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Abstract

On Neuroscience-Inspired Statistical and Computational Problems

Zifan Li

2021

Recent years have witnessed a surge of problems lying at the intersection of statistics and

neuroscience. In this thesis, we explore various statistical and computational problems

that are inspired by neuroscience. This thesis consists of two main parts, each inspired by

a different system in the brain.

In the first part, we study problems related to the visual system. In Chapter 2, we inves-

tigate the problem of estimating the collision time of a looming object using a theoretical

formulation based on statistical hypothesis testing. In Chapter 3, we build computational

models for the compound eye of Drosophila, and analyze how the models recover features

of actual visual loom-selective neurons.

In the second part, we study problems related to the memory system. In Chapter 4, we

consider approaches for accelerating and reducing memory requirements for reinforce-

ment learning algorithms, with provable guarantees on the performance of the algorithms.
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Chapter 1

Introduction

Neuroscience seeks to understand how brains function in terms of principles that trans-

form molecular dynamics to behaviors [Kass et al., 2018]. Abundant interesting statistical

and computational problems arise as a result of the vast amount of high-dimensional and

dynamic data we obtain from measuraments of the complex brain system. Advanced sta-

tistical theory and novel computational tools could be utilized to understand empirical

findings in neuroscience. At the same time, knowledge about brain functions and behav-

iors revealed by experiments serve as inspirations for new statistical models and learning

algorithms. In this thesis, we provide rigorous statistial analysis for computationally ef-

ficient algorithms inspired from neuroscience. We also build computational models and

investigate how their behaviors align with empirical evidence from neuroscience. We fo-

cus on problems related to two important systems in the brain, the visual system and the

memory system.

One crucial ability of the visual system is to detect looming stimuli, which refer

to stimuli of objects directly approaching the observer. Recently, two neuron types in

Drosophila have been identified as candidates for loom detectors [Ache et al., 2019a,

Klapoetke et al., 2017]. However, several important related questions, such as the rela-

tionship between these receptive fields, or the nonlinear computations of these neurons
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remain unclear. We study problems related to looming stimuli detection from both theo-

retical and computational perspectives.

From a theoretical perspective, we study the problem of estimating the collision time of

a looming object in Chapter 2 using a formulation based on statistical hypothesis testing.

The looming stimuli are abstracted as a sequence of two-dimensional images of an object

as projected onto the retina of an observer toward which the object is moving. The time-

to-contact is estimated as the ratio between the retinal image size and the rate of expansion

of the image at a given instant. The problem is parameterized by the number of pixels

or sensors in the retinal background image. We consider a testing framework where the

null hypothesis is the event that the time-to-contact is less than a fixed threshold. With the

number of pixels increasing, we aim to develop efficient and optimal testing procedures

for which the false-negative and false-positive probabilities are both asymptotically zero.

From a computational perspective, in Chapter 3 we aim to investigate computational

models for loom detection in the compound eye, informed by current understanding of the

neurophysiology of the visual system in Drosophila. We follow anatomical data to model

a population of loom-sensitive cells that each receive input from overlapping regions of a

grid of local motion sensors. Of particular interest is the shared filter used by these neurons

when adapted to detect looming stimuli. We aim to study the behavior of the filters learned

under different computational models in a data-driven manner by simulating optical flow

of looming and non-looming objects.

Given that human brain does not have unlimited memory capacity, a tradeoff between

the amount and fidelity of the memory must exist in our brain system. However, behav-

ioral evidence suggests that humans can store massive amount of memory with vivid detail.

[Brady et al., 2011]. Drawing inspirations from this phenomenon, we consider approaches

for accelerating and reducing memory requirement for learning algorithms, with provable

guarantees on the performance of the algorithms. In Chapter 4 we study guarantees of

reinforcement learning algorithms under memory constraints. More specifically, we con-

2



sider how matrix sketching technique that reduce computational and memory complexity

can be applied in reinforcement learning problems and its impact on the regret guarantee.

Note that Chapter 3 is based on joint work with Baohua Zhou, Sunnie Kim, Damon

Clark, and John Lafferty. My contributions to the joint work include the formulation of

the task as a machine learning problem, implementation of the models in Python, running

of computational experiments, analysis of simulation data, contributing to refinements of

the models, and to the write-up of results for journal submission.
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Chapter 2

Estimating Time-to-Contact for Approach-
ing Objects

2.1 Introduction

The ability to detect and avoid approaching objects is critical to the survival of many

animal species; it is also a key component of AI systems that govern the sensing and

control of autonomous vehicles. In this chapter we study the problem of estimating the

collision time of an approaching object, using a formulation based on statistical hypothesis

testing. Our starting point is the geometry of a sequence of two-dimensional images of an

object as projected onto the retina of an observer toward which the object is moving. The

time-to-contact is estimated as the ratio between the retinal image size and the rate of

expansion of the image at a given instant. The problem is parameterized by the number of

pixels or sensors in the retinal background image. We consider a testing framework where

the null hypothesis is the event that the time-to-contact is less than a fixed threshold. With

the number of pixels increasing, we consider tests for which the false-negative and false-

positive probabilities are both asymptotically zero. In this setting, we establish efficient

and optimal testing procedures for one-dimensional intervals, two-dimensional rectangles,

and two-dimensional disks, using a penalized multiscale scan statistic for identification
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and estimation of area. The signal-to-noise ratios achievable by our testing procedures

match recently established statistical lower bounds for signal detection for these same

geometries.

Taking inspiration from natural models of visual perception in animals, we abstract

the retina as a two-dimensional pixel field with fixed length and width, which we model

as [0, 1]2, discretized to an n-by-n array of pixels. In our statistical formulation, we let the

number of pixels n increase to study the asymptotic behavior. The image of the object at

an initial time t0 is denoted as S0, which we consider to be a disk with radius r0 centered

at the center of the pixel field. We let S1 denote the expanded image at time t1, and assume

t1 − t0 is small. For simplicity, we focus on the case where the expansion is symmetric,

corresponding to the event that the object is directly approaching the observer. Thus, S1

is another disk with radius r1 ≈ r + dr. With |S0| and |S1| denoting the area of disks

S0 and S1 respectively, the underlying geometry implies that the time-to-contact is well-

approximated as

T =
r0

dr
=

r0

r1 − r0

=
1√
|S1|
|S0| − 1

as we explain in the following section. For each pixel p = ( i
n
, j
n
) in field of vision, the

object is observed as a uniform intensity with additive Gaussian noise,

Yt(p) = µn1{p ∈ St}+ Zt(p),

where Zt is a n × n matrix of Gaussian white noise with variance one, and µn > 0 is the

signal amplitude that regulates the signal-to-noise ratio.

We formulate a statistical test of whether T is smaller or larger than a threshold Tthresh.

Informally, this asks the question “is there enough time to avoid the approaching object”?

In this work our objective is to identify the minimal threshold on the signal strength µn that

permits a sequence of tests {φn}∞n=1 for which the false-negative and false-positive proba-

5



bilities are both asymptotically zero. Our main result is that for two-dimensional disks and

rectangles, a signal strength scaling as µn = Ω(1/n) suffices. Moreover, by computing the

test statistics hierarchically, an algorithm can be devised with complexity Õ(n2) 1, linear

in the number of pixels up to a logarithmic factor. We show that asymptotically optimal

tests can be derived by estimates of the retinal image area at time t0 and t1. To estimate

this area, we use penalized scan statistics, which compute the maximum of a Gaussian

process parameterized by rectangles with varying scales that scan over the background,

with a penalization term depending on its scale. Our analysis leverages previous work that

achieves fast algorithms through the use of modified families of dyadic rectangles.

Contributions Our main contribution in this chapter is three-fold. First, we present a

novel formulation of the visual time-to-contact estimation problem using a statistical hy-

pothesis testing framework, and study its asymptotic property as the number of pixels

of the retinal background image goes to infinity. Second, we propose efficient testing

procedure based on penalized multiscale scan statistic that is provably optimal when the

underlying signal has the form of either a rectangle or a disk. While Arias-Castro et al.

[2005] studies multiscale scan statistics for general geometric objects, their scan statistics

are not optimal in terms of detection thresholds as they are not penalized. Another related

work is Kou [2017] which studies the identification threshold of penalized scan statistic

for hyperrectangles. However, their results are not directly applicable to disks and they

rule out signals with very large scale (area remains constant as n → ∞), which corre-

sponds to our setting. Last, we perform extensive numerical simulations on the efficient

testing procedure under a variety of settings. Simulation results corroborate our theory

and demonstrate that the efficient procedure could attain comparable performance as the

more accururate but inefficient counterpart in shorter time.

1Here Õ hides only constants and poly-logarithmic factors.
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Content The rest of the chapter is organized as follows. In Section 2.2 we introduce

the geometry of the perception of approaching objects. In Section 2.3 we give a statistical

formulation of the hypothesis testing problem and introduce the concept of asymptotically

powerful tests. Section 2.4 briefly surveys recent work on signal detection/identification

and scan statistics. In Section 2.5 we present an efficient estimation procedure based

on a penalized multiscale scan statistic in the one dimensional case as a warm-up, and

establish its optimality. In Section 2.6 we present an efficient estimation procedure for two-

dimensional rectangular signals. Most results in Section 2.6 are straightforward extensions

from results in the one dimensional case. In Section 2.7 we extend the efficient estimation

procedure to two-dimensional disk signals. Section 2.8 presents numerical simulations

results. A sketch of the proof of the main results in one-dimensional case is provided in

Section 2.9, with the detailed proofs of more general cases collected in Section 2.10.

2.2 Perception of Approaching Objects

Gibson [1979] suggests that the symmetrical expansion of the retinal image is a crucial

feature for determining whether an object is on a direct collision course with an observer.

As a result, sensitivity to optical expansion is critical for selection of an appropriate re-

sponse in order to avoid a collision—for example, when crossing the road. The time

before collision could be derived from knowledge of the distance and speed of the object,

but these quantities are not directly available to the observer. Lee [1976] suggests that

many animals form a decision by estimating the ratio between retinal image size and the

rate of expansion of the image at a given instant.

Consider the visual geometry illustrated in Figure 1. Suppose that the two dimensional

projection of the object onto the vision field is a disk of radius R and distance D(t) from

the lens of the eye at time t. It subtends an angle of 2θ(t), where θ(t) is given by the

formula tan(θ(t)) = R
D(t)

. Suppose the constant distance between the retina and the focal

7



Figure 2.1: Visual geometry of an object approaching an observer.

point is L and the radius of the retinal image is r(t) at time t. Further suppose that the

object is moving at a constant velocity v directly towards the observer. In this case, the

time-to-contact T is simply

T =
D(t)

v
= −D(t)

Ḋ(t)
.

Lee [1976] defines τ as the ratio of optical size θ(t) and the rate of looming θ̇(t) at time

t. When the image is not too large relative to its distance, i.e., when θ(t) is small, the

small angle approximation suggests that θ(t) ≈ R
D(t)

and the time-to-contact is well-

approximated as

τ :=
θ(t)

θ̇(t)
≈ −D(t)

Ḋ(t)
.

Considerable research has been conducted on humans’ use of τ in estimating T . [Schiff

and Detwiler, 1979, McLeod and Ross, 1983, Regan and Hamstra, 1993, Wann et al.,

2011]. Yan et al. [2011] show that time-to-contact specified by the optical variable τ was

weighted more by subjects than estimates derived from distance, speed, or object size

when making relative time-to-contact judgments.

Going beyond the optical variable τ , if we consider the radius of the retinal image r(t)

instead of optical size θ(t) at time t, then the ratio of retinal image radius r(t) and its

expansion rate ṙ(t) is exactly equal to T , even without the small angle assumption. This is

because r(t)
L

= tan(θ(t)) = R
D(t)

implying that r(t) = RL
D(t)

, and therefore r(t)
ṙ(t)

= −D(t)

Ḋ(t)
=
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T . In the following sections we base our statistical formulation of the problem in terms of

this geometrical model.

2.3 Statistical Formulation

Suppose that when an object approaches, the quantity Tthresh represents the time needed

to act in order to avoid collision. For instance, if one is standing at the beginning of

a crosswalk and needs to determine if there is sufficient time to cross when a vehicle

approaches, then Tthresh would be the time required to cross the crosswalk. We formulate

the problem in terms of statistical testing:

H0 : T > Tthresh versus H1 : T < Tthresh, (2.1)

where the null hypothesis H0 corresponds to the scenario that the time-to-contact is larger

than the time needed to get to safety. The alternativeH1 corresponds to the scenario where

there is insufficient time to get to safety. This chapter aims to build statistical models

and derive conditions under which the above hypothesis testing problem can be reliably

solved.

Our goal is to solve a hypothesis testing problem similar to (2.1) only using information

at two consecutive time frames, since the response in animals is usually determined almost

instantaneously. The retina can be thought of as a two dimensional pixel field with fixed

length and width, which we model as [0, 1]2, discretized to an n-by-n array of pixels. The

retinal image of the object at time t0, denoted as S0, is a disk with radius r0 centered at the

center of the pixel field. Let S1 denote the expanded retinal image after one time frame.

We assume that the expansion is symmetric and the lapse between time frames is short; so

S1 is another disk with radius r1 ≈ r+ dr and also centered at the center of the pixel field.

9



With |S0| and |S1| denoting the area of disks S0 and S1 respectively, we have

T =
r0

dr
=

r0

r1 − r0

=
1

r1/r0 − 1
=

1√
|S1|
|S0| − 1

.

For each pixel p = ( i
n
, j
n
) in the pixel field where 0 < i, j ≤ n , we observe data

Yt(p) = µn1{p ∈ St}+ Zt(p), (2.2)

where Zt is a n × n matrix of Gaussian white noise with variance 1, and µn > 0 is the

signal amplitude. The n × n grid can be thought of as a discretization of the retina, and

n → ∞ corresponds to a finer and finer discretization. Note that the ratio between the

radius of the retinal image and the length of the retina is fixed regardless of the value of

n. Hence, the areas of the signal at different times |S0| and |S1| are assumed to be fixed as

n→∞.

Our objective is to identify the minimal threshold on the signal strength µn such that a

sequence of tests {φn}∞n=1 exists for which the false-negative and false-positive probabili-

ties are both asymptotically zero.

Definition 2.3.1. We say that a sequence of tests {φn}∞n=1 is asymptotically powerful if for

all ε > 0,

sup
T∈H0,ε

PT{φn = 1}+ sup
T∈H1,ε

PT{φn = 0} −→ 0

as n→∞, where H0,ε and H1,ε are defined as

H0,ε : T > Tthresh + ε versus H1,ε : T < Tthresh − ε (2.3)

with implicit dependence on n through model (2.2).
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Remark. Note that in contrast to the original hypotheses (2.1), the new hypotheses (2.3)

are separated by inf {T ∈ Hn,0}−sup {T ∈ Hn,1} = 2ε. The 2ε separation is necessary to

make asymptotically powerful testing possible. Indeed, if the two hypotheses are defined

as in (2.1), then trivially the sum of supremum of the false-negative and false-positive

probabilities is at least 1.

The idea behind constructing the asymptotically powerful test {φn}∞n=1 is that we will

first construct a consistent estimator T̂n of T , i.e., T̂n converges to T in probability, using

multiscale scan statistic. Then, we reject the null hypothesisHn,0 if T̂n < T , and accept the

null hypothesis if T̂n ≥ T . From the expression T = 1√
|S1|
|S0|
−1

it is intuitive that a “good”

estimator of the area of the signal is sufficient for constructing a consistent estimator of T ;

this is shown formally in the following lemma.

Lemma 2.3.2. Assume that under the static setting, i.e., when there is only one time frame,

we have an estimator Ŝ of the area of the disk S such that Ŝ
|S|

P→ c as n → ∞ for some

absolute constant c > 0. Then T̂n :=
(√

Ŝ1

Ŝ0
− 1
)−1

is a consistent estimator of T .

Moreover, the sequence of tests {φn}∞n=1 that reject the null hypothesis Hn,0 if T̂n < Tthresh

and accept otherwise is asymptotically powerful.

Throughout the chapter we use the following standard notation. For two sequences of

numbers an and bn, we write an = o(bn) if an
bn
→ 0 as n → ∞, and an = O(bn) if there

exists a finite M such that an
bn
< M for all n. For a sequence of random variables Xn and

a corresponding sequence of numbers an, we write Xn = op(an) if Xn/an converges to

zero in probability. Similarly, we write Xn = Op(an) if for any ε > 0, there exists a finite

M such that P(|Xn/an| > M) < ε for all n. Unless stated otherwise, all limits are with

regard to n→∞.
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2.4 Review of Previous Work

The problem of determining whether the signal is present is called signal detection. Gen-

eral signal detection is an important problem that arises in many applications, e.g., epi-

demiology [Neill, 2009] and copy number variation [Jeng et al., 2010]. On the theoreti-

cal side, researchers have considered signal detection for geometric objects [Arias-Castro

et al., 2005], cluster detection [Arias-Castro et al., 2011], and density inference [Dümbgen

and Walther, 2008]. While Gaussian noise is the most common setting, Bernoulli noise

[Walther, 2010], Poisson noise [Rivera and Walther, 2013, Kulldorff et al., 2005], and

general exponential family [König et al., 2018] models have also been considered.

In our setting of time-to-contact estimation, the signal is always assumed to be present.

We are going to use a penalized multiscale scan statistic for identification and estimation of

area, which is based on the maximum of an ensemble of local test statistics, penalized and

properly scaled. A great deal of prior work exists that investigates scan-type procedures

[Kulldorff, 1997, Siegmund and Yakir, 2000, Glaz et al., 2009]. Recently, Sharpnack and

Arias-Castro [2016] give exact asymptotics for the scan statistics where the underlying

signal is a d−dimension hyperrectangle under Gaussian noise. However, this earlier work

considers scan statistics with no penalty term. Moreover, the vast majority of the work in

which a scan statistic is applied consider detection problems, i.e., testing the existence of

signal instead of identification, which is the focus of this work. In contrast, Brown et al.

[2008] and Kou [2017] consider identification problems of varying spatial scales.

Chan and Walther [2013] note that the scan statistic is dominated by signals on small

spatial scales; this results in a loss of power for detecting large scale signals, which cor-

responds to our setting. One solution is to use different levels of critical values to test for

signals at different scales [Walther, 2010]. Another common solution is to introduce a size

penalty, see e.g. Dümbgen and Spokoiny [2001], Datta and Sen [2018]. While both can be
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optimal for detecting signals with arbitrary extent [Chan and Walther, 2013], it is easier to

adopt the penalized scan statistic for identification problems, as done by Kou [2017].

2.5 One-Dimensional Signal Identification

In this section, we assume the underlying signal is a fixed-length interval with unknown

position. Consider the following one-dimensional model at any given time

Y (p) = µn1{p ∈ I∗n}+ Z(p), p ∈
{

1

n
, . . . ,

n

n

}
(2.4)

where Z(p) are i.i.d. standard normal random variables and the unknown signal is denoted

I∗n ∈ In where In = {( j
n
, k
n
], 0 ≤ j < k ≤ n)} is the set of all possible signals. For

I ∈ In define Yn(I) =
∑
p∈I Y (p)√
n|I|

where |I| is the length of the interval I .

Before giving the estimation procedure, we introduce the approximation scheme used

by Arias-Castro et al. [2005] for efficient computation. Let n be a dyadic integer n = 2J

and let Jn denote the collection of all dyadic subintervals

Ij,k =

(
k2j

n
,
(k + 1)2j

n

]

where 0 ≤ j ≤ J and 0 ≤ k < n/2j . The dyadic intervals are singled out as a special

subset of the collection of all intervals because they have cardinality 2n rather than n2/2

and yet constitute an ε−net for the space of intervals in some special metric. But using

only dyadic intervals is not enough, as they cannot approximate all intervals arbitrarily

well. Instead, we use dyadic intervals as the “base” and form compound intervals by

attaching additional dyadic intervals at the ends. Formally, the interval Jl is an l−level

extension if it can be constructed as follows.

1. Start from a base J0 which is either a dyadic interval Ij,k or the union of two adjacent
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IJ−2,1 IJ−2,2

adding IJ−3,1 do nothing

do nothing adding IJ−4,13

Figure 2.2: Extending dyadic intervals by starting from a dyadic base and appending
shorter dyadic intervals at each level.

dyadic intervals Ij,k and Ij,k+1, where k is odd (or else the union of Ij,k and Ij,k+1 is

already a dyadic interval).

2. At stage g = 1, . . . , l, extend Jg−1 to produce Jg by attaching a dyadic interval of

length 2−g|Ij,k| at either or both ends of Jg−1, or by doing nothing (so that Jg =

Jg−1).

The result will be a compound interval as depicted in Figure 2.

The collection of all l−level extensions of a dyadic interval I will be denoted Jl[I];

the collection of all l−level extensions will be denoted Jn,l. We have the following facts

from Arias-Castro et al. [2005].

Proposition 2.5.1. For each I ∈ In, there is an interval J ∈ Jn,l such that

δ(I, J) =

√
1− |I ∩ J |√

|I||J |
≤ 2−l/2. (2.5)

Moreover, arg maxI∈Jn,l Yn(I) can be computed in O(n4l) time.

Here δ(I, J) is a measure of difference between two intervals I and J that is between

0 and 1. If I and J are exactly the same, δ(I, J) = 0. If δ(I, J) are disjoint, δ(I, J) = 1.

To compute arg maxI∈Jn,l Yn(I), we first evaluate sums for all dyadic intervals I , which
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has cardinality 2n. Superficially, this would takeO(n2) operations. However, observe that

the dyadic sums obey the recursion

S[Ij,k] = S[Ij−1,2k] + S[Ij−1,2k+1]

for 1 ≤ j ≤ log2(n), 0 ≤ k < n/2j , where S[Ij,k] =
∑

p∈Ij,k Y (p). Therefore, we start at

the finest level by

S[I0,k] = Y

(
k

n

)
, k = 1, . . . , n

and use sums at finer levels to compute sums at coarser levels. Once the 2n dyadic sums

are computed, we obtain the statistics Yn(Ij,k) = 2−j/2S[Ij,k]. Therefore, the overall

complexity in this stage is O(n). After this stage, there are O(n) dyadic bases and each

requires O(4l) work; therefore, the overall complexity is O(n4l).

The next theorem shows that we can come up with a consistent estimator of |I∗n| that is

also computationally efficient using this approximation scheme.

Theorem 2.5.2. Assume model (2.4) and let the length of the interval signal be denoted

|I∗n| ∈ (0, 1]. Suppose the signal size µn satisfies

µn =
bn√
n

with bn →∞. (2.6)

Let l = log2 log2(n) and define

În = arg max
I∈Jn,l

(
Yn(I)−

√
2 log

1

|I|

)
. (2.7)

Then we have |În||I∗n|
P→ 1 as n → ∞. Moreover, there is an algorithm to compute |În| in

O(n log2
2 n) time.

Remark. The condition (2.6) matches the detection lower bound for intervals [Chan and
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Walther, 2013]. Since the estimation problem is harder than the detection problem, the

condition (2.6) is optimal and cannot be improved.

Remark. In (2.7) În is defined as the argmax over a subset of all possible intervals Jn,l.

Taking the argmax over all possible intervals In would also work; however, implementing

the algorithm takes O(n2) time.

We give the proofs of these results in Section 2.9.

2.6 Two-Dimensional Rectangular Signal Identification

In this section, we assume the underlying signal is a fixed-area rectangle with sides parallel

to the axes but position unknown. Consider the following two-dimensional model at any

given time

Y (p) = µ1{p ∈ I∗n}+ Z(p), p = (p1, p2), p1, p2 ∈
{ 1

n
, . . . ,

n

n

}
(2.8)

where Z(p) are i.i.d. standard normal random variables and the unknown rectangular sig-

nal is given by

I∗n =

(
j∗n,1
n
,
k∗n,1
n

]
×
(
j∗n,2
n
,
k∗n,2
n

]
, 0 ≤ j∗n,d < k∗n,d ≤ n for d = 1, 2.

We denote the area of the rectangle I∗n by |I∗n| =
(k∗n,1−j∗n,1)×(k∗n,2−j∗n,2)

n2 . Let I(2)
n be the set

of all rectangles on the pixel field with edges parallel to the axes, i.e.,

I(2)
n = {

(
jn1
n
, kn1
n

]× ( jn2
n
, kn2
n

]
∣∣ 0 ≤ jnd < knd ≤ n} for d = 1, 2. For I ∈ I(2)

n , define

Yn(I) =
∑
p∈I Y (p)√
n2|I|

. Note that this definition of Yn(I) differs from that for the one-

dimensional model in the denominator. Similar to the one dimensional case, we introduce

the approximation set J (2)
n,l = Jn,l × Jn,l ∈ I(2)

n . We have the following facts from Arias-

Castro et al. [2005].
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Proposition 2.6.1. For each I ∈ I(2)
n , there is an interval J ∈ J (2)

n,l such that

δ(I, J) =

√
1− |I ∩ J |√

|I||J |
≤ εn,l. (2.9)

for some εn,l → 0 as n, l → ∞. Moreover, arg max
I∈J (2)

n,l
Yn(I) can be computed in

O(n242l) time.

The identification threshold on µn is established in the following theorem.

Theorem 2.6.2. Assume model (2.8) and suppose the signal size µn satisfies

µn =
bn
n

with bn →∞. (2.10)

Let l = log2 log2(n) and define

În = arg max
I∈J (2)

n,l

(
Yn(I)−

√
2 log

1

|I|

)
. (2.11)

Then |În||I∗n|
P→ 1 as n→∞. Moreover, there is an algorithm to compute |În| inO(n2 log4

2 n)

time.

Remark. The results in this section can be extended to d−dimensional hyperrectangles

as well, but for concreteness we only study the two dimensional case.

Remark. The condition (2.10) matches the detection lower bound for rectangles [Kou,

2017]; thus condition (2.10) gives the optimal signal scaling and cannot be improved.

Remark. Kou [2017] establishes optimal identification thresholds for rectangular sig-

nals belonging to a large class of spatial scales but does not handle our case where

lim infn→∞ |I∗n| > 0.
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2.7 Two-Dimensional Disk Signal Identification

In this section the underlying signal is assumed to be a fixed-area disk contained in [0, 1]2

with unknown location. Consider the following two-dimensional model at any given time

Y (p) = µ1{p ∈ S∗n}+ Z(p), p = (p1, p2), p1, p2 ∈
{ 1

n
, . . . ,

n

n

}
(2.12)

where Z(p) are i.i.d standard normal random variables and the unknown disk-like signal

S∗n =
{

(p1, p2) | p1, p2 ∈ {
1

n
, . . . ,

n

n
}, (p1 − c1)2 + (p2 − c2)2 ≤ r2

}
.

