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Abstract

The Development of Mathematical Methods for Tackling Problems in

Non-Perturbative Quantum Field Theory, Cosmology, and Gravity

Daniel Berkowitz

2021

We have extended two recently developed theoretical methods, the Quantum Finite

Elements (QFE) and the Euclidean-signature semi-classical method (ESSCM). The

QFE is a technique for constructing lattice field theories (LFTs) on curved Rieman-

nian manifolds. We extended the applicability of the QFE to formulating LFTs on

certain three and four dimensional Riemannian manifolds such as S3 and R×S3. This

was done by first constructing a novel simplicial approximation to S3. Then, after

correctly computing the weights of the links and vertices that make up this simplicial

approximation, we defined a Laplacian on it, whose low lying spectrum was observed

to approach the known continuum limit as we further refined our simplicial complex.

To facilitate a comparison between the QFE and the bootstrap, we calculated an

estimate of the fourth-order Binder cumulant using CFT data extracted from the

conformal bootstrap.

The ESSCM is a methodology for facilitating the use of already known mathe-

matical theorems/results to approach Lorentzian signature problems in bosonic field

theory and quantum gravity in terms of their Euclidean-signature analogs. We fur-

ther developed this method by applying it in a novel fashion to quantum cosmological

models with matter sources. In particular, for the Taub models, we proved for the

first time the existence of a countably infinite number of well behaved ‘excited’ state

solutions when Λ is present. Both methods are promising and have applications for

field theory, beyond standard model physics, and quantum gravity.
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Chapter 2

In Regards To Notation

For tensors we generally follow Wald’s [233] convention for using the Latin alphabet

to denote tensors and use the Greek alphabet to denote the components of a tensor

expressed in a given basis. If we deviate from this convention at all for a certain few

calculations then the new convention will be stated in the calculation.
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Chapter 3

Introductory Remarks

We further developed mathematical methods that can be directly applied to problems

in high energy physics, quantum cosmology, and quantum gravity. The two methods

we developed and built upon were the Quantum Finite Elements (QFE) and the

Euclidean-signature semi-classical method.

The QFE was further developed by extending its applicability to lattice field the-

ories formulated on certain three and four dimensional Riemannian manifolds such as

S3 and R× S3. This was done by first tessellating the 600-cell, which possesses the

largest discrete subgroup of isometries belonging to S3, by using two different types of

tetrahedrons and then projecting the resultant vertices to S3. Using those vertices we

constructed a convex hull on S3 and figured out how to compute the correct weights

associated with the links belonging to the plethora of tetrahedrons that form our

simplicial approximation to S3, that were created as a result of the positive curva-

ture inherent to S3 which distorts the two types of tetrahedrons we originally used

to tessellate the 600-cell. Using these correct values of the weights we were able to

formulate the Laplace operator on our simplicial approximation to S3 and compute its

spectrum at a given level of refinement. What we found was that as we increased the

level of refinement of our simplicial approximation to S3, the low lying spectrum we

4



computed by approximately diagonalizing our discretized Laplacian using its known

eigenfunctions, the hyperspherical harmonics, is converging to the known continuum

limit. In addition we further tested our method for constructing a simplicial approxi-

mation to S3 by formulating a discretized Laplacian on a certain type of tetrahedron,

known as the K tetrahedron, whose spectrum was analytically calculated in closed

form, and showed that our estimated spectrum is converging to the known continuum

limit as we increase our level of refinement.

Beyond testing the validity of our application of Discrete Exterior Calculus (DEC)

to the tessellation of S3 we began taking the following steps to apply the geometric

program we will describe in detail in this dissertation to φ4 theory on S3. We oriented

our simplices by finding a correct ordering of their vertices so that the discrete version

of the boundary operator, ∂, when it is applied to our simplicial approximation of

S3 vanishes, ∂K = 0, as one would expect in the continuum limit. Furthermore

using conformal bootstrap data we computed an estimate of the fourth-order Binder

cumulant for the critical 3D Ising model mapped on to S3. The estimate we computed

is U4 = 0.39220 with an error of ±0.00011. We intend to compare this result and

other CFT data such as scaling dimensions and correlation functions to what the

QFE predicts when we apply it to φ4 theory on S3 at its Wilson-Fisher critical fixed

point.

If the upcoming test of this program of φ4 theory on S3 is successful then we will

be significantly closer to applying the QFE to novel problems in non-perturbative

quantum field theory on curved manifolds. Thus the work presented in this disserta-

tion is an important step towards realizing the study of these incredibly fascinating

topics.

We have further advanced the Euclidean-signature semi-classical method by apply-

ing it to the quantum Bianchi II, VIIh=0, VIII, IX, and Taub models when a plethora

of matter sources were present; thus resulting in a large number of new and novel

5



solutions to their Lorentzian signature Wheeler DeWitt (WDW) equations. These

matter sources include a cosmological constant, aligned electromagnetic field, a free

homogeneous scalar field, an exponential homogeneous scalar field and stiff matter,

which can be thought of as a perfect fluid whose ratio of energy density to pressure

is ρ
P

= γ = 1.

These new solutions were obtained using a different application of the Euclidean-

signature semi-classical method than what J.Bae employed to prove that an asymp-

totic solution exists for the vacuum diagonal Bianchi IX WDW equation. Rather

than integrating the solutions of flow equations that one obtains from the Euclidean-

signature Hamilton Jacobi equation, we were able to take advantage of the symmetries

that are present in some of these models and directly prove the existence of smooth

and globally defined solutions to the infinite sequence of transport equations this

modified semi-classical method yields.

In particular we were able to prove the existence of a countably infinite number

of smooth and globally defined ‘excited’ state solutions to the Taub WDW equation

when a cosmological constant is present and argue that we can easily perform the same

feat when both a cosmological constant and aligned electromagnetic field are present.

In addition we proved the existence of asymptotic solutions to both the vacuum

Bianchi II and ‘no boundary’ Taub WDW equations by directly reducing the problem

of solving the infinite sequence of transport equations into an algebraic problem. By

proving the existence of solutions to these equations using novel applications of the

Euclidean-signature semi-classical method we have shown new ways it can be applied

to other finite dimensional Lorentzian signature problems.

The Euclidean-signature semi-classical method naturally is able to connect the

solutions of the Euclidean-signature equations its application yields to the solutions

of the Lorentzian signature problem it is applied to without having to invoke a Wick

rotation. This same method can be modified so it can be applied to problems in
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bosonic field theory and quantum gravity while retaining the same advantageous

properties we just described. For those two applications the absence of a need to

apply a Wick rotation is a huge advantage given the problems associated with the

traditional Euclidean-signature path integral approach. An advantage of this method

for bosonic field theory in particular is that it doesn’t require splitting the theory up

into one part which is linear (non-interacting) and another part which is a nonlinear

(interacting) perturbation. This allows the fully interacting nature of the field theory

to be present at every level of its analysis. Thus by expanding upon the ways this

method can be applied to prove the existence of smooth and globally defined solutions

to Lorentzian signature equations we inspire further development of this method

which in the future can prove to be a powerful tool to tackle non-trivial problems in

quantum gravity and bosonic relativistic theory, including Yang-Mills theory.

Beyond the significance this dissertation has for mathematical physics, in terms

of theoretical quantum cosmology the solutions we have found possess some interest-

ing qualities that are not present in other known solutions to the WDW equation.

These qualities include, the creation of additional geometric states that our quantum

universes can tunnel into when an aligned electromagnetic field is "weak", the de-

struction of states when the aligned electromagnetic field becomes too "strong, and

a clear manifestations of how a quantum universe which possesses many likely states

that it can tunnel in and out of becomes a semi-classical universe with only one likely

geometric state it can be in when it becomes too large in size as dictated by its scale

factor α.

The interesting aesthetic characteristics of our wave functions imply certain effects

on primordial cosmological evolution which should be chronicled as possible effects

that a toy model of quantum gravity can induce. In addition, due to the inclusion of

matter sources such as a cosmological constant and an electromagnetic field, the wave

functions we have obtained can be the basis for future work, which we will elaborate
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on towards the end of this dissertation, such as understanding potential perturbations

in the CMB that originated from a primordial magnetic field, and the relationship

between Anti de Sitter space and de Sitter space in a quantum cosmology context.
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Chapter 4

Conformal Invariance and the Ising

Model on S3 in Connection With the

Quantum Finite Elements

4.1 The Importance Of Studying Conformal Field

Theory

Conformal field theories (CFTs) are a class of field theories which are conformally

invariant. Conformal invariance in this context means that the correlation functions of

a CFT, expressed in a certain coordinate system, xi, can be evaluated in a conformally

related coordinate system, xi → x′i. The exact manner in how this is done, will be

explicitly demonstrated later when we compute the fourth-order Binder cumulant of

the critical 3D Ising model on S3. Conformal transformations in general are angle

preserving maps in space which locally look like a rotation accompanied by either a

position independent or dependent dilation. A property that CFTs possess is that

they are scale invariant [193, 194]. A theory is scale invariant if it behaves the same

regardless of the energy scale it is being studied at. Quantum field theories studied at
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their fixed point are scale invariant theories. However not all scale invariant theories

are CFTs [183, 203].

CFTs can be used to study how certain QFTs behave when their coupling constants

approach a conformal fixed point. Thus their study possesses foundational significance

for understanding the nature of quantum field theories in general. Due to their nature,

CFTs aid in the development of numerical methods that can be used to study non-

perturbative quantum field theories on curved Riemannian manifolds. This is the case

because a CFT defined on Rn, which is an infinite volume domain, can be mapped

to Sn, which has a finite volume. This is a very useful feature because it allows one

to numerically study a CFT, which was originally formulated on an infinite domain,

on a compact manifold, thus eliminating any possible finite volume artifacts that

are associated with studying field theories on finite sub-regions of Rn. Furthermore

conformal symmetry allows one to perform radial quantization [50, 52, 53, 171] from

Rn to R× Sn−1, which is the cylindrical boundary of AdSn+1 space which facilities

the utilization of AdS/CFT correspondence.

In 3D, conformal mapping can possess the following form

ds2 = Ω (xi)
2 (dr2 + r2dθ2 + r2 sin2 θdφ2) = ds2

M, (4.1)

where ds2
M is the metric of any 3D Riemannian manifold whose Cotton tensor

Cijk = ∇kRij −∇jRik +
1

4
(∇jRgik −∇kRgij) , (4.2)

where Rij, the Ricci tensor, vanishes. Examples of such manifolds include R×S2 and

S3. In addition, Ω (xi) is the Weyl or conformal factor, and is a function of the metric

variables. Any manifold whose metric can be expressed as a product of a function

of only the metric variables and the metric of Rn is conformally flat and can have a

CFT defined on it.
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Due to the strength of conformal symmetry, the form that correlation functions

associated with CFTs can possess are limited. As a result of this restrictiveness, the

correlation functions of a CFT can be defined by a set of numbers that are referred to

as CFT data. This data can be computed using the conformal bootstrap techniques

[87, 88, 215] or by the QFE [56]. For example, in the 2D critical Ising model, conformal

invariance constrains [194] the form of the scalar two-point function to be

g(1, 2) = 〈φ (~r1)φ (~r2)〉plane = B |~r2 − ~r1|−2X , (4.3)

where B is just an arbitrary constant and X is a number known as the scaling dimen-

sion. For the 2D critical Ising model, the scaling dimension is X = 1
8
. Furthermore

the four-point function can be expressed completely in terms of the two-point function

g(1, 2, 3, 4) =
1

2

{[
g(1, 2)g(2, 3)g(3, 4)g(4, 1)

g(1, 3)g(2, 4)

]2

+ (2↔ 3)

+ (3↔ 4)}1/2.

(4.4)

In higher dimensions, the four-point function typically cannot be expressed exactly

in closed form. However it can be expressed as an OPE expansion in terms of known

functions called conformal blocks and CFT data extracted from either the bootstrap

or the QFE.

In any number of dimensions, nth-point correlation functions corresponding to

CFTs formulated on Rn can be mapped to a nth dimension conformally flat manifold

by just knowing its Weyl factor

〈φ (x1) · · ·φ (xn)〉guv =
1

Ω (x1)X
· · · 1

Ω (xn)X
〈φ (x1) · · ·φ (xn)〉flat . (4.5)

The ability to map CFTs to conformally flat manifolds and the restrictive forms

their correlation functions possess makes them a valuable tool for developing methods
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for formulating lattice field theories on curved Riemannian manifolds. This is because

if one knows the relevant data, such as the scaling dimensions, for the operators

associated with a CFT formulated on Rn, and the form of its correlation functions,

then one can compare those known values and functions with the data that is obtained

from a particular lattice formulation of that same CFT on a conformally flat manifold.

For 2D we know that the CFT which exists for φ4 theory on S2 at its strong coupling

Wilson-Fisher critical fixed point is in the same universality class [208] as the critical

2D Ising model on R2. Thus if we study φ4 theory using a new method for formulating

lattice field theories on curved Riemannian manifolds we can compare the results

produced by this new method to known CFT data for the exact 2D critical Ising

model. This type of comparison was done [54] using the QFE for φ4 theory and it

was found that the numerical results for the two and four-point correlation functions,

and the Binder cumulants up to 12th order were in agreement with the exact [187]

analytical results of the 2D critical Ising model. Because of the power and versatility

of conformal invariance, CFTs are a valuable tool to test the validity of new methods

designed to study non-perturbative quantum field theories on curved manifolds. Prior

to applying the QFE to novel problems such as two-dimensional condensed matter

systems such as graphene sheets, four-dimensional gauge theories, and beyond the

standard model (BSM) strong dynamics we need to ensure that it can reproduce

known results which recent advances [120, 144, 191] in the study of CFT has given

us. Only once we have reproduced a sufficient number of results pertaining to CFTs

can we confidently apply the QFE to quantum field theories which are not CFTs.

Beyond using CFTs to check the validity of the QFE and other numerical tech-

niques which are in development, thanks to AdS/CFT correspondence, the study

of certain CFTs can shed much light on other fascinating problems in physics. The

AdS/CFT correspondence was first proposed [163] by J.Maldacena and is a conjecture

which posits that there is a relationship between theories of gravity defined on the
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bulk region of AdS space-time and conformal field theories living on the boundary

of AdS space-time. After this conjecture was proposed, certain physically relevant

identifications were made between CFTs and tractable theories of gravity on the bulk

of AdS.

The most notable was the application of AdS/CFT correspondence to the study of

quark-gluon plasma. In theory the dynamics of a quark-gluon plasma can be described

using QCD. However due to the extreme density and temperature required for quark-

gluon plasma to exist, perturbative QCD is not applicable. Thus a non-perturbative

approach is required. AdS/CFT correspondence was able to help us study [147]

quark-gluon plasma by making an identification between the non-perturbative field

theory which describes this exotic state of matter and five dimensional AdS black

holes. They found that the ratio between the viscosity η and the entropy s associated

with a quark-gluon plasma is approximately equal to the following combination of

universal constants

η

s
≈ ~

4πk
. (4.6)

The estimate of this ratio was facilitated by AdS/CFT correspondence and it was later

found to agree with experimental results [159]. The physical significance of this finding

is very profound because we have good reason to believe that very shortly after the

big bang, ≈ 10−11s, that quark-gluon plasma was present in the early universe. Thus

we now have reason to believe that AdS/CFT correspondence can help us understand

the dynamics of our universe at some of its earliest moments of existence. Beyond

the AdS/CFT correspondence which has already proven to be a powerful tool to help

us understand certain non-perturbative problems, other correspondences have been

proposed such as dS/CFT correspondence [221], Kerr/CFT correspondence [107],

and a relationship [75] between Liouville CFT and (2+1) quantum gravity. Hence

the focus we will give to CFTs in this dissertation, even though we don’t live in a
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world which physically respects conformal symmetry is emphatically justified.

4.2 Introductory Remarks And Four-Point Function

For The Critical 3D Ising model

In three dimensions powerful techniques have been developed to calculate conformal

blocks [120, 144, 191] for CFTs. These conformal blocks show up when trying to

calculate four-point functions in 3D and are a sum of the contributions of the relevant

operators that are part of the CFT in question. The development of these new

techniques was necessitated by the fact that the conformal group in 3D has only a

finite number of parameters as opposed to the 2D conformal group. Thus conformal

symmetry in 3D is less restrictive than it is in 2D. At the forefront of new techniques

designed to evaluate conformal blocks and operator product expansions(OPE) is the

conformal bootstrap [145], which has given us highly precise calculations in regards

CFT data such as the spin, dimension and coefficients of operators appearing in OPE

for the critical 3D Ising model [87, 141, 144]. S.Rychkov, D.Simmons-Duffin and B.

