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Abstract

The Rheology of Striated Muscles

Khoi Dac Nguyen

2021

Striated muscles are actuators of animal bodies. They are responsible for several

biomechanical functions critical to survival and these include powering the cardio-

vascular system and modulating the mechanical interactions the body has with its

surroundings. Nearly two centuries of active research on muscle phenomena has led

to detailed insights into its microscopic composition, but accurate predictive models

of muscle at larger scales remain elusive. This thesis reports on efforts to accurately

capture the mechanical properties of striated muscles based on current knowledge of

actomyosin dynamics. Specifically, this thesis derives the rheology of striated mus-

cles from the dynamics. Muscle rheology is a characterization of the forces that it

develops in resistance to externally imposed changes to its length, i.e. its mechanical

behavior as a material. For example, the rheology of elastic solids is stiffness and

that of viscous fluids is a damping coefficient. Detailed analyses of actomyosin dy-

namics suggest that the smallest functional units of striated muscles, half-sarcomeres,

are viscoelastic and can function as either a solid-like struct or a fluid-like damper

depending on time-durations of interest and neural inputs. Such adaptability may

underlie the vastly different biomechanical functions that striated muscles provide to

animal bodies. Furthermore, muscles are active structures because their properties

require metabolic energy and depend on neural inputs. Striated muscles can therefore

exhibit rheologies and functions that elastic springs and viscous fluids cannot. The

analysis presented in this thesis may extend beyond muscles and biomedical applica-

tions. It may help to engineer muscle-like actuators based on principles of tunable

properties and to understand the physics of other materials that can similarly tran-

sition between being solid-like and fluid-like.
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Chapter 1

Introduction

1.1 Overview

Muscles are biological actuators whose actions underlie many functions integral to

animal bodies and can take on specialized forms depending on function [1–3]. Cardiac

muscles form much of a heart’s mass, which allows the heart to pump and circulate

blood throughout the body. Skeletal muscles connect to and pull on bones to control

body posture and movements. Smooth muscles line internal organs, airways, and

vasculature to aid in the transport of air and blood. Applications of muscles in animal

bodies are many, and the dysfunction of any single or a group of muscles relates

to a wide spectrum of neuromuscular and cardiac diseases in humans[4–6]. Better

understanding the internal components of muscles and how they give rise to different

functions will impact the development of biomedical treatments and interventions

against muscle-related diseases. There are many aspects to muscles, including but not

limited to their development, specialization, neural control, and mechanics [1, 6, 7].

This thesis reports on the mechanics of cardiac and skeletal muscle cells, collectively

referred to as striated muscle cells due to a distinctive striation pattern when viewed

under a microscope.

The simplest idealization of striated muscles as a mechanical structure is a force-
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generating motor that pulls on its environment with a constant force dictated by the

nervous system. But this idealization forgoes all mechanical interactions between a

muscle and its environment, which may act to stretch or contract it. These mechan-

ical interactions are metaphorically the first line of defense to environmental inputs

because they can respond faster than the nervous system that is limited by trans-

mission delays [8–10]. They constitute the biomechanical properties often associated

with muscles, namely the elastic stiffness needed to maintain body postures and vis-

cous damping needed to dissipate kinetic energy [8, 11–13]. The study of a muscle’s

mechanical interactions with its environment is its material rheology and puts forth

a more general and, as will be shown, more powerful idealization of striated muscles

as both a material and a force-generating motor.

This thesis reports on efforts aimed at understanding and characterizing the ma-

terial components of striated muscles that may help to generate better predictive

muscle models to be used in biomedical applications. Unlike many materials, striated

muscles are also active tissues with properties that vary considerably with neural

inputs. As a result, they can exhibit rheologies not found in passive materials and

can provide biomechanical functions that other tissues cannot. The thesis provides

mathematical analyses that connect two classes of muscles models operating on vastly

different size scales, macroscopic models based on phenomenological data [7] and mi-

croscopic models based on the mechanochemical dynamics of molecular motors that

ultimately drive muscle forces [14, 15].

1.2 Motivations

1.2.1 Muscle function

The neural control of a muscle’s rheology bridges together the multiple biomechanical

functions that it provides [16]. At one extreme, a muscle may function as a solid-
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like strut to stiffen a joint and to allow for efficient energy storage in the connecting

tendons [8, 11]. At another extreme, it may function as a viscous fluid to safely dis-

sipate excessive kinetic energy or to yield and minimally resist a motion antagonist

to its line of action [12, 13, 17]. In general, when held at a constant neural input,

muscles exhibit every viscoelastic intermediate between the extremes depending on

the input [18–22]. But, under dynamic modulation of neural inputs, muscles can do

more than passively resist perturbations and actively perform mechanical work on

their surroundings to function, for example, as controlled brakes and motors [23–25].

Understanding the types of functions that may arise from the control of a muscle’s

rheology would have broad applications in multiple communities. In biomedical sci-

ences, it can help design rehabilitation strategies against the loss of motor control in

patients and thereby provide quality-of-life improvements in clinical settings [4]. And

in animal biomechanics, it can provide models for neuromechanical interactions that

are currently lacking in current models and motivate new theory-driven experiments

that probe deeper into a muscle’s contractile machinery [1, 26].

1.2.2 Design of actuators from tunable materials

Soft materials are often the mechanical interfaces between an actuator and its environ-

ment but the materials themselves, like muscles, can also actuate if their properties

are dynamically tuned by an external stimulus [27–29]. This type of actuation is

possible because changes in properties such as stiffness, damping, or a generalized

impedance are often coupled with energy consumption that can translate to net me-

chanical work. Actuation by soft materials is the central idea of soft robots that

locomote around without using heavy and structurally rigid mechanical components

[28–30]. In principle, many soft materials can actuate, including shape memory al-

loys, dielectric elastomers, and magnetorheological fluids by timely control of their

rheology [27, 31, 32], and some have already been implemented in soft robots [29].
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The stimulus controlling the rheology depends on the soft material and may be pres-

sure, current, magnetic fluid, or some other physical input. A framework that maps

material rheology to a desired actuation efficiently implement control schemes for soft

robots, however, remains to be developed. Current efforts consist of solving compu-

tationally difficult models or restricting the soft robot to quasi-static motion in a

structured environment [30, 33], which preclude the ability to dynamically adapt and

navigate uncertain environments. Muscle is a prime biological example of actuation

by soft materials and studying its intricacies is likely to motivate and provide valuable

insights towards developing a more general framework.

1.2.3 Physics of fluid-solid transitions

Materials that can transition between solid-like and fluid-like behaviors have tunable

rheologies and are an active area of research in the field of soft matter [34]. Specifically,

a universal jamming transition is hypothesized to underlie how these materials solidify

and fluidize [35]. Muscles are active and biological structures that can solidify and

fluidize [16], and so are passive and inanimate structures such as sand piles and

cornstarch slurries often used in classroom demonstrations [36]. The constituents of

these examples surely differ but the hypothesized jamming transition suggests that

their governing dynamics are similar and driven by the same set of physical principles.

Muscles provide a unique set of lenses with which to view these physical principles.

The degree with which we can experimentally manipulate and image in real-time each

constitutive unit of a muscle is likely unmatched by any biological material [37, 38].

Fluid-solid transitions are physical processes observed in a whole class of materials

and not just of muscles [16, 34]. A muscle’s tunable rheology ought to be understood

in the context of all these materials and of the physical insights that each provides.
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1.3 Outline and Scope

The thesis is structured as a series of stand-alone chapters that each introduce the

requisite tools and concepts.

Chapter 2 - Rheology of actomyosin crossbridge ensembles

One class of muscle models idealizes striated muscle forces as resulting from the col-

lective behavior of an ensemble of stochastically cycling crossbridges. This chapter

examines multiple ensemble crossbridge models of varying complexity to derive the

rheology that emerges from their dynamics. The chapter shall show that the ensemble

rheology comprises of exponential modes of stress relaxation.

Chapter 3 - Rheological basis of skeletal muscle work loops

This chapter presents a general framework that adapts current oscillatory rheologi-

cal characterizations to account for a time-varying external stimulus. It postulates

that the rheology under a time-varying stimulus can be decomposed into basis rhe-

ologies measured under a constant stimulus. Accuracy and feasibility are tested for

using comparisons between predictions of this framework and work loop data of fish

(sculpin) abdominal muscles.

Chapter 4 - The role of filament compliance in sarcomeric viscoelasticity

A property of ensemble crossbridge models analyzed in Chapter 2 is that the timescales

of the exponential modes are independent of ensemble size, which prevents any fluid-

to-solid transitions in such models. Chapter 4 shows that introducing thick and thin

filament compliances allows for crossbridge-crossbridge interactions that lead to en-

semble size-dependent timescales. It examines the feasibility of such a mechanism

using estimates of sarcomere parameters.
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Chapter 5 - Conclusions and future directions

The final chapter summarizes the findings of this thesis. It also discusses the author’s

opinion on potential research directions that the thesis would be of value towards.
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Chapter 2

Rheology of crossbridge ensembles

2.1 Abstract

How muscle’s bulk material properties emerge from the ensemble dynamics of molec-

ular motors is a longstanding question. Muscle’s rheology, how it responds when

externally perturbed, is crucial for animal motor control. Classical descriptions of

the bulk rheology in terms of force-length or force-velocity relationships capture only

part of muscle’s perturbation response and we currently lack an understanding of

the emergent properties arising from the microscopic actomyosin crossbridge dynam-

ics. In particular, although much is known about the microscopic machinery, current

mathematical models that describe the behavior of a population or an ensemble of

crossbridges are plagued by an excess of parameters and computational complexity

that limits their usage in large-scale musculoskeletal simulations. In this chapter, we

examine models of crossbridge dynamics of varying complexities and show that the

emergent rheological response of an ensemble of crossbridges can be simplified to few

dominant time-constants associated with intrinsic dynamical processes. For the two-

state crossbridge model, we derive exact analytical expressions for the bulk rheology

and find that the ensemble behavior is characterized by a single time-constant. For

up to five-state crossbridge models, we need at most three time-constants to capture
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the ensemble behavior. Our results yield simplified models comprising of discrete ex-

ponential relaxations for muscle’s bulk rheological response that can be readily used

in large-scale simulations without sacrificing the model’s interpretation in terms of

the underlying crossbridge dynamics.

2.2 Introduction

Muscle exerts force when it is neurally stimulated and also when its length is externally

perturbed [7, 26]. The dynamics of the perturbation response is crucial for motor

control because it enables faster-than-reflex response to unexpected perturbations

[1, 8, 9, 16, figure 2.1a]. Like most soft materials, muscle’s perturbation-induced

stress decays over time [15, 16], and the timescales involved in the decay affect the

functional role of muscle. On shorter periods than the decay time, muscle behaves

like an elastic solid body that resists stretching and could help elastic energy storage

in series elements like tendons [8, 11]. Over longer periods than the decay time,

muscle dissipates stress somewhat like a viscous liquid, and enables rapid postural

changes and kinetic energy dissipation [12, 13]. Unlike passive materials, muscle’s

stress decay is affected by the neurally regulated active molecular interactions of

myosin motors with actin filaments [39]. Thus, understanding muscle’s emergent

rheological response due to the underlying molecular machinery helps us understand

how muscle contraction affect animal motor function [8, 16, figure 2.1a].

Muscle properties such as short-range stiffness, viscous damping, loss modulus,

and storage modulus are examples of bulk rheological properties [13, 40, 41], and

analogous to similar characterization of passive materials [42] and active materials

[43, 44]. In muscle, the bulk rheology arises from contributions of its passive tissues,

geometry, and internal molecular machinery [6, 45]. The mapping from the micro-

scopic dynamics of the molecular machinery to its contributions to bulk properties
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remains incomplete, however, and this gap is exemplified by the split between two

classes of widely used muscle models. Namely, macroscopic phenomenological models

and microscopic mechanochemical models that idealize muscles as one-dimensional

structures.

Phenomenological models inspired by A.V. Hill’s work are widely used to quan-

titatively describe muscle’s force production capabilities [7, 46–48]. These models

incorporate an active contractile element, a parallel material element that is often

modeled as a passive elastic or viscoelastic material, and series elasticity that cap-

tures tendon and other passive tissue compliance [figure 2.1b]. The passive paral-

lel element represents non-contractile tissues and the intramuscular fluid that have

well-known effects on the contractile force capacity of muscle [45]. But muscle’s

perturbation response is dominated by the active contractile element except under

extreme eccentric conditions where the passive parallel element is important [46, 49].

In Hill-type models, the perturbation response of the active element are represented

by isometric force-length and isotonic force-velocity properties and its interactions

with the series elasticity [7, 48]. Although force-length and force-velocity properties

accurately capture the perturbation response under specific motor contexts [7], they

fail under in vivo situations like locomotion where non-isometric and non-isotonic

conditions are commonplace [50–54], leading to transient and non-steady perturba-

tion responses [figure 2.1b]. Furthermore, parameters in phenomenological models

do not lend themselves to interpretation in terms of known mechanochemical pro-

cesses within muscle. Despite these shortcomings, phenomenological models remain

the most viable means to perform large-scale biomechanical simulations and optimal

control calculations because of their low computational burden and ease of implemen-

tation [55–57].

The flip side to phenomenological models are those that incorporate the current

state of understanding of the microscopic mechanochemical cycles that drive muscle.
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The hydrolysis of ATP by myosin motors during formation of actin-myosin cross-

bridges underlie active muscle contraction and influence its rheological perturbation

response [14, 15, 58]. Each myosin undergoes the biochemical Lymn-Taylor cycle in

which it attaches to and detaches from actin filaments based on ATP capture, hy-

drolysis, and release of byproducts [14]. There are different modeling approximations

of this cycle that incorporate different numbers of intermediate states [figure 2.1b].

The biochemical Lymn-Taylor cycle is coupled to a mechanical cycle that converts

chemical energy to mechanical work. When attached, each myosin motor pulls on the

actin filament to generate piconewton forces and around 10 nm power strokes. The

collective action of many motors is modeled as an ensemble of stochastically cycling

crossbridges whose force contributions add up [15, 59]. Mechanical perturbation of

the whole muscle ultimately perturbs the mechanochemical crossbridge cycle whose

dynamics are load and strain-dependent [60, 61], which in turn alters the force pro-

duced by the ensemble and, in principle, manifests as bulk rheological properties of

muscle. But crossbridge models employ numerous biochemical parameters that can-

not be directly measured because of which we lack a mechanistic understanding of

muscle’s emergent rheology. This is the so called scale-connection problem.

Addressing the scale-connection problem would overcome many of the shortcom-

ings of both microscopic and macroscopic models, and is a major objective of neu-

romuscular research [26]. The distribution-moment formalism was a crucial step in

on-going efforts to address it and presented a general approach to simplifying mi-

croscopic models without relying on the exact choice of how a crossbridge cycle is

modeled [62–64]. Specifically, the formalism assumed a Gaussian distribution for

the fraction of bound crossbridges at every strain such that the governing ensemble

dynamics is approximated by the dynamics of measurable macroscopic quantities:

stiffness, forces, and elastic energy storage. Thus, it is an approximate yet tractable

mapping from these macroscopic quantities to the ensemble dynamics. But in assum-
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Figure 2.1: Current models of skeletal muscles. (a) An example of the motor function-
alities provided by a muscle’s rheological response to perturbations. (b) Widely used
muscle models can be separated into microscopic biochemical models and macroscopic
phenomenological models. The microscopic models track the dynamics of myosin mo-
tors whereas macroscopic models apply isometric and isometric characterizations and
transient forces to capture the active contractile element. The isometric and isotonic
characterizations are adapted from [figure 8 of 7] and the transient forces are adapted
from [figure 3 of 15]. The current paper seeks to connect the crossbridge cycle dy-
namics to the emergent generalized transient force response beyond the isometric and
isotonic characterizations of muscle.

ing a preset distribution and not one that emerges from the crossbridge dynamics, it

stops short of connecting scales back to the crossbridge cycle. Shortcomings of this

approximation are evident from multiple perturbation experiments which show that

the distribution-moment model does not accurately capture muscle forces, but more
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complex crossbridge models may be able to do so by sacrificing computational speed

[65, 66]. So a gap remains in mapping crossbridge theory to the emergent rheology

of its ensemble.

In this chapter, we connect the dynamics of a single crossbridge to the rheology of

an ensemble that represents a whole sarcomere. In particular, we analyze the ensemble

behavior of several different crossbridge models to identify a minimal parameter-set

that affects their emergent rheology. The paper begins with a brief tutorial on rhe-

ological characterization of materials using complex modulus and dynamic stiffness.

Then we use numerical simulations of large ensembles of crossbridges, ranging in

complexity from two-state to five-state crossbridge models, to identify commonalities

and differences in their rheological response. Next we analytically derive the rheol-

ogy of a two-state crossbridge model and show how a single exponential relaxation

process with one time-constant suffices to capture its rheology, how that relaxation

is related to the crossbridge dynamics, and provide a mechanical interpretation in

terms of elastic and viscous material properties. We then extend the characterization

to more complex crossbridge models in terms of multiple exponential processes and

discuss the implications of our work to the development of computationally efficient

and parametrically parsimonious models that are still interpretable in terms of the

microscopic mechanochemical dynamics of actomyosin crossbridges.