We denote the area of the disk by |S∗n| = πr2 ∈ (0, π
4
]. With a slight abuse of notation let

I(2)
n be the set of all squares on the pixel field with edges parallel to the axes, i.e., I(2)

n =

{
(
jn
n
, kn
n

]× ( jn
n
, kn
n

]
∣∣ 0 ≤ jn < kn ≤ n}. For I ∈ I(2)

n , define Yn(I) =
∑
p∈I Y (p)√
n2|I|

. We

use the approximation set J (2)
n,l = {I × I|I ∈ Jn,l} ∈ I(2)

n . In this case, Proposition 2.6.1

still holds, and we have the same identification threshold on µn as the case of rectangular

signals.

Theorem 2.7.1. Assume model (2.12) and suppose the signal size µn satisfies

µn =
bn
n

with bn →∞. (2.13)

Let l = log2 log2(n) and define

În = arg max
I∈J (2)

n,l

(
Yn(I)−

√
2 log

1

|I|

)
. (2.14)

Then we have |În||S∗n|
P→ c as n → ∞ for some absolute constant c > 0. Moreover, there is

an algorithm to compute |În| in O(n2 log4
2 n) time.
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Theorem 2.7.1 gives a sufficient condition on µn that, once satisfied, enables asymp-

totically powerful tests for the two-dimensional model. The following theorem shows that

condition (2.13) is also necessary for constructing asymptotically powerful tests.

Theorem 2.7.2. Assume that the retinal image of the object is a disk with area (0, π
4
] at

time t0 under model (2.12). If condition (2.13) does not hold, then for any sequence of

tests {φn} there is some ε > 0 and β > 0 such that

sup
T>Tthresh+ε

PT{φn = 1}+ sup
T<Tthresh−ε

PT{φn = 0} > β.

2.8 Simulation Study

Theorem 2.7.1 combined with Lemma 2.3.2 yields efficient testing procedure. For com-

parison, we also consider the inefficient counterpart where the estimation of area is done

by exhaustive search over all possible squares I(2)
n instead of the approximation set J (2)

n,l in

(2.14). The efficacy of both procedure is tested in this section through extensive simulation

study.

We pick Tthresh ∈ {3, 5, 10} and ε ∈ {T
2
, T

5
}. We pick n ∈ {8, 16, 32, 64, 128} to run

and n ∈ {8, 16, 32, 64, 128, 256, 512} to run the efficient algorithm using the approxima-

tion scheme described in Section 2.5. We allow larger n for the efficient algorithm both

because the efficient one runs much faster so can afford large n and also because the ap-

proximation set introduced by the efficient algorithm requires larger n to be sufficiently

accurate. For concreteness, the time it took to run inefficient algorithm on n = 128 is more

than that to run the efficient algorithm on n = 512.

The signal strength is µn = bn
n

where bn ∈ {16 log2(log2(n)), 128 log2(log2(n)),

1024 log2(log2(n))}. The choice of this particular form of bn = A log2(log2(n)) is to

stay below the minimum threshold Ω(log n) of the unpenalized scan statistic [Chan and

Walther, 2013] while ensuring that bn →∞ at the same time. To approximate
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supT>Tthresh+ε PT{φn = 1}, we generate signals so that T = Tthresh + ε, and compute the

empirical fraction PT=Tthresh+ε(T̂n < Tthresh) among 100 repetitions. An approximation of

supT<Tthresh−ε PT{φn = 0} is computed analogously using the same number of repetitions.

For each T , we generate the signal by first generating r1, the radius of retinal object at time

t1, uniformly at random in the range [0.05, 0.5]. Then, using the identity r1 = r0 + dr =

r0 + r0
T

, r0, the radius of retinal object at time t0, is computed. After r0 and r1 are fixed,

we generate the n× n pixel matrix at time t0 (t1) point by having all pixels with distance

smaller than r0 (r1) following Gaussian distribution with mean µn and variance 1, while

the rest of the pixels following Gaussian distribution with mean 0 and variance 1.

Figures 2.3, 2.4 and 2.5 illustrate the behavior of testing error supT>Tthresh+ε PT{φn =

1} + supT<Tthresh−ε PT{φn = 0} against log2(n) with varying Tthresh, ε, and µn. A few

observations can be made. Firstly, the overall trend that the testing error decreases as n

increases is clear regardless of our choice of parameter Tthresh, ε, and µn. Secondly, for

a fixed Tthresh, smaller ε corresponds to a harder problem so leads to larger testing er-

ror. Moreover, when keeping ε as a fixed fraction of Tthresh, testing error still increases

as Tthresh increases. This might be because under our setting Tthresh − ε and Tthresh + ε

are increasing, so the ratio r1
r0

= 1 + 1
T

is decreasing and the problem becomes harder

in the sense that it requires larger n to make the testing error sufficiently small. In ad-

dition, we observe that stronger signal, which implies easier problem, leads to smaller

testing error. This effect is particularly noticeable when comparing the first two fig-

ures (bn = 16 log2(log2(n)) versus bn = 128 log2(log2(n))), but is less noticeable when

comparing the last two figures (bn = 128 log2(log2(n)) versus bn = 1024 log2(log2(n))).

Lastly, restricting to the easier scenario where ε = Tthresh
2

, we see that the efficient procedure

could attain comparable performance in shorter time, compared to the more accururate but

inefficient counterpart.
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Figure 2.3: Testing error against log2(n) when bn = 16 log2(log2(n)).
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Figure 2.4: Testing error against log2(n) when bn = 128 log2(log2(n)).

2.9 Proof Outline

In this section we sketch the structure of the proofs, beginning with the one-dimensional

case. 21



3 4 5 6 7 8 9
log2 (n)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
 e
rr
o
r

Tthresh=3, ε=1.50
Efficient
Inefficient

3 4 5 6 7 8 9
log2 (n)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
 e
rr
o
r

Tthresh=3, ε=0.60
Efficient
Inefficient

3 4 5 6 7 8 9
log2 (n)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
 e
rr
o
r

Tthresh=5, ε=2.50
Efficient
Inefficient

3 4 5 6 7 8 9
log2 (n)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
 e
rr
o
r

Tthresh=5, ε=1.00
Efficient
Inefficient

3 4 5 6 7 8 9
log2 (n)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
 e
rr
o
r

Tthresh=10, ε=5.00
Efficient
Inefficient

3 4 5 6 7 8 9
log2 (n)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st
in
g
 e
rr
o
r

Tthresh=10, ε=2.00
Efficient
Inefficient

Figure 2.5: Testing error against log2(n) when bn = 1024 log2(log2(n)).

Proof of Lemma 2.3.2. By assumption we can construct two estimators ŝ0 and ŝ1 such that

ŝ0
|S0|

P→ c and ŝ1
|S1|

P→ c. As a result ŝ1
ŝ0

P→ |S1|
|S0| . Therefore,

T̂n =
1√
ŝ1
ŝ0
− 1

P−→ 1√
|S1|
|S0| − 1

= T,

i.e., T̂n is a consistent estimator of T . This implies that

sup
T∈Hn,0

PT{φn rejects Hn,0} = sup
T>Tthresh+ε

PT{T̂n < T} (2.15)

≤ sup
T>Tthresh+ε

P{T̂n − T < −ε} −→ 0

and

sup
T∈Hn,1

PT{φn accepts Hn,0} = sup
T<Tthresh−ε

PT{T̂n ≥ T} (2.16)
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≤ sup
T<Tthresh−ε

P{T̂n − T ≥ ε} −→ 0.

Combing the above two equations finishes the proof.

Proof of Theorem 2.5.2. Before we prove this theorem, we introduce the following key

lemma, the proof of which is very similar to the proof of Lemma 1 in [Chan and Walther,

2013].

Lemma 2.9.1. Define Zn(I) :=
∑
p∈I Z(p)√
n|I|

. Then

max
I∈In

(
|Zn(I)| −

√
2 log

1

|I|

)
<∞

almost surely for all n.

Proof of Lemma 2.9.1. Observe that for any particular I ∈ In, Zn(I) ∼ N(0, 1). Writing

W for Brownian motion, we have that

max
I∈In

(
|Zn(I)| −

√
2 log

1

|I|

)

d
= max

0≤j/n<k/n≤1

(
|W (k/n)−W (j/n)|√

k/n−j/n
−
√

2 log 1
k/n−j/n

)

≤ max
0≤s<t≤1

(
|W (t)−W (s)|√

t− s −
√

2 log
1

t− s

)

≤ max
0≤s<t≤1

(
|W (t)−W (s)|√

t− s −
√

2 log
1

t− s

)
/D(t− s)

d
=: L′ <∞ a.s.

where D(r) := log log(ee/r)√
log(e/r)

≤ 1 for all r ∈ (0, 1]. The last line is from Sec 6.1 in Dümbgen

and Spokoiny [2001].

Equipped with this lemma, we are ready to prove Theorem 2.5.2; the complexity of

23



the algorithm trivially follows from Proposition 2.5.1. To show that |În||I∗n|
P→ 1 as n → ∞,

we need to show that for any ε > 0,

P

(∣∣∣∣∣
|În|
|I∗n|
− 1

∣∣∣∣∣ > ε

)
−→ 0

as n→∞. Denote Xn(I) := Yn(I)−
√

2 log 1
|I| . By (2.5), there is Ĩ ∈ Jn,l such that

δ(Ĩ , I∗n) =

√√√√1− |Ĩ ∩ I
∗
n|√

|Ĩ||I∗n|
≤ 2−l/2 =

1√
log2 n

.

Therefore, there is Ĩ ∈ Jn,l such that

|Ĩ ∩ I∗n|√
|Ĩ||I∗n|

≥ 1− 1

log2 n
. (2.17)

Observe that for any I ∈ In, if
∣∣∣ |I||I∗n| − 1

∣∣∣ > ε, we have

|I ∩ I∗n|√
|I||I∗n|

≤ max
{ 1√

1 + ε
,
√

1− ε
}

:= 1− dε < 1. (2.18)

Hence, there is Ĩ ∈ Jn,l such that

∣∣∣∣∣
|Ĩ|
|I∗n|
− 1

∣∣∣∣∣ ≤ max

{
1−

(
1− 1

log2 n

)2

,
1

(
1− 1/ log2 n

)2 − 1

}
−→ 0. (2.19)

In particular, assuming that n is sufficiently large, we have
∣∣∣ |Ĩ||I∗n| − 1

∣∣∣ < ε. Define the event

Kn,l :=

{
I ∈ Jn,l :

∣∣∣∣
|I|
|I∗n|
− 1

∣∣∣∣ > ε

}
.

Then we have the following sequence of probability bounds:

24



P

(∣∣∣∣∣
|În|
|I∗n|
− 1

∣∣∣∣∣ > ε

)

≤ P
(

max
I∈Kn,l

Xn(I) ≥ Xn(Ĩ)

)

= P

(
max
I∈Kn,l

(
Zn(I) +

n|I ∩ I∗n|√
n|I|

µn −
√

2 log
1

|I|

)
≥

Zn(Ĩ) +
n|Ĩ ∩ I∗n|√

n|Ĩ|
µn −

√
2 log

1

|Ĩ|

)

= P

(
max
I∈Kn,l

(
Zn(I) +

|I ∩ I∗n|√
|I||I∗n|

√
rbn −

√
2 log

1

|I|

)
≥

Zn(Ĩ) +
|Ĩ ∩ I∗n|√
|Ĩ||I∗n|

√
rbn −

√
2 log

1

|Ĩ|

)

≤ P

(
max
I∈Kn,l

(
Zn(I) + (1− dε)

√
rbn −

√
2 log

1

|I|

)
≥

Zn(Ĩ) +
(
1− 1

log2 n

)√
rbn −

√
2 log

1

|Ĩ|

)

= P

(
max
I∈Kn,l

(
Zn(I)−

√
2 log

1

|I|

)
≥ Zn(Ĩ) +

(
dε −

1

log2 n

)√
rbn +

√
2 log

1

|Ĩ|

)
.

The last inequality is from (2.17) and (2.18). By Lemma 2.9.1,

maxI∈Kn,l

(
Zn(I)−

√
2 log 1

|I|

)
is Op(1). Moreover, Zn(Ĩ) ∼ N(0, 1),

(
dε − 1

log2 n

)√
rbn →∞, and from (2.19) we know

√
2 log 1

|Ĩ| →
√

2 log 1
|I∗n|

=
√

2 log 1
r
.

Therefore, the last probability converges to zero, completing the proof of Theorem 2.5.2.

The proofs of the two-dimensional cases are given in the next section.
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2.10 Additional Proofs

The proof of Theorem 2.6.2 is almost identical to the proof of Theorem 2.5.2 so the bulk

of the proof is omitted. However, we need to show a two dimensional version of Lemma

2.9.1.

Lemma 2.10.1. Define Zn(I) :=
∑
p∈I Z(p)√
n2|I|

. Then

max
I∈I(2)n

(
|Zn(I)| −

√
2 log

1

|I|

)
<∞

is uniformly bounded almost surely.

Proof of Lemma 2.10.1. In proving Lemma 2.10.1 we shall make use of the following

lemma from Datta and Sen [2018].

Lemma 2.10.2. [Datta and Sen, 2018] Let ψ(x) = 1{x ∈ [−1, 1]2}. For a vector h =

(h1, h2) with h1, h2 > 0 let Ah = {t ∈ R2 : hi ≤ ti ≤ 1− hi for i = 1, 2}. For t ∈ Ah, let

ψt,h(x) = ψ(
x1 − t1
h1

, . . . ,
xd − td
hd

)

for x = (x1, x2) ∈ [0, 1]2 and define

Ψ̂(t, h) =
1

2
√
h1h2

∫

[0,1]2
ψt,h(x)dW (x)

where W is the 2-dimensional Brownian sheet as defined in Definition 6.1 of Datta and

Sen [2018]. Then,

T (W,ψ) = sup
h∈(0,1/2]2

sup
t∈Ah

|Ψ̂(t, h)| − Γ(4h1h2)

D(4h1h2)
<∞ a.s.

where Γ(r) := (2 log(1/r))1/2 and D(r) := log log(ee/r)√
log(e/r)

.
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By Lemma 2.10.2, for any 0 ≤ r1 < r2 ≤ 1 and 0 ≤ t1 < t2 ≤ 1, if we plug in

h = ( r2−r1
2
, t2−t1

2
) ∈ (0, 1/2]2 and u = ( r2+r1

2
, t2+t1

2
) ∈ Ah, then for x = (x1, x2) ∈ [0, 1]2,

ψu,h(x) = ψ(
x1 − u1

h1

,
x2 − u2

h2

) = 1{x ∈ [r1, r2]× [t1, t2]}.

Therefore,

|Ψ̂(u, h)| =

∣∣∣
∫

[0,1]2
1{x ∈ [r1, r2]× [t1, t2]}dW (x)

∣∣∣
√

(r2 − r1)(t2 − t1)
.

Hence we have that

max
0≤r1<r2≤1
0≤t1<t2≤1

(
|
∫

[0,1]2
1{x ∈ [r1, r2]× [t1, t2]}dW (x)|
√

(r2 − r1)(t2 − t1)
−
√

2 log
1

(r2 − r1)(t2 − t1)

)

≤ sup
h∈(0,1/2]2

sup
t∈Ah

(
|Ψ̂(t, h)| − Γ(4h1h2)

)
.

Now, writing j1, j2, k1, k2 for integer indices and d
= for equal in distribution:

max
I∈I(2)n

(
|Zn(I)| −

√
2 log

1

|I|

)

d
= max

0≤j1/n<j2/n≤1
0≤k1/n<k2/n≤1

(∣∣∣
∫

[0,1]2
1{x ∈ [ j1

n
, j2
n

]× [k1
n
, k2
n

]}dW (x)
∣∣∣

√
(j2 − j1)(k2 − k1)/n2

−

√
2 log

1

(j2 − j1)(k2 − k1)/n2

)

≤ max
0≤r1<r2≤1
0≤t1<t2≤1




∣∣∣
∫

[0,1]2
1{x ∈ [r1, r2]× [t1, t2]}dW (x)

∣∣∣
√

(r2 − r1)(t2 − t1)
−
√

2 log
1

(r2 − r1)(t2 − t1)




≤ sup
h∈(0,1/2]2

sup
t∈Ah

(
|Ψ̂(t, h)| − Γ(4h1h2)

)

≤ sup
h∈(0,1/2]2

sup
t∈Ah

|Ψ̂(t, h)| − Γ(4h1h2)

D(4h1h2)
<∞ a.s.
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The first equality is from the property of Brownian sheet W that if g ∈ L2([0, 1]2) then
∫

[0,1]2
g(t)dW (t) ∼ N(0, ‖g‖2) where ‖g‖2 =

∫
[0,1]2

g2(x)dx.

Proof of Theorem 2.7.1. We first prove the following proposition that is instrumental in

proving the theorem.

Proposition 2.10.3. Let S∗ be a disk on R2. Denote the set of all squares on R2 by I2.

The function |I∩S∗|√
|I||S∗|

has a unique maximizer among all I ∈ I2, denoted as I∗. Moreover,

define Kε = {I ∈ I2 :
∣∣∣ |I||I∗| − 1

∣∣∣ > ε}. For any I ∈ Kε, we have

|I∗ ∩ S∗|√
|I∗||S∗|

− |I ∩ S
∗|√

|I||S∗|
≥ dε

for some dε > 0, where | · | denotes the Lebesgue measure of a set.

Proof of Proposition 2.10.3. Since |I∩S∗|√
|I||S∗|

is invariant to simultaneous scaling or transla-

tion of I and S∗, we can without loss of generality assume that S∗ = {(x, y) : x2+y2 ≤ 2}.

For any square I with fixed area, observe that |I∩S∗|√
|I||S∗|

is maximized when I is centered at

the center of the disk S∗, which is the origin. Therefore, define

Iδ = {(x, y) : −δ ≤ x, y ≤ δ}

and

f(δ) =
|Iδ ∩ S∗|√
|Iδ||S∗|

.

Given that f(δ) is continuous, to show Proposition 2.10.3 it suffices to show that f(δ) is

monotone increasing when 0 < δ < δ∗, and monotone decreasing when δ > δ∗ for some

δ∗ ∈ (1,
√

2). When δ ≤ 1, f(δ) =
√
|Iδ|
|S∗| = 2δ√

2π
is monotone increasing in δ. When

δ ≥
√

2, f(δ) = |S∗|√
|Iδ||S∗|

=
√

2π
2δ

is monotone decreasing in δ. Therefore, it further suffices

to show that f(δ) is monotone increasing when δ ∈ (1, δ∗) and monotone increasing when

δ ∈ (δ∗,
√

2).
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√
2

δ

Figure 3. Intersection of S∗ and Iδ for some δ ∈ (1,
√

2).

From Figure 3 we can derive that

f(δ) =
|Iδ ∩ S∗|√
|Iδ||S∗|

=
2π − 4(arccos( δ√

2
)− δ

√
2− δ2)

2δ
√

2π
.

Hence, it suffices to show that

g(δ) =
√

2πf(δ) =
π

δ
−

4 arccos( δ√
2
)

δ
+ 2
√

2− δ2

is monotone increasing when δ ∈ (1, δ∗) and monotone decreasing when δ ∈ (δ∗,
√

2) for

some δ∗ ∈ (1,
√

2). We have

g′(δ) =
4

δ
√

2− δ2
− π

δ2
+

4 arccos( δ√
2
)

δ2
− 2δ√

2− δ2
.

Observe that g′(1) = 2 and g′(1.4) ≈ −1 < 0. It further suffices to show that g′′(δ) < 0

when δ ∈ (1,
√

2). We then have

g′′(δ) =
2(δ2 − 1)

δ2(2− δ2)3/2
+

2π

δ3
−

4
(
δ + 2

√
2− δ2 arccos( δ√

2
)
)

δ3
√

2− δ2
− 4

(2− δ2)3/2

=
2δ(δ2 − 1) + 2π(2− δ2)3/2

δ3(2− δ2)3/2
−

4(2− δ2)
(
δ + 2

√
2− δ2 arccos( δ√

2
)
)
− 4δ3

δ3(2− δ2)3/2

= 2×
δ3 − 5δ + π(2− δ2)3/2 − 8

√
2− δ2 arccos( δ√

2
)

δ3(2− δ2)3/2
+

4δ2
√

2− δ2 arccos( δ√
2
)

δ3(2− δ2)3/2
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≤ 2× δ3 − 5δ + π

δ3(2− δ2)3/2

≤ 2× π − 4

δ3(2− δ2)3/2

< 0.

This concludes the proof of Proposition 2.10.3.

Now we turn to the proof of Theorem 2.7.1. Let I∗ denote the unique maximizer of

the function |I∩S∗n|√
|I||S∗n|

over all squares on [0, 1]2. Let I∗n be the best approximation of I∗ in

I(2)
n . Trivially we have

|I∗n| = |I∗|+ o(1) and
|I∗n ∩ S∗n|√
|I∗n||S∗n|

=
|I∗ ∩ S∗n|√
|I∗||S∗n|

+ o(1) (2.20)

Define c := |I∗|
|S∗n|

. To show that |În||S∗n|
P→ c, it suffices to show that |În||I∗|

P→ 1. So we need to

show that for any ε > 0,

P

(∣∣∣∣∣
|În|
|I∗| − 1

∣∣∣∣∣ > ε

)
→ 0 as n→∞.

By (2.9), there is Ĩ ∈ J (2)
n,l such that

δ(Ĩ , I∗n) =

√√√√1− |Ĩ ∩ I
∗
n|√

|Ĩ||I∗n|
≤ εn,l → 0.

Therefore, there is Ĩ ∈ J (2)
n,l such that

|Ĩ ∩ I∗n|√
|Ĩ||I∗n|

≥ 1− ε2n,l → 1. (2.21)
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Hence, there is Ĩ ∈ J (2)
n,l such that

|Ĩ| = |I∗n|+ o(1) and |Ĩ ∩ I∗n| = |I∗n|+ o(1).

This implies that
|Ĩ ∩ S∗n|√
|Ĩ||S∗n|

=
|I∗n ∩ S∗n|√
|I∗n||S∗n|

+ o(1). (2.22)

Moreover, assuming that n is sufficiently large, we have
∣∣∣ |Ĩ||I∗| − 1

∣∣∣ < ε. Define

Kn,l = {I ∈ J (2)
n,l :

∣∣∣∣
|I|
|I∗| − 1

∣∣∣∣ > ε}.

Denote Xn(I) := Yn(I)−
√

2 log 1
|I| and letN(S) denote the number of n×n grid points

inside a set S. Define the shorthand m(I) =
√

2 log 1
|I| . We then have

P
(∣∣∣ |În||I∗| − 1

∣∣∣ > ε
)
≤ P

(
max
I∈Kn,l

Xn(I) ≥ Xn(Ĩ)
)

= P

(
max
I∈Kn,l

(
Zn(I) +

N(I ∩ S∗)
n
√
|I|

µn −
√

2 log
1

|I|

)

≥ Zn(Ĩ) +
N(Ĩ ∩ S∗)
n
√
|Ĩ|

µn −
√

2 log
1

|Ĩ|




≤ P

(
max
I∈Kn,l

(
Zn(I) +

n2|I ∩ S∗|+O
(
n2/3

)

n
√
|I|

µn −m(I)

)

≥ Zn(Ĩ) +
n2|Ĩ ∩ S∗| − O

(
n2/3

)

n
√
|Ĩ|

µn −m(Ĩ)




= P

(
max
I∈Kn,l

(
Zn(I) +

|I ∩ S∗|√
|I|

bn + o(1)bn −m(I)

)

≥ Zn(Ĩ) +
|Ĩ ∩ S∗|√
|Ĩ|

bn − o(1)bn −m(Ĩ)
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= P

(
max
I∈Kn,l

(
Zn(I) +

|I ∩ S∗|√
|I||S∗|

√
πr2bn + o(1)bn −m(I)

)

≥ Zn(Ĩ) +
|Ĩ ∩ S∗|√
|Ĩ||S∗|

√
πr2bn − o(1)bn −m(Ĩ)




≤ P

(
max
I∈Kn,l

(
Zn(I) +

|I ∩ S∗|√
|I||S∗|

√
πr2bn −m(I)

)

≥ Zn(I∗) +

(
|I∗ ∩ S∗|√
|I∗||S∗|

− o(1)

)
√
πr2bn −m(Ĩ)

)

≤ P

(
max
I∈Kn,l

(
Zn(I)−

√
2 log

1

|I|

)
≥ Zn(I∗) +

(
dε
√
πr2 − o(1)

)
bn −

√
2 log

1

|Ĩ|

)
.

The second inequality can be found in Huxley [2003]. The third inequality follows

from (2.20) and (2.22). The last step uses Proposition 2.10.3. By Lemma 2.10.1,

maxI∈Kn,l

(
Zn(I)−

√
2 log 1

|I|

)
= Op(1). Moreover, Zn(Ĩ) ∼ N(0, 1),

(
dε
√
πr2 − o(1)

)
bn →∞, and from (2.20) and (2.21) we know

√
2 log 1

|Ĩ| →
√

2 log 1
|I∗| =

√
2 log 1

cπr2
. Therefore, the last event probability in the chain

of equations above converges to zero, finishing the proof of Theorem 2.7.1.

Proof of Theorem 2.7.2. It suffices to show that if condition (2.13) is not met, then for

sufficiently small T ′, there exists some positive β > 0 such that

PT=∞{φn rejects H0,n}+ PT=T ′{φn accepts H0,n} > β.

Note that when H0 holds, T = ∞ so S1 = S0. At time t1 the pixel field will have a disk

of area πr2 with elevated mean µn. On the other hand, under H1, T = T ′ is sufficiently

small such that after one time frame all random pixels on the retina will have elevated

mean µn. Therefore, distinguishing between these two scenarios is equivalent to testing

the existence of a disk of fixed area where inside the disk all random variables follow

N(µn, 1) and outside the disk all random variables follows N(0, 1). Note that even if
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we know the exact position of the disk, and thus focus on the O(n2) Gaussian random

variables of interest, to test between µ = 0 and µ = µn, we must have

µn =
bn
n

for some bn →∞.
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Chapter 3

Shallow Neural Networks Trained to De-
tect Collisions Recover Features of Visual
Loom-selective neurons

3.1 Introduction

For animals living in dynamic visual environments, it is important to detect the approach

of predators or other dangerous objects. Many species, from insects to humans, rely on

a range of visual cues to identify approaching, or looming, objects [Regan and Beverley,

1978, Sun and Frost, 1998, Gabbiani et al., 1999, Card and Dickinson, 2008, Münch et al.,

2009, Temizer et al., 2015]. Among other cues, looming objects create characteristic visual

flow fields. When an object is on a ballistic collision course with an animal, its edges

will appear to the observer to expand radially outward, gradually occupying a larger and

larger portion of the visual field (Figure 3.3). An object heading towards the animal, but

which will not collide with it, also expands to occupy an increasing portion of the visual

field, but its edges do not expand radially outwards with respect to the observer. Instead,

they expand with respect to the object’s center so that opposite edges are perceived to be

moving in the same direction (Figure 3.3). A collision detector must distinguish between

these two cases, while also avoiding predicting collisions in response to a myriad of other
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Figure 3.1: Sketches of the anatomy of LPLC2 neurons [Klapoetke et al., 2017]. (A) An
LPLC2 neuron has dendrites in lobula and the four layers of the lobula plate (LP): LP1,
LP2, LP3 and LP4. (B) Schematic of the four branches of the LPLC2 dendrites in the four
layers of the LP. The arrows indicate the preferred direction of motion sensing neurons
with axons in each LP layer [Maisak et al., 2013]. (C) The outward dendritic structure
of an LPLC2 neuron is selective for the outwardly expanding edges of a looming object
(black circle). (D) The axons of a population of more than 200 LPLC2 neurons converge
to the GF, a descending neuron, to contribute to signaling for escaping behaviors [Ache
et al., 2019b]
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visual flow fields created by the animal’s own motion (Figure 3.3). Thus, loom detection

can be framed as a visual inference problem.