Zan [209] used recently compiled CFT bootstrap data to analyze the non-gaussianity

of the four-point function of the 3D critical Ising model. Using their result for the

four-point function we can further extend the work done by Youjin Deng and Henk

W. J. Blote [81] in 2D, to 3D, and compute an estimate of the Binder cumulant for the

critical 3D Ising model mapped to S3 using Monte Carlo integration of the two-point

and four-point functions. By computing the fourth-order Binder cumulant in this

fashion we’ll have an additional piece of data that we can later compare to the QFE

[55] when it is applied to φ4 theory on S3 at its Wilson Fisher critical fixed point.

The QFE has already been successfully applied to φ4 theory on S2 [54] and R × S2

[56] at their Wilson-Fisher critical fixed point and the results they yielded matches

very nicely with known CFT data for the critical 2D and 3D Ising models.
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Conformal symmetry restricts the form of the four-point function for the critical

3D Ising model as is shown below

〈φ(x1)φ(x2) φ(x3) φ(x4)〉flat =
g(u, v)

|x1 − x2|2∆σ |x3 − x4|2∆σ
, (4.7)

where xi is a point in R3 and u and v are the following conformally invariant cross

ratios

u =
(x2

12x
2
34)

(x2
13x

2
24)

v =
(x2

32x
2
14)

(x2
13x

2
24)
.

(4.8)

For our four-point function (4.7), ∆σ is the scaling dimension of ˆφ(xi) and its value

[146] estimated by the conformal bootstrap is ∆σ = 0.5181489(10). The numerator

of (4.7), g(u, v), can be expressed as an OPE in terms of conformal blocks

g(r, η) = 1 +
∑

O∈σ×σ

C2
σσOg∆O ,`Og(r, η), (4.9)

where

r =

√
zz̄(√

1− z + 1
)2 (√

1− z̄ + 1
)2

η =

z

(
√

1−z+1)
2 + z̄

(
√

1−z̄+1)
2

2

(
zz̄

(
√

1−z+1)
2
(
√

1−z̄+1)
2

) 1
2

u = zz̄

v = (1− z)(1− z̄).

(4.10)

These coordinates were chosen so our results are in concord with what was previously

done on this subject [121, 144].

The sum in (4.9) is over the operators(excluding the unit operator ) that are

present in the φ(xi)×φ(xj) OPE of dimension ∆O and spin `O . The scale dimensions
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and spins for these operators are provided in table 1 of [141]. To evaluate (4.9) we

use following recursion relation which was first reported in [145]

(4r)∆h∆,`(r, η) ≡ g∆,`(r, η)

h∆,`(r, η) = h
(∞)
` (r, η) +

∑
k

c1r
n1

∆−∆1

h∆1+n1,`1(r, η) +
∑
k

c2r
n2

∆−∆2

h∆2+n2,`2(r, η)

+
∑
k

c3r
n3

∆−∆3

h∆3+n3,`3(r, η)

(4.11)

where information on what h(∞)
` (r, η), ci, ni, `i, and ∆i are is described in [144].

This recursion relation converges quickly and is easy to evaluate using a computer

algebra system like Mathematica. For our purposes we evaluate h∆,` to 12th order in

r where h(∞)
` is not expanded in terms of r. The result of using this recursion relation

(4.11) to compute h(r, η) up to nth order should be a nth order polynomial in r whose

coefficients include h(∞)
` (r, η). In the appendix, there will be a Mathematica code

that evaluates (4.9) as a sum over the operators present in table 1 of [141] up to any

order in r.

4.3 Conformal Invariance of an 3D Spheroid

4.3.1 Conformal Invariance of S3

In this section we will furnish a conformal mapping between a general 3D spheroid

and R3. We will later use the resultant Weyl factor to obtain an estimate of the

fourth-order Binder cumulant for the critical 3D Ising model on S3. Our spheroid can

be defined as a set of points embedded in R4 which satisfies the following relation in

Cartesian coordinates
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x2

a2
+
y2

a2
+
z2

a2
+
w2

b2
= 1 (a, b > 0). (4.12)

When b → 0 our spheroid approaches the 3D analogue of a disc or a 2-ball, which

is a 3-ball. Technically speaking this 3-ball will be the superposition of two 3-balls

superimposed onto each other at their boundaries. This will be discussed in more

detail later. In the opposite limit when b → ∞ our spheroid can be understood to

approach R× S2. In an earlier calculation φ4 theory at its Wilson-Fisher fixed point

was analyzed [56] on R × S2 using the QFE. When b → a the spheroid approaches

S3, which is the next manifold we wish to study φ4 theory on using the QFE.

A set of equations which satisfy (4.12) and encapsulates all of the cases we just

outlined and everything else in-between are

x = a sinψ sin θ cosφ,

y = a sinψ sin θ sinφ,

z = a sinψ cos θ,

w = b cosψ,

(4.13)

where ψ and θ range from 0 to π, and φ ranges from 0 to 2π. Intuitively this set of

coordinates can be deduced by noticing that as one goes up a dimension from the

circle, S1, to the sphere, S2, that an extra parameter, θ, is introduced which ranges

from 0 to π in the following manner

xS2 = sin θxS1 ,

yS2 = sin θyS1 ,

zS2 = cos θ.

(4.14)

For the coordinates originally associated with the lower dimensional sphere, a factor of

sin θi, where θi ranges from 0 to π is included and represents a new degree of freedom
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present on the higher dimensional sphere. The new independent Cartesian coordinate

which differentiates the higher dimensional embedding space from the one dimension

lower space is parameterized by cos θi. We see that carrying out this construction from

the S2, parameterized using standard spherical coordinates, to the S3 results in (4.13).

Extending this to arbitrary dimensions results in the following parameterization for

a n-sphere with radius r,

x1 = r cos (θ1)

x2 = r sin (θ1) cos (θ2)

x3 = r sin (θ1) sin (θ2) cos (θ3)

...

xn−1 = r sin (θ1) · · · sin (θn−2) cos (φ)

xn = r sin (θ1) · · · sin (θn−2) sin (φ) .

(4.15)

Because the n-sphere and in turn the n-spheroid can be parameterized in a convenient

coordinate system the results in this paper can be generalized to n dimensions.

Using (4.13) we obtain the following metric representation for a 3D spheroid

ds2
sph =

(
b2 sin2 ψ + a2 cos2 ψ

)
dψ2 + a2 sin2 ψ(dθ2 + sin2 θdφ2). (4.16)

Using the following change in coordinates inspired by [81], w =
∫ √

b2 sin2 ψ + a2 cos2 ψdψ,

we can rewrite (5.31) as

ds2
sph = dw2 + f(w)2(dθ2 + sin2 θdφ2), (4.17)

where f(w) = a sinψ. This metric can be related conformally to the following metric

on R3
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ds2
flat = (dr2 + r2dθ2 + r2 sin2 θdφ2), (4.18)

by introducing this functional dependency, r = eg(w), which results in

ds2
flat = e2g(w)

(
dg

dw

)2
dw2 +

(
1
dg
dw

)2 (
dθ2 + sin2 θdφ2

) . (4.19)

We can now set (
1
dg
dw

)
= a sinψ(w) (4.20)

and obtain g(w) =
∫

1
a

cscψdw. Going back to the original coordinate transformation

we applied to (5.31), we can rewrite g(w) as

g(w) =

∫
1

a
cscψ

√
b2 sin2 ψ + a2 cos2 ψdψ =

∫ √
b2

a2
+ cot2 ψdψ. (4.21)

By doing so we recover the following metric which is conformal to (4.17)

ds2
flat =

e2g(w)

a2 sin2 ψ

(
dw2 + f(w)2(dθ2 + sin2 θdφ2)

)
. (4.22)

By comparing (4.22) to (4.17) we can deduce that the Weyl factor of our 3D spheroid

is

Ωspheroid (xi) = a sinψe−
∫ √

b2

a2 +cot2 ψdψ. (4.23)

For the case of S3 when b = a = 1 this reduces to

ΩS3 (xi) = 2 cos2 ψ

2
. (4.24)

Going back to how we parameterized r in (4.18) and setting b = a = 1 we obtain the
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following mapping between a point on S3 and a point in R3

z = tan

(
ψ

2

)
cos θ,

y = tan

(
ψ

2

)
sin θ sinφ,

x = tan

(
ψ

2

)
sin θ cosφ.

(4.25)

From a geometric perspective our conformal mapping of S3 to R3 is the exact

higher dimensional analogue of the standard stereographic projection commonly per-

formed from S2 to R2. For the general case this mapping can be accomplished by

placing a Sn on Rn with its south pole centered on the origin of Rn and drawing lines

from the north pole which intersect both Sn and Rn. Each one of those lines are

oriented by a set of n angles and their intersection with Sn and Rn provides a one to

one mapping between Sn and Rn. The north pole itself cannot be mapped using only

a single cover because in the limiting case the line that would intersect the north pole

becomes parallel to Rn and hence never intersects it. That is why Sn can be thought

of as a one point compactification of Rn. A picture of this stereographic projection

is provided in Fig. 5.11.

4.3.2 Conformal Invariance of R× S2

As we previously mentioned, in the limit, b → ∞, (4.12) gives the equation for a

3D cylinder which is topologically equivalent to R × S2. One way of seeing this is

to examine what happens to (4.12) as b → ∞ and −∞ < w < ∞. In the limit of,

b→∞, and w being finite, (4.12) reduces to

x2

a2
+
y2

a2
+
z2

a2
= 1. (4.26)
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(a)

Figure 4.1 Illustration of the conformal mapping between an infinite plane and S2

with the polar angle shifted in the following manner, θ → π − θ, compared to what
we have in (4.24). This imagine originally appeared in [81]

Despite the disappearance of w the manifolds which (4.26) admits are still embedded

in R4. Thus w can be parameterized independently of x, y, and z in an arbitrary

fashion. Because we wish to recover R× S2 we will set w = t, where t ranges from

(−∞,∞) and parameterize x, y, and z using standard spherical coordinates. Doing

so results in the following metric

ds2
3−cyl = dx2 + dy2 + dz2 + dw2,

ds2
3−cyl = dt2 + a2(dθ2 + sin2 θdφ2),

(4.27)

where a is the radius of S2. Using (4.15), this metric can be generalized to R× Sn

ds2
n−cyl = dt2 + dΩ2

n−1, (4.28)

where dΩ2
n−1 is the metric of Sn−1 which can be obtained for any n using (4.15). As

the reader can verify dt2 +a2(dθ2 + sin2 θdφ2) is conformally related to (dr2 + r2dθ2 +

r2 sin2 θdφ2) through the following Weyl factor
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Ω2
3−cyl = e−2t/a, (4.29)

generated by defining r as

r = ae
t
a . (4.30)

It should be mentioned that setting b equal to a positive, real, finite number does not

result in the geometry of a finite length R× S2. Rather the resultant geometry is a

3D ellipsoid. Only in the limit as b→∞ is R× S2 realized.

Because R × S2 isn’t a compact manifold using integration to find the Binder

cumulant (4.39) isn’t trivial. To obtain an estimate of the Binder cumulant for this

non-compact geometry one can perform a single point compactification of R × S2

which results in S1 × S2 and define a lattice field theory on that manifold. Once a

lattice field theory is defined on S1 ×S2 one can perform a Monte Carlo simulation to

compute an estimate of the Binder cumulant on that compactified geometry as was

done in [57]. When this compactification is done the manifold is defined by two radii

r1 and r2, where r1 denotes the radius of S1 and, r2 is the radius of S2. In the limit

as r1→∞, S1 × S2 approaches R× S2. Therefore if one has a method, such as the

QFE, which allows them to formulate lattice field theories on curved manifolds they

can study the critical 3D Ising model on S1 × S2 as r1 → ∞ and observe what the

Binder cumulant approaches.

4.3.3 Conformal Invariance of 3-Ball

Before we move on to calculating the Binder cumulant on S3 it is prudent to talk

about how one would do the corresponding calculation for the 3-ball. The 3-ball

is imminently related to S3. One can construct S3 by superimposing two 3-balls

and defining an equivalence class which identifies all of the points which make up

the shared boundaries of this superimposed ball. In other words, the points which
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make up the boundary of the two superimposed 3-balls, which are two 2-spheres, are

identified as a single point. This identification of the boundary with a single point

can be realized by projecting out the boundary of this superimposed 3-ball into a

higher dimensional space in which the boundary points of the 2-spheres merge at the

north pole; thus resulting in a newly formed S3.

Mathematically we see a hint of this construction by setting, b = 0, and obtaining

the following r from our earlier coordinate transformation

r = lim
b→0

e
∫ √

b
a

+cot2 ψdψ = sinψ. (4.31)

As it can be seen when b→ 0 our r doesn’t cover the whole plane R3 because r only

ranges from 0 to 1. This is because these coordinates only map points located on

the lower hemisphere and excludes points located on our 3-ball’s upper hemisphere.

This is an artifact of S3 being a construction of two superimposed 3-balls with their

shared boundaries being glued together at a single point. The total mapping can

be realized by noticing that we could have defined our functional dependency right

above (4.19) as r = e−g(w). Such a functional dependency would have allowed us to

obtain a different Weyl factor, Ω(xi), which nonetheless yields the exact same Binder

cumulant for the case of S3 as the one we previously calculated. However it would

also result in the following radius

r = lim
b→0

e−
∫ √

b
a

+cot2 ψdψ = cscψ. (4.32)

which ranges from 1 to∞. Thus in order to compute the two and four-point functions

for the superimposed 3-ball one must differentiate between points on the northern

hemisphere and points on the southern hemisphere because they both have different

radial coordinates, (4.31) and (4.32). The resulting calculation involves group aver-

aging the four-point function over all of the different combination of points that can
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be on one hemisphere and the opposite hemisphere. More information of this group

averaging for the 2-ball which can be extrapolated to the 3-ball can be found in [81].

Preliminary results obtained using the five operators reported in table 1 of [142]

and setting b
a

= 10−5 yields, U4 = 0.38703± .0.00570, which suggests that the Binder

cumulant for these two superimposed 3-balls is similar to the Binder cumulant for

S3 as we show in section IV. This similarity between the Binder cumulant of the

superimposed 3-ball and S3 are in concord with the similarity found in [81] between

the Binder cumulant of the superimposed 2-ball (disc) and S2.

For the related case of the interior of a single, non-superimposed sphere that

was considered in [74] one has to take into account the boundary. This is done

by studying the boundary conformal field theory (BCFT) [62, 63] which has its own

scaling dimensions and operators associated with it. For the case with a free boundary

on S2 the scaling dimension of the relevant operator was found to be [82, 85, 99, 113]

∆σ̃ = 1.276(2). Thus in computing the Binder cumulant of a 3-ball with a boundary

one must differentiate between pairs of points which are either both on the boundary,

inside the bulk or where one point is inside the bulk and the other is on the boundary.

The need to differentiate the location of points on the two aforementioned manifolds

is a similarity that the two-superimposed 3-balls and the single 3-ball with boundary

share with each other.

Using the known values of the scaling dimensions on the boundary of a 3-ball and

its interior allows one in theory to use the formalism we presented in this paper to

compute an estimate of the fourth-order Binder cumulant. An estimate of the fourth-

order Binder cumulant for the critical 3D Ising model on a 3-ball with a boundary

computed by integrating its two and four-point functions can be compared with the

estimate obtained in [74]. Comparing this hypothetical estimate to what was ob-

tained in [74] can increase our understanding of how to study BCFTs via numerical

simulations. In the future we plan to do the calculation we outlined in this section in
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the limit when, b
a

= 0, and perform a comparison of the value of the Binder cumulant

obtained from direct integration to [74]. Furthermore in the future the QFE can be

extended to apply to quantum field theories formulated on curved manifolds with

boundaries.

4.4 Binder Cumulant Estimate

Using the Weyl factor, Ω (xi) = 2 cos2
(
ψi
2

)
, we obtained earlier we can map the two

and four-point functions of the critical 3D Ising model from R3 to S3 as is shown

below in
〈φ (x1)φ (x2)〉guv =

1

Ω (x1)∆σ

1

Ω (x2)∆σ
〈φ (x1)φ (x2)〉flat

〈φ (x1)φ (x2)φ (x3)φ (x4)〉guv

=
1

Ω (x1)∆σ
. . .

1

Ω (x4)∆σ
〈φ (x1) . . . φ (x4)〉flat .