2.3 Mathematical Preliminaries

We focus here on the linear rheological characterization of muscle, which has proven

useful in developing predictive models of muscle behavior [8, 16, 40] and in interpreting

in vivo muscle function for both large and small perturbations [5, 67]. A central

quantity in linear rheology is the material modulus defined as the ratio of the measured

stress to the applied strain. The modulus for muscle depends on the rate at which the

12



Muscle

Lo
ad

 c
el

l

Oscillatory perturbation

Elastic, in-phase perturbation response

Viscous, out-of-phase perturbation response

Viscoelastic perturbation response

S
tr

e
ss

time

S
tr

a
in

D
yn

am
ic

 s
tif

fn
es

s 

K(ω) = bω

K(ω) = k

1

2 Rabbit psoas
muscle

Viscous dashpot

Elastic spring

slope 1 

constant

Frequency (Hz)

K(ω) =
A

L0
E (ω)2 + E (ω)2

Dynamic stiffness:

k

b

(a)

(b) (c)

Applied strain:Stress response: ε(t)σ(t)

ε(t) = ε0 sin(ωt)

σ(t) = ε0E (ω) sin(ωt)

σ(t) = ε0E (ω) cos(ωt)

σ(t) = ε0(E (ω) sin(ωt) + E (ω) cos(ωt))

A

L0

N
/m

m

Figure 2.2: Linear rheological characterization of muscles. (a) Schematic of an exper-
imental setup to measure a muscle’s response to perturbations. (b) For an oscillatory
length perturbation, the linear rheological response is characterized by an elastic
modulus E ′(ω) that measures the in-phase response and a loss modulus E ′′(ω) that
measures the out-of-phase response. A general viscoelastic response has both in-phase
and out-of-phase components. (c) The dynamic stiffness K(ω) is a third oscillatory
rheological characterization. It is constant if the muscle is elastic and linearly propor-
tional to frequency if the muscle is viscous. The dynamic stiffness of a rabbit psoas
muscle is viscoelastic with features more complicated than elastic springs and viscous
dashpots alone. The rabbit psoas plot is adapted from [figure 3 of 41].

strain is applied and varies over time. Using the Laplace or Fourier transform [68],

the applied strain and the resulting stress response can each be decomposed into a

sum of sinusoids of different temporal frequencies, and their ratio yields a frequency-

dependent modulus. This characterization, a core tool in oscillatory rheology [42,

69], provides an interpretation of muscle material properties in terms of frequency-

dependent loss, storage, and complex moduli [16, 41, 70]. If the applied strain is a

small-amplitude sinusoidal wave, then the resulting stress is approximately sinusoidal
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with both in-phase and out-of-phase components with respect to the applied strain

[figure 2.2(a-b)]. The amplitude of the in-phase stress and out-of-phase stress divided

by the applied strain amplitude define the storage modulus E ′(ω) and loss modulus

E ′′(ω), respectively. These moduli are a function of the oscillatory frequency ω. The

complex modulus E∗(ω) = E ′(ω) + iE ′′(ω) is a compact representation of the spring-

like storage modulus and damper-like loss modulus. The dynamic stiffness K(ω)

of sinusoidal analysis is related to the complex modulus as K(ω) = (A/L0)|E∗(ω)|

for a muscle tissue of cross-sectional area A and length L0. If muscle were elastic

like a Hookean spring, then K(ω) is a constant independent of frequency. If muscle

were viscous like a Newtonian fluid, then K(ω) is linearly proportional to frequency.

In reality, muscle is neither extreme and exhibits intermediate viscoelastic behavior

[figure 2.2c].

2.4 Results

2.4.1 Rheology of crossbridge ensembles

We shall use numerical simulations of different types of crossbridge models to compare

and analyze their emergent rheological behaviors. Included in the models considered

is Huxley’s two-state formulation that helped set the foundations for the class of

proposed crossbridge models developed since and its emergent rheology can thus

serve as a point of reference [59]. In it, Huxley idealized crossbridges as independently

cycling elastic springs that stochastically attach to and detach from a rigid thick and

thin filament backbone. The total elastic resistance of a population or ensemble of

these crossbridges is then taken to characterize the active and transient forces of

muscles. When the ensemble is externally perturbed, as in a rheological experiment,

the attached crossbridges elastically resist the perturbation and prevent the thick

and thin filaments from sliding past each other. But because crossbridges eventually
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detach, the elastic resistance will decay in time and lead to a viscous dissipation

of mechanical energy. More recent crossbridge models refine Huxley’s formulation

by incorporating additional attached and detached states, and this introduces new

dynamics to the emergent rheological behavior that we shall examine.

The crossbridge models considered include a three-state, four-state, and five-state

model in addition to Huxley’s two-state model [59, 71–73]. The models were selected

firstly to sample the range of intermediate states found amongst proposed crossbridge

models and secondly to sample the different types of muscle phenomena considered

in the literature. The three-state model of Murase et al., 1986 showed that a sec-

ond attached crossbridge state is necessary to capture the three dominant sinusoidal

processes observed in insect flight muscles [71]. The four-state model of Smith, 1998

proposed a minimal kinetic scheme to capture the force transients resulting from the

phosphate release and ATP capture of the Lymn-Taylor cycle [14, 72]. And lastly,

the five-state model of Lombardi and Piazzesi, 1990 proposed a relatively complex

kinetic scheme to capture the tension transients of a frog skeletal muscle fiber under

steady lengthening that, notedly, incorporated a forced detached state accessible only

when crossbridges are stretched beyond a critical distance. The number of parame-

ters involved for each model are many with 4 for Huxley’s two-state model, 16 for the

three-state model, 17 for the four-state model, and 24 for the five-state model. These

parameters define the neutral length and stiffness of each attached crossbridge state

and the strain-dependent transition rates between internal states. A natural question

that arises is how the emergent ensemble rheology depends on these parameters and,

given such a vast parameter space, whether a parameter-reduction is possible that

yields the same ensemble rheology. We shall address these questions with numerical

simulations and detailed analysis of crossbridge dynamics.

We find that a simple rheology emerges at high and low frequencies regardless

of the number of intermediate states in ensemble crossbridges models and that the
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Figure 2.3: Rheology of the ensemble dynamics of different crossbridge models. (a)
An ensemble of crossbridges operate collectively to model muscle forces. (b) The
frequency-dependent dynamic stiffness of different crossbridge models resembles an
elastic spring at high frequencies and a viscous dashpot at low frequencies. (inset)
Collapse of different models onto equation 2.1 by normalizing the axes. For each
model, the dynamic stiffness is normalized by the value k computed at the highest
frequency. The frequency axis is normalized by a time-constant τ at which the two
asymptotic behaviors match. The gray bars indicate the bandwidth over which the
models deviate by more than 5% from their asymptotic behavior s.

difference between crossbridge models manifest only on intermediate frequencies [fig-

ure 2.3b]. For each model, we compute the collective force response of a crossbridge

ensemble to a step length perturbation and extract the frequency-dependent dynamic

stiffness [Methods 2.7.1]. The dynamic stiffness is constant at high frequencies and
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linearly proportional to ω at low frequencies, i.e. the dynamic stiffness is approxi-

mately

K(ω) ≈





k for high frequencies,

b · ω for low frequencies.

(2.1)

These asymptotic regimes present a mechanical interpretation as a high-frequency

spring constant k and and low-frequency damping constant b. But the dynamic stiff-

ness at intermediate frequencies is more complicated in their frequency dependence

and differs between the model variants. We calculate a bandwidth in this interme-

diate frequency band where the dynamic stiffness differs by more than 5% from the

asymptotic response [grey bars in inset of figure 2.3b]. The two-state Huxley model

[59] has the smallest bandwidth, whereas the 4-state model [72] has the largest band-

width of over five orders of magnitude [figure 2.3b, inset]. Greater the bandwidth,

the more numerically ’stiff’ the model is, and thus greater the computational burden

for simulation. This is because the largest time-step that can used in numerical in-

tegration of the model’s differential equations is governed by the high-frequency end

of the bandwidth, whereas the duration of time needed for the transient responses to

settle down is governed by the low-frequency end of the bandwidth.

2.4.2 Rheology of the generalized two-state crossbridge model

We analytically derive the rheology for the two-state crossbridge ensemble to examine

the rheological features at intermediate frequencies that are not captured by the high

and low frequency asymptotes (Eqn. 2.1). We refer to [72] for a conceptually identical

but more general derivation of a four-state crossbridge model while we focus here on

the simpler two-state variant to demonstrate how modeling choices lead to different

rheological features.

Two-state crossbridges in the ensemble cycle between making and breaking bonds

between rigid thick and thin filaments. The attachment rate f(x) and detachment

17



rate g(x), to form and break bonds, respectively, are functions of the distance x

between the location of the myosin motor on the thick filament and the nearest

binding site on the thin filament. At every distance x and time t, the proportion of

attached crossbridges is n(x, t), also known as the bond distribution, and the detached

proportion is (1−n(x, t)). The bond distribution n(x, t) evolves in time according to

dn(x, t)

dt
= (1− n(x, t))f(x)− n(x, t)g(x). (2.2)

This first-order differential equation has a steady-state bond distribution nss(x) =

f(x)/(f(x) + g(x)) at equilibrium. Starting with this equilibrium bond distribution,

a step length perturbation of amplitude a is delivered at t = 0 to elongate the whole

system and held there. Every crossbridge that was a distance x away from its nearest

binding site is now a distance (x+a) away and the distribution of crossbridges n(x, t)

evolves in time to relax back to its equilibrium state according on equation 2.2. The

response to this step length perturbation is obtained using n(x, 0) = nss(x−a) as the

initial condition and integrating equation 2.2 to find

n(x, t) = nss(x) + (nss(x− a)− nss(x))e−t(f(x)+g(x)). (2.3)

Therefore, n(x, t) exponentially relaxes to its steady-state nss(x) at a rate f(x) +

g(x). We illustrate this relaxation process in figure 2.4a using Huxley’s rate functions

[59]. The force ∆F (t) in response the step length perturbation is determined by the

difference between n(x, t) and its steady state nss(x). In terms of the stiffness λxb per

attached crossbridge in units of [force/length] and crossbridge density M in units of

[length]−1, the force response is,

∆F (t) = Mλxb

∫ ∞

−∞
x(nss(x− a)− nss(x))e−t(f(x)+g(x))dx. (2.4)
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By restricting our attention to the linear regime, i.e. a small perturbation a, the force

response simplifies to

∆F (t) = −Maλxb

∫ ∞

−∞
x
dnss

dx
e−t(f(x)+g(x))dx. (2.5)

This perturbation response may be rewritten as a sum of exponential relaxations

with a strain-dependent relaxation time-constant τ(x) and strain-dependent ensemble

stiffness k(x) that is given by,

∆F (t) = a

∫ ∞

−∞
k(x)e−t/τ(x)dx, (2.6)

k(x) = −Mλxbx
dnss(x)

dx
, and (2.7)

τ(x) =
1

f(x) + g(x)
(2.8)

Therefore, the entire relaxation process may be thought of as being comprised of

an infinity of sub-processes where the strain-dependent stiffness k(x) is the weight

for each relaxation sub-processes. To obtain a dynamic stiffness K(ω), we use the

Laplace transforms of equation 2.6 and of the step length perturbation to arrive at

K(ω) =

∣∣∣∣
∫ ∞

−∞
k(x)

iω

iω + 1/τ(x)
dx

∣∣∣∣ . (2.9)

The integrand is the mechanical impedance of a Maxwell body, a spring mechanically

in series with a dashpot. A mechanical analogy can thus be drawn between ensemble

crossbridge dynamics and Maxwell bodies. The Maxwell spring has a stiffness k(x),

the Maxwell dashpot has a damping coefficient b(x) = k(x)τ(x), and the Maxwell

body exponentially relaxes force just as an ensemble of crossbridges do.

The mechanical analogy with a Maxwell body is demonstrated for the two-state

model using Huxley’s choices for the rate functions f(x) and g(x) [59, figure 2.4b].

19



Rate functions for Huxley’s
two-state crossbridges

h

f(x)

g(x)

ra
te

s 
(1

/s
)

∆
L

(t
)

∆
F

(t
)

(b)(a)

n
(x
,t

)
bo

nd
 d

is
tr

ib
ut

io
n

∆L(t) = a

t > 0for

xdistance
Ensemble perturbation response

t > 0for

∆F (t) = ak(h)e−t/τ(h)

Mechanical interpretation
k(h)b = τ(h)k(h)

0

0 5
time in units of τ(h)

0

0

0

x
distance

0
h

tim
e 

(s
)

0

0.2

0.4

0.6

0.8

1.0

-0.2

-0.4

1.0

0.5

po
st

-p
er

tu
rb

at
io

n

re
sp

on
se

Figure 2.4: The rheology of an ensemble of Huxley’s two-state crossbridges. (a) The
time-evolution of the bond distribution in response to a step length perturbation.
(b) Rheology of an ensemble of Huxley’s two-state crossbridges. The ensemble’s
perturbation response exponentially relax with time-constant τ(h) = 1/(f(h) + g(h))
where f(x) and g(x) are the rate functions and h is the powerstroke distance. A
mechanical interpretation of this single exponential relaxation is of a spring in series
with a dashpot.

The rate functions f(x) and g(x) are

f(x) =





f1x for 0 ≤ x ≤ h,

0 otherwise,

and (2.10)

g(x) =





g2 for x < 0,

g1x for x ≥ 0.

(2.11)

Using these rate functions, the steady-state bond distribution nss(x) is

nss =





f1/(f1 + g1) for 0 < x ≤ h

0 otherwise.

(2.12)

Using equations (2.7 - 2.9), the dynamic stiffness is that of a single Maxwell
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body with stiffness k(h) and damping coefficient b = k(h)/(f(h) + g(h)) = k(h)τ(h).

Huxley’s choices thus lead to an exact correspondence between ensemble crossbridge

dynamics and a single Maxwell body. The rectangular waveform of the steady-state

bond distribution implies that k(x) is a sum of two δ-functions, a negative one at

x = 0 and a positive one at x = h. However, the delta at x = 0 contributes zero

stresses, which implies that only the sub-process at x = h contributes to the stress-

relaxation response and leads to a single Maxwell body. The elastic component of

the frequency-dependent behavior arises because each bound crossbridge is already

modeled as a spring, all of which simply add at high frequencies. On the other hand,

there are no dampers built in to a single crossbridge model. The damper component

only appears when considering the entire ensemble rather than a single crossbridge.

Crossbridges dissipate stored elastic energy as they cycle and this dissipation averaged

over many crossbridges and many cycles manifests as an effective damping coefficient

that depends on the energy that each spring would store and the time it would take

to dissipate that energy. Therefore, the ensemble behavior at low frequencies is that

of a linear damper.

As shown, k(x) of equation 2.7 is well-approximated by a δ-function for Huxley’s

two-state model leading to single sub-process that dominates the entire response.

Thus whether we need the full ensemble model or if we can approximate the response

with just a few discrete relaxation sub-processes depends on whether k(x) shows

localizations in x or not. We hypothesize that, for all crossbridge models considered

in this chapter, the localization is a dominant feature and that only a few discrete

relaxation sub-processes are needed to capture the emergent rheological features on

intermediate frequencies [figure 2.3b]. Because k(x) is proportional to the derivative

of the steady-state bond distribution, its localization and the resulting exponential

sub-process directly equate to either a sharp rising or falling edge of the steady-

state bond distribution, or of multiple bond distributions for crossbridge models with
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multiple attached states. We shall verify the hypothesis by fitting exponential sub-

processes to the dynamic stiffness computed for the crossbridge models and examine

if those fitted processes corresponds to rising or falling edges.

2.4.3 Low-order models of multi-state crossbridge ensembles

Crossbridge dynamics are generally more complex than Huxley’s two-state model and

may have multiple internal states that introduce higher-order dynamics. Nevertheless,

the perturbation force response arises from stretching bound crossbridges and stress

relaxation is because of a redistribution of the crossbridges between the various pos-

sible states. When a crossbridge detaches, it dissipates the energy stored in it due to

the length perturbation as heat, which is dissipated over the timescale for the comple-

tion of full crossbridge cycle. This suggests an approach to tackle the behavior in the

intermediate frequencies when the more detailed crossbridge models deviate from the

simple asymptotic behavior of a Maxwell body. The exact analysis of the generalized

two-state model suggests that under more complicated attachment-detachment dy-

namics, the response would show multiple exponential relaxation sub-processes with

timescales τ corresponding to the most dominant ensemble stiffness k. So we investi-

gated whether a finite number of exponential relaxations can capture their rheologies

in spite of possible complexities, under the hypothesis that a few sub-processes would

dominate the response. We find that just three exponentially relaxing sub-processes

accurately capture the frequency-dependent stiffness over seven orders of magnitude

on the frequency axis [figure 2.5a, Methods 2.7.2, table 2.1].