Many sighted animals solve this inference problem with high precision, thanks to ro-

bust loom-selective neural circuits evolved over hundreds of millions of years. The neu-

ronal mechanisms for response to looming stimuli have been studied in a wide range of

vertebrates, from cats and mice to zebrafish, as well as in humans [King et al., 1992,

Hervais-Adelman et al., 2015, Ball and Tronick, 1971, Liu et al., 2011, Salay et al., 2018,

Liu et al., 2011, Shang et al., 2015, Wu et al., 2005, Temizer et al., 2015, Dunn et al., 2016,

Bhattacharyya et al., 2017]. In invertebrates, detailed anatomical, neurophysiological, be-

havioral and modeling studies have investigated loom detection, especially for locusts and

flies [Oliva and Tomsic, 2014, Sato and Yamawaki, 2014, Santer et al., 2005, Rind and

Bramwell, 1996, Card and Dickinson, 2008, De Vries and Clandinin, 2012, Muijres et al.,

2014, Klapoetke et al., 2017, Von Reyn et al., 2017, Ache et al., 2019b]. An influential

mathematical model of loom detection was derived by studying the responses of the giant

descending neurons of locusts, which established a relationship between the timing of the

neurons’ peak responses and an angular size threshold for the looming object [Gabbiani

et al., 1999]. Similar models have been applied to analyze neuronal responses to looming

signals in flies, where genetic tools make it possible to precisely dissect neural circuits, re-

vealing various neuron types that are sensitive to looming signals [Von Reyn et al., 2017,

Ache et al., 2019b, Morimoto et al., 2020]. However, these computational studies did

not directly investigate the relationship between the structure of the loom-sensitive neural

circuits and the inference problem they appear to solve. Here, we asked whether we can

achieve the properties associated with neural loom detection simply by optimizing shallow

neural networks for collision detection.

The starting point for our computational model of loom detection is the known neu-

roanatomy of the visual system of the fly. In particular, the loom-sensitive neuron LPLC2

(lobula plate/lobula columnar, type 2) [Wu et al., 2016] has been studied in detail. These
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neurons tile visual space, sending their axons to a descending neuron called the giant fiber

(GF), which triggers the fly’s jumping and take-off behaviors [Tanouye and Wyman, 1980,

Card and Dickinson, 2008, Von Reyn et al., 2017, Ache et al., 2019b]. Each LPLC2 neu-

ron has four dendritic branches that receive inputs from the four layers of the lobula plate

(LP) (Figure 3.1A) [Maisak et al., 2013, Klapoetke et al., 2017]. The retinotopic LP layers

host the axon terminals of motion detection neurons, and each layer uniquely receives mo-

tion information in one of the four cardinal directions [Maisak et al., 2013]. Moreover, the

physical extensions of the LPLC2 dendrites align with the preferred motion directions in

the corresponding LP layers (Figure 3.1B) [Klapoetke et al., 2017]. These dendrites form

an outward radial structure, which matches the moving edges of a looming object that

expands in the visual field (Figure 3.1C). Common stimuli such as the wide-field motion

generated by movement of the insect only match part of the radial structure, and strong

inhibition for inward-directed motion suppresses responses to such stimuli. Thus, the

structure of the LPLC2 dendrites favors responses to objects with edges moving radially

outwards, corresponding to motion toward center of the receptive field.

The focus of this chapter is to investigate how loom detection in LPLC2 can be seen as

the solution to a computational inference problem. Can the structure of the LPLC2 neurons

be explained in terms of optimization—carried out during the course of evolution—for

the task of predicting which trajectories will result in collisions? How does coordination

among the population of more than 200 LPLC2 neurons tiling a fly’s visual system affect

this optimization? To answer these questions, we built a simple anatomically-constrained

neural network model, which receives motion signals in the four cardinal directions. We

trained the model to detect visual objects on a collision course with the observer using

artificial stimuli. Surprisingly, optimization finds two distinct types of solutions, with one

resembling the LPLC2 neurons and the other having a very different configuration. We

analyzed how each of these solutions detects looming events and where they show distinct

individual and population behaviors. When the number of units tiling visual space is
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increased, the solutions that resemble the actual LPLC2 neurons become favored. When

tested on visual stimuli not in the training data, the optimized solutions exhibit response

curves that are similar to those of actual LPLC2 neurons as measured by Klapoetke et al.

[2017]. Importantly, the optimized model reproduces the canonical linear relationship

between the timing of the peak responses and the size-to-speed ratio [Gabbiani et al.,

1999]. Although only receiving motion signals, the model shows characteristics of an

angular size encoder, which is consistent with many biological loom detectors [Gabbiani

et al., 1999, Von Reyn et al., 2017, Ache et al., 2019b]. Our results show that optimizing a

neural network to detect looming events gives rise to the properties and tuning of LPLC2

neurons.

3.2 Results

3.2.1 A set of artificial visual stimuli is designed for training models

Our goal is to compare computational models trained to perform loom-detection with the

biological computations in LPLC2 neurons. We first created a set of stimuli to act as

training data for the inference task (Methods and Materials). We considered the following

four types of motion stimuli: loom-and-hit (abbreviated as hit), loom-and-miss (miss),

retreat, and rotation (Figure 3.2). The hit stimuli consist of a sphere that moves ballistically

towards the origin on a collision course. The miss stimuli consist of a sphere that moves

ballistically towards the origin but misses it. The retreat stimuli consist of a sphere moving

ballistically away from the origin. The rotation stimuli consist of objects rotating about

an axis going through the origin. All stimuli were designed to be isotropic; the first three

stimuli could have any orientation in space, while the rotation could be about any axis

through the origin. All trajectories were simulated in the frame of reference of the fly

at the origin, with distances measured with respect to the origin. For simplicity, the fly is
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Hit Miss Retreat RotationA

B

Figure 3.2: Four types of synthetic stimuli (Methods and Materials). (A) Orange lines
represent trajectories of the stimuli. The black dots represent the starting points of the
trajectories. For hit, miss, and retreat cases, multiple trajectories are shown. For rotation,
only one trajectory is shown. (B) Distances of the objects to the fly eye as a function
of time. Among misses, only the approaching portion of the trajectory was used. The
horizontal black lines indicate the distance of 1.

assumed to be a point particle with no volume (Red dots in Figure 3.2 and the apexes of the

cones in Figure 3.3). For hit, miss, and retreat stimuli, the spherical object has unit radius,

and for the case of rotation, there were 100 objects of various radii scattered isotropically

around the fly (Figure 3.3).

3.2.2 An anatomically-constrained mathematical model

We designed and trained a simple, anatomically-constrained neural network (Figure 3.4

to infer whether or not a moving object will collide with the fly. The features of this net-

work were designed to mirror anatomical features of the fly’s LPLC2 neurons (Figure 3.1).

Model units receive input from a 60 degree diameter cone of visual space, represented by

white cones and grey circles in Figure 3.3, mirroring the receptive field size that has been

measured for LPLC2 [Klapoetke et al., 2017]. The four stimulus sets were projected into

39



Hit Miss Retreat Rotation

Intensity

Flow
field

Rightward
flow, LP2

Leftward
flow, LP1

Upward
flow, LP3

Downward
flow, LP4

3d rendering

Figure 3.3: Snapshots of optical flows and flow fields calculated by a Hassenstein Reichardt cor-
relator (HRC) model (Methods and Materials) for the 4 types of stimuli (Figure 3.2). First row:
3d rendering of the spherical objects and the LPLC2 receptive field (represented by a cone) at a
specific time in the trajectory. The orange arrows indicate the motion direction of each object. Sec-
ond row: 2d projections of the objects (black shading) within the LPLC2 receptive field (the grey
circle). Third row: the thin black arrows indicate flow fields generated by the edges of the moving
objects. Forth to seventh rows: decomposition of the flow fields in the four cardinal directions with
respect to the LPLC2 neuron under consideration: downward, upward, rightward, and leftward, as
indicated by the thick black arrows. These act as models of the motion signal fields in each layer
of the lobula plate.
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this receptive field for training and evaluating the model. The inputs to the model are lo-

cal directional signals computed in the four cardinal directions at each point of the visual

space: downward , upward, rightward, and leftward (Figure 3.3). These represent the mo-

tion signals from T4 and T5 neurons in the four layers of the lobula plate [Maisak et al.,

2013]. They are computed as the non-negative components of a Hassenstein-Reichardt

correlator model [Hassenstein and Reichardt, 1956] in both horizontal and vertical direc-

tions, which acts on the intensities of the projected stimuli (Methods and Materials). The

motion signals are computed with a spacing of 5 degrees, roughly matching the spacing of

the ommatidia and processing columns in the fly eye [Stavenga, 2003].

Each model unit can weight the motion signals from the four layers using linear spatial

filters. There are two sets of non-negative filters, the excitatory filters and the inhibitory

filters; these are shown in red and blue, respectively (Figure 3.4A). Each set of filters has

four components, or branches, integrating motion signals from the four cardinal directions,

respectively. These spatial filters represent excitatory inputs to LPLC2 directly from T4

and T5 in the LP, and inhibitory inputs mediated by local interneurons [Klapoetke et al.,

2017, Mauss et al., 2015]. All eight filters act on the 60 degree receptive field of an unit.

A 90-degree rotational symmetry is imposed on the filters, so that the filters in each layer

are identical. Moreover, each filter is symmetric about the axis of motion (Methods and

Materials). No further assumptions were made about the structures of the filters.

The model incorporates a fundamental difference between the excitatory and inhibitory

branches: while the integrated signals from each excitatory branch are sent directly to the

downstream computations, the integrated signals from each inhibitory branch are rectified

before being sent downstream. This difference reflects anatomical constraints of the in-

puts to an actual LPLC2 neuron, where the excitatory inputs are direct connections with

LPLC2 while the inhibitory inputs are mediated by inhibitory interneurons (LPi) between

LP layers [Mauss et al., 2015, Klapoetke et al., 2017]. The outputs of the eight branches

are summed and rectified to generate the output of a single model unit in response to a
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given stimulus (Figure 3.4A.)

In the fly brain, a population of LPLC2 neurons converges onto the GF (Figure 3.1D).

Accordingly, in our model there are M replicates of model units, with orientations that

are spread uniformly over the 4π steradians of the unit sphere (Figure 3.4C, Methods and

Materials). In this way, the receptive fields of the M units roughly tile the whole angular

space, with or without overlap, depending on the value of M . The sum of the responses of

the M model units is fed into a sigmoid function to generate the predicted probability of

collision for a given trajectory (Methods and Materials).

3.2.3 Optimization finds two distinct solutions to the loom-inference

problem

The objective of this study is to investigate how the binary classification task shapes the

excitatory and inhibitory filters, and how the number of units M affects the results. We

begin with the simplest model, which possess only a single unit, i.e., M = 1. After train-

ing with 200 random initializations of the filters, we find that the converged solutions fall

into three broad categories (Figure 3.5A, B). One set of solutions is largely unstructured,

with almost all the elements in the filters equal to zero (labeled in black); we will ignore

these for the rest of the analysis. The two structured solutions are interesting because, sur-

prisingly, they have spatial structures that are roughly opposite from one another (magenta

and green). Based on the configurations of the excitatory filters (Methods and Materi-

als), we call one solution type outward filters (magenta), and the other type inward filters

(green) (Figure 3.5C). In this single-unit model, the inward solutions perform better than

the outward solutions on the discrimination task (Figure 3.5D).

As the number of units M increases, the population of units covers a larger angular

space, and when M is large enough (M ≥ 16), the receptive fields of the units begin to

overlap with each other (Figure 3.6A). In the fly visual system there are over 200 LPLC2
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Figure 3.4: Schematic of the model (Methods and Materials). (A) Single unit. There are
two sets of nonnegative filters: excitatory (red) and inhibitory (blue). Each set of filters
has four branches, and each branch receives a field of motion signals (forth to seventh
rows in Figure 3.3) from the corresponding layer of the model LP. The weighted signals
from the excitatory branches and the inhibitory branches (rectified) are pooled together to
go through a rectifier to produce an output, which is the response of a single unit. (B)
The outputs from M units are summed and fed into a sigmoid function to estimate the
probability of hit. (C) The M units have their orientations almost evenly distributed in
angular space. Red dots represent the centers of the receptive fields and the grey lines
represent the boundaries of the receptive fields on unit sphere. The red lines are drawn
from the origin to the center of each receptive field.
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neurons across both eyes [Ache et al., 2019b], which corresponds to a very dense distri-

bution of the units. This is illustrated by the third row in Figure 3.6A) where M = 256.

When M is large, approaching objects from any direction are detectable and in fact, such

object signals can be detected simultaneously by many neighboring units. Interestingly,

the two oppositely structured solutions persist, regardless of the value of M (Figure 3.6).

In some outward solutions, structures on the right side of the inhibitory filters are similar

to structures of the corresponding excitatory filters. This indicates a degree of redundancy,

or non-identifiability in the model.

Units with outward-oriented filters are activated by motion radiating outwards from the

center of the receptive field. Thus, these excitatory filters resemble the dendritic structures

of the actual LPLC2 neurons observed in experiments, where for example, the rightward

motion sensitive branch (LP2) occupies mainly the right side of the receptive field. In the

outward solutions, the rightward motion-sensitive inhibitory filter mainly occupies the left

side of the receptive field. This is also consistent with the properties of the lobula plate

intrinsic (LPi) interneurons, which project inhibitory signals roughly retinotopically from

one LP layer to an adjacent layer with opposite directional tuning [Mauss et al., 2015,

Klapoetke et al., 2017].

The unexpected inward-oriented filters have the opposite structure. In the inward so-

lutions, the rightward sensitive excitatory filter occupies the left side of the receptive field,

and the inhibitory filter occupies the right side. Such weightings make the model selective

for motion converging towards the receptive field center. At first glance, this is a puzzling

structure for a loom detector, so we explored the response properties of the inward and

outward solutions in more detail.
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Figure 3.5: Two distinct types of solutions appear from training a single unit on the binary
classification task. (A) Clustering of the trained filters/weights shown as a dendrogram
(Methods and Materials). Different colors indicate different clusters, which are preserved
for the rest of the chapter (see (C)) (B) The trajectories of the loss functions during train-
ing. (C) The two distinct types of solutions are represented by two types of filters that
have roughly opposing structures: an outward solution (magenta) and an inward solution
(green). The excitatory filter weights are shown in red, and the inhibitory filters are shown
in blue. (D) Performance of the two solution types (Methods and Materials). TPR: true
positive rate; FPR: false positive rate; ROC: receiver operating characteristic; PR: preci-
sion recall; AUC: area under the curve.
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Figure 3.6: The outward and inward solutions also arise for models with multiple units.
(A) Left column: angular distribution of the units, where red dots are centers of the re-
ceptive fields, the grey circles are the boundaries of the receptive fields, with one field
highlighted in black, and the black star indicates the top of the fly head. Middle column:
2d map of the units with the same symbols as in the left column. Right column: clus-
tering results shown as dendrogams with color codes as in Figure 3.5. (B) Examples of
the trained excitatory and inhibitory filters for outward and inward solutions with different
numbers of units.
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3.2.4 Outward and inward filters are selective to signals in different

ranges of angles

To understand the differences between the two types of solutions and why the inward

filters can predict collisions, we investigated how they respond to hit stimuli from different

incoming angles θ (Figure 3.7A). When there is no signal, the baseline activity of outward

units is zero; however, the baseline activity of inward units is above zero (grey dashed

lines in Figure 3.7B, C). This is because the trained intercepts are negative in the outward

case, but positive in the inward case (Methods and Materials). Second, the outward filters

respond strongly to stimuli near the center of the receptive field, but do not respond to

stimuli having angles larger than ∼ 30◦ (Figure 3.7B, C). In contrast, units with inward

filters respond negatively to hit stimuli approaching toward the center and positively to

stimuli approaching from the periphery of the receptive field, with angles between ∼ 30◦

and ∼ 90◦ (Figure 3.7B, C). This helps explain why the inward units can act as loom

detectors: they are sensitive to hit stimuli originating in a larger solid angle. The hit

signals are isotropic (Figure 3.2A), so the number of stimuli within angles ∼ 30◦ and

∼ 90◦ is much larger than the number of stimuli with angles below ∼ 30◦ (Figure 3.7D).

Thus, the inward solutions are sensitive to more hit cases than the outward solutions. One

may visualize these responses as heat maps of the mean response of the models in terms

of object distance to the fly and the incoming angle (Figure 3.7E). For the hit cases, the

response patterns are consistent with the intuition about trajectory angles (Figure 3.7C). As

expected, the inward solutions respond to the retreating signals with angles near ∼ 180◦,

since the motion of edges in that case is radially inward.
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Figure 3.7: The outward and inward filters show distinct behaviors: single unit analysis. (A)
Trajectories of hit stimuli with different incoming angles θ. Symbols are the same as in Figure 3.2
except that the upward red arrow represents the orientation of one unit. The numbers with degree
units indicate the specific values of the incoming angles. (B) Response patterns of a single unit
with either outward (magenta) or inward (green) filters obtained from optimized solutions with 32
and 256 units, respectively. The grey dashed lines show the baseline activity of the unit when there
is no stimulus. The solid grey concentric circles correspond to the values of the incoming angles
in (A). The scale of the responses in the top left panel is four times the scale in the other three
panels. (C) Temporally averaged responses against the incoming angle θ. Symbols and colors are
the same as in (B). (D) Histogram of the incoming angles for the hit stimuli in Figure 3.2A. The
grey curve represents a scaled sine function equal to the expected probability for isotropic stimuli.
(E) Heatmaps of the response of a single unit against the incoming angle θ and the distance to
the fly head, for both outward and inward filters obtained from optimized models with 32 and 256
units, respectively.
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3.2.5 Outward solutions have sparse codings and populations of units

accurately predict hit probabilities

Individual units of the two solutions are very different from each other in their filter struc-

ture and response patterns to different stimuli. We decided to investigate how these dif-

ferences manifest in the activities of populations of units, when units are trained to col-

lectively predict the probability of hit. In populations of units, the outward and inward

solutions exhibit very different response patterns for a given hit stimulus (Figure 3.8A, B).

In particular, active outward units usually respond more strongly than inward units, but

more inward units will be activated. This is consistent with the findings above, in which

inward filter shapes responded to hits arriving from a wider distribution of angles.

When a population of units encodes stimuli, at each time point, the sum of the activities

of the units is used to infer the probability of hit. In our trained models, the outward and

inward solutions give similar probabilities of hit (Figure 3.8A). Both types of solutions can

give accurate inferences for the different stimuli (Figure 3.8C). In some cases, misses can

be very similar to hits if the object passes near the origin. The models reflect this in their

responses to near misses which have higher hit probabilities than far misses (Figure 3.8D).

3.2.6 Large populations of units improve performance and favor out-

ward filters

Since a larger number of units will cover an increasing spatial area of the visual field, the

population of units can in principle provide more information about the incoming signals.

In general, the models perform better as the number of units M increases (Figure 3.9A).

When M is above 32, both the ROC-AUC and PR-AUC scores are almost 1 (Methods and

Materials), which indicates that the model is very accurate on the binary classification task

presented by the four types of synthetic stimuli.
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Figure 3.8: Population coding of stimuli. (A) Top row: a snapshot of the responses of
outward units (magenta dots) for a hit stimulus (grey shade). Symbols and colors are as in
Figure 3.6A. Middle row: the whole trajectories of the responses for the same hit stimulus
as in the top row. Bottom row: the entire trajectories of the probability of hit for the
same hit stimulus as in the top row (Methods and Materials). Black dots in the middle and
bottom rows indicate the time step of the snapshot in the top row. (B) Fractions of the units
that are activated by different types of stimuli (hit, miss, retreat, rotation) as a function of
the number of units M in the model. The lines represent the mean values averaged across
samples, and the shaded areas show one standard deviation (Methods and Materials). (C)
Histograms of the probability of hit inferred by models with 32 or 256 units for the four
types of synthetic stimuli (Methods and Materials). (D) The inferred probability of hit as
a function of the minimum distance of the object to the fly eye for the miss cases. The hit
distribution is represented by a box plot (the center line in the box: the median; the upper
and lower boundaries of the box: 25% and 75% percentiles; the upper and lower whiskers:
the minimum and maximum; the circles: outliers).
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Figure 3.9: Large populations of units improve performances and favor outward solutions
(Methods and Materials). (A) Both ROC and PR AUC scores increase as the number of
units increases. Lines and dots: average scores; shading: one standard deviation of the
scores over the trained models. Magenta: outward solutions; green: inward solutions. (B)
The black line and dots show the ratio of the numbers of the two types of the solutions in
the set of randomly initialized, trained models. The grey shading is one standard deviation,
assuming that the distribution is binomial (Methods and Materials). The dotted horizontal
line indicates the ratio of 1. (C) As the population of units increases, cross entropy losses
of the outward solutions approach the losses of the inward solutions.

In addition, we calculated the ratio of the number of outward filters to inward filters

that arise out of 200 random initializations in models with M units, as we swept M .

Interestingly, as the number of units increases, an increasing proportion of solutions have

outward filters (Figure 3.9B). For models with 256 units, the chance that an outward filter

appears as a solution is almost 90% compared with the roughly 50% when M = 1. As M

increases, the outward solutions become closer to the inward ones on both AUC scores and

cross entropy losses (Figure 3.9A, C). These results suggest that as more units are added,

optimization favors the outward solutions.
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3.2.7 Activation patterns of computational solutions resemble biolog-

ical responses

The outward solutions have a receptive field structure that is similar to LPLC2 neurons,

based on their anatomy and functional studies. However, it is not clear whether these

models possess the functional properties of LPLC2 neurons, which have been studied

systematically [Klapoetke et al., 2017, Von Reyn et al., 2017, Ache et al., 2019b]. To

see how trained units compare to LPLC2 neuron properties, we presented stimuli to the

trained model (Figure 3.10A) to compare its responses to those measured in LPLC2 to

similar stimuli.

The model behaves similarly to LPLC2 neurons on many different types of stimuli.

Not surprisingly, the model is selective to loom signals and does not have strong responses

to non-looming signals (Figure 3.10B). Moreover, the model closely follows the response

of LPLC2 neurons to various expanding bar stimuli, including the inhibitory effects of

inward motion (Figure 3.10C, D). In addition, in experiments, motion signals that appear

at the periphery of the receptive field suppress the activity of the LPLC2 neurons (periph-

ery inhibition) [Klapoetke et al., 2017], and this phenomenon is successfully predicted by

the model (Figure 3.10E, F) due to the broad inhibitory filters that the model learns (Fig-

ure 3.10A). Interestingly, the model also correctly predicts response patterns of the LPLC2

neurons for expanding bars with different orientations (Figure 3.10G, H).

The ratio of object size to approach velocity, or R/v, is an important parameter for

looming stimuli, and many studies have investigated how the response patterns of loom-

sensitive neurons depend on this ratio (Top panels in Figure 3.10I, J, K, L) [Gabbiani et al.,

1999, Von Reyn et al., 2017, Ache et al., 2019b, De Vries and Clandinin, 2012]. Here, we

presented the trained model (Figure 3.10A) with hit stimuli with different R/v ratios,

and compared its behaviors with the experimental data (Figure 3.10I-L)). Surprisingly,

although our model only has the angular velocities as the inputs (Figure 3.3), it reliably
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encodes the angular sizes rather than the angular velocities, indicated by the collapsed re-

sponse curves (up to different scales) when plotted against the angular sizes (Figure 3.10J)

[Von Reyn et al., 2017], though the model curve shapes do not exactly match the experi-

mental ones. On the contrary, for angular velocities, the response curves shift for different

R/v ratios, which means they depend on the velocities v of the object (R is fixed to be 1).

Both of these response properties are consistent with properties of LPLC2. Meanwhile, a

canonical linear relationship between the peak response time relative to the collision and

the R/v ratio is also reproduced by the optimized model (Figure 3.10L) [Gabbiani et al.,

1999, Ache et al., 2019b].

Importantly, a different outward solution from the same training procedure could re-

produce many of the same effects, but it predicts the patterns in the wide expanding bars

differently and out of phase from the biological data. This different solution also does a

poor job predicting the response curves of the LPLC2 neurons to looming signals with

different R/v ratios, although the collapsed and shifted features remain when plotted as

functions of angular size and velocity. This shows that even within the family of learned

outward solutions, there is variability in the learned response properties. Though solv-

ing the inference problem obtains many of the response properties, additional constraints

would be required to more precisely reproduce the LPLC2 responses.

3.3 Discussion

In this study, we have shown that training a simple network to detect collisions gives rise to

a computation that closely resembles neurons that are sensitive to looming signals. Specif-

ically, we optimized a neural network model to detect whether an object is on a collision

course based on the visual motion signals (Figure 3.3), and found that one class of op-

timized solution matched the anatomy of motion inputs to LPLC2 neurons (Figure 3.1,

Figure 3.5, Figure 3.6). Importantly, this solution can reproduce a large range of exper-
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Figure 3.10: Models trained on binary classification tasks exhibit similar responses to
LPLC2 neurons observed in experiments. (A) Excitatory and inhibitory filters of an out-
ward solution with 256 units. (B-H) Comparisons of the responses of the solution in
(A) and LPLC2 neurons to a variety of stimuli (Methods and Materials). Black lines:
data [Klapoetke et al., 2017]; magenta lines: model. Compared with the original plots
[Klapoetke et al., 2017], all the stimuli icons here except the ones in (B) have been ro-
tated 45 degrees to match the cardinal directions of LP layers as described in this study.
(I) Top: temporal trajectories of the angular sizes for different R/v ratios (color labels
apply throughout (I-L)) (Methods and Materials). Middle: response as a function of time
for the sum of all 256 units. Bottom: response as a function of time for one of the 256
units. (J-L) Top: experime newtal data (LPLC2/non-LC4 components of GF activity. Data
from [Von Reyn et al., 2017, Ache et al., 2019b]). Middle: sum of all 256 units. Bottom:
response of one of the 256 units. Responses as function of angular size (J), response as
function of angular velocity (K), relationship between peak time relative to collision and
R/v ratios (L). We considered the first peak when there were two peaks in the response,
such as in the grey curves in the middle panel of (I).
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imental observations of LPLC2 neuron responses (Figure 3.10) [Klapoetke et al., 2017,

Von Reyn et al., 2017, Ache et al., 2019b].]