(4.33)

We will use these variables in (4.25) to construct our two and four-point functions

As it can be seen below conformal symmetry greatly restricts the form of the

following two-point function

〈φ (x1)φ (x2)〉flat =
1

x2∆
12

, (4.34)

where xij =|xi − xj|. The two quantities we need to find by integrating our two and

four-point functions over S3 in order to obtain our fourth-order Binder cumulant are

the following magnetization densities

〈σ2〉 = ρ2
∫

dS1 dS2 〈φ (x1)φ (x2)〉guv ,

〈σ4〉 = ρ4
∫

dS1 · · · dS4 〈φ (x1)φ (x2)φ (x3)φ (x4)〉guv ,
(4.35)

where ρ is the areal density of the spins, and dSi represents the number of spins in

an infinitesimal area. For the S3, ρ, and dSi can respectively be expressed as 1
2π2 and
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sin2 ψi sin θidψidθidφi. We can reduce the computational cost of integrating our two

and four-point functions by taking advantage of the SO(4) symmetry of S3. Because

SO(4) has six generators, which corresponds to six independent rotations, we can

rotate our S3 in such a way that some of the angles that we would normally need to

integrate over are fixed; thus reducing the computational cost of our multidimensional

Monte Carlo integration. This can be seen because SO(4) is locally isomorphic to

SO(3)⊗SO(3). Thus there are six independent rotations for S3 three for each SO(3).

This can be seen by noticing that the Lie Algebra of SO(4) can be represented as two

copies of the Lie Algebra of SO(3).

The key for efficiently evaluating these integrals (4.35) is to use the SO(4) sym-

metry of S3. For the two-point function we can naively evaluate a 6th dimensional

integral over these points on its surface, (ψ1, θ1, φ1) and (ψ2, θ2, φ2). By rotating S3

we can set the first point to be (0, 0, 0) and the second point to be (ψ2, 0, 0). This

results in the following integral for the 2nd order magnetization density.

〈
σ2
〉

=

∫ π

0

(
(2π2) (4π) sin2 (ψ2)

) (
1

2π2

)2(
2 cos2

(
ψ2

2

)) ( sin2(ψ2)
(1+cos(ψ2))2

)0.518149 dψ2 (4.36)

which yields from Mathematica’s INTEGRATE function

〈
σ2
〉

= 0.847359 (4.37)

The four-point function can be ultimately expressed using the following coordi-

nates (ψ1, θ1, φ1), (ψ2, θ2, φ2), (ψ3, θ3, φ3), (ψ4, θ4, φ4). Using the SO(4) group we can

reduce the dimensionality of our integral for 〈σ4〉 from twelve to six by fixing the fol-

lowing coordinates (0, 0, 0), (ψ2, 0, 0), (ψ3, θ3, 0), (ψ4, θ4, φ4). Using Mathematica NIN-

TEGRATE, we preformed 10,000 Monte Carlo evaluations and obtained the following

26



estimate of the fourth-order magnetization and its associated statistical error

〈
σ4
〉

= 1.59083± 0.00016. (4.38)

We now have all that we need to compute an estimate of the fourth-order Binder

cumulant.

U4 =
3

2

(
1− 1

3

〈σ4〉
〈σ2〉2

)
(4.39)

U4 = 0.39220± 0.00011. (4.40)

For now we exclude sources of error orientating from uncertainty inherent to the CFT

data obtained through the bootstrap.

This result must be understood within the context of the OPE representation of

the four-point function. Infinitely many operators of varying scaling dimension and

spin exist which must be summed in order to obtain an exact expression for the four-

point function of the critical 3D Ising model. The finite number of operators whose

CFT data has been obtained from the bootstrap are the leading order operators

which contribute the most to the four-point function. However, because we only took

into account data pertaining to eleven of those operators a systematic error will be

present in our calculation as a result of us not being able to integrate the exact four-

point function. The remainder of the operators posses a higher spin and/or scaling

dimension. Thus their inclusion would allow us to more accurately compute the four

point function when the points are very close to each other.

The range of this systematic error can be estimated by taking the difference be-

tween the Binder cumulant computed using the eleven operators listed in table 2 of

[216] and the resultant cumultant one obtains if they use only ten of the operators.

There is no definitive answer for which ten operators one should include. Thus we

performed this estimate using two similar, but different methodologies. The first

methodology involves computing a sequence of Binder cumulants as operators are
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added to the OPE in the order of their scaling dimension. This means first comput-

ing the Binder cumulant while only including the operator with the lowest scaling

dimension, ε, in the OPE representation of the four-point function and than includ-

ing the operator with the next lowest scaling dimension, Tµ,ν , until ten of the eleven

operators are included in the four-point function. The next methodology is similar

except operators are included sequentially into the OPE in order of increasing spin.

In terms of increasing scaling dimension and spin, one respectively obtains the

following Binder cumulants and potential estimates for the systemic error

UScaling = 0.39216± 0.00011

∆U4−Scaling = U4 − UScaling = 0.00004,

(4.41)

USpin = 0.39165± 0.00011

∆U4−Spin = U4 − USpin = 0.00141.

(4.42)

One way to interpret the magnitude of the systematic errors that we obtained using

bootstrap data is to compare it to the magnitude of the systematic error generated by

doing the analogous calculation using the QFE. A direct comparison of such nature

cannot be done at the moment because we haven’t had a chance to apply the QFE

to φ4 theory on S3. However it is reasonable to expect that the relative error that we

will obtain when we do the aforementioned calculation will be similar to the relative

error obtained for the analogous calculation [95, 174] on S2 which has already been

done.

Below are the statistical(58) and systematic(90) errors for an estimate of the

fourth-order Binder cumulant of φ4 theory at its Wilson-Fisher conformal fixed point

on S2 computed using the QFE (Monte Carlo Values) [95, 174] and direct integration

(Analytic CFT Values).
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Monte Carlo Values: U4,cr = 0.85020(58)(90)

Analytic CFT Values: U∗4 = 0.8510207(63).
(4.43)

If we compute the relative error of the above QFE result we obtain

δU4,cr =
9 × 10−4

0.85020
≈ 10−3. (4.44)

This is a reasonable estimate of the systematic error that we expect our QFE calcula-

tion on S3 to yield. Therefore in order to interpret the magnitude of the relative error

that the bootstrap presently yields for the fourth-Binder cumulant of the critical 3D

Ising model we should compare it to (4.44).

δU4,scaling−dim ≈ 9 × 10−5, (4.45)

δU4,spin ≈ 3.6 × 10−3. (4.46)

If the systematic error in our calculation is closer to (4.45) that would suggest that the

current CFT data that we have from the bootstrap is enough to compute an accurate

estimate of the four-point function relative to the implementation of the QFE that

was used in [54]. However if the systematic error is much closer to (4.46), that would

indicate that the current bootstrap results aren’t enough to match the accuracy of

the QFE and that additional data on higher order operators is needed so that the

accuracy of the two calculations can be in agreement with each other.

To demonstrate the convergence of the Binder cumulant as we add terms to the

four-point function we show in figure 2 the Binder cumulant as a function of these op-

erators for both methodologies. We used Monte-Carlo integration and 1,000 iterations

to compute each Binder cumulant. We are confident that our range is representa-

tive of the systematic error because it is evident that as we include operators in the

OPE that our results are converging to a definitive value. The difference between
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preceding cumulants have a tendency to shrink as we include more operators, thus

the inclusion of more operators will allow us to further minimize the systematic error.

Thus in order to compute a more accurate estimate of the fourth-Binder cumulant

using integration we need additional bootstrap results for higher order operators and

to include more Monte Carlo iterations.

Figure 2b shows an interesting phenomenon. Excluding when only the operator

with both the lowest scaling dimension and spin is included, the inclusion of an

operator with higher spin results in the value of U4 jumping. When the highest

operator included in the four-point function has spin 2 the values of U4 varies little

as additional spin 2 operators are included. It is only when spin 4 operators are

included that we see such a jump and again see that the value of U4 varies very

little when additional spin 4 operators are included. We see a similar jump when

we include a spin 6 operator. The jump though decreases in magnitude as higher

and higher spin operators are included. This suggests that the value of the Binder

cumulant approaches some definitive number as we increase the operators in the OPE

representation of the four point function. The origin of this phenomenon deserves to

be investigated.

As a check that our procedure for evaluating the four-point function on S3 is correct

we calculated the Binder cumulant for the free theory. The correlation functions for

a free CFT are given in [106] and its Binder cumulant should be zero. Using Monte

Carlo integration, 10,000 iterations, and accuracy goal 15, we calculated

U4 = −1.9176× 10−6 ± 4.7357× 10−5. (4.47)

Our result is very comfortably within the range of the expected result of 0 for the

Binder cumulant. We hope to check our results for the Binder cumulant of the critical

3D Ising model on S3 using the QFE in the near future.
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(a) Binder cumulant plot in order of
scaling dimension

(b) Binder cumulant plot in order of
increasing spin

Figure 4.2 Plots of the Binder cumultant as we include operators into the OPE of
the four-point function in order of their scaling dimension and spin. We count the
unit operator as the first term included. We started with the 3rd operator plot in
order of scaling dimension. The statistical error bars don’t show in the spin graph
because of the large difference in values of the Binder cumulant when only spin zero
operator are included versus when spin 2 > operators are included. The statistical
errors for all of the points in our spin graph are around ≈ .0004.

4.5 Further Remarks

Using the data of the critical 3D Ising model computed using the conformal bootstrap

method, we integrated the approximate two and four-point functions to obtain an

estimate of the fourth-order Binder cumulant. We also showed how this approach

could be used to estimate the Binder cumulants for the 3-ball and other 3D spheroids.

Our approach is an extension of the work by Deng and Blote [81] to three dimensions

and we showed how it could be extended further to higher dimensional spheroids. The

immediate application of our result is to compare this estimate of the Binder cumulant

with one computed in an upcoming calculation of φ4 theory on S3 using quantum finite

elements (QFE). A favorable comparison of the two methods would give us further

confidence that QFE is a correct framework for computing non-perturbative quantum

field theories on curved manifolds.
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Chapter 5

The Quantum Finite Elements

5.1 Brief History of the Quantum Finite Elements

Lattice field theory has proven to be a powerful non-perturbative approach to quan-

tum field theory [10]. However, the lattice regulator has generally been restricted to

flat Euclidean space, R4, discretized on hypercubic lattices with a uniform ultraviolet

(UV) cutoff, ΛUV=π
a
, in terms of the lattice spacing, a. This formalism is not ideal

to study quantum field theories at their conformal fixed points. One issue, [95] is

that correlations functions associated with certain field theories grow without bound

as one numerically tunes them to their conformal fixed points. This results in finite

volume artifacts compromising the integrity of the calculation being performed. An-

other issue is that at conformal fixed points, correlation functions generally scale as

fixed power law functions as opposed to an exponential. This makes it difficult to ex-

tract accurate eigenvalues, scaling dimensions, and other CFT data using traditional

lattice methods.

A way to partially amend the above situation is to perform radial quantization. As

was previously discussed, a CFT on Rd can be mapped to R× Sd−1. This conformal
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mapping at a geometric level takes the form of

ds2
Rd = dr2 + r2dΩ2

d−1 = e2t
(
dt2 + dΩ2

d−1

)
→ dt2 + dΩ2

d−1 = ds2
R×Sd−1 , (5.1)

where the coordinates r and t are related to each other by an exponential map r = et

and the Weyl factor is Ω = et. This exponential factor results in the correlation

function of the theory being studied at its conformal fixed point to behave in an

exponential fashion.

In order to study field theory numerically on R× Sd−1 a compaction of the time

axis R must take place. This is done by employing periodic boundary conditions,

thus transforming R × Sd−1 to S × Sd−1. Despite this progress towards applying

traditional lattice methods to field theories at their conformal fixed points a problem

still remained. It was pointed out by Cardy that applying radial quantization for the

case when d > 2 raises a problem [64] because no regular lattice refinement scheme

was known for the temporal cross sections of R× Sd−1.

Thus the problem of studying field theories at their conformal fixed points be-

came a problem of formulating lattice field theories on curved Riemannian manifolds.

Before one can proceed to tackle this problem, the question of whether a renormal-

izable quantum field theory in flat space-time is perturbatively renormalizable on a

curved space-time must be answered. Fortunately, thanks to a large amount of re-

search [60, 125, 126, 157] conducted in the 70s and 80s this question was answered.

That research concluded that any UV complete theory in flat space is perturbatively

renormalizable on a curved Riemannian manifold and its counter terms are invariant

under diffeomorphism of the manifold that the theory is on.

With this in mind we can begin to talk about attempts to formulate what is

now known as the QFE. In 2012 R. Brower, G. Fleming and H. Neuberger embarked

on an investigation [58] of the critical 3D Ising model using radial quantization. In
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the process of their investigation, they constructed a simplicial approximation of S2

using a regular icosahedron. In spite of some qualitative success, small defects were

observed at the l = 3 level which persisted as the continuum limit was approached.

Nonetheless much was learned from this exercise. In the coming years, the method

was improved upon [52, 53] by figuring how to include position (lattice) dependent

quantum counter terms to remedy any artifacts as a result of working on a non-

uniform lattice and by studying the geometric nature of the non traditional lattice

that was originally constructed in 2012.

After much work, the QFE was applied to 2D φ4 theory at its Wilson Fisher

critical fixed point and it was found that the numerical results for the two- and

four-point correlation functions, and the Binder cumulants up to 12th order were in

agreement with the exact analytical results of the c = 1/2 CFT solutions. It was

also successfully applied to φ4 theory at its Wilson-Fisher critical fixed point [56] on

R× S2 and to a free theory consisting of fermions [55]. Currently it is in the process

of being applied to φ4 theory on S3 by the author which will pave the way for it to be

applied to theories on the physically relevant space of R×S3. This space is important

to study because manifolds that can be described as R×S3 in a topological sense are

ubiquitous in general relativity.

This chapter will consist of the following content. In the next section we will

discuss how we construct our simplicial approximation of S3 which preserves the

largest known discrete subgroup of SO(4). Then we will explain how we found the

correct weights for the links and vertices which make up our simplicial approximation

to S3 and how we constructed our discrete Laplacian on K. Afterwards we will discuss

how we were able to order the simplices which form our simplicial approximation to

S3 in such a way that when the discrete form of the boundary operator is applied to

our ordered complex, K, it vanishes. From there we will talk about how we compute

quantum counter terms to deal with UV effects and position dependent irregularities
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in our lattice.

In the next chapter we will show how the spectrum of our discretized Laplacian

defined on a simplicial approximation to S3 appears to be converging to the known

continuum limit as the refinement level of our complex is continuously increased.

By doing so we are able validate our method for discretizing S3 which is a crucial

prerequisite to formulating a lattice field theory on it.

5.2 Constructing A Simplicial Complex On S3

The first step to formulating a LFT on S3 is to construct a simplicial approximation of

S3 in a manner which allows us to assign weights (a number) to the links and vertices

which make up our simplical approximation. The largest discrete subgroup of the

isometries of S3 is the 600-cell which is composed of 600 "equilateral" tetrahedrons

glued together in such a way that each vertex is shared by 20 tetrahedrons and each

edge is shared by 5 tetrahedrons. The 600-cell can be properly embedded in R4, just

like the S3, and as a result will be the basis for our simplicial approximation of S3.

In order to discretize the 600-cell, two types of tetrahedrons can be used, "equilat-

eral" tetrahedrons and "right" tetrahedrons. This is deduced by knowing that an 3D

Euclidean-space, such as the interior of a "equilateral" tetrahedron, can be perfectly

tessellated with a tetrahedral-octahedral honeycomb as shown in figure (5.1).

A point can be inserted in the center of each octahedron and then lines from the

vertices of the octahedron can be connected to that point to break up the octahedron

into eight "right" tetrahedrons. An image of what this looks like when it is applied to

tessellating the interior of a "equilateral" tetrahedron is displayed below, where the

‘red’ vertex was inserted and the ‘red’ links connect the original ‘black’ vertices of

the octahedron to the ‘red’ vertex that we inserted into the center of the octahedron.

The higher our level of discretization k is, the more refined our tessellation of the
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(a) (b)

Figure 5.1 Tetrahedral-octahedral honeycomb tessellation of an equilateral tetrahe-
dron. These images were sourced from https://www.cosmic-core.org/free/article-48-
geometry-platonic-solids-part-9-the-octahedron/

(a) Refined tetrahedron:k=2 (b) Further refined tetrahedron:k=4

Figure 5.2 Refined tetrahedrons

tetrahedron in figure (5.2) becomes.

To further illustrate how we are discretizing the 600-cell an image of a right tetra-

hedron and an equilateral tetrahedron are presented in figure 5.3.

The "right" tetrahedron is named so because three out of four of its triangular

faces are right triangles and the "equilateral" tetrahedron is named so because all of

its faces are equilateral triangles.