Huxley’s two state model fit exactly with a single relaxation, consistent with our

earlier derivation. The five-state model appears to be a close fit but instead to two

relaxations. The three- and four-state models are mostly fitted by three relaxations

although there are differences on intermediate frequencies. Our fitting procedure

using four and five exponential relaxations did not generate appreciable better fits
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Figure 2.5: (a) The dynamic stiffness of different crosssbridge ensembles are accu-
rately fitted by at most 3 time-constants, each associated with an exponential process
[See table 2.1 for fitted values]. The traces are vertically shifted for clarity [see sup-
plementary figure 2.6 for an unmodified plot]. (b) Kinetic scheme of a three-state
crossbridge model [71]. The matrix H(x) is a state transition matrix with two non-
zero eigenvalues 1/τA and 1/τB. (c) Examination of the derivatives of the steady-state
distributions shows that the local peaks accurately identifies the time-constants fitted
in table 2.1.

and implies that these crossbridge models incorporate dynamics that cannot be easily

distinguished without a large number of time-constants. Overall, the accurate fits

demonstrates that, although crossbridge models incorporate a vast parameter space,

the rheologies exhibited by their ensemble dynamics are far simpler and dominated
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by only a few exponentially relaxing sub-processes.

The fitting process is a general procedure able to find sub-processes acting on

vastly different timescales and has been applied to the measured rheology of muscles

to identify the dominant sub-processes [41, 74], but how to connect the fitted values to

the cycling of crossbridges remains an open question. We use the three-state model as

a test case to examine the connection [71]. The model exhibits a significant dip in the

dynamic stiffness that is indicative of a negative exponential sub-process that has been

attributed to a delayed tension rise observed in a muscle’s perturbation response [75].

The three-state model has two attached states with steady-state distributions n1,ss(x)

and n2,ss(x) and governed by the kinetic scheme illustrated in [figure 2.5b]. Our earlier

analysis with equation 2.7 suggests that the derivatives of these distributions drive the

perturbation response and that we can heuristically search for local peaks to identify

the dominant sub-processes of the three-state model [figure 2.5c]. Namely, we examine

λ1xdn1,ss(x)/dx and λ2xdn2,ss(x)/dx where λ1 and λ2 are crossbridge stiffnesses for

the first and second attached states, respectively. We find that matching the peaks

of these two curves identifies the fitted time-constants [table 2.2] within a 15% error,

which is remarkably accurate considering that the fitting process parsed frequencies

spanning seven orders of magnitude. This suggests that the fitted sub-processes are

measuring these local peaks in the derivative of the steady-state distributions, which

correspond to the rising and falling edges of steady-state distributions [figure 2.5c].

To be more precise, the curves to examine should be two separate linear combinations

of λ1xdn1,ss(x)/dx and λ2xdn2,ss(x)/dx rather than each independently but our more

detailed analysis show nearly identical results [Appendix 2.8.1].

Our examination of multi-state crossbridge models puts forth the following connec-

tion between the exponential relaxation fitted to muscle rheology and the dynamics of

crossbridge cycling. Namely, each fitted relaxation results from either a sharp rising

or falling edge of the steady-state bond distribution of attached crossbridge states.
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Assuming that most crossbridges attach at positive x, the fitted stiffness is positive

for a falling edge and negative for a rising edge. The fitted time-constant are associ-

ated with the attachment and detachment rates corresponding to the rising or falling

edges of the steady-state bond distributions. Furthermore, because the forces arising

from the edges are modulated by x, the falling edge at larger x can dominate over the

rising edge at smaller x, such as in the case of Huxley’s two-state model. Therefore,

although the bond distributions themselves may be of a complicated functional form

due to the vast parameter space that multi-state crossbridge models tend to require,

the emergent ensemble rheology is simpler and dominated by few rising and falling

edges. This simplification affords a parameter reduction of multi-state crossbridge

models down to two per exponential relaxation, a stiffness and a time-constant, and

will allow us to compute the rheological behavior of ensemble crossbridge models in

large-scale musculoskeletal simulations in a manner as efficient as phenomenological

Hill-type muscle models but without compromising on the mechanistic, crossbridge-

based understanding.

2.5 Discussion

Much like Zahalak’s distribution-moment formalism, our results simplify the com-

plexity of crossbridge models and connect vastly different scales. But we take a step

further and analyze how modeling choices of a single crossbridge cycle give rise to

macroscopically measurable quantities, a muscle’s bulk rheological characterization.

We focused on the dynamic stiffness which generalizes upon notions of elastic stiff-

ness and viscous damping as a viscoelastic property that depend on the time-duration

of interest. We showed with numerical computations that the emergent rheology of

crossbridge ensembles can be accurately fitted by only a few exponential relaxation

processes, without the need for simplifying assumptions about the underlying cross-
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bridge model. The fitting procedure can and has been applied to empirical muscle

data to identify the dominant exponential relaxations [41, 74], and we show that

these relaxation corresponds to either a rising or falling edge in the steady-state bond

distributions.

Exponential relaxations have long been used as phenomenological models of mus-

cle rheology. Fading memory models of cardiac studies [76] and Kawai and Brandt

models [41, 74] are all sums of exponential relaxations. We showed here that expo-

nential relaxations also arise from the rheology of crossbridge ensembles, and there-

fore are a common element connecting the microscopic with macroscopic models of

muscle. When designing crossbridge models, the modeling choices however complex

must map to the exponential relaxations observed in experiments for which three or

four are found to accurately capture a muscle’s rheology depending the muscle type

[41, 74]. Each exponential adds two parameters, a stiffness and a time-constant, so

at most eight parameters are justified from length perturbation experiments alone

and any additional parameters must be estimated from other experiments. The addi-

tional parameters affect forces not included in the linear rheology, namely, nonlinear

rheological features and the active contractile forces that operate in parallel to the

rheology. On the other hand, when modeling the perturbation response of muscle,

exponentials will do as well as detailed crossbridge models but remain grounded to

crossbridge theory. Furthermore, using exponentials to compute a perturbation re-

sponse for any small-amplitude length perturbation can be solved several orders of

magnitude faster than directly solving the PDEs of crossbridge models. This compu-

tation efficiency affords large-scale biomechanical simulations in real-time, a principal

reason why Hill-type muscle models are preferred over detailed crossbridge models in

spite of their shortcomings [55–57].

We use the fact that exponential relaxations underlie the ensemble crossbridge

dynamics to identify the limits of crossbridge theory in capturing muscle rheology.
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One limitation is that exponential relaxations have a finite memory determined by

its time-constant, so an ensemble of crossbridges cannot remember its perturbation

history far beyond its longest time-constant. Residual force enhancement and force

depression are history-dependent phenomena that have implications for the motor

control of muscles [77], and are in clear contradiction with having a finite memory.

In these phenomena, the forces exhibited by a muscle fiber upon being stretched or

shortened to a final length relax towards a value that is persistently higher (force en-

hancement) or lower (force depression) than if the muscle fiber were isometrically held

at the final length. So although forces relax, the muscle fiber always have a memory

of being stretched or shortened however long the experimenter waits, unlike expo-

nentials, which suggests that history-dependent muscle phenomena lie outside the

purview of current crossbridge models. However, such history-dependence parallels

phenomena found in other biological and non-biological materials for which an empiri-

cally derived fractional viscoelasticity aptly captures their perturbation response that

relax as a power-law rather than an exponential [78–80]. Drawing analogies between

muscles and these fractional viscoelastic materials may help to better understand the

physical underpinnings of residual force enhancement and depression in muscles.

A second limitation is the neural control of a muscle’s perturbation response.

Consider a muscle’s perturbation response modeled as a single exponential relaxation

with coefficient k and time-constant τ that now depend on a neural input u. We

argued elsewhere that a requirement on τ is that it increases with neural input u or

intracellular calcium concentration [16]. This is to ensure that the same muscle can

be used as an elastic structure when maximally activated and as a viscous structure

when submaximally activated. We find that the time-constants arising from cross-

bridge ensembles do not follow this trend. In the simplest implementation of neural

control, the number of crossbridges in an ensemble increases with calcium concentra-

tion. However, more crossbridges would increase coefficient k but leave τ unchanged
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because crossbridge cycling is unaffected. Some crossbridge models incorporate faster

crossbridge cycling with higher calcium [63, 64, 81]. While this leads to higher con-

tractile forces, the time-constant would be decrease with higher calcium rather than

increase. These arguments may be seen in equations (2.7 - 2.8) for a two-state cross-

bridge model in which the time-constant does not depend on crossbridge density M

and decreases with higher values of attachment f or detachment g.

The mismatches between exponential relaxations, known muscle phenomena, and

requirements of neural control all suggest that either crossbridge models currently

lack an essential feature or that non-crossbridge elements come into play. There are

multiple possible candidate resolutions that we speculate on, may operate in unison,

and certainly require further experimental studies. Thick and thin filament com-

pliance between neighboring crossbridges can store elastic energy that dissipate far

slower than the crossbridges themselves and affect muscle forces on long experimen-

tal timescales [82–84]. Intersarcomeric dynamics may lead to dynamics not captured

by single sarcomere model such that the number of participating sarcomeres can

drastically alter the rheology of a muscle fiber [85, 86]. Titin can directly modulate

force transmission across a sarcomere and therefore may affect crossbridge dynam-

ics [87, 88]. Neural feedback could enforce time-constants as needed depending on

motor tasks but is limited by transmission delays on the order of 50ms for humans

[9, 10]. All of these possibilities require further research and analysis, but point to a

shortcoming in the current crossbridge theory for muscle forces and rheology.

2.6 Conclusions

In this chapter, we analyze the microscopic models of muscle forces to identify a

minimal parameter-set that captures the bulk rheological properties of muscle and to

provide a mechanistic interpretation of these bulk properties in terms of the micro-
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scopic models. Specifically, we performed numerical simulations of ensemble cross-

bridge models of varying complexities to find a common rheology at asymptotically

high and low frequencies. An in-depth analysis into the simplest two-state crossbridge

model suggests that the common rheological element is an exponential relaxation of

forces, which has an mechanical interpretation as a Maxwell body. We find that

crossbridge models differ only in the number of exponential relaxations and that we

need at most three to accurately capture their rheologies. So although crossbridge

models are complex, their rheologies are more tractable in terms of fewer parameters

and lesser computational burden. Exponential relaxations have long been used as

phenomenological fits to muscle rheology and our results show how they can be inter-

preted in terms of the underlying crossbridges dynamics. Thus, this decomposition

into exponential relaxations is grounded to crossbridge dynamics yet provides new

perspectives into muscle rheology that previously were clouded by the complexity of

crossbridge models.

2.7 Methods

2.7.1 Dynamic stiffness calculation of crossbridge models

We detail here the numerical calculation of dynamic stiffness for ensemble crossbridge

models. Although each model differs in number of internal states, a general differential

equation for the mass balance between states can be written. Let j be the index for

the states, then nj(x, t) is the distribution of crossbridges in the jth state at time

t and with distance x to the nearest binding site. The mass balance will take the

general form

dnj(x, t)

dt
= Pj(x, n1(x, t), n2(x, t), ..., N1(t), N2(t), ...) (2.13)
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where Nj(t) =
∫∞
−∞ nj(x, t)dx is the total proportion of crossbridges in state j and

Pj is a function that depends on the crossbridge model. We use Pj as given by four

different models varying from two to five internal states [59, 71–73].

We impose a step length perturbation of amplitude a and use the output force per-

turbation response to numerically compute each model’s dynamic stiffness. Specifi-

cally, we numerically integrate equation 2.13 subjected to the initial condition nj(x, 0) =

nj,ss(x− a) using the explicit fourth-order Runge-Kutta (RK4) scheme [89]. The in-

tegration takes time steps of size δt and terminates at a finite time T . The output

force perturbation response is a discrete time series ∆Fm indexed in time by m and

calculated as

∆Fm =
∑

j

∫ ∞

−∞
kj(x− x0,j)(nj(x,mδt)− nj,ss(x))dx (2.14)

for stiffness kj and neutral length x0,j that depends on the jth crossbridge state. The

dynamic stiffness K(ω) is then computed in terms of z-transforms as

K(ω) =

∣∣∣∣
∑

m ∆Fmz
−m

∑
m ∆Lmz−m

∣∣∣∣
z=exp(−iωδt)

(2.15)

where ∆Lm is the step length perturbation equal to a for all m ≥ 0 and zero otherwise.

To calculate the dynamic stiffness for Huxley’s two-state model [59] in dimensional

units, we use parameter values (f1, g1, g2) = (15, 4, 85)s−1 provided by (Zahalak and

Ma, 1990) [64]. We also used a crossbridge stiffness kxb = 0.5pN/nm that is consistent

with literature values [72, 73].

2.7.2 Fitting procedure

We detail here the process of fitting exponential relaxations to the dynamic stiffness

of different crossbridge models [figure 2.3d]. We denote ωj as the frequency indexed
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by j and logarithmically sampled from 5∗10−4 Hz to 5∗103Hz. We also denote K(ωj)

as the numerically determined dynamic stiffness at frequency ωj. The objective is to

find N-pairs of parameters (km, τm) indexed by m such that the function

y(ωj) =

∣∣∣∣∣
N∑

m=1

km
iωjτm

1 + iωjτm

∣∣∣∣∣ (2.16)

accurately captures K(ωj) where N is the number of exponential relaxations to fit and

i is the imaginary number. We defined fit to be the N-pairs of parameters (km, τm)

that minimizes the cost

∑

j

(log(y(ωj))− log(K(ωj)))
2 (2.17)

where we use the log function to equally weight behaviors at vastly different frequen-

cies. The fit was performed starting at N = 1 and N is incrementally increased until

there is no appreciable difference between the fits at N and at N + 1.

All optimization procedures are performed using the Python ‘scipy.optimize‘ li-

brary [90].

Model k1 τ1 k2 τ2 k3 τ3

Huxley, 1957 0.39 5.3e-2 - - - -
Murase et al., 1996 0.09 0.59 -0.10 6.8e-2 0.15 3.2e-3
Smith, 1997 0.05 2.0 -0.12 3.6 0.20 1.4e-3
Lombardi et al., 1990 0.18 8.0 0.30 0.28 - -

Table 2.1: Fitted parameters for figure 2.5a. Stiffness values are in units of pN/nm
per crossbridge and time-constants are in units of seconds.
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Figure 2.6: Fitted curves to the dynamic stiffness of different crossbridge models.

Model Fitted time-constants Search using xdnss(x)/dx
Huxley, 1957 5.3e-2 seconds 5.3e-2 seconds
Murase et al., 1996 (0.59 , 6.8e-2 , 3.2e-3) seconds (0.64 , 7.2e-2 , 3.7e-3) seconds

Table 2.2: Comparison of fitted time-constants and time-constants identified by
using local peaks in the derivatives of steady-state bond distributions for a two-state
and a three-state crossbridge model. The peak of xdnss/dx for the two-state model
[equation 2.11] is computed exactly with a time-constant τ = 1/(f1h+g1h) = 5.3e−2
seconds.

2.8 Appendix

2.8.1 Perturbation analysis of three-state crossbridge model

We expand here the generalized two-state analysis to the three-state model by (Murase

et al., 1986) [71] to identify the dominant time-constants in the system and compare

them with the fitted values of table 2.1. In the three-state model, there are two at-
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tached states with bond distributions n1(x, t) and n2(x, t) and a detached state with

distribution n0(x, t). By defining a column vector ~n = [n0, n1, n2]T , the governing

dynamics of the system is given by

d~n(x, t)

dt
= −H(x)~n(x, t) (2.18)

such that n0(x, t) + n1(x, t) + n2(x, t) = 1 (2.19)

and where H(x) is a 3x3 state transition matrix defined by the kinetic scheme of

figure 2.5b. These equations uniquely define the steady-state bond distribution at

equilibrium which we denote as ~nss(x). Specifically, the state transition matrix has

three eigenvector-eigenvalue pairs (~vA(x), 1/τA(x)), (~vB(x), 1/τB(x)), and (~nss(x), 0)

where τA and τB are the two time-constants driving the perturbation response and

~vA(x) and ~vB(x) are unit vectors.

Mirroring the generalized two-state derivation, the perturbation response to a step

length of size a is obtained by setting ~n(x, 0) = ~nss(x− a) as the initial condition to

arrive at

~n(x, t) = ~nss(x) + e−H(x)t(~nss(x− a)− ~nss(x)) (2.20)

= ~nss(x)− ae−H(x)td~nss(x)

dx
(2.21)

where the second equality arises by restricting our attention to small perturbations.

We now expand the matrix-vector multiplication on the RHS using eigendecomposi-

tion of H(x) as

~n(x, t)− ~nss(x) = −a
(
e−t/τA(x)wA(x)~νA(x) + e−t/τB(x)wB(x)~νB(x)

)
(2.22)
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where wA and wB are linear weights that satisfy the linear system

[~νA(x), ~νB(x), ~nss(x)]




wA(x)

wB(x)

0




=
d~nss(x)

dx
. (2.23)

The third linear weight is necessary zero because (~n(x, t) − ~nss(x)) in equation 2.22

must decay to zero and cannot have a component parallel to nss(x) which does not

decay.