The radially structured dendrites of the LPLC2 neuron in the lobula plate can account

for its response to motion radiating outward from the receptive field center [Klapoetke

et al., 2017]. Our results show that the logic of this computation can be understood in terms

of inferential loom detection by the population of units. In particular, for an individual

detector unit, an inward structure makes a better loom detector than an outward structure,

since it is sensitive to colliding objects originating from a wider array of incoming angles

(Figure 3.7). As the number of units across visual space increases, the outward-sensitive

receptive field structure is represented more often in the optimal solution. The solution

depends on the number of detectors, and this is likely related to the increasing overlap in

receptive fields as the population grows (Figure 3.6). This result is consistent with prior

work showing that populations of neurons often exhibit different and improved coding

strategies compared to individual neurons [Pasupathy and Connor, 2002, Georgopoulos

et al., 1986, Vogels, 1990, Franke et al., 2016, Zylberberg et al., 2016, Cafaro et al., 2020].

Thus, understanding anatomical, physiological, and algorithmic properties of individual

neurons can require considering the population response. The solutions we found to the

loom inference problem suggest that individual LPLC2 responses should be interpreted in

light of the population of LPLC2 responses.

Surprisingly, the trained outward solutions exhibits the properties of an angular size

encoder (Figure 3.10I-L), even though the inputs to the model are a field of motion signals.

There are two ways that this tuning arises. First, in a hit stimulus, the angular size and

angular velocity are strongly correlated [Gabbiani et al., 1999], which means the angular

size affects the magnitude of the motion signals. Second, the angular size is proportional

to the length of the outward-moving edges of hitting objects. The angular circumference

of the hit stimulus determines how many motion detectors are activated, so that integrated

motion signal strength is related to the size. Both of these effects influence the response
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patterns of the model units (and the LPLC2 neurons).

Our results shed light on discussions of η-like (encoding angular size) and ρ-like (en-

coding angular velocity) looming sensitive neurons in the literature [Gabbiani et al., 1999,

Wu et al., 2005, Liu et al., 2011, Shang et al., 2015, Temizer et al., 2015, Dunn et al., 2016,

Von Reyn et al., 2017, Ache et al., 2019b]. In particular, these optimized models clarify an

interesting but puzzling fact: LPLC2 neurons transform their inputs of direction-selective

motion signals to computations of angular size [Ache et al., 2019b]. Consistently, our

model shows the linear relationship between the peak time relative to collision and the

R/v ratio, which looming sensitive neurons that encode angular size should follow [Peek

and Card, 2016]. In both cases, these properties appear to be the simple result of training

the constrained model to reliably detect looming stimuli.

The units of the outward solution exhibit sparsity in their responses to looming stimuli,

in contrast to the denser representations in the inward solution (Figure 3.8). During a

looming event, most of the units are quiet and only a few adjacent units have very large

activities, reminiscent of sparse codes that seem to be favored, for instance, in cortical

encoding of visual scenes [Olshausen and Field, 1996, 1997]. Since the readout of our

model is a summation of the activities of the units, sparsity does not directly affect the

performance of the model, but is an attribute of the favored solution. For a model with

a different loss function or noise, the degree of sparsity might be crucial. For instance,

the sparse code of the outward model might make it easier to localize the hit stimulus

[Morimoto et al., 2020], or might make the population response more robust to noise

[Field, 1994].

Experiments have shown that inhibitory circuits play an important role for the selec-

tivity of LPLC2 neurons. For example, motion signals at the periphery of the receptive

field of an LPLC2 neuron inhibit its activity; such peripheral inhibition causes various

interesting response patterns of the LPLC2 neurons to different types of stimuli [Klapo-

etke et al., 2017]. However, the structure of this inhibitory field is not fully understood,
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and our model provides a tool to investigate how the inhibitory inputs to LPLC2 neurons

affect circuit performance on loom detection tasks. Specifically, strong inhibition on the

periphery of the receptive field arises naturally in the outward solutions after optimization

[Klapoetke et al., 2017]. The broad inhibition appears in our model to suppress responses

to the non-hit stimuli. As in the data, the inhibition is broader than one might expect if the

neuron were simply being inhibited by inward motion.

The synthetic stimuli used to train models in this study were unnatural in two ways.

The first way was in the proportion of hits and non-hits. We trained with 25% of the

training data representing hits. The true fraction of hits among all stimuli encountered by

a fly is undoubtedly much less, and this affects how the loss function weights different

types of errors. It is also clear that a false-positive hit (in which a fly might jump to escape

an object not on collision course) is much less penalized during evolution than a false-

negative (in which a fly doesn’t jump and an object collides, presumably to the detriment

of the fly). It remains unclear how to choose these weights in the training data or in the

loss function, but they affect the receptive field weights optimized by the model.

The second issue with the stimuli is that they were caricatures of stimulus types, but did

not incorporate the richness of natural stimuli. This richness could include natural textures

and spatial statistics [Ruderman and Bialek, 1994], which seem to impact motion detection

algorithms [Fitzgerald and Clark, 2015, Leonhardt et al., 2016, Chen et al., 2019]. This

richness could also include more natural trajectories for approaching objects. Another way

to enrich the stimuli would be to add noise, either in inputs to the model or in the model’s

units themselves. These aspects of the stimuli were all neglected in this initial study, in part

because it is difficult to find characterizations of natural looming events. An interesting

future direction will be to investigate the effects of more complex and naturalistic stimuli

on the model’s filters and performance, as well as on LPLC2 neuron responses themselves.

For simplicity, this model did not impose the hexagonal geometry of the compound eye

ommatidia. Instead, we assume that the visual field is separated into a Cartesian lattice
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with 5◦ spacing, each representing a local motion detector with two spatially separated

inputs (Figure 3.3). This simplification alters slightly the geometry of the motion signals

compared to the real motion detector receptive fields [Shinomiya et al., 2019]. This could

potentially affect the learned spatial weightings and reproduction of the LPLC2 responses

to various stimuli, since the specific shapes of the filters matter (Figure 3.10). Thus, the

hexagonal ommatidial structure and the full extent of inputs to T4 and T5 might be crucial

if one wants to make comparisons with the dynamics and detailed responses of LPLC2

neurons. However, this geometric distinction seems unlikely to affect the main results of

how to infer the presence of hit stimuli.

Our model requires a field of estimates of the local motion. Here, we used the simplest

model – the Hassenstein-Reichardt correlator model Equation 3.3 (Methods and Materials)

[Hassenstein and Reichardt, 1956] – but the model could be extended by replacing it with a

more sophisticated model for motion estimation. Some biophysically realistic ones might

take into account synaptic conductances [Gruntman et al., 2018, 2019, Badwan et al., 2019,

Zavatone-Veth et al., 2020]. Alternatively, in natural environments, contrasts fluctuate in

time and space. Thus, if one includes more naturalistic spatial and temporal patterns, one

might consider a motion detection model that can adapt to changing contrasts in time and

space [Drews et al., 2020, Matulis et al., 2020].

Our neural network model is highly constrained by the specific anatomy of LPLC2

circuits, and no unnecessary layers were added. The resulting model is a shallow neural

network (Figure 3.1 and Figure 3.4. This shallowness leads to limited dimensionality

of the model, which will be prone to finding non-optimal local minima during training.

Indeed, in many cases, the training resulted in models with poor performance and filters

with weights very close to zero. We minimized this problem by choosing the initialization

scales for the filters so that optimization resulted in meaningful models with structured

filters about half of the time. However, the ratio of the outward and inward solutions

(Figure 3.9B) was not affected by the initialization scales.
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Although the outward filter of the unit emerges naturally from our gradient descent

training protocol, that does not mean that the structure is learned by LPLC2 neurons in

the fly. There is some experience dependent plasticity in the fly eye [Kikuchi et al., 2012],

but these visual computations are likely to be primarily genetically determined. Thus, one

could think of the computation of the LPLC2 neuron as being shaped through millions of

years of evolution. Interestingly, optimization algorithms similar to evolution may be able

to avoid getting stuck in local optima [Stanley et al., 2019], and thus work well with the

sort of shallow neural network found in the fly eye.

In this study, we focused on the motion signal inputs to LPLC2 neurons, and we ne-

glected other inputs to LPLC2 neurons, such as inputs coming from the lobula that likely

report non-motion visual features. It would be interesting to investigate how this addi-

tional non-motion information would affect the performance and optimal solutions of the

inference units. For instance, another lobula columnar neurons, LC4, is loom sensitive and

receives inputs in the lobula [Von Reyn et al., 2017]. The LPLC2 and LC4 neurons are the

primary excitatory inputs to the GF, which mediates the escape behavior of a fly [Von Reyn

et al., 2014, Ache et al., 2019b]. The inference framework set out here would allow one to

incorporate of parallel non-motion intensity channels, either by adding them into the in-

puts to the LPLC2-like units, or by adding in a parallel population of LC4-like units. This

would require a reformulation of the probabilistic model in Equation 3.5. Notably, one of

the most studied loom detecting neurons, the lobula giant movement detector (LGMD) in

locusts, does not appear to receive direction-selective inputs, as LPLC2 does [Rind and

Bramwell, 1996, Gabbiani et al., 1999]. Thus, the inference framework set out here can

be flexibly modified to investigate loom detection under a wide variety of constraints and

inputs, which allow it to be applied to other neurons, beyond LPLC2.
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3.4 Methods and Materials

3.4.1 Code availability

Code to perform all simulations in this chapter and to reproduce all figures is available at

http://www.github.com/ClarkLabCode/LoomDetectionANN.

3.4.2 Coordinate system and stimuli

We designed a suite of visual stimuli to simulate looming objects, retreating objects, and

rotational visual fields. In this section, we describe the suite of stimuli and the coordinate

systems used in our simulations.

In our simulations and training, the fly is at rest on a horizontal plane, with its head

pointing in a specific direction. The fly head is modeled to be a point particle with no

volume. A three dimensional right-handed frame of reference Σ is set up and attached to

the fly head at the origin. The z axis points in the anterior direction from the fly head,

perpendicular to the line that connects the two eyes, and in the horizontal plane of the

fly; the y axis points toward the right eye, also in the horizontal plane; and the x axis

points upward and perpendicular to the horizontal plane. Looming or retreating objects are

represented in this space by a sphere with radius R = 1, and the coordinates of an object’s

center at time t are denoted as r(t) = (x(t), y(t), z(t)). Thus, the distance between the

object center and the fly head is D(t) = ‖r(t)‖ =
√
x2(t) + y2(t) + z2(t).

Within this coordinate system, we set up cones to represent individual units. The re-

ceptive field of LPLC2 neurons is measured at roughly 60◦ in diameter [Klapoetke et al.,

2017]. Thus, we here model each unit as a cone with its vertex at the origin and with

half-angle of 30◦. For each unitm (m = 1, 2, . . . ,M ), we set up a local frame of reference

Σm: the zm axis is the axis of the cone and its positive direction points outward from the

origin. The local Σm can be obtained from Σ by two rotations: around x of Σ and around
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the new y
′ after the rotation around x. For each unit, its cardinal directions are defined as:

upward (positive direction of xm), downward (negative direction of xm), leftward (nega-

tive direction of ym) and rightward (positive direction of ym). To get the signals that are

received by a specific unit m, the coordinates of the object in Σ are rotated to the local

frame of reference Σm.

Within this coordinate system, we can set up cones representing the extent of a spheri-

cal object moving in the space. The visible outline of a spherical object spans a cone with

its point at the origin. The half-angle of this cone is a function of time and can be denoted

as θs(t):

θs(t) = arcsin
R

D(t)
. (3.1)

One can calculate how the cone of the object overlaps with the receptive field cones of

each unit.

There are multiple layers in the fly visual system [Takemura et al., 2017], but here we

focus on two coarse grained stages of processing: (1) the estimation of local motion direc-

tion from optical intensities by motion detection neurons T4 and T5 and (2) the integration

of the flow fields by LPLC2 neurons. In our simulations, the interior of the mth unit cone

is represented by a N -by-N matrix, so that each element in this matrix (except the ones

at the four corners) indicates a specific direction in the angular space within the unit cone.

If an element also falls within the object cone, then its value is set to 1; otherwise it is 0.

Thus, at each time t, this matrix is an optical contrast signal and can be represented by

C(xm, ym, t), where (xm, ym) are the coordinates in Σm. In general, N should be large

enough to provide good angular resolutions. Then, K2 (K < N ) motion detectors are

evenly distributed within the unit cone, with each occupying an L-by-L grid in the N -by-

N matrix, where L = N/K. This L-by-L grid represents a 5◦-by-5◦ square in the angular

space, consistent with the approximate spacing of the inputs of motion detectors T4 and

T5. This arrangement effectively upsamples the spatial resolution of the intensity data be-
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fore it is discretized into motion signals with a resolution of 5◦. Since the receptive field

of an LPLC2 neuron is roughly 60◦, the value of K is chosen to be 12. To get sufficient

angular resolution for the local motion detectors, L is set to be 4, so that N is set to 48.

Each motion detector is assumed to be a Hassenstein Reichardt Correlator (HRC) and

calculates local flow fields from C(xm, ym, t) [Hassenstein and Reichardt, 1956, Potters

and Bialek, 1994]. The HRC used here has two inputs, separated by 5◦ in angular space.

Each input applies first a spatial filter on the contrast C(xm, ym, t) and then temporal

filters:

Ij(t;xm, ym) =
t∑

t′=0

N∑

x′m=−N

N∑

y′m=−N

fj(t
′
)G(x

′

m, y
′

m)C(xm − x
′

m, ym − y
′

m, t− t
′
), (3.2)

where fj (j ∈ 1, 2) is a temporal filter and G is a discrete 2d Gaussian kernel with mean

0◦ and standard deviation of 2.5◦ to approximate the acceptance angle of the fly photore-

ceptors [Stavenga, 2003]. The temporal filter f1 was chosen to be an exponential function

f1(t
′
) = (1/τ) exp(−t′/τ) with τ set to 0.03 seconds [Salazar-Gatzimas et al., 2016], and

f2 a delta function f2 = δ(t
′
). This leads to

F (t;xm1, ym1, xm2, ym2) = I1(t;xm1, ym1)I2(t;xm2, ym2)− I1(t;xm2, ym2)I2(t;xm1, ym1).

(3.3)

as the local flow field at time t between two inputs located at (xm1, ym1) and (xm2, ym2).

Four types of T4 and T5 neurons have been found that project to layers 1, 2, 3, and

4 of the lobula plate. Each type is sensitive to one of the cardinal directions: down, up,

left, right [Maisak et al., 2013]. Thus, in our model, there are four non-negative, local

flow fields that serve as the only inputs to the model: U−(t) (downward, corresponding LP

layer 4), U+(t) (upward, LP layer 3), V−(t) (leftward, LP layer 1) and V+(t) (rightward,

LP layer 2), each of which is a K-by-K matrix. To calculate these matrices, two sets
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of motion detectors are needed, one for the vertical directions and one for the horizontal

directions. The HRC model in Equation 3.3 is direction sensitive and is opponent, meaning

that for motion in the preferred (null) direction, the output of the HRC model is positive

(negative). Thus, assuming that upward (rightward) is the preferred vertical (horizontal)

direction, we obtain the non-negative elements of the four flow fields as

[U−(t)]k1k2 = max(0,−F (t;xm1, ym, xm2, ym))

[U+(t)]k1k2 = max(0, F (t;xm1, ym, xm2, ym))

[V−(t)]k1k2 = max(0,−F (t;xm, ym1, xm, ym2))

[V+(t)]k1k2 = max(0, F (t;xm, ym1, xm, ym2)),

where k1, k2 ∈ {1, 2, . . . , K} and |·| represents the absolute value. In the above expres-

sions, it implies, for [U−(t)]k1k2 and [U+(t)]k1k2 , the vertical motion detector at (k1, k2)

has its two inputs located at (xm1, ym) and (xm2, ym), respectively. Similarly, for for

[V−(t)]k1k2 and [V+(t)]k1k2 , the horizontal motion detector at (k1, k2) has its two inputs

located at (xm, ym1) and (xm, ym2). Using the opponent HRC output as the motion signals

for each layer is reasonable because the motion detectors T4 and T5 are highly direction-

selective over a large range of inputs [Maisak et al., 2013, Creamer et al., 2018] and

synaptic, 3-input models for T4 are approximately equivalent to opponent HRC models

[Zavatone-Veth et al., 2020].

We simulated the trajectories r(t) of the object in the frame of reference Σ at a time

resolution of 0.01 seconds. For hit, miss, and retreat cases, the trajectories of the object are

always straight lines (i.e., ballistic motion), and the velocities of the object were randomly

sampled from a range [2R, 10R](s−1) with the trajectories confined to be within a sphere

of 5R centered at the fly head. The radius of the object, R, is always set to be 1 except in

the rotational stimuli. To generate rotational stimuli, we placed 100 objects with various

63



radii randomly selected from [0, 1] at random distances ([5, 15]) and positions around the

fly, and rotated them all around a randomly chosen axis. The rotational speed was chosen

from a Gaussian distribution with mean 0◦/s and standard deviation 200◦/s, a reasonable

rotational velocity for walking flies [DeAngelis et al., 2019].

We reproduced a range of stimuli used in a previous study [Klapoetke et al., 2017] and

tested our trained model on them (Figure 3.10B-H). To match the cardinal directions of

LP layers (Figure 3.1), we have rotated the stimuli (except in Figure 3.10B) 45 degrees

compared with the ones displayed in the figures in [Klapoetke et al., 2017]. The disc

(Figure 3.10B, C) expands from 20◦ to 60◦ with an edge speed of 10◦/s. All the bar and

edge motions have an edge speed of 20◦/s. The width of the bars are 60◦ (right panel

of Figure 3.10E, and Figure 3.10H), 20◦ (middle panel of Figure 3.10E), and 10◦ (all the

rest). All the responses of the models (except in Figure 3.10B) have been normalized by

the peak of the response to the expanding disc (Figure 3.10B).

We created a range of hit stimuli with variousR/v ratios: 0.01 s, 0.02 s, 0.04 s, 0.08 s,

0.10 s, 0.12 s, 0.14 s, 0.16 s, 0.18 s, 0.20 s. The radius R of the spherical object is fixed

to be 1, and the velocity is changed accordingly to achieve different R/v ratios.

3.4.3 Models

Experiments have shown that an LPLC2 neuron has four dendritic structures in the four

LP layers, and that they receive direct excitatory inputs from T4/T5 motion detection neu-

rons [Maisak et al., 2013, Klapoetke et al., 2017]. It has been proposed that each dendritic

structure also receives inhibitory inputs mediated by lobulate plate intrinsic interneurons,

such as LPi4-3 [Klapoetke et al., 2017]. Accordingly, our models have two types of non-

negative filters, one excitatory and one inhibitory (Figure 3.4, represented by W e and W i,

respectively. Each filter is a 12-by-12 matrix. We rotate W e and W i counterclockwise

by multiples of 90◦ to obtain the filters that are used to integrate the four motion signals:
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U−(t), U+(t), V−(t), V+(t). Specifically, we define the corresponding four excitatory fil-

ters as: W e
U−

= rotate(W e, 270◦), W e
U+

= rotate(W e, 90◦), W e
V−

= rotate(W e, 180◦),

W e
V+

= rotate(W e, 0◦), and the inhibitory filters as: W i
U−

= rotate(W i, 270◦), W i
U+

=

rotate(W i, 90◦), W i
V−

= rotate(W i, 180◦), W i
V+

= rotate(W i, 0◦). In addition, we impose

mirror symmetry to the filters, and with the above definitions of the rotated filters, the

upper half of W e is a mirror image of the lower half of W e. The same mirror symme-

try applies to W i. Thus, there are in total 144 parameters in the two sets of filters. In

fact, since only the elements within a 60 degree cone contribute to the filter for the units,

the corners are excluded, resulting in only 112 trainable parameters in the excitatory and

inhibitory filters.

In computer simulations, the weights and flow fields are flattened to be one-dimensional

column vectors. The responses of the inhibitory units are:

ri
U−(t) = φ

(
(W i

U−)TU−(t) + bi)

ri
U+

(t) = φ
(
(W i

U+
)TU+(t) + bi)

ri
V+

(t) = φ
(
(W i

V+
)TV+(t) + bi)

ri
V−(t) = φ

(
(W i

V−)TV−(t) + bi) ,

where φ(·) = max(·, 0) is the rectified linear activation function, and bi ∈ R is the inter-

cept. The response of a single unit m is

rm(t) = φ

(
(W e

U−)TU−(t) + (W e
U+

)TU+(t) + (W e
V+

)TV+(t) + (W e
V−)TV−(t)−

(
ri
U−(t) + ri

U+
(t) + ri

V+
(t) + ri

V−(t)
)

+ be

)
, (3.4)

where be ∈ R is the intercept (Figure 3.4). The inferred probability of hit for a specific
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trajectory is

P̂hit =
1

T

T∑

t=1

σ

(∑

m

rm(t) + b

)
, (3.5)

where T is the total number of time steps in the trajectory and σ(·) is the sigmoid function.

Since we are adding three intercepts bi, be, and b, there are 115 parameters to train in this

model.

3.4.4 Training and testing

We created a synthetic data set containing four types of motion: loom-and-hit, loom-and-

miss, retreat, and rotation. The proportions of these types were 0.25, 0.125, 0.125, and

0.5, respectively. In total, there were 5200 trajectories, with 4,000 for training and 1,200

for testing. Trajectories with motion type loom-and-hit are labeled as hit or yn = 1 (prob-

ability of hit is 1), while trajectories of other motion types are labeled as non-hit or yn = 0

(probability of hit is 0), where n is the index of each specific sample. Models with smaller

M have fewer trajectories in the receptive field of any unit. For stability of training,

we therefore increased the number of trajectories by factors of eight, four, and two for

M = 1, 2, 4, respectively.

The loss function to be minimized in our training was the cross entropy between the

label yn and the inferred probability of hit P̂hit, and averaged across all samples, together

with a regularization term:

loss = − 1

N

N∑

n=1

{
yn log P̂hit(n) + (1− yn) log(1− P̂hit(n))

}
+ β

∑

W

‖W‖2, (3.6)

where P̂hit(n) is the inferred probability of hit for sample n, β is the strength of the `2

regularization, and W represents all the effective parameters in the two excitatory and

inhibitory filters.

The strength of the regularization β was set to be 10−4, which was obtained by grad-
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ually increasing β until the performance of the model on test data started to drop. The

regularization sped up convergence of solutions, but the regularization strength did not

strongly influence the main results in the chapter.

To speed up training, rather than taking a temporal average as shown in Equation 3.5,

a snapshot was sampled randomly from each trajectory, and the probability of hit of this

snapshot was used to represent the whole trajectory, i.e., P̂hit = σ (
∑

m rm(t) + b), where t

is a random sample from {1, 2, . . . , T}. Mini-batch gradient descent was used in training,

and the learning rate was 0.001.

After training, the models were tested on the entire trajectories with the probability

of hit defined in Equation 3.5. Models trained only on snapshots performed well on the

test data. During testing, the performance of the model was evaluated by the area under

the curve (AUC) of the receiver operating characteristic (ROC) and precision-recall (PR)

curves [Hanley and McNeil, 1982, Davis and Goadrich, 2006]. TensorFlow [Abadi et al.,

2016] was used to train all models.

3.4.5 Clustering the solutions

We used the following procedure to cluster the solutions. Each solution had an excitatory

and an inhibitory filter. We flattened these two filters, and concatenated them into a single

vector. (The elements at the corners were deleted since they are outside of the receptive

field.) Thus, each solution was represented by a vector, from which we calculated the

cosine distance for each pair of solutions. The obtained distance matrix was then fed into

a hierarchical clustering algorithm [Virtanen et al., 2020]. After obtaining the hierarchical

clustering, the outward and inward filters were identified by their shape. We counted the

non-zero filter elements corresponding to flow fields with components radiating outward

and subtracted the number of non-zero filter elements corresponding to flow fields with

components directed inward. If the resulted value was positive, the filters were labeled as
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outward; otherwise, the filters were labeled as inward. If the elements in the concatenated

vector were all close to zero, then the corresponding filters were labeled as unstructured.

3.4.6 Statistics

To calculate the fraction of active units for the model with M = 256 (Figure 3.8B), we

looked at the response curves of each unit to all trajectories of a specific type of stimuli,

and if the unit response is above the baseline (dotted lines in Figure 3.7B), then the unit

is counted as active. So, for each trajectory/stimulus, we obtained the number of active

units. After this, we calculated the mean and standard deviation across all the trajectories

within each type of stimuli (hit, miss, retreat, rotation).

For a model with M units, where M ∈ {1, 2, 4, 8, 16, 32, 64, 128, 192, 256}, 200 ran-

dom initializations were used to train it. Within these 200 training runs, the number of

outward solutions Nout were (starting from smaller values of M ) 44, 46, 48, 50, 48, 50,

53, 55, 58, 64, and the number of inward solutions Nin were 39, 40, 39, 46, 53, 51, 35,

38, 12, 10. The average score curves and dots in Figure 3.9A were obtained by taking

the average among each type of solution, with the shading indicating two standard devia-

tions. The curve and dots in Figure 3.9B are the ratio of the number of outward solutions

to the number of inward solutions. To obtain error bars (grey shade), we considered the

training results as a binomial distribution, with the probability of obtaining an outward

solution being Nout/(Nout + Nin), and with the probability of obtaining an inward solu-

tion being Nin/(Nout + Nin). Thus, the standard deviation of this binomial distribution

is σb =
√
NoutNin/(Nout +Nin). From this, we calculate the error bar as the propagated

error [Morgan et al., 1990]:

propagated error =
Nout

Nin

√(
σb

Nout

)2

+

(
σb

Nin

)2

. (3.7)
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Chapter 4

Sketched Least-Squares Value Iteration
for Linear Markov Decision Processes

4.1 Introduction

We consider a basic reinforcement learning model – the Markov Decision Process (MDP),

consisting of a tuple (S,A,P, r) where S,A,P, r denote the state space, action space,

transition probability, and reward function, respectively. In MDP, an agent at a state s ∈ S

plays an action a ∈ A. After receiving a reward r(s, a), the agent transitions to a new state

s′ ∈ S according to the unknown transition probability P(s′|s, a). The goal of the agent is

to maximize the long-term rewards by interacting with the environment.