After refining the tessellation of the 600-cell to a desired level we project all of the

vertices of the refined 600-cell to the surface of S3. By using a program called qhull

[25] a Delaunay triangulation is constructed on the surface of the S3 from the vertices

we projected onto it. A Delaunay triangulation is a tessellation in which no vertices
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(a) Right tetrahedron (b) Equilateral tetrahedron

Figure 5.3 Tetrahedrons we used to tessellate the 600-cell

not associated with a simplex are contained within the circumcircle of that simplex.

Some images [72] illustrating this in 2D are shown in figure (5.4) and (5.5).

Figure 5.4 The ‘red’ vertices are the centers of the circumcircle

Due to the positive curvature, the tetrahedrons which are constructed from this

new triangulation are distorted. Because we started out with the 600-cell, this dis-

cretization of the S3 preserves the symmetry of the 600-cell, which as we mentioned

before, is the largest discrete subgroup which preserves the isometries of the S3. An

image of one of these tessellated distorted tetrahedrons of the S3 projected down to

R3 is shown in figure (5.6).

Another way of viewing this construction which allows notions from discrete ex-
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Figure 5.5 The left picture is of an Icosahedron. The middle picture shows one of
the faces of the Icosahedron being tessellated using equilateral triangles. The picture
on the right is the result of projecting the vertices of a fully tessellated Icosahedron
on to S2 and then constructing a Delaunay triangulation out of it. These pictures
originally appeared in [54, 95].

Figure 5.6 A refined portion of the simplicial approximation to the S3 projected
down to R3

terior calculus to manifest more clearly is the following: a pure simplicial complex,

K, consists of a set of d -dimensional simplices (designated by σd) "glued" together

at shared faces (boundaries) consisting of (d-1) -dimensional simplices (σd−1) , this

iteratively gives the sequence of simplices: σd → σd−1 → · · ·σ1 → σ0. This hierarchy

of boundaries/simplices is specified by the boundary operator,

∂σn (i0i1 · · · in) =
n∑
k=0

(−1)kσn−1

(
i0i1 · · · îik · · · in

)
(5.2)

where îik means to exclude the vertices of the simplex. Each simplex σn (i0i1 · · · in) is

an anti-symmetric function of the vertices it is composed of. To properly construct a
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lattice field theory on a Riemannian manifold which itself has no boundary such as the

S3, the vertices of the σn (i0i1 · · · in)s must be ordered so that the boundary operator

over the sum of all the n-simplices (σn (i0i1 · · · in)) vanishes. This to ensure that

the continuum result of the S3 not possessing a boundary is shared by its simplicial

approximation, K.

The next step in our discretization is to construct the dual to the Delaunay tri-

angulation, the Voronoı̈ dual lattice. In general it is constructed as follows. One first

identifies the circumcenters of the links of the simplicial complex. Normals are drawn

from the circumcenters/midpoints of the links into the interior of each 2-simplex. In-

side of each 2-simplex, the three normals intersect at exactly one point which is the

circumcenter of the 2-simplex. From there normals are drawn from the now known

circumcenters of the 2-simplices which intersect inside the 3-simplices. The points at

which they intersect are the circumcenters of the 3-simplices. This procedure contin-

ues iteratively. Once the circumcenters of all (k-1) -simplices are identified, normals

are drawn from them into the interior of each k-simplex. The (k+1) normals intersect

at exactly one point inside each k-simplex which is its circumcenter. The collection

of circumcenters and normal lines constructed in this manner form the graph of the

Voronoı̈ dual lattice. A picture of what this construction looks like in two-dimensions

on top of a simplicial complex can be seen below in figure (5.7).

The Voronoı̈ dual lattice has the same hierarchical structure, in which it is com-

posed of polytopes, σ∗0 ← σ∗1 ← · · · ← σ∗d, where σ∗n has dimension d−n as illustrated

in figure (5.7). These two constructions are orthogonal to each other in the sense

that each σn is orthogonal to its dual polytope σ∗n. The main consequence of this is

that the volume of the hybrid cells which are shaded in blue in figure (5.7) have the

following simple form

|σn ∧ σ∗n| =
n! (d− n)!

d!
|σn| |σ∗n| . (5.3)
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Figure 5.7 A 2-d simplicial complex with points (σ0), edges (σ1) and triangle (σ2)
(illustrated in yellow). At each vertex (σ0) there is a dual polytope (σ∗0) (illustrated
in red), and at each link, σ1, there is a dual link (σ∗1) and its associated hybrid cell
σ1 ∧ σ∗1 (illustrated in blue). This image was sourced from [54].

Ultimately we will use these hybrid cells constructed from the circumcenters of σd →

σd−1 → · · ·σ1 → σ0. to form our discrete approximation to S3.

To find a hybrid cell for our discrete approximation to S3, one can start by choos-

ing an arbitrary link. Next a vertex σ0 of that link is identified. From there the

circumcenter (midpoint) of that link σ1 is found. Then the circumcenter of one of

the two triangular faces (σ2) of the tetrahedral cell (σ3) whose boundary contains

the link (σ1) is found. Finally the circumcenter of the tetrahedral cell (σ3) associ-

ated with that link is found. These four circumcenters form a tetrahedron, the same

construction is done for the other vertex of the link and for the other triangular face

whose boundary contains that link, which in total yields four tetrahedrons. These

four tetrahedrons are one of the hybrid cells which ultimately discretize our S3, they

are the three dimensional analogue to the two dimensional hybrid cells of figure (5.7).

The aforementioned construction is shown in figure (5.8). More information on the

discrete analogues of common operations that are applied to differential forms can be

found in [95].
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(a) Portion of Hybrid cell (b) Hybrid cell and Voronoı̈ dual

Figure 5.8 The thick blue lines outline a portion of the hybrid cell, the thinner
black lines outline an equilateral tetrahedron cell, σ3, of the Delaunay triangulation
and the red thick red lines outline a portion of the Voronoı̈ dual σ∗0. The different
fonts used to label the vertices distinguish between the common vertices of these cells.
Furthermore the arrows point to geometric structures of interest, such as the portion
of the link which is orthogonal to the surface/boundary of a portion of the Voronoı̈
dual. In 7a it is shown how the hybrid cell is formed from the circumcenters of the
simplices σ3, σ2, σ1, and σ0 of the cell. In 7b the orthogonal nature between σ∗1 and
σ1 is displayed.

5.3 Constructing The Discretized Laplacian

Now that we have explained how we constructed our simplicial approximation to S3

we can discuss obtaining the matrix representation of the scalar Laplacian for a given

level of refinement of our simplicial complex. Using the methods of discrete exterior

calculus [9, 12, 83, 174] the action for a free massless scalar field theory on a surface

discretized in the manner described earlier was elegantly expressed by [68–70] as

Sσ[φ] =
1

2

∑
〈i,j〉

Vij
(φi − φj)2

l2ij
. (5.4)

For (5.4) Vij is |σ1(ij) ∧ σ∗1(ij)| = lijSij/d, which is the product of the length of

the link lij times the volume of the (d-1)-dimensional "surface", Sij = |σ∗1(ij)| of the

dual polytope normal to the link 〈i, j〉. This can be seen visually in figure (5.8b). We

can rewrite the action (5.4) as the following
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1

2

∑
〈i,j〉

Vij
l2ij

(φi − φj)2 =
1

2

−→
φi

T
Mij

−→
φj , (5.5)

where Mij is a symmetric matrix with the following as its elements

Mii =
n∑
j=1

Vij
l2ij
, (5.6)

Mij = −Vij
l2ij

when i 6= j. (5.7)

The volumes of our hybrid cells must satisfy the following condition

1

2

4∑
i=1

∑
i 6=j

Vij = σ3(1, 2, 3, 4). (5.8)

This condition (5.8) states that the sum of the volumes of the hybrid cells over the

links of an arbitrary tetrahedral cell in our simplicial complex must equal the volume

of that cell. For the case of an equilateral tetrahedron it is easy to show how this

manifests itself geometrically. As can be seen in figure (5.9a) and extrapolated from

the symmetries present in the equilateral tetrahedron, all of the components of the

hybrid cells occupy a unique portion of the interior volume of the tetrahedron. Thus

if we were to sum up the volumes of all 24 components of the hybrid cells in figure

(5.9a), we would obtain the ordinary volume of the equilateral tetrahedron; which

means all of the contributions to the weights are positive.

For the right tetrahedron this is not the case because some portions of the hybrid

cells lie entirely outside of the interior volume as can be seen in figure (5.9b). Thus

if we were to simply sum up the volumes of all of the hybrid cells we would obtain

a result greater then the volume of the right tetrahedron. In order to satisfy the

aforementioned condition we must allow contributions to the weights for our links to

be negative. For the right tetrahedron all of the negative contributions to the weights
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(a) Portion of Hybrid Cell For Equi-
lateral Tetrahedron

(b) Portion of Hybrid Cell For Right
Tetrahedron

(c) Portion of Hybrid Cell For Ob-
tuse Tetrahedron

Figure 5.9 In 8a the red polytope is a portion of the hybrid cell for a particular
link of our equilateral tetrahedron. It can be clearly seen that it is contained entirely
within the tetrahedron and thus its contribution to the weight of the link is positive.
The portion of the hybrid cell in 8b, which is colored blue, lies entirely outside of the
right tetrahedron. It results in a negative contribution to the weight of its respective
link. For 8c the two portions of the hybrid cell which are both individually colored
blue and red intersect which makes it difficult to determine which one gives a positive
or negative contribution to the weight of the link.

43



are those who hybrid cells lie entirely outside of the interior of the tetrahedron. The

positive contributions come from portions of the hybrid cells which start from the

interior of the tetrahedron but extend outside of it. This results in the negative

contributions canceling out the portions of the volumes of the positive contributions

which extend outside of the tetrahedron, leading to the sum of the weights equaling

the total volume of the right tetrahedron.

If we look back at the 600-cell which we refined using only "equilateral" and

"right" tetrahedrons it becomes apparent that we need to calculate the weights of

links which are shared among multiple tetrahedrons. This is accomplished by com-

puting the signed components of the common link weights for each individual tetra-

hedron and then summing them all up. Because we choose a Delaunay construction

for our simplicial complex the sum of the contributions from all of the neighboring

tetrahedrons always results in a positive link weight.

These rules for determining the signs of the contributions to a given weight are

pretty straightforward. However they only apply when our tetrahedrons are approx-

imately "equilateral" or "right." The positive curvature which distorts the tetrahe-

drons which make up our refined 600-cell that we project onto S3 results in highly

distorted tetrahedrons where one cannot easily eyeball which contributions to the

links are positive or negative. An example of such a distorted tetrahedron can be

seen in figure (5.9c). In figure (5.9c) the two portions of the hybrid cells overlap

with each other. This makes it difficult to disentangle the two portions of the hybrid

cells and determine which one cancels out the portion of the volume required for the

condition (5.8) to be met.

To overcome the ambiguities in determining the signs of the contributions to

the weights associated with highly distorted tetrahedrons we first used the fact that

despite there being 24 portions of the hybrid cell for each tetrahedron, only 12 yield

unique contributions to the weights. As can be seen in figures (5.7) and (5.9a), the
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volume of a portion of the hybrid cell constructed from our previously mentioned

hierarchy of simplices/circumcenters is the same under permuting the two vertices of

the link whose circumcenter we used to construct that portion of the hybrid cell. In

other words, if we look at the hybrid cell shaded blue in figure (5.8a) and imagine

choosing our first circumcenter in our hierarchy to be vertex 1 instead of 2 of the

tetrahedral cell, while keeping all of the other circumcenters the same, we would

obtain a portion of the hybrid cell which possesses the same volume. Thus we only

need to compute the signs of 12 portions of the hybrid cell which can either be plus or

minus. Therefore there are 4096 different possible combinations of signed hybred cell

volumes and we are looking for the combinations that satisfy the condition that their

sum equals the volume of the cell in our simplicial complex which they are derived

from.

With that said we must stress that the sum of the signed hybrid cell volumes of

the hybrid cells equaling the volume of the tetrahedral cell is only a necessary, but not

a sufficient condition for successfully constructing our discretized Laplcian. This is

because for certain tetrahedrons multiple combinations of hybrid cell signed volumes

exist which lead to our necessary condition being satisfied and not all of them result

in a discretized Laplacian whose low lying spectrum approaches the continuum limit

as we increase the refinement of our simplicial complex. In order to consistently pick

the correct combination we had to come up with a way of classifying the plethora

of tetrahedrons that were used to construct our simplicial approximation of S3 and

figure out how to pick out the single correct combination for each class.

We found that each tetrahedron in our simplicial complex can be classified by the

barycentric coordinates of its bulk circumcenter and the circumcenters of its four faces

(boundaries). Thus we classified each tetrahedron using following set of barycentric

coordinates

45



[[λ1, λ2, λ3, λ4], [λ5, λ6, λ7, λ8], [λ9, λ10, λ11, λ12], [λ13, λ14, λ15, λ16], [λ17, λ18, λ19, λ20]]

(5.9)

where the first set are the barycentric coordinates of the bulk and the other four sets

are the barycentric coordinates of the faces (boundaries). In addition we reparame-

terized λi by setting it equal to 1 if it is greater or equal to zero and setting it equal to

0 if it is less than zero. In terms of this classification scheme the authors found that

47 different types of tetrahedrons make up our simplicial complex at k=20. However

we were able to dramatically reduce that number in practice by realizing that within

this classification scheme equivalence classes for tetrahedrons exist by sorting all of

the elements, λi, within the sets of (5.9) from least to greatest and ordering all of the

sets themselves associated with the four faces in order from least to greatest deter-

mined by the sum of all of their elements. For example two tetrahedrons which can

be classified as the following in (5.10) belong to the same equivalence class in (5.11)

[[1, 0, 0, 1], [1, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]],

[[0, 1, 0, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 0, 1]],

(5.10)

[[0, 0, 1, 1], [0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]. (5.11)

Overall this reduces our 47 unique tetrahedrons we had to consider to only 6.

By applying the same methodology to a large swath of tetrahedrons the authors

found that we were able to form these equivalence classes because all of the tetra-

hedrons up to k=20 which appear in our complex have a very specific property that

can be inferred from their barycentric coordinates. All of the zeros in the unordered

sets corresponding to the faces of our 47 classes of tetrahedrons are all in the same

position as the zeros which are contained within the set corresponding to the bulk
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of the tetrahedral cell. Every time a zero appears in our classification scheme that

means the circumcenter for that face or bulk is outside of the tetrahedral cell. It is

only when this alignment is present that the equivalence classes that we mentioned

exist. The conditionality of our equivalence classes points to some interesting ge-

ometric properties of 3D simplicial complexes, Voronoı̈ duals, and the hybrid cells

constructed from them that deserve to be investigated more thoroughly.

Using this classification scheme we first applied our combinatorial procedure to

a tetrahedron in our simplicial complex which belongs to an equivalence class to

obtain candidates for the correct signs for the contributions to its link weights. If this

procedure leads to a single viable set because all of the other 4095 combinations result

in a gross violation of (5.8) which cannot be explained via numerical noise/imprecision

then we can say that we successfully found the correct signs to the contributions to the

link weights of that cell. Assuming only a single set is viable we can find relationships

between the signs of its contributions to the weights and the barycentric coordinates

of the circumcenters of the links, faces and bulk of our tetrahedral cell which form

the vertices of the hybrid cell. An example of such a relationship associated with

tetrahedrons within the equivalence class shown in (5.11) will be given below.

From examining the set of signs (±1) given by brute force combinatorics, we posit

that if a portion of the hybrid cell is constructed using the circumcenter of a face,

whose unordered barycentric coordinates satisfies the property, that the position of

its negative barycentric coordinate
(
[−1

4
, 0, 1

2
, 3

4
]
)
is in the same position as one of

the non zero
(
[1
2
, 0, 1

2
, 0]
)
barycentirc coordinates of the circumcenter/midpoint of the

link that is used in constructing that portion of the hybrid cell, then the sign of the

contributions to the weights from that portion is negative. Once we deduce all of our

relationships we test them out on a plethora of random tetrahedrons belonging to

the equivalence class we are studying and see if they without fail compute the correct

signs of our hybrid volumes to ensure that (5.8) is satisfied. If all of our relationships
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correctly calculate the signs for those random tetrahedrons we then move on to the

next class.

In the case when multiple candidates emerge via combinatorics which satisfy (5.8),

we can narrow down our list to one viable set by constructing a plethora of random

tetrahedrons belonging to the class in question and finding the ones which only have

one combination of (±1) which satisfy (5.8) and then follow the procedure we just

outlined. In the end, we obtain a method for computing the signs of all of the contri-

butions to the weights without having to use brute force combinatorics. As we will

show in the coming sections, this method allowed us to construct a discretized Lapl-

cian on S3 which gives a low lying spectrum which very well matches the continuum

limit.