The perturbation response is the first moment of Eqn. 2.22 multiplied by a stiffness

vector that maps the bond distributions to forces. It is given in terms of crossbridge

density M , stiffness of the first attached state λ1, and stiffness of the second attached

state λ2 as

∆F (t) = a

∫ ∞

−∞

[
kA(x)e−t/τA(x) + kB(x)e−t/τB(x)

]
dx (2.24)

where kA(x) = −MxwA(x)〈[0, λ1, λ2]T , ~νA(x)〉 (2.25)

and kB(x) = −MxwB(x)〈[0, λ1, λ2]T , ~νB(x)〉. (2.26)

The operator 〈·〉 denotes the dot product between two column vectors. The first

entry in the stiffness vector is set to zero to represent the detached crossbridge state.

Our analysis of the generalized two-state crossbridge model suggests that dominant

time-constants appears where either kA(x) or kB(x) are localized, and we find that

these time-constants do not significantly differ from heuristically using the derivatives

of the steady-state distributions [figure 2.7].
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Figure 2.7: Examination of the local peaks in stiffnesses kA(x) and kB(x) identifies
the dominant time-constants. The stiffnesses are computed using an eigenvector
analysis of the state-transition matrix H(x) and are different from λ1xdn1,ss(x)/dx
and λ2xdn2,ss(x)/dx used in figure 2.5c as a heuristic search. The identified time-
constants do not significantly differ from the values found in figure 2.5c.
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Chapter 3

Rheological basis of skeletal muscle work

loops

3.1 Abstract

How skeletal muscle exerts forces in response to stretch is its rheology, a mechanical

resistance central to animal locomotion and a property subject to control by neural or

electrical stimuli. The plot of forces versus an externally imposed oscillatory stretch

is a closed force-length loop that is a graphical signature of the rheology and is well-

studied under both fixed and time-varying stimuli. Under fixed-stimuli, the oscillatory

stretch probes a constant rheological state of muscle and results in a force-length loop

characteristic of passive materials. But under time-varying stimuli, the rheological

state is changing and the corresponding force-length loop, referred to as a work loop,

exhibits functionally critical features not found in passive materials but which underlie

the mechanical actuation by skeletal muscles. However, how to interpret work loops

and these features as a rheological behavior of skeletal muscle is not well understood.

In this chapter, we hypothesize that work loops emerge by splicing together underlying

fixed-stimuli loops at different junctions. Using published muscle datasets and a

detailed sarcomere model, we find that the hypothesis accurately predicts work loop

shape and, consequently, allows a formulation of skeletal muscle work loops in terms
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of rheological behaviors measured at fixed-stimuli.

3.2 Introduction

Rheology, or how materials respond to being deformed, is a central consideration

for living materials [80, 91, 92]. Many biological tissues may be considered tunable

because their functionality arises from a modulation of their rheological properties by

an external control parameter or a stimulus [93]. One tunable material of considerable

relevance to animals [26, 94], and the object of much engineering mimicry [27, 95, 96],

is skeletal muscle. A skeletal muscle’s rheological behavior is actively regulated by the

nervous system and is crucial for how animals control their body movements [16, 97].

There are several broad groups of experimental characterizations of skeletal mus-

cle rheology that each provide a different cross-sectional view of muscle phenomena.

Isometric and isotonic measurements capture the steady forces developed by muscle

as a function of its length and shortening velocity [7, 98]. Transient forces in re-

sponse to step length, step velocity, and twitch perturbations capture the initial fast

response and history-dependent relaxation to steady-state [15, 51, 99, 100]. Oscilla-

tory rheological experiments, or sinusoidal analysis, measure the frequency-dependent

storage and loss moduli under fixed neural or electrical stimulation and length oscil-

lations [41, 101]. And lastly, work loop analysis capture the mechanical actuation

of muscles when they are simultaneously subjected to time-varying stimulation and

length oscillations [23, 102]. Underlying all these broad groups are biophysical mod-

els of actomyosin crossbridges that form the internal motor machinery of muscle

[15, 59]. The connection of scales between molecular crossbridge dynamics and macro-

scopic rheological characterizations, however, remain difficult owing to the numerous

mechanochemical parameters employed in crossbridge models that cannot be directly

measured. As a result, the broad groups remain as separate and distinct rheological
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characterizations. In this chapter, we hypothesize and test a connection between two

of the broad groups, namely oscillatory rheological experiments and work loops. Such

connections between different rheological characterizations can help illuminate new

understandings of muscle phenomena and, in this case, provide a rheological basis for

the shape of skeletal muscle work loops.

Work loop analysis is prevalently applied to study a skeletal muscle’s forces in

response to an externally imposed oscillatory length perturbation while it is actively

regulated by neural or electrical stimuli [23, 102]. The trajectory obtained by plotting

the imposed oscillatory perturbation with the recorded force response forms the work

loop, which is a graphical signature of the dynamics and work-producing capabilities

of skeletal muscles [26, 98]. The shape of work loops is an important determinant of

the biomechanical functions that the muscle provides [97]. It depends on the precise

timing of the stimulus, the frequency of oscillation, the muscle’s physiological prop-

erties, and other factors that are still vigorously debated [22, 23, 97, 98]. As a result,

we currently lack a cohesive framework to understand and predict the emergence of

complex work loop shapes. For example, two cockroach leg extensor muscles that

appear nearly identical under isometric or isotonic force characterizations generate

loops of markedly different shapes, implying different functional consequences to the

cockroach [24, 25].

The difference between oscillatory rheological experiments and work loop anal-

ysis is that one involves fixed neural or electrical stimulation whereas the other in-

volves time-varying stimuli. A question that arises is if a detailed accounting of the

time-varying stimuli permits a characterization of work loops in terms of rheological

properties measured at fixed-stimuli. The tunable nature of skeletal muscles, how-

ever, presents several hurdles. For example, under fixed-stimuli, a muscle follows

a force-length trajectory that shares similarities with other soft and passive mate-

rials [95, 96, 103, figure 3.1a]. But when the rheology is changing in time due to
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Figure 3.1: Comparison of measured force-length loops in non-tunable and
tunable materials. a, Oscillatory rheology of a passive non-tunable material (pedal
mucus of a terrestrial slug, Limax maximus) for small and large amplitudes [adapted
from 104]. b, Work loops under time-varying stimuli of the wing muscle of a katydid
(Neoconocephalus triops), rabbit latissimus dorsi muscle, and cockroach leg extensor
muscles 178 and 179 [adapted from 23, 24, 98, respectively]. Yellow dots and thick
yellow lines indicate discrete and continuous stimulation, respectively. The loops have
been rescaled for visual comparison. Positive and negative mechanical work output
are shaded green and red, respectively. All loops shown are taken from experimental
measurements.

variable stimuli, the trajectory is far more complex and exhibits loop features like

self-intersections and directional changes between clock-wise and counter-clockwise

loops that passive materials do not show (figure 3.1b). Here, we build upon cur-

rent fixed-stimuli rheological characterizations and admit tunability under a specific

hypothesis and examine to what extent measurements from oscillatory rheological

experiments can explain the emergent shape of skeletal muscle work loops.

In this paper, we develop and test the hypothesis that skeletal muscle work loops

measured under time-varying neural or electrical stimulation emerge by transitioning
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between underlying fixed-stimulus force-length loops. We term this the splicing hy-

pothesis which forms the foundations for our mathematical framework. The paper

starts with preliminaries to introduce and define ideas of oscillatory rheology and

linear viscoelasticity. We then present the mathematical formulation of the splicing

hypothesis and derive a minimal parameterization for the space of all possible loop

shapes obtained using a singular version of the splicing hypothesis where the transi-

tion between force-length loops is assumed to be instantaneous. The space of loop

shapes lends insights into different modes of mechanical actuation that can arise as a

result of a skeletal muscle’s tunable rheology and forms the premise for understanding

the shapes that emerge under more gradual transitions. We then show two parallel

validations of our mathematical framework using published work loops of short-horn

sculpin (Myoxocephalus scorpius) abdominal muscles and using direct numerical sim-

ulations of a detailed biophysical sarcomere model. We then discuss the implications

of our framework for muscle modeling and experiments.

3.3 Preliminaries

3.3.1 Oscillatory rheology

Oscillatory rheology characterizes materials with invariant properties by generalizing

upon notions of stiffness and damping to steady dynamical conditions [103, 105].

To do so, the material’s force (or stress) response to sinusoidal length (or strain)

perturbations of different frequencies and amplitudes are characterized by force-length

loops, otherwise known as Lissajous figures [106], that provide a graphical signature

of the material’s rheology [103]. The force-length loops are approximately elliptic

for small amplitude oscillations, but are typically non-elliptic for larger amplitudes

(figure 3.1a). For small amplitudes, the complex modulus E(ω) = E ′(ω) + i E ′′(ω)

captures the material’s dynamic response and generally depends on the oscillatory
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frequency ω [103].

The storage modulus E ′(ω) and loss modulus E ′′(ω) are respectively the in-phase

and out-of-phase components of the measured force divided by the imposed length

amplitude. The storage and loss moduli have been widely applied to muscle [41, 67,

101, 107] and other natural and engineered tunable materials [80, 91, 108], so long as

the external stimulus is held constant. Although in vivo muscle strain is often greater

than the small amplitudes used in oscillatory tests, the loss and storage moduli have

helped develop predictive models for muscle’s dynamic response [107, 109, 110] and

guided the interpretation of in vivo data [5, 67].

Non-elliptic force-length loops can occur in response to large amplitude oscillations

that probe nonlinear rheological behaviors, for example, an inherent stress or strain

dependence of the moduli, within muscles and other materials [103–105, 111, figure

3.1a]. The nonlinearities are understood to be embedded within higher order terms

of a Fourier expansion whose leading order terms are the storage modulus E ′ and loss

modulus E ′′[104, 105]. We shall formulate our mathematical framework in terms of

the leading order storage and loss moduli and focus on the linear oscillatory rheology

of skeletal muscles because of the vast experimental literature that currently exist

on them [41, 101]. The generalization to non-elliptic loops, however, is a direction

extension of the framework by an inclusion of the higher order terms (see Appendix

3.8.1).

Sign convention: Following the muscle literature [23], we take a sign convention

in which increasing length is positive but positive forces imply the opposite sense,

namely contraction. So a positive or counter-clockwise loop is when the material

performs work on the environment, and a negative or clockwise loop is when the

material absorbs work (‘+’ and ‘−’ regions in figures 3.1 and 3.2).
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3.4 Mathematical framework

3.4.1 Tunable oscillatory rheology

Current rheological methods under a fixed stimulus do not directly accommodate the

complex loop shapes that arise under a time-varying stimulus (figure 3.1b for exam-

ple). We extend current methods and incorporate a time-varying element using a new

hypothesis: splicing together fixed-stimulus force-length loops at different junctions

predicts the shape of complex work loops.

We first illustrate the hypothesis by way of example and then state its mathemat-

ical formulation. Consider three idealized tunable elements, a Hookean spring with

tunable stiffness and neutral length, a Newtonian damper with tunable viscosity, and

an ideal force generator with tunable force output. The force generator accommo-

dates the isometric forces a muscle exert when stimulated. The force-length loops for

these idealized elements under a constant stimulus are a sloped line for the Hookean

spring, a horizontal clockwise ellipse for the Newtonian damper, and a flat line for the

ideal force generator. Periodically switching the properties of the idealized elements—

stiffness, neutral length, damping, or force level—between two set of constant values

or changing the timing of switching result in more complicated loops that exhibit

reversals and self-intersections (figure 3.2a).

We can generalize the idea from the simpler idealized elements to tunable linear

viscoelastic materials by mapping stiffness to a storage modulus and viscosity to a loss

modulus. Combining the two moduli with the ideal force results in a vertically sheared

ellipse (figure 3.2b). The storage modulus controls the amount of vertical shear, the

loss modulus controls the enclosed area, and the ideal force shifts the entire figure up

or down. Thus, under a time-varying stimulus that modulates all three rheological

properties, a complex force-length loop emerges by switching between two sheared
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ellipses, each of which correspond to a distinct rheological state. Consider a tunable

material that has a greater storage modulus, loss modulus, and ideal contractile

force at rheological state A compared to state B, implying a more inclined, wider,

and vertically offset ellipse for A than B (figure 3.2c). Periodically switching the

rheological states from B to A and back to B would result in a splicing of the two

ellipses to form the more complicated loop. For this illustration, assume that the

time taken to switch and settle into the new rheological state is negligible compared

to the period of the oscillation. Generically, there are two target points to jump to

upon switching, but only one will traverse the loop in a direction consistent with its

loss modulus, thus fully defining a new spliced loop built up from underlying sheared

ellipses. This spliced loop exhibits self-intersections and net positive work although

both the A and B ellipses are individually dissipative.

3.4.2 Splicing hypothesis

We state here the mathematical formulation of the hypothesis. When phasically

stimulated during φA ≤ ωt ≤ φB, for oscillatory frequency ω, time t, junctions φA

and φB of switching between rheological states, the force response F (t) to a sinusoidal

length perturbation L(t) = ∆L sin(ωt) of amplitude ∆L is found by splicing the

forces FB(t) and FA(t) corresponding to the two different rheological states A and B,

respectively, and expressed as,

F (t) =





FA(t) for φA ≤ ωt ≤ φB,

FB(t) otherwise.

(3.1)

The force-length loops obtained by graphing FA(t) and FB(t) against L(t) introduce

the notion of loops that are produced under a constant rheological states A and B.

Given the loops corresponding to FA(t) and FB(t), the force response is completely

43



−

+

A-e
llip

se

B-ellipse

−

c

φA φB time

Force

Length

Stimulus

a

-

-

+

=

Linear spring

b

-

+
+

Ideal force generator

+

2L
0
E

E
1

Linear damper

-

-

Fo
rc

e

Length

Fo
rc

e

Length

Fo
rc

e

Length

Fo
rc

e

Length

Fo
rc

e

Length

Fo
rc

e

Length

Figure 3.2: Sketches to illustrate the splicing hypothesis. a, Hypothetical
work loops for idealized tunable elements. b, The force-length loop for a linear
material is a sheared ellipse, which is the sum of a sloped line (elastic component)
and a clockwise horizontal ellipse (viscous component). c, Splicing the state A ellipse
and state B ellipse results in a new work loop.

described by a vector [φA, φB] and the loops form a basis for all possible force responses

that can arise from different choices of phasic timing. We refer to these loops as basis

loops. In addition to the rheological state, these basis loops depend on the oscillation

frequency and amplitude. They are elliptic for linear materials but could generally

be non-elliptic. The spliced loop can be interpreted as an emergent periodic orbit

of a piecewise smooth dynamical system (figure 3.2 - Figure Supplement 1). The

tunable material’s rheological states, the basis loops, are the constitutive pieces of

the piecewise system. We refer to the construction of work loops from basis loops as

splicing (figure 3.2c, equation 3.1).
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3.4.3 Shape-space of spliced loops

Shape is an important feature of work loops and directly embeds not only the net me-

chanical work a tunable material performs but also the type of mechanical actuation

the material provides. Specifically, in the case of muscle [97], whether it performs

mechanical work as a tunable spring, tunable dashpot, or tunable ideal force gener-

ator has vastly different biomechanical implications even though the net mechanical

work performed may be identical [16]. A tool that the splicing approach affords is

a parameterization of loop shape in terms of oscillatory rheological characterizations

and therefore also a rheological basis for the mechanical actuation that muscle pro-

vides based on loop shape. We show here the derivation of the parameterization

and present a two-dimensional space of all possible loop shapes that can arise from

splicing together basis loops.

For this derivation, we use linear rheological response of tunable materials where

the material at a constant rheological state is fully described by an ideal force term,

and the storage and loss moduli. The analysis for nonlinear rheological responses is a

direct extension of the linear theory but adds additional storage and loss moduli pa-

rameters that correspond to higher harmonics (Methods 3.8.1). The oscillatory force

response F (t) of a tunable material that is phasically stimulated between rheological

states A and B depends on the ideal force terms FA0 and FB0, the storage moduli E ′A

and E ′B, the loss moduli E ′′A and E ′′B, and length amplitude ∆L, according to,

F (t) =





FA0 + ∆L (E ′A sinωt+ E ′′A cosωt) , for φA ≤ ωt ≤ φB,

FB0 + ∆L (E ′B sinωt+ E ′′B cosωt) , otherwise.

(3.2)

Atypical loop shapes, which are not seen in nontunable materials, emerge from

phasic changes in rheological states. Therefore, it is the difference between the

two rheological states that introduces new loop features (figure 3.3a). We sub-
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tract the force response FB(t) from F (t), and derive nondimensional expressions

using the length scale ∆L, force scale (FA0 − FB0), and timescale 1/ω. In terms

of the nondimensional phase φ = ωt, the stimulated nondimensional force response

fA(φ) = (FA(t) − FB(t))/(FA0 − FB0) is expressed using the difference in moduli

∆e′ = ∆L(E ′A − E ′B)/(FA0 − FB0) and ∆e′′ = ∆L(E ′′A − E ′′B)/(FA0 − FB0) as,

fA(φ) = 1 + ∆e′ sinφ+ ∆e′′ cosφ. (3.3)

We recast the modulus parameters ∆e′ and ∆e′′ in terms of the nondimensional

work w′ and w′′ that is performed by the material as a result of switching the storage

and loss moduli respectively, and an additional work w0 as a result of switching the

ideal force component between FB0 and FA0. Thus, the nondimensional sinusoidal

length perturbation is `(φ) = sin(φ) and the force response f(φ) is

f(φ) =
F (t)− FB(t)

FA0 − FB0

=





1 + w′

w0

2
`A+`B

sinφ+ w′′

w0

`B−`A
β

cosφ,

for φA ≤ φ ≤ φB,

0, otherwise.