The performance of an algorithm for MDP is usually measured by regret, which refers

to the difference between the cumulative rewards obtained using the best policy and the

cumulative reward obtained by the algorithm. In the tabular case where both S and A are

finite sets, algorithms that achieveO(
√
|S||A|T ) regret have been proposed [Jaksch et al.,

2010, Azar et al., 2017, Agrawal and Jia, 2017, Dann et al., 2019, Zanette and Brunskill,

2019, Efroni et al., 2019]. However, the polynomial dependency on the size of the state and

action space sometimes can be prohibitive, e.g., in the game of Go where the number of

states is on the order of 3361. But the worst case O(
√
|S||A|T ) regret cannot be improved
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in general [Jaksch et al., 2010, Osband et al., 2019].

To break this curse of dimensionality, function approximation is commonly employed

to approximate the (action-)value function of the policy. In fact, there have been numer-

ous practical successes of reinforcement learning with function approximation based on

deep neural networks [Mnih et al., 2015, Silver et al., 2017, Kober et al., 2012]. How-

ever, theoretical guarantees on reinforcement learning with function approximation have

been scarce. Recently, a number of theoretical works considered reinforcement learn-

ing with linear function approximation [Jin et al., 2019, Zanette et al., 2019, Yang and

Wang, 2019a,b, Cai et al., 2019, Du et al., 2019] or generalized linear function approxi-

mation [Wang et al., 2019]. In particular, Jin et al. [2019], Zanette et al. [2019] focused

on MDPs with certain linear structure that include all tabular MDPs as special case to

motivate linear approximation, as optimal value functions are linear under the structural

assumption. Two different algorithms based on the idea of Least-Squares Value Iteration

(LSVI) were proposed, one utilizing the optimism-in-the-face-of-uncertainty principle and

the other bearing resemblance to Thompson Sampling. For both algorithms, it is shown

that the regret only depends polynomially on the feature dimension instead of dimensions

of state or action space.

While the curse of dimensionality on regret was overcome, computational efficiency

emerges as a potential concern for both LSVI algorithms. The time and space complexity

of both algorithms are O(d2), which could be prohibitively large when feature dimension

d is large. In fact, it is common to find reinforcement learning applications with high-

dimensional features, e.g., when the features are pixels of raw images from Atari game

[Mnih et al., 2015]. Therefore, improving the computational efficiency of reinforcement

learning algorithms is of significant practical interest.

Matrix sketching is a powerful dimensionality reduction technique that has been stud-

ied extensively for kernel regression and other problems [Woodruff, 2014, Cohen et al.,

2015, Alaoui and Mahoney, 2015, Yang et al., 2017]. Recently, it has found applications in
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online learning [Luo et al., 2016, Calandriello et al., 2017, Luo et al., 2019], including (ker-

nelized) linear bandits [Kuzborskij et al., 2019, Calandriello et al., 2019]. Ghavamzadeh

et al. [2010] and Pan et al. [2017] applied matrix sketching to learn the value function of

policies that are approximated by linear functions. However, they focused on the problem

of policy evaluation rather than regret minimization.

In this chapter, we show that an online deterministic matrix sketching procedure called

Frequent Directions [Liberty, 2013, Ghashami et al., 2016] can be used to make LSVI

algorithms more efficient. Perhaps surprisingly, in addition to the improved computa-

tional efficiency, we show that the asymptotic regret bound of sketched LSVI algorithms

is smaller than the bound of the non-sketched counterpart in some regime, depending on a

tradeoff governed by the sketch size m and the tail spectra not covered by the sketch. This

is in stark contrast to the results from many previous works on sketching for regret mini-

mization in online learning problems, where the regret bounds are only inflated by some

factors without any gains [Luo et al., 2016, Calandriello et al., 2017, Luo et al., 2019,

Kuzborskij et al., 2019, Calandriello et al., 2019]. In fact, without any low-rank assump-

tion on the problem, it might not be intuitive to see why matrix sketching could lead to

regret improvement. On a high level, it is possible here because the proof relies on uniform

concentration of self-normalized process with random value functions, and hence depends

on the covering number of the class of random value functions parameterized by some ma-

trices. The reduced covering number of the class of functions parameterized by low-rank

sketched matrices might compensate for the spectral error introduced by sketching.

Mathematically, the regret bounds of Least-Squares Value Iteration with Upper Con-

fidence Bounds (LSVI-UCB) algorithm proposed by Jin et al. [2019] and Randomized

Least-Squares Value Iteration (RLSVI) algorithm proposed by Zanette et al. [2019] are

Õ(
√
d3H3T ) and Õ(

√
d4H4T ) 1, respectively. Applying Frequent Directions with a

sketch of size m, sketched LSVI-UCB and RLSVI algorithms incur only O(md) time

1Here Õ hides only constants and poly-logarithmic factors.
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and space complexity, while having regret upper bounded as Õ((1 + εm)3/2
√
md2H3T )

and Õ((1 + εm)3/2
√
md3H4T ), respectively. Even though the regret bounds of sketched

algorithms are inflated by a factor of (1 + εm)3/2, where εm is bounded by the sum of tail

eigenvalues not covered by the sketch, they are also reduced by a factor of
√
d/m. Thus,

the regret bound of the sketched algorithms could be better than the regret bound of the

non-sketched counterpart if sketch size m is properly chosen, i.e., when (1 + εm)3m < d.

Our main contribution in this chapter is three-fold. Firstly, we propose two algo-

rithms for the linear MDP problem that enjoy improved computational efficiency by com-

bining Frequent Directions sketching with Least-Squares Value Iteration algorithms. Sec-

ondly, in contrast to previous works, we theoretically show that the regret bound of the

sketched algorithms is better than the regret bound of the non-sketched counterpart in cer-

tain regimes. Lastly, we present the first simulation study on the linear MDP problem and

verify our theoretical result by observing improved regret for sketched LSVI algorithms

in two different environments. Remarkably, in a high-dimensional environment, sketched

LSVI algorithms can yield superior performance while using only 30% of the space and

time compared to the non-sketched counterpart.

4.2 Preliminaries

In an episodic finite-horizon MDP denoted by the tuple (S,A, H,P, r), there is a nonempty

set of states S (measurable but possibly infinite) and a finite set of actionsA with cardinal-

ity A > 0. H ∈ Z+ denotes the length of each episode. P = {Ph}Hh=1 and r = {rh}Hh=1 are

the transition probabilities and the reward functions. For each h ∈ [H], let Ph(s′|sh, ah)

and rh(sh, ah) ∈ [0, 1] 2 denote the probability of transitioning to state s′ and reward if

action ah is taken at state sh and step h.

2Even though reward is assumed to be deterministic, results can be easily generalized to stochastic reward
setting.
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The agent aims to learn the optimal policy by interacting with the environment for a

fixed number of K episodes. A policy of an agent is a function π : S × [H] → A where

πh(s) denotes the action that the agent will take at state s and step h. We use V π
h : S → R

to denote the value function of a policy π, i.e.,

V π
h (s)

def
= E

[
H∑

t=h

rt(st, πt(st))

∣∣∣∣∣ sh = s

]
.

We use Qπ
h : S ×A → R to denote the action-value function of a policy π, i.e.,

Qπ
h(s, a)

def
= rh(s, a) + E

[
H∑

t=h+1

rt(st, πt(st))

∣∣∣∣∣ sh = s, ah = a

]
.

As both the episode length H and the action set A are finite, there always exists an

optimal policy π? which gives the optimal value V ?
h (s)

def
= supπ V

π
h (s) and Q?

h(s, a)
def
=

supπQ
π
h(s, a) [Puterman, 1994].

For each k ≥ 1, the initial state s1k is set by an adversary at the beginning of the

kth episode. Without knowledge of the reward function or the transition probabilities, the

agent chooses a policy πk based on past observations. For a given positive number of

episode K, the performance of the agent is evaluated in terms of (expected) regret, defined

as

Regret(K)
def
=

K∑

k=1

[V ?
1 (s1k)− V πk

1 (s1k)] .

We focus on linear MDPs, i.e., MDPs in which both the transition dynamics and the

reward are linear in some features of state and action pair. Formally, we make the following

assumption:

Assumption 4.2.1 ([Jin et al., 2019, Zanette et al., 2019]). MDP(S,A, H,P, r) is a linear

MDP if for any h ∈ [H], there exists feature map φh : S × A → Rd, ψh : S → Rd, and
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parameter θrh ∈ Rd such that for any (s, s′, a) ∈ S × S ×A, we have

Ph(s′|s, a) = φh(s, a)>ψh(s
′), rh(s, a) = φh(s, a)>θrh.

Note that φh is known but ψh and θrh are unknown. Moreover, we assume ‖φh(s, a)‖ ≤ Lφ

for all (s, a, h) ∈ S × A × [H],
∫
s
‖ψh(s)‖ ≤ Lψ for all h ∈ [H], and ‖θrh‖ ≤ Lr for all

h ∈ [H].

Note that such linear structure exists for all tabular MDPs by setting φ to be the canon-

ical basis in Rd where d = |S| × |A|. A crucial property of the linear MDP is that, for all

policies including the optimal policy, the action-value functions are always linear in the

feature map φ (Lemma 4.10.1). Under mild conditions, the linear transition assumption

is necessary for all policies with linear action-value functions to have zero Bellman error

[Jin et al., 2019].

Notation We use T to denote the total number of time steps, i.e., T def
= KH > 0. We

use shk and ahk to denote the state encountered and action taken at step h in episode

k. We write φhk
def
= φh(shk, ahk), rhk

def
= rh(shk, ahk). Given a positive definite d × d

matrix A and x ∈ Rd, we denote ‖x‖A def
=
√
x>Ax. Sometimes we use the shorthand

Es′|s,a [·] def
= Es′∼Ph(·|s,a) [·] where h can be deduced from context.

4.3 LSVI Algorithms

Value iteration is a simple algorithm that finds the optimal policy by solving the Bell-

man optimality equation recursively: Q?
h(s, a)← rh(s, a)+Es′|s,a

[
maxa′∈AQ

?
h+1(s′, a′)

]
.

When Q?
h(s, a) is parameterized by a linear form φh(s, a)>θ?h, we can apply the idea from

Least-Squares Value Iteration (LSVI) [Bradtke and Barto, 1996], and solve for θhk in a
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regularized least-squares problem:

θhk ← arg min
θ∈Rd

k−1∑

i=1

[
rhi + Vh+1,k(sh+1,i)− φ>hiθ

]2

+ λ‖θ‖2 (4.1)

where Vh+1,k is some estimate of the value function Vh+1 during episode k. The solution

to the least square problem (4.1) is given as

θ̂hk ← Σ−1
h,k−1

(
k−1∑

i=1

φhi [rhi + Vh+1,k(sh+1,i)]

)
, (4.2)

where Σh,k−1
def
=
∑k−1

i=1 φhiφ
>
hi + λId. Using φh(s, a)>θ̂hk as an estimate of the optimal

action-value function, a greedy algorithm would simply follow the policy that chooses an

action to maximize the estimated action-value function at each state. But reinforcement

learning problems typically require a careful balance of exploration and exploitation, and it

turns out that pure exploitation without exploration is not sufficient to guarantee low regret.

To enforce exploration, LSVI-UCB additionally adds an exploration bonus term so that

with high probability, the estimated action-value is an overestimation of the optimal action-

value. In contrast, RLSVI adds perturbation, and exploration is achieved by carefully

tuning the scale of the perturbation.

4.3.1 LSVI-UCB

LSVI-UCB (Algorithm 1) enforces exploration by enforcing optimism from exploration

bonus (Upper-Confidence Bounds) of the form β(φΣ−1
h,k−1φ)1/2 to compensate for the un-

certainty along the φ direction. With properly chosen scalar β, it can be shown that our

estimated action-value function Qh,k will be an upper bound of Q∗h for all state and action

pairs. The regret guarantee of LSVI-UCB is given in Theorem 4.3.1.

Theorem 4.3.1 ([Jin et al., 2019]). Under Assumption 4.2.1 with Lφ = 1 and Lψ = Lr =
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Algorithm 1: LSVI-UCB [Jin et al., 2019]

1: Define VH+1,k(s)
def
= 0, QH+1,k(s, a)

def
= 0 and Vhk(s)

def
= maxaQhk(s, a), with

Qhk(s, a)
def
= min

{
φh(s, a)>θ̂hk+

β
[
φh(s, a)>Σ−1

h,k−1φh(s, a)
]1/2

, H

}
∀(s, a, h, k).

2: Initialize Σh0 ← λId,∀h.
3: for episode k = 1, 2, . . . , K do
4: Receive the initial state s1k.
5: for step h = H,H − 1 . . . , 1 do
6: Estimate θ̂hk as in (4.2) and let θ̂hk be

Σ−1
h,k−1

(∑k−1
i=1 φhi [rhi + Vh+1,k(sh+1,i)]

)
.

7: end for
8: for step h = 1, . . . , H do
9: Take action ahk ← arg maxa∈AQhk(shk, a), and observe sh+1,k.

10: Update Σh,k ← Σh,k−1 + φhkφ
>
hk.

11: end for
12: end for
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√
d, there exists an absolute constant C > 0 such that, for any δ ∈ (0, 1), if we set λ = 1

and β = cβ · dH
√
ι for cβ > C in Algorithm 1 with ι def

= log(2dT/δ), then with probability

at least 1− δ, the total regret of LSVI-UCB is at most Õ(
√
d3H3T ).

4.3.2 RLSVI

Similar to the linear bandit setting [Agrawal and Goyal, 2013, Abeille and Lazaric, 2017],

in RLSVI (Algorithm 2) the variance of the perturbations, controlled by scalar σ2, is care-

fully chosen to guarantee that the value estimates are optimistic with at least constant

probability. We have the following guarantee on the regret of RLSVI.

Theorem 4.3.2 ([Zanette et al., 2019]). Under Assumption 4.2.1, if we set

σ =
√
H
(
Õ(Hd) + Lφ(3HLψ + Lr)

)
, λ = 1, αU = 1/Õ(σ

√
d) and αL = αU/2 in

Algorithm 2, then for any 0 < δ < Φ(−1)/2 3, with probability at least 1 − δ, the to-

tal regret of RLSVI is at most Õ(σdH
√
K). If we further assume that Lφ = Õ(1) and

Lr, Lψ = Õ(d), then the bound reduces to Õ(H2d2
√
T ).

Definition 4.3.3 (RLSVI Q function). For some constants αL, αU where αL < αU and

using shorthand q def
=
(
‖φh(s, a)‖Σ−1

h,k−1
− αL

)
/(αU − αL), Bh

def
= H − h+ 1, define:

Qhk(s, a)
def
=





φh(s, a)>θhk, if ‖φh(s, a)‖Σ−1
h,k−1

≤ αL,

Bh, if ‖φh(s, a)‖Σ−1
h,k−1

≥ αU ,

q · φh(s, a)>θhk + (1− q)Bh otherwise.

Complexity Analysis Algorithm 1 and Algorithm 2 only need to store Σh,k−1 at episode

k and rhk, {φh(shk, a)}a∈A for all (h, k), which takes O(d2H + dAT ) space. The time

complexity is dominated by computing θ̂hk which takes O(d2AK) time per step using

Sherman-Morrison formula to update Σ−1
hk . Thus, the total runtime is O(d2AKT ).

3Φ(·) is the cumulative distribution function of a standard normal random variable
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Algorithm 2: RLSVI [Zanette et al., 2019]

1: Define V H+1,k(s)
def
= 0, QH+1,k(s, a)

def
= 0 and V hk(s)

def
= maxaQhk(s, a), with

Qhk(s, a) defined in Definition 4.3.3, ∀(s, a, h, k).
2: Initialize Σh0 ← λId,∀h.
3: for episode k = 1, 2, . . . , K do
4: Receive the initial state s1k.
5: for step h = H,H − 1, . . . , 1 do
6: Estimate θ̂hk as in (4.2) with V h+1,k in place of Vh+1,k. In other words,

let θ̂hk be Σ−1
h,k−1

(∑k−1
i=1 φhi

[
rhi + V h+1,k(sh+1,i)

])
.

7: Sample ξhk ∼ N (0, σ2Σ−1
h,k−1).

8: θhk ← θ̂hk + ξhk.
9: end for

10: for step t = 1, . . . , H do
11: Take action ahk ← arg maxa∈AQhk(shk, a), and observe sh+1,k.
12: Update Σhk ← Σh,k−1 + φhkφ

>
hk.

13: end for
14: end for

4.4 Matrix Sketching

The O(d2) complexity of both algorithms is due to computing the inverse correlation ma-

trix Σ−1
hk . Let Φhk

def
= [φh1, . . . , φhk]

> ∈ Rk×d so that Σhk =
∑k

i=1 φhiφ
>
hi + λId =

Φ>hkΦhk + λId. To reduce the computational complexity, matrix sketching techniques can

be applied to maintain an appropriate matrix Shk such that S>hkShk is close to Φ>hkΦhk.

4.4.1 Frequent Directions

Frequent Directions (FD) [Liberty, 2013, Ghashami et al., 2016] is a deterministic matrix

sketching algorithm that maintains a matrix Shk ∈ Rm×d, where constant m < d is called

the sketch size. It has the property that Shk can be efficiently updated in time O(md).

Moreover, using the Woodbury identity we may write,

Σ̃−1
hk =

(
S>hkShk + λId

)−1
=

1

λ

(
Id − S>hkHhkShk

)
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where Hhk
def
=
(
ShkS

>
hk + λIm

)−1. Note that matrix product involving Shk and Hhk re-

quires time O(md) and O(m2). Therefore, matrix product involving Σ̃−1
hk takes O(md)

time to compute. The updates of Shk and Hhk are summarized in Algorithm 3. Since Shk

and Hhk can be updated in O(md) time (see section 3.2 of [Ghashami et al., 2016]), the

total run time will be reduced from O(d2) to O(md).

Algorithm 3: FD Sketching
1: Input: Sh,k−1 ∈ Rm×d, φhk ∈ Rd, λ > 0.
2: Compute eigendecomposition

U>hkdiag(a1, . . . , am)Uhk = (Sh,k−1)>Sh,k−1 + φhkφ
>
hk.

3: Shk ← diag(
√
a1 − am, . . . ,

√
am−1 − am, 0)Uhk, Hhk ← diag( 1

a1−am+λ
, . . . , 1

λ
).

4: Output: Shk,Hhk.

The sacrificed accuracy by running FD sketching is related to the tail spectrum of

the correlation matrix Φ>hKΦhK . Mathematically, it is captured by the spectral error εh,m

defined as

εh,m
def
= min

k=0,...,m−1

γk+1 + γk+2 + · · ·+ γd
λ(m− k)

(4.3)

where γ1 ≥ · · · ≥ γd are the eigenvalues of the correlation matrix Φ>hKΦhK . Observing

that εh,m ≤ (γm+· · ·+γd)/λ, if the matrix Φ>hKΦhK has low rank or light-tailed spectrum,

we would expect this spectral error to be small.

In the sequel, we will use a shorthand

m̃h
def
= d log(1 + εh,m) +m log

(
1 +

KL2
φ

mλ

)
. (4.4)

Note that if εh,m = 0, m̃h grows nearly linearly in m, whereas if εh,m is large, m̃h grows

nearly linearly in d.

79



4.5 Sketched LSVI Algorithms

4.5.1 Sketched LSVI-UCB

Algorithm 4: S-LSVI-UCB

1: Define VH+1,k(s)
def
= 0, QH+1,k(s, a)

def
= 0 and Vhk(s)

def
= maxaQhk(s, a), with

Qhk(s, a)
def
= min

{
φh(s, a)>θ̂hk+

βh

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a), H

}
, ∀(s, a, h, k).

2: Initialize Σ̃−1
h0 ← 1

λ
Id, Sh0 ← 0, ∀h.

3: for episode k = 1, 2, . . . , K do
4: Receive the initial state s1k.
5: for step h = H,H − 1 . . . , 1 do
6: Let θ̂hk be estimated as Σ̃−1

h,k−1

(∑k−1
i=1 φhi [rhi + Vh+1,k(sh+1,i)]

)
.

7: end for
8: for step h = 1, . . . , H do
9: Take action ahk ← arg maxa∈AQhk(shk, a), and observe sh+1,k.

10: Compute Shk,Hhk given Sh,k−1, φhk with Alg 3. Update

Σ̃−1
hk ← 1

λ

(
Id − S>hkHhkShk

)
.

11: end for
12: end for

S-LSVI-UCB, the FD-sketched counterpart of LSVI-UCB, is shown in Algorithm 4.

S-LSVI-UCB enjoys the following regret bound, characterized in terms of the spectral

error εh,m.

Theorem 4.5.1. Under Assumption 4.2.1, there exists an absolute constant C > 0 such

that, for any δ ∈ (0, 1), if we set βh = cβ · HLdLλ(1 + εh,m)
√
mι for any cβ > C in

Algorithm 4 with Ld
def
= max

{√
d, Lψ,

Lr
H

}
, Lλ

def
= max{1,

√
λ},

ι
def
= log

((
2LdLλ max{1, Lφ}dT

)
/(
√
λδ)
)

, then with probability at least 1 − δ, the total

regret of S-LSVI-UCB is at most Õ
(∑H

h=1 LdLλ
√

(1 + εh,m)3mm̃h ·HT
)

. If we further
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assume that λ = 1, Lφ = 1 and Lψ = Lr =
√
d, and denote εm = maxh{εh,m}, m̃ =

maxh{m̃h}, then the regret bound can be simplified as Õ
(√

(1 + εm)3mdm̃ ·H3T
)

.

Note that the regret of S-LSVI-UCB is not directly comparable to LSVI-UCB in its

current form because of the presence of m̃. However, the motivation behind the introduc-

tion of m̃h in Equation (4.4) was to show potentially better dependency on the dimension

(linear in m rather than d) when the spectral error is small. By Lemma 4.7.2, we can triv-

ially replace any occurrence of m̃h with d (after ignoring logarithmic dependency on other

quantities) in the asymptotic regret bound. In other words, Õ
(√

(1 + εm)3md2 ·H3T
)

is

also a valid regret bound for S-LSVI-UCB. Comparing the two regret bounds, we see that

the sketching technique inflates the regret bound by a factor of (1 + εm)3/2. However, it

also reduces the dependency on the dimension by a factor of
√
d/m. Therefore, as long as

we are in the regime of (1 + εm)3m < d, the sketching technique would bring a reduction

in regret, on top of the improved time and space complexity. The potential improvement

in regret is not observed in the results for many previous works on sketching for online

regret minimization problems, where the regret bounds are only inflated by some factors

[Luo et al., 2016, Calandriello et al., 2017, Luo et al., 2019, Kuzborskij et al., 2019, Calan-

driello et al., 2019]. The potential improvement comes from the fact that the regret bound

depends on the covering number of a class of function that contains the random value

function Vhk(·), which is parameterized by θ̂hk and the correlation matrix Σh,k−1. When

the function class is parameterized by the sketched correlation matrix Σ̃h,k−1 instead, the

inherent low-rank structure reduces the covering number and saves a factor of
√
d/m in

the dimension.

4.5.2 Sketched RLSVI

S-RLSVI, the FD-sketched counterpart of RLSVI, is shown in Algorithm 5. Note that

in addition to Σ̃−1
hk , the algorithm also needs to compute Σ̃

−1/2
h,k−1 to efficiently sample from
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Algorithm 5: S-RLSVI

1: Define V H+1,k(s)
def
= 0, QH+1,k(s, a)

def
= 0 and V hk(s)

def
= maxaQhk(s, a), with

Qhk(s, a) defined in Definition 4.3.3 but with Σ̃h,k−1 in place of Σh,k−1,
∀(s, a, h, k).

2: Initialize Σ̃−1
h0 ← 1

λ
Id, Sh0 ← 0, ∀h.

3: for episode k = 1, 2, . . . , K do
4: Receive the initial state s1k.
5: for step h = H,H − 1, . . . , 1 do
6: Let θ̂hk be estimated as Σ̃−1

h,k−1

(∑k−1
i=1 φhi

[
rhi + V h+1,k(sh+1,i)

])
.

7: Sample ξhk ∼ N (0, σ2Σ̃−1
h,k−1).

8: θhk ← θ̂hk + ξhk.
9: end for

10: for step t = 1, . . . , H do
11: Take action ahk ← arg maxa∈AQhk(shk, a), and observe sh+1,k.
12: Compute Shk,Hhk given Sh,k−1, φhk with Alg 3. Update

Σ̃−1
hk ← 1

λ

(
Id − S>hkHhkShk

)
.

13: end for
14: end for

N (0, σ2Σ̃−1
h,k−1). This can be done through the generalized Woodbury identity (Corollary

1 of [Kuzborskij et al., 2019]).

The regret bound of S-RLSVI is stated in the Theorem 4.5.2. Note that the dependence

of σ, αU , αL on h in notation are omitted to reduce clutter.

Theorem 4.5.2. Under Assumption 4.2.1, if we set σ = Õ
(
H3/2LdLλ(1 + εh,m)

)
where

Ld = max
{√

md,Lψ,
Lr
H

}
, Lλ = max{1,

√
λ} αU = 1/Õ(σ

√
d) and αL = αU/2 in

Algorithm 5, then for any 0 < δ < Φ(−1)/2, with probability at least 1 − δ, the total

regret of S-RLSVI is at most Õ
(∑H

h=1 σ
√

(1 + εh,m)dm̃hK
)

. If we further assume that

λ = 1 and Lr, Lψ = Õ(
√
md), and denote εm = maxh{εh,m}, m̃ = maxh{m̃h}. Then

the regret bound can be simplified as Õ
(√

(1 + εm)3md2m̃ ·H4T
)

.

Similar to the situation for S-LSVI-UCB, we can use the regret bound of

Õ
(√

(1 + εm)3md3 ·H4T
)

for straightforward comparison. Comparing to the bound

of RLSVI, we see that the sketching technique inflates the regret by a factor of (1 +
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εm)3/2 but also reduces the dependency on the dimension by a factor of
√
d/m, just like

the comparison between bounds for LSVI-UCB and S-LSVI-UCB. Again, as long as the

spectral error εm is relatively small compared to
√
d/m, the sketching technique would

result in decreased regret, in addition to improved efficiency.

Complexity Analysis Algorithm 4 and Algorithm 5 only need to store Sh,k−1 and Hh,k−1

at episode k and rhk, {φh(shk, a)}a∈A for all (h, k), which takes O(mdH + dAT ) space.

The total runtime is improved from O(d2AKT ) to O(mdAKT ) as discussed in Section

4.4.

4.6 Experiments

We empirically evaluate the performance of the two LSVI algorithms and their sketched

counterparts in the two environments described below. For both environments, we con-

sider two configurations to demonstrate the applicability of the sketched algorithms. The

first environment is a commonly studied environment in the literature that has a finite num-

ber of states and low feature dimensions. The second environment is a carefully designed

environment with an infinite number of states and a high feature dimension. While many

previous works have studied the linear MDP and its closely related variants, most of them

are purely theoretical [Jin et al., 2019, Zanette et al., 2019, Yang and Wang, 2019a, Cai

et al., 2019]. To the best of our knowledge, this chapter is the first that presents simulation

experiments of algorithms designed to solve the linear MDP problem or similar problems.

s1 s2 ...... sn−1 sn

action: right

action: left

1− pL

pL

1

1− pL

pL

1

1− pL

pL

1

1− pL

pL

1

(1− pL, r = 1)1

pL

Figure 4.1: RiverSwim Environment.
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4.6.1 Setup

RiverSwim Environment This environment has been studied by Strehl and Littman

[2008], Osband et al. [2013], Osband and Van Roy [2017], Efroni et al. [2019]. The

environment consists of n states arranged in a chain. Starting from the leftmost state, the

agent can choose to swim left or right at each step. Swimming left always succeeds and

results in moving to the state on the left, but swimming right fails with probability pL, in

which case the agent moves to the left. If the agent is at the right side of the chain and tries

to move right, it will receive a reward r = 1. A graphical illustration of the environment

can be found in Figure 4.1. When the episode length is not smaller than the number of

states, the optimal policy in this environment is to keep swimming right. Instead of the

canonical tabular encoding of the environment’s linear structure with a feature dimension

d = 2n to indicate each state and action pair, we devised a compact encoding of the linear

structure to reduce the feature dimension from 2n to n+ 1.

Labyrinth Environment Consider an agent walking on N0 = {0, 1, 2, . . . } in a game

with episode length equal to H where each number indicates a different state. Starting at

sstart = 0, upon choosing an action the agent will optionally receive a diminutive auxiliary

reward, and then transit to a randomly chosen state indicated by a non-negative integer

at each step. However, the agent will incur a substantial reward only if it arrives at a

specific state sgoal and take a specific action agoal here. The environment is designed such

that there is a shortcut (a sequence of state-action pairs) for the agent to arrive at sgoal

deterministically within H − 1 steps. The agent’s optimal solution is to find the shortcut

in this Labyrinth of infinite states and exploit it.

Details of the encodings of the linear structure in both environments are deferred to

Section 4.11.
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Implementation The regularization parameter λ is always set to 1. The hyper-parameters

β and σ are selected by cross validation. We test the sketched algorithms with sketch size

approximating 80%, 60%, and 50% or 40% of the feature dimension for the RiverSwim

environment; 90%, 70%, 50%, and 30% for the Labyrinth environment. Results are aver-

aged over 20 random seeds.

Figure 4.2: Cumulative Regret for RiverSwim Environment.

4.6.2 Results

Figure 4.2 and 4.3 illustrate the evolution of the cumulative regret for the two LSVI al-

gorithms and their sketched counterparts, with various sketch sizes, using a logarithmic

scale.

Riverswim Environment The RiverSwim environment is a low-dimensional environ-

ment. Combined with our compact design of the encoding, it is plausible that all feature

dimensions are important to preserve information crucial for exploration and exploitation.
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Figure 4.3: Cumulative Regret for Labyrinth Environment. First row displays the environ-
ment with no auxiliary reward; second row displays the environment with auxiliary reward
of 3× 10−4 for each action.

Therefore, aggressive sketching that uses a sketch size of only 40% of the dimension yields

noticeably worse performance. However, even in this scenario, comparable or better per-

formance can still be achieved by using a sketch size of around 80% of the dimension, and

sometimes even around 60% suffices.

Labyrinth Environment The Labyrinth environment is high-dimensional and is in the

regime where sketching is both more likely to be necessary and more likely to yield huge

efficiency gains. As can be observed from the figure, for the configuration that no auxiliary

reward is given, all sketched algorithms have superior performance compared to the non-

sketched counterparts, regardless of the sketch size. Remarkably, for both configurations

of the Labyrinth Environment, computational efficiency can be tripled by maintaining a

sketch size of only 30% of the feature dimension, while at the same time improvement in

performance can be consistently observed.
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Summary The simulation results demonstrate that the sketched algorithms are partic-

ularly advantageous in the high-dimensional environment, achieving better performance

using only 30% of space and time compared to the non-sketched counterpart. On the other

hand, even in a low-dimensional environment, sketching can still achieve comparable per-

formance using only 60% or 80% of the space and time.

4.7 Sketching Lemmas and Proofs

This section contains lemmas related to the correlation matrix Φ>hkΦhk and its FD-sketched

estimates S>hkShk with sketch size m. In the rest of this section we drop the subscript h

because all results hold for a generic h ∈ [H].

Let ρk be the smallest eigenvalue of the FD-sketched correlation matrix S>k Sk and let

ρ̄k = ρ1 + · · · + ρk. Recall that Σk = Φ>k Φk + λId and Σ̃k = S>k Sk + λId. Also, εm is

defined in (4.3).

All following results hold for any k = 0, . . . , K, any λ > 0, and any sketch size

m = 1, . . . , d unless explicitly stated otherwise.

Lemma 4.7.1.

εm ≤
KL2

φ

mλ
.

Proof. Let λ1 ≥ · · · ≥ λd be the eigenvalues of the correlation matrix Φ>KΦK . By (4.3),

εm ≤
λ1 + . . . λd

mλ
=

tr(Φ>KΦK)

mλ
=

tr
(∑K

i=1 φiφ
>
i

)

mλ

=

∑K
i=1 tr

(
φiφ

>
i

)

mλ
=

∑K
i=1 ‖φi‖2

mλ
≤
KL2

φ

mλ
.

Lemma 4.7.2.

m̃h = O(d).
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Proof.

m̃h = d log(1 + εh,m) +m log

(
1 +

KL2
φ

mλ

)

≤ d log

(
1 +

KL2
φ

mλ

)
+ d log

(
1 +

KL2
φ

mλ

)
= 2d log

(
1 +

KL2
φ

mλ

)
= O(d).

Lemma 4.7.3 (Ghashami et al. [2016]).

ρ̄k
λ
≤ εm.

Lemma 4.7.4 ([Kuzborskij et al., 2019, Proposition 3]).

Φ>k Φk = S>k Sk + ρ̄kId.

Lemma 4.7.5 ([Kuzborskij et al., 2019, Lemma 8]).

log

(
det(Σk)

det(λId)

)
≤ d log

(
1 +

ρ̄k
λ

)
+m log

(
1 +

kL2
φ

mλ

)

≤ d log (1 + εm) +m log

(
1 +

kL2
φ

mλ

)
.

Lemma 4.7.6 ([Kuzborskij et al., 2019, Lemma 9]).

K∑

k=1

min{1, ‖φk‖2
Σ̃−1
k−1

} ≤ 2(1 + εm)

[
d log (1 + εh,m) +m log

(
1 +

KL2
φ

mλ

)]
.

Lemma 4.7.7 ([Kuzborskij et al., 2019, Proof of Lemma 9]). ∀x ∈ Rd,

‖x‖2
Σ̃−1
k

≤ λ+ ρ̄k
λ
‖x‖2

Σ−1
k
≤ (1 + εm)‖x‖2

Σ−1
k
.
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4.8 Proof of Theorem 4.5.1

The proof in this section follows Jin et al. [2019], with modifications to account for the

spectral error εh,m because of the sketched correlation matrix Σ̃. One key innovation in the

proof lies in Lemma 4.8.2, where the bound is improved from O(d2) to O(md) due to the

reduced covering number. The covering number is reduced because the space of low rank

matrices has smaller covering number than the counterpart without low rank assumption.

We first show that the weight vectors θ̂hk in Algorithm 4 has bounded norm.

Lemma 4.8.1 (Bound on Weights of S-LSVI-UCB). For any (h, k) ∈ [H] × [K], the

weights θ̂hk in Algorithm 4 satisfies

‖θ̂hk‖ ≤ 2H

√
(1 + εh,m)dk

λ
.

Proof. For any vector v ∈ Rd, we have

|v>θ̂hk| =
∣∣∣∣∣v
>Σ̃−1

h,k−1

k−1∑

i=1

φhi [rhi + Vh+1,k(sh+1,i)]

∣∣∣∣∣

≤
k−1∑

i=1

2H
∣∣∣v>Σ̃−1

h,k−1φhi

∣∣∣

≤ 2H ·

√√√√
[
k−1∑

i=1

v>Σ̃−1
h,k−1v

]
·
[
k−1∑

i=1

φ>hiΣ̃
−1
h,k−1φhi

]

(a)

≤ 2H ·

√√√√k‖v‖2

λ
·
[

(1 + εh,m)
k−1∑

i=1

φ>hiΣ
−1
h,k−1φhi

]

(b)

≤ 2H

√
(1 + εh,m)k‖v‖2

λ
· d

= 2H‖v‖
√

(1 + εh,m)dk

λ
.

In the derivation, step (a) is due to the fact that the maximum eigenvalue of Σ̃−1
h,k−1 is no
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more than 1/λ and Lemma 4.7.7. Step (b) is due to Lemma 4.10.3. The remainder of the

proof follows from ‖θ̂hk‖ = max‖v‖=1 |v>θ̂hk|.

Second, we present a concentration lemma that is critical for bounding the difference

between the estimated and true action-value functions. Importantly, the bound has im-

proved dependence on dimension compared to [Jin et al., 2019, Lemma B.3].

Lemma 4.8.2. Under the setting of Theorem 4.5.1, let cβ be the constant in our defini-

tion of βh, i.e., βh = cβ · HLdLλ(1 + εh,m)
√
mι where Ld = max

{√
d, Lψ,

Lr
H

}
, Lλ =

max{1,
√
λ}, ι = log

(
2dLdLλ max{1,Lφ}T√

λδ

)
. There exists absolute constant c0 that is inde-

pendent of cβ such that for any fixed δ ∈ (0, 1), the following event, denoted as G,

∀(h, k) ∈ [H]× [K] :

∥∥∥∥∥
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
∥∥∥∥∥

Σ̃−1
h,k−1

≤ c0 ·HLd
√

(1 + εh,m)mχ,

where χ def
= log

(
2(cβ+1)LdLλ max{1,Lφ}dT√

λδ

)
happens with probability at least 1− δ.

Proof. We can write Vh+1,k(·) as

Vh+1,k(·) = min

{
max
a
{φh+1(·, a)>θ̂h+1,k

+ βh+1

√
φh+1(·, a)>

(
S>h+1,k−1Sh+1,k−1 + λId

)−1
φh+1(·, a)}, H

}
.

By Lemma 4.8.1 and Lemma 4.7.1, we have ‖θ̂h+1,k‖ ≤ 2H
√

(1 + εh+1,m)dk/λ ≤

2H
√

(λ+KL2
φ)dk/λ2 and βh = cβ·HLdLλ(1+εh,m)

√
mι ≤ cβ·HLdLλ(1+KL2

φ/λ)
√
mι.

Moreover, S>h+1,k−1Sh+1,k−1 is positive semi-definite and has rank no greater than m. Fur-

thermore, by Lemma 4.7.4 we have

‖S>h+1,k−1Sh+1,k−1‖F ≤ ‖Sh+1,k−1‖2
F = tr(S>h+1,k−1Sh+1,k−1)
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≤ tr(Φ>h+1,k−1Φh+1,k−1) = tr

(
k−1∑

i=1

φh+1,iφ
>
h+1,i

)
=

k−1∑

i=1

‖φh+1,i‖2 ≤ kL2
φ. (4.5)

Therefore, Lemma 4.10.6 implies that Vh+1,k(·) is within a class of function V whose ε-

covering number Nε with respect to the distance dist(V, V ′) = supx |V (x) − V ′(x)| is

upper bounded by

logNε ≤ d log




12H
√

(λ+KL2
φ)dk

λε




+ (2d+ 1)m log

(
36kL4

φc
2
βH

2L2
dL

2
λ(1 +KL2

φ/λ)2mι

λ2ε2

)
. (4.6)

So, there exists Ṽh+1,k ∈ V in the ε-covering such that

Vh+1,k = Ṽh+1,k + ∆h+1,k, sup
x
|∆h+1,k(x)| ≤ ε.

Therefore,

∥∥∥∥∥
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 2

∥∥∥∥∥
k−1∑

i=1

φhi

(
Ṽh+1,k(sh+1,i)− Es′|shi,ahi

[
Ṽh+1,k(s

′)
])∥∥∥∥∥

2

Σ̃−1
h,k−1

+ 2

∥∥∥∥∥
k−1∑

i=1

φhi
(
∆h+1,k(sh+1,i)− Es′|shi,ahi [∆h+1,k(s

′)]
)
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 2

∥∥∥∥∥
k−1∑

i=1

φhi

(
Ṽh+1,k(sh+1,i)− Es′|shi,ahi

[
Ṽh+1,k(s

′)
])∥∥∥∥∥

2

Σ̃−1
h,k−1

+ 8ε2k2 sup
‖φ‖≤Lφ

‖φ‖2
Σ̃−1
h,k−1

≤ 2(1 + εh,m)

∥∥∥∥∥
k−1∑

i=1

φhi

(
Ṽh+1,k(sh+1,i)− Es′|shi,ahi

[
Ṽh+1,k(s

′)
])∥∥∥∥∥

2

Σ−1
h,k−1
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+ 8ε2k2 · (1 + εh,m) sup
‖φ‖≤Lφ

‖φ‖2
Σ−1
h,k−1

≤ 2(1 + εh,m)

∥∥∥∥∥
k−1∑

i=1

φhi

(
Ṽh+1,k(sh+1,i)− Es′|shi,ahi

[
Ṽh+1,k(s

′)
])∥∥∥∥∥

2

Σ−1
h,k−1

+
8ε2k2(1 + εh,m)L2

φ

λ
.

Using Lemma 4.10.2 and Lemma 4.7.5 to control the first term and a union bound over

the Nε possible Ṽh+1,k yields that with probability at least 1− δ, for all k ∈ [K] we have

∥∥∥∥∥
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 4H2(1 + εh,m)

[
1

2
log

(
det(Σh,k−1)

det(λId)

)
+ log

Nε
δ

]
+

8k2ε2(1 + εh,m)2L2
φ

λ

≤ 4H2(1 + εh,m)

[
d

2
log (1 + εh,m) +

m

2
log

(
1 +

(k − 1)L2
φ

mλ

)

+ d log




12H
√

(λ+KL2
φ)dk

λε




+ (2d+ 1)m log

(
36kL4

φc
2
βH

2L2
dL

2
λ(1 +KL2

φ/λ)2mι

λ2ε2

)
+ log

1

δ

]

+
8k2ε2(1 + εh,m)L2

φ

λ
.

Taking another union bound over h ∈ [H], we have that with probability at least 1 − δ,

∀(h, k) ∈ [H]× [K],

∥∥∥∥∥
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 4H2(1 + εh,m)

[
d

2
log (1 + εh,m) +

m

2
log

(
1 +

(k − 1)L2
φ

mλ

)

92



+ d log




12H
√

(λ+KL2
φ)dk

λε




+(2d+1)m log

(
36kL4

φc
2
βH

2L2
dL

2
λ(1 +KL2

φ/λ)2mι

λ2ε2

)
+log

H

δ

]
+

8k2ε2(1 + εh,m)L2
φ

λ
.

Picking ε =
√
mdλH
KLφ

, we see that there exists a absolute constant c0 > 0 independent of cβ

such that

∥∥∥∥∥
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ c0 · (1 + εh,m)mdH2 log

(
2(cβ + 1)LdLλ max{1, Lφ}dT√

λδ

)
.

Equipped with the concentration lemma Lemma 4.8.2, we can recursively bound the

difference between the estimated and true action-value functions of any policy by the ex-

pected difference at next step and an additional error term that is upper bounded by our

exploration bonus.

Lemma 4.8.3. Under the setting of Theorem 4.5.1, there exists an absolute constantC > 0

such that for βh = cβ · HLdLλ(1 + εh,m)
√
mι where Ld = max

{√
d, Lψ,

Lr
H

}
, Lλ =

max{1,
√
λ}, ι = log

(
2LdLλ max{1,Lφ}dT√

λδ

)
, cβ > C, and for any fixed policy π, on the

event G defined in Lemma 4.8.2, we have for all (s, a, h, k) ∈ S ×A× [H]× [K],

∣∣∣φh(s, a)>θ̂hk −Qπ
h(s, a)− Es′|s,a

[
Vh+1,k(s

′)− V π
h+1(s′)

]∣∣∣

≤ βh

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a). (4.7)

Proof. By Lemma 4.10.1 and the Bellman equation,

Qπ
h(s, a) = φh(s, a)>θπh = rh(s, a) + Es′|s,a

[
V π
h+1(s′)

]
.
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As a result,

θ̂hk − θπh =Σ̃−1
h,k−1

(
k−1∑

i=1

φhi [rhi + Vh+1,k(sh+1,i)]

)
− θπh

=Σ̃−1
h,k−1

(
k−1∑

i=1

φhi [rhi + Vh+1,k(sh+1,i)]−
(
k−1∑

i=1

φhiφ
>
hi + (λ− ρh,k−1)Id

)
θπh

)

=− (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h + Σ̃−1

h,k−1

(
k−1∑

i=1

φhi
[
rhi + Vh+1,k(sh+1,i)− φ>hiθπh

]
)

=− (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi

[
V π
h+1(s′)

])
)

=− (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
)

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhiEs′|shi,ahi
[
Vh+1,k(s

′)− V π
h+1(s′)

]
)
.

Here ρh,k−1 is the sum of the smallest eigenvalue of the FD-sketched correlation matrix

S>h,iSh,i for i = 1, . . . , k − 1, as defined in Section 4.7. Now we bound the three terms’

inner product with φh(s, a) separately. For the first term,

∣∣∣φh(s, a)>(λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h

∣∣∣

≤ (λ+ ρh,k−1)
√

(θπh)>Σ̃−1
h,k−1θ

π
h ·
√
φh(s, a)>Σ̃−1

h,k−1φh(s, a)

≤ (1 + εh,m)
√
λ‖θπh‖ ·

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a)

≤ (1 + εh,m)
√
λ · (Lr +HLψ) ·

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a).

The second inequality uses the fact that the eigenvalues of Σ̃−1
h,k−1 is no larger than 1/λ.
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The third inequality uses Lemma 4.10.1. For the second term,

∣∣∣∣∣φh(s, a)>Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
)∣∣∣∣∣

≤
∥∥∥∥∥
k−1∑

i=1

φhi
(
Vh+1,k(sh+1,i)− Es′|shi,ahi [Vh+1,k(s

′)]
)
∥∥∥∥∥

Σ̃−1
h,k−1

·
√
φh(s, a)>Σ̃−1

h,k−1φh(s, a)

≤ c0 ·H
√

(1 + εh,m)mdχ ·
√
φh(s, a)>Σ̃−1

h,k−1φh(s, a).

The last step is condition on the event G defined in Lemma 4.8.2 where c0 is an absolute

constant that is independent of cβ and χ = log
(

2(cβ+1)LdLλ max{1,Lφ}dT√
λδ

)
. For the third

term,

φh(s, a)>Σ̃−1
h,k−1

(
k−1∑

i=1

φhiEs′|shi,ahi
[
Vh+1,k(s

′)− V π
h+1(s′)

]
)

= φh(s, a)>Σ̃−1
h,k−1

(
k−1∑

i=1

φhiφ
>
hi

∫

s′
ψh(s

′)
[
Vh+1,k(s

′)− V π
h+1(s′)

]
)

= φh(s, a)>
∫

s′
ψh(s

′)
[
Vh+1,k(s

′)− V π
h+1(s′)

]

− (λ− ρh,k−1)φh(s, a)>Σ̃−1
h,k−1

∫

s′
ψh(s

′)
[
Vh+1,k(s

′)− V π
h+1(s′)

]

= Es′|s,a
[
Vh+1,k(s

′)− V π
h+1(s′)

]

− (λ− ρh,k−1)φh(s, a)>Σ̃−1
h,k−1

∫

s′
ψh(s

′)
[
Vh+1,k(s

′)− V π
h+1(s′)

]
.

The first part appears in the left hand side of (4.7), while the second part can be bounded

by

∣∣∣∣(λ− ρh,k−1)φh(s, a)>Σ̃−1
h,k−1

∫

s′
ψh(s

′)
[
Vh+1,k(s

′)− V π
h+1(s′)

]∣∣∣∣

≤ 2(λ+ ρh,k−1)Hφh(s, a)>Σ̃−1
h,k−1

∫

s′
ψh(s

′)

≤ 2(1 + εh,m)λH

√(∫

s′
ψh(s′)

)>
Σ̃−1
h,k−1

∫

s′
ψh(s′) ·

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a)
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≤ 2(1 + εh,m)H
√
λ

∫

s′
‖ψh(s′)‖ ·

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a)

≤ 2(1 + εh,m)HLψ
√
λ ·
√
φh(s, a)>Σ̃−1

h,k−1φh(s, a).

Putting things together, we see that

∣∣∣φh(s, a)>θ̂hk −Qπ
h(s, a)− Es′|s,a

[
Vh+1,k(s

′)− V π
h+1(s′)

]∣∣∣

≤ c′ ·(1+εh,m)H
√
mχ·max{

√
λ, 1}·max

{√
d, Lψ,

Lr
H

}
·
√
φh(s, a)>Σ̃−1

h,k−1φh(s, a).

for some absolute constant c′ that is independent of cβ . Finally, we need to prove the

existence of C so that for any cβ > C, we have

c′
√
χ = c′

√
log(cβ + 1) + ι ≤ cβ

√
ι

where ι = log
(

2LdLλ max{1,Lφ}dT√
λδ

)
≥ log 2. Since c′ is independent of cβ , evidently as

long as cβ is large enough, c′
√

log(cβ + 1) + x ≤ cβ
√
x holds for all x ≥ log 2. This

concludes the proof.

An immediate consequence of Lemma 4.8.3 is that the estimated action-value fucntion

is an over-estimation compared to the true action-value function with high probability.

Lemma 4.8.4. Under the settting of Theorem 4.5.1, on the event G defined in Lemma 4.8.2,

we have Qhk(s, a) ≥ Q?
h(s, a) for all (s, a, h, k) ∈ S ×A× [H + 1]× [K].

Proof. The lemma is proved by induction. In the base case where h = H + 1, the lemma

trivially holds as QH+1,k(s, a) = Q?
H+1(s, a) = 0. Now for a generic h, By Lemma 4.8.3

∣∣∣φh(s, a)>θ̂hk −Q?
h(s, a)− Es′|s,a

[
Vh+1,k(s

′)− V ?
h+1(s′)

]∣∣∣

≤ βh

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a).
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Denote πh+1,k(s
′)

def
= arg maxaQh+1,k(s

′, a) and π?h+1(s′)
def
= arg maxaQ

?
h+1(s′, a). Using

the inductive assumption at h+ 1, ∀s′ ∈ S,

[
Vh+1,k(s

′)− V ?
h+1(s′)

]
= Qh+1,k(s

′, πh+1,k(s
′))−Q?

h+1(s′, π?h+1(s′))

≥ Qh+1,k(s
′, π?h+1(s′))−Q?

h+1(s′, π?h+1(s′)) ≥ 0.

Therefore,

Q?
h(s, a) ≤ min

{
φh(s, a)>θ̂hk + βh

√
φh(s, a)>Σ̃−1

h,k−1φh(s, a), H

}
= Qhk(s, a).

This concludes the proof.

Now we are ready to prove the main theorem on regret of S-LSVI-UCB, which is

restated as follows.

Theorem 4.5.1. Under Assumption 4.2.1, there exists an absolute constant C > 0 such

that, for any δ ∈ (0, 1), if we set βh
def
= cβ · HLdLλ(1 + εh,m)

√
mι for any cβ > C in

Algorithm 4 with Ld
def
= max

{√
d, Lψ,

Lr
H

}
, Lλ

def
= max{1,

√
λ},

ι
def
= log

((
2LdLλ max{1, Lφ}dT

)
/(
√
λδ)
)

, then with probability at least 1 − δ, the total

regret of S-LSVI-UCB is at most Õ
(∑H

h=1 LdLλ
√

(1 + εh,m)3mm̃h ·HT
)

. If we further

assume that λ = 1, Lφ = 1 and Lψ = Lr =
√
d, and denote εm = maxh{εh,m}, m̃ =

maxh{m̃h}, then the regret bound can be simplified as Õ
(√

(1 + εm)3mdm̃ ·H3T
)

.

Proof. Define δhk
def
= Vhk(shk) − V πk

h (shk) where πk is the policy according to S-LSVI-

UCB before episode k. and ζh,k
def
= E [δh+1,k|shk, ahk]− δh+1,k. We condition on the event

G define in Lemma 4.8.2 with probability 1− δ/2. Lemma 4.8.3 and Lemma 4.8.4 gives

Regret(K) =
K∑

k=1

[V ?
1 (s1k)− V πk

1 (s1k)]
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≤
K∑

k=1

[V1k(s1k)− V πk
1 (s1k)]

=
K∑

k=1

δ1k

≤
K∑

k=1

[
δ2k + ζ1k + min

{
H, β1

√
φ>1kΣ̃

−1
1,k−1φ1k

}]

=
K∑

k=1

δ2k +
K∑

k=1

[
ζ1k + min

{
H, β1

√
φ>1kΣ̃

−1
1,k−1φ1k

}]

≤ . . .

≤
K∑

k=1

H∑

h=1

ζhk +
K∑

k=1

H∑

h=1

min

{
H, βh

√
φ>hkΣ̃

−1
h,k−1φhk

}
. (4.8)

For the first term, observe that {ζhk} is a martingale difference sequence that is bounded by

2H . Therefore, Azuma-Hoeffding inequality yields that with probability at least 1− δ/2,

K∑

k=1

H∑

h=1

ζhk ≤ 2H
√
T log(2/δ) ≤ 2H

√
Tι. (4.9)

For the second term, with our choice of βh = cβ ·HLdLλ
√

(1 + εh,m)ι, we write

K∑

k=1

H∑

h=1

min

{
H, βh

√
φ>hkΣ̃

−1
h,k−1φhk

}

=
K∑

k=1

H∑

h=1

min

{
H, cβHLdLλ(1 + εh,m)

√
mι · φ>hkΣ̃−1

h,k−1φhk

}

= H

H∑

h=1

K∑

k=1

min

{
1, cβLdLλ(1 + εh,m)

√
mι · φ>hkΣ̃−1

h,k−1φhk

}

≤ H
H∑

h=1

(
max

{
1, cβLdLλ(1 + εh,m)

√
mι
}
·
K∑

k=1

min
{

1, ‖φhk‖Σ̃−1
h,k−1

})
.
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Next, we apply Cauchy-Schwarz and Lemma 4.7.6 to continue

H
H∑

h=1

(
max

{
1, cβLdLλ(1 + εh,m)

√
mι
}
·
K∑

k=1

min
{

1, ‖φhk‖Σ̃−1
h,k−1

})

≤ H
H∑

h=1


max

{
1, cβLdLλ(1 + εh,m)

√
mι
}
·
√
K ·

[
K∑

k=1

min
{

1, ‖φhk‖2
Σ̃−1
h,k−1

}]1/2



≤ 2H
H∑

h=1

(
max

{
1, cβLdLλ(1 + εh,m)

√
mι
}
·
√

(1 + εh,m)K

·
[
d log (1 + εh,m) +m log

(
1 +

KL2
φ

mλ

)]1/2
)

≤ 2H
H∑

h=1

√
(1 + εh,m)Km̃h max

{
1, cβLdLλ(1 + εh,m)

√
mι
}
. (4.10)

Combining (4.8), (4.9), and (4.10), we conclude that with probability at least 1− δ,

Regret(K)
Õ
=

H∑

h=1

LdLλ

√
(1 + εh,m)3m · m̃hHT.

4.9 Proof of Theorem 4.5.2

The proof in this section is based on Zanette et al. [2019]. A notable deviation is Lemma

4.9.8, where the dependence on dimension is improved by a factor of
√
d/m due to the

reduced covering number from low rank property of sketched correlation matrix.

4.9.1 Definitions

In this section, we formally define the filtrations, the parameters used in the algorithm, and

the good events.
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Definition 4.9.1. For any (h, k) ∈ [H]× [K], define the filtrations

Hhk
def
= {sij, aij, rij : j ≤ k, i ≤ h if j = k else i ≤ H}

Hk
def
= HH,k

Hhk
def
= Hk ∪ {ξik, i ≥ h}

Hk
def
= H1k

Definition 4.9.2. For any 0 < δ < 1, any h ∈ [H], and some absolute constants cβ > 0,

let

Ld
def
= max{

√
md,Lr, Lψ/H}

Lλ
def
= max{1,

√
λ}

ι
def
= log

(
2LdLλ max{Lφ, 1}dT√

λδ

)

√
βh(δ)

def
= cβ ·HLdLλ(1 + εh,m)

√
ι

√
νh(δ)

def
= 2
√
βh(δ)

√
γh(δ)

def
=
√

2dHνh(δ) log(4dT/δ)

Definition 4.9.3. Set

σ2 def
= Hνh(δ)

αU
def
=

1

4
√
γh(δ)

≤ 1

2
(√

νh(δ) +
√
γh(δ)

)

αL
def
= αU/2

Definition 4.9.4. For any (h, k) ∈ [H] × [K], let ηh,k be defined in (4.11) and λ
π

hk be

100



defined in (4.12), define the following set of good events.

Gξhk
def
=
{
‖ξhk‖Σ̃h,k−1

≤
√
γh(δ)

}

Gηhk
def
=
{
∀(s, a) ∈ S ×A, |φh(s, a)>ηhk| ≤

√
βh(δ)‖φh(s, a)‖Σ̃−1

h,k−1

}

Gλhk
def
=

{
∀ policy π and ∀(s, a) ∈ S ×A, |φh(s, a)>λ

π

hk| ≤

(1 + εh,m)(2HLψ + Lr)
√
λ‖φh(s, a)‖Σ̃−1

h,k−1

}

GQhk
def
=
{
∀(s, a) ∈ S ×A, |Qhk(s, a)−Q?

h(s, a)| ≤ H − h+ 1
}

Ghk def
= {Gξhk ∩ Gηhk ∩ Gλhk ∩ GQhk}

Gk def
= ∩h∈[H]Ghk

4.9.2 Concentration

The purpose of this section is to show that good events happen with high probability. The

high level idea is as follows. Lemma 4.9.5 decomposes the difference of the unclipped

estimated Q-value defined by θhk and the true Q-value Qπ of any policy π into four parts.

One term is the recursive term, while the three other terms are bounded separately in

Lemma 4.9.6, 4.9.7, and 4.9.8, either independently or conditioned on bounded Qt+1.

Then, in Lemma 4.9.10, we show that Qt is bounded as long as Qt+1 is bounded and the

three other terms are bounded. Finally, in Lemma 4.9.11, we inductively show that good

events happen with high probability.

By Lemma 4.10.1, there exists θπh such that Qπ
h(s, a) = φh(s, a)>θπh ∀(s, a, h) ∈ S ×

A× [H]. Define ηh,k and λ
π

hk as follows.

ηh,k
def
= Σ̃−1

h,k−1

(
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V h+1,k(s

′)
])
)

(4.11)

λ
π

hk
def
= −(λ− ρh,k−1)Σ̃−1

h,k−1

(∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]
+ θπh

)
(4.12)
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Recall that ρh,k−1 is the sum of the minimum eigenvalue of the FD-sketched correlation

matrix S>h,iSh,i for i = 1, . . . , k − 1, as defined in Section 4.7.

Lemma 4.9.5 (Decomposition of Unclipped Q-value). For any (s, a, h) ∈ S × A × [H]

and any policy π,

φh(s, a)>θhk−Qπ
h(s, a) = Es′|s,a

[
V h+1,k(s

′)− V π
h+1(s′)

]
+φh(s, a)>

(
ηhk + ξhk + λ

π

hk

)
.

Proof. By definition of θhk and Qπ
h(s, a),

φh(s, a)>θhk −Qπ
h(s, a) = φh(s, a)>

(
θ̂hk + ξhk − θπh

)
.

We rewrite θ̂hk − θπh as follows.

θ̂hk − θπh =Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
[
rhi + V h+1,k(sh+1,i)

]
)
− θπh

=Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
[
rhi + V h+1,k(sh+1,i)

]

−
(
k−1∑

i=1

φhiφ
>
hi + (λ− ρh,k−1)Id

)
θπh

)

=− (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h + Σ̃−1

h,k−1

(
k−1∑

i=1

φhi
[
rhi + V h+1,k(sh+1,i)− φ>hiθπh

]
)

=− (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V π
h+1(s′)

])
)

=− (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V h+1,k(s

′)
])
)

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhiEs′|shi,ahi
[
V h+1,k(s

′)− V π
h+1(s′)

]
)
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=ηhk − (λ− ρh,k−1)Σ̃−1
h,k−1θ

π
h

+ Σ̃−1
h,k−1

(
k−1∑

i=1

φhiEs′|shi,ahi
[
V h+1,k(s

′)− V π
h+1(s′)

]
)
.

Next, we expand the inner product of the third term with φh(s, a) as follows

φh(s, a)>Σ̃−1
h,k−1

(
k−1∑

i=1

φhiEs′|shi,ahi
[
V h+1,k(s

′)− V π
h+1(s′)

]
)

= φh(s, a)>Σ̃−1
h,k−1

(
k−1∑

i=1

φhiφ
>
hi

∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]
)

= φh(s, a)>
∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]

− (λ− ρh,k−1)φh(s, a)>Σ̃−1
h,k−1

∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]

= Es′|s,a
[
V h+1,k(s

′)− V π
h+1(s′)

]

− (λ− ρh,k−1)φh(s, a)>Σ̃−1
h,k−1

∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]
.

Putting things together, we get the claimed result.

Lemma 4.9.6 (Regularization). For any policy π and any (s, a, h, k) ∈ S×A× [H]× [K],

if |Qh+1,k(s, a)−Qπ
h+1(s, a)| ≤ H − h, then

∣∣∣φh(s, a)>λ
π

hk

∣∣∣ ≤ (1 + εh,m)(2HLψ + Lr)
√
λ‖φh(s, a)‖Σ̃−1

h,k−1
.

Proof.

∣∣∣φh(s, a)>λ
π

hk

∣∣∣

=

∣∣∣∣φh(s, a)>(λ− ρh,k−1)Σ̃−1
h,k−1

(∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]
+ θπh

)∣∣∣∣

≤ (λ+ ρh,k−1)
∥∥∥φh(s, a)>Σ̃−1

h,k−1

∥∥∥
(∥∥∥∥
∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]∥∥∥∥+ ‖θπh‖
)
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(a)

≤ (1 + εh,m)
√
λ ‖φh(s, a)‖Σ̃−1

h,k−1

(∥∥∥∥
∫

s′
ψh(s

′)
[
V h+1,k(s

′)− V π
h+1(s′)

]∥∥∥∥+ ‖θπh‖
)

≤ (1 + εh,m)
√
λ ‖φh(s, a)‖Σ̃−1

h,k−1

(∫

s′

∥∥ψh(s′)
[
V h+1,k(s

′)− V π
h+1(s′)

]∥∥+ ‖θπh‖
)

≤ (1 + εh,m)
√
λ ‖φh(s, a)‖Σ̃−1

h,k−1

(∫

s′
‖ψh(s′)‖

∣∣V h+1,k(s
′)− V π

h+1(s′)
∣∣+ ‖θπh‖

)

≤ (1 + εh,m)
√
λ ‖φh(s, a)‖Σ̃−1

h,k−1

(
(H − t)

∫

s′
‖ψh(s′)‖+ ‖θπh‖

)

(b)

≤ (1 + εh,m)
√
λ ‖φh(s, a)‖Σ̃−1

h,k−1
((H − t)Lψ + (Lr +HLψ))

≤ (1 + εh,m)(2HLψ + Lr)
√
λ ‖φh(s, a)‖Σ̃−1

h,k−1
.

In the derivation step (a) uses the fact that the maximum eigenvalue of Σ̃−1
h,k−1 is no more

than 1/λ, while step (b) uses Lemma 4.10.1.

Lemma 4.9.7 (Gaussian Randomness). Fix (h, k) ∈ [H] × [K]. For any δ ∈ (0, 1), with

probability at least 1− δ/2T , the event Gξhk happens, i.e.,

‖ξhk‖Σ̃h,k−1
≤
√
γh(δ).

Proof. Given that ξhk ∼ N(0, Hνh(δ)Σ̃
−1
h,k−1), Lemma 4.10.8 implies that with probabil-

ity at least 1− δ/2T ,

‖ξhk‖Σ̃h,k−1
≤
√

2Hνh(δ)d log(4dT/δ)
def
=
√
γh(δ).

Lemma 4.9.8 (Concentration Induction). Fix (h, k) ∈ [H] × [K]. There exists absolute

constant C such that for any cβ > C and δ ∈ (0, 1), if we set the parameter as in Section
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4.9.1, then condition on GQh+1,k and Gξh+1,k, with probability at least 1− δ/2T ,

∣∣φh(s, a)>ηhk
∣∣ ≤

√
βh(δ) ‖φh(s, a)‖Σ̃−1

h,k−1
.

Proof. By definition of ηhk in (4.11) and Cauchy-Schwarz,

∣∣φh(s, a)>ηhk
∣∣

≤ ‖φh(s, a)‖Σ̃−1
h,k−1
·
∥∥∥∥∥
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V h+1,k(s

′)
])
∥∥∥∥∥

Σ̃−1
h,k−1

. (4.13)

By conditioning on GQh+1,k, we can follow the same reasoning as in the proof of Lemma

4.8.1 and, combined with Lemma 4.7.1, deduce that

‖θ̂h+1,k‖ ≤ 2H

√
(1 + εh,m)kd

λ
≤ 2H

√
(λ+KL2

φ)kd

λ2
.

Combined with the event Gξh+1,k we condition on, we have

‖θh+1,k‖ = ‖θ̂h+1,k + ξh+1,k‖ ≤ ‖θ̂h+1,k‖+ ‖ξh+1,k‖

≤ 2H

√
(λ+KL2

φ)kd

λ2
+

√
γh(δ)

λ
. (4.14)

To get rid of the randomness in γh(δ) from dependence on εh,m, we define

√
βmax(δ)

def
= cβ ·HLdLλ(1 + kL2

φ/λ)
√
ι ≥

√
βh(δ)

√
νmax(δ)

def
= 2
√
βmax(δ) ≥

√
νh(δ)

√
γmax(δ)

def
=
√

2dHν(δ) log(4dT/δ) ≥
√
γh(δ)
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Now we proceed with a covering argument. For any h ∈ [H], we define

Qθ,Σ
h (s, a)

def
=





φh(s, a)>θ, if ‖φh(s, a)‖Σ ≤ αL

H − h+ 1, if ‖φh(s, a)‖Σ ≥ αU
(
αU−‖φh(s,a)‖Σ

αU−αL

)
φh(s, a)>θ+

(
1− αU−‖φh(s,a)‖Σ

αU−αL

)
(H − h+ 1) otherise

. (4.15)

Let V θ,Σ
h (s)

def
= maxa∈AQ

θ,Σ
h (s, a). Note that V h+1,k = V

θh+1,k,Σ̃
−1
h+1,k−1

h+1 . For any h ∈ [H],

we then define

Oh+1
def
=

{
θ ∈ Rd,Σ ∈ Rd×d : ‖θ‖ ≤ 2H

√
(λ+KL2

φ)kd

λ2
+

√
γmax(δ)

λ
,

Σ = (H + λId)
−1,H � 0, rank(H) ≤ m, ‖H‖F ≤ k,

∣∣∣Qθ,Σ
h+1(s, a)−Q?

h+1(s, a)
∣∣∣ ≤ H − h ∀s, a

}
.

By the event GQh+1,k we condition on, (4.14) and (4.5) we have (θh+1,k, Σ̃
−1
h+1,k−1) ∈ Oh+1.

Next, define for any (θ,Σ) ∈ Oh+1 and i ∈ [k − 1],

xθ,Σhi
def
= V θ,Σ

h+1(sh+1,i)− Es′|shi,ahi
[
V θ,Σ
h+1(s′)

]
.

Clearly {xθ,Σhi ,Hhi} is a martingale difference sequence bounded by 2H . By Lemma 4.7.7,

Lemma 4.10.2, and Lemma 4.7.5, with probability at least 1− δ/2T ,

∥∥∥∥∥
k∑

i=1

φhix
θ,Σ
hi

∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ (1 + εh,m)

∥∥∥∥∥
k∑

i=1

φhix
θ,Σ
hi

∥∥∥∥∥

2

Σ−1
h,k−1
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≤ 8(1 + εh,m)H2 log

(
2T det(Σh,k−1)1/2 det(λId)

−1/2

δ

)

≤ 8(1 + εh,m)H2

[
d

2
log (1 + εh,m) +

m

2
log

(
1 +

(k − 1)L2
φ

mλ

)
+ log

(
2T

δ

)]
.

By Lemma 4.10.7, the ε-covering number of Oh+1, denoted as Nε, is upper bounded by

logNε ≤ d log




6H
√

(λ+KL2
φ)kd+ 3

√
λγmax(δ)

ελ


+ (2d+ 1)m · log

(
9kd/λ2ε2

)
.

Taking a union bound over the at most Nε different elements in the ε-covering, we know

that there exists (θ,Σ) ∈ Oh+1 such that ‖θ − θh+1,k‖ ≤ ε and ‖Σ − Σ̃−1
h,k−1‖ ≤ ε, and

with probability at least 1− δ/2T ,

∥∥∥∥∥
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V h+1,k(s

′)
])
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 2

∥∥∥∥∥
k∑

i=1

φhix
θ,Σ
hi

∥∥∥∥∥

2

Σ̃−1
h,k−1

+ 2

∥∥∥∥∥
k∑

i=1

φhi

(
xθ,Σhi − x

θh+1,k,Σ̃
−1
h,k−1

hi

)∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 16(1 + εh,m)H2

[
d

2
log (1 + εh,m) +

m

2
log

(
1 +

kL2
φ

mλ

)
+ log

(
2TNε
δ

)]

+ 2

∥∥∥∥∥
k∑

i=1

φhi

(
xθ,Σhi − x

θh+1,k,Σ̃
−1
h,k−1

hi

)∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 16(1 + εh,m)H2

[
d

2
log

(
1 +

KL2
φ

mλ

)
+
m

2
log

(
1 +

kL2
φ

mλ

)

+ d log




6H
√

(λ+KL2
φ)kd+ 3

√
λγmax(δ)

ελ


+ (2d+ 1)m · log

(
9kd/λ2ε2

)

+ log

(
2T

δ

)]
+ 2

∥∥∥∥∥
k∑

i=1

φhi

(
xθ,Σhi − x

θh+1,k,Σ̃
−1
h,k−1

hi

)∥∥∥∥∥

2

Σ̃−1
h,k−1

. (4.16)
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Using the fact that ‖θ − θh+1,k‖ ≤ ε and ‖Σ − Σ̃−1
h,k−1‖ ≤ ε, the last quantity can be

bounded with Lemma 4.9.9 as follows.

∥∥∥∥∥
k∑

i=1

φhi

(
xθ,Σhi − x

θh+1,k,Σ̃
−1
h,k−1

hi

)∥∥∥∥∥
Σ̃−1
h,k−1

≤ kLφ√
λ

sup
i

∣∣∣∣x
θ,Σ
hi − x

θh+1,k,Σ̃
−1
h,k−1

hi

∣∣∣∣

=
kLφ√
λ

sup
i

∣∣∣V θ,Σ
hi (sh+1,i)− V h+1,i(sh+1,i)− Es′|shi,ahi

[
V θ,Σ
hi (s′)− V h+1,i(s

′)
]∣∣∣

≤ 2kLφ√
λ

sup
s,a

∣∣∣Qθ,Σ
h+1,k(s, a)−Qh+1,k(s, a)

∣∣∣

≤
8H2kL2

φ

√
ε

(αU − αL)
√
λ
. (4.17)

Combining (4.16) and (4.17), with probability at least 1− δ/2T ,

∥∥∥∥∥
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V h+1,k(s

′)
])
∥∥∥∥∥

2

Σ̃−1
h,k−1

≤ 16(1 + εh,m)H2

[
d

2
log

(
1 +

KL2
φ

mλ

)
+
m

2
log

(
1 +

kL2
φ

mλ

)

+ d log




6H
√

(λ+KL2
φ)kd+ 3

√
λγmax(δ)

ελ


+ (2d+ 1)m · log

(
9kd/λ2ε2

)

+ log

(
2T

δ

)]
+

128H4k2L4
φε

(αU − αL)2λ
.

By picking ε = min
{

(αU−αL)2λ

128H4k2L4
φ
, 1, H

3
, αU − αL

}
and recalling the definition of parame-

ters in Section 4.9.1, we can conclude that there exists absolute constant C such that for

any cβ > C,

∥∥∥∥∥
k−1∑

i=1

φhi
(
V h+1,k(sh+1,i)− Es′|shi,ahi

[
V h+1,k(s

′)
])
∥∥∥∥∥

Σ̃−1
h,k−1
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≤ cβ ·HLdLλ
√

(1 + εh,m)ι ≤
√
βh(δ).

Plugging into (4.13) concludes the proof.

Lemma 4.9.9 ([Zanette et al., 2019, Lemma E.4]). Using the same notation as in Lemma

4.9.8 but suppressing indices. Suppose we have (θ1,Σ1) ∈ O and (θ2,Σ2) ∈ O such that

‖θ1 − θ2‖ ≤ ε and ‖Σ1 −Σ2‖ ≤ ε with ε ≤ min{1, H
3
, αU − αL}, then

sup
s,a

∣∣∣Qθ,Σ(s, a)−Qθ′,Σ′(s, a)
∣∣∣ ≤ 4H2Lφ

√
ε

αU − αL
.

Lemma 4.9.10 (Boundedness Induction). Condition on event GQh+1,k and assume that

∣∣∣φh(s, a)>
(
ηhk + ξhk + λ

?

hk

)∣∣∣ ≤
(√

νh(δ) +
√
γh(δ)

)
‖φh(s, a)‖Σ̃−1

h,k−1

where λ
?

hk is defined in (4.12) with π = π?. Then the event GQh,k holds.

Proof. We break into cases depending on whether the feature is large.

Case 1 (large feature): ‖φh(s, a)‖Σ̃−1
h,k−1

≥ αU . By definition of our Q function in

(4.3.3), 0 ≤ Qhk(s, a) ≤ H − h+ 1. Given that 0 ≤ Q?
h(s, a) ≤ H − h+ 1,

∣∣Qhk(s, a)−Q?
h(s, a)

∣∣ ≤ H − h+ 1 ∀(s, a) ∈ S ×A.

Case 2 (small feature): ‖φh(s, a)‖Σ̃−1
h,k−1

≤ αL. By definition of our Q function in

(4.3.3), Qhk(s, a) = φh(s, a)>θhk. Applying Lemma 4.9.5 and condition on the event

GQh+1,k, ∀(s, a) ∈ S ×A,

∣∣Qhk(s, a)−Q?
h(s, a)

∣∣ = Es′|s,a
[
V h+1,k(s

′)− V ?
h+1(s′)

]
+ φh(s, a)>

(
ηhk + ξhk + λ

?

hk

)

≤ H − t+
(√

νh(δ) +
√
γh(δ)

)
‖φh(s, a)‖Σ̃−1

h,k−1
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≤ H − t+
(√

νh(δ) +
√
γh(δ)

)
αL

≤ H − t+ 1.

Case 3 (medium feature): αL < ‖φh(s, a)‖Σ̃−1
h,k−1

< αU . By definition of our Q func-

tion in (4.3.3), Qhk(s, a) = qQ1 + (1 − q)Q2 for some 0 < q < 1 and Q1, Q2 such

that

|Qi(s, a)−Q?
h(s, a)| ≤ H − h+ 1 ∀(s, a) ∈ S ×A, i = 1, 2.

Triangle inequality implies that ∀(s, a) ∈ S ×A,

∣∣Qhk(s, a)−Q?
h(s, a)

∣∣ ≤ q |Q1(s, a)−Q?
h(s, a)|+ (1− q) |Q2(s, a)−Q?

h(s, a)|

≤ H − h+ 1.

Lemma 4.9.11 (Good Event Probability). There exists absolute constant C such that for

any cβ > C and K > 0, δ ∈ (0, 1), if we set the parameters as in Section 4.9.1, then with

probability at least 1− δ we have ∩k≤KGk.

Proof. Let δ′ = δ/K and δ′′ = δ′/2H = δ/2T , by union bound it suffices to show that for

each k ∈ [K], Gk happens with probability at least 1−δ′. We consider backward induction

over step h ∈ [H].

As the base case, QH+1,k = Q?
H+1 = 0 so we get GQH+1,k, we can invoke Lemma 4.9.6

and get GλHk. At the same time, we invoke Lemma 4.9.7 and get GξHk with probability

at least 1 − δ′′. Moreover, by inspection we see that ηHk = 0 so we get GηHk. Now,

conditioning on GQH+1,k ∩ GλHk ∩ GξHk ∩ GηHk, we invoke Lemma 4.9.10 and get GQH,k with

probability at least 1 − δ′′. Next we repeat the process starting with GQH,k. Invoke Lemma

4.9.6 and Lemma 4.9.7 to get GλH−1,k and GξH−1,k with probability at least 1−δ′′. Condition

on GQH,k ∩ GξHk we invoke Lemma 4.9.8 and get GηH−1,k with probability at least 1 − δ′′.
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Then, condition on GQH,k ∩ GλH−1,k ∩ GξH−1,k ∩ GηH−1,k, we invoke Lemma 4.9.10 and get

GQH−1,k. To sum up, we get P(Gh−1,k|Gh,k) ≥ (1 − δ′′)2 ∀h ∈ [H]. As a result, P(Gk) ≥

(1− δ′′)2H ≥ 1− δ.

4.9.3 Regret Bounds

In this section, we show that the regret of S-RLSVI is bounded with high probability. We

begin with two lemmas that will prove useful for later proofs. The first lemma shows that

the estimated value functions are optimistic with at least constant probability, while the

second lemma bounds a summation term that will appear when bounding regrets.

Lemma 4.9.12 (Optimism). For any episode k, if 0 < δ < Φ(−1)
2

,

P(V 1k(s1k)− V ?
1 (s1k) ≥ 0|Hk) ≥

Φ(−1)

2
.

Proof. The proof is essentially the same as the proof of [Zanette et al., 2019, Lemma F.2]

so is omitted.

Lemma 4.9.13 (Warmup Bound).

K∑

k=1

H∑

h=1

H1{‖φhk‖Σ̃−1
h,k−1

> αL} ≤
H∑

h=1

2H

α2
L

(1 + εh,m)m̃h.

Proof.

K∑

k=1

H∑

h=1

H1{‖φhk‖Σ̃−1
h,k−1

> αL}

= H

K∑

k=1

H∑

h=1

1

{‖φhk‖Σ̃−1
h,k−1

αL
> 1

}

= H

K∑

k=1

H∑

h=1

1




‖φhk‖2

Σ̃−1
h,k−1

α2
L

> 1
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≤ H

K∑

k=1

H∑

h=1

min



1,
‖φhk‖2

Σ̃−1
h,k−1

α2
L





(a)

≤
K∑

k=1

H∑

h=1

H

α2
L

min{1, ‖φhk‖2
Σ̃−1
h,k−1

}

(b)

≤
H∑

h=1

2H

α2
L

(1 + εh,m)

[
d log (1 + εh,m) +m log

(
1 +

KL2
φ

mλ

)]

=
H∑

h=1

2H

α2
L

(1 + εh,m)m̃h.

In the derivation, step (a) uses the fact that α2
L ≤ 1 and step (b) uses Lemma 4.7.6.

The following key lemma provides an upper bound on the sum of estimation error

V 1k(s1k)− V πk
1 (s1k), where πk is the policy according to S-RLSVI before episode k.

Lemma 4.9.14 (Bound on Estimation). For any 0 < δ < 1, it holds with probability at

least 1− δ/2 that

K∑

k=1

(
V 1k(s1k)− V πk

1 (s1k)
)

= Õ
(

H∑

h=1

(√
νh(δ) +

√
γh(δ)

)√
(1 + εh,m)Km̃h

+
H∑

h=1

H

α2
L

(1 + εh,m)m̃h

)
.

Proof. The proof proceeds by induction over step h ∈ [H]. Let Gk = ∩l≤kGl measurable

with respect toHk. Consider a generic time step h, we will have either ‖φhk‖Σ̃−1
h,k−1

≤ αL,

denoted as Shk, or ‖φhk‖Σ̃−1
h,k−1

> αL, denoted as Schk. Under Shk, the estimated value

function is linear. Under Schk, we can still have an upper bound H on the difference in

estimated and true value function by conditioning on Gk. Therefore,

1{Gk}
(
V hk(shk)− V πk

h (shk)
)

= 1{Gk}
([
V hk(shk)− V πk

h (shk)
]
1{Shk}+

[
V hk(shk)− V πk

h (shk)
]
1{Schk}

)

= 1{Gk}
([
φ>hkθhk −Qπk

h (shk, ahk)
]
1{Shk}+

[
V hk(shk)− V πk

h (schk)
]
1{Schk}

)
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≤ 1{Gk}
([
φ>hkθhk −Qπk

h (shk, ahk)
]
1{Shk}+H1{Schk}

)
.

The first term we bound by applying Lemma 4.9.5 and condition on Gk.

φ>hkθhk −Qπk
h (shk, ahk)

≤ Es′|shk,ahk
[
V h+1,k(s

′)− V πk
h+1(s′)

]
+ φ>hk

(
ηhk + ξhk + λ

πk
hk

)

≤ Es′|shk,ahk
[
V h+1,k(s

′)− V πk
h+1(s′)

]
+
(√

νh(δ) +
√
γh(δ)

)
‖φhk‖Σ̃−1

h,k−1
. (4.18)

Now define

ζ̇hk
def
= 1{Gk}1{Shk}

(
Es′|shk,ahk

[
V h+1,k(s

′)− V πk
h+1(s′)

]

−
[
V h+1,k(sh+1,k)− V πk

h+1(sh+1,k)
]
)

(4.19)

Observe that {ζ̇hk} is a martingale difference sequence bounded by 2H . Applying Azuma-

Hoeffding we have with probability at least 1−δ/4,
∑K

k=1

∑H
h=1{ζ̇hk} = Õ(H

√
T ). Now,

combining (4.18) and (4.19), we have

1{Gk}
(
V hk(shk)− V πk

h (shk)
)
≤ 1{Gk}

(
[
V h+1,k(sh+1,k)− V πk

h+1(sh+1,k)
]
1{Shk}

+
(√

νh(δ) +
√
γh(δ)

)
‖φhk‖Σ̃−1

h,k−1
1{Shk}+H1{Schk}

)
+ ζ̇hk.

Induction gives

1{Gk}
(
V hk(shk)− V πk

h (shk)
)

≤ 1{Gk}
H∑

h=1

((√
νh(δ) +

√
γh(δ)

)
‖φhk‖Σ̃−1

h,k−1

(
h∏

h′=1

1{Sh′k}
)
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+H1{Schk}
(
h−1∏

h′=1

1{Sh′k}
))

+
H∑

h=1

ζ̇hk

≤
H∑

h=1

(√
νh(δ) +

√
γh(δ)

)
min{αL, ‖φhk‖Σ̃−1

h,k−1
}+

H∑

h=1

H1{Schk}+
H∑

h=1

ζ̇hk

≤
H∑

h=1

(√
νh(δ) +

√
γh(δ)

)
min{1, ‖φhk‖Σ̃−1

h,k−1
}+

H∑

h=1

H1{Schk}+
H∑

h=1

ζ̇hk.

Therefore,

K∑

k=1

1{Gk}
(
V hk(shk)− V πk

h (shk)
)

≤
H∑

h=1

(√
νh(δ) +

√
γh(δ)

) K∑

k=1

min{1, ‖φhk‖Σ̃−1
h,k−1
}+

K∑

k=1

H∑

h=1

H1{Schk}+
K∑

k=1

H∑

h=1

ζ̇hk

(a)

≤
H∑

h=1

(√
νh(δ) +

√
γh(δ)

)√
K

(
K∑

k=1

min
{

1, ‖φhk‖2
Σ̃−1
h,k−1

})1/2

+
H∑

h=1

2H

α2
L

(1 + εh,m)m̃h +
K∑

k=1

H∑

h=1

ζ̇hk

(b)

≤
H∑

h=1

(√
νh(δ) +

√
γh(δ)

)√
2(1 + εh,m)Km̃h +

H∑

h=1

2H

α2
L

(1 + εh,m)m̃h +
K∑

k=1

H∑

h=1

ζ̇hk.

In the derivation step (a) uses Lemma 4.9.13 and step (b) uses Lemma 4.7.6. The proof is

finished by conditioning onGK = ∩k≤KGk which happens with probability at least 1−δ/4

from Lemma 4.9.11 and the event that
∑K

k=1

∑H
h=1 ζ̇hk = Õ(H

√
T ) with probability at

least 1− δ/4.

The next key lemma provides an upper bound on the sum of pessimism
(
V ?

1 (s1k)− V 1k(s1k))
)
.

Lemma 4.9.15 (Bound on Pessimism). For any 0 < δ < Φ(−1)
2

, it holds with probability

at least 1− δ/2 that
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K∑

k=1

(
V ?

1 (s1k)− V 1k(s1k))
)

= Õ
(

H∑

h=1

(√
νh(δ) +

√
γh(δ)

)√
(1 + εh,m)Km̃h

+
H∑

h=1

H

α2
L

(1 + εh,m)m̃h

)
.

Proof. We prove this Lemma by finding an upper bound for V ?
1 (s1k) and a lower bound

for V 1k(s1k). In this proof, we will have not only random variables ξ but also ξ̃ and ξ

which are i.i.d. copies of ξ. Random variables ξ̃ and ξ have associated good events G̃k
and G

k
defined analogously to Gk. And accordingly we define Gk = ∩l≤k

(
Gl ∩ G̃l ∩ Gl

)
.

Union bound over three set of random variables and Lemma 4.9.11 implies that Gk occurs

with probability 1− δ′ for any δ′ > 0.

The lower bound for V 1k(s1k) is constructed as follows. Let ξhk ∈ Rd ∀h ∈ [H] and

let V ξ
hk be the estimated value function obtained by running Algorithm 5 with non-random

ξhk in place of ξhk. Consider the minimization problem

min
{ξhk}Hh=1

V ξ
1k(s1k)

‖ξhk‖Σ̃h,k−1
≤
√
γh(δ),∀h ∈ [H]. (4.20)

The minimum exists because V ξ
1k(s1k) is a continuous function on ξhk’s which are defined

on a compact set. Let V 1k(s1k) denote the minimum value and {ξ
hk
}Hh=1 denote a mini-

mizer of the optimization problem (4.20). Observe that under Gk , V 1k(s1k) ≤ V 1k(s1k)

because {ξhk}Hh=1 is a feasible solution of problem (4.20).

Next we construct an upper bound for V ?
1 (s1k). Consider drawing i.i.d. copy ξ̃hk

of ξhk’s and run Algorithm 5 again with ξ̃hk in place of ξhk to get new estimated value

functions Ṽhk. Denote as Õk the event that Ṽ1k(s1k) is optimistic. Applying Lemma 4.9.12,

P(Õk) = P
(
Ṽ1k(s1k)− V ?

1 (s1k) ≥ 0|Hk

)
≥ Φ(−1)

2
.
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As a result

(
V ?

1 (s1k)− V 1k(s1k)
)
1{Gk} ≤ Eξ̃|Õk

[
Ṽ1k(s1k)− V 1k(s1k)

]
1{Gk}

≤ Eξ̃|Õk
[
Ṽ1k(s1k)− V 1k(s1k)

]
1{Gk}.

Now we use law of total expectation under G̃k:

Eξ̃
[
Ṽ1k(s1k)− V 1k(s1k)

]

= Eξ̃|Õk
[
Ṽ1k(s1k)− V 1k(s1k)

]
P(Õk) + Eξ̃|Õck

[
Ṽ1k(s1k)− V 1k(s1k)

]
P(Õc

k)

≥ Eξ̃|Õk
[
Ṽ1k(s1k)− V 1k(s1k)

]
P(Õk).

The inequality is because {ξ̃hk}Hh=1 is a feasible solution of problem (4.20). Hence,

(
V ?

1k(s1k)− V 1k(s1k)
)
1{Gk}

≤ 2

Φ(−1)
Eξ̃
[
Ṽ1k(s1k)− V 1k(s1k)

]
1{Gk}

=
2

Φ(−1)

[
V 1k(s1k)− V 1k(s1k)

]
1{Gk}+ ζ̈k

=
2

Φ(−1)

[
V 1k(s1k)− V πk

1 (s1k) + V πk
1 (s1k)− V 1k(s1k)

]
1{Gk}+ ζ̈k

where ζ̈k is defined as

ζ̈k
def
=

2

Φ(−1)

(
Eξ̃
[
Ṽ1k(s1k)

]
− V 1k(s1k)

)
1{Gk}.

Observe that Ṽ1k and V 1k are i.i.d. because ξhk and ξ̃hk are i.i.d.. Therefore, ζ̈k is a

martingale difference sequence bounded by 2H so with probability at least 1− δ′ we have
∑K

k=1 ζ̈k = Õ(H
√
K).

Next, we decompose
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2

Φ(−1)

[
V 1k(s1k)− V πk

1 (s1k) + V πk
1 (s1k)− V 1k(s1k)

]
1{Gk}

=
2

Φ(−1)

[
V 1k(s1k)− V πk

1 (s1k)
]
1{Gk}+

2

Φ(−1)
[V πk

1 (s1k)− V 1k(s1k)]1{Gk}.

The first term can be bounded with Lemma 4.9.14, while the second term can be bounded

following the same reasoning. Thus,

K∑

k=1

(
V ?

1k(s1k)− V 1k(s1k)
)
1{Gk}

≤ 4

Φ(−1)
· Õ
(

H∑

h=1

(√
νh(δ) +

√
γh(δ)

)√
(1 + εh,m)Km̃h

+
H∑

h=1

H

α2
L

(1 + εh,m)m̃h

)
+ Õ(H

√
K).

To conlcude we pick δ′ = δ/6 and take a union bound over two applications of Azuma-

Hoeffding and GK .

Equipped with Lemma 4.9.14 and 4.9.15, we can prove the main theorem on the regret

bound for S-RLSVI. We first restate the theorem.

Theorem 4.5.2. Under Assumption 4.2.1, if we set σ = Õ
(
H3/2LdLλ(1 + εh,m)

)
where

Ld = max
{√

md,Lψ,
Lr
H

}
, Lλ = max{1,

√
λ} αU = 1/Õ(σ

√
d) and αL = αU/2 in

Algorithm 5, then for any 0 < δ < Φ(−1)/2, with probability at least 1 − δ, the total

regret of S-RLSVI is at most Õ
(∑H

h=1 σ
√

(1 + εh,m)dm̃hK
)

. If we further assume that

λ = 1 and Lr, Lψ = Õ(
√
md), and denote εm = maxh{εh,m}, m̃ = maxh{m̃h}. Then

the regret bound can be simplified as Õ
(√

(1 + εm)3md2m̃ ·H4T
)

.

Proof.

Regret(K) =
K∑

k=1

(V ?
1 (s1k)− V πk

1 (s1k))
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=
K∑

k=1

(
V ?

1 (s1k)− V 1k(s1k)
)

+
K∑

k=1

(
V 1k(s1k)− V πk

1 (s1k)
)
.

By Lemma 4.9.11, there exists absolute constant C such that for any cβ > C, if we set the

parameters as described in Section 4.9.1, i.e.,

√
βh(δ)

def
= cβ ·HLdLλ(1 + εh,m)

√
ι = Õ (HLdLλ(1 + εh,m))

√
νh(δ)

def
= 2
√
βh(δ) = Õ (HLdLλ(1 + εh,m))

σ
def
=
√
Hνh(δ) = Õ

(
H3/2LdLλ(1 + εh,m)

)

√
γh(δ)

def
=
√

2dHνh(δ) log(4dT/δ) = Õ
(
σ
√
d
)

αU
def
=

1

4
√
γh(δ)

≤ 1

2
(√

νh(δ) +
√
γh(δ)

) = 1/Õ(σ
√
d)

αL
def
= αU/2

then Lemma 4.9.14 and 4.9.15 imply that with probability at least 1− δ,

Regret(K) = Õ
(

H∑

h=1

(√
νh(δ) +

√
γh(δ)

)√
(1 + εh,m)Km̃h +

H∑

h=1

H

α2
L

(1 + εh,m)m̃h

)

= Õ
(

H∑

h=1

√
(1 + εh,m)γh(δ)Km̃h +

H∑

h=1

H

α2
L

(1 + εh,m)m̃h

)

= Õ
(

H∑

h=1

σ
√

(1 + εh,m)dKm̃h +
H∑

h=1

H

α2
L

(1 + εh,m)m̃h

)

= Õ
(

H∑

h=1

σ
√

(1 + εh,m)dm̃hK +
H∑

h=1

(1 + εh,m)3H4L2
dL

2
λm̃h

)
.

Observe that the second term does not scale with K so is a low order term, we get the

desired bound.
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4.10 Auxilliary Lemmas and Proofs

This section states some auxilliary lemmas and gives their proofs.

Lemma 4.10.1 (Linear Weight and Norm Bound). For a linear MDP, for any policy

π, there exists weights {θπh}h∈[H] such that for any (s, a, h) ∈ S × A × [H], we have

Qπ
h(s, a) = φh(s, a)>θπh . Moreover, ∀h ∈ [H], ‖θπh‖ ≤ Lr +HLψ.

Proof. By the Bellman equation Qπ
h(s, a) = rh(s, a) + Es′|s,a

[
V π
h+1(s, a)

]
we can derive

that

θπh = θrh +

∫
V π
h+1(s)ψh(s).

Since V π
h+1(s) ≤ H ,

‖θπh‖ ≤ ‖θrh‖+H

∫
‖ψh(s)‖ = Lr +HLψ.

Lemma 4.10.2 (Concentration of Self-Normalized Process [Abbasi-yadkori et al., 2011]).

Let {xi}∞i=1 be a real valued stochastic process with filtration {Fi}∞i=1. Let xi be condi-

tionally B-subgaussian given Fi−1. Let {φi}∞i=1 with φi ∈ Fi−1 be a Rd-valued stochastic

process with ‖φi‖ ≤ Lφ. Let Σk = λId+
∑k

i=1 φiφ
>
i . Then for any δ > 0, with probability

at least 1− δ, for all k ≥ 0, we have

∥∥∥∥∥
k∑

i=1

φixi

∥∥∥∥∥

2

Σ−1
k

≤ 2B2 log

(
det(Σk)

1/2 det(λId)
−1/2

δ

)
.

Lemma 4.10.3 ([Zanette et al., 2019, Lemma I.3]). With the above notation,

k∑

i=1

‖φi‖2
Σ−1
k
≤ d.
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Lemma 4.10.4 (Covering Number of Euclidean Ball, [Pollard, 1990, Section 4]). A Eu-

clidean ball of radius B in Rd has ε-covering number at most (3B/ε)d.

Lemma 4.10.5 (Covering Number of Low Rank Matrices). Let Sr = {X ∈ Rd×d : X �

0, rank(X) ≤ r, ‖X‖F ≤ B}. Then the ε-covering number of Sr with respect to the

Frobenius norm is no more than (9B/ε)(2d+1)r.

Proof. [Candès and Plan, 2011, Lemma 3.1] states that the covering number of {X ∈

Rd×d : rank(X) ≤ r, ‖X‖F = 1} is no more than (9/ε)(2d+1)r. The extension to this

lemma is trivial and is omitted.

Lemma 4.10.6. Let V denote the following class of function from S to R

V (·) def
= min{max

a
φ(·, a)>θ + β

√
φ(·, a)>Σ−1φ(·, a), H},

where θ ∈ Rd satisfies ‖θ‖ ≤ L, β ∈ [0, B] and Σ = H + λId where λ > 0,H ∈ Rd×d is

positive semi-definite, has rank at most m, and the Frobenius norm of H satisfies ‖H‖F ≤

K. Moreover, assume that ‖φ(·, ·)‖ ≤ Lφ. Then the ε-covering number Nε of V with

respect to the distance dist(V1, V2)
def
= supx |V1(x)− V2(x)| is upper bounded by

logNε ≤ d log(6L/ε) + (2d+ 1)m · log
(
36KB2L2

φd/λ
2ε2
)
.

Proof. Let V1(·) be parametrized by (θ1,Σ
−1
1 ) = (θ1, (H1+λId)

−1) and V2(·) be parametrized

by (θ2,Σ
−1
2 ) = (θ1, (H2 + λId)

−1) ∈ O. We write

dist(V1, V2) = sup
x
|V1(x)− V2(x)|

= sup
x

∣∣∣∣∣

(
min{max

a
φ(x, a)>θ1 + β

√
φ(x, a)>Σ−1

1 φ(x, a), H}
)

−
(

min{max
a
φ(x, a)>θ2 + β

√
φ(x, a)>Σ−1

2 φ(x, a), H}
) ∣∣∣∣∣
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≤ sup
x

∣∣∣∣∣

(
max
a
φ(x, a)>θ1 + β

√
φ(x, a)>Σ−1

1 φ(x, a)

)

−
(

max
a
φ(x, a)>θ2 + β

√
φ(x, a)>Σ−1

2 φ(x, a)

) ∣∣∣∣∣

≤ sup
x,a

∣∣∣∣∣

(
φ(x, a)>θ1 + β

√
φ(x, a)>Σ−1

1 φ(x, a)

)

−
(
φ(x, a)>θ2 + β

√
φ(x, a)>Σ−1

2 φ(x, a)

) ∣∣∣∣∣

≤ sup
‖φ‖≤Lφ

∣∣∣∣
(
φ>θ1 + β

√
φ>Σ−1

1 φ

)
−
(
φ>θ2 + β

√
φ>Σ−1

2 φ

)∣∣∣∣

≤Lφ
(

sup
‖φ‖≤1

|φ>(θ1 − θ2)|+ β sup
‖φ‖≤1

√
φ>(Σ−1

1 −Σ−1
2 )φ

)

=Lφ‖θ1 − θ2‖+BLφ sup
‖φ‖≤1

√
φ>(Σ−1

1 −Σ−1
2 )φ. (4.21)

Let f(H)
def
= φ> (H + λId)

−1 φ where ‖φ‖ ≤ 1, then

∂f(H)
∂Hij

= −φ> (H + λId)
−1 Eij (H + λId)

−1 φ where Eij is a d× d matrix whose value is

all 0 except the entry on the ith row and jth column which is 1. Hence,

∣∣∣∣
∂f(H)

∂Hij

∣∣∣∣ ≤ ‖φ> (H + λId)
−1 ‖2 ≤ 1

λ2
.

Therefore,

φ>(Σ−1
1 −Σ−1

2 )φ = f(H1)− f(H2)

≤ 1

λ2
‖vec(H2 −H1)‖1 ≤

d

λ2
‖H1 −H2‖F . (4.22)

Combining (4.21) and (4.22), we have

dist(V1, V2) ≤ Lφ‖θ1 − θ2‖+

√
B2L2

φd‖H1 −H2‖F
λ2

. (4.23)

121



Now, let Cθ be a ε/(2Lφ)-cover of {θ ∈ Rd : ‖θ‖ ≤ L} with respect to the 2-norm,

and CH be a λ2ε2/(4B2L2
φd)-cover of {H ∈ Rd×d : H � 0, rank(H) ≤ r, ‖H‖F ≤ K}

with respect to the Frobineus norm. Lemma 4.10.4 and Lemma 4.10.5 yield that

|Cθ| ≤ (6LLφ/ε)
d, |CH| ≤

(
36KB2L2

φd/λ
2ε2
)(2d+1)m

.

By (4.23), for any V1 ∈ V parametrized by θ1 and H1, there exists θ2 ∈ Cθ and H2 ∈ CH
such that V2 parametrized by θ2 and H2 is within ε distance to V1. Hence,

logNε ≤ log |Cθ|+ log |CH| = d log(6L/ε) + (2d+ 1)m · log
(
36KB2L2

φd/λ
2ε2
)
.

Lemma 4.10.7. Let O denote the following set

O
def
= {θ ∈ Rd,Σ ∈ Rd×d : ‖θ‖ ≤ L,Σ = (H + λId)

−1,H � 0,

rank(H) ≤ m, ‖H‖F ≤ K}.

For any O1 = (θ1,Σ1) = (θ1, (H1 + λId)
−1) ∈ O and O2 = (θ2,Σ2) = (θ1, (H2 +

λId)
−1) ∈ O define the distance dist(O1, O2)

def
= max{‖θ1 − θ2‖, ‖Σ1 − Σ2‖}. The ε-

covering number Nε of O with respect to the distance is upper bounded by

logNε ≤ d log(3L/ε) + (2d+ 1)m · log
(
9Kd/λ2ε2

)
.

Proof. By (4.22),

‖Σ1 −Σ2‖2 = max
φ:‖φ‖≤1

{
φ>(Σ1 −Σ2)φ

}
≤ d

λ2
‖H1 −H2‖F . (4.24)

Now, let Cθ be a ε-cover of {θ ∈ Rd : ‖θ‖ ≤ L} with respect to the 2-norm, and CH be
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a λ2ε2/d-cover of {H ∈ Rd×d : H � 0, rank(H) ≤ r, ‖H‖F ≤ K} with respect to the

Frobineus norm. Lemma 4.10.4 and Lemma 4.10.5 yield that

|Cθ| ≤ (3L/ε)d, |CH| ≤
(
9Kd/λ2ε2

)(2d+1)m
.

By (4.24), for any O1 ∈ O parametrized by θ1 and H1, there exists θ2 ∈ Cθ and H2 ∈ CH
such that O2 parametrized by θ2 and H2 is within ε distance to V1. Hence,

logNε ≤ log |Cθ|+ log |CH| = d log(3L/ε) + (2d+ 1)m · log
(
9Kd/λ2ε2

)
.

Lemma 4.10.8 ([Abeille and Lazaric, 2017, Appendix A]). Let ξ ∼ N (0,Σ) for some Σ

that is positive definite. For any δ > 0, with probability at least 1− δ,

‖ξ‖Σ−1 ≤
√

2d log(2d/δ).

4.11 Experiment Details

We first describe how we encode the linear structure in the RiverSwim environment (il-

lustrated in Figure 4.1) in a compact fashion; then we describe the infinite-state Labyrinth

environment in more details and how we encode its linear structure using a finite dimen-

sional feature space. Note the transition probability, rewards and feature map are the same

within each episode in our design, so we may omit the subscript h in notations for brevity.

4.11.1 RiverSwim Environment

This environment is a tabular environment, because it has finite number of states and ac-

tions. Therefore, it can be encoded in a canonical way by setting d = |S|× |A| and letting
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φ indicates each state and action pair. However, we describe in the following how we

compactly encode the linear structure of a n-state RiverSwim environment using feature

dimension d = n+ 1 instead of d = 2n.

Figure 4.4 illustrates how we define ψ, φ, θr to construct the compact representation

of the RiverSwim environment. Let the first n entries of a vector in Rd be indexed by

s ∈ S = {s1, . . . , sn}, and let ei be the standard basis of Rd. Observe that there is one

special state-action pair that will incur reward—swim right at sn. For all other state-action

pairs that do not incur reward, we can set φ(s, a)s′ = P(s′|s, a) and ψ(s′) = es′ to recover

the state transition probabilities, and set θr be zero on the leading n entries to recover the

reward function. We can then employ the last dimension of the feature space to capture

the state transition reward in the special state-action pair. Namely, for swimming right at

sn, let φ(sn, right) = ed, ψ(s′)d = P(s′|sn, right) and θr’s last entry be r = 1 to recover

the state transition probability and the reward under this state-action pair.







s1 1 0 → ψ(s1)
... . . .

...
pL → ψ(sn−1)

sn 1︸ ︷︷ ︸
In

1− pL → ψ(sn)

general ϕ(s,a)





s1 0
...

...
sk P(sk|s,a)
...

...
sn 0

sn +1 0

ϕ(sn, right)





s1 0
...

...
sk 0
...

...
sn 0

sn +1 1

θ r







s1 0
...

...
sk 0
...

...
sn 0

sn +1 1

1

Figure 4.4: ψ, φ, θr for RiverSwim Environment.

4.11.2 Labyrinth Environment

This environment has infinite number of states (N0) and thus the canonical encoding of

tabular environments does not apply. We explain in the following how to encode the

Labyrinth environment as a linear MDP problem with d-dimensional feature space.

Given episode length H and action space A, starting from state 0, the agent will ran-

domly jump among the non-negative integers. Only if the agent is currently at sgoal =
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(H − 1)d ∈ N0 and takes an pre-defined action agoal will it incur a substantial reward

r = 1, otherwise the agent will optionally receive a diminutive auxiliary reward ra. In

general, upon selecting an action, the agent will be transferred to the next state randomly,

and the state transition probability measures are designed (explained below) so that the

probability of arriving at sgoal is very small. However, there is a shortcut from state 0 to

state sgoal. Namely, if the current state is si = (i− 1)d for i ∈ [H], selecting a pre-defined

specific action ai ∈ A will deterministically send the agent to state si + d. Since it is very

unlikely to arrive at sgoal without taking the shortcut and all other actions will only incur

diminutive reward, the optimal strategy is to select these ai at si for i ∈ [H]. Note that

(sH , aH) = (sgoal, agoal).

Our explicit encoding of this environment is as follows:

1. We leave the last H dimensions of the feature space to encode the H shortcut state-

action pairs {(si, ai)}Hi=1 and design ψ, φ, θr as follows:

φ : Each shortcut state-action pair occupies one dimension of the feature space,

i.e., φ(si, ai) = ed−H+i for i ∈ [H].

ψ : For each i ∈ [H], e>d−H+iψ is a probability measure over N0, satisfying the

rule that the agent taking ai at state si will be deterministically transferred to

state si + d. In other words, for each i ∈ [H], e>d−H+iψ(x) = 1 for x = id and

e>d−H+iψ(x) = 0 for all other x.

θr : Set the last entry of θr to 1. If there is auxiliary reward, set the last but one

H − 1 entries to be ra, else set to zero.

2. We now explain how to construct ψ, φ, θ for all other state-action pairs.

φ : We use a surjective function f that maps N0 × A to [d − H] to define the

feature map φ : (s, a) 7→ ef(s,a).
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ψ : N0 → Rd: It suffices to illustrate the measure e>i ψ on N0 for each i ∈ [d−H].

Consider a decaying factor γ ≥ 2, Set a measure such that

e>i ψ(k) =





(γ − 1)/γ(k/i)+1 if k mod i = 0,

0 otherwise.

θr : Set the first d −H entries of θr to be ra if there is auxiliary reward; else set

to zero.

One can check that it satisfies the norm condition of Assumption 4.2.1. The transition

probability and the reward function of this environment are defined using the linearity

condition introduced in Assumption 4.2.1 that associates φ, ψ, θr and P, r. Therefore, the

linearity assumptions in Assumption 4.2.1 are trivially satisfied.

The two configurations of this environment presented in this chapter are:

feature dimension d decay factor γ auxiliary reward ra # actions # steps per episode
100 4 0 3 3
200 2 3× 10−4 3 2

Table 4.1: Labyrinth environment configurations
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