5.4 Tessellation In Relation To The Cubic Lattice

We can relate our method for discretizing the interior of 3D objects using two types of

tetrahedrons to the traditional cubic lattice by tessellating a unit cube in a well known

fashion. By examining 5.3b we see that a cube can be tessellated by constructing an

equilateral tetrahedron whose vertices are located at four of the cube’s eight vertices

and then filling the remaining space with four "right" tetrahedrons. This construction

is clearly illustrated in 5.10c.

As can be seen in 5.10a and 5.10b the process of tessellating a tetrahedron re-

sults in cubes being formed whose edges are ‘colored red’ and whose vertices are

colored ‘black’, and ‘red’. As we previously mentioned, we begin our tessellation by

first breaking up the interior of our tetrahedrons using a space-filling tetrahedral-

octahedral honeycomb. All of the vertices and links used in this construction of our

honeycomb are considered ‘black’. Afterwards we insert ‘red’ vertices into the center

of each of our octahedrons and then connect those ‘red’ vertices to the ‘black’ vertices
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(a) Partial discretization of equilat-
eral tetrahedron (b) Cubic discretization of equi-

lateral tetrahedron using only ‘red’
links and vertices

(c) Labeled tessellation of unit cube.

Figure 5.10 Figure 9a is a discertization of an equilateral tetrahedron where the
‘black links’ originally belonging to the tetrahedral-octohedreal honeycomb are not
shown. The labels in figure 9c correspond to the following. Capital f indicates that
this is one of the faces of our equilateral tetrahedron whose links and vertices are
‘black’. The capital r indicates a ‘red’ vertex and the capital b indicates a ‘black’
vertex.
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of the octahedrons, breaking them up into 8 "right" tetrahedrons. The links which

connect the ‘red’ vertices to the ‘black’ vertices are ‘red’ links. ‘Black’ vertices and

links are the remnants of our original tetrahedral-octahedral honeycomb. As can be

seen in 5.10b if we only use ‘red’ links and vertices we obtain a cubic tessellation of

the bulk region of our tetrahedrons.

If we include all of the ‘black’ and ‘red’ vertices, and links, the cubes present in

5.10a and 5.10b look like 5.10c. Using our knowledge of the signs for the contributions

to the weights of shared links for right and equilateral tetrahedrons we can deduce

that the weights of the ‘black’ diagonal links of our cube vanishes. This is the case

because in 5.10c each ‘black’ link belongs to the edge of one equilateral tetrahedron

and two "right" tetrahedrons. The ‘black’ links of our "right" tetrahedrons in 5.10c

have negative weights because the portions of the hybrid cells that can be formed

from then using the aforementioned hierarchies of circumcenters exist solely outside

of the volume of the right tetrahedron as is shown in 5.9b. On the other hand the

portions of the hybrid volume constructed from the ‘black’ links of our equilateral

tetrahedrons all exist in the interior of its volume as can be seen in 5.9a.

Using this understanding of the signs of the contributions to the weights, the

reader can easily verify that the sum of the weight of the ‘black’ link of our equilat-

eral tetrahedron and the weights of the two ‘black’ links of our "right" tetrahedrons

vanishes. The ‘red’ links which form the boundary of our cube don’t vanish at all.

Thus our tessellation in 5.10c is equivalent to the cubic tessellation employed in stan-

dard lattice field theory because only the weights of the sides of the cube are non

vanishing while all of the diagonal links possess vanishing weights. For the case of

tessellating a tetrahedron in flat space as can be seen in 5.2b all of the internal black

links have vanishing weight. Therefore for the case of a tetrahedron in Euclidean

space the only non vanishing links are the ‘red’ links, which are equivalent to a cubic

discretization of the bulk of the tetrahedron, and the ‘black’ links which form the
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boundary of the faces of the tetrahedron. The addition of the weights belonging to

these ‘black’ links which form the boundary of our faces results in an increased rate

of convergence of our results to the continuum as the level of refinement is increased

indefinitely. In curved space, this cancelling of the bulk ‘black’ links doesn’t always

occur due to tetrahedrons being heavily distorted to the point that they resemble the

tetrahedrons in 5.9c.

5.5 Ordering The 3-Simplices Of K

Before we can use the values of the weights of our links and vertices to obtain estimates

for the nth-order Binder cumulants, and n-point correlation functions for φ4 theory,

we need to order all of the vertices of our 3-simplices (σ3) so that the discrete form

of the boundary operator acting on our simplicial approximation to S3, K, yields the

same result as when the continuous form of the boundary operator (∂) acts on S3.

∂S3 = 0. (5.12)

Because we are approximating S3 as a simplicial complex, it can be thought of as

a sum of 3-simplices glued together in accordance with the aforementioned hierarchies

of circumcenters belonging to lower dimensional simplices. As the level of refinement

of our simplicial complex increases so too does the number of simplices required to

construct it. In addition, as our complex becomes increasingly refined its, rotational

symmetry approaches the SO(4) rotational symmetry of S3. We previously defined

the boundary operator acting on a single simplex in our simplicial complex. Using

the discrete form of the boundary operator, the discrete analogue of 5.12 is

∂K =
N∑
n=1

∂σn3 (i0i1i2i3) =
N∑
n=1

(
3∑

k=0

(−1)kσn2

(
i0i1 · · · îik · · · i3

))
= 0, (5.13)

51



where N is the total number of cells present for a given level of refinement of our

simplicial complex and n is a superscript which indicates which cell the boundary

operator is acting on. As previously mentioned, îik means to exclude the vertices of

the simplex and σn (i0i1 · · · in) is an anti-symmetric function of the vertices it is com-

posed of. Because the boundary operator is anti-symmetric, applying the boundary

operator twice to any manifold yields a null result

∂∂ M = 0. (5.14)

In equation 5.13 σ2, are the triangular faces of our tetrahedral 3-simplices which

make up our simplicial complex. Each face (σ2) of a tetrahedron can only be shared

by one other tetrahedron; as opposed to an edge (σ1) which can be shared by multiple

tetrahedrons such as in the case of the 600 cell. Trivially the common face between

two tetrahedrons are identically the same. Thus their |σ2| are the same values as well.

In order to satisfy 5.13, all of the vertices of the σn3 (i0i1i2i3)’s, must be ordered

in such a way, that the common σn2 (i0i1i2) between a pair of σn3 (i0i1i2i3)’s, which

border each other, must cancel each other out. This cancellation is possible due to

the anti-symmetric nature of the σn2 (i0i1i2)’s and the (−1)k term in 5.13. To show

what this entails in practice let’s assume we have two σn3 (i0i1i2i3)’s, σ1
3(1, 2, 3, 4) and

σ2
3(2, 3, 4, 5). If we apply the boundary operator to these two 3-simplices we obtain

∂σ1
3(1, 2, 3, 4) = σ1

2(2, 3, 4)− σ1
2(1, 3, 4) + σ1

2(1, 2, 4)− σ1
2(1, 2, 3)

∂σ2
3(2, 3, 4, 5) = σ2

2(3, 4, 5)− σ2
2(2, 4, 5) + σ2

2(2, 3, 5)− σ2
2(2, 3, 4).

(5.15)

Because σ1
2(2, 3, 4) and σ2

2(2, 3, 4) are defined using the same three vertices, they

geometrically represent two identical triangular faces of σ1
3(1, 2, 3, 4) and σ2

3(2, 3, 4, 5);

therefore |σ1
2(2, 3, 4)| = |σ2

2(2, 3, 4)|. Thus, due to the anti-symmetric nature of the
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boundary operator and how the vertices of our 3-simplices were ordered, we see that if

we were to add ∂σ1
3(1, 2, 3, 4) and ∂σ2

3(2, 3, 4, 5) together, that their shared triangular

faces σ1
2(2, 3, 4) and σ2

2(2, 3, 4) would cancel.

The end goal is to order all of the vertices of the σn3 (i0i1i2i3)’s, in such a way,

that the sum of ∂σn3 (i0i1i2i3)’s, vanishes for each level of refinement of our simplicial

complex. In other words, after properly ordering all of the σn3 (i0i1i2i3)’s, when the

boundary operator ∂ is applied to each one of them, for every resultant σn2 (i0i1i2),

there should exist another σn2 (i0i1i2) which possesses the exact same ordering of its

vertices, but has an opposite sign due to the anti-symmetric nature of ∂. When this

condition is met ∂K = 0.

To accomplish this, the author created a code in Mathematica using the following

thought process. As the reader can easily convince themselves, there is no unique

ordering of vertices which satisfies 5.13. Thus we are at liberty to pick the orientation

of any one tetrahedral cell which makes up our simplicial complex. In practice,

this one cell is the first cell which appears in the list of cells generated by Q-hull.

After picking that single orientation, the orientations of the rest of the cells must be

determined, they cannot be arbitrarily picked up to an even permutation.

To determine the orientation of the other cells, we need to compare how the

boundary operator acts on our first cell to how it acts on another cell(s) which shares

a face(s) with our first cell. This may be done by searching from the list of un-

oriented cells, which make up our simplical complex, a cell, which shares a face with

the first cell that we already oriented. If the resultant shared faces produced by

our boundary operators on the two cells have opposite signs determined by (−1)k,

then the orientation of the second cell does not need to be altered. If their shared

faces have the same orientation, then an odd permutation needs to be applied to the

vertices of the second cell. Once the second cell has been oriented, the two oriented

cells are deleted from the list of cells which make up our complex. This is to ensure
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no duplicates arise in our list of oriented cell. From there one can find a third cell

which shares a face with either the first or second cell and do the same comparison

to determine its orientation. This procedure can in principle be carried about for all

of the cells which make up our simplical complex.

An issue arises though orienting the tetrahedral cells this way. If one insists

on starting with the first cell and then comparing it to the second cell, and then

comparing it to the third cell, and so on, one may find a cell whose four faces are

already shared by four other previously oriented cells. To continue orienting the

remainder of the cells of the simplical complex, one would need to search the list of

already oriented cells to find ones whose faces are not currently shared by any other

oriented cells. This requires searching the list and greatly increases the run time of

the code. For each even level of refinement (k=2, 4, 6, 8....) the numbers of additional

cells increases cubically. In addition, the act of deleting cells from a initially long list

of cells is computationally expensive, so is appending an element to an already long

list.

To ensure the code scales linearly in the number of cells that make up our simplical

complex K, we can alternatively construct it as follows. Like before, we start by

orienting the first cell that appears in our list of cells produced by Q-hull. Afterwards,

we build a list of all of the triangular faces which form the boundaries of the cells

which make up our complex. Then we in advance determine the location of the cells,

in our list of cells which make up our complex, whose boundary contains each face

in our aforementioned list of faces. Once we know the location of each cell which

possess a face in our list of faces, we save that information as a function of each face.

In other words, we construct a function such that when the three vertices which make

up a face (σ2) are inserted into it, the function gives the numerical location of the

3-simplices in the list of un-ordered 3-simplices, whose boundary contains that face.

That way when it comes time to search the list of cells for the cells which share a
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common face with our first cell, we already know their locations and don’t have to

search the whole list every time. The initial search only needs to be done once and is

an "embarrassingly" parallel process whose speed increases linearly in the number of

cores one has available.

In addition we know the final length that the list of oriented cells will have and

thus can form a list of said length that contains only zeros. That way after orienting a

cell, instead of appending it to a long list, the zero in our ficidual list can be replaced

by that oriented cell. This is computationally far less intensive for Mathematica then

appending our oriented cells to a list whose length is constantly changing.

From there, instead of only searching for a cell which shares a single face with our

original cell, we locate all four cells which share the four faces of our first oriented

cell and orient those four cells in the way previously described. Afterwards our list

of oriented cells possesses five elements. Instead of deleting those elements from the

list of cells which make up our complex, we take advantage of already knowing their

positions in our list of cells, thanks to having computed the locations of all of our

faces in the list of cells which make up our complex in advance, by replacing those

five cells in our list of un-oriented cells by the number zero. Doing this prevents us

from searching those cells again when we look for the remainder of the neighboring

cells for the second tetrahedron in our list of oriented simplices, thus preventing any

duplicates from being appended.

Because each face forms the boundary of two neighboring tetrahedrons, and we

do not want any duplicates in our list, we code a simple criteria to determine which

tetrahedron we will compare to our second oriented tetrahedron. If the first location

given by our function we built in advance corresponds to a zero that we retroactively

inserted to prevent duplicates, then we will choose the tetrahedron in the second

location, if not then we will choose the tetrahedron in the first location.

As a result of our method picking four tetrahedrons at a time, and knowing that
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at least one face of the second tetrahedron is already in our oriented list, at least

one place-holder zero from our list of un-oriented tetrahedrons will be "compared"

to the faces of the second tetrahedron produced by the boundary operator. Before

we replace the ficidual zeros with the outcome of these comparisons we delete the

inevitable "zero comparisons". By knowing how many non-zero comparisons we have

performed, we know how many ficidual zeros to replace accordingly. We then apply

the same procedure to the third tetrahedron and so on until all of the elements in our

original ficidual list have been replaced. This results in the vertices of all of our cells

that make up our complex, being ordered in such a manner, that when you apply the

boundary operator to the list, the sum of all of the faces vanishes, which equates to

a vanishing boundary; thus satisfying the discrete version of 5.12.

5.6 The "Finite Elements" of Quantum Finite Ele-

ments

So far we have discussed in detail how we constructed our simplicial approximation

to S3 so we can formulate lattice field theories on it using the QFE. After clarifying

the geometric aspects of our program we shall now discuss how we handle the scalar

fields which define φ4 theory.

In the classical limit, the field theory we wish to study using the QFE has the

following action in the continuum limit

Scont =

∫
S3

d3x
√
g

[
1

2
gµν∂µφ(x)∂νφ(x) +

1

2
ξ0Ricφ2(x) +

1

2
m2φ2(x) +

1

2
λφ4(x)

]
,

(5.16)

where gµν is the inverse of the metric tensor for S3, √g is the square root of the

determinant of the metric tensor, ξ0 is (d − 2)/(4(d − 1)) for d ≥ 3 and couples the
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scalar field to the Ricci scalar, Ric = (d − 1)(d − 2)/R2, m is mass, and λ is the

self interaction coupling constant. The inclusion of the Ricci term is optional and

amounts to a shift in the mass. However its inclusion has been shown [56] to increase

the rate of convergence of our numerical calculations. Our task is to formulate an

action on our simplicial complex so that it converges to (5.16) as the continuum limit

is approached.

To begin this task we will define a coordinate system which will allow us to inter-

polate the value of the scalar field φ within the interior of our flat 3-simplices which

make up K. The coordinate system we will choose are the barycentric coordinates.

We will define them for a 3-simplex, but this definition can be easily generalized to a

nth dimensional simplex.

The barycentric coordinates for a 3-simplex embedded in R4 with the following

vertices (~v0, ~v1, ~v2, ~v3) are defined as follows

x = ξ0(~v0 · êx) + ξ1(~v1 · êx) + ξ2(~v2 · êx) + ξ3(~v3 · êx),

y = ξ0(~v0 · êy) + ξ1(~v1 · êy) + ξ2(~v2 · êy) + ξ3(~v3 · êy),

z = ξ0(~v0 · êz) + ξ1(~v1 · êz) + ξ2(~v2 · êz) + ξ3(~v3 · êz),

w = ξ0(~v0 · êw) + ξ1(~v1 · êw) + ξ2(~v2 · êw) + ξ3(~v3 · êw),

ξ0 + ξ1 + ξ2 + ξ3 = 1,

(5.17)

where êi is a unit vector in Cartesian coordinates and (x, y, z, w) are the coordinates

of the embedding space, R4. By their nature we can also call barycentric coordinates,

center of mass coordinates because if you specified a set of them to be masses you

would be able to calculate the center of mass (xcm, ycm, zcm, wcm) of a 3-simplex.

Next we have to define the metric tensor, gµν , of our simplicial complex. In the

continuum limit, the metric tensor defines the totality of the geometric information

one can extract from a manifold M. Thus it follows, that in order to construct the

metric of a simplicial complex, one needs to specify the lengths of all of its links. If
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one has the lengths of its links then one can find a coordinate system which specifies

the location of any point on any of its simplices. Using the barycentric coordinates

(5.17) as a guide we can construct the following coordinate system

~r =
d∑

n=0

ξn~vn =
d∑
i=1

ξi~li0 + ~v0, (5.18)

where the unity constraint among the barycentric coordinates was employed and ~vi

are the locations of the vertices of a particular simplex. Using this coordinate system

(5.18) and the standard definition of the metric tensor we obtain

Gij =
∂~r

∂ξi
· ∂~r
∂ξj
≡ ~li0 ·~lj0, (5.19)

where we take our derivatives with respect to the barycentric coordinates ξi. Now

that we can define the metric for each simplex we can rewrite the action (5.16) as a

sum over the tetrahedrons which make up our complex

Sσ =
∑
σ∈σ3

∫
σ

d3ξ
√
Gσ

[
1

2
Gij
σ ∂iφ(ξ)∂jφ(ξ) +

1

2

(
m2 + ξ0Ric

)
φ2(ξ) +

1

2
λφ4(ξ)

]
,

(5.20)

where Gij
σ is the usual inverse metric and

√
Gσ is the determinant of our matrix (5.19).

Using (5.17) we expand our scalar fields, φ(x), as a finite element basis on each

simplex σ3

φ(x)→ φσ(ξ) = ξ0φ0 + ξ1φ1 + ξ2φ2 + ξ3φ3, (5.21)

where φi is defined on the vertices of each simplex and interpolation is used to ex-

trapolate the values of the field inside each simplex. Inserting this finite dimensional

representation of the scalar fields into our action (5.20) and integrating over each

simplex results in
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S [φi] =
1

2
φiMi,jφj +

1

2

(
m2 +

1

4R2

)
√
giφ

2
i +

1

2
λ
√
giφ

4
i , (5.22)

where we inserted in the numerical value of the Ricci term and its coupling constant

for d = 3, Mi,j is the scalar Laplacian we constructed earlier and √gi is the Voronoı̈

dual volume (σ∗0). This action possesses a numerical value on each vertex which makes

up our simplicial complex.

To prep our action (5.22) for a numerical simulation we perform a change of

variables which makes all of our parameters and fields dimensionless. Starting with
√
gi and φi we make the following substitution

√
gi = A∗

√
g̃i , φi = φ̃i/Z0 (5.23)

where A∗ is some quantity with units of volume and Z0 has units of length L−
1
2 . There

is no single unique choice for A∗ and Z0. A natural candidate for A∗ would be the

average value of the Voronoı̈ dual volumes, σ∗0, 〈
√
gi〉. But another possibility would

be the average volumes of the tetrahedrons, σ3, or the average values over the length

of the link which make up our complex cubed. For now we will set A∗ = 〈√gi〉 = na3,

where a is a single number which roughly characterizes the lengths of the links and n

is a constant. By setting A∗ we shall set Z0 as Z2
0 = na. We will make our parameters

dimensionless, (m, λ), by redefining them as m0

a
= m and λ = nλ

a
. Performing the

above dimensionless reparameterization results in the following action

Sσ[φ] =
1

2
φiMi,jφj +

1

2
m2

0

√
giφ

2
i +

a2

8R2

√
giφ

2
i +

1

2
λ0
√
giφ

4
i , (5.24)

where we removed the tilde˜notation and summed over like indices.
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5.7 The "Quantum" of Quantum Finite Elements

The action we have written in the last section is perfectly capable of being used to

numerically calculate observables for classical φ4 theory formulated on S3. However,

due to our lattice not being uniform as a result of the positive curvature of S3, applying

standard renormalization techniques that are employed for quantum field theories on

cubic lattices are not sufficient [58] for recovering the known continuum limit as we

further refine our complex. In order to obtain the correct continuum limit we have to

study the geometric aspects of renormalization on a non-uniform simplicial complex.

The procedures we will outline for obtaining the correct continuum limit for φ4

theory on a non-uniform lattice are difficult to rigorously justify. Instead we will

appeal to the fact that theses procedures have enabled the construction of an action

for φ4 theory on S2 and R × S2 which has successfully [54, 56] converged to the

known continuum limit, the universality class of the critical 2D and 3D Ising models

respectively. We have no reason to believe these techniques won’t work again for

φ4 theory on S3. In addition, the procedures we will outline are closely related to

standard [158] techniques which are employed for renormalizing field theories and

studying non-perturbative conformal field theories on uniform cubic lattices.

To construct our QFE action which will converge to the known continuum limit

of the critical 3D Ising model we will employ both perturbative and non-perturbative

techniques such as calculating Feynman diagrams and tuning the theory to its critical

surface in parameter space, (m0 λ0), each time we refine our simplicial complex. At

criticality, the renormalized values of our dimensionless mass and coupling constant

goes to zero as correlations functions become as large as the finite size of S3 allows

them to. Tuning the theory to the critical surface allows us to eliminate position inde-

pendent divergences which can be extrapolated from UV divergent Feynman diagrams

by group averaging them as we will explain shortly.

Before we discuss the perturbative aspect of renormalization on a non-uniform
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(a) 1-Loop (b) 2-Loop

Figure 5.11 Divergent Feynman diagrams for φ4 theory in two and three dimensions

lattice we put forward some assumptions which have held true during previous appli-

cations of the QFE.

1. Only UV divergent diagrams are position dependent in the continuum limit.

2. The group averaged divergent portion of UV diagrams are universal in the

sense that they are independent of position.

The first assumption ensures that we can eliminate non-uniform lattice artifacts

using only a finite number of counter terms for super-renormalizable theories. The

second assumption guarantees us that we can eliminate divergent position indepen-

dent portions of Feynman diagrams by tuning our theory to the critical surface for

each level of refinement all the way up to the continuum limit.

With these assumptions in mind, we can begin to analyze the divergent diagrams

of φ4 theory in 3D. In 3D, φ4 theory is super-renormalizable and as a result only has

a finite number of divergent Feynman diagrams. A convenient way to determine if a

particular Feynman diagram in lattice field theory is divergent or not was introduced

by Reisz [199–202]. Reisz defined a lattice degree of divergence Deg(I) for a Feynman

integral I which is the lattice analog of the superficial degree of divergence from

continuum field theory, and proves that any integral with Deg(I) < 0 is finite and

given by the expected continuum limit as lattice spacing a→ 0.

For the single loop Feynman diagram of φ4 theory in d dimensions which is shown

in 5.11a the degree of divergence is Deg (I1) = d − 2. This means for d ≥ 2 the one

loop diagram of φ4 theory is always divergent. For d = 2 it diverges logarithmically
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and for d = 3 it diverges linearly. For d = 2 this logarithmic divergence was recovered

[54, 95] numerically and matches the known continuum limit.

For the two loop diagram the degree of divergence is Deg (I1) = 2d−6. Therefore

for d = 2, the two loop diagram is not divergent and should be independent of

position. This was found [54, 95] to be the case which further bolsters the validity of

our assumptions. However for d = 3 the two loop diagram is divergent and is position

dependent as was shown in [56, 95]. For d = 2 and d = 3 the three and higher

order loop diagrams are all convergent and thus we assume they are independent of

position.

In standard lattice field theory with a uniform cutoff, a, the one loop diagram

in any dimension, d, for φ4 theory can be represented in momentum space as the

following Feynman integral

I1(k,m; a) =
λ

2

∫ π/a

−π/a

ddq

(2π)d
1

q̃2 +m2
, (5.25)

where q̃2 = (2/a)2
∑

µ sin (aqµ/2)2 is the standard momentum factor appearing in the

propagator. Our momentum variable here is k. The absence of k implies a conser-

vation of momentum within the loop which means our propagator is translationally

invariant on the lattice. Due to our 1-loop diagram being independent of momen-

tum we can cancel out this divergent integral by introducing a universal momentum

independent counter term.

For the two loop diagram in standard lattice field theory the situation is slightly

more complicated

I2(k,m; a) =
λ2

3

∫ π/a

−π/a

ddq

(2π)2

ddq′

(2π)2

1

q̃2 +m2

1

(q′ − q)2∗ +m2

1

(q′ − k)2∗ +m2
, (5.26)

where both the˜and ‘∗’ is the same q2∗ = q̃2 = (2/a)2
∑

µ sin (aqµ/2)2 as in (5.25).
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This two loop integral contains an explicit momentum dependence k. For perturba-

tive renormalization on a standard cubic lattice, integrals of this kind are handled

by breaking them up into two parts. The first part is independent of momentum

and is found by setting k = 0 in (5.26). We label it by as I2(0,m; a) = Î2(m; a).

The second piece we define to be D2(k,m; a) = I2(k,m; a)− Î2(m; a), and as a result

I2(k,m; a) = I2(0,m; a) +D2(k,m; a). Using Reisz’s method for classifying Feynman

integrals in lattice field theories it can be shown that I2(0,m; a) is divergent as the UV

cutoff, a, approaches zero and D2(k,m; a) is convergent. Thus on a cubic lattice one

can cancel the divergent contribution, I2(0,m; a), to the 2-loop diagram using a uni-

versal momentum independent counter term. The finite piece, D2(k,m; a), uniformly

approaches its continuum limit as the lattice is indefinitely refined.

Because the lattice spacing, a, of our simplicial complex is not uniform due to

the positive curvature of S3, our lattice is not translationally invariant. As a result

of our lattice not possessing translation invariance we cannot express our 1 or 2-

loop diagrams in momentum space. Thus we are confined to work in position space.

Another consequence of our lattice not being uniform is that high energy modes of

our theory don’t evenly contribute to the propagator. UV divergent diagrams are

sensitive to all length scales present in the theory. This is evident by the lattice

spacing cut off, a, in the Feynman integrals we recently wrote down. Because our

simplicial complex is composed of a plethora of tetrahedrons which possess different

sizes and shapes our simplicial complex admits a multitude of different length scales

which contribute to the renormalized mass. Thus the finite portions of the 1-loop and

2-loop integrals on our simplicial complex don’t naively converge to the continuum

limit like they do on a cubic lattice with only one length scale. To remedy this

irregularity due to the multitude of length scales present in our complex we must

introduce position dependent counter terms which allow our lattice field theory to

recover SO(4) symmetry in the continuum limit.
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In position space we can rewrite the simplicial representation of the integrals

associated with the 1 and 2-loop diagrams in the following manner

I(x,m; a) = Ī(m; a) +D(xi,m; a),

Ī(m; a) =
∑
i

√
giI(xi,m; a)/

∑
i

√
gi,

(5.27)

where√gi is the Voronoı̈ volume of a particular vertex in our complex, andD(x,m; a) =

I(x,m; a) − Ī(m; a). The term Ī(m; a) is the average of I(x,m; a) over the SO(4)

group and diverges as the characteristic lattice spacing, a, approaches zero. The

difference term, D(x,m; a), is the result of projecting out SO(4) symmetry from

I(x,m; a) and is the term we need to negate using a counter term.

If our assumptions hold, then a UV divergent diagram should possess a position

independent divergent part and a position sensitive/dependent finite part. The di-

vergent part, Ī(m; a), can be handled non-perturbatively by setting our theory to the

critical surface in parameter space for each level of refinement. However the finite

position dependent portion, D(x,m; a), which doesn’t possess any trace of SO(4)

symmetry is sensitive to the irregularities present in our lattice. As a result unlike

the case encountered in cubic lattice field theory, this term does not converge to the

exact continuum limit.

To remedy this situation we have to introduce a position dependent counter term

to our action (5.24) which is proportional to ∝ −D(x,m; a). This counter term will

remove the irregular contributions to our UV diagrams and ensure that our lattice

field theory admits SO(4) symmetry in the continuum limit.

Working in perturbatively in position space results in the lattice propagator, Gij,

of our simplicial complex being defined as the inverse of our Laplacian whose con-

struction we have already detailed

Gij = [M−1
ij ], (5.28)
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where Mij is exactly the matrix in (5.5). Using a standard perturbative expansion in

powers of the coupling constants and quantities associated with the free field theory,

such as the Laplacian, results in the following second order in λ0 effective action

Seff = S + 6λ0
√
giGiiφ

2
i − 24λ2

0

√
giφiG

3
i jφj
√
gj. (5.29)

Because φ4 theory in 3D has divergent 1 and 2-loop diagrams we need to compute

counter terms associated with both perturbative contributions to the effective action.

For the first counter term we group average Gii over our simplicial approximation to

S3 and subtract out the resultant SO(4) invariant quantity to reexpress Gii as

Gii =
1

N

∑
i

√
giGii +

(
Gii −

1

N

∑
i

√
giGii

)
, (5.30)

where N =
∑

i

√
gi. By rewriting Gii in this fashion we can identify the counter term

that negates the position dependence of our effective action (5.29) up to first order in

λ0, which if left alone, will prevent our field theory from manifesting SO(4) symmetry

in the continuum limit

δGi =

(
Gii −

1

N

∑
i

√
giGii

)
. (5.31)

Because the 2-loop diagram has a non-local term, φiφj, we have to be mindful

when applying this procedure to it. After group averaging over the pair of points,

(i j), of our complex and keeping in mind how we rescaled our parameters with

respect to a, we notice that non-local terms of our total quantum correction to the

action are exponentially damped as the lattice spacing approaches zero. Keeping this

observation in mind our second counter term is

δG
(3)
i =

∑
j

√
gj

[
G3
ij −

1

N

N∑
i=1

√
giG

3
ij

]
. (5.32)
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Using these two counter terms we can finally construct our QFE action

SQFE = Seff −
∑
i

√
gi

[
6λ0δGi − 24λ2

0δG
(3)
i

]
φ2
i . (5.33)

As of the writing of this dissertation, we haven’t had a chance to employ the code

which will use these counter terms and our known Laplacian to compute CFT data

that we can then compare to data extracted from the critical 3D Ising model using

the conformal bootstraps. However to give an idea of how these counter term allow

us to recover a defined continuum limit we will go over results which were obtained

for φ4 theory on R× S2.

The 4th-order Binder cumulant, as we previously discussed, is a number which

characterizes the criticality of a field theory. The 4th-order Binder cumulant on our

simplicial approximation to S3 in terms of the 4th and 2nd order magnetization is the

following

U4 (K,m0, λ0) =
3

2

[
1− 〈M4〉

3 〈M2〉2

]
M =

∑
i

√
giφi.

(5.34)

This quantity is computed by performing a Monte Carlo simulation over random

field configurations. We choose this normalization so that the cumulant is 0 in the

disorderly phase and 1 in the ordered phase of our field theory. For a field theory on

its critical surface the Binder cumluant is some number between 0 and 1. A clear sign

that the theory described by the action we are using is approaching a conformal field

theory in the continuum limit is if the Binder cumulant converges monotonically to a

specific value as we continuously tune its parameters, (m0, λ0), to the critical surface.

For the top plot in 5.12, we see that for values of m2
0 > −.026906, our Binder cu-

mulant is not monotonically converging. Instead what we see is the Binder cumulant

beginning to behave as an oscillatory function as the lattice space, a, is made con-
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Figure 5.12 The convergence of the 4th-order Binder cumulant as a function of the
characteristic lattice spacing, a. For plots we varied m0 while holding fixed λ0 = .2.
This plot originally appeared in [56]

.
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tinuously smaller. This indicates that our theory does not possess a critical surface

and therefore is not converging to the critical 3D Ising model in the continuum limit.

However when we include our counter terms (CT) in our action we see a monotonic

convergence for all our sampled values of m2
0 which is a sign that our lattice field

theory is indeed approaching the correct continuum limit.
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Chapter 6

Spectrum Fidelity On S3

6.1 Spectrum Of A Particle Trapped Inside A K

Tetrahedral Box

Before we use the method we outlined to compute the estimated low lying spectrum

of the Laplcian on S3, it is instructive to apply our tetrahedral-octahedral tessellation,

to a particle trapped inside a K tetrahedral box and compare the estimated low lying

spectrum it yields to the known exact spectrum. The exact eigenvalues and eigen-

functions associated with the K tetrahedron were first computed [148] by mapping the

"4 hard cores" problem to the vertices of the following tetrahedron (− π√
2
,− π√

2
,−π

2
),

( π√
2
,− π√

2
, π

2
); (− π√

2
, π√

2
, π

2
) and ( π√

2
, π√

2
,−π

2
), which resulted in suitable bound-

ary conditions which were used to modify the solution to the "4 hard cores" problem

to that of a particle trapped in the aforementioned tetrahedral box. The problem

was later explored [224] by utilizing the fact that like the equilateral triangle in 2D,

the K tetrahedron possesses a space-filling property which allows it to tessellate an

3D space.

The eigenfunctions and eigenvalues of a particle trapped inside a K tetrahedral

box are the following respectively
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φlmn (x, y, z) =∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

exp
[
il
(

x√
2

+ z
2

+ 3π
4

)]
exp

[
il
(

y√
2
− z

2
+ π

4

)]
exp

[
il
(
− x√

2
+ z

2
− π

4

)]
exp

[
il
(
− y√

2
− z

2
− 3π

4

)]
exp

[
im
(

x√
2

+ z
2

+ 3π
4

)]
exp

[
im
(

y√
2
− z

2
+ π

4

)]
exp

[
im
(
− x√

2
+ z

2
− π

4
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exp

[
im
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− y√

2
− z

2
− 3π

4

)]
exp

[
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x√
2

+ z
2

+ 3π
4

)]
exp

[
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(

y√
2
− z

2
+ π

4

)]
exp

[
in
(
− x√

2
+ z

2
− π

4

)]
exp

[
in
(
− y√

2
− z

2
− 3π

4

)]

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(6.1)

Elmn =

(
~2

8M

)[
3
(
l2 +m2 + n2

)
− 2lm− 2 ln−2mn

)]
, (6.2)

where (l,m, n) are positive, distinct non-vanishing integers. Because we know the

exact eigenfunctions for the particle trapped inside a K tetrahedral box, we can

evaluate them on each lattice point in our tessellation of the K tetrahedron and

thus approximately diagonalize the resultant Laplace operator (5.6) and (5.7). The

diagonal components of this matrix are

Elmn =
φ∗lmn (r̂x)Mxyφlmn (r̂y)∑
x

√
gxφ∗lmn (r̂x)φlmn (r̂x)

, (6.3)

where Mxy is (5.5) and (5.6), and √gx = σ∗0 is the volume of the Voronoı̈ duel at

the lattice site we evaluate (6.1) at. After expressing our Laplacian in a basis which

is a finite dimensional representation of (6.1) we compute its diagonal elements (6.3)

at various levels of refinement and obtain the two graphs shown in figure (6.1) which

indicate that our numerical results are converging to the continuum limit (6.2). In

other words, as we increase the level of refinement for our simplicial approximation

to the K tetrahedron, the symmetries that are associated with it which are described

in [148, 153], monotonically become closer to being fully restored.
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(a)

(b)

Figure 6.1 Figure 10(a) shows how the difference between the exact spectrum, (6.2),
and the average, (λlmn), over the degeneracy of our numerically computed spectrum,
λlmn, appears to approach zero as our level of refinement "k" increases. In figure
10(b) we compare the first exact 20 eigenvalues in order of increasing energy to the
first 20 eigenvalues we computed numerically at refinement level ‘k=60’. The blue
circle corresponds to exact eigenvalues and the yellow squares are the numerically
estimated eigenvalues.

6.2 Spectral Fidelity on S3

To obtain our results we will utilize the fact that we know the exact eigenfunctions, the

hyperspherical harmonics, for the scalar Laplacian on S3. In terms of hyperspherical

coordinates they can be expressed as

Y (j, l,m) =

(
2l
√

2

π
l!

√
(j + 1)(j − l)!

(j + l + 1)!

)
sinl(ψ)C

(l+1)
j−l (cos(ψ))yml (θ, φ), (6.4)

where yml (θ, φ) are the ordinary spherical harmonics which satisfy

1

yml

(
1

sin θ

∂

∂θ

(
sin θ

∂yml
∂θ

)
+

1

sin2 θ

∂2yml
∂φ2

)
= −l(l + 1), (6.5)

and C(l+1)
j−l (cos(ψ)) are the Gegenbauer polynomials. For our hyperspherical harmon-

ics our quantum numbers are restricted to the following range j ≥ 0, j ≥ l, and
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l ≥ |m|. The hyperspherical harmonics are the eigenfunctions of the generalization of

(6.5) to S3 and have associated with them the following eigenvalues and degeneracies

λcontinuum = j(j + 2),

degeneracies = (j + 1)2.

(6.6)

We evaluated the hyperspherical harmonics, Yjlm (r̂x), at our lattice sites, r̂x, so we

can estimate the eigenvalues of the discretized Laplcian operator whose construction

we previously outlined by computing the diagonal elements against j

Ej,l,m =
Y ∗jlm (r̂x)MxyYjlm (r̂y)∑
x

√
gxY ∗jlm (r̂x)Yjlm (r̂x)

. (6.7)

In equation (6.7), √gx = σ∗0, which is the volume of the Voronoı̈ duel at the lattice

site we evaluate our hyperspherical harmonics on.

As can be seen in figure (6.2a), when k = 2, the degeneracies of our low lying

spectrum splits noticeably while at much higher levels of refinement, such as k = 18, as

is shown in figure (6.2b), our low lying spectrum’s degeneracies practically match that

of the continuum limit. Geometrically this indicates that the rotational symmetry of

our simplicial complex as we continue to refine it approaches the rotational invariance

of S3. Another interesting feature in figures 11(a) and 11(b) is that the degeneracies of

the first five energy levels match that of the continuum even at low levels of refinements

such as k = 2. This is an artifact of us starting with the refined 600-cell, which

preserves the largest discrete subgroup of the isometries of S3 and then projecting

those points onto S3.

In terms of convergence, we see that in figure (6.3), the estimated low lying spec-

trum practically matches the continuum limit of j(j + 2) and that it is converging

at a linear rate as a function of one over the level of refinement squared. The con-

vergence of our estimated low lying spectrum to the continuum limit is a theoretical
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(a) (b)

Figure 6.2 Figure 6.2a shows the splitting of the degeneracy which is present for
the first 14 energy levels at a k = 2 level of refinement of our simplicial complex
on S3. Figure 6.2b is the same type of graph except for the first 17 levels with the
k = 18 level of refinement. To show that as we increase our level of refinement that
the symmetry of our simplicial complex approaches the rotational invariance of S3

we superimposed on it a plot of the continuum spectrum, j(j + 2), which it matches
quite well.

consequence of FEM convergence theorems for shape regular linear elements as the

diameter goes uniformly to zero [220]. Even though we used the DEC [12] prescrip-

tion for constructing our discretized Laplacian we will assume without proof that this

property holds.
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(a) (b)

Figure 6.3 Figure 6.3a is a graph of our estimated eigenvalues for the first 25 energy
levels averaged over their degeneracies superimposed over j(j + 2). Figure 6.3b is
a graph of the mean error for a particular set of energy levels as a function of our
level of refinement, k, which demonstrates the rate of convergence of our low lying
spectrum to the continuum limit for the levels of refinements k = 8 to k = 18. For
figure 6.2a, Ej are the eigenvalues, j(j + 2), in the continuum limit, while λji are our
estimated eigenvalues for a given energy level, j, averaged over their degeneracies.
From our mean errors as functions of k for the k = 18 and k = 16 refinement levels
we were able to construct the following functions which we overlaid on our graph
for each energy level we considered. In order of increasing j they are 8.781

(
1
k

)2.0316,
15.29

(
1
k

)2.03, 24.82
(

1
k

)2.03, and 37.73
(

1
k

)2.02.
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6.3 Concluding Remarks

In the past two chapters we have laid the groundwork for an exciting test of the

QFE on φ4 theory on S3. We have discussed in length how to construct a simplicial

approximation to S3 , related our simplicial complex to the conventional cubic lattice,

figured out how to properly order the simplices which make up our complex, shown

how to renormalize a quantum field theory on a non-uniform lattice, and demonstrated

the validity of our approach for computing the weights of the links which make up our

simplical complex by showing that our estimated spectrums appear to be converging

to their known continuum limits.

Because our counter terms are dependent upon the Laplacian and we have given

ample evidence that we can correctly construct a Laplacian on our complex the stage

is set for this non-trivial test of the QFE. In this test we seek to compute two and

four point correlation functions as was done on S2 [54] and extrapolate from them the

Binder cumulants [36], and other data that we can compare to conformal bootstrap

results [87, 141, 209, 215] for the critical 3D Ising model. Regardless of the outcome,

performing this comparison will further develop the tools we have available to study

quantum field theories non-perturbatively. In addition, just the ability to construct

a simplicial approximation to S3 is an important step towards being able to study

numerically novel classical or quantum field theories on curved Riemannian manifolds

in three and four dimensions. Towards the end of our dissertation we will discuss the

importance of R× S3 and how our present work is related to formulating lattice field

theories on it.

If our upcoming test of the QFE for φ4 theory on S3 is successful it will give us

further confidence that we have a viable method that we can apply to more novel lat-

tice field theories formulated on Riemannian manifolds. The applications of studying

such lattice field theories includes two-dimensional condensed matter systems such as

graphene sheets [51], four-dimensional gauge theories for beyond the standard model
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(BSM) strong dynamics [11, 152], and perhaps even quantum effects in a space-time

near massive systems such as black holes. Thus the work presented so far is an

important step towards realizing the study of these incredibly fascinating topics.
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Chapter 7

From Quantum Gravity To Quantum

Cosmology

7.1 Hamiltonian of Constrained Systems

It is well known that the Hamiltonian formulation of a classical system can be

quantized
(
pi → p̂i = −i~ ∂

∂xi
, xi → x̂i

)
, thus resulting in a Schrödinger like equa-

tion which governs the dynamical behavior of the quantum analog of the classical

system originally in question. Thus if one wishes to study quantum gravity, and in

turn quantum cosmology, it is natural to seek a Hamiltonian formulation of general

relativity. To begin constructing such a Hamiltonian formulation we first must ask

what does it mean for a Hamiltonian formulation of general relativity to exist? This

question is necessitated because unlike other classical theories which seek to analyze

the dynamics of either particle(s) or field(s) in a known, a priori, space-time, gen-

eral relativity describes the dynamics of space-time itself as is encapsulated by the

Einstein field equations (EFE)

Rab −
1

2
Rgab + Λgab =

8πG

c4
Tab. (7.1)
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From (7.1) it is clear that the nature of the geometry of space-time, gab, is coupled

to the nature of matter, Tab, and vice versa. Furthermore no a priori space-time

is assumed in general relativity unlike other classical theories. As a result general

relativity is fundamentally different from classical theories which assume the existence

of a space-time background and whose dynamical/canonical variables, (pi, qi), live on

a symplectic manifold.

One of the hallmarks of general relativity is that space and time are in a sense

treated on an equal footing. This can be understood by how both time and spatial

components of the metric tensor are equally unknown quantities in the EFE. In

other words the ‘time’ variable is treated as just another variable whose evolution

can be described using the same arbitrary clock, f(τ), as the spatial variables in a

natural fashion. This feature of general relativity should cause one to pause before

formulating a Hamiltonian version of it. In Hamiltonian mechanics the conjugate

momentum, pi = ∂L
∂ẋi

, is defined with respect to only the partial derivative of the

time derivative of the configuration variables and not with respect to their spatial

derivatives. This preferential treatment of the time variable in defining the conjugate

momentum is at odds with the equal footing the EFE gives to both space and time.

Despite this arguably undesirable preferential treatment of time over space, the

most commonly employed Hamiltonian formulation of general relativity known as the

ADM formalism [13, 14] yields equations of motion which are formally equivalent to

the EFE (7.1). As a result we will seek to quantize this Hamiltonian to obtain a theory

of quantum gravity which we will use to motivate constructing a theory of quantum

cosmology. Furthermore in the ADM formalism the original equal footing of space

and time is somewhat preserved by the fact that the Hamiltonian we obtain is for a

constrained system. For the case of spatially closed universes and the cosmological

models we will be considering in this dissertation the Hamiltonian itself is a constraint

which equals zeroH = 0. When asymptotic flatness is demanded additional boundary
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terms [197, 198] need to be taken into account which results in the Hamiltonian

constraint not vanishing.

To give a sense of what we mean by a constrained Hamiltonian let’s start [205]

with the case of a single particle under the influence of an arbitrary potential V (x).

The action of such a simple system is given below

S =

∫ tf

ti

L [ẋ x(t)]dt,

L [ẋ x] =
m

2
ẋ2 − V (x(t)).

(7.2)

Now let’s introduce a ‘time’ dependency in the time parameter, t, thus changing it

to a dependent variable like, x(t), by introducing an arbitrary clock, f(τ), where τ is

an evolution parameter. As a result (7.2) becomes

S =

∫ τf

τi

L [ẋ x(t(τ))]
df

dτ

dt

df
dτ,

ṫ =
df

dτ

dt

df
,

L [ẋ x] =
m

2

ẋ2

ṫ
− V (x(t(f(τ))))ṫ,

(7.3)

where the dot, ,̇ now represents d
dτ
, where τ is our arbitrary evolution parameter. As

it can be seen, our Lagrangian now has two configuration variables (t, x) as opposed

to one. Both the time variable, t, and the spatial variable, x, are on equal footing.

This simple example can tell us something about what a Hamiltonian formalism of

general relativity will look like because presently both space and time are treated on

an equal footing at the Lagrangian level.

Treating, (t(τ), x(τ)), as our configuration space we can obtain the following

equations of motions from the Euler Lagrange equation

d

dτ

∂L

∂q̇i
=
∂L

∂qi
, (7.4)
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d

dτ

(
mẋ

ṫ

)
+
dV (x(t(f(τ)))))

dx(t(f(τ))))
ṫ = 0,

d

dτ

(
mẋ2

2ṫ2
+ V (x(t(f(τ))))

)
= 0.

(7.5)

The top equation in (7.5) can be identified with Newton’s equation of motion mdẋ
dt

=

−∇V , while the bottom of (7.5) can be identified as conservation of energy. The fact

that these two equations are not independent suggests that the introduction of an

arbitrary evolution parameter has caused a redundancy in our configuration space.

The arbitrariness in the manner in which our clock, f(τ), ticks has introduced a

gauge invariance in our system. This gauge invariance in how ‘time’ is defined is an

intrinsic feature of general relativity and will play a big role in how we interpret its

final Hamiltonian formalism. To get a glimpse of what that final formalism will look

like, let’s construct the Hamiltonian of (7.3).

px =
∂L

∂ẋ
=

(
mẋ

ṫ

)
,

pt =
∂L

∂ṫ
=

(
−mẋ

2

2ṫ2
− V (x(t(f(τ))))

)
,

(7.6)

H = pxẋ+ ptṫ−
(
m

2

ẋ2

ṫ
− V (x(t(f(τ))))ṫ

)
= 0. (7.7)

As a result of introducing a gauge invariance, f(τ), we obtain a vanishing Hamiltonian.

It is important to keep in mind that this does not mean the energy of our single particle

under the influence of an arbitrary potential is zero. Instead this indicates that the

dynamics of our system depends on the relationship between the evolution of, x(f(τ))

to t(f(τ)). This relational-dynamics between the configuration variables is different

from what we usually see in classical systems in which the dynamics in question are

expressed as the evolution of dependent variables with respect to some independent

parameter we call time. This is a sign that there is redundancy in our configuration

space as a result of time and space being treated on an equal footing. If we conclude
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this is the result of the gauge invariance associated with treating time and space on

an equal footing we would expect the quantity denoted as the Hamiltonian in general

relativity to vanish as well. This indeed is the case.

This shows that despite the Hamiltonian formalism giving preferential treatment

to the ‘time’ variable it is also able to preserve or sublate the general relativistic

notion that time and space are on an equal footing by the generation of a Hamiltonian

constraint. The ability to preserve this notion will have important consequences for

quantization that we will discuss in the upcoming sections. Now that we have an idea

of what our end product will look like we shall proceed to illuminate how one repeats

the same procedure we did above to this one dimensional system to a formally infinite

dimensional theory of space-time/gravity.

7.2 Initial Value Formulation of General Relativity

To begin constructing a Hamiltonian formalism of general relativity we need to express

general relativity in a way that makes it more in concord with other classical theories.

Typically a classical theory describes a plethora (infinite number) of trajectories that

some quantity such as the position of a particle can trace in space-time. If the

equations of motion are second order, one picks out a unique trajectory that the

theory admits by specifying a pair of initial conditions at some arbitrary point in time.

An initial value problem consists of a collection of m, nth order ordinary differential

equations and m*n initial conditions for them. We will not rigorously prove the

existence and uniqueness of solutions to the EFE. Instead we explain and motivate

the variables which are used in the initial value formulation of general relativity.

We will use these variables to construct a Hamiltonian for general relativity. For a

rigorous proof of a well-posed initial value formulation for general relativity we refer

the reader to these sources [15, 91, 181].
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The main quantity one finds using the EFE is the metric tensor, gab, in which

both space and time count towards the dimensions of the space-time described by

gab. Therefore it makes no sense to talk about the time evolution of the whole metric

tensor because the metric encapsulates both space and time. However if we dissect

the metric tensor, gab, we may obtain a quantity which can be described as evolving as

a function of time. Because the metric tensor, gab, is associated to a four-dimensional

space-time manifold, M, it induces a Riemannian metric on any lower dimensional

spacelike manifold embedded in that higher dimensional space-time. If this manifold,

Σt, is an 3D spacelike surface we call it a hypersurface. We choose to denote this

3D spatial surface, Σt, because it is effectively a cross section in time, t, of the four-

dimensional manifold, M, with metric gab.

From the first fundamental form of differential geometry we know that a hy-

persurface, Σt, has the following metric induced on it from the higher dimensional

space-time, gab, it is embedded in

hab = gab + nanb, (7.8)

where na is the unit vector, nana = −1, normal to the hypersurface, Σt, with Rie-

mannian metric, hab. As a result habna = 0. Because the metric, hab, is associated to

a time slice, Σt, of M we can compare it to the metric, hab, of an adjacent time slice,

Σt+dt. To do that though we need to define a quantity which denotes the flow from

one hypersurface to another. Because these are spatial hypersurfaces it makes sense

for this quantity to be related to ‘time’, t. Thus we shall define this general vector

which describes moving from one spatial slice to another as

ta∇at = 1. (7.9)

Because we are assuming that space-time, (M, gab), can be decomposed into hyper-
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(a) Decomposition of ta from Σt to
Σt+dt

(b) A flotation of space-time.

Figure 7.1 Figure a is from [48] and figure b is from [182]

surfaces/slices, Σt, the ’time’ vector, ta, should be a space-time vector. This means

it should encapsulate the change in both space and time that a particle/observer may

experience as it/they travel from one hypersurface, Σt, to another, Σt+dt. We can

decompose ta into two quantities which are orthogonal to each other

ta = Nna +Na. (7.10)

In this decomposition the quantity N is called the lapse and na is the unit vector

normal to Σt that we introduced earlier and Na which lies in the tangent space of Σt

is called the shift. In 2D one can visualize our time slices, Σt, and our ‘time’ vector,

ta, in a manner depicted by the figures above. As it is shown in (7.1a) Na describes

the change in spatial position while traversing to the hypersurface, Σt+dt, relative

to one’s spatial position on Σt; while N is a measurement of how time is measured

as one transverses from one hypersurface to another. Thus the ta gives a space-

time description of how one transverses the hypersurfaces belonging to a particular
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foliation of space-time.

It must be pointed out that neither the lapse, N , nor the shift, Na, are necessarily

unique quantities. One can foliate space-time in an arbitrary way as a result of the

inherent diffeomorphism invariance of general relativity. Thus the foliation shown in

(7.1b) is not unique and can be substituted with any other geometric foliation. The

result of how one foliates space-time has no bearings on the observables that one can

compute and measure on it. Thus N and the components of Na at least in the case

when no exotic anisotropic matter sources are present, can be set to any value. This

is akin to how earlier in our one dimensional example we introduced an arbitrary

evolution parameter which could represent the tick of an arbitrary clock. Thus N

and Na represent the gauge freedom present in general relativity. As a result of N

and Na being gauge variables they cannot be the dynamical quantities that evolve

as functions of time that we need to define an initial value formulation of general

relativity.

Using (7.8) and (7.10) we obtain the following relationship between the metric,

gab, and the quantities we just introduced

gab = hab − nanb = hab − 1

N2
(ta −Na)

(
tb −N b

)
. (7.11)

From the above it is clear that (hab, N,N
a) contains all of the information present

in gab, and thus form the configuration space of general relativity. As a result of our

foliation of space-time it is easy to see how hab is a quantity which changes as one

transverses along ta from one spatial slice of M to another. Thus hab plays the role of

a quantity which puts general relativity in concordance with other classical theories.

Geometrically this means we can envision space-time as the time evolution of a spatial

metric, h(t)ab, on some abstract hypersurface, Σ0. The gauge variables, (N,Na),

represent a non-trivial redundancy in our configuration space which will ultimately
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result in us obtaining a Hamiltonian constraint for general relativity similar to the

one we obtained in the last section.

In order to adequately describe the evolution of h(t)ab we need some quantity that

takes into account that our hypersurface, Σ0, is embedded in a higher dimensional

curved space-time. Thus we need to define extrinsic curvature. In order to obtain a

notion of extrinsic curvature we need to define a derivative operator associated with

h(t)ab. This is analogous to how a derivative operator associated with gab is required

when defining the Riemannian curvature tensor R d
abc .

To motivate the upcoming definition of this derivative operator let’s imagine a

space-time vector, va = Cna + vatangent, where C is a constant, na is perpendicular to

some spatial hypersurface, Σ0, and, vatangent lies entirely in the tangent space of Σ0. If

we apply the spatial metric, hab, to the space-time vector, va, we obtain hbava = vbtangent

where the index of the spatial metric was raised using gab. Thus we see that hab acts

as a projection operator from the tangent space of M to the tangent space of the

spatial hypersurface Σ0.

This notion of a projection operator from a space-time vector to a vector on a one

dimension lower spatial surface can be generalized to tensors in the following manner

T a1...ak
b1...bl

= ha1
d1
· · ·hakdkh

e1
b1
· · ·helbl T

d1...dk
e1...el

. (7.12)

Using this generalized notion of a projection operator from a space-time tensor to

a spatial tensor we can define our derivative operator in terms of the well known

covariant derivative ∇a. Going back to vectors, if we are applying the covariant

derivative to a spatial vector ∇av
b
tangent we immediately see a problem. Due to the

vector, va, having its components which are orthogonal to the hypersurface it is

tangent to being projected out; we have no information on how they vary as we leave

the spatial hypersurface. However if we apply the projection operator, hab, to the

85



covariant derivative itself, we project out the portion of the covariant derivative which

measures how a tangent vector changes in a direction perpendicular to the surface it is

tangent to. Thus for the space-time vector, va, we can define the following derivative

operator associated with, hab, on it

Davb = hcah
d
b∇cvd. (7.13)

The generalization of this derivative operator to an arbitrary space-time tensor is

DcT
a1...ak
b1...bl

= ha1
d1
· · ·hakdkh

e1
b1
· · ·helbl h

f
c∇fT

d1...dk
e1...el

. (7.14)

This derivative operator, Dc, satisfies the metric compatibility condition for, hab, as

is demonstrated below

Dchab = hdch
e
ah

f
b∇dhef ,

hdch
e
ah

f
b∇d (gef + nenf ) = hdch

e
ah

f
b∇d (nenf ) = 0.

(7.15)

This results was arrived at by taking advantage of the fact that ∇d is compatible with

gef and that heane = 0.

Now that we have an appropriate derivative operator we can properly define a

notion of extrinsic curvature for our metric hab. The extrinsic curvature should mea-

sure the change that a vector orthogonal to the hypersurface, Σ0, experiences as it

is parallel transported along a curve in the tangent bundle of Σ0. Graphically this is

demonstrated below.

From this logic it follows that a natural definition of the extrinsic curvature is

simply

Kab = hcah
d
b∇cnd = Danb. (7.16)

We will state without proof that this tensor is symmetric. We will prove though that
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Figure 7.2 This image shows a vector initially on the hypersurface, Σ, at point, q,
being parallel transported along some curve on the hypersurface which passes through
point p. If the hypersurface was embedded in a flat, higher dimensional space-time,
the vector, nσ, would possess the same orientation at point, p, as the dashed line does.
However if the hypersurface is embedded in a curved, higher dimensional space-time,
the orientation of the vector at point, p, would be different. That difference is what
the extrinsic curvature measures. This image is originally from [233].

it can be expressed in an alternative form which will allow us to relate the extrinsic

curvature, Kab, to ḣab and thus allow us to construct our initial value formulation of

general relativity. We first will show that Kab = hca∇cnb

Kab = hcah
d
b∇cnd,

= hca
(
gdb + ndnb

)
∇cnd,

= hca∇cnb + hcanbn
d∇cnd,

= hca∇cnb + hcanbg
edne∇cnd,

= hca∇cnb + hcanb
1

2
∇cg

ednend = 0,

= hca∇cnb.

(7.17)

In our derivation we used the metric compatibility of ged and ∇c and nene = −1.

Next we will demonstrate that Kab = hca∇cnb = 1
2
Lnhab where Lnhab is the Lie

derivative of the spatial metric with respect to the unit vector orthogonal to the

surface which the spatial metric is associated with. The Lie derivative, Lξ, can be

thought of as the change of a vector or tensor that is defined on a manifold as the

manifold is subjected to a diffeomorphism generated by the vector ξa. Lie derivatives

can also be generalized to maps acting on manifolds generated by tensors. First we

will manipulate the right hand side of this equality in the following manner
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1

2
(hca∇cnb + hcb∇cna) =

1

2
(nc∇chab + hcb∇an

c + hac∇bn
c) ,

=
1

2
(nc∇chab − nc∇ahcb − nc∇bhca) ,

=
1

2
(nc∇chab − nc∇ancnb − nc∇bncna) ,

=
1

2
(nc∇chab +∇anb +∇bna) .

(7.18)

Next we will manipulate the left hand side

1

2
(hca∇cnb + hcb∇cna) =

1

2
(∇anb +∇bna + ncna∇cnb + ncnb∇cna) ,

=
1

2
(∇anb +∇bna + nc∇c (nanb)) ,

=
1

2
(∇anb +∇bna + nc∇chab) .

(7.19)

Equating (7.18) and (7.19) demonstrates that Kab = hca∇cnb = 1
2
Lnhab. In this proof

we used the metric compatibility associated with gab and (7.8).

The usual initial conditions one uses to determine the dynamics of a 2nd order

classical system are x(0) = c1 and x′(0) = c2 where x is the dependent variable and

x′ is the derivative of x with respect to time or the evolution parameter. If we want

to do something analogous for general relativity we need to define ḣab. Starting from

Kab = 1
2
Lnhab we will derive below Kab = 1

2N

(
ḣab −DaNb −DbNa

)
.

Kab =
1

2
Lnhab,

=
1

2
(nc∇chab + hcb∇an

c + hac∇bn
c) ,

=
1

2

(
1

N
(tc −N c)∇chab + hcb∇a

1

N
(tc −N c) + hac∇b

1

N
(tc −N c)

)
,

=
1

2N
(Lthab − LNhab) ,

=
1

2N

(
ḣab − LNhab

)
.

(7.20)

To obtain this result we took advantage of the linear nature of the Lie derivative
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operator and (7.10). We now need to prove that DaNb +DbNa = LNhab.

hab (DaNb +DbNa) = hab (LNhab) ,

= hab (N c∇chab + hcb∇aN
c + hac∇bN

c) ,

= habN c∇chab + 2∇cN
c,

=
1

2
N c∇c

(
habhab

)
+ 2∇cN

c,

= 2∇cN
c,

= 2DcN
c,

= 2hxch
c
d∇xN

d,

= 2δxd∇xN
d,

= 2∇cN
c

(7.21)

In this derivation we took advantage of the fact that habhab = 3 which one can

obtain by using the well known identity gabgab = 4 and (7.8). In addition we used

the compatibility Dahbc = 0. We were able to utilize compatibility in this fashion

because the shift, Na, is a spatial vector. As the reader can verify if Na was a space-

time vector like na we wouldn’t be able to employ compatibility in the manner we

just did.

We have provided motivation for using the following quantities, (Σ0, hab, Kab), to

define an initial value formulation of general relativity where we have related Kab to

ḣab. We will use these variables in the next section to obtain the ADM Hamiltonian

formalism of general relativity which we will quantize to obtain a theory of quantum

gravity. To facilitate the derivation of the Hamiltonian constraint in the next section

we will state the Gauss Codazzi equations without proof

(3)Rabc
d = hfah

g
bh

k
ch

d
jRfgk

j −KacK
d
b +KbcK

d
a (7.22)
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DaK
a
b −DbK

a
a = Rcdn

dhcb (7.23)

In equation (7.22) (3)Rabc
d is the Riemann curvature tensor for the spatial manifold,

Σ0, with metric hab. It can be defined using the derivative operator associated with

hab

DaDbwc −DbDawc = (3)Rabc
dwd. (7.24)

In the next section using the Gauss Codazzi equations and our definitions of hab and

Kab we will write out a Hamiltonian formalism for general relativity.

7.3 Hamiltonian And Quantization Of General Rel-

ativity

In order to construct a Hamiltonian for general relativity we need to find an appro-

priate Lagrangian to apply a Legendre transformation to. The Lagrangian whose

variation with respect to δgab yields the EFE is

S =

∫ [
1

2κ
R + LM

]√
−g d4x, (7.25)

where κ = 8c−3G, R is the Ricci scalar, LM is the Lagrangian associated with a matter

source such as a perfect fluid, homogeneous scalar field or electromagnetic field, and,
√
−g, is the square root of minus the determinant of the space-time metric. For the

remainder of this section we shall set LM = 0. Later when we consider canonical

quantization in the simplified setting of cosmology we will introduce a cosmological

constant, an electromagnetic field and a free homogeneous scalar field. To obtain

a Hamiltonian from this Lagrangian we need to rewrite it using the variables we

introduced and motivated in the previous section.
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We will first begin with
√
−g. We note from (7.11) and the inherent spatial

characteristic of the shift vector, Na, and hab that g00 = − 1
N2 . We can express the

general metric tensor, gab, as

gab =

 −N2 +NaN
a Na

Nb hab.


Using the formula (gab)

−1 = (−1)a+b Cab
detg

, for the components of the inverse metric,

where, Cab, is minor of, gab, we can use the fact that we know g00 = − 1
N2 to obtain

(g00)−1 = (−1)a+b C00

detg
,

− 1

N2
=
deth

detg
,

detg = −N2deth,

√
−g = N

√
deth = N

√
h.

(7.26)

This identity,
√
−g = N

√
h, is the first step towards deriving a Hamiltonian from our

Lagrangian (7.25). The next step is to express the Ricci scalar in terms of (hab, ḣab).

This can be accomplished by first doing the following evaluation

Rabcd h
achbd = Rabcd (gac + nanc)

(
gbd + nbnd

)
,

= R + 2Racn
anc,

= 2Gacn
anc,

(7.27)

where Rabcdn
anbncnd = 0 as a result of Rabcd = −Rbacd and Rabcd = −Rabdc. Using

the first Gauss Codazzi equation (7.22) and multiplying each side by hbdhab we obtain

0 = Gabn
anb,

=
1

2

{
(3)R + (Ka

a)2 −KabK
ab
}
.

(7.28)
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From this we can express R as

R = (3)R + (Ka
a)2 −KabK

ab − 2Racn
anc. (7.29)

To fully express R in terms of the variables we introduced in the last section we need

to simplify 2Racn
anc.

R d
abc nd = (∇a∇b −∇b∇a)nc = Rabcdn

d = −Rabdcn
d, (7.30)

nagbcRabdcn
d = −nagbc (∇a∇b −∇b∇a)nc,

Radn
and = −na (∇a∇c −∇c∇a)n

c.

(7.31)

Now that we have Racn
anc in terms of ni and ∇i we can express it as a combination

of extrinsic curvatures and divergences,

na (∇c∇a)n
c = ∇c∇a (ncna)−∇c (nc∇an

a)− (∇cn
a) (∇an

c) ,

na (∇a∇c)n
c = ∇a∇c (ncna)−∇a (nc∇cn

a)− (∇an
a) (∇cn

c) ,

(7.32)

which results in

Rabn
anb = K2 −KacK

ac −∇a (na∇cn
c) +∇c (na∇an

c) . (7.33)

As a result of Kab = hca∇bnc and naKab = 0 we can treat Kab as a spatial tensor.

Thus we can raise its indices using hab and use the identity habhac = δcb . We define

K = habKab. This allows us to represent our derivatives of ni in terms of contractions

of the extrinsic curvature. Thus our action and Lagrangian density are respectively

S =
1

2κ

∫
N
√
h
(

(3)R +KabK
ab −K2

)
d4x,

LG =
1

2κ
N
√
h
(

(3)R +KabK
ab −K2

)
,

(7.34)

92



where we used Stokes’s law to transform the divergences into boundary terms and

then throw them away. If we require δhab and its first derivatives to vanish on the

boundary we can always throw away these boundary terms which arise out of diver-

gences. For the work contained in this dissertation we can always disregard boundary

terms. However for the general case where we only demand that the variation of

hab and not its first derivative vanishes on the boundary, we have to add the Gib-

bons–Hawking–York boundary term,

SGHY =
1

κ

∫ √
hK d3x, (7.35)

to our action (7.34).

We will now compute πab = δLG
δḣab

using Kab = 1
2N

(
ḣab −DaNb −DbNa

)
from the

previous section.

LG =
1

2κ
N
√
h
(

(3)R + hxchydKxyKcd − (hxyKxy)
2) ,

Zab = DaNb +DbNa,

LG =
1

2κ
N
√
h

(
(3)R +

1

4N2
hxchyd

(
ḣxy − Zxