agree exquisitely well with Bolshoi.

• Artificial disruption suppresses the overall substructure mass fraction (within Avir) by ∼10%. This ef-

fect becomesmore significant towards the halo center, where roughly 50% of substructure is depleted

within 0.1Avir. However, the halo-to-halo variance in these quantities is significantly larger than the

mean difference between the “disruption-on” and “disruption-off” results.

• Splashback haloes (i.e., subhaloes that have fallen into the host in the past but currently lie outside

Avir)make up roughly half of the total subhalo population. These subhaloesmust be taken into account

in semi-analytical modeling (such as in SatGen) in order to generate accurate abundance estimates.

Orbit-averaged models are inherently limited by their inability to take into account such splashback

systems.

• The radial bias in the subhalo number density profile (relative to the smooth backgroundprofile of the

host) is an artifact of the simulation mass resolution limit. In SatGen, when we allowed subhaloes to

evolve down to arbitrarily small</<acc, we found that this radial bias is eliminated. Thus, in addition

to spurious subhalo disruption, it is clear that the limitedmass resolution of cosmological simulations

still has a significant impact (both qualitative and quantitative) on the subhalo demographics.

A stellar disc depletes subhaloes via enhanced tidal stripping, rather than disc shocking.

• Measuring the impact of a stellar disc on the subhalo population has been the topic of a wealth of

studies (e.g., D’Onghia et al., 2010; Peñarrubia et al., 2010; Garrison-Kimmel et al., 2017; Errani et al.,

2017). In the simulation study by D’Onghia et al. (2010), the authors found that an analytical disc

potential embedded within a #-body host halo efficiently destroys subhaloes near the host center,

which they attribute to disc shocking.

• Using SatGen, in Green et al. (2021b, presented in chapter 4), we assessed the influence of a stellar

disc in a manner that (i) allowed us to quantify the halo-to-halo variance in a way that has not been

possible in previous studies and (ii) is free of simulation-based artificial disruption. In particular, we

generated 10,000 merger trees for MilkyWay-mas systems and evolved the subhaloes under a variety

of different composite halo–disc potentials.

• We found that the mean subhalo mass function (within Avir) is suppressed by . 10% when 5% of the

host mass is contained within a central disc potential. When only considering subhaloes within 50
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kpc of the host center, this becomes a∼30% suppression. However, thismean disc-driven suppression

is dominated by the halo-to-halo variance in the individual subhalo mass functions.

• We followed individual subhaloes as they evolved under different composite host potentials. By com-

paring the I = 0 subhalo mass in the halo-only case to halo–disc configurations with different disc

mass fractions, we demonstrated that the presence of a central disc drives enhanced mass loss, the

significance of which grows with decreasing orbital pericentric radius.

• We demonstrated that the overall level of disc-driven subhalo depletion is minimally dependent on

any property of the disc aside from its final mass, which is in agreement with the similar finding of

Garrison-Kimmel et al. (2017).

• Finally, we argued that, rather than disruption via disc shocking, the primary effect of a disc potential

is to simply increase the central density concentration of the host, which drives excess mass loss.

When this effect is coupled with a simulation mass resolution limit, the result is that an increased

number of subhaloes will fall below this mass limit, appearing to have been “disrupted” by the disc.

In reality, these systems should still survive and have simply become insufficiently massive to remain

viable in the simulation.

The three studies summarized above (Green & van den Bosch, 2019; Green et al., 2021a,b) constitute

the primary research thrust of this dissertation. Using SatGen, we have demonstrated that the halo-to-

halo variance in many quantities of astrophysical interest is quite large and, thus, must be properly taken

into account when, e.g., placing limits on dark matter particle models. In a tangentially related study, we

further explored this theme of significant assembly history-driven halo-to-halo variance in the context of

the Sunyaev–Zel’dovich effect scaling relation of galaxy clusters (Green et al., 2020, presented in chapter 5).

Indeed, variation inmass accretion histories also presents itself in a variety of other observables, such as the

gas concentration, clumpiness, and spherical symmetry, which can be exploited to better infer halo masses

of galaxy clusters (Green et al., 2019, presented in chapter 6).
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Chapter 8

Future work

T
he introduction of SatGen makes possible a variety of follow-up research programs. In

what follows, we motivate and describe several such potential projects:

• In van denBosch et al. (2016), the authors study the segregation of darkmatter subhaloes from the Bol-

shoi simulation. The work identifies relationships between segregation indicators (e.g., host-centric

radius, projected radius, and binding energy), which capture the relationship between a subhalo and

its host, and segregation properties (e.g., <, <acc, </<acc, Iacc,+max,+acc, among others), which cap-

ture internal details about the subhalo and its history. As is clear from the study, there are rich seg-

regation relationships between subhaloes and their hosts, at least as seen in cosmological simula-

tions. For example, subhaloes are strongly segregated by accretion redshift, Iacc; this is identified

via a strong Spearman correlation between Iacc and binding energy. After having demonstrated in

Green et al. (2021a) that SatGen accurately reproduces the evolved subhalo mass function and radial

abundance profile of Bolshoi haloes when the statistical artificial disruption mechanism is enabled, a

logical follow-up to this work is to perform a more comprehensive analysis of subhalo segregation as

predicted by SatGen. In particular, it will be illuminating to study howwell the aggregate of segrega-

tion relationships agree between SatGen and Bolshoiwhen the Jiang & van den Bosch (2016) artificial

disruption mechanism is applied to the subhalo sample, as well as how significant of an impact dis-

ruption has on subhalo segregation. If any stark disagreements between disruption-enabled SatGen

and Bolshoi are evident, this may provide further insight into how artificial disruption comes about

in cosmological simulations and how it could be properly modeled (either physically or via machine

learning, as in Nadler et al. 2018), mitigated and eventually corrected for.

• Recently, Nadler et al. (2021) carried out a study that used observations ofMilkyWay satellite galaxies
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to place very strict bounds on the warm dark matter (WDM), self-interacting dark matter, and fuzzy

dark matter models. In Jiang et al. (2021), we use the full SatGen framework, which assumes a model

of the galaxy-halo connection to populate and evolve satellite galaxies within the DM subhaloes, to

demonstrate that there is an extreme level of halo-to-halo variance in the satellite galaxy cumulative

{max (maximum circular velocity) distribution and radial abundance profile of Milky Way-mass sys-

tems. We suspect that a careful consideration of the predicted overall halo-to-halo variance and the

scatter in the galaxy-halo connection for low-mass satellites is likely to weaken bounds placed on the

particle nature of dark matter reported in the literature.

Using WDM as a case study, we propose the following test. First, we would run additional DASH-like

simulations, this time varying the inner slope of the subhalo density profile in order to test how well

the Green & van den Bosch (2019) ESHDP model and Green et al. (2021a) mass-loss model is able to

reproduce subhalo evolution trajectories for non-NFW subhaloes. If necessary, we would pause to

develop a more general ESHDP model that works for a range of initial subhalo density profiles and

implement this into SatGen. We would then use SatGen to generate two, large-sample sets of sub-

halo and satellite galaxy catalogs for MilkyWay-mass systems. The first would be based on analytical

merger trees using the standard CDM power spectrum, whereas the second would use a WDM power

spectrum (Viel et al., 2005) for a WDM particle mass somewhat below the lower limit of 6.5 keV set

by Nadler et al. (2021). The cuspiness of the initial DM subhalo density profiles at infall would take

into account the halo response to baryonic processes (Freundlich et al., 2020b); this flexible model

has been calibrated to match the halo response seen in both strong-feedback simulations (e.g., FIRE;

Hopkins et al., 2018) and weak-feedback simulations (e.g., NIHAO; Wang et al., 2015). Satellite galax-

ies can be populated and evolved using a model of the galaxy-halo connection currently built into

SatGen; however, we could consider collaborating with the authors of UniverseMachine (Behroozi

et al., 2019) in order to use their state-of-the-art framework for painting realistic satellite galaxies

onto subhaloes. This procedure would enable us to predict the average satellite galaxy luminosity

functions and halo-to-halo variance for Milky Way-mass systems in both CDM and WDM. Ultimately,

wewould expect to be able to demonstrate thatwhen considering a realistic level of halo-to-halo vari-

ance, WDMmodels with a WDM particle mass considerably below current lower limits should still be

able to reproduce the observed Milky Way satellite galaxy luminosity function.

• The presence of substructure can significantly boost the dark matter annihilation rate within an oth-

erwise smooth host halo. Many previous numerical and analytical works have attempted to pin down

themagnitude of this “boost factor”, withmost interest being directed towards local satellite galaxies
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and massive galaxy clusters (for a recent review, see Ando et al., 2019). The boost factor is sensitive

to (i) the internal density structure of evolved subhaloes, (ii) the minimum subhalo mass (set by the

dark matter free-streaming scale), and (iii) the slope and normalization of the evolved subhalo mass

function. Using SatGen, we could determine themass- and redshift-dependence of the subhalo mass

function. Additionally, we could use SatGen to establish how the distribution of subhalo bound mass

fractions, </<acc, depends on sub-to-host mass ratio, </" , and host mass, " . The Green & van den

Bosch (2019) evolved subhalo density profile is set by </<acc, and thus we could also determine the

distribution of evolved subhalo density profiles at fixed </" and " . In aggregate, we could make

simulation-independent predictions for how the boost factor depends on host halo mass, redshift,

and minimum subhalo mass and compare to previous studies in the literature.
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Appendix A

The DASH database

This chapter has been published as an article by Ogiya et al. (2019) in the Monthly Notices of the Royal

Astronomical Society by Oxford University Press. Since I am a co-author of this work, I have elected to

include it as an appendix because it provides a more thorough description of the DASH simulation methods

than that of Section 2.2.

A.1 Background

I
n the cold dark matter (CDM) paradigm of cosmic structure formation, smaller perturba-

tions collapse first to form virialized dark matter haloes, leading to a hierarchical assem-

bly of haloes. When dark matter haloes assemble their mass by accreting smaller haloes,

they build up a hierarchy of substructure, with subhaloes hosting sub-subhaloes, hosting

sub-sub-subhaloes, etc. As these subhaloes orbit their hosts, they experience mass loss due to the com-

bined effect of dynamical friction, tidal stripping and impulsive (tidal) heating (e.g., Mo et al., 2010). The

resulting abundance and demographics of substructure depends on the microscopic properties of the dark

matter particles, most importantly the free-streaming scale and the strength of darkmatter self-interaction

(see e.g., Knebe et al., 2008; Rocha et al., 2013; Bose et al., 2017). This is why many efforts are underway to

quantify the amount of dark matter substructure using, among others, gravitational lensing (e.g. Vegetti

et al., 2012; Shu et al., 2015; Hezaveh et al., 2016), gaps in stellar streams (e.g. Carlberg, 2012; Ngan & Carl-

berg, 2014; Erkal et al., 2016), and annihilation or decay signals of dark matter particles (e.g. Strigari et al.,

2007; Pieri et al., 2008; Hayashi et al., 2016; Hiroshima et al., 2018). In addition, substructure is also directly

related to the abundance and properties of satellite galaxies (e.g., Vale & Ostriker, 2006; Newton et al., 2018),

and thus to the clustering amplitude of galaxies on small scales (see e.g., Benson et al., 2001; Berlind et al.,
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2003; Kravtsov et al., 2004). Hence, it is important that we are able to make accurate predictions for the

abundance of dark matter substructure for a given cosmological model. Given the highly non-linear nature

of the processes involved, this is ideally done using #-body simulations.

Modern, state-of-the-art cosmological #-body simulations predict that roughly 5-10 percent of a halo’s

mass is bound up in substructure, withmoremassive host haloes having a larger subhalomass fraction (e.g.,

Gao et al., 2004; Giocoli et al., 2010). In addition, subhaloes are found to be spatially anti-biased with respect

to the dark matter, in that the radial number density profile, =sub (A), is less centrally concentrated than the

halo density profile (e.g., Diemand et al., 2004; Nagai & Kravtsov, 2005; Springel et al., 2008). It has also been

concluded that the subhalo mass function has a universal form (Jiang & van den Bosch, 2016), albeit with a

significant halo-to-halo variance at the massive end (Jiang & van den Bosch, 2017).

Although these trends are well understood (van den Bosch et al., 2005b; Zentner et al., 2005a; Jiang &

van den Bosch, 2016), and the results from numerical simulations seem to be well converged (e.g., Springel

et al., 2008; Onions et al., 2012), some issues remain. Foremost among these is the fact that subhaloes in

numerical simulations typically experience complete disruption some time after accretion (e.g., Han et al.,

2016; van den Bosch, 2017). Although it is often argued that this disruption is a physical consequence of

either tidal stripping or tidal heating (Hayashi et al., 2003; Taylor & Babul, 2004; Klypin et al., 2015), others

have argued that in a collisionless darkmatter simulation, subhaloes should rarely ever completely disrupt.

In particular, in van den Bosch et al. (2018, hereafter Paper I), we have demonstrated that neither tidal strip-

ping nor tidal heating is expected to be able to completely unbind the central cusps of CDM substructure.

The same conclusion was reached by Peñarrubia et al. (2010) using idealized, high-resolution numerical

simulations. In van den Bosch & Ogiya (2018, hereafter Paper II), we used a large suite of similar, ideal-

ized simulations to demonstrate that the disruption of subhaloes in #-body simulations is predominantly

numerical, and triggered by two independent aspects: discreteness noise and inadequate force softening.

An important finding of Paper II is that this artificial, numerical disruption may elude standard conver-

gence tests, in that the method that is typically used to scale the force softening with the mass resolution

is inadequate to overcome these problems. Artificial disruption can potentially have far-reaching conse-

quences. After all, unless we can make accurate, and above all reliable, predictions regarding the abun-

dance and structure of dark matter subhaloes, we will forfeit one of the main handles we have on learning

about the nature of dark matter. In addition, artificial disruption is also a serious road-block for the small-

scale cosmology program, which often relies on numerical simulations to predict the clustering strength

of galaxies on small scales. A prime example of this is subhalo abundance matching, which assigns ‘mock’

galaxies to subhaloes identified in numerical simulations in order to predict galaxy-galaxy correlation func-

tions (e.g., Vale & Ostriker, 2006; Conroy et al., 2006; Guo et al., 2010; Hearin et al., 2013). Although one may
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overcome the implications of artificial disruption by including ‘orphan’ galaxies (i.e., mock galaxies without

an associated subhalo in the simulation), this seriously diminishes the information content of small-scale

clustering, unless it is well understood how many orphans to add and where.

Unfortunately, it is not clear how to improve #-body codes such that the issue of artificial disruption

can be avoided. As a consequence, it is difficult to gauge its potential impact on our predictions for the

abundance of substructure. However, some insight can be gained from the semi-analytical models con-

structed by Jiang & van den Bosch (2016). Using accurate halo merger trees, this model uses a simple,

orbit-averaged prescription for mass stripping to predict the evolved subhalo mass function. The overall

normalization for the efficiency of mass stripping is calibrated by matching the model predictions to those

from a high-resolution cosmological #-body simulation. In addition, the model includes a treatment of

subhalo disruption, which is also calibrated to accurately reproduce the disruption in the simulation. If we

use this model, but turn off the disruption (rather than disrupting the subhaloes, we continue to strip their

mass), the resulting subhalo mass function is roughly a factor of two higher than with disruption (Green

& van den Bosch, 2019). Hence, if all disruption is indeed artificial, and if the mass stripping model used

by Jiang & van den Bosch (2016) is roughly correct, numerical simulations may have been underpredicting

the amount of surviving substructure by a factor of two. This would have far-reaching consequences for

many areas of astrophysics. For instance, this factor of two is exactly what is needed to solve the ‘galaxy

clustering crisis’ in subhalo abundance matching discussed in Campbell et al. (2018).

In order tomakemore reliable predictions, we need to developmore sophisticated semi-analyticalmod-

els for the evolution of dark matter substructure. Numerous studies in the past have been devoted to this

(e.g., Taylor & Babul, 2001; Peñarrubia & Benson, 2005; Zentner et al., 2005a; Diemand et al., 2007; Kam-

pakoglou & Benson, 2007; Gan et al., 2010; Pullen et al., 2014), but they all have one shortcoming in com-

mon: they all use the outcome of cosmological #-body simulations in order to calibrate one ormore ‘fudge’

parameters in their model. And in doing so, their semi-analytical models inherit the shortcomings of the

simulations; put differently, by construction the models are only as accurate as the simulations used for

their calibration.

In an attempt to bypass this shortcoming, this chapter presents a large database (called DASH, for Dy-

namical Aspects of SubHaloes), of more than 2,000 idealized, high-resolution simulations of the tidal evo-

lution of individual subhaloes. The simulations cover most of the parameter space (mass ratios, orbital

parameters and halo concentrations) relevant for modelling the tidal evolution of subhaloes as they orbit

their hosts, and each simulation is evolved with sufficient numerical resolution that discreteness noise and

force softening do not adversely affect their outcome. The primary goal of DASH is to enable a more ac-

curate calibration and validation of analytical treatments of tidal stripping and heating, thereby allowing
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for the construction of new and improved semi-analytical models for dark matter substructure that are not

hampered by artificial disruption. In addition, we provide a non-parametric model of subhalo mass evolu-

tion, using random forest regression, along with the simulation data. This model describes the simulation

results at the ∼ 0.1 dex level and can be readily used in further modelling.

This chapter is organized as follows: Section A.2 describes the simulation setup and gives an overview

of the DASH library. Section A.3 presents a few examples, highlighting the type of data that is available.

In Section A.4, we demonstrate and validate the performance of a random forest regression model trained

on the simulation data to predict bound mass fractions as a function of time since accretion for given or-

bital parameters and given concentrations of the sub- and host haloes. Finally, Section A.5 summarizes the

chapter and discusses the future outlook.

A.2 Overview of the simulations

This section presents an overview of the DASH library of idealized, collisionless #-body simulations of

halo minor mergers. After describing the initial conditions (Section A.2.1.1), the simulation code (Sec-

tion A.2.1.3), and the analysis and products (Section A.2.1.4), we describe the method used to sample the

parameter space (Section A.2.2) and the data format of the DASH library (Section A.2.3).

A.2.1 Simulation setup

A.2.1.1 Halo profiles and merger set-up

Each of the simulations run as part of the DASH library follows an individual #-body subhalo as it orbits

the fixed, external potential of a host halo. Both the host halo and the initial (prior to the onset of tidal

stripping) subhalo are assumed to be spherical, and to have a Navarro-Frenk-White (NFW; Navarro et al.,

1997) density profile

d(A) = d0

(
A

As

)−1 (
1 + A

As

)−2

, (A.1)

where As and d0 are the characteristic scale radius and density, respectively. We define the virial radius, Avir,

as the radius inside of which the average density is Δvir = 200 times the critical density given by dcrit =

(3�2
0/8c�), where �0 and � are the Hubble constant and gravitational constant, respectively. The virial

mass of the halo is given by

"vir =
4c
3
Δvir dcrit A

3
vir . (A.2)

159



We emphasize, though, that the DASH simulations also apply to other values of Δvir, as detailed in Sec-

tion A.2.2 and Section A.2.1.2. The halo concentration is defined as 2 ≡ Avir/As, and the virial velocity is

defined as the circular velocity at the virial radius, +vir =
√
�"vir/Avir. The mass ratio between the host

halo and the initial subhalo is specified byM ≡ "vir,h/"vir,s, where, as throughout this chapter, subscripts

‘h’ and ‘s’ indicate properties of the host- and subhaloes, respectively.

Initial conditions are generated under the assumption that the NFW subhalo is isolated and has an

isotropic velocity distribution, such that its phase-space distribution function (DF) depends only on energy,

i.e., 5 = 5 (�). We use the method of Widrow (2000) to sample particles from the DF using the standard

acceptance-rejection technique (Press et al., 1992; Kuijken & Dubinski, 1994). When computing the DF, we

follow Kazantzidis et al. (2006) and assume that the initial NFW subhalo has an exponentially decaying den-

sity profile for A > Avir,s. We assume that the total mass in this exponential extension is 0.05"vir,s, where

"vir,s = " (< Avir,s). Requiring a smooth transition in the density profile at A = Avir,s then determines

the scale radius of the exponential decay. Note, though, that when we sample particles from the DF thus

computed, we apply a hard truncation at A = Avir,s (i.e., no particles are sampled beyond the subhalo’s virial

radius). Consequently, the system will deviate somewhat from perfect equilibrium near the truncation ra-

dius. However, since we embed the subhalo in an external tidal field, with a corresponding tidal radius that

typically lies well inside of Avir,s, there is little virtue to having a subhalo whose outskirts are in perfect

equilibrium. In fact, one might argue that it is more realistic to truncate the subhalo at the tidal radius

corresponding to its initial position within the host halo. However, in addition to the tidal radius being

ill-defined (see Paper I for discussion), we have demonstrated in Paper II that none of this matters; the sim-

ulation outcome is insensitive to whether we truncate the subhalo at the virial radius or at the initial tidal

radius.

Throughout we adopt model units in which the gravitational constant,�, the initial virial radius of the

subhalo, Avir,s, and the initial virial mass of the subhalo, "vir,s, are all unity. With this choice, the initial

virial velocity of the subhalo, +vir,s is unity, while the host halo has +vir,h = M1/3. Both have the same

crossing time, Ccross ≡ Avir/+vir = 1. In physical units, the crossing time is

Ccross = 0.978ℎ−1 Gyr
(
Δvir

200

)−1/2
. (A.3)

where ℎ = �0/(100 km s−1 Mpc−1). In what follows, whenever we quote time scales in physical units, we

adopt ℎ = 0.678 (Planck Collaboration et al., 2016a) and Δvir = 200, which implies that a time interval of

(ΔC)model = 1 corresponds to 1.44 Gyr. Note, though, that one can scale all the physical time scales quoted

160



in this chapter to other values of �0 and Δvir by simply multiplying the values quoted by the factor

Γ(ℎ,Δvir) ≡
(

ℎ

0.678

)−1 (
Δvir

200

)−1/2
. (A.4)

Put differently, the mapping between time scales in DASH model units and physical units, is given by:

(ΔC)physical = 1.44 GyrΓ(ℎ,Δvir) (ΔC)model.

The DASH simulations span a wide range in orbital energy, � , and angular momentum, !. For conve-

nience, we characterize the orbits using the following two dimensionless quantities:

• Gc ≡ Ac (�)/Avir,h, the radius of the circular orbit corresponding to the orbital energy, � , expressed in

terms of the virial radius of the host halo.

• [ ≡ !/!c (�), the orbital circularity, defined as the ratio of the orbital angularmomentum, !, and the

angular momentum !c (�) corresponding to a circular orbit of energy, � . Radial and circular orbits

have [ = 0 and 1, respectively.

We initially position the subhalo at the apocentre of its orbit, and follow its dynamical evolution for a period

of )sim = 36 Gyr. The orbit’s radial period is given by

)r = 2
∫ Aa

Ap

dA√
2[� −Φh (A)] − !2/A2

, (A.5)

(e.g., Binney & Tremaine, 2008), with Ap and Aa the pericentric and apocentric radii of the orbit, respectively,

andΦh (A) the gravitational potential due to the host halo. The latter is given by

Φh (A) = −+2
vir,h

ln(1 + 2hG)
5 (2h) G

(A.6)

where G = A/Avir,h and

5 (2) = ln(1 + 2) − 2/(1 + 2) . (A.7)

Fig. A.1 plots )r as function of Gc for several values of [ and 2h. Note that, to good approximation, )r ∼

6.7 Gyr G1.15
c , with only a very weak dependence on [ or 2h. Hence, for the range of orbits covered by DASH,

which have Gc ∈ [0.5, 2.0] (see Section A.2.2 below), )sim = 36 Gyr corresponds to between 2.5 and 12 radial

periods. The initial (Cartesian) vectors of the subhalo position and velocity with respect to the host halo are

given by X = (Aa, 0, 0) and V = (0, !/Aa, 0), respectively, such that the subhalo orbit is confined to the G − H

plane. For each simulation we output a total of 301 snapshots, with the time interval between snapshots

fixed at 0.12 Gyr.
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Figure A.1: The radial period, )r, as a function of the parameter that controls the orbital energy of the
subhalo, Gc. A virial overdensity of Δvir = 200 and redshift of I = 0 are assumed. )r scales as )r ∝ G1.15

c , and
it is almost independent of [ and 2h.

A.2.1.2 Simulation Invariance

As discussed in Section A.2.1.1, the DASH simulations have been run in model units for which � = "vir,s =

Avir,s = 1. In these units, the subhalo has a crossing time Ccross ≡ Avir,s/+vir,s of unity. Converting to

physical time units, simply requires multiplying the model time units by 1.44Γ Gyr with Γ = Γ(ℎ,Δvir)

given by Equation (A.4). Hence, each DASH simulation is applicable to any combination of Δvir and �0 =

100 ℎ km s−1 Mpc−1, each of which with its own scaling between time in model units and time in physical

units.

ChangingΔvir and/or ℎ, while keeping the simulation parameters (M, Gc, [, 2h, 2s) fixed, corresponds to

changing the actual physical densities. For example, increasingΔvir implies that the virial radius of the host

halo decreases, such that a given value of Gc corresponds to a smaller physical radius, where the density of

the host halo is larger. But, since the densities of the subhalo change similarly, and since the tidal evolution

only depends on the ratio of densities (i.e., gravity is scale-free), the outcome of the simulation is entirely

invariant to these changes in Δvir and/or ℎ.

However, when changing Δvir and/or ℎ one can also re-scale the DASH simulations in another way, one

that keeps the physical densities, and hence the mapping between model time and physical time, invari-

ant. This scaling, however, requires a mapping between the parameter set {M, Gc, [, 2h, 2s} for the DASH

simulation (Δvir = 200 and ℎ = 0.678) and another parameter set {M ′, G ′c, [′, 2′h, 2
′
s} corresponding to Δ′vir

and ℎ′. This scaling keeps the characteristic density and scale-radius, i.e., d0 and As in equation (A.1), in-

variant. Consequently, a different value ofΔvir, which corresponds to a different virial radius, now implies a
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different value for the mass and concentration parameter of the halo. And since the orbital radius remains

invariant, also the dimensionless parameter Gc will change its value. Using that the characteristic density

of an NFW halo with concentration parameter 2 is given by

d0 =
23

5 (2) Δvirdcrit, (A.8)

it is straightforward to show that a DASH simulation for {M, 2h, 2s, Gc, [} can be used to represent the

evolution of a subhalo with parameters {M ′, 2′h, 2
′
s, G
′
c, [
′} for any other combination of Δ′vir and d

′
crit using

the following mapping:

M → M ′ =M (Q3
h/Q

3
s )

2h → 2′h = 2h Qh

2s → 2′s = 2s Qs

Gc → G ′c = Gc Q−1
h

[ → [′ = [

5b → 5 ′b = 5b (Γ/Q3
s ) .

(A.9)

Here Γ = Γ(ℎ′,Δ′vir) is given by Equation (A.4), and Q = Q(2,Δ′vir) is the root of

Q3 5 (2)
5 (2 Q)

(
Δ′vir

200

) (
ℎ′

0.678

)2

= 1 . (A.10)

Note that, whereas the (Δvir, ℎ)-dependent time-scaling is exact, this density-invariant mapping is only

approximate. One of the reasons is that, because of dynamical friction, our simulations are only invariant

to changes inM as long as themass ratio"vir,h/"vir,s >∼ 100. Hence, one can only use this mapping as long

as (Qh/Qs)3 >∼ 0.1. In addition, the initial subhalo is only initialized out to a truncation radius Atrunc (see

Section A.2.1.1), which is equal to the virial radius, but only forΔvir = 200 and ℎ = 0.678. For other values of

Δvir and ℎ, the subhalo is effectively truncated at a radius Atrunc = A
′
vir/Qs. Aswe have demonstrated in Paper

II, the simulation outcome depends only very weakly on where exactly the initial subhalo is truncated, as

long as it is outside of the initial tidal radius. The weak dependence mainly originates from ‘self-friction’

(see Section A.3.1), which depends on the amount of mass that is stripped from the subhalo, which is larger

if the initial truncation radius is larger. Hence, as long as the impact of self-friction is weak, which is almost

always the case, we expect the density-invariant mapping of Equation (A.9) to be reasonably accurate. We

have verified that this is indeed the case by running a few simulations for different values of Δvir, and

comparing the resulting 5b (C) to predictions from the re-scaled DASH simulations based on the mapping of

Equation (A.9). Except for the time period prior to the first pericentric passage, we find this mapping to be
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accurate at the few percent level. The reason why the mapping fails prior to the first-pericentric passage

is simply that the mapping predicts that the initial subhalo starts out with a bound mass fraction 5 ′b that

is not equal to unity. However, after first pericentric passage the subhalo is basically stripped down to the

same physical radius as in the fiducial case, and the mapping of Equation (A.9) is reliable.

A.2.1.3 Numerical techniques

All DASH simulations have been carried out using a tree code (Barnes & Hut, 1986) specifically developed

for graphics processing unit (GPU) clusters (Ogiya et al., 2013). The code uses CPU cores to construct octree

structures of the#-body particles, while GPU cards are used to compute gravitational accelerations through

tree traversal. We employ 1,048,576 particles in each simulation. Forces between particles are softened

using a Plummer softening length n = 0.0003Avir,s (see Paper II) and the opening angle of the tree algorithm

is set to \ = 0.7. Orbit integration uses a leapfrog schemewith a global, adaptive time stepΔC = 0.2
√
n/0max

(Power et al., 2003). Here 0max is the maximum, absolute value of acceleration among all particles at that

time1. As we have demonstrated in Paper II, these numerical parameters are adequate to properly resolve

the tidal evolution of subhaloes. In order to verify this, we have run a subset of our simulations at ten times

better mass resolution (using # ∼ 107 particles), which yields results that are indistinguishable from our

nominal mass resolution.

A.2.1.4 Data analysis and products

For each simulation outputwe compute the boundmass fraction of the subhalo, 5bound (C), using the iterative

method described in detail in Appendix A of Paper I. Briefly, the centre-of-mass position, rcom, and velocity,

vcom, are computed using the five percent most bound particles. These quantities are subsequently used to

compute the binding energy of each particle. This is iterated until the changes in rcom and vcom are smaller

than 10−4Avir,s and 10−4+vir,s, respectively, which typically requires 3-10 iterations. The bound fraction,

5bound (C), is then defined as the fraction of the original particles that at time C have a negative binding

energy.

All simulations in the DASH library initially have sufficient numerical resolution to properly resolve the

dynamics of the dark matter subhalo. However, as highlighted in Paper II, simulation results can become

unreliable once the subhalo has lost a significant fraction of its initial mass due to tidal evolution. Paper II

presented the two criteria that a subhalo in a numerical simulationneeds to satisfy in order for its dynamical

evolution to be reliable. The first criterion, which is motivated by the work of Power et al. (2003), tests

1. Typically the time step is fairly constant throughout the entire simulation, except for a small (typically factor ∼ 2) decrease in ΔC
during a high-speed pericentric passage of the host halo.
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whether the softening length is sufficiently small to resolve the relevant accelerations. It translates into a

requirement for the bound mass fraction given by

5bound (C) > 1.79
22

s

5 (2s)

(
n

Avir,s

) (
Ah (C)
Avir,s

)
(A.11)

with Ah (C) the half-mass radius of the (bound part of) the subhalo at time C. Using that all DASH simulations

adopt Y = 0.0003Avir,s, we thus have that the simulation results need to satisfy

5bound (C) >
0.054
5 (2s)

( 2s

10

)2
(
Ah (C)
Avir,s

)
, (A.12)

for the results to be deemed reliable. The second criterion is related to discreteness noise, and puts a con-

straint on the number of bound particles in the subhalo. In particular, it states that the number of bound

particles needs to exceed

#crit ≡ 80#0.2 . (A.13)

with # the number of particles in the initial subhalo. Once the number of bound particles falls below this

critical value, the subhalo starts to experience a runaway instability, triggered by discreteness noise, which

quickly leads to its demise (i.e., artificial disruption). Since all DASH simulations have # = 1, 048, 576, we

have that #crit = 1, 280, which implies that the DASH simulations are only reliable for

5bound (C) > 1.22 × 10−3 . (A.14)

As discussed in Section A.2.3 below, the DASH library contains, for each output, the boundmass fraction and

the half-mass radius of the subhalo, which the user can use to test whether the output satisfies both crite-

ria. More than 99.5% of all the simulation outputs available in the DASH library satisfy both criteria (A.12)

and (A.14).

A.2.2 The DASH parameter space

The simulations described above are characterized by six parameters: the mass and concentration of the

host halo,"vir,h and 2h, respectively, the mass and concentration of the subhalo,"vir,s and 2s, respectively,

and the orbital parameters Gc and [. In order to limit the numerical cost of sampling this six-dimensional

parameter space without sacrificing the volume sampled, we adopt a strategy that devotes more compu-

tational efforts to the regions of parameter space with higher probability. In doing so, we are guided by

physical considerations and results from cosmological simulations.
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Figure A.2: Probability distribution of the orbital parameters, Gc and [, derived from the fitting function
by Jiang et al. (2015) for a host halo mass of " = 1012 "� and minor merger mass ratios in the range
0.0001 ≤ "s/"h ≤ 0.005. The host halo is assumed to follow a NFW density profile with a concentration
2h = 5. Crosses represent the parameter sets used in the DASH library. Red crosses cover the regions
of parameter space with the largest probabilities in the distribution and most simulations are devoted to
these regions. The right and bottom subset panels show the one dimensional marginalized probability
distributions of Gc and [, respectively.

A.2.2.1 Initial mass ratio

Since dynamical timescales and the impact of tidal forces depend only on density, and since all haloes, by

definition, have the same virial density, our simulation results should be independent of "vir,h and "vir,s,

significantly reducing the dimensionality of our parameter space. However, there is one important caveat.

In reality, a subhalo orbiting a host halo experiences a dynamical drag force caused by the (perturbed)

matter in the host halo (‘dynamical friction’; e.g., Chandrasekhar, 1943) and by its own stripped material

(‘self-friction’; e.g., Fujii et al., 2006; Fellhauer & Lin, 2007). The impact of these drag forces, which result

in orbital decay, increase strongly with decreasing mass ratioM = "vir,h/"vir,s. WhenM >∼ 100, though,

their impact can safely be ignored (e.g., Mo et al., 2010). Throughout, we therefore restrict ourselves to

simulations withM = 1000. As we specifically demonstrate in Section A.3.1, these simulations accurately

capture the tidal evolution of subhaloes for anyM >∼ 100, independent of the absolute value of "vir,h.

A.2.2.2 Sampling orbital parameters

Using a state-of-the-art cosmological simulation, Jiang et al. (2015) studied the orbital parameters of dark

matter subhaloes at their moment of accretion into their host halo (see also e.g., Tormen, 1997; Zentner

et al., 2005a; Khochfar & Burkert, 2006; Wetzel, 2011; van den Bosch, 2017). In particular, Jiang et al. (2015)

measured the radial and tangential components, +r and +\ , of the relative velocity vector between the

host- and subhaloes at infall. We convert their bivariate distribution of +r/+vir,h and +\/+vir,h to the cor-

responding bivariate distribution of Gc and [, assuming an NFW density profile for the host halo with a
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Figure A.3: Probability distribution of the halo concentration ratio, 2s/2h, based on the halo merger rate
by Fakhouri et al. (2010) and 2("vir, I) relation by Ludlow et al. (2016), as well as the log-normal scatter of
flog 2 = 0.12 in the 2("vir, I) relation. A redshift of I = 0 is assumed. Lines represent the distribution for
host haloes with "vir,h = 1010, 1011, 1012, 1013, 1014 and 1015 "� , respectively.

concentration parameter 2h = 5. The resulting PDF %(Gc, [) is shown in Fig. A.2, where the small panels

show the corresponding, marginalized distributions of Gc (side panel) and [ (bottom panel).

In order to ensure that our sampling of Gc and [ covers the entire range relevant for modelling the

assembly and evolution of dark matter substructure, we proceed as follows. We sample [ linearly over

the entire range from [ = 0 (purely radial orbit) to 1.0 (circular orbit) in 10 steps of Δ[ = 0.1, and Gc

logarithmically over the range from Gc = 0.5 to 2.0, in 10 steps of Δ log Gc ' 0.06. Hence, there are a total

of 121 combinations of (Gc, [). Together with 121 combinations of (2h, 2s) (see below), this would imply

that we need to run more than 14,500 simulations. In addition to being prohibitively expensive, this is

also unwarranted, as we will demonstrate in Section A.4. Instead, we significantly reduce the number of

simulations by focusing most of our efforts on the more likely parts of parameter space. The red crosses

in Fig. A.2 indicate the 45 most likely combination of Gc and [. For each of these we run the 45 most likely

combinations of (2h, 2s), using the sampling strategy detailed below. The black crosses, on the other hand,

indicate the combinations of (Gc, [) for which we only run one realization of halo concentrations, namely

the one for (2h, 2s) = (5.0, 10.0).

A.2.2.3 Sampling halo concentrations

In deciding on how to sample 2h and 2s, we are again guided by cosmological simulations. These reveal that

haloes of fixedmass have a log-normal distribution of halo concentrations, with a scatter of∼ 0.12 dex, and

with a median that decreases with halo mass roughly as 2 ∝ "−0.1 (e.g., Bullock et al., 2001; Prada et al.,
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1012 "� in Fig. A.3 is translated into this two-dimensional space, assuming that the distribution in Fig. A.3
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cover the regions of largest probability in the distribution and most simulations are devoted to these con-
centration pairs.

2012; Dutton &Macciò, 2014; Diemer & Kravtsov, 2015; Ludlow et al., 2016). For DASHwe sample both 2s and

2h using log 2 = 0.5, 0.6, 0.7, ..., 1.5. This covers the range 3.1 <∼ 2vir <∼ 31.5, which is adequate for the vast

majority of all haloes in our mass range of interest (roughly 107 < "vir/( ℎ−1M�) < 1015). This sampling,

though, yields a total of 121 unique pairs of (2h, 2s). Similar to our sampling of the orbital parameters, we

focus most of our efforts on the ‘most likely’ combinations of 2h and 2s. First, using the fitting function of

Fakhouri et al. (2010), we compute the halomerger rate as a function of themass ratio of themerging haloes.

We only consider minor mergers with a mass ratioM > 100, representative of our simulations. Next,

we draw concentrations for each of the merging haloes using the concentration-mass relation of Ludlow

et al. (2016), and account for log-normal scatter with flog 2 = 0.12. Using this Monte-Carlo procedure, we

compute the PDF for log[2s/2h]. Results for different values of "vir,h are shown in Fig. A.3, and are in good

agreement with the results obtained from cosmological simulations (e.g., Paper I). Note that more massive

host haloes tend to have somewhat higher concentration ratios on average. However, the strength of this

mass dependence is weak compared to the width of the individual PDFs, and we therefore ignore it in what

follows. Fig. A.4 shows the joint distribution of 2h and 2s, derived using the PDF for log[2s/2h] for a host halo

ofmass"vir,h = 1012ℎ−1M� and adopting a uniformdistribution2 in 2h. Black crosses indicate combinations

of (2h, 2s) for which we have run simulations for all 45 most likely orbital parameter combinations (Gc, [)

(the red crosses in Fig. A.2). White crosses, on the other hand, indicate combinations of (2h, 2s) for which

we have run only one orbital configuration, namely with (Gc, [) = (1.0, 0.5).

2. Although halo concentrations follow a log-normal distribution at fixedmass, we adopt (for simplicity) a uniform distribution such
that the simulations are relevant for a wide range in halo masses.
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filename description
subhalo_evo position, velocity, bound mass fraction, and half-mass radius of subhalo as function of C
radprof_rho subhalo density, d(A, C), as function of A and C, in units of 200dcrit (0)
radprof_m enclosed mass of subhalo, " (< A, C), as function of A and C, in units of "vir,s

radprof_sigmar radial velocity dispersion, fr (A, C), as function of A and C, in units of+vir,s
radprof_sigmat tangential velocity dispersion, ft (A, C), as function of A and C, in units of+vir,s

Table A.1: Summary of the DASH data files available for each simulation.

A.2.3 Data structure

Using the sampling strategy outlined above, there are a total of 2,177 idealized #-body simulations that we

have run. It is hierarchically structured, with different layers of directories corresponding to the various

adopted orbital or concentration parameters. Each directory presents the results of the simulation in the

form of five simple text files (see Table A.1), and each file contains a header listing the parameter set used in

the simulation, as well as a brief description of the data file. Rather than accessing the results for individual

simulations, the user can also download a single compressed archive file (∼ 0.6GB) containing the results

for all 2,177 simulations as well as a Python routine that uses a non-parametric model based on random

forest regression (see Section A.4), to predict the boundmass fraction of a subhalo as a function of time, for

any configuration captured by our parameter space. In what follows we briefly describe the information

that is provided for each simulation.

The file subhalo_evo lists the temporal evolution of several subhalo properties. The first column lists

the ID of each simulation snapshot, which can be used to compute the corresponding physical time as

C = 0.12 GyrΓ(ℎ,Δvir) × ID . (A.15)

Columns 2-4 and 5-7 list the Cartesian components of the position and velocity vectors of the centre-of-

mass of the subhalo, respectively. The former and latter are normalized by the virial radius and velocity of

the host halo, Avir,h and +vir,h, respectively. Finally, columns 8 and 9 list the subhalo bound mass fraction,

5bound (C), and the subhalo’s half-mass radius, Ah (C). The latter is normalized by the virial radius of the initial

subhalo, Avir,s. Note that these outputs describe the tidal evolution of a (spherical NFW) subhalo of anymass,

"vir,s, in a (spherical NFW) host halo of any mass, "vir,h, as long asM = "vir,h/"vir,s >∼ 100. For smaller

mass ratios dynamical friction, which is not accounted for, is important.

The other data available for each simulation in the DASH library are four text files that list the time

evolution of four different radial profiles: the normalized density, d(A, C)/[200 dcrit (0)], the enclosed, nor-

malized mass profile, " (< A, C)/"vir,s, and the normalized radial and tangential velocity dispersion pro-

files, fr (A, C)/+vir,s and ft (A, C)/+vir,s, respectively. The positions and velocities of all particles are defined
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with respect to the centre-of-mass position and velocity of the subhalo, and only bound particles are taken

into account. The first row of each of the radprof files lists the radial bins, which span the range −2.95 ≤

log(A/Avir,s) ≤ 0.95 in equally spaced bins of width Δ log(A/Avir,s) = 0.1. The subsequent rows list the ra-

dial profiles for each of the 301 simulation snapshots, with row 9 corresponding to snapshot ID= 9 − 2. The

corresponding physical time is given by equation (A.15).

A.3 Some examples from the simulations

While classical dynamical friction is absent in the simulations, another source of friction caused by themass

stripped from the subhalo may alter the mass and orbital evolution of the subhalo in the tidal interactions.

Section A.3.1 studies the validity condition that must be satisfied in order to neglect this friction force.

The subsequent subsections present some examples of the DASH simulations, namely the mass evolution

(Section A.3.2) and radial profiles (Section A.3.3) of the tidally stripped subhaloes.

A.3.1 Dependence on the initial mass ratio

As mentioned in Section A.2.1, the host halo is modelled as an analytical NFW potential and the initial

mass ratio between the host- and subhaloes,M ≡ "vir,h/"vir,s, is fixed at 103 for all simulations. In this

subsection, we discuss the validity condition for these assumptions.

In actual mergers, friction forces may alter the orbit of subhaloes. The classical dynamical friction

(Chandrasekhar, 1943) is caused by wakes formed in the density field of the larger host system due to the

gravitational force of smaller objects, such as supermassive black holes, galactic bars, and dark matter sub-

haloes (e.g., Weinberg & Katz, 2007; Antonini & Merritt, 2012; Ogiya & Burkert, 2016). This kind of friction

force is absent in our simulations because we employ an analytical host potential and the response in the

density field of the host system due to the gravitational force of the subhalo is therefore not taken into

account. The timescale of orbital decay due to this dynamical friction is roughly equal toMgff (e.g., Mo

et al., 2010), where gff is the free-fall time of the host halo, which is of the order of 2-3 Gyr at I = 0. Since all

our simulations adoptM = 103, is it clear that we can safely neglect the effects of dynamical friction, and

thus use an analytical potential to model the host halo.

However, in addition to this ‘classical’ dynamical friction, which is not accounted for in our simulations,

there is an additional friction force that may contribute, and which is included in our simulations. This

force is due to themass stripped from the subhalo itself, andwe therefore refer to this force as ‘self-friction’.

Fig. A.5 shows an example of the tidal evolution of a subhalo in the DASH simulation with Gc = 1.0, [ = 0.5,

2h = 5, 2s = 10 andM = 103. Time progresses from the top left to the bottom right, as indicated, while
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Figure A.5: Distribution of particles in the simulation run with Gc = 1.00, [ = 0.5, 2h = 5, 2s = 10 and
M = 103. The blue line represents the subhalo orbit with respect to the centre of the host halo, which
corresponds to the origin in this plot. From the leftmost panel in the top row to the rightmost panel in
the bottom row, the evolution is illustrated. The time and bound mass fraction, 5b, of each snapshot are
denoted in each panel. The spatial coordinates are scaled by the virial radius of the host halo, Avir,h, and the
colour bar (column density) is given in arbitrary units.
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colors indicate column density (in arbitrary units). As is evident, the tidal field of the host halo strips mass

from the subhalo, giving rise to a leading and a trailing tidal arm that roughly trace out the subhalo’s orbit.

The gravitational force from this stripped material on the bound remnant, can result in a net deceleration,

thus giving rise to a self-friction (Fujii et al. 2006; Fellhauer & Lin 2007; Paper II).

In order to estimate the impact of self-friction, we have performed a number of simulations in which

we vary the mass ratio,M, while keeping all other parameters fixed to Gc = 1.0, [ = 0.5, 2h = 5 and 2s = 10.

Each subhalo is simulated with 1,048,576 particles and uses our fiducial softening and time-stepping. The

results are shown in Fig. A.6, which plots the orbital radius (upper panel) and bound mass fraction (lower

panel) as functions of time. The black dotted line corresponds to the results from aM = 103 simulation

with an order of magnitude more particles (# = 10, 485, 760), and is shown to demonstrate that these

results arewell converged; the black dotted line lies exactly on top of the results fromour fiducial resolution

simulation, shown as a purple solid line. In the absence of any friction, the results from all these simulations

should all be identical. This follows from the scale-free nature of gravity, the fact that (sub)haloes with

the same concentration parameter but different mass, have identical density profiles as function of the

normalized radius A/Avir, and the fact that the tidal radius scales with the ratio of the densities of host and

subhalo3.

While the simulationswithM >∼ 100 are indeed indistinguishable, thosewith smallermass ratios clearly

deviate, both in terms of their orbit and in terms of the bound mass fraction. Notably, the apocentric dis-

tance reached after the first pericentric passage becomes smaller for smallerM, indicating that the subhalo

is experiencing self-friction due to its own stripped material. Over time this self-friction causes the orbit

to shrink, which reduces the pericentre of the orbit, thereby exposing the subhalo to a stronger tidal tidal,

which in turn results in a reduced boundmass fraction. As is evident fromFig. A.6, the impact of self-friction

is more pronounced for smaller values ofM. This is easy to understand; asM decreases, the force from

the stripped material on the bound remnant relative to that from the host halo increases, causing a more

pronounced deceleration along its orbit. We present a more detailed study of self-friction in Miller et al.

(2020). Relevant for this study, though, is that self-friction is negligible forM >∼ 100, and that the evolution

of the bound mass fraction does not depend onM as long as this is the case. Hence, the DASH simulations

presented here, which all haveM = 103, are valid for any mass ratioM >∼ 100.
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Figure A.6: (Upper panel) Distance between the centres of the host potential and subhalo, �, normalized by
the initial value, � ini. (Lower panel) Bound mass fraction, 5b (C) ≡ "b (C)/"vir,s, where "b (C) and "vir,s are
the boundmass of the subhalo at each given time and the initial subhalomass, respectively. The initial mass
ratio between the host- and subhalo,M ≡ "vir,h/"vir,s, is denoted in the legend. In the simulations, the
same parameters for the host potential ("vir,h is fixed and 2h = 5) and subhalo orbit (Gc = 1.00 and [ = 0.5)
are adopted. While the concentration of the subhalo is also fixed (2s = 10), the subhalo mass is varied and
its spatial scale is altered accordingly (i.e., Avir,s ∝ "1/3

vir,s). In the simulations represented by solid lines, the
standard resolution level (# ≈ 106) is adopted. As an additional test, the number of particles is increased
by a factor of ten in the simulation represented by the black dotted line (M = 103), with other parameters
held fixed.
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Figure A.7: Evolution of the subhalo bound mass fraction, 5b. The timescale is normalized by the radial
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A.3.2 Bound mass fraction

Fig. A.7 demonstrates the evolution of the boundmass fraction of the subhalo, 5b, obtained in some example

simulations. Fixing the structural parameters of the host- and subhaloes (upper panels), the subhalo mass

is more significantly decreased on more tightly bound (smaller Gc) or radial (smaller [) orbits, since the

orbits have smaller pericentres and the subhalo feels a stronger tidal force from the host potential. The

lower panels illustrate that when the subhaloes are on the same orbit, a larger 2h (smaller 2s) leads to

more significant mass loss because of the stronger tidal force of the host halo (more loosely bound subhalo

structure). These results, which only represent a tiny fraction of the entire DASH library, are consistent

with intuition.

Less intuitive is the behavior in the bound mass fraction on a highly radial orbit (i.e., small [) close

to a pericentric passage. In some cases, the bound mass fraction fluctuates wildly, dropping steeply, only

to increase again immediately thereafter (see for instance the purely radial, [ = 0 orbit in the upper-left

panel). This arises i) because the method to compute the bound mass and orbit of the subhalo allows re-

binding of particles (see Appendix A of Paper I for details), and ii) because the subhalo is impulsively heated

by tidal shocking, especially on radial orbits (e.g., Spitzer, 1987; Gnedin et al., 1999b), which leads to the

strong reduction of the bound mass. A fraction of the temporarily evaporated subhalo mass is re-bound

during the subsequent re-virialization process of the subhalo.

Another interesting feature apparent in Fig. A.7 is that, except for the step-like behavior near pericentre,

5b roughly behaves like a power-law function for C/)r > 1. The slope of this power-law function clearly

depends on the orbital and concentration parameters, and the DASH library, which contains simulation

data for a large parameter space, can be used to calibrate these scaling relations, which in turn can be

used to model the tidal evolution of substructure in (semi-)analytical models of structure formation. An

alternative method, which we explore in Section A.4 below, is to use machine learning algorithms, such as

random forest regression, to process and distill the huge amount of data available in the DASH library. As

we demonstrate, this allows for reasonably accurate predictions for the bound mass fraction of subhaloes

as a function of their time since accretion.

A.3.3 Radial profiles

The DASH library also includes density and velocity dispersion profiles of tidally stripped subhaloes. An

example is shown in Fig. A.8, which plots the profiles for a subhalo for three snapshots of the simulation

with 2h = 5.0, 2s = 10.0, Gc = 1.00 and [ = 0.5. Each of these snapshots corresponds to an epoch at

3. A comprehensive review is found in Paper I (see also e.g., Binney & Tremaine 2008)
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which the subhalo is near its apocentre, at which point the subhalos is in a fairly relaxed state (e.g., Aguilar

& White, 1986; Peñarrubia et al., 2009), and the corresponding bound mass fractions are indicated in the

middle panel. The top panel of Fig. A.8 shows the subhalo’s density profile, normalized by 200dcrit. Note

how tidal stripping mainly removes mass from the outskirts, while leaving the central densities almost

unaffected. For comparison, the dashed and dotted curves are themodel predictions of Hayashi et al. (2003)

and Peñarrubia et al. (2010), respectively. Bothmodels suggest that the density profile of a stripped subhalo

only depends on the initial density profile (prior to stripping) and thepresent boundmass fraction. Whereas

the model by Hayashi et al. (2003) fits the profiles extremely well, the model by Peñarrubia et al. (2010)

predicts a shallower outer density profile at later times. However, as we demonstrate in Green & van den

Bosch (2019), neither theHayashi et al. (2003) nor the Peñarrubia et al. (2010)model can adequately describe

the evolution of the subhalo density profile under all conditions encountered in the DASH library, and we

therefore develop a new and improved model based on the entire set of over 2,000 DASH simulations. The

middle and bottom panels of Fig. A.8 show the radial velocity dispersion profiles and the corresponding

profiles of the velocity anisotropy parameter

V(A) ≡ 1 −
f2

t (A)
2f2

r (A)
, (A.16)

(Binney & Tremaine, 2008). Note that, by construction, the initial subhalo is isotropic (V = 0) through-

out. At later times, as its bound mass fraction decreases, the subhalo becomes more and more tangentially

anisotropic (V < 0) in its outskirts, while the radial velocity dispersion profile decreases on all scales. Hence,

the bound remnant becomes colder and colder as more and more mass is stripped, and since particles on

more radial orbits reach larger apocentric distances, they aremore likely stripped, thereby causing the rem-

nant to become tangentially anisotropic. Finally, the black, dashed lines show the results from a simulation

with 10 times higher mass resolution. The fact that the resulting profiles are indistinguishable from those

of the nominal resolution simulation indicates that the DASH simulations are well converged.

A.4 An application of machine learning to the DASH library

The DASH library is a homogeneously structured, large dataset that can easily be explored with machine

learning (ML). As a first example, we apply a commonly-used ML regression method, random forests (RF;

Breiman, 2001) as implemented in scikit-learn (Pedregosa et al., 2011)4, to predict 5b as a function of

five features: C/)r, Gc, [, 2h and 2s. Because 2h, 2s and Gc are equally binned in logarithmic space in the

4. https://scikit-learn.org
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DASH library (see Section A.2.2), we adopt log (2h), log (2s) and log (Gc) as the actual features. Furthermore,

we train the model to predict log ( 5b) as the target since 5b varies over several orders of magnitude. In

the following analysis, only data points satisfying the numerical criteria of Paper II are included (a brief

summary is given in Section A.2.3).

The ML algorithm we adopt, RF, is based on decision trees (Quinlan, 1986). While the decision tree

method is intuitive and useful, trained models tend to be overfitted, i.e., the training data set is very accu-

rately reproduced while poor predictions are made for untrained cases. In order to avoid this overfitting

issue, RF constructs an ensemble of decision trees and adopts the mean prediction of individual decision

trees as the final prediction. The ensemble consists of 20 decision trees with a maximum depth of 20. Here,

the depth of the tree is the number of layers from a root to a leaf. The other hyperparameters are set to

their default values in the scikit-learn implementation.

In order to increase the confidence in our trained model, we adopt group :-fold cross validation (e.g.,

Browne, 2000, and references therein). First, the full data set is divided into : subsets composed of data

points from randomly selected simulations. Note that all time steps from each simulation are assigned to

one group such that they are all placed within the same subset and thus are not split between multiple

subsets. Then, the RF is trained with : − 1 subsets and the trained model is tested on the remaining subset.

This training and test procedure is iterated : times and the performance ('2 score, see below for details)

is measured as the average of the : models. We set : = 5 and the number of simulations in each subset is

almost the same (435 or 436). To further verify the robustness of our trained model, we perform a test with

a reduced number of C/)r bins. While the other four parameters (2h, 2s, Gc, and [) have 11 bins for each,

C/)r has 301 bins in the DASH library. This might artificially weight C/)r more strongly relative to the other

features. To assuage this concern, we also train a model in which we use only 11 of the 301 epochs, equally

spaced in time, such that all five features have 11 bins.

Fig. A.9 compares the evolution of 5b in the#-body simulationswith the predictionsmade by the trained

RF model and depicts that the model is predictive at the ∼ 0.1 dex level. Note that the model predictions

shown in Fig. A.9 are of simulations included only in the test fold for this particular trained model. In our

case, a measure of accuracy of the trained model, the '2 score (coefficient of determination) is defined as

follows:

'2 ≡ 1 −
∑[log ( 5b,sim) − log ( 5b,pred)]2∑[log ( 5b,sim) − 〈log ( 5b,sim)〉]2

. (A.17)

The summation runs over all data points in the test set. The mean value in the test set is simply given as

〈log ( 5b,sim)〉 =
1

#test

∑
log ( 5b,sim). (A.18)
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Figure A.9: Comparison between the subhalo bound mass fraction in the simulations, 5b,sim, and those pre-
dicted by themodel based on a commonly-usedmachine learningmethod, random forest regression, 5b,pred.
(Upper) Solid lines represent the simulation results and dashed lines represent the prediction by the model.
(Lower) Residuals between the simulations and model predictions. The same colour scheme is used as the
upper panel. The times are scaled by the radial period, )r.

Here, #test = #snap × #sim/5 ≈ 131, 000 is the number of data points in the test set and #sim (= 2, 177) and

#snap (= 301) represent the number of simulations in the DASH library and the number of snapshots in each

simulation, respectively. We emphasize again that only the data points fulfilling the numerical convergence

criteria (see Paper II and Section A.2.1.4) are included in this analysis. The trained model yields '2 > 0.98

for the test set in all five cross-validation cases, indicating that the trained model works well for untrained

cases within the covered parameter space. The '2 score does not change even if we reduce the number of

C/)r bins by a factor of 30, verifying that the higher number of bins in C/)r does not matter for our model.

scikit-learn also reports the importance of features, i.e., how much the model depends on each fea-

ture for predicting 5b. The derived importance for each feature is [C/)r, log (2h), log (2s), log (Gc), [] =

[0.46, 0.05, 0.21, 0.09, 0.19], meaning that 5b depends strongly on time while 2s and [ play the most domi-

nant roles among the four givenparameters. This informationmaybeuseful in constructing semi-analytical

models and in determining the parameter sets to be studied in the subsequent expansion of the DASH li-

brary.

The model trained with the full data set is saved in the file named dash_fb_rf.joblib and available

within the Jupyter notebook, dash_fb_predict.ipynb, in the DASH library. Inputting the four parame-

ters we vary, Gc, [, 2h, and 2s, as well as the time of interest, one obtains the expected trajectories of the

mass evolution of tidally stripped subhaloes. While themodel is accurate and easy to use, it is not robust for

extrapolation beyond the sampled region of parameter space because of the nature of decision tree-based
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algorithms, which can only interpolate between the data points in the training set. The prediction made

by RF corresponds to the mean prediction of individual decision trees and hence it does not work in the

parameter space where no data points are found. Other ML algorithms, e.g., support vector machines and

others based on neural networks, are needed to constructmodels that can be extrapolated, but these frame-

works generally require more complicated data preprocessing treatment and tuning of hyperparameters

than those for RF to obtain good models.

Subsequent studies will use the other types of data available in DASH, such as the radial profiles of mass

density and velocity dispersion, in order to investigate the dynamical evolution of tidally stripped subhaloes

in more detail (e.g., Green & van den Bosch, 2019).

A.5 Summary and discussion

Cosmological #-body simulations are the prime tool used to study the hierarchical assembly of darkmatter

haloes. They reveal that virialized dark matter haloes have a universal density profile (e.g., Navarro et al.,

1997), and that roughly 10 percent of their mass is bound up in distinct subhaloes (e.g., Ghigna et al., 1998;

Gao et al., 2004; Giocoli et al., 2010). According to the same simulations, a large fraction of these subhaloes

completely disrupt after a few orbital periods (Han et al., 2016; van den Bosch, 2017). It has recently been

argued that the majority of this disruption is artificial (Peñarrubia et al., 2010; van den Bosch et al., 2018;

van den Bosch & Ogiya, 2018), and thus that state-of-the-art cosmological simulations still suffer from an

appreciable amount of ‘over-merging’. Most importantly, van den Bosch & Ogiya (2018) argued that this

problemmay go unnoticed in standard numerical ‘convergence’ tests. Hence, it is prudent that we consider

alternative methods to predict the abundance and demographics of dark matter substructure, which is a

potentially powerful Rosetta stone for deciphering the nature of dark matter.

One alternative to numerical simulations is a semi-analytical approach that combines halomerger trees,

constructed using the framework of extended Press-Schechter theory (Bond et al., 1991), with a treatment

of the tidal evolution of subhaloes as they orbit their host. These models are not hampered by discreteness

issues or limiting force resolution responsible for artificial disruption. In addition, these models are far less

CPU-intensive than actual #-body simulations, thus allowing for an extensive exploration of parameter

space. Numerous models along this line have been constructed in the past (Taylor & Babul, 2001, 2004; van

den Bosch et al., 2005b; Peñarrubia & Benson, 2005; Zentner et al., 2005a; Diemand et al., 2007; Kampakoglou

& Benson, 2007; Gan et al., 2010; Pullen et al., 2014; Jiang & van den Bosch, 2016). Unfortunately, since we

lack a purely analytical treatment of tidal stripping and heating, thesemodels typically contain one ormore

‘fudge’ parameters. These are tuned by requiring the model to reproduce the subhalo mass functions taken
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from cosmological #-body simulations. The obvious downside of this approach is that the models thereby

inherit the over-merging problems of the simulations.

In order to overcome this dilemma, we need idealized simulations that are (i) well resolved and free from

artificial disruption, and (ii) optimized to allow for calibration of semi-analytical treatments of tidal strip-

ping and heating. This chapter presents the DASH library, consisting of 2,177 idealized, high-resolution

(# = 1, 048, 576), collisionless #-body simulations of individual dark matter subhaloes orbiting in the

potential of a static, analytical host halo. The simulations have sufficient mass and force resolution to

overcome artificial disruption (i.e., they satisfy the numerical reliability criteria given by equations [A.12]

and [A.14]), and sample the entire parameter space of orbital energies, orbital angular momenta, and halo

concentrations relevant for dark matter substructure. All simulations adopt a host halo-to-subhalo mass

ratio ofM = "vir,h/"vir,s = 1000, for which dynamical friction, which is not accounted for in the DASH

simulations, is negligible. Because of the scale-free nature of the tidal evolution of subhaloes (see Sec-

tion A.3.1), the DASH simulations are valid for any mass ratio large enough such that dynamical friction

is negligble (i.e.,M >∼ 100). Each simulation is evolved for a period of roughly 36 Gyr, during which the

subhalo undergoes anywhere between 2 and 12 radial orbits. For each simulation, the DASH library, which

is publicly available, contains simple text files that present, among others, the temporal evolution of the

subhalo’s bound mass fraction, and the density and velocity dispersion profiles of the bound particles of

the subhalo at 301 outputs equally spaced in time. The library also contains a Python code, trained on the

DASH simulation data, that uses random forest regression to predict the bound mass fraction of subhaloes

as a function of time for given halo concentrations and orbital parameters. This code, which is accurate at

the 0.1 dex level, conveniently summarizes the main results from our large suite of simulations.

InGreen&vandenBosch (2019), weuse theDASH library to calibrate anewand improved semi-analytical

model of the tidal evolution of subhaloes, whichwewill subsequently use in combinationwith accurate halo

merger trees (e.g., Parkinson et al., 2008; Jiang & van den Bosch, 2014) to predict the subhalo mass function

of CDM haloes, unhindered by artificial disruption. This will shed new light on the level of reliability of the

subhalo demographics that have been extracted from cosmological #-body simulations.

Finally, we emphasize that although the parameter space covered by the DASH library is vast, it is by

no means exhaustive. One obvious shortcoming, as discussed above, is that the DASH simulations are in-

adequate to describe major mergers withM <∼ 100. In those cases, dynamical friction due to the host, and

self-friction due to tidally stripped material, cause the orbit of the subhalo to decay, exposing it to stronger

tides. Another degree of freedom not covered here is the inner density slope of dark matter haloes. It is

well known that observations of dwarf galaxies often suggest that their haloes have constant density cores,

rather than the steep A−1-cusps predicted by darkmatter-only simulations (e.g., Burkert, 1995; Gentile et al.,
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2004; Oh et al., 2011; Hayashi & Chiba, 2015). Such cores can be created within the CDM paradigm by a vari-

ety of baryonic processes (e.g. El-Zant et al., 2001a; Inoue & Saitoh, 2011; Pontzen & Governato, 2012; Ogiya

& Mori, 2014), and have a dramatic impact on the tidal evolution of subhaloes (Peñarrubia et al., 2010; Er-

rani et al., 2015; Ogiya, 2018). In addition, baryonsmodify the potentials of host- and subhaloes through the

bulges and discs that they form at the halo centres, and these also strongly impact the tidal fields (Errani

et al., 2017; Garrison-Kimmel et al., 2017). Finally, in the DASH simulations presented here, the host halo

is assumed to be spherically symmetric, which allows us to completely specify each orbit with only two

parameters (energy and angular momentum). Cosmological simulations, though, indicate that dark matter

haloes are expected to be triaxial systems (e.g., Jing & Suto, 2002; Allgood et al., 2006; Hayashi et al., 2007),

consistent with the shapes of the gravitational potentials of galaxies and clusters as inferred from a variety

of observations (e.g., Oguri et al., 2005; Corless & King, 2007; Law & Majewski, 2010). Triaxial systems have

a much richer variety of orbits, which is likely to impact the tidal evolution of subhaloes.

In the near future, we therefore anticipate augmenting the DASH library with a suite of simulations

that probe some of this extended parameter space. These additional simulations will be particularly useful

for informing the semi-analytical treatmentsmentioned above. Ideally, any such semi-analytical treatment

should capture the actual physics of tidal stripping and heating, and should thus be able to correctly predict

the tidal evolution of subhaloes in triaxial potentials, in the presence of orbital decay due to dynamical

friction, or in the case where the potential of the host- and/or subhalo has beenmodified due to the impact

of baryonic processes. It remains to be seen to what extent the models can meet this challenge, and it is

our hope that the DASH library presented here, as well as its future extensions, will play an important role

in this process.
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Appendix B

SatGen

This chapter has been published as an article by Jiang et al. (2021) in the Monthly Notices of the Royal

Astronomical Society by Oxford University Press. Since I am a co-author of this work, I have elected to

include it as an appendix because it provides a more thorough description of the SatGenmodel than that

of Section 3.2.

B.1 Background

I
n our modern understanding of the Universe, structures form hierarchically: dark mat-

ter (DM) overdensities collapse into gravitationally bound haloes, which merge to form

larger haloes. The smaller participant of a merger survive as substructure within the

merger remnant, experiencing tidal interactions, losing mass, and undergoing structural

change. Galaxies form inside DM haloes. When a halo merger occurs, the less massive progenitor becomes

a substructure and the inhabiting galaxy becomes a satellite galaxy. Subhaloes and satellites are therefore

the building blocks of host haloes and central galaxies and serve as relics of structures that formed earlier,

with their demographics containing the information of the assembly history of the host system as well as

the Universe at large.

Apart from their cosmological significance, satellite galaxies are interesting on their own, in the sense

that galaxies of extrememorphology are usually spotted in dense environments. For example, amongbright

dwarfs (i.e., galaxieswith stellarmass<★ ∼ 107−9M�) in the Local Groupor in galaxy clusters, galaxies range

from ultra-compact dwarfs (UCDs, with half-stellar-mass radii ;eff ∼ 0.1 kpc, e.g., Drinkwater et al. 2003) to

ultra-diffuse galaxies (UDGs, with ;eff ∼ 5 kpc, e.g., van Dokkum et al. 2015), spanning almost 2 dex in size.

The environmentmay be the key to such diversity: the central galaxy and the host halo canmake a satellite
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more diffuse or more compact through tidal effects depending on the initial conditions, the time since the

infall of the satellite, and the orbit of the satellite.

Subhaloes and satellites have been studied using numerical simulations (e.g. Gao et al., 2004; Diemand

et al., 2008; Springel et al., 2008; Wu et al., 2013; Garrison-Kimmel et al., 2014a; Mao et al., 2015; Sawala et al.,

2016; Wetzel et al., 2016; Garrison-Kimmel et al., 2019) and semi-analytical models (e.g. Taylor & Babul,

2001; Benson et al., 2002a,b; Zentner & Bullock, 2003; Zentner et al., 2005a; Gan et al., 2010; Jiang & van den

Bosch, 2016; Nadler et al., 2019; Yang et al., 2020). Cosmological #-body simulations produce a plethora of

subhaloes compared to observed satellite galaxies. While low-mass haloes ("vir <∼ 109 M�) are expected to

be truly dark due to the suppression of star formation by the cosmicUVbackground, thereby alleviating this

“missing satellite” problem (e.g. Benson et al., 2002a,b; Hambrick et al., 2011), a more persistent challenge

lies in the overabundance of massive and dense subhaloes – they are too big to fail forming stars (Boylan-

Kolchin et al., 2011). The “too-big-to-fail” problem is not merely the overabundance of massive satellites,

but also highlights the lack of structural diversity in the simulated satellite populations (e.g. Jiang & van

den Bosch, 2015) – the simulated population of massive satellites are dense in their centres, showing a

narrowdistribution ofmaximumcircular velocities ({max), while the observed bright dwarf satellites exhibit

a larger variety of inner densities (Oman et al., 2015) and a broad distribution of {max. Hydro-simulations

have shown that including baryons can help to reduce the abundance of massive satellites, mostly because

the central galaxies enhance the tidal disruption of satellites (e.g., Garrison-Kimmel et al. 2019, but see also

Errani et al. 2017 and Garrison-Kimmel et al. 2017, which use idealized #-body simulations with a galactic

disc). However, hydro-simulations still do not fully reproduce the structural diversity of dwarf satellites

(e.g. Garrison-Kimmel et al., 2019), missing the most diffuse andmost compact dwarf satellites seen around

the Milky Way (MW) and M31.

The limitations of cosmological simulations can be summarized as follows. First, simulating a satel-

lite population is computationally expensive – it requires a large dynamical range in mass and in spatial

scale. State-of-the-art zoom-in simulations typically produce on the order ∼10 MW-like host systems (e.g.

Sawala et al., 2016; Garrison-Kimmel et al., 2019) or ∼1 cluster (e.g. Pillepich et al., 2019; Tremmel et al.,

2019), whereas quantifying the cosmic variance of satellite statistics for a given host mass requires at least

hundreds of random realizations (Purcell & Zentner, 2012; Jiang & van den Bosch, 2015). Second, artificial

disruption of satellites due to insufficient resolution is still prevalent in modern simulations. It is alarm-

ing to realize that, in the Bolshoi simulation (Klypin et al., 2011), ∼60% of subhaloes with infall mass larger

than 10% of the instantaneous host halo mass cannot even survive for one orbit (Jiang & van den Bosch,

2017) and∼13% of subhaloes are disrupted per Gyr (van den Bosch, 2017), despite the use of a sophisticated,

phase-space based halo finder (Behroozi et al., 2013a). Similar results have been reported for zoom-in sim-
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ulations: about half of the subhaloes in the Aquarius simulations have been disrupted, irrespective of their

masses at infall (Han et al., 2016). Idealized simulations (of higher resolution than cosmological ones) reveal

that satellite disruption is mostly numerical in origin, caused mainly due to inadequate force softening and

a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field

(van den Bosch et al., 2018; van den Bosch & Ogiya, 2018). Third, halo finding algorithms, especially those

based only on identifying instantaneous overdensities, have difficulty in recovering subhaloes when they

are located in dense region of the host (Muldrew et al., 2011; van den Bosch & Jiang, 2016).

Semi-analytical models serve as complementary tools to simulations in the study of satellite galaxies

and outperform simulations in terms of statistical power and numerical resolution. Such models consist

of halo merger trees and analytical prescriptions for satellite evolution. Most of these models focus on the

DM components, using cuspy profiles (Navarro et al., 1997) to describe both the host halo and the satel-

lites, ignoring baryonic components and processes. However, hydro-simulations have shown that baryonic

influence cannot be neglected for satellites. First, the DM profile of satellites at infall is not necessarily

cuspy. For example, supernovae-driven gas outflows can create dark matter cores (e.g., Pontzen & Gover-

nato, 2012) and systems with cored profiles follow different tidal evolution paths than cuspy ones with the

same initial orbit (e.g., Peñarrubia et al., 2010). Second, the central galaxy, e.g., a MW-like disc, can signifi-

cantly impact the spatial distribution of a satellite population by reducing the survivability of the satellites

that travel across the disc-dominated region (e.g., Garrison-Kimmel et al., 2017). Finally and obviously,

to study the baryonic properties of satellite galaxies instead of merely the statistics of DM subhaloes, the

baryonic components of a satellite and their evolution in a dense environment must be considered. Hence,

semi-analytical models of satellites are urgently in the need of upgrades in order to catch up with recent

developments in cosmological simulations.

In this chapter, we present SatGen , a new semi-analyticalmodel for generatingmerger trees and evolv-

ing satellite populations, and then, as a proof-of-concept for SatGen , we perform a study of satellite statis-

tics for MW/M31-like hosts. Compared to previous models, SatGen improves on several important aspects.

First, it considers baryonic effects, both within the satellites and the host galaxy, on the structure and sur-

vivability of subhaloes. Subhaloes in SatGen can be described by profiles that have the flexibility to cap-

ture DM cores and that have been widely used to describe subhaloes in simulations, including a subclass

of the UVW profiles (Zhao, 1996; Dekel et al., 2017; Freundlich et al., 2020b) and the Einasto (1965) profile.

The initial structure of the subhaloes are based upon halo response models extracted from state-of-the-

art hydro-simulations and analytical modeling; by changing the halo response model, the user can make

SatGen emulate different simulations. Host systems in SatGen can be composed of (a combination of) a

baryonic disc, stellar bulge, and DM halo. Second, SatGen incorporates simple recipes for the evolution of
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the stellar and gaseous components of satellite galaxies. The structural evolution recipes of subhaloes and

stellar components are either analytical and physically motivated or extracted from high-resolution ideal-

ized simulations, which makes SatGen essentially free from the effects of numerical disruption of satellites

commonly seen in cosmological simulations. Finally, in keeping with the most sophisticated previous mod-

els of this kind (e.g., Taylor & Babul, 2001; Benson et al., 2002a; Zentner et al., 2005a), SatGen follows the

orbit of each satellite, while accounting for dynamical friction.

This chapter is organized as follows. In Section B.2, we describe the model. In Section B.4, we present

satellite statistics ofMW/M31-sized systems, comparingmodel predictionswith observations (SectionB.4.1),

as well as comparing model results using different halo response models characteristic of different hydro-

simulations (Section B.4.2). We also quantify the effect of a baryonic disc potential on the abundance, spatial

distribution, and internal structure of satellites (Section B.4.3). In Section B.5, we explore the conditions

for a massive satellite to survive (or get disrupted) in a MW/M31 potential. In Section B.6, we summarize

the model and our findings.

Throughout, we use < and " to indicate satellite mass and host mass, respectively. We use ; and A to

refer to satellite-centric radius and host-centric distance, respectively. Thus, a density profile written as

d(A) refers to that of the host system and written as d(;) refers to that of the satellite. We define the virial

radius of a distinct halo as the radius within which the average density is Δ = 200 times the critical density

for closure. We adopt a flat ΛCDM cosmology with the present-day matter density Ωm = 0.3, baryonic

densityΩb = 0.0465, dark energy densityΩΛ = 0.7, a power spectrum normalization f8 = 0.8, a power-law

spectral index of =B = 1, and a Hubble parameter of ℎ = 0.7. All of these assumptions can be changed easily

in SatGen .

B.2 Model

Themodel builds upon halomerger trees. Combining thesemerger trees with some empirical prescriptions

from simulations, we obtain the initial masses, profiles, and baryonic properties of satellites. Then, we

follow the orbits of the satellites, modeling tidal stripping and the structural evolution of both the DM and

baryonic components. The SatGen code is made publicly available on GitHub.1 A schematic view of the

model is presented in Fig. B.1. Below, we introduce each model component in sufficient detail to reproduce

the exercise in Section B.4, leaving more comprehensive details in the appendices. Readers who want to

see the results first with a basic idea of how the model works can view Fig. B.1 and read Section B.2.8 for a

quicker overview and jump to Section B.4.

1. https://github.com/shergreen/SatGen
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Figure B.1: Schematic view of the SatGenmodel. Left: a halo merger tree, generated by sampling the
EPS progenitor mass function, d#/d"1 ("1, I1 |"0, I0) (see Section B.2.1). Different colours differentiate
branches of different levels – themain branch (i.e., the host-halo branch) is white; the branches of the first-
order satellites, i.e., the satellites that are directly accreted by the host system, are yellow; the branches of
the second-order satellites, i.e., the satellites that directly merge with first-order satellite progenitors and
are brought into the host halo as sub-substructures, are cyan; and so on. Right: a zoom-in view of what hap-
pens after a satellite is accreted. In this illustration, a first-order satellite orbits around a host composed of
a smooth halo and a galactic disc (see Section B.2.3 for how we initialize the host). The satellite brings its
own higher-order substructure to the host, loses mass (see Section B.2.5 for how we model tidal stripping),
releases higher-order satellites, and evolves in structure (represented by the peak circular velocity, {max,
and the corresponding location, ;max), as illustrated by the schematic plots of the circular velocity profiles
at infall (see Section B.2.3 for how we initialize subhalo structure at infall) and at a later epoch when it is
significantly stripped (see Section B.2.6 for how the structural evolution is modeled). For such an eccentric
orbit (see Section B.2.3 for how we draw initial orbits), tidal stripping is most efficient at the orbital peri-
centre, where the Hill surface is indicated by a yellow dotted circle and the tidal radius, ;t, is marked (see
Section B.2.5 for how we model tidal stripping). For such a major merger, orbital decay due to dynamical
friction (Section B.2.4) is significant, as illustrated by the dashed line. Not shown here are the prescriptions
for the initialization and the evolution of the stellar and gaseous components of the satellite (see Section
B.2.3 and Section B.2.6 for details).
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B.2.1 Halo merger trees

SatGen generates halomerger trees using an algorithm (Parkinson et al., 2008) based on the extended Press-

Schechter (EPS) formalism (Lacey & Cole, 1993). The EPS method provides the expected number of progen-

itor haloes of mass "1 at redshift I1 for a target halo of mass "0 at redshift I0 < I1,

d#
d"1
("1, I1 |"0, I0)d"1 =

"0

"1

Δl
√

2c(Δ()3/2
4−
(Δl)2

2Δ(

���� d(
d"

����
"1

d"1, (B.1)

where ( ≡ f2 (") is the variance of the density field linearly extrapolated to I = 0 and smoothed with a

sharp :-spacefilter ofmass" , X(I) is the critical overdensity for spherical collapse,Δ( = f2 ("1)−f2 ("0),

and Δl = Xc (I1) − Xc (I0).

However, it has been shown that merger trees constructed by strictly sampling this progenitor mass

distribution over-predict the low-redshift merger rate compared to cosmological simulations (e.g., Zhang

et al., 2008; Jiang & van den Bosch, 2014). In order to achieve better agreement with simulations, we fol-

low Parkinson et al. (2008) by adding a corrective factor of the following form to the right-hand side of

equation (B.1):

� ("1 |"0, I0) = �0

(
(1

(0

) W1
2

(
l2

0

(0

) W2
2

, (B.2)

where (1 = f
2 ("1), (0 = f

2 ("0), l0 = X
2 (I0), and we adopt �0 = 0.6353, W1 = 0.1761, and W2 = 0.0411

following Benson (2017).

We construct merger trees using the time-stepping advocated in Appendix A of Parkinson et al. (2008),

which corresponds to ΔI∼0.001.

In order to reducememoryusage, we follow Jiang&vandenBosch (2016) anddown-sample the temporal

resolution of the trees by only registering progenitor haloes every timestep ofΔC = 0.1Cdyn (I), where Cdyn =√
3c/[16�Δdcrit (I)] is the instantaneous dynamical time of DM haloes.

B.2.2 Profiles for DM haloes and baryonic discs

With SatGen , one hasmultiple choices for the profile of a DM halo, including the Navarro et al. (1997, here-

after NFW) profile, the Einasto (1965, hereafter Einasto) profile, and the Dekel et al. (2017, hereafter Dekel+)

profile, which is a subclass of theUVW profiles (Zhao, 1996). Galactic discs and bulges can be described by the

Miyamoto & Nagai (1975, hereafter MN) profile and the Einasto profile, respectively. One can set up a host

system using a combination of the aforementioned profiles, e.g., a NFW halo plus an embedded MN disc. In

Appendix B.3.1, we provide analytical expressions for the profiles of density, enclosed mass, gravitational

potential, and velocity dispersion of all of the supported profiles. Here, we describe the Dekel+ halo profile
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and the MN profile, which will be used in the experiments in Section B.4.

B.2.2.1 Dekel et al. (2017) halo profile

A Dekel+ halo is defined by four parameters: the virial mass, "vir, a concentration parameter, 2, the (neg-

ative of the) logarithmic density slope in the centre, U = −d ln d/d ln A |A→0, and the spherical overdensity,

Δ. The density profile is given by:

d(A) = d0

GU (1 + G1/V)V (W−U)
, V = 2, W = 3 + V−1 = 3.5, (B.3)

where G ≡ A/As is the radius scaled by an intermediate radius As that is related to Avir by the concentration

parameter, As = Avir/2, and d0 = [23 (3−U)/3/ 5 (2, U)]Δdcrit, with 5 (G, U) = j2(3−U) and j ≡ G1/2/(1+G1/2).

TheDekel+ profile has only onemore degree of freedom than theNFWprofile and it has threemerits that

make it ideal for use in semi-analytical models. First, it can accurately describe haloes in hydro-simulations

(Dekel et al., 2017; Freundlich et al., 2020b), having enough flexibility near the centre to accurately describe

the cusp-core transformation (Freundlich et al., 2020a). Second, it has an outer slope of W = 3.5, steeper

than that of the NFW profile and thus more appropriate for describing subhaloes that are stripped. Finally,

it has fully analytical expressions for the profiles of enclosed mass, gravitational potential, and velocity

dispersion, facilitating fast orbit integration and making it more convenient to use than the Einasto profile

or other subclasses of the UVW family (see more details in Freundlich et al., 2020b). 2 Themass inside radius

A is given by

" (A) = "vir
5 (G, U)
5 (2, U) , (B.4)

the gravitational potential can be expressed as

Φ(A) = −+2
vir

22
5 (2, U)

[
1 − j2(2−U)

2(2 − U) −
1 − j2(2−U)+1

2(2 − U) + 1

]
, (B.5)

where+vir is the virial velocity, and the one-dimensional isotropic velocity dispersion f(A) is given by

f2 (A) = 2+2
vir

2

5 (2, U)
G3.5

j2(3.5−U)

8∑
8=0

(−1)88!
8!(8 − 8)!

1 − j4(1−U)+8

4(1 − U) + 8 . (B.6)

Unlike the NFW profile, where the scale radius As is the same as the radius at which the logarithmic

density slope equals −2 (hereafter referred to as A2), in a Dekel+ profile, the two radii are related by A2 =

2. In fact, a full family of profiles of the form of equation (B.3) with V = = and W = 3 + :/= (where : and = are integers) have fully
analytical expressions for the profiles of potential and velocity dispersion (Zhao, 1996). The choice of = = 2 and : = 1, as in the Dekel+
profile, yields accurate enough descriptions of haloes in hydro-simulations.
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[(2 − U)/1.5]2As. That is, the conventional concentration parameter, 22 = Avir/A2, is related to the Dekel+

concentration by

22 =

(
1.5

2 − U

)2

2. (B.7)

The radius of peak circular velocity, Amax, is related to A2 by

Amax = 2.25A2 = (2 − U)2As. (B.8)

The parameter U is the logarithmic density slope, −d ln d/d ln A , in the asymptotic limit A → 0, which

may fall well outside the radial range of interest (for example between 0.01Avir and Avir). For the slope in the

radial range of interest, the slope profile is given by

B(A) = −d ln d
d ln A

=
U + 3.5

√
G

1 +
√
G
. (B.9)

The slope at 0.01Avir, widely used in the context of the cusp-core issue, is

B0.01 ≡ B(0.01Avir) =
U + 0.35

√
2

1 + 0.1
√
2
. (B.10)

For B0.01 values that are commonly seen in simulations and observations (0− 2) and for a typical concentra-

tion (e.g., 2 = 10), we have U ∈ (−1.11, 1.53). That is, U can be negative for realistic profiles (corresponding

to a density that actually decreases towards the halo centre) and thus B0.01 is a more physical quantity than

U when it comes to comparing the cuspiness of density profiles.

B.2.2.2 Miyamoto & Nagai (1975) disc profile

A MN disc is specified by three parameters: the disc mass ("d), a scale radius (0), and a scale height (1).

The density and potential profiles are given by

d(', I) = "d1
2

4c
0'2 + (0 + 3Z) (0 + Z)2

Z3 ['2 + (0 + Z)2]5/2
(B.11)

and

Φ(', I) = − �"d√
'2 + (0 + Z)2

, (B.12)

respectively, where Z =
√
I2 + 12 and and ', q, and I are the cylindrical coordinates. For an axisymmetric

disc whose distribution function only depends on � and !I , the radial and axial velocity dispersions are

equal: f' = fI ≡ f. Further assuming that the disc is an isotropic rotator, i.e.,+
2
q/(+2

q
−f2) = 1, we have
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f2
q
= +2

q
−+2

q = f
2, and f2 is given by Ciotti & Pellegrini (1996) by

f2 (', I) =
�"2

d1
2

8cd(', I)
(0 + Z)2

Z2 ['2 + (0 + Z)2]3 . (B.13)

The net rotation,+ q , can therefore be expressed by

+
2
q = +

2
circ +

'

d

m (df2)
m'

=
�"2

d01
2

4cd
'2

Z3 ['2 + (0 + Z)2]3 , (B.14)

where +2
circ (', I) = 'mΦ/m' and ('/d)m (df2)/m' is the asymmetric-drift term. Equations (B.13) and

(B.14) are useful for modeling dynamical friction (Section B.2.4).

B.2.3 Initial conditions for satellite galaxies

The initial conditions for a satellite galaxy include (1) the properties of the host system when the satellite

enters the virial sphere, (2) the orbit of the incoming satellite, and (3) the DM, stellar, and gaseous properties

of the incoming satellite. Here we describe them one by one.

B.2.3.1 Initial host profile

The host halomass is known from themain branch (i.e., the branch that tracks themostmassive progenitor)

of themerger tree. To fully specify the host halo profile, we also need the structural parameter(s). The halo

concentration can be obtained from an empirical relation calibrated via simulations (Zhao et al., 2009),

which relates the main branch merging history to the concentration parameter, 22, by

22 ("vir, I) =
{

48 +
[

C (I)
C0.04 ("vir, I)

]8.4
}1/8

, (B.15)

where C (I) is the cosmic time at redshift I and C0.04 is the cosmic time when the host halo has assembled

4% of its instantaneous mass, "vir (I), which we extract from the halo’s merger tree as described in Section

B.2.1. If the host system is only an NFW halo, then concentration and mass completely specifies it. For a

more complicated setup, e.g., a Dekel+ halo with an embedded MN disc, one needs additional assumptions

depending on the system of interest (see e.g., Section B.4 for more details for MW/M31 analogues). The

concentration 2 and the slope U of a Dekel+ halo can be obtained from equations (B.7), (B.10), and (B.15),

with an assumption for B0.01 that will be described in Section B.2.3.3.
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B.2.3.2 Initial orbit

The initial orbit of a satellite can be specified by four pieces of information – the location of virial-crossing,

orientation of the orbital plane, orbital energy, and orbital circularity. We assume that the infall locations

are isotropically distributed on the virial sphere, and thus randomly draw an azimuthal angle (q) from

[0, 2c] and a cosine polar angle (cos \) from [0, 1]. We parameterize the specific energy of an orbit, � , by

a unitless parameter, Gc = Acirc (�)/Avir, which is the radius of the circular orbit corresponding to the same

orbital energy, � , in units of the virial radius of the host halo (e.g., van den Bosch, 2017). Orbital circularity,

n = 9/ 9circ (�), is the ratio between the specific orbital angular momentum and that of a circular orbit of

the same orbital energy. We assume Gc = 1, typical of cosmological orbits seen in simulations3 and draw

n from a distribution, d%/dn = c sin(cn)/2, which approximates the n distribution of infalling satellites

measured in cosmological simulations (e.g., Wetzel, 2011; Jiang et al., 2015; van den Bosch, 2017).

For orbit integration (Section B.2.4), we need to translate these orbital parameters (q, \, Gc, n) to the

position vector, r, and the velocity vector, \. Since SatGen supports axisymmetric potentials, we work in

the cylindrical coordinate system, i.e., r = (', q, I) and\ = (+', +q , +I). The initial speed at virial-crossing

(+) is given by

+ =

√
2[Φ(GcAvir) −Φ(Avir)] ++2

circ (GcAvir), (B.16)

which is simply+vir for Gc = 1. Using the definition of n , we can derive the angle (\̃) between\ and r:

\̃ = c − arcsin
(
nGc

+vir

+

)
. (B.17)

In order to fully specify the orientation of the orbital plane, we need another angle for the velocity vector.

We choose this angle to be the azimuthal angle (q̃) of \ in the )̂-5̂-r̂ frame, and draw q̃ randomly from

3. To be more accurate, one can draw Gc from orbital energy distributions extracted from simulations (e.g., van den Bosch, 2017),
which show amedian value around Gc∼1. We opt to keep it simple and use Gc = 1 in this work. After all, the correlation between initial
orbital parameters and initial satellite properties is not clear yet. In Green et al. (2021a), we expand SatGen to draw orbits according
to a distribution extracted from cosmological simulations, following Li et al. (2020).
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[0, 2c]. Finally, we can specify all the phase-space coordinates of the infalling satellite:

' = Avir sin \,

q = q,

I = Avir cos \,

+' = + (sin \̃ cos q̃ cos \ + cos \̃ sin \),

+q = + sin \̃ sin q̃,

+I = + (cos \̃ cos \ − sin \̃ cos q̃ sin \).

(B.18)

B.2.3.3 Initial subhalo density profiles

In cosmological #-body simulations, halo density profiles are well-approximated by NFW profiles. There-

fore, if SatGen is used to emulate an #-body simulation, in order to initialize a subhalo profile we only need

to compute the concentration parameter 22 using equation (B.15).

To emulate hydro-simulations, we need to account for the fact that haloes react to baryonic processes

that cause their profiles to deviate from NFW. The halo response to baryonic processes is mass-dependent

(e.g., Di Cintio et al., 2014a; Dutton et al., 2016; Tollet et al., 2016; Freundlich et al., 2020a): qualitatively, low-

mass haloes ( <∼ 1011 M�) are susceptible to supernovae-driven gas outflows, becoming less concentrated

and developing a flatter core; in contrast, massive haloes (> 1012 M�) tend to contract as cold gas condenses

in the centre, becoming cuspier. The halo response strength depends on the sub-grid physics adopted in the

simulations. This is especially relevant for massive dwarf galaxies ("vir ∼ 1010.5 M�). Notably, simulations

featuring bursty star formation, and thus strong episodic supernovae outflows, yield a strong halo response,

whereas simulationswith smooth, continuous star formation exhibit a negligible halo response in the dwarf

regime (Bose et al., 2019; Dutton et al., 2019). The nature of the star formation burstiness, and thus the

strength of the halo response, is closely related to the sub-grid recipe for star formation and is still highly

uncertain and under debate.

Following by Di Cintio et al. (2014a,b) and Tollet et al. (2016), we parameterize the halo response with

two relations: (1) the ratio of the hydro-simulation concentration and the corresponding DM-only concen-

tration, 22/22,DMO as a function of the stellar-to-halo-mass ratio (SHMR), - = "★/"vir, and (2) the loga-

rithmic DM density slope measured at ∼1% of the virial radius, B0.01, as a function of the SHMR. Specifically,

the concentration ratio can be expressed by

22

22,DMO
= 00 + 01-

11 − 02-
12 , (B.19)
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where the constants 08 and 18 are simulation-specific and are chosen according to the simulation that one

wishesSatGen to emulate. For example, wefind that (00, 01, 02) = (1.14, 186, 1) and (11, 12) = (1.37, 0.142)

describe the halo response of the NIHAO (Wang et al., 2015) simulations accurately (Freundlich et al., 2020b).

For these parameters, 22/22,DMO approaches unity at "★/"vir < 10−4, where star formation is weak and

feedback effects areminimal (typical of low-mass haloes), is less thanunity (∼ 0.7) at"★/"vir ∼ 10−2.5 (typ-

ical of massive dwarf galaxies where feedback effects are maximal), and becomes > 1 at "★/"vir > 10−2

(where adiabatic contraction dominates). Similarly, the inner density slope B0.01 can be expressed as

B0.01 ≡ −
d ln d
d ln A

|0.01Avir = log

[
=1

(
1 + -

-1

)−b1

+
(
-

-0

) b0
]
+ =0, (B.20)

where the constants -8 , =8 , and b8 are, again, chosen to reflect the simulation sub-grid physics of interest

(Tollet et al., 2016). For the NIHAO simulations, Freundlich et al. (2020b) find that (=0, =1) = (1.45, 1),

(b1, b0) = (2.14, 0.21), and (-0, -1) = (2.54 × 10−3, 9.87 × 10−4). This describes the phenomenon that

DM cores form if - ∼ 10−3-10−2, cusps remain present for smaller - , and baryons deepen the gravitational

potential at larger - . We add randomGaussian noise withf = 0.1 and 0.18 to the 22/22,DMO and B0.01 values,

respectively, based on Freundlich et al. (2020b) and Tollet et al. (2016). We note that the aforementioned

halo response is likely quite generic for simulations featuring bursty star formation and episodic strong

feedback, such as the FIRE simulations (Hopkins et al., 2014, 2018).

We use the Dekel+ profile to describe subhaloes affected by feedback. From equation (B.3), we can show

that the slope at A → 0 (U) and the slope at A = 0.01Avir (B0.01) are related by

U = B0.01 (1 + 0.1
√
2) − 0.35

√
2. (B.21)

Using equations (B.7), (B.15), (B.20), (B.21), and a SHMR,we can completely specify a Dekel+ subhalo at infall.

4

We emphasize that one of the goals of SatGen is to quantify the influence of different halo response

models on satellite statistics, and thus to distinguish the underlying sub-grid recipes adopted in simula-

tions using observed satellite statistics. More specifically, the logic is the following. On the theory side,

while it is computationally expensive to run simulations with adequate resolution for studying satellite

galaxies, it is relatively cheap to simulate a suite of field galaxies that cover a wide range inmass and SHMR.

These types of simulation suites, e.g., FIRE/FIRE-II (Hopkins et al., 2014, 2018), NIHAO (Wang et al., 2015),

4. For Einasto profiles, an expression analogous to equation (B.21) between the Einasto shape index and B0.01 can be derived. See
Appendix B.3.1 for details.
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APOSTLE (Sawala et al., 2016), and Auriga (Grand et al., 2017), provide us with halo response templates,

(22/22,DMO) (-) and B0.01 (-) (e.g., Tollet et al., 2016; Bose et al., 2019), which are used as inputs for the

SatGenmodel. SatGen then propagates the difference in halo response to satellite structures because, as

will be detailed in Section B.2.6, satellites of different initial structures evolve differently in response to

tidal effects. In this way, SatGenproduces satellites as would be produced by high-resolution simulations

using the corresponding sub-grid recipe. On the observational side, galaxy structure and halo structure

measurements are usually performed on galaxies of known distances, which are typically satellites. By

propagating the baryonic effects obtained from zoom-in simulations of centrals onto satellite populations,

SatGen facilitates the comparison between theory and observation.

B.2.3.4 Initial baryonic properties

Apart from subhalo properties, we also model the stellar mass, stellar size, and gas distribution. We assign

a stellar mass to an infalling satellite using the SHMR from halo abundance matching. In particular, we use

the expression of stellarmass ("★) as a function of halomass ("vir) and redshift I by Rodríguez-Puebla et al.

(2017), assuming a scatter of 0.15 dex in "★ at a given "vir. Abundance matching also provides insight on

how the galaxy size is related to the host halo structure – Kravtsov (2013) and Somerville et al. (2018) found

that galaxy size scales linearly with host halo virial radius, Aeff ∼ 0.02Avir, insensitive to morphology. Jiang

et al. (2019b) verified this relation in two different suites of cosmological hydro-simulations, finding that

the proportionality constant does not reflect halo spin but strongly correlates with halo concentration, 22.

In particular,

Aeff = 0.02(22/10)−0.07Avir. (B.22)

The dependence on halo concentration introduces a redshift and assembly history dependence into the

galaxy size. We adopt this relation in order to initialize the satellite’s stellar size, assuming a log-normal

scatterwithf = 0.15 dex in Aeff at fixed Avir, as found by Jiang et al. (2019b). Note thatwe track the evolution

in the satellite’s stellar half-mass radius without making any specific assumptions about the underlying

density profile of the stars.

Following Zinger et al. (2018), we assume that the circumgalactic medium (CGM) of a galaxy is in hydro-

static equilibrium with the host halo and, to a good approximation, follows the halo profile according to

dgas (A) = 5gasd(A), (B.23)
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where 5gas is the ratio of the total CGM gas mass to virial mass. For incoming satellites, we can write

5gas =
5bar

1 − 5bar
− "★

"vir
, (B.24)

where the baryonic fraction, 5bar, is given by Okamoto et al. (2008) as

5bar ("vir, I) =
Ωb

Ωm

{
1 + 0.587

[
"vir

"c (I)

]−2
}−3/2

, (B.25)

where "c (I) is the mass below which galaxies are strongly affected by photoionization. We adopt "c (I)

from the numerical values given by Okamoto et al. (2008). This recipe implicitly assumes that supernovae

feedback does not remove hot gas from the halo.

The prescriptions in §B.2.3.3 and §B.2.3.4 apply both to the central host and to the satellites at the mo-

ment of infall.

B.2.4 Orbit integration and dynamical friction

We follow the orbits by treating satellites as point masses. At each timestep, SatGen solves the equations

of motion in the cylindrical frame using an order 4(5) Runge-Kutta method.5 We solve

¥r = −∇Φ + aDF, (B.26)

where r = (', q, I) is the position vector, Φ is the gravitational potential, and aDF is the acceleration due

to dynamical friction (DF), which is modeled using the Chandrasekhar (1943) formula,

aDF = −4c�2<
∑
8

lnΛ8 d8 (r)� (< +rel,8)
\rel,8

+3
rel,8

. (B.27)

Here the summation is over all of the components of the host system (e.g., 8 =halo, disc, and bulge, following

Taylor & Babul 2001 and Peñarrubia et al. 2010), < is the instantaneous satellite mass, lnΛ8 is the Coulomb

logarithm,\rel,8 is the relative velocity of the satellite with respect to the streamingmotion of the particles

of component 8, and � (< +rel,8) is the fraction of local host particles contributing to DF. For simplicity, we

assume that the velocity distributions of all of the host components are Maxwellian and isotropic such that

� (< +rel,8) = erf (-8) −
2-8√
c
4−-

2
8 , (B.28)

5. We use the ‘dopri5’ integrator as implemented in scipy.integrate.ode.
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where -8 ≡ +rel,8/(
√

2f8), with f8 (r) the one-dimensional velocity dispersion of component 8. 6

The Coulomb logarithm and the relative velocity depend on the host component of interest. For spher-

ical components such as the halo or bulge, we adopt lnΛ8 = b ln("8/<), where the factor ln("8/<) is a

widely used form for the Coulomb logarithm (e.g., Gan et al., 2010), with"8 and< the hostmass and satellite

mass, respectively, and b a fudge factor that accounts for the weakening of orbital decay when the density

profile is cored (e.g., Read et al., 2006b). Orbital decay becomes completely stalled where the host density

profile is flat, i.e., if B = −d ln d/d ln A = 0, whereas orbital decay continues where the profile is cuspy, i.e.,

if B >∼ 1. For simplicity, we assume b = min(B, 1). For discs, we use lnΛ = 0.5, following Peñarrubia et al.

(2010).

For spherical components, we use the orbital velocity \ for \rel,8 ; i.e., we ignore the net spin of a halo

or a bulge. Discs, however, have net rotation, so we use \rel,d = \ − + q 5̂, where the mean rotation + q is

given by equation (B.14).

We caution that our DF treatment is only approximate, and, as with any other attempt of modeling sub-

halo orbit with the Chandrasekhar (1943) formula, it carries a few conceptual inaccuracies. For instance,

the Chandrasekhar (1943) formula assumed point masses moving in medium of uniform density, whereas a

subhalo has an extended mass distribution and the host density along its orbit is not constant. The afore-

mentioned choices of the Coulomb logarithm are therefore empirical corrections when extending the for-

mula to applications beyond its assumptions. More fundamentally, Chandrasekhar (1943) considers DF to

be a local effect due to the trailing gravitational wake, while DF is actually a global effect due to a response

density that can operate at long distances (e.g., Weinberg, 1989). However, we have verified that the impact

on satellite statistics due to this approximation is rather limited. Notably, for the experiments in Section

B.4, we found that setting the disc DF term to zero only yields a ∼ 1% increase in the number of surviving

satellites, and changing the whole aDF by a factor of two results in only a ∼10% change in the abundance of

satellites.

B.2.5 Tidal stripping and ram pressure stripping

Satellites lose DM mass and stellar mass to tides, and they lose gaseous mass to ram pressure when their

orbits bring them close enough to the centre of the host system.

6. In principle, for a composite potential in Jeans equilibrium and with isotropic velocity distribution, the “one-
dimensional velocity dispersion of component 8” (f8) is not well-defined, because the velocity dispersion should be calcu-
lated as a quantity for the whole system using the Jeans equation, which gives (e.g., for spherical systems): f2 (A ) =

�/[∑8 d8 (A ) ] ∫ A∞ ∑
8 d8 (A ′) [

∑
8 "8 (A ′)/A ′2 ]dA ′ >∼ f2

8
(A ) . However, in practice, we find that using the f8 of each component as

if they were in equilibrium separately in isolation yields little difference in terms of the rate of orbital decay compared to using the
overall f (A ) . This is mainly because +rel,8 is usually larger than f (A ) , so � (< +rel,8) is often not far from its maximum value of
unity. Additionally, satellite mass loss and the choice of lnΛ both have larger impacts on DF than the detailed choice of f. Therefore,
we opt to use the f8 of individual components, following Taylor & Babul (2001).

197



We estimate the instantaneous tidal radius of the satellite, ;t, at each point along its orbit by solving

;t = A


<(;t)/" (A)

2 − d ln" (A )
d ln A + + 2

t (r)
+ 2

circ (A )


1/3

(B.29)

(e.g., King, 1962; Taylor & Babul, 2001; Zentner & Bullock, 2003), where<(;) and" (A) are the enclosedmass

profiles of the satellite and host, respectively, and +t (r) = | r̂ × \ | is the instantaneous tangential speed.

The first two terms in the denominator represent the gravitational tidal force – obviously, tidal stripping

depends on the local mass profile of the host (see Dekel et al. 2003 for a thorough discussion). The third

term represents the differential centrifugal force across the satellite due to its orbital motion about the

halo centre.

Although the tidal radius is widely used to model tidal stripping, it is an ill-defined concept for several

reasons [e.g.,][](van den Bosch et al., 2018). For example, the Hill surface is not spherical or infinitesimally

thin (Read et al., 2006a; Tollet et al., 2017). Because of this, we express the instantaneous mass loss rate as

¤< = −A<(> ;t)
Cdyn (A)

, (B.30)

where we have introduced a fudge parameterA as the stripping efficiency to incapsulate uncertainties in

the definition of the tidal radius. As such, the timescale on which stripping occurs is the local dynamical

time Cdyn (A) =
√

3c/16�d(A) divided byA (with d(A) the average density of the host systemwithin radius A ,

including the baryonic components). We calibrate the mass loss rate model using high-resolution idealized

simulations and find U ≈ 0.55 (Green et al., 2021a). 7 The mass evolution over a timestep ΔC is then given

by

<(C + ΔC) = <(C) + ¤<ΔC. (B.31)

Similarly, if a higher-order satellite (see Fig. B.1 for definition) stays outside the tidal radius of the host-

ing satellite for more than a time of Cdyn (;)/A, where Cdyn (;) is the local dynamical time of the hosting

satellite, it is released to the lower-order host, picking up a new orbital velocity that is the superposition

of its velocity with respect to the previous hosting satellite and the velocity of the hosting satellite with

respect to the lower-order host.

Analogous to how the tidal radius is defined, a ram pressure radius (;RP) can be defined as the satellite-

7. In several previous studies (e.g., Zentner & Bullock, 2003; Zentner et al., 2005a; Pullen et al., 2014; van den Bosch et al., 2018), the
stripping time is assumed to be the instantaneous orbital time divided by a fudge factor, i.e., (2cA/+t)/�, with � = 1 − 6 across the
studies. Our choice of A = 0.55 corresponds roughly to �∼1.65 for a typical cosmological orbit, bracketed by literature values but on
the inefficient-stripping end.
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centric distancewhere the self-gravitational restoring force per unit area balances the rampressure exerted

by the gaseous host halo. We compute ;RP at each point along the orbit by solving

^
�<(;RP)dgas (;RP)

;RP
= dgas (r)+ (r)2, (B.32)

where ^ is a factor of order unity (Zinger et al., 2018, ^ = 0.5 − 2, depending on assumptions made in

calculating the gravitational restoring force), and we take for simplicity ^ = 1. The mass loss rate of the

gaseous halo is given by

¤<gas = −
<gas [> min(;t, ;RP)]

2Cdyn (A)
. (B.33)

In practice, min(;t, ;RP) = ;RP in most cases, i.e., ram pressure stripping is usually more efficient than tidal

stripping for gas.

B.2.6 Evolution of satellite structure

Satellites react to two competing tidal effects: tidal stripping, which takes mass away and makes satellite

smaller, and tidal heating, which injects orbital kinetic energy into the satellite, causing it to expand. While

tidal stripping can be analytically estimated (Section B.2.5), the effect of heating, or the net structural re-

sponse to both tidal effects, is not easily captured by analytical arguments. Several studies have resorted

to using idealized simulations to tabulate satellite structural evolution due to the tidal field as a function

of the mass that has been lost (Hayashi et al., 2003; Peñarrubia et al., 2008; Peñarrubia et al., 2010; Errani

et al., 2015, 2018; Green & van den Bosch, 2019).8 Notably, Hayashi et al. (2003) and Peñarrubia et al. (2008);

Peñarrubia et al. (2010) found that subhalo density profiles depend solely on the density profile at infall and

the total amount of mass lost thereafter. In particular, they describe the evolution of themaximum circular

velocity ({max) and the radius at which the circular velocity reaches the maximum (;max) using a generic

function,

6(G) =
(

2
1 + G

)`
G[ , (B.34)

where 6(G) = {max (C)/{max (0) or ;max (C)/;max (0), G is the bound mass fraction (<(C)/<(0)), and ` and [

are the best-fit parameters calibrated against idealized simulations. Peñarrubia et al. (2010) found that `

and [ depend on the initial inner logarithmic density slope of the satellite, B0.01 (see Appendix B.3.2 for

their values). These relations, also known as tidal-evolution tracks, are scale-free, independent of the orbital

parameters, and only marginally sensitive to the initial concentration of the subhaloes (Green & van den

8. But see also Du et al. (in prep), which studies the tidal heating of subhaloes using idealized # -body simulations and derives
analytical formulae that accurately approximate the effects of tidal heating on subhalo density profiles.
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Bosch, 2019), which we ignore here.

Errani et al. (2018) extended tidal tracks to describe the evolution of the stellar mass (<★) and half-

stellar-mass radius (;eff ). In particular, they found that

6̃(G) =
(

1 + Gs

G + Gs

)`
G[ , (B.35)

where 6̃(G) = <★(C)/<★(0) or ;eff (C)/;eff (0) and G = <max (C)/<max (0), with <max the subhalo mass within

the maximum-circular-velocity radius, <(;max). Here, the parameters, `, [, and Gs, depend not only on the

initial density slope, B0.01 (0), but also on how compact the stellar component initially is with respect to

the hosting subhalo, measured by ;eff (0)/;max (0). Note that by using these tidal tracks, we do not assume

density profiles for stellar mass or explicitly model tidal stripping of stars; instead, we updated the evolved

stellar mass and half-mass radius assuming that they are coupled to the evolution of the subhaloes through

<(;max). We list the parameter values in Appendix B.3.2, but summarize the tidal tracks qualitatively here

as follows: satellite size generally increases with subhalo mass loss, which manifests due to tidal heating

and the re-virialization response to tidal stripping and heating; only cuspy satellites (U >∼ 1) can become

more compact, and the size decrease occurs only after significant subhalo mass loss.

With the tidal tracks describedby equations (B.34)-(B.35), the formula for tidal stripping, equations (B.29)-

(B.31), and the initial profile as set up in Section B.2.3, we can completely specify the evolved subhalo profile,

the stellar mass, and the stellar size at each timestep along the orbit. For this, a conversion between {max

and ;max and the parameters that are directly used to define a subhalo density profile, e.g., the concentra-

tion 2 and overdensity Δ, is needed. We provide details on such a conversion in Appendix B.3.2. For the gas

distribution, we assume that the remaining gas follows the evolved subhalo profile as in equation (B.23),

with 5gas = <gas (C)/<(C).

B.2.7 Improvements compared to previous models

SatGen combines the wisdom of earlier models and improves in important ways. Most previous models

have focused on DM subhaloes (Taylor & Babul, 2001; Zentner & Bullock, 2003; Zentner et al., 2005a; Gan

et al., 2010; Peñarrubia et al., 2010; Jiang & van den Bosch, 2016), whereas SatGen takes baryonic properties

into consideration. A couple of models have included certain details of baryonic processes (Carleton et al.,

2019; Nadler et al., 2019), but SatGen is more thorough.

For example, themodel by Nadler et al. (2019) considers the stellar component. It initializes the satellite

stellar size in the same way as SatGen , but for the size evolution it only considers size decrease due to tidal

stripping and neglects expansion due to tidal heating, which is a process that is essential for producing
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UDGs in dense environments (Carleton et al., 2019; Jiang et al., 2019a). Also, tidal stripping in this model is

treated in an orbit-averaged sense, as in van den Bosch et al. (2005b) and Jiang & van den Bosch (2016). This

treatment washes out detailed mass and structural evolution along the orbits.

The model by Carleton et al. (2019) uses the same tidal tracks as used in SatGen ; however, it applies

abrupt tidal truncation to satellites at orbital pericentres such that pericentres are the only locations where

the satellites lose mass. This is not accurate for circular orbits or any orbits with n >∼ 0.5. In addition, the

Carleton et al. (2019) model relies on cosmological #-body simulations for merger trees, orbits, and initial

conditions. In contrast, SatGen can generate larger samples using the EPS formalism, which is useful for

studying the halo-to-halo variance of satellite properties, and can follow the orbits self-consistently.

B.2.8 Illustration and workflow

We present an idealized example of a massive satellite orbiting a MW-sized halo in Section B.3.3 in order

to provide an intuitive illustration (Fig. B.3) of the orbit integration and satellite evolution prescriptions

described in Section B.2.2-Section B.2.6.

When using SatGen for a cosmological setup, we summarize the workflow as follows:

1. Startingwith a target halo of a givenmass and redshift, draw halomerger trees according to Section B.2.1.

2. Initialize host and satellite properties according to Section B.2.3, using density profiles introduced in Sec-

tion B.2.2 and Section B.3.1, and considering halo response models that are characteristic of certain cos-

mological hydro-simulations.

3. Evolve the satellites: integrate the orbit according to Section B.2.4 and update the masses and profiles of

the satellites and the host for every timestep of ΔC = 0.1Cdyn (I), according to Section B.2.6.

This procedure is somewhat similar to that of zoom-in simulations, in the sense that bothSatGen and zoom-

in simulations start with a target halo and then trace the progenitors back in time, finally evolving forward

in time to refine the small-scale structures.

B.3 Supplementary model details

B.3.1 Analytics of profiles

Here, we provide the analytical expressions for the profiles of density (d), enclosed mass ("), gravitational

potential (Φ), the '-component and I-component of gravitational acceleration in the cylindrical coordinate

system ( 5' , 5I), and the one-dimensional velocity dispersion for an isotropic velocity distribution (f), as
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well as a few convenient relations among the parameters, for each of the potential well classes supported

in SatGen .

B.3.1.1 NFW

Wespecify anNFWprofile using the virialmass,"vir, the concentration parameter, 22 (or the corresponding

scale radius As = Avir/22), and the average spherical overdensity, Δ.

d(A) = d0

G (1 + G)2
, where G =

A

As
and d0 =

23
2

3 5 (22)
Δdcrit, (B.36)

with 5 (G) = ln(1 + G) − G/(1 + G).

" (A) = "vir
5 (G)
5 (22)

. (B.37)

Φ(A) = Φ0
ln(1 + G)

G
, where Φ0 = −4c�d0A

2
s . (B.38)

5' = −
mΦ

m'
= Φ0

5 (G)
G

'

A2 and 5I = −
mΦ

mI
= Φ0

5 (G)
G

I

A2 ,
(B.39)

where A =
√
'2 + I2.

f2 (A) = +2
vir

2

5 (2) G(1 + G)
2
∫ ∞

G

5 (G ′)
G ′3 (1 + G ′)2 dG ′

≈ +2
max

(
1.4393G0.354

1 + 1.1756G0.725

)2

,

(B.40)

where the second line is an approximation accurate to 1% for G = 0.01-100 (Zentner & Bullock, 2003, see

also an analytical solution involving non-elementary functions by Łokas & Mamon 2001).

The location of the peak circular velocity, Amax, is related to the scale radius, As, by

Amax ≈ 2.163As, (B.41)

where As is the location at which the logarithmic density slope is 2, A2.

B.3.1.2 Dekel+

We specify a Dekel+ profile using the virial mass, "vir, a concentration parameter, 2 (or the corresponding

scale radius As = Avir/2), the innermost logarithmic density slope, U ≡ −d ln d/ln A |A→0, and the average
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spherical overdensity, Δ.

d(A) = d0

GU (1 + G1/2)2(3.5−U)
,

where G =
A

As
and d0 =

23 (3 − U)
3 5 (2, U) Δdcrit,

(B.42)

with 5 (G, U) = j2(3−U) and j = G1/2/(1 + G1/2).

" (A) = "vir
5 (G, U)
5 (2, U) . (B.43)

Φ(A) = −+2
vir

22
5 (2, U)

[
1 − j2(2−U)

2(2 − U) −
1 − j2(2−U)+1

2(2 − U) + 1

]
. (B.44)

5' (', I) = (2 − U) [2(2 − U) + 1]Φ0
5 (G, U)
G

'

A2 and

5I (', I) = (2 − U) [2(2 − U) + 1]Φ0
5 (G, U)
G

I

A2 ,

where Φ0 = −
4c�d0A

2
s

(3 − U) (2 − U) [2(2 − U) + 1] .

(B.45)

f2 (A) = +2
vir

2

5 (2, U)
G3.5

j2(3.5−U)

∫ ∞

G

j(G ′)4(3−U)+1

G ′5.5
dG ′

= 2+2
vir

2

5 (2, U)
G3.5

j2(3.5−U)

8∑
8=0

(−1)88!
8!(8 − 8)!

1 − j4(1−U)+8

4(1 − U) + 8 .
(B.46)

We refer interested readers to Freundlich et al. (2020b) for the analytical expressions of the Dekel+ pro-

file for gravitational lensing-related quantities, including the surface density, deflection angle, shear, and

magnification.

Unlike NFW, for which As = A2, the Dekel+ scale radius is related to A2 by

A2 = AB

(
2 − U

1.5

)2

, (B.47)

such that the relation between the Dekel+ concentration (2) and the conventional concentration (22) is

22 =
Avir

A2
=

(
1.5

2 − U

)2

2. (B.48)

The location of peak circular velocity, Amax, is related to A2 by

Amax = 2.25A2 = (2 − U)2As. (B.49)
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The profile of the logarithmic density slope is

B(A) = −d ln d
d ln A

=
U + 3.5

√
G

1 +
√
G
. (B.50)

The slope at 0.01Avir is

B0.01 ≡ B(0.01Avir) =
U + 0.35

√
2

1 + 0.1
√
2
. (B.51)

For B0.01 values that are commonly seen in simulations and observations (0 − 2) and for a typical concen-

tration (e.g., 2 = 10), we have U ∈ (−1.11, 1.53). That is, U can be negative for realistic profiles, and thus

B0.01 is a more physically meaningful quantity than U when it comes to comparing the cuspiness of density

profiles.

B.3.1.3 Einasto

We define an Einasto profile using the virial mass, "vir, the concentration parameter, 2 (or the correspond-

ing scale radius As = Avir/2), the shape index, =, and the average spherical overdensity, Δ.

d(A) = d04
−G (A ) ,

where G = 2=
(
A

As

) 1
=

and d0 =
"vir

4cℎ3=W [3=, G(Avir)]
,

(B.52)

with ℎ = As/(2=)= and W(0, G) is the non-normalized lower incomplete gamma function. Here, we have

adopted the notations in Retana-Montenegro et al. (2012) for compact expressions.

" (A) = "totW̃(3=, G), with "tot = 4cd0ℎ
3=Γ(3=), (B.53)

where Γ(0) and W̃(0, G) = W(0, G)/Γ(0) are the Gamma function and the normalized lower incomplete

gamma function, respectively.

Φ(A) = −�"tot

ℎ

[
W̃(3=, G)
G=

+ Γ(2=, G)
Γ(3=)

]
, (B.54)

where Γ(0, G) is the non-normalized upper incomplete gamma function.

5' (', I) = −�"totW̃(3=, G)
'

A3 and

5I (', I) = −�"totW̃(3=, G)
I

A3 .

(B.55)

f2 (A) = �"tot

ℎ
=4G

∫ ∞

G

W̃(3=, G ′)
4G
′
G ′ (= + 1)

dG ′. (B.56)
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Like the NFW profile, the Einasto scale radius, As, is the same as A2, where the logarithmic density slope

is 2. The radius of peak circular velocity is related to As by

Amax ≈ 1.715U−0.00183 (U + 0.0817)−0.179488As (B.57)

(Garrison-Kimmel et al., 2014b). The profile of the logarithmic density slope is

B(A) = −d ln d
d ln A

=
G(A)
=
, (B.58)

so

B0.01 = 2(0.012) 1
= . (B.59)

B.3.1.4 MN

We define a MN profile using the disc mass, "d, a scale radius, 0, and a scale height, 1.

d(', I) = "d1
2

4c
0'2 + (0 + 3Z) (0 + Z)2

Z3 ['2 + (0 + Z)2]5/2
, (B.60)

where Z =
√
I2 + 12.

" (A) = "dA
3

[A2 + (0 + 1)2]1.5 , where A =
√
'2 + I2. (B.61)

Φ(', I) = − �"d√
'2 + (0 + Z)2

. (B.62)

5' (', I) = −
�"d

['2 + (0 + Z)2]1.5 ' and

5I (', I) = −
�"d

['2 + (0 + Z)2]1.5
0 + Z
Z

I.

(B.63)

f2 (', I) =
�"2

d1
2

8cd(', I)
(0 + Z)2

Z2 ['2 + (0 + Z)2]3 . (B.64)

The relation between half-mass radius, Aeff , and the scale lengths, (0, 1), is

0 =
0.766421
1 + 1/0 Aeff . (B.65)
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B.3.2 Structure of evolved satellites

B.3.2.1 Tidal evolution tracks

Weuse the tidal evolution tracks of Peñarrubia et al. (2010) for determining the profiles of evolved subhaloes

and those of Errani et al. (2018) for updating the stellarmasses and half-stellar-mass radii. These tidal tracks

can be expressed with the universal functional form of

6(G) =
(

1 + Gs

G + Gs

)`
G[ , (B.66)

where, for the DM subhalo, 6 represents {max (C)/{max (0) or ;max (C)/;max (0), and G stands for the bound

mass fraction <(C)/<(0). For the stellar component, 6 represents <★(C)/<★(0) or ;eff (C)/;eff (0), and G

stands for <max (C)/<max (0), with <max = <(;max). The parameters ` and [ depend on the initial logarith-

mic density slope, B0.01 (≡ −d ln d/d ln A |A=0.01Avir ), and Gs depends on the initial stellar size with respect to

the initial radius of peak circular velocity of the hosting subhalo, ;eff (0)/;max (0). Peñarrubia et al. (2010)

and Errani et al. (2018) obtained best-fit parameters for different initial structures (B0.01 = 0, 0.5, 1, 1.5 and

;eff (0)/;max (0) = 0.05, 0.1) by calibrating the model against idealized #-body simulations, which we sum-

marize here in Table B.1. For the initial structures not listed in the table butwithin the range of the tabulated

initial structures, we use cubic spline interpolation to get the parameters. For the initial structures beyond

the tabulated range, we do not extrapolate, but use the nearest neighbours in the table.

Fig. B.2 illustrates these tidal tracks. Note that stellar mass loss is marginal when the subhalo mass

within ;max decreases by <∼ 90%, especially when the initial stellar mass distribution is compact (e.g., when

;eff (0)/;max (0) = 0.05). Also note that, generally, satellite size increases with subhalo mass loss, which

manifests due to tidal heating and re-virialization in response to tidal stripping and heating. Only cuspy

satellites (U >∼ 1) become more compact in stellar size, and the size decrease occurs only after significant

subhalo mass loss, when <max (;max) decreases by >∼ 99%. This is, however, a viable channel for making

compact bright dwarfs (<★ ∼ 107−9 and ;eff <∼ 1 kpc) from massive cuspy galaxies.

B.3.2.2 Evolved subhalo profiles

The parameters that we use to define the subhalo profiles – e.g., for the Dekel+ profile – 2, U, and Δ, are not

directly provided by the tidal tracks. We need to translate ({max, ;max) to (2, U,Δ) in order to update the

profiles of evolved subhaloes. Note that the evolved subhaloes have higher overdensities (Δ) compared to

distinct haloes, which all have Δ = 200.

Since the number of parameters (2, U,Δ) exceeds that of the constraints ({max, ;max), we need an ad-
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Figure B.2: Tidal evolution tracks, compiled from Peñarrubia et al. (2010) and Errani et al. (2018) – instan-
taneous subhalo {max and ;max in units of their initial values, both as functions of the instantaneous bound
mass fraction, <(C)/<(0) (left); instantaneous stellar mass, <, and half-stellar-mass radius, ;eff , in units
of their initial values, both as functions of the instantaneous ratio between the subhalo mass within ;max
(i.e., <max ≡ <(;max)) and the initial value of <max. The tracks depend on the initial inner density slope
(B0.01), and for the stellar component, also depend on the initial compactness of the stellar distribution (as
parameterized by ;eff (0)/;max (0)).
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ditional assumption. We follow Peñarrubia et al. (2010) to assume that the innermost slope U is constant.

One can analytically show that the innermost part of a subhalo is adiabatically shielded against tidal shocks

(Gnedin et al., 1999a). In addition, several numerical studies have shown that the logarithmic density slope

at ; → 0 barely changes even if the subhalo is stripped down to 0.1% of its initial mass (Peñarrubia et al.,

2010; van den Bosch et al., 2018; van den Bosch & Ogiya, 2018). Under this assumption, we can express 2 and

Δ in terms of {max and ;max. We use two relations, d{2
circ/d; |;max = 0 and {2

max = {
2
circ (;max), which give

2 = (2 − U)2 ;vir

;max
(B.67)

and

{2
max =

�<vir

;max

5 [(2 − U)2, U]
5 (2, U) , (B.68)

where 5 (G, U) = j2(3−U) and j = G1/2/(1+G1/2). Combining these two relations, we can express the evolved

virial mass (;vir) and thus the evolved overdensity (Δ) in terms of <vir, U, {max, and ;max as

Δ =
3<vir

4c;3virdcrit (I)
, (B.69)

and

;vir =
;max

(2 − U)2
j2
2

(1 − j2)2
, with j2 =

(
�<vir

;max{
2
max

) 1
2(3−U)

(
2 − U
3 − U

)
. (B.70)

Using equations (B.67), (B.69), and (B.70), we can update an evolved Dekel+ subhalo according to the mass

<vir (C) from the tidal stripping recipe in Section B.2.5 and the evolved structure, ;max and {max, from the

tidal tracks.

One can derive equivalent expressions for the Einasto profile, linking the Einasto concentration, 2, the

shape index, =, and the overdensity, Δ, to {max, ;max, and an inner slope, B(10−3;vir) = 2(10−32)1/=, which is

assumed to be constant. We omit the derivations here.

B.3.3 Illustration: evolution of one satellite in a constant potential

As an illustration of what has been described in Section B.2.2-Section B.2.6, Fig. B.3 presents the evolution

of a satellite in a fixed host potential consisting of a Dekel+ halo and a MN disc. The satellite initially has a

halo mass of <vir = 1011 M� and is described by a Dekel+ profile with 2 = 20 and U = 0, which corresponds

to a conventional concentration of 22 = 11.25 and an inner density slope of B0.01 ≈ 1.08. It is also initialized

with a stellar mass of <★ = 109 M� and a half-stellar-mass radius of ;eff = 1.6 kpc. The central galaxy has

a halo of "vir = 1012 M� , 2 = 10, and U = 0.5 (i.e., 22 = 10 and B0.01 = 1.22), as well as a disc of mass
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Figure B.3: Illustration of satellite evolution in SatGen : an idealized case where a satellite with initial halo
mass of <vir = 1011 M� described by a Dekel+ profile with 2 = 20 and U = 0 (i.e., 22 = 11.25 and B0.01 ≈ 1.1)
orbits around a central galaxy consisting of a halo of "vir = 1012 M� , 2 = 10, and U = 0.5 (i.e., 22 = 10
and B0.01 = 1.22) and a disc of mass "d = 1010.7 M� with a scale size of 0 = 5 kpc and a scale height of
1 = 1 kpc. The satellite is released from (', I) = (55, 30) with a 5̂-direction velocity of approximately
the local circular velocity of the host potential and is evolved for 5 Gyr, during which the host potential is
fixed (see the text for more details). Panels (a)-(d) show the orbit in 3D and in theG − H, H − I, and G − I
planes, respectively. Panels (e)-(f) show the density profile and circular velocity profile at different epochs,
as indicated. The initial virial radius of the satellite is marked by the vertical dotted line. Panels (g)-(i) show
the instantaneous values of a few quantities of the satellite as functions of time – (g) orbital radius and
orbital velocity; (h) tidal radius, half-stellar-mass radius, and logarithmic density slope at 0.01;vir (C) (the
horizontal dotted line indicates 10% of the initial virial radius; once the tidal radius drops below this line,
the stellar mass loss becomes significant); (i) subhalo mass, stellar mass, and the subhalo mass loss rate.
As a massive satellite, it experiences strong dynamical friction such that its orbit decays by roughly two-
thirds in radius in ∼2 initial, local dynamical times or ∼1 Gyr [Panel (e)]. It experiences tidal stripping and
structural evolution along the way: notably, the maximum circular velocity decreased by roughly one third
[Panel (f): the solid lines show the {circ (;) profiles]; the half-stellar-mass radius increased by 50% [Panel (h),
dash-dotted line]; the inner density slope (B0.01) decreased from 1.1 to 0.3 [Panel (h), blue line]. Afterwards,
the disc dominates the dynamics, working to drag the satellite into co-rotation.
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"d = 1010.7 M� with a scale size of 0 = 5 kpc and a scale height of 1 = 1 kpc. The satellite is released from

an off-disc-plane position, (', I) = (55, 30), with an initial velocity that is approximately the local circular

velocity in the 5̂ direction. All of these are arbitrary choices for illustration purposes.

As can be expected, this massive satellite, with a satellite-to-central mass ratio of ∼0.1, experiences

strong dynamical friction. In about two initial, local dynamical times (∼1 Gyr), its orbital radius decays

from the initial ∼60 kpc to <∼ 20 kpc, where it experiences strong tidal stripping, with the instantaneous

tidal radius dropping below 10% of its initial virial radius. Tidal stripping, heating, and the re-virialization

of the satellite is captured by the tidal evolutionary tracks, such that after the ∼1 Gyr evolution: first, the

density profile becomes shallower at 0.01;vir; second, the maximum circular velocity, {max, drops from ∼90

to ∼60 kpc/Gyr, and the {max location, ;max, decreases from 20 kpc to 8 kpc; finally, the half-stellar-mass

radius increases from 1.6 kpc to 2.5 kpc.

Afterwards, the strong mass loss weakens the dynamical friction force and the influence of the disc

begins to kick in: the dynamical friction force from the disc works to to drag the satellite into co-rotation,

such that after traversing the disc plane several times, the satellite gradually settles into a stable orbit with

a radius between 15 and 20 kpc.

B.4 Satellites of MW/M31 sized host haloes

For a proof-of-concept application, we use SatGen to generate satellite galaxies for MW/M31-sized host

systems, studying baryonic effects on satellite statistics including subhalo abundance, spatial distribution,

and internal structures. In particular, we highlight the impact of two separate baryonic effects. The first

is the impact that (supernova) feedback can have on the central density profile of the (sub)haloes hosting

satellites. We refer to this as the internal effect due to baryons. The second is the impact that the baryonic

disc of the host system has on the orbital and tidal evolution of satellites. In what follows we refer to these

as the internal and external baryonic effects, respectively.

B.4.1 Model setup and satellite statistics

We consider two different halo response models, which are representative of simulations of bursty star

formation and strong supernovae feedback, such as NIHAO (Wang et al., 2015) and FIRE (Hopkins et al., 2014,

2018), and of simulations of non-bursty star formation andweaker feedback, such as APOSTLE (Sawala et al.,

2016) and Auriga (Grand et al., 2017). We denote these two models as the NIHAO emulator and APOSTLE

emulator, respectively, and tabulate the parameters of their halo response curves, as in equations (B.19)-

(B.20), in Table B.2.
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Figure B.4: Satellite statistics predicted by SatGen in NIHAO- and APOSTLE-emulatingmodes – the cumula-
tive subhalo mass function # (> <) (left), subhalo {max function # (> {max) (middle), and radial distribution
# (< A) (right) of all of the surviving satellites inMW/M31-sizedhosts (where “surviving”means< > 106M�
at I = 0 and “MW/M31-sized” means that the present-day host halo mass is in the range"0 = 1012−12.3 M� ;
see Section B.4.1 for details). Thick lines represent the median model predictions, with solid and dashed
lines differentiating the cases with and without a disc potential. The colors differentiate results from the
NIHAO emulator (black) and the APOSTLE emulator. Shaded bands indicate halo-to-halo variance (3-97 per-
centiles). The thin lines in the middle panel are APOSTLE and FIRE simulation results for the {max function
(Sawala et al., 2016; Garrison-Kimmel et al., 2017). Halo response differences result in a relatively minor
effect: the NIHAO-like feedback yields ∼ 5% fewer satellites than the APOSTLE-like model. A baryonic disc
reduces the abundance of surviving satellites within 300 (100) kpc by ∼ 20% (30%). Both baryonic effects
are weak compared to the halo-to-halo variance.

NIHAO emulator a APOSTLE emulator
equation (B.19) for concentration
00 1.14 1
01 186 186
02 1 0
11 1.37 –
12 0.142 –
equation (B.20) for inner density slope
=0 1.45 1.45
=1 1 1
-0 2.54 × 10−3 2.54 × 10−3

-1 9.87 × 10−4 –
b0 0.21 0.21
b1 2.14 0

a Freundlich et al. (2020b).

Table B.2: Halo response relations adopted by the two simulation emulators considered in Section B.4.
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For each emulator, we randomly generate 100 merger trees for MW- and M31-sized haloes ("vir =

1012−12.3 M� at I = 0), recording progenitor haloes down to 107.5 M� up to I = 20. We initialize the satellites

and hosts as described in Section B.2.3 – at this stage, the halo response relations are taken into account.9

We then evolve the satellites, considering two cases. In one case, the host potential is just a DM halo follow-

ing the Dekel+ profile, as determined by the merger tree and the initialization procedure. In the other case,

the host potential consists of both the DM halo and a galactic disc. The disc mass is set to be 0.1 times the

instantaneous halo mass, i.e., "d (I) = 0.1"vir (I). The disc follows a MN profile with 1/0 = 1/25. The disc

size, 0, is determined using the half-mass radius, Aeff , as given by equation (B.22), and the relation between

the MN 0 and Aeff , as given by equation (B.65). Our discs are similar to those of Peñarrubia et al. (2010)

in terms of mass and axis ratio. While approximately mimicking the cold discs of the MW or M31, these

parameters are chosen mainly for illustration purposes and are not intended to reproduce the actual discs

in the MW or M31 in any detail. In fact, they are on the massive side of the observationally-inferred values

(e.g., Sofue, 2013).

In total we have four suites of simulations for a total of 400 MW/M31 sized haloes – we have two suites

for each simulation emulator and, for each emulator, we consider the case with and without the embed-

ded galactic disc. The merger trees and initial satellite structures of the with-disc and no-disc models are

identical. This enables us to quantify the disc effect.

Fig. B.4 presents the cumulative subhalo mass functions, # (> <), subhalo {max functions, # (> {max),

and satellite galactocentric-distance distributions, # (< A), for all of the surviving satellites in the four

suites at I = 0. Here, we define “surviving” as having subhalo mass larger than 106 M� and have verified

that our results are not sensitive to this arbitrarymass threshold. Lines represent themedianmass, {max, or

distance at fixed number # , and the shaded bands indicate the 3-97 percentiles, reflecting the halo-to-halo

variance due to random assembly histories. We overplot the {max functions from the FIRE and APOSTLE

simulations, finding that the SatGenpredictions are in reasonable agreement with the simulation results.

We emphasize that this agreement is achieved without tuning any of the model parameters. We think that

given the differences among the simulations, the halo-to-halo scatter, and the concern on the reliability of

the simulation results due to numerical disruption (van den Bosch et al., 2018), there is no need to fine-tune

the model to match the simulations in detail.

The census of bright satellites (<★ > 105 M�) of MW andM31 is relatively complete (e.g., Tollerud et al.,

2008), so we use them as our observational benchmarks. Fig. B.5 presents the SatGen {max functions and

radial distributions for the massive surviving satellites with <★ > 105 M� at I = 0, and compares them

9. For this proof-of-concept study, we opt to only follow the DM and stellar components, ignoring the gaseous components.
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Figure B.5: Subhalo {max functions and radial distributions of massive satellites (<★ > 105 M�), comparing
model predictions forMW/M31-sized host haloes (lines) and observations of the actualMW/M31 (symbols).
The shaded areas indicate halo-to-halo variance (3-97 percentiles, for themodels with discs). The flattening
of the {max function at the low-mass compared to the middle panel of Fig. B.4 is simply due to the stellar
mass cut. The APOSTLE-like feedback on average yields ∼25% more massive satellites than the NIHAO-like
feedback, illustrating that cuspier and denser satellites are more resistant to tidal stripping and heating.
The NIHAO emulator prediction of the median radial distribution agrees well with the observations out to
∼150 kpc.

with those of the McConnachie (2012) observational sample of MW/M31 satellites. We find that the model

predictions agree well with those of the actual MW/M31 satellites. Notably, the median radial distribution

from the NIHAO emulator agrees with theMW andM31 observations at percent-level out to∼ 150 kpc from

the galactic centre, and even the observational results at the outskirts are well within the halo-to-halo

variance of the model predictions.

B.4.2 Effects of different baryonic physics

In SatGen , the effect of different sub-grid baryonic physics is captured by the halo response relations (Sec-

tion B.2.3). Among high-resolution cosmological simulations, NIHAO and FIRE feature bursty star formation

histories and thus strong, episodic supernovae outflows. This causes DM cusp-to-core transformations for

massive dwarfs ("vir ∼ 1010.5 M� or "★/"vir ∼ 10−3). Along with core formation, the overall density

profile also becomes less concentrated. The APOSTLE and Auriga simulations, on the other hand, have rela-

tively smooth and continuous star formation histories and therefore fewer intense episodes of supernovae

feedback. The DM haloes remain cuspy throughout the mass range simulated (Bose et al., 2019). Cuspy,

concentrated systems, once becoming satellites, are more resistant to tidal stripping. This is taken into

consideration by the tidal evolution tracks described in Section B.2.6.

Therefore, as we can anticipate, an APOSTLE-like halo response would yield higher satellite counts than

themore burstyNIHAOmodel. This is clearly shownby Figs. B.4 andB.5. Wenote that this effect ismore pro-
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nounced for massive satellites (as in Fig. B.5) than for the entire surviving population, which is dominated

by low-mass systems (as in Fig. B.4). Specifically, the NIHAO emulator produces 20% fewermassive satellites

than the APOSTLE emulator, while the difference in the abundance of all surviving satellites (< > 106 M�)

is only∼ 7%. This is largely due to the fact that the two halo response relationsmainly differ in themassive-

dwarf regime, converging at the low mass end.

The relative importance of the halo response versus the baryonic disc of the host, in terms of its influ-

ence on satellite abundance, also depends on the model selection – for the whole population of surviving

satellites, the disc effect is dominant, whereas for the massive dwarf subset, the disc effect is comparable

to the halo response effect, both contributing to a ∼20 − 25% difference.

Fig. B.5 shows that the halo-to-halo variance is dramatic, especially in the satellite spatial distributions.

This highlights the importance of having a large sample if we hope to distinguish between feedbackmodels.

Hydro-simulation suites that consist of on the order of ten MW/M31 analogues would struggle in revealing

the aforementioned differences (Samuel et al., 2020). Similarly, on the observational side, surveys of more

MW/M31 analogues are needed. The SAGA survey (Geha et al., 2017), which will contain ∼100 MW-like

systems when completed, will start to be a useful observational benchmark for differentiating feedback

models based on the demographics of their satellite galaxies.

B.4.3 Effect of the disc potential

As we can expect, injecting a baryonic disc into the host galaxy has the effect of depleting satellites. This

is simply because the disc is an extra source of tidal field and dynamical friction in addition to the smooth

host halo. This satellite-depletion effect has been discussed by, e.g., Peñarrubia et al. (2010) and Garrison-

Kimmel et al. (2017), using semi-analytical models and simulations. Here, we report consistent results. As

shown in the right-hand panel of Fig. B.4, adding a disc reduces the abundance of surviving satellites by

∼20%. This effect is stronger towards the centre of the host and is not very sensitive to the halo response

model.

In addition to depleting satellites, the disc also plays a secondary role of diversifying satellite structure.

This is a subtle, but important, effect for reconciling the small-scale issues. Notably, the “too-big-to-fail”

problem (TBTF) can be formulated as a tension between the narrow {max distribution of subhaloes from

ΛCDM models and the relatively broad {max distribution of the observed massive satellites (e.g., Jiang &

van den Bosch, 2015). The cusp-core issue is a tension that arises due to the fact that the observationally

inferred DM inner slopes are quite diverse (e.g., Oman et al., 2015) whereas theΛCDM subhalo inner slopes

(in DM-only simulations) are almost exclusively cuspy. That is, both the TBTF and the cusp-core issues boil
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Figure B.6: Examples of rotation curves of massive satellites (<★ > 105 M�) of MW-sized ("vir =

1012−12.15 M�) and M31-sized ("vir = 1012.15−12.3 M�) host haloes at I = 0, from the NIHAO-emulating
models. Each row is a random realization (indicated as “Tree 8”), with the left-hand side and right-hand
side panels having exactly the same merger history but differing in whether a baryonic disc is included
(right) or ignored (left) when evolving the satellites (see Section B.4.1 for details about the disc setup). Sym-
bols with error bars are kinematic data from theMWandM31 satellites compiled from the literature, where
the red symbols are compiled by Garrison-Kimmel et al. (2019) using the references therein and the brown,
pink, and purple symbols and the associated color bands are rotation curves of the Sagittarius dwarf, SMC,
and LMC, respectively (Côté et al., 2000; Bekki & Stanimirović, 2009; van der Marel & Kallivayalil, 2014).
Overall, the model rotation curves are in reasonable agreement with the observed kinematics, especially in
the cases with a baryonic disc. The disc has a weak but noticeable effect of increasing the diversity of the
rotation curves, as can be most clearly seen in Tree 7, Tree 20, and Tree 30.
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Figure B.7: Effect of a disc potential on satellite structure – {max as a function of minimum galactocentric
distance, Amin, for surviving massive satellites (<★ > 105 M�) in MW-sized hosts ("vir = 1012−12.15 M�)
and in M31-sized hosts ("vir = 1012.15−12.3 M�). Each panel shows the satellites in a pair of realizations
with an identical, randommerger tree evolved with and without a disc. Short black lines connect satellites
shared in common (solid symbols) by themodels with andwithout the disc, highlighting the change in {max.
Open symbols represent the massive satellites that only belong to the disc models or the no-disc models.
The numbers quoted in the lower right-hand corners of each panel are the numbers of surviving massive
satellites. Focusing on the common satellites, we find that the disc generally decreases their {max and Amin.
The {max change is more pronounced for those satellites with smaller Amin.
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down to a structural diversity issue.

A commonly used diagnostic for TBTF is the comparison of the rotation curves (RCs) of massive satel-

lites predicted by the model versus the circular velocities at certain radii observed for MW/M31 massive

satellites, usually {circ (;eff ). Fig. B.6 presents such examples from our NIHAO-emulating models. Overall,

the agreement between the models and the data is decent, but we focus on comparing the results from the

(merger tree-matched)modelswith andwithout the disc. We can see that the spread of theRCs ismarginally

larger in the models with a disc. This is especially clear in, e.g., Tree 7, Tree 20, and Tree 30. In the few

cases, such as Tree 67 and Tree 68, where the RCs in the no-disc models appear to be more scattered, the

visual impression is actually misled by the fact that there are more satellites in the no-disc model. For an

abundance-matched comparison, the RCs in the no-disc model are always more narrowly crowded and less

diverse.

To better show the disc’s role in broadening the structural diversity, we examine in Fig. B.7 the {max

change as a function of the minimum host-centric distance, Amin, for individual massive (<★ > 105 M�)

satellites in the merger tree-matched models with and without the disc. We can see that the disc decreases

the {max values by up to 50%, depending on Amin. Generally, the closer a satellite gets to the host centre, the

more that {max decreases with respect to the no-disc case. The disc also marginally decreases the minimum

galactocentric distances, as can be expected.

Fig. B.8 extends the analysis to the full ensemble, showing themedian ratios of subhalomass (<with disc/<no disc),

maximumcircular velocity (<with disc/<nodisc), subhalo concentration (22,with disc/22,no disc), and logarithmic

inner density slope (B38,with disc/B38,no disc), as functions of the minimum host-centric distance measured in

the simulations with disc, Amin, of massive surviving satellites in all of the 100 realizations. Here, for the

density slope we follow the convention in observational studies to measure it at fixed physical aperture (as

opposed to a relative aperture of 0.01;vir that is convenient for theoretical studies) – in particular, we use

the average slope between ; = 0.3 kpc and 0.8 kpc, B38 ≡ − ln[d(0.8 kpc)/d(0.3 kpc)]/ln(0.8/0.3), following

Relatores et al. (2019). On average, the disc decreases the subhalo mass by up to 60%, {max by 20%, concen-

tration by 5%, and steepens the density slope by 8%. Satellites need to reach small galactocentric distances

to experience these changes: those not having been within 50 kpc of the galactic centre are barely affected.

We emphasize again that both the internal and external baryonic effects contribute a∼25% effect on the

abundance and structure of satellite galaxies. The halo-to-halo variance due to different merging histories

easily overwhelms these baryonic effects, unless large samples are utilized.
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Figure B.8: Themedian ratios of subhalomass, {max, concentration, and inner density slope (B38, see Section
B.4.3 for definition) between the models with and without the disc potential, all as a function of the mini-
mum galactocentric distance (as measured in models with the disc), for all of the shared massive surviving
satellites (<★ > 105 M�) in all of the 100 random realizations. Darker and lighter shaded bands indicate
16 − 84 and 3 − 97 percentiles, respectively. On average, the disc potential decreases satellite mass, {max,
concentration, and increases the density slope – all in all, the disc increases satellite structural diversity.

B.5 Discussion: Survival versus disruption

It is natural to wonder what determines the fate of a satellite – under what internal and external conditions

will a satellite survive, and under what conditions will it be disrupted? With the relatively large statistical

samples provided by SatGen , we can address these questions quantitatively.

Fig. B.9 compares the distributions of massive surviving satellites (<★ > 105 M�) and of disrupted

satellites (< < 106 M�) in the space spanned by the minimum galactocentric distance (Amin) versus virial

mass at infall (<acc), concentration at infall (22,acc), and logarithmic inner density slope at infall (B0.01,acc).

In the first row of Fig. B.9, we include satellites accreted throughout cosmic history, whereas in the second

and third rows of Fig. B.9, we consider satellites accreted at low redshift (Iacc < 1) and higher redshift

(Iacc = 1 − 2), separately. We focus only on the NIHAO emulator results, but compare the models with and

without the galactic disc potential.

There are several features worthmentioning. First, disruption occurs throughout the infall mass range.

At the most massive end (<acc >∼ 1011 M�), disruption actually dominates over survival. This can be clearly

seen via the <acc distributions of satellites accreted after I = 1 (the top panel of the second row, first

column, of Fig. B.9). This massive-end bump highlights the strong satellite mass dependence of dynamical

friction: onlymassive satellites with</" >∼ 0.1 undergo significant orbital decay. We caution that we have

arbitrarily defined “disruption” as subhalo mass dropping below 106 M� . This mass threshold is compara-

ble or slightly better than the mass resolution of state-of-the-art zoom-in simulations of MW-sized haloes,

where the DM particle mass is a few times 104 M� (e.g., Wetzel et al., 2016) and at least 100 particles are

needed to resolve a substructure. Hence, our disruption threshold is comparable to that in high-resolution

simulations. However, we emphasize that mass dropping below an arbitrary threshold does not necessar-

ily correspond to physical disruption, and we refer interested readers to van den Bosch et al. (2018) for a
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Figure B.9: Comparison of disrupted satellites (< < 106 M�) andmassive surviving satellites (<★ > 105 M�)
in terms of their minimum host-centric distance versus mass, concentration, and inner slope at accretion,
for the NIHAO-emulating models. The first row shows the results for satellites accreted throughout cosmic
history. The second and third rows show results for satellites accreted at low redshift (0 ≤ Iacc < 1) and
higher redshift (1 ≤ Iacc < 2), respectively. The top and side panels show the 1D marginalized histograms.
Surviving satellites are shown as filled histograms while disrupted ones are shown as empty steps. The
middle column (Amin versus 22,acc) and right-hand column (Amin versus B0.01,acc) focus only on satellites with
<acc > 1010 M� . Key takeaways: (1) Disruption occurs throughout the mass range, with a hump at the mas-
sive end, illustrating that massive satellites experience stronger dynamical friction. (2) Surviving satellites
have higher concentration and cuspier density profiles at infall. However, the concentration trend largely
reflects a progenitor bias (namely that concentration anti-correlates with redshift) and is significantly re-
duced if focusing on satellites accreted in the same redshift range. (3) The disc potential causes disruption
to occur at larger galactocentric distances.
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thorough discussion.

Second, surviving satellites were more concentrated and more cuspy at accretion. Specifically, if we fo-

cus onmassive satellites with<acc > 1010 M� , the surviving ones have amedian concentration of 22,acc ≈ 11

and a median inner slope of B0.01,acc ≈ 0.8, while the disrupted ones have a median concentration of

22,acc ≈ 5 and amedian slope of B0.01,acc ≈ 0.7. At face value, the concentration trend seems to have a simple

interpretation: denser haloes aremore resistant to tidal disruption. While this statement is true on its own,

it is actually not the main factor at play here. The time spent in the host halo is more important for the dis-

ruption of a subhalo than properties of the initial density profile. This can be seen from the second and third

rows of Fig. B.9: selecting satellites by infall redshift significantly reduces the difference in 22,acc between

the disrupted and surviving populations. Halo concentration at fixed mass anti-correlates with redshift

(e.g., Dutton &Macciò, 2014), so the satellites that were accreted earlier (and thus exposed for a longer time

to the tidal field of the host) naturally tend to have lower concentrations. However, the inner cuspiness is

almost independent of redshift. In fact, taking Iacc bins makes the slope difference more pronounced: for

Iacc ∈ [1, 2), the surviving satellites have B0.01,acc ≈ 1, and the disrupted ones have B0.01,acc ≈ 0.6.

Third, the disc significantly changes the minimum galactocentric distance at which disruption takes

place. In particular, without a disc potential, satellites can travel to as close as Amin <∼ 1kpc from the galactic

centre before becoming disrupted, whereas with a disc, most disruption events occur outside 1 kpc, with

a median Amin of 4 kpc. This again illustrates the disruptive role of the galactic disc. Massive surviving

satellites can seldom travel within 10 kpc of the galactic centre. In this way, the Solar neighbourhood is

shielded against massive satellites.

B.6 Conclusion

In this chapter, we presented a new semi-analytical model (SatGen ) for generating satellite galaxy pop-

ulations. The model is devised to generate statistical samples of satellite galaxy populations for desired

host properties, emulating zoom-in cosmological simulations and outperforming simulations in statisti-

cal power. It combines halo merger trees, empirical relations that describe the galaxy-halo connection,

and analytical prescriptions for satellite evolution, incorporating new developments in these areas. Its im-

provements and features can be summarized as follows:

• It uses the Parkinson et al. (2008) algorithm to generate halo merger trees, with parameters recently

re-calibrated by Benson (2017). It can also be applied to merger trees from #-body simulations.

• It supports halo density profiles that are more flexible than the NFW profile, including the Einasto
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profile and the Dekel+ profile, the latter of which has useful analytical properties. It also uses the MN

profile for describing discs.

• It can be used to emulate hydro-simulations with different sub-grid baryonic physics via an empirical

treatment of the halo response to star formation and feedback, as extracted from zoom-in hydro-

simulations of field galaxies.

• It makes use of stellar-mass-halo-mass relations from halo abundance matching, as well as galaxy-

size-halo-size relations extracted from hydro-simulations, in order to initialize the baryonic proper-

ties.

• It supports satellite orbit integration in composite host potentials, consisting of (combinations of) a

DM halo, baryonic disc, and stellar bulge.

• It uses tidal evolution tracks obtained from high-resolution idealized simulations from Peñarrubia

et al. (2008); Peñarrubia et al. (2010) and Errani et al. (2015, 2018), following the structural evolution of

satellites. This, together with the halo response relations, enables SatGen to propagate the baryonic

effects seen in hydro-simulations to the satellite populations – a task that is difficult for simulations

because of the high numerical resolution required.

We presented a proof-of-concept application of SatGen . We generated samplesmuch larger than state-

of-the-art zoom-in simulations for MW and M31 at comparable numerical resolution. We experimented

with different halo response models, using SatGen to emulate simulations with bursty star formation and

strong feedback (e.g., NIHAO and FIRE) and simulations with smoother star formation, and thus negligible

halo response, in massive dwarfs (e.g., APOSTLE and Auriga). We also experimented with models with and

without a galactic disc potential in order to quantify the influence of the disc on satellite statistics. In

other words, we explored the internal (halo response) and external (host-disc) baryonic effects on satellite

properties. The conclusions of this study are as follows:

• We find that the model predictions of the {max function, rotation curves, and spatial distributions of

bright satellites with<★ > 105 M� are in good agreementwith observations. This is achievedwithout

fine-tuning model parameters.

• Different halo response models yield slightly different satellite abundances: on average, the NIHAO

emulator yields 25% less satellites with <★ > 105 M� within 300 kpc of the galactic centre than

the APOSTLE emulator. The effect is smaller if we include all of the surviving satellites, illustrating

the fact that the difference in the halo response is most prominent for massive dwarfs. Given the
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large halo-to-halo variance as revealed by the model, and given the limited observational sample, it

currently remains difficult to use the observed satellite spatial distribution to distinguish between

the two feedback patterns.

• Adding a disc potential to the host causes, on average, a 20% (30%) reduction in satellite number

count within 300 (100) kpc. In addition to satellite depletion, the disc slightly increases the structural

diversity of massive satellite dwarfs. On average, a disc decreases the satellite {max by up to 20%,

concentration by up to 5%, and increase the density slope measured at the fixed physical aperture of

0.3 − 0.8 kpc by up to 8%, depending on the minimum galactocentric distance that the satellite can

reach. This helps with alleviating the small-scale problems of ΛCDM.

• The fate of a massive satellite galaxy (<acc > 1010 M�) depends on how close it gets to the galactic

centre: the surviving satellites seldom reach within 10 kpc of the centre, whereas the disrupted ones

have a minimum galactocentric distance of Amin∼4 kpc (or <∼ 1 kpc if there was no galactic disc).

The fate also depends on the initial structure at infall: more concentrated and cuspier haloes are

more likely to survive. However, the concentration trend is largely due to a progenitor bias, in the

sense that satellites that have been exposed to the tidal field for a longer time, i.e., those that were

accreted earlier, have lower concentration at accretion because of the anti-correlation between halo

concentration and redshift.

Overall, we have shown that SatGen can emulate numerical simulations of very high resolution de-

cently, capturing the bulk of the baryonic effects on the abundance, spatial distribution, and internal struc-

ture of satellites. Thanks to the tidal evolution recipes that are extracted from high-resolution idealized

simulations, it avoids the numerical artifacts of over-stripping. Simulating a statistically large sample of

MW/M31-sized systems, not to mention galaxy groups or clusters, while retaining the resolution for satel-

lite dwarfs is computationally challenging for numerical simulations. Therefore, the SatGenmodel com-

plements simulations nicely in terms of statistical power. In an upcoming work (Jiang et al., in prep), we use

SatGen to study satellites of group-sized hosts and explore the conditions for forming ultra-diffuse galaxies

and compact dwarf satellites. TheSatGen code ismadepublicly available at https://github.com/shergreen/SatGen.
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