(3.4)

The shape factor β =
∫ φB
φA

cos2 φ dφ represents the partial area of the loss-ellipse

traversed in switching the rheology, and `A = `(φA) and `B = `(φB) are the dimen-

sionless lengths at switching from A to B and then from B back to A, respectively.

The nondimensional work w′ for switching the elastic modulus, w′′ for switching the

loss modulus, and w0 for switching the ideal force term are,
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w′ = −∆e′
∫ `B

`A

`d` =
1

2
∆e′(`2

A − `2
B), (3.5)

w′′ = −∆e′′
∫ φB

φA

cos2 φdφ = −∆e′′β (3.6)

w0 = −
∫ `B

`A

d` = `A − `B, (3.7)

and the nondimensional and dimensional net work per loop are respectively,

wn =

∮
fd` = w0 + w′ + w′′, and (3.8)

Wn = wn∆L(FA0 − FB0)− πE ′′B∆L2. (3.9)

Expressing the force response, and thus the loop shape, using work ratios aids in

the interpretation of the response under time-varying stimuli in terms of the material’s

functionality as a force actuator, elastic body, or viscous damper (figure 3.3b). The

choice of shape parameterization also delineates the rheological states A and B from

the effect of the stimulus protocol that are captured by the parameters (`B + `A)/2,

and β/(`B − `A). Current approaches to functionally interpreting skeletal muscle

work loops are based on qualitative observations about the positive and negative

regions of the loops [23, 102]. The shape-space provides a quantitative means to

understand the net effect of the shape in terms of relative work contributions from the

storage and loss moduli underlying the rheological response relative to the ideal force

term. Therefore, the coordinates of a loop in the shape-space provide a quantitative

functional interpretation of the loop.

Although the veracity of the shape-space remains to be tested, the splicing ap-

proach provides a single framework in which to view vastly different loop shapes. For

example, different loop shapes may arise from the same material simply by varying

the oscillatory frequency and holding all else constant (figure 3.3c). This is because
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48



the material’s rheological properties are frequency-dependent. The splicing approach

enables the application of rheological modeling to generate predictions for skeletal

muscles when it is subjected to varying stimuli. It may also prove to be a tool for

designing actuators and programmable mechanical interfaces from tunable materials

other than skeletal muscles because it is now possible to predict the range of loop

shapes a material can exhibit and consequently the exchange of mechanical work with

its environment.

3.5 Results

The splicing hypothesis and its constitutive pieces are tested here using published

muscle data and numerical simulations. We first show direct evidence for the pas-

sive basis loops in rat papillary muscles by graphically overlaying their force-length

loops when deactivated and when subjected to a single electrical spike. We then test

whether the splicing hypothesis accurately predicts loop shape using a dataset of work

loops collected from short-horn sculpin (Myoxocephalus scorpius) abdominal muscle.

These work loops differ only in the phasic timing of an electrical stimulus and, ac-

cording to the splicing hypothesis, arise from the same set of basis loops. Because

the rat and sculpin work loops were not specifically collected to test splicing, we also

implement a biophysical model of the sarcomere that incorporates calcium activation

to compare predictions of the splicing hypothesis with computed work loops.

In connecting theory with data and simulations, it is important to define stimulus

and rheological states in the context of muscles. The stimulus is an external control

parameter that varies muscle behavior and can take different forms depending on ex-

perimental protocol. It may be calcium concentration, binding affinity of actomyosin

crossbridges, frequency of neural inputs, or frequency of electrical spikes that directly

modulate the motor machinery of muscle. The degree of engagement of the motor
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machinery, specifically the bond distributions of actomyosin crossbridges [15], is the

muscle’s rheological state that underlies its viscoelastic resistance to length pertur-

bations. The distinction between stimulus and rheological state introduces several

complications in examining muscle data. An example to be encountered with sculpin

work loop data is that the transition between rheological states is slower than changes

in the stimulus. The stimulus may also be a function of length perturbations because

of stretch-induced calcium release or heat production and the notion of a fixed-stimuli

rheological state during measurement becomes less well-defined [51, 112].. Further-

more, because there are multiple possible stimuli, holding one constant does not imply

that the others are constant so a fixed-stimulus rheological state is not one of all pos-

sible stimuli being constant, but one in which the stimulus under experimental control

is held constant. Recognizing all these complexities about muscle, the question we

ask in examining work loop data and sarcomere models is if a superposition of rhe-

ologies measured at fixed-stimuli adequately captures the tunable rheology measured

for time-varying stimuli.

3.5.1 Rat papillary work loops

Work loops of rat papillary muscles show evidence for one of the basis loops corre-

sponding to a low stimulus, namely the analog to the B-ellipse in figure 3.2c that has

a weaker rheological response compared to the A-ellipse. Although papillary muscles

are cardiac rather than skeletal muscles, they are similar based on the fact that they

both are underlied by the mechanics of sarcomeres. Baxi et al. [111] overlays work

loops measured for a single electrical impulse with passive force-length loops of rat

papillary muscles on the same plot. The work loop closely traces the passive loop up

to onset of the electrical impulse (figure 3.4a), providing direct evidence which shows

that the passive loop is a basis loop corresponding to an unstimulated papillary mus-

cle. But Baxi et al. [111] did not measure a basis loop when the papillary muscle was
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stimulated. This could be because stretching highly activated muscles often induces

tissue damage [49], thus making it experimentally infeasible to directly measure basis

loops of an activated muscle at large strains.

3.5.2 Sculpin work loops

Although direct measurements of basis loops under high neural or electrical stimulus

are not currently available, we show a means to infer them by pooling data from

multiple work loop measurements of the same muscle. By using the inferred basis

loops, we show how to apply splicing and predict work loops with which to compare

with measured work loops. For this analysis, we use a previously published dataset

consisting of twelve work loops from a short-horn sculpin (Myoxocephalus scorpius)

muscle [113] subjected to a 5% strain amplitude and a 5Hz oscillatory frequency. In

that study, three successive electrical spikes spaced 20 ms apart were applied per cycle

and the onset of the first stimulus relative to the length oscillation was systematically

varied from 0◦ to 360◦ phase lag to produce twelve work loops that vary considerably

in their shape (figure 3.4b). Because the twelve loops differ only in stimulus timing,

the sculpin dataset provide a testing ground of the splicing hypothesis because they

are, in theory, underlay by the same set of basis loops.

A complication arises that unlike the simplified illustration of the splicing approach

(figure 3.2), the effect of the stimulus on muscle is not instantaneous nor is it constant

for the entire duration. Instead, work loop measurements typically apply impulsive

neural or electrical spikes that cause a gradual rise and fall in intracellular calcium

concentration, which in turn leads to a gradual engagement and disengagement of

the muscle’s motor machinery. The degree of engagement of the motor machinery

is the rheological state that affects force production, but it is often experimentally

inaccessible or difficult to quantify. We overcome this inaccessibility and approximate

the rheological state using independent experimental measurements of the force twitch
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Figure 3.4: Work loops, basis loops, and gradual transitions. a, Passive force-
length loops and works loops of rat papillary muscle show that measured work loops
trace closely along the passive loop up to the electrical spike (yellow dot) that actives
the muscle’s motor machinery [adapted from figure 3 of 111]. b, Work loops from
a short-horned sculpin abdominal muscle measured at 5Hz and 5% strain amplitude
and for different stimulation protocols [adapted from figure 4 of 113]. Three electrical
spikes were applied in each cycle (yellow dots). Work loop locations on the sine wave
indicate the phase difference between the first stimulus and the length oscillation. c,
A leave-one-out analysis to estimate the stimulated basis loop (grey shaded ellipses),
used to predict the work loop (blue), and compare with measurement (black). The
slow transition in rheological states is modeled using the isometric twitch response to a
single electrical spike to construct an interpolation variable a(t). The twitch response
was found from separate measurements of the short-horned sculpin abdominal muscle
(bottom-left inset) [adapted from figure 1b of 114].

response to a single electrical spike under isometric conditions [114]. Because the

length is constant, the time-course of the force development and decay reflects the
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engagement of the motor machinery. The pulse duration in the isometric twitch study

was 1 ms, different from 2 ms that was used in the sculpin dataset. But both are much

smaller than the 20 ms inter-spike interval, the ∼100 ms force rise and relaxation time,

or the 200 ms time period of the oscillation. So we treat the stimuli in both studies

as impulses. Furthermore, the work loop protocol used three successive electrical

spikes. We find the total response to three spikes using a superposition of three twitch

responses and rescale the response to lie between zero and one to yield a normalized

interpolation variable a(t) (bottom left inset of figure 3.4c, and Methods 3.8.3) that

embeds within it the dynamics between stimuli and rheological states. This procedure

uses the single-spike response to construct the response to more generalized inputs,

three spikes in this case, and is similar to past applications of impulse responses in

neural systems involving sensory [115] and motor activation dynamics [116].

We modify the splicing approach of equation (3.1) to accommodate the sculpin

muscle’s continuously varying rheological state by using the normalized interpolation

variable a(t). The geometric picture for this modification is that the measured force

reflects an intermediate rheological state that a muscle transiently passes through at

any point in time. The interpolation variable a(t) specifies this intermediate rheolog-

ical state such that when a(t) gradually changes from zero to one, the sculpin work

loop transitions from one basis loop corresponding to FB(t) to another corresponding

to FA(t). Using standard practice to linearly relate forces [7], and for an onset time

t0 when the stimulus is first applied, the mathematical representation of this modifi-

cation of equation (3.1) to permit a slow transitioning between rheological states A

and B is

F (t) = a(t− t0)FA(t) + (1− a(t− t0))FB(t). (3.10)

The measured passive loop is generally non-zero much like the Baxi et al. study [111],
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but we assume it to be zero in the sculpin dataset because the stimulated loop FA(t)

appears to be the dominant rheological structure. Furthermore, we parameterize the

stimulated basis loop using an ideal force term FA0, storage modulus E ′A, and loss

modulus E ′′A. Thus, for an applied length oscillation of amplitude ∆L, frequency

ω and a stimulus onset time t0, the predicted spliced response is simplifies from

equation (3.10) by taking FB(t) = 0 as

F (t) = a(t− t0)(FA0 + ∆LE ′A sinωt+ ∆LE ′′A cosωt). (3.11)

The interpolation variable a, stimulus onset time t0, and amplitude ∆ are all exter-

nally specified which leaves the three rheological parameters (FA0, E ′A, and E ′′A) of the

stimulated basis loop to be determined. In the more general case where the passive

loop cannot be ignored, the passive loop adds three additional rheological parameters

to be determined.

We estimate the three parameters (FA0, E ′A, and E ′′A) by fitting the sculpin work

loop data to equation (3.11) in a leave-one-out analysis to test the splicing hypothesis

(Methods 3.8.3). Briefly, the analysis excludes one work loop from the dataset of

twelve loops and uses the remaining eleven to estimate the three parameters. The

estimated parameters are then used to generate a prediction that is compared that

with the excluded loop (figure 3.4c). We repeat this procedure for all twelve loops,

generating a different triplet (FA0, E ′A, and E ′′A) for each and avoiding a tautological

use of the dataset in which a measured loop is used to generate its own prediction.

We quantitatively compare the loops generated by the leave-one-out analysis and

the measured sculpin work loops using Pearson’s correlation coefficient and net me-

chanical work performed as goodness of fit measures. These measures are plotted in

figure 3.4 - Figure Supplement 1 as functions of the stimulus timing. The Pearson’s

correlation coefficient compares the predicted force response and the measured force
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response (see Methods 3.8.3), and a value close to one implies a strong correlation. We

find that it ranges from 0.90-0.99 for all loops. The net mechanical work performed is

a standard measure in work loop analysis to compare loops [98, 117, 118], and we find

it to be similar for all pairs of measured and predicted loops except for the 5◦ and 30◦

loops. The estimated stimulated basis loop, i.e. the fitted triplet (FA0, E ′A, and E ′′A),

can also serve as a quantitative comparison and we find it to be almost unchanging

across all twelve instances of the leave-one-out fitting procedure (top-right inset of

figure 3.4c, Figure 3.4 - Table Supplement 1). Based on these comparisons, we find

that the predicted loops generated by the splicing hypothesis accurately captures the

experimentally measured sculpin work loops.

Future investigation is needed, but we speculate that the slightly worse predic-

tions when the stimulation phase is near 0◦ might be due to stretch-induced doublet-

potentiation in muscle where the effects of a stimulus are modified [51]. Briefly,

stretch-induced doublet potentiation is the experimental observation that the mus-

cle’s force response to stretch sum up more than linearly when subjected to multiple

back-to-back electrical spikes [26, 51]. By comparison, our construction of the inter-

polation variable a(t) assume that the force responses adds up linearly and, in doing

so, our approach implicitly serves as a control to test nonlinear summations of forces.

Thus, in addition to revealing the rheological origins of muscle work loops, the splic-

ing hypothesis may help identify circumstances when tissue-specific phenomena such

as doublet-potentiation become functionally consequential.

The quality of the predictions point to the veracity of the splicing hypothesis and

the rheological basis for the emergence of work loops in muscle. It also underscores

the robustness of three linearity assumptions, namely, (i) linear rheology for the

stimulated basis loop (ellipse-shaped), (ii) the principle of superposition to extract an

interpolation variable between rheological states from the isometric twitch response,

and (iii) the intermediate basis loops as a linear interpolation between the minimal
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and maximal basis loops to accommodate the slowly varying rheological states. The

robustness of the linear rheological assumption indicates that although muscle is

a nonlinear material with non-elliptic basis loops, ellipses can adequately capture

the dominant features of the basis loops. The robustness of a linear interpolation,

i.e. equation (3.10), for constructing the transition between rheological states and

using that the infer the behavior of a sub-maximally activated muscle is also to be

expected based on proven antecedents in capturing neural stimulation dynamics in

sensory systems [115] and studies on dynamic stiffness of ankle muscles [116]. Thus

we conclude that the basis loops are the building blocks for the work loop in muscle,

in agreement with the splicing hypothesis.

3.5.3 Muscle biophysical model

Although the rat and sculpin datasets provided two independent lines of validation

based on measured work loops, the datasets were not specifically collected to test

splicing and represent only two muscles out of a myriad of muscle types. So to further

test splicing, we use direct numerical simulations of a detailed biophysical model of the

contractile machinery in muscle [81]. The objectives are two-fold. Firstly, to present

a work flow that guides design of future experiments in inferring the basis loops and

interpreting measured work loops in terms of them. And secondly, to show that the

splicing approach can adequately predict loop shape in current muscle models and

therefore also show the applicability of splicing across multiple muscle types and not

just of the muscles considered here.

The detailed biophysical model by Walcott captures the forces of single sarcomeres,

contractile structures of approximately 2.5µm in length and which repeat in series to

form a single muscle fibril. Skeletal muscles comprise of bundles of such fibrils. Within

a single sarcomere, contraction is powered by myosin motors that interact with actin

filaments by forming force-bearing crossbridges when myosin stochastically binds to
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actin, strokes and unbinds (figure 3.5a). Walcott’s model incorporates realistic aspects

such as thin filament activation dynamics and spatial coupling between actomyosin

crossbridges [119, 120] in addition to the latest advances in modelling the Lymn-Taylor

actomyosin crossbridge cycle that underlies force production in muscle [14, 26].

We assess the splicing hypothesis in the sarcomere model by predicting work loops

from basis loops using equation (3.10). The work loop F (t) is obtained from the sar-

comere model for a periodic stimulation protocol that varies between two values and

the basis loops, FA(t) and FB(t) are obtained by holding the stimulus constant at each

value. The stimulus used as the external control parameter is a coupling strength ε

that modulates the spatial coupling between neighboring crossbridges [Methods 3.8.4,

figure 3.5a], and the rheological state of the sarcomere model is the exact bond distri-

bution [15] of these crossbridges that make up the sarcomere’s viscoelastic resistance

to mechanical perturbations. We implement a periodic back and forth switch, i.e. a

rectangular pulse train, for the stimulation protocol in which the coupling strength

ε switches between values corresponding to pCa = 6.17 and pCa= 7.04 [See Meth-

ods 3.8.4]. Such stimulation protocols are common when applying tetanic electrical

stimuli [e.g. 98]. Much like the rat and sculpin datasets, the rheological state does

not change instantaneously in response to the stimulus and has additional dynamics

that must be accounted for. Although the rheological state is available in our imple-

mentation of Walcott’s model in the form of bond distributions, it is generally not

accessible in work loop experiments. So we adapt the approach used in the sculpin

dataset and instead use the isometric response to the same stimulation protocol to

construct a linear interpolation variable a(t) as a proxy for the rheological state (see

equation 3.10). Specifically, the isometric response is collected over several periods

of the stimulation protocol and averaged at the same angular phase of a period from

0◦ to 360◦., i.e. phased-averaged, and then normalized between zero and one to form

the interpolation variable a(t) at every time point in the period. This approach uses
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only experimentally accessible elements and therefore the flow chart of figure 3.5b

can be applied to muscle work loop experiments. The elements are namely the basis

loops obtained by holding the stimulus constant, the isometric force response to a

time-varying stimulation protocol, and work loops obtained for the same stimulation

protocol.

We also probe the model’s nonlinearities to demonstrate that splicing can work

even for non-elliptic basis loops by using peak-to-peak oscillatory amplitudes that are

twice the power stroke length of myosin. We repeat this for three different oscillation

frequencies to elucidate the effect of slow versus fast transitions between rheologi-

cal states relative to the oscillation time period (figure 3.5c). To separately identify

the roles of basis loops and dynamics associated with switching between them, we

show both the spliced loop and final predicted loop. The spliced loop assumes an

instantaneous change in rheological states and the final predicted loop applies the

interpolation variable estimated from isometric experiments (see equation 3.10 and

panel titled transient dynamics in figure 3.5b). The predicted loops accurately re-

constructs the work loop at all oscillation frequencies and the idealized spliced loop

is shown to underlie the overall shape of the work loops. Not surprisingly, the sharp

corners in the idealized splicing construction are smoothed out by incorporating the

isometric force response which captures asymmetries in the timescales of force rise

versus decay. If in muscle experiments, direct measurement of the basis loop could

damage the tissue, we find that small amplitude measurements of basis loop could

be used in lieu of the true large amplitude basis loop with little loss of accuracy, at

least for this detailed biophysical model of muscle (figure 3.5 - Figure Supplement

1). Thus, work loops are comprised of two components: (i) an idealized spliced loop

formed from basis loops that can be found from the rheological response at con-

stant stimulus, and (ii) dynamics between transitioning between rheological states

that smooth or regularize the idealized loop and can be found using isometric force
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Figure 3.5: Work loop prediction in muscle: a model-based validation of
splicing. a, The sarcomere is modeled as an ensemble of crossbridges that cycle
between attached and detached states depending on its internal displacement x, dis-
tance to its left nearest neighbor i, distance to its right nearest neighbor j, and a
coupling strength ε that is varied as the external control parameter and used as the
stimulus [81, Methods 3.8.4]. Loops are generated using Monte Carlo simulations of
an ensemble consisting of 500,000 crossbridges. b, Flow chart to predict work loops
based on basis loops and isometric responses, and thus assess the splicing hypothesis.
c, Outputs of the flow chart for three different frequencies placed next to each other
for comparison. The basis loops and work loops are the direct results of Monte Carlo
simulations whereas the spliced and predicted loop are computed using the splicing
hypothesis. The frequency scale ka is the myosin attachment rate taken to be around
40Hz in chicken pectoralis at 25◦C [81]. The vertical scale is in units of tension per
crossbridge whereas the horizontal scale is in units of sarcomere displacement.
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3.6 Discussion

In examining the mathematical framework and evidence presented here, the reader is

alerted to some cautionary points. Muscle is not monolithic and considerable physi-

ological differences arise between different types of muscle; skeletal, cardiac, smooth,

fast or slow, and many other varieties. This paper tests the splicing hypothesis in two

specific muscles from rat and a short-horn sculpin for which the type of data needed

are presently available, but future studies may expand that set. Furthermore, rheol-

ogy is fundamentally a bulk property and only lends partial insight into the molecular

mechanisms underlying it. So rheological studies are complementary to ongoing stud-

ies and debates that are centered around the molecular mechanisms behind intriguing

muscle phenomena such as history-dependence [51, 99, 100], length-dependent tran-

sitions [121], and other transient non-steady phenomena [26, 122]. But, insofar as

stable work loops can be measured and are applicable to mechanical actuations in

animals, testing the splicing hypothesis will lend insight into the applicability of fixed-

stimulus rheology to the functionally more realistic case of a time-varying stimulus.

In this manner, the work presented here takes a bottom-up and data-driven approach

to assess how well a superpositiong of fixed-stimulus rheology explains the data un-

der time-varying stimulation. Furthermore, the splicing hypothesis presents a means

to incorporate steady-state dynamical rheology into predictions under non-steady

conditions so that future investigations can unambiguously account for the role of

steady-state rheology before attributing measured responses to new phenomena.

While our focus is a rheological basis for skeletal muscle work loops, we predict

that the splicing hypothesis will be applicable and bring new insights to other striated

muscles based on our examination of a detailed sarcomere model and the fact that

sarcomeres are constitutive elements of all striated muscles. Cardiac muscles are a key

area of clinical relevance because their mechanical behavior is a central component of
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heart function and dysfunction [5, 47]. Further validation in more specialized cardiac

muscle models and in experiments are certainly necessary and may be guided by the

flow chart of figure 3.5b. The basis loops are likely non-elliptic, as evidenced by rat

papillary dataset [111] shown in figure 3.4a, and can be accounted for by introducing

higher harmonic modes into the data analysis (see Methods 3.8.1). The basis loops

themselves may also be difficult to directly measure without inducing tissue damage,

but can be inferred in an approach similar to the sculpin dataset analysis by pooling

together multiple work loops that differ only in stimuli timing (see Methods 3.8.3).

Keeping all these possible complexities in mind, the splicing hypothesis may provide

a new phenomenological approach to modelling the rheological behavior of cardiac

muscle in a manner that accounts for its tunability.

3.7 Conclusion

We adapted current oscillatory rheological methods to admit tunable properties by

splicing fixed-stimulus rheologies and showed its predictive ability using published

data on sculpin skeletal muscle and direct numerical simulations of a detailed sar-

comere model. We found that most but not all of the sculpin muscle’s work loop is

accounted for by an interpolation between basis loops and rheological states. Our

method incorporates experimental rheological characterization of muscle into predic-

tions under time-varying neural or electrical stimuli, so that future investigations into

new emergent muscle phenomena can account for and filter the effects of steady-state

rheology. In this manner, the splicing hypothesis is a new tool to study muscle me-

chanics and complements ongoing investigations into the molecular mechanisms that

underlie the emergent rheological properties. Finally, the shape-space of work loops

provides a unified view of the vastly different loop shapes a muscle can exhibit to

variably perform as motors, springs, dampers, and combinations thereof based on its
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tunable rheology.
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3.8 Methods

3.8.1 Expansion with higher harmonics:

The generalization of splicing the fixed-stimulus basis loops to include higher har-

monics is a straightforward extension of splicing ellipses by using a Fourier series for

the force response. The force response to sinusoidal length perturbations as given by

equation (3.2) generalizes to

F (t) =





FA0 + ∆L
∑
k

(E ′A,k sin(kωt) + E ′′A,k cos(kωt)), for ωt ∈ [φA, φB]

FB0 + ∆L
∑
k

(E ′B,k sin(kωt) + E ′′B,k cos(kωt)), otherwise

(3.12)

for index k over the set of positive integers and where each higher harmonic introduces

four additional moduli. Subtracting the state B force response and normalizing by

length scale ∆L and force scale FA0−FB0 result in two difference of moduli of the kth

harmonic: ∆e′k = ∆L(E ′A,k −E ′B,k)/(FA0−FB0) and ∆e′′k = ∆L(E ′′A,k −E ′′B,k)/(FA0−

FB0). Expanding equations (3.4)–(3.7) to include the higher harmonics results in

f(φ) =





1 +
∑
k

(
w′

k

w0

lB−lA
αk

sin kφ+
w′′

k

w0

lB−lA
βk

cos kφ
)
, for φ ∈ [φA, φB]

0, otherwise.

(3.13)

w′k = −∆e′k

φB∫

φA

sin kφ cosφ dφ = −∆e′kαk (3.14)

w′′k = −∆e′′k

φB∫

φA

cos kφ cosφ dφ = −∆e′′kβk (3.15)

w0 = −
∫ `D

`A

d` = `A − `B, (3.16)
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where αk =
∫ φB
φA

sin kφ cosφ dφ and βk =
∫ φB
φA

cos kφ cosφ dφ are shape parameters.

The terms w′k and w′′k are the work by storage forces and loss forces of the kth harmonic,

respectively. The net work now includes contributes from all higher harmonics as

wn = w0 +
∑
k

(w′k + w′′k). (3.17)

The relation between nondimensional net work wn and the dimensional net work

remains unchanged according to equation (3.9) because only the first harmonic of the

state B force response contributes to net work.

3.8.2 Traversing the shape space

We document here the process of generating dimensionless spliced loops illustrated in

figure 3.3c for a tunable Maxwell body in parallel with an ideal force generator. The

force response to an oscillatory motion of unit amplitude is given by equations (3.4-

3.7) with φA = π/6 and φB = 7π/6. The ∆e′ and ∆e′′ needed to calculate w′ and w′′

are derived for a Maxwell body, a spring with unit stiffness in series with a dashpot

with unit damping coefficient. Specifically, ∆e′ = ω2/(ω2 + 1) and ∆e′′ = ω/(ω2 + 1).

The oscillatory frequencies ω are chosen such the spliced loops are uniformly spread

on the semicircle on the Nyquist plot. Lastly, we hold the ideal motor work constant

at w0 = 1.5.

3.8.3 Sculpin Work Loops

We estimated FA0, E ′A, and E ′′A in equation (3.11) from the set of 12 work loops of

a short-horned sculpin abdominal muscle published by Johnson and Johnston [113].

All optimization and root-finding are performed using the Python scipy.optimize

library [90]. The data were extracted by digitizing the original figures.

The interpolation variable a(t) is found using published isometric twitch response
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of the same muscle, but separately measured by Altringham and Johnston [114] at a

temperature between 2.5◦C and 3.5◦C. The work loop data were measured at 4◦C. A

smooth approximation ctk exp(−t/τa) is fitted to the twitch response, which captures

the fast initial rise and slower decay in the measurements. When the twitch response

is scaled to be between 0 and 1 where 1 is equal to the peak tension measured, we

find these values to be c = 3.39 · 10−4, k = 2.99, and τa = 13.2ms. To simulate the

response to three electrical stimuli instead of one, we perform the following procedure:

1. Superimpose the three twitch responses separated by 20ms intervals. 2. Scale the

superimposed response by its maximum so that interpolation is normalized to be

between 0 and 1. We refer to this intermediate step as a∗(t). 3. Impose periodicity

by finding a baseline shift δ such that a∗(δ) = a∗(T + δ) where T = 200ms is the

period of the sculpin work loops and define the desired output a(t) to be a∗(t+δ). The

third step makes a minor correction to ensure that a(t) is periodic and is necessary

because the smooth fit to the data ctk exp(−t/τa) is not automatically periodic. This

is because, under steady periodic conditions, the value at t = 0 is not zero. So we

use the initial time offset δ = 3.21ms, which captures a non-zero initial condition of

a(0) = a(T ) = 0.00356. The final result a(t) is plotted in as an inset in figure 3.4c.

Given a(t), measured force response yi(t), and stimulus timing θi of the ith sculpin

work loop, a set of values (FA0, E
′
A, E

′′
A) were generated for the ith loop by excluding

it and minimizing the error for the remaining loops. So the fitted values for the ith

loop are obtained by minimizing

∑

m 6=i

∑

k

[a(tk − θm)(FA0 + ∆LE ′A sin(ωtk) + ∆LE ′′A cos(ωtk))− ym(tk)]
2

(3.18)

where k indexes the time steps in [0, T ].
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Goodness of fit measures

Pearson’s correlation coefficient for the ith loop is calculated from the fitted values as

r =

∑
k(yi(tk)− ȳi)(F (tk)− F̄ )∑

k(yi(tk)− ȳi)
∑

k(F (tk)− F̄ )
(3.19)

where bars denote mean values and F (tk) is predicted force response in equation (3.11)

given the fitted values (FA0, E
′
A, E

′′
A). We use Pearson’s correlation coefficient because

of the well-known problems in assessing goodness of fit using the coefficient of deter-

mination R2 that is employed for linear statistical models [123].

3.8.4 Sarcomere model simulation

We use a published crossbridge model to assess the applicability of splicing [81]. The

attachment rate f of a crossbridge to an internal displacement in the interval [x, x+dx]

is given by

f(x, i, j, ε) = β(i, j, ε)

√
D

2π
exp

(
−D

2
x2

)
(3.20)

where D = 100. The function β(i, j, ε) depends on coupling strength ε and the

distance to the nearest attached crossbridge on the left i and right j as

β(i, j, ε) =





1 if i+ j ≤ C

ε(i+j−C)/C if i, j < C&i+ j > C

εi/C if i < C&j ≥ C

εj/C if i ≥ C&j < C

ε if i ≥ C&j ≥ C

(3.21)
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where C = 11. The detachment rate g of a crossbridge with internal displacement x

is

g(x) =
1

K
exp(−E(x+ 1)) (3.22)

where E = 1 and K = 0.2.

A Monte Carlo simulation computed the behavior of 500,000 crossbridges as the

system is sheared by an oscillatory motion L(t) = A sin(ωt) with A = 1 and a coupling

strength ε that periodically alternates between 0.15 and exp(−5), which respectively

corresponds to pCa values of 6.17 and 7.04 [81, via Walcott’s equation 23]. At each

timestep, crossbridge attachment and detachment are decided by a random number

generator. The tension Tm per crossbridge transmitted across the system at the mth

timestep is computed as

Tm =
1

N

N∑

n=1

(xn + 1)s (3.23)

for index n over N crossbridges and where s = 1 if a crossbridge is attached and zero

if detached.

All equations are nondimensional. The chosen timescale is 1/ka where ka = 40Hz is

the attachment rate of a crossbridge with many attached neighbors. The length scale

is a powerstroke distance d = 10nm. The stiffness scale is k = 0.4pN/nm, the stiffness

of each crossbridge’s elastic spring. Consequently, the tension scale is kd = 4pN in

units of force per crossbridge. The Monte Carlo simulations were performed using

Matlab version 9.8.0.1323502 (R2020a, Natick, MA).

3.8.5 Illustrative phenomenological muscle model

We use a previously published phenomenological muscle model [48] to illustrate the

splicing between nonlinear rheologies shown in figure 3.2 - Figure Supplement 1a. The

force output F (a, l, v) is a function of activation a, length l and velocity v according
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to,

F (a, l, v) = B(a, l)FL(l)FV (l, v) + FP1(l) +BFP2(l), (3.24)

where the functions are defined as,

B(a, l) = 1− exp

((
− a

0.56Nf (l)

)Nf (l)
)
, (3.25)

Nf (l) = 2.11 + 4.16(l−1 − 1), (3.26)

FL(l) = exp

(
−
∣∣∣∣
l1.93 − 1

1.03

∣∣∣∣
1.87
)
, (3.27)

FV (l, v) =





−5.72−v
−5.72+(1.38+2.09l)v

, v ≤ 0

0.62−(−3.12+4.21l−2.67l2)v
0.62+v

, v > 0

(3.28)

FP1(l) = 5.42 ln

(
exp

(
l − 1.42

0.052

)
+ 1

)
, (3.29)

FP2(l) = −0.02 exp(−18.7(l − 0.79)− 1). (3.30)

To generate the nonlinear force responses, a = 1 is used as the first activation state

and a = 0.5 as the second. The dimensional length input is l(t) = 1+0.15 sin((3π/2)t),

activation phase is φA = sin−1(0.5), and deactivation phase is φD = (sin−1(0.4) + π).

All simulations were performed using Matlab version 9.8.0.1323502 (R2020a, Natick,

MA).

List of source files

Source code: Matlab code used to generate the sarcomere model described in Meth-

ods 3.8.4 and used in figure 3.5.
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Figure 3.2 - Figure Supplement 1: The spliced loop can be viewed as a singular peri-
odic orbit of a piecewise smooth dynamical system with two switching planes PB and
PA that are defined by the phases φB and φA when the rheological state is changed
from A to B or vice versa. At rheological states B or A, the dynamics of the material
when subjected to periodic length oscillations are governed by the composite functions
(R1

B ◦R2
B) and (R2

A ◦R1
A), respectively, which map initial conditions on the plane PA

to the plane PB and back onto PA again. The oscillatory responses at states, B or A,
correspond to stable periodic orbits of the two dynamical systems. The existence of
the orbit implies that a steady response can be measured under a constant rheological
state. The splicing of those two periodic orbits by instantaneously switching between
them at the planes PB and PA yields a new periodic orbit for the spliced dynamical
system (JD ◦ R1

A ◦ JA ◦ R1
B). The instantaneous jumps JA and JB between slowly

varying trajectories resembles approaches from geometric singular perturbation the-
ory for constructing relaxation oscillations in multiple-timescale systems [124, 125].
A nonlinear muscle model [Methods 3.8.5, 48] in which force depends on activation,
length, and velocity was used to illustrate the basis loops.

Table Figure 3.4 - Table Supplement 1: Fitted ellipses to the sculpin work loop data
[113]. The scale Fmax is the difference between the maximal and minimal force in the
5◦ work loop

Stimulus timing FA,0/Fmax ∆LE′A/FA,0 ∆LE′′A/FA,0

5◦ 0.659 0.186 0.333
30◦ 0.678 0.231 0.300
60◦ 0.695 0.235 0.245
90◦ 0.701 0.217 0.226
120◦ 0.702 0.202 0.230
150◦ 0.692 0.221 0.248
180◦ 0.690 0.223 0.250
210◦ 0.685 0.224 0.245
245◦ 0.694 0.202 0.266
280◦ 0.677 0.209 0.236
320◦ 0.708 0.262 0.245
345◦ 0.708 0.254 0.238
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Figure 3.4 - Figure Supplement 1: Quantitative comparisons between measured
sculpin work loops and loops predicted from splicing hypothesis. (Top) The Pearson’s
correlation is calculated for each pair of measured and predicted loop as a function
of the stimuli timing in units of degrees from 0◦ to 360◦. See Methods 3.8.3 for
details of the calculation. (Bottom) The net mechanical work is calculated for both
the measured and predict loops by taking the total enclosed area of each loop. The
values are normalized by the net work performed by the measured 5◦ loop.
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Loop prediction using large amplitude basis loops

Loop prediction by scaling ellipses to match the large amplitude oscillation

ω = 0.01ka
ω = 0.05ka

ω = 0.10ka

ω = 0.01ka
ω = 0.05ka

ω = 0.10ka

10 nm

1 
pN

10 nm

1 
pN

Figure 3.5 - Figure Supplement 1: Illustration of how small-amplitude basis loops
can be used to generate large-amplitude work loop predictions. When large ampli-
tude basis loops are inaccessible to direct measurement, scaling up linear ellipses
found from small amplitude oscillations results in minimal loss of accuracy between
predicted loops and work loops for the sarcomere model. The work loops (solid black
lines) are the same in both panels and serve as a reference for comparison of predicted
loops. All loops are generated from Monte Carlo simulations of 500,000 crossbridges
following the flow chart of the main figure.

71



Chapter 4

The role of filament compliance in sarcom-

eric viscoelasticity

4.1 Abstract

Striated muscles are active viscoelastic materials that can function as either an elastic

solid-like structure or a viscous fluid-like damper depending on time-durations of

interest and neural inputs. Both are important to the biomechanical functions that

muscles provide to animal bodies and ultimately arise from the mechanochemical

dynamics of molecular actomyosin crossbridges that cycle on a thick and thin filament

lattice. A central premise of current muscle models based on half-sarcomeres is that

crossbridges attach and detach independently of each other. This independence is

satisfied under length perturbation experiments if the filament lattice is rigid, and

in such a case, the half-sarcomere’s viscoelastic rheology is determined solely by the

transient nature of crossbridges. In this paper, we show that allowing for a compliant

filament lattice leads to a sarcomeric viscoelasticity that is distinct from the dynamics

of the constituent crossbridges. The physical basis lies in mechanical interactions

between crossbridges via elastic deformations of the filaments, which rigid filaments

do not allow for. We show that a dimensionless ratio between filament overlap length

L and a length scale ` quantifies the mechanical interactions. The length scale ` arises
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from a partitioning of strains between crossbridges and filaments. It is the distance

over which elastic displacements of the filaments become appreciable and the strains

that crossbridges are subjected to become uncorrelated with each other. The half-

sarcomere is rigid if L/`� 1 and compliant if it is at least comparable to unity. Using

conservative estimates for half-sarcomere parameters, we find that L/` ≈ 10 for an

activated rabbit psoas muscles and similar values for other striated muscles from

different animals. This suggests that the additional dynamics introduced by filament

compliance may play a dominant role on sarcomeric viscoelasticity and ought to be

considered in muscle models based on half-sarcomeres.

4.2 Introduction

Striated muscles are active biological materials that exert forces depending on neural

inputs and in resistance to external length perturbations [7, 16, 26]. Like many

soft materials, the resistive forces are nearly proportional to the magnitude of the

length perturbations on fast timescales, which then relax on longer timescales due

to internal dissipative processes [15, 16]. The proportional response characterizes

a muscle’s elastic solid-like nature whereas the relaxation characterizes its viscous

fluid-like nature. Both are important to the biomechanical functions that muscles

provide, for example, as elastic springs to maintain body postures [8, 11] or as viscous

dashpots to dissipate excessive kinetic energy [13, 49]. Taken together, they form the

viscoelastic material rheology of a muscle.

There are passive and active components to a muscle’s viscoelasticity. The passive

components consist of tissues, fluids, and tendons that are all relatively unchanging on

timescales that muscles operate on [13, 45]. On the other hand, the active components

are amenable to changes based on neural inputs and biomechanical needs [1, 7].

They are driven by the mechanochemical dynamics of molecular motors known as
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crossbridges that collectively operate on a crystalline lattice made of interdigitating

thick myosin filaments and thin actin filaments [14, 59, 126]. A large class of muscle

models is based on the half-sarcomere that itself is modeled by the crossbridge and

filament lattice system [59, 71–73]. A central premise of these muscle models is that

crossbridges are independent of each other, which is satisfied under external length

perturbations when the lattice is rigid. A simplification that crossbridge independence

affords is that the mechanics of the half-sarcomere are determined entirely by the

average crossbridge. Additionally, the independence also predicts that a muscle’s

active forces, elastic stiffness, and viscous damping are all linearly dependent on each

other because of a common proportionality to the number of participating crossbridges

[15, 59]. The premise of a rigid filament lattice thus underpins the connection between

the mechanochemical dynamics of crossbridges with measured muscle forces.

However, direct measurements of actin filaments and x-ray diffraction studies es-

timate that roughly 50% of a sarcomere’s compliance is due to the filaments alone

[127–129]. This suggests that elastic deformations of the filament lattice may af-

fect the mapping from crossbridges to muscles in ways not captured by models with

rigid filaments and independent crossbridges [130]. In particular, the dynamics of

a muscle’s forces may be partially decoupled from the dynamics of individual cross-

bridges because of the intermediary filaments. The filaments can affect crossbridges

in one of two ways, either as a lumped compliant element mechanically in series to

all crossbridges or as many smaller compliant elements situated between neighboring

crossbridges. The first way with a lumped compliance acts on the entire ensemble of

crossbridges as a whole. The second way with smaller elements, on the other hand,

acts on each crossbridge separately and provides a mechanism for interactions be-

tween crossbridges that, in principle, allows the half-sarcomere to take on temporal

characteristics that crossbridges alone cannot. Both ways likely come into play and

have been considered in the context of isometric force transients observed upon the
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onset or removal of activation [82, 131, 132]. But similar considerations in the context

of a half-sarcomere’s viscoelasticity are sparse in comparison [83, 133]. The effects

of a compliant filament lattice on a muscle’s or a half-sarcomere’s response to length

perturbations thus remain poorly understood.

In this chapter, we relax the assumption that the filament lattice is rigid along

the longitudinal axis of a half-sarcomere and model it as a compliant structure pulled

on by cycling crossbridges. We take a mathematical approach similar to those of

Mijailovich et al., 1996 [82] and White and Thorson, 1973 [134] to directly calcu-

late the linear viscoelastic rheology of a one-dimensional half-sarcomere model with

compliant filaments. We show that the compliance introduces mechanical interac-

tions between crossbridges of the same filament via elastic stretching of the filament.

These interactions give rise to a nondimensional parameter between the length L of

a half-sarcomere and a strain-correlation length scale `. Such interactions are remi-

niscent of a chemical cooperativity between crossbridges in which the attachment of

one crossbridge partially opens the binding site of its neighboring crossbridges [135].

Furthermore, a compliance along the radial axis evidenced by sub-nanometer changes

of lattice spacing may also lead to mechanical interactions between crossbridges of

different filaments [37, 133, 136]. This chapter shows the emergent dynamics for one

mode of crossbridge cooperativity via filament stretching, but other modes of co-

operativity are possible and may lead to similar emergent dynamics that assuming

independent crossbridges cannot capture.

4.3 Mathematical preliminaries

4.3.1 Linear viscoelastic rheology

The viscoelastic rheology of any material or structure is the experimental character-

ization of its response to length perturbations. We shall focus here on the response
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to small perturbations, or the linear regime, to mirror experimental measurements

of muscle viscoelasticity using sinusoidal analysis [41]. For simple structures, con-

stant quantities such as stiffness and damping coefficients suffice to relate the input

length perturbations to output force responses. But for more complicated struc-

tures, the input-to-output relation will not be constant and vary depending on the

frequency content of the input length perturbation. For such structures, tools of

linear dynamical systems help to formulate the input-to-output relation. Namely,

the Laplace transformation that decomposes time-varying functions into exponential

modes [68]. If z(t) is the input length perturbation that varies with time t then its

Laplace transform is denoted with a hat as ẑ(s) that varies with the complex-valued

Laplace variable s. Similarly, the output force response T (t) transforms to T̂ (s). The

ratio T̂ (s)/ẑ(s) is the mechanical impedance [4], which generalizes notions of springs

and dashpots to linear viscoelastic materials that can exhibit elastic and viscous

behaviors depending on experimental timescales. Deriving a structure’s mechanical

impedance is a complete characterization of its linear viscoelastic rheology.

4.3.2 Hooke’s law for filaments

To incorporate filament compliance, the thick and thin filaments within the half-

sarcomere are idealized as elastic structures subjected to stretch and compression.

Consider a single thin filament that undergoes elastic displacements due to the dy-

namics of crossbridges. It has a cross-sectional area Aa, elastic modulus Ea, stress

σa(x, t), and displacement ua(x, t) as functions of the longitudinal coordinate x along

its axis and time t. Hooke’s law states that stress is proportional to strain ∂ua(x, t)/∂x

as

σa(x, t) = E
∂ua
∂x

(x, t). (4.1)
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Following convention in muscle literature [82, 134], stress is expressed as a tension in

units of force. The tension Ta(x, t) along the filament would be the product Aaσa(x, t)

and given in terms of displacement as

Ta(x, t) = Ka
∂ua
∂x

(x, t) (4.2)

where Ka = AaEa (4.3)

is the thin filament stiffness in physical units of force per unit strain. The equations

for thick filament tension and displacements are similarly obtained.

4.4 Compliant two-filament model of half-sarcomeres

We present a minimal modification of current half-sarcomere models to analyze the

role of filament compliance. Like prior models [82, 83, 134], we condense the filament

lattice into a two-filament system consisting of one actin filament and one myosin

filament. This is in effect an averaging of the lattice’s cross-sectional area down to a

one-dimensional system. The two filaments transmit tension across the half-sarcomere

due to crossbridge-induced tractions that themselves act in response to an externally

imposed length perturbation. We shall apply the constitutive equations as follows

below to derive the linear viscoelasticity of the compliant half-sarcomere model (see

figure 4.1).

Let the displacements in the thin actin filament be denoted by ua(x, t) as a function

of the longitudinal coordinate x and time t. The displacements in the thick myosin

filament is similarly denoted by um(x, t). The tensions in the actin filament Ta(x, t)

and the myosin filament Tm(x, t) relate to the displacements according to Hooke’s
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law as

Ta(x, t) = Ka
∂ua
∂x

(x, t) (4.4)

and Tm(x, t) = Km
∂um
∂x

(x, t) (4.5)

where Ka and Km are the actin and myosin filaments’ elastic moduli multiplied by

their respective cross-sectional areas. A second constitutive equation relates the vari-

ation of filament tension to the traction F (x, t) induced by crossbridge interactions

between the two filaments, namely

∂Ta
∂x

(x, t) = F (x, t) (4.6)

and
∂Tm
∂x

(x, t) = −F (x, t). (4.7)

The tractions are forces distributed over a line element and take on dimensions of

force per unit length. Since the two filaments are pulled on by equal and opposing

tractions at every x, the sum of filament tensions is constant along x and necessarily

equal to the total tension T (t) transmitted across the two-filament system, i.e.

T (t) = Ta(x, t) + Tm(x, t). (4.8)

And lastly, the boundary conditions (bcs) are given at x = 0 and x = L where L

is the overlap between the two filaments. At x = 0, the myosin filament is fixed in

place while the actin filament is free. On the opposite boundary at x = L, the myosin

filament is free while the actin filament is fixed to a plate that moves according to an

external length perturbation z(t). The fixed and free conditions stated in terms of
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Figure 4.1: The compliant two-filament model of a half-sarcomere

displacements and tensions are

bcs at x = 0 :





um(x, t) = 0

Tm(x, t) = T (t)

Ta(x, t) = 0

(4.9)

and

bcs at x = L :





ua(x, t) = z(t)

Tm(x, t) = 0

Ta(x, t) = T (t).

(4.10)

These equations are the governing equations of the compliant half-sarcomere model

and we shall solve them for different choices of crossbridge traction to study the role

of thick and thin filament compliance.
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4.5 Results

4.5.1 Modeling crossbridge interactions

The interplay between crossbridge tractions and filament compliances is the focus of

the half-sarcomere model. To capture it, we model crossbridge dynamics at every

x with an ensemble of independently cycling crossbridges and allow ensembles at

different x to interact via elastic displacements of the filaments. We further model

the spatial distribution of crossbridges as uniformly spread along the filaments so

that any differences are due to filament displacements alone. Prior work has shown

that the tractions arising from multiple ensemble models of independent crossbridges

are a sum of a steady active component and a time-varying viscoelastic resistance

to external perturbations [Chapter 2]. We shall consider here the interplay of each

component with filament compliance separately.

The steady active component of crossbridge tractions corresponds to the isometric

tension measured for a muscle held at a fixed length. It is an ideal force distributed

over a line element where ideal, by definition, means zero mechanical impedance or

an invariance to elastic displacements of the filaments. Because of this property, the

contributions of the steady active component to total tension transmitted is expected

to be unaffected by filament compliances. To see this, we express the traction F (x, t)

induced by a constant ideal force per crossbridge fideal as

F = Mfideal (4.11)

where M is the density of crossbridge in units of number of crossbridges per length.

The filament displacements and tensions of equations (4.6 - 4.10) can be solved di-
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rectly without reference to the elastic displacements of the filaments as

Tideal = MLfideal, (4.12)

Ta,ideal(x) = Tideal

(x
L

)
, (4.13)

and Tm,ideal(x) = Tideal

(
1− x

L

)
(4.14)

in which a subscript is added to denote the solution to ideal crossbridge tractions.

The tension transmitted across the system is simply the ideal force per crossbridge

fideal multiplied by the number of crossbridges ML. The filament tensions Ta,ideal(x)

and Tm,ideal(x) are simply linearly interpolations between zero and the total tension.

Filament compliances Ka and Km do not appear and therefore bear no influences on

the tension transmitted across the half-sarcomere model.

The viscoelastic component of crossbridge tractions, on the other hand, have a

nonzero mechanical impedance and therefore must vary in response to elastic dis-

placements of the filaments induced by the external length perturbation z(t) applied

at the boundaries. These tractions are shown to be sums of exponential processes

for multiple ensemble models of crossbridge dynamics, each of which is mechanically

analogous to a spring and dashpot in series [Chapter 2]. So we model the viscoelastic

forces as a single exponential process and examine its interplay with filament compli-

ances. Specifically, the traction F (x, t) arising from crossbridge dynamics is modeled

by a first-order in time differential equation

∂F (x, t)

∂t
+

1

τ
F (x, t) = Mλ

∂

∂t
(ua(x, t)− um(x, t)) (4.15)

where λ is the magnitude of the exponential process with units of stiffness [force/length]

and is multiplied by crossbridge density M , τ is the exponential time-constant, and

the difference in filament displacements, ua(x, t) − um(x, t), is the amount by which
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crossbridges at x are stretched. For algebraic convenience of manipulating differential

equations, the time-varying functions are Laplace-transformed into

F̂ (x, s) = Mλĥ(s) (ûa(x, s)− ûm(x, s)) (4.16)

where ĥ(s) =
s

s+ 1/τ
(4.17)

where time t is exchanged for the Laplace variable s, a hat notation denotes trans-

formed functions, and ĥ(s) is the transfer function of an exponential process of unit

magnitude and time-constant τ . Solving the Laplace-transformed versions of the

constitutive equations (4.4 - 4.10) yields the mechanical impedance of the compliance

half-sarcomere model, the ratio between total tension T̂ (s) and the length perturba-

tion ẑ(s), as

T̂ (s)

ẑ(s)
=

(
Ka +Km

L

) (
L
`

√
ĥ
)

sinh
(
L
`

√
ĥ
)

2 + (Km

Ka
+ Ka

Km
) cosh

(
L
`

√
ĥ
)

+
(
L
`

√
ĥ
)

sinh
(
L
`

√
ĥ
) (4.18)

in terms of a length scale

` =

√
( 1
Ka

+ 1
Km

)−1

Mλ
. (4.19)

The length scale ` arises from a competition between filament compliance and

the viscoelasticity of crossbridge ensembles, and algebraically obtained from the ratio

of filament stiffnesses added in series and the crossbridge stiffness distributed over a

line element. It is the length scale over which elastic displacements and strains of

the filaments spatially vary. Strains at two points along the filaments separated a

distance less than ` are strongly correlated with each other because the filaments are

rigid. If separated a distance greater than `, however, the two strains are uncorrelated

and it is not possible to a priori predict one from the other without knowledge of

the boundary conditions. This strain-correlation alters crossbridge dynamics in the

following way. Two crossbridges separated by a distance less than ` are subject to
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the same strain and therefore experience the same strain-dependent attachment and

detachment rates. This is the case of rigid filaments models in which the size scale of

the half-sarcomere L is much less than ` and all crossbridges cycle according to their

own dynamics with no dependence on any other crossbridge. But if two crossbridges

are separated by a distance greater than `, they are subject to uncorrelated filament

strains and experience different strain-dependent attachment and detachment rates.

Thus, for half-sarcomeres with size L longer than `, filament compliance lead to

emergent spatial inhomogeneities in filament strains acting on length scale l that give

rise to different sub-populations of crossbridges within the whole ensemble.

The assumption of rigid filaments in half-sarcomeres is equivalent to the overlap

L of the filaments being much smaller than the length scale `. In this case, the

impedance of eqn. (4.18) simplifies to MLλĥ(s), which is the exponential process

multiplied by the total number of crossbridges. At the opposite extreme, when L

is much larger than `, the filaments are overly compliant and unable to support

crossbridge forces. The impedance here simplifies to the sum of filament stiffnesses

(Ka + Km)/L. It is when L is comparable to ` that both crossbridge dynamics and

filament compliance and must be taken into consideration.

4.5.2 Dynamics of the compliant half-sarcomere model

Compliant filaments affect the tractions of crossbridge ensembles depending on the

ratio L/` and give rise to a total tension whose temporal characteristics determine the

viscoelasticity of the half-sarcomere model. To examine the emergent half-sarcomere

viscoelasticity, consider the dynamic stiffness which measures the viscoelastic response

to sinusoidal length perturbations of frequency ω [41]. The dynamic stiffness H(ω)

is defined as the magnitude of the complex-value impedance T̂ (s)/ẑ(s) of Eqn.(4.18)
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Figure 4.2: Dynamics of the compliant half-sarcomere model. All curves shown are
computed using Ka = 6.5 · 104pN and Km = 105pN. a, The effective stiffness and
exponential time-constant of the half-sarcomere model both grow with the ratio L/`
or as crossbridge viscoelasticity becomes comparable to filament compliances. b,
At all values of L/`, the frequency-dependent behavior of the half-sarcomere model
is fluid-like at sufficiently low frequencies and solid-like at high frequencies. The
turnover between fluid-like and elastic-like behaviors occurs at lower frequencies and
higher stiffnesses as the ratio L/` increases. c-d, The time-evolution of the total
tension T (t) transmitted across the half-sarcomere and filament tensions Ta(x, t) and
Tm(x, t) for a step length perturbation of amplitude A. The curves are obtained by
numerically solving equations (4.18 - 4.25)
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evaluated along the imaginary line s = iω and may be approximated as

H(ω) =

∣∣∣∣∣
T̂ (s)

ẑ(s)

∣∣∣∣∣
s=iω

≈





bω for low frequencies

keff for high frequencies

(4.20)

where b is the viscous damping coefficient and keff is the effective stiffness of the

entire half sarcomere. They are evaluated by taking the limits of small and large ω,

respectively, as

b =
Ka +Km

L

(
(L
`
)2τ

2 + (Ka/Km +Km/Ka)

)
(4.21)

and keff =
Ka +Km

L

(
(L
`
) sinh(L

`
)

2 + (Ka/Km +Km/Ka) cosh(L
`
) + L

`
sinh(L

`
)

)
. (4.22)

The frequency at which the low and high frequency asymptotes meet define an effec-

tive time-constant τeff = b/keff as

τeff = τ

(
L/`

sinh(L
`
)

)(
2 + (Ka/Km +Km/Ka) cosh(L

`
) + L

`
sinh(L

`
)

2 +Ka/Km +Km/Ka

)
. (4.23)

Note that τ is the time-constant of the exponential process used to model the vis-

coelastic resistance of crossbridge ensembles. A difference between τ and τeff implies

that filament compliance leads to emergent dynamics that are qualitatively distinct

from the constituent crossbridge dynamics. For rigid filaments, L/` is much less

than unity and the time-constant τeff is approximately τ so the difference is van-

ishingly small and half-sarcomere dynamics are identical to crossbridge dynamics.

However, for compliant filaments or for L/` � 1, the half-sarcomere dynamics are

much slower than underlying crossbridges because the effective time-constant scales

as τeff ∼ τ(L
`
)2. A higher effective time-constant amounts to a slower relaxation of

tension and a solidification of the half-sarcomere because the viscous fluid-like be-

havior emerges on timescales much longer or oscillatory frequencies much lower than
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crossbridge dynamics would suggest (see figure 4.2a-4.2b).

4.5.3 Spatial inhomogeneties in filaments tension

In addition to slower emergent timescales, filament compliance leads to spatial inho-

mogeneities in filament tensions that do not appear in half-sarcomere models with

rigid filaments. As a point of reference, the homogeneous solution occurs when cross-

bridge tractions are constant along x and the filament tensions linearly interpolate be-

tween zero and the total tension. Figures 4.2c and 4.2d illustrate the inhomogeneities

by solving equations (4.4 - 4.10) for the filament tensions, Ta(x, t) and Tm(x, t), in

response to a step length perturbation. The solutions in the Laplace domain are

T̂a(x, s)

T̂ (s)
=

(
1

Km +Ka

)
∗


Ka −Ka cosh

(x
`

√
ĥ
)

+

(
Km +Ka cosh

(
L
`

√
ĥ
))

sinh
(
L
`

√
ĥ
) sinh

(x
`

√
ĥ
)

 (4.24)

and

T̂m(x, s)

T̂ (s)
=

(
1

Km +Ka

)
∗


Km +Ka cosh

(x
`

√
ĥ
)
−

(
Km +Ka cosh

(
L
`

√
ĥ
))

sinh
(
L
`

√
ĥ
) sinh

(x
`

√
ĥ
)

 . (4.25)

which, as illustrated in figure 4.2d , simplifies to the homogeneous solution for L/`� 1

and grows as hyperbolic functions for L/` at least comparable to unity. Impor-

tantly, although it is currently not possible to measure filament inhomogeneities at

sub-micron resolutions, the solutions here predict that the inhomogeneities due to

crossbridge-induced tractions act predominantly on the length scale `.

Although further work is necessary, we speculate that the spatial inhomogeneities
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observed here due to mechanical interactions between filaments and crossbridges may

be a mechanism contributing to a muscle phenomenon known as spontaneous oscil-

latory contractions (SPOC) [37, 85, 137]. SPOC is the tendency for sub-maximally

activated muscle fibers to sustain oscillatory displacements along the fiber’s axis and

on length scales of several sarcomeres. One proposed theory for SPOC considers a

coupling between crossbridge forces and changes in filament lattice spacing as the

primary mechanism of the oscillations [37, 138]. The work here suggests a separate

mechanism for SPOC without relying on changes in lattice spacing. An extension

of the work to include multiple half-sarcomeres in series is certainly needed, and an

evaluation of that extension in the context of inter-sarcomeric dynamics [37, 139]

also needed. But the driving principles of filament-mediated crossbridge interactions

is likely to carry over from the present analysis to a scaled-up model with multiple

half-sarcomeres. If filament-mediated crossbridge interactions is the dominant mech-

anism, then the length scale ` or its generalized equivalence in the scaled-up model

will necessarily be the dominant oscillatory wavelength observed in SPOC.

4.5.4 Discussion

We use known sarcomere parameters to estimate the length scale ` (eqn. 4.19) for an

activated muscle and compare it to the overlap length of thick and thin filaments. The

filament stiffnesses are estimated to be Ka ≈ 6.5 · 104pN and Km ≈ 105pN based on

measurements of the thin filament and experiments suggesting that thick filaments are

1.5 times as stiff as the thin filaments [127, 128]. The product Mλ is approximately

10pn/nm2 based on the magnitude of experimentally measured exponential processes

in skeletal and cardiac muscles from different animals [41, 107, 110, 140]. We use

Mλ = 8.1pn/nm2 based on the smallest magnitude of Kawai and Brandt’s exponential

processes for a rabbit psoas muscle. The true value is likely higher because fiber

measurements consist of multiple sarcomeres and therefore include compliant elements
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outside the overlap zone. The sarcomere parameters taken together yield ` ≈ 70nm

whereas the overlap L is approximately 700nm [127, 141]. Thus, because L is at

least comparable to ` for a fully activated muscle, filament compliance is expected to

strongly modulate crossbridge forces.

The compliant half-sarcomere model predicts that filament compliance plays a

dominant role in the mapping between microscopic crossbridge models and macro-

scopic muscle measurements, and that assuming rigid filaments to estimate cross-

bridge parameters from measurements will lead to mismatched values. For example,

a known consequence of filament compliance is that linearly scaling measured muscle

stiffness by the number of crossbridges will underestimate the true crossbridge stiff-

ness [39, 130]. However, a less known consequence is that fitting rate constants of

multi-state crossbridge models to tension transients, often the frequency-dependent

loss and storage moduli of sinusoidal analysis [71, 72], will similarly lead to under-

estimated values even after accounting for any series compliance outside the overlap

zone. The mismatch will be at least an order of magnitude for L/` = 10 since τeff/τ

would approximately be 25.

The ratio L/` is additionally a function of activation, being zero for a deactivated

muscle because there are no cycling crossbridges, i.e M = 0, so the observation that

the effective time-constant τeff grows monotonically with L/` (see figure 4.2b) is a

statement that the half-sarcomere model solidifies with activation. This is because

for timescales shorter than τeff, the half-sarcomere’s tension is nearly constant like

an elastic solid, whereas for timescales longer the tension relaxes exponentially like

a viscous fluid. Increasing τeff via activation is equivalent to transforming the half-

sarcomere from a fluid-like structure into a solid-like structure. Such fluid-to-solid

transitions have been predicted for muscles based on biomechanical needs of providing

postural stability yet also able to freely yield to rapid motions [16]. Importantly, the

transition is in spite of unchanging crossbridge dynamics because the original time-
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constant τ is independent of activation, and it is only through filament-mediated

interactions between crossbridges that the half-sarcomere model solidifies. Alternative

mechanisms for a solidification are also possible if crossbridge cycling drastically slows

with intracellular calcium or at large strains, but such mechanisms have not been

studied whereas a not insignificant contribution of filaments to the total sarcomere

compliance has been directly measured [127, 128]. The compliant half-sarcomere

model presented here shows invariably that accounting for filament compliance leads

to a slowdown of tension relaxation as more crossbridges are recruited and stretch

the filament lattice that they operate on.

Parallels can be drawn between the dynamics of half-sarcomeres and those of dis-

ordered actin networks with transient crosslinkers [93, 142, 143]. In both scenarios,

a structural backbone to transmit stresses is provided by the filaments that con-

nect together via temporary bonds. These bonds, crossbridges in half-sarcomeres

and crosslinkers in disordered actin networks, resist deformations when attached on

short timescales and dissipate stored mechanical energy when detaching on longer

timescales. The parallels bring forth the question of whether similar filament-mediated

interactions between bonds also underlie a fluid-to-solid transition in disordered actin

networks. It is important to recognize the vast experimental and theoretical work

surrounding disordered actin networks that previously resolved other components

necessary for such a transition [43, 143–146], for example, the minimal number of

crosslinkers required per filament. The compliant half-sarcomere model here suggests

that an additional component may be filament stretching which, if the same princi-

ples carry over, allows the disordered network to relax stresses on timescales much

longer than the crosslinkers would otherwise allow if they were all independently

cycling. Filament bending is also likely to lead to slower stress relaxation but the

exact details of how remains unclear. We speculate that the exact interplay of fila-

ment stretching and bending with crosslinker dynamics will give rise to a correlation
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length scale, or multiple length scales depending on anisotropy, between the strains

of the crosslinkers. We also speculate that the interplay will give rise to emergent

spatial inhomogeneities in disordered actin networks if the correlation length scales

are greater than the average separation between crosslinkers but less than the sys-

tem size. Although much work remains, the mechanisms and principles derived from

the compliant half-sarcomere model motivate a deeper look into filament-mediated

crosslinker interactions that may prove to be a necessary component of fluid-to-solid

transitions in disordered actin networks with transient crosslinkers.
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Chapter 5

Conclusions and future directions

5.1 Conclusions

The thesis presented efforts to connect scales and address the shortcomings of two

widely used classes of striated muscle models, a major objective of neuromuscular

research. The first class consists of macroscopic, phenomenological models based

on experimental measurements of muscle forces. Although accurate, these models

are not easily interpretable in terms of known mechanochemical cycle of actomyosin

crossbridges that ultimately drive muscle forces. The second class of models builds

up from crossbridge dynamics to capture muscle forces. However, these microscopic

models employ more biophysical parameters than have been directly measured.

Chapter 2 derived the viscoelastic rheology of multiple ensemble crossbridge mod-

els with varying degrees of complexity. It showed that the viscoelasticity comprised

of exponential processes, which is consistent with sinusoidal experiments of muscles.

Each exponential process of the ensemble viscoelasticity associates with a peak in

the derivative of the steady-state bond distributions of crossbridges, and this find-

ing suggests a direct connection between measured muscle rheology and ensemble

crossbridge dynamics.

Chapter 3 considers the rheological basis for muscle forces when a striated mus-
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cle is subject to sinusoidal length perturbations and piecewise periodic activations.

The closed-loop trajectory obtained by plotting length perturbations against forces is

commonly known as a muscle work loop. It was shown that the shapes of work loops

are consistent with a periodic transition between two underlying basis ellipses. Each

ellipse is a graphical representation of a striated muscle’s loss and storage moduli at

fixed activation. The findings of chapter 3 thus put forth a parameterization of work

loop shape and the mechanical actuation that the shape provides, which previously

was often parsed in terms of the work loop’s enclosed area rather than its shape.

Chapter 4 introduces thick and thin filament compliances into ensemble cross-

bridge models as a form of mechanical cooperativity between crossbridges. It finds

that a length scale arises from a partitioning of strains between the filaments and

crossbridges and, using estimates of sarcomere parameters, also finds that the fila-

ments store an appreciable portion of elastic strains. A consequence of this is that

the entire system relaxes stresses slower than if the filaments were rigid in a manner

depending on the number of crossbridges. In other words, the relaxation timescales

of the system are size-dependent, and whether the model can exhibit either solid-like

or fluid-like behaviors depends on the number of participating crossbridges.

5.2 Future directions

It is the author’s opinion that identifying new potential research directions previously

hindered by a lack of understanding is a result as important as the thesis itself. There

are research directions on both near and far horizons that the author hopes to tackle

or make progress towards during his academic career. The author also hopes that the

thesis will be of academic value to others in their research pursuits.

92



5.2.1 A general framework for tunable materials

The splicing hypothesis introduced in chapter 3 is an effort to accommodate tunable

materials whose forces depend on both mechanical perturbations and external stimuli.

It extends current rheological methods designed for passive or otherwise non-tunable

materials by assuming a separation of timescales between the dynamics of changing

stimuli and of the material’s response to being perturbed. This separation is not valid

in all situations and the splicing hypothesis is thus a limiting case of a more general

framework. It is certainly useful, as exemplified by the contents of chapter 3, but

ultimately an incomplete description of the rheology of tunable materials.

There are many tunable materials [27, 31, 32], each with different physical pro-

cesses underlying their tunability, but the set of principles on how to translate the

tunability into a desired mechanical actuation may be common to all tunable materi-

als. The framework which generalizes on the splicing hypothesis is likely to be this set

of principles. It remains to be developed and doing so would have broad implications

for multiple scientific disciplines, including biology, engineering, robotics, and ma-

terials science. The framework would help understand the biomechanical functions

that contractile apparatus, like striated muscles, provide to biology. It would also

help design new mechanical interfaces and actuators built from tunable materials,

which have gained traction over the past decade due to their ability to endure large

deformations without damage [28–30]. And in materials science, it would help direct

new experimental methods to characterize the properties of tunable materials, which

current rheological methods are not designed for.
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5.2.2 Fluid-to-solid transitions in muscles and other materi-

als

In contradiction to a core tenet of muscle mechanics that actomyosin crossbridges are

independent of each other, further investigations into crossbridge-crossbridge interac-

tions may lead to viscoelastic rheologies not previously considered. A consequence of

the tenet that Chapter 2 showed is that the viscoelasticity of an ensemble of cross-

bridges depends trivially on the ensemble’s size. Namely, the magnitude of the ex-

ponential process underlying the ensemble’s viscoelastic rheology scales linearly with

ensemble size but the timescale of the process remains unchanging. Thus the expected

behavior for muscles modeled by crossbridge ensembles is that a solid-like muscle re-

mains solid-like regardless of ensemble size. A fluid-like muscle similarly remains

fluid-like. Such muscle models cannot transition between solid-like and fluid-like be-

haviors as neural inputs modulate ensemble size despite biomechanical arguments

suggesting otherwise.

Motivated by the jamming transition observed in materials [35] in which the re-

laxation of internal stresses drastically slows as a function of particle density, effective

temperature, and external shearing, Chapter 4 showed that a relaxation slowdown

can also occur in crossbridge ensembles. Specifically, it showed that the thick and

thin filament compliance permit ensemble size-dependent timescales such that the

ensemble is fluid-like at low crossbridge density and solid-like at higher densities. It

showed one plausible mechanism for muscle models to undergo a fluid-to-solid tran-

sition that is reminiscent of the jamming transition where ensemble size takes on the

role of particle density. Further investigations into muscle rheology and crossbridge

dynamics may draw stronger connections to the jamming transition and bring about

new insights to other materials that similarly undergo a fluid-to-solid transition.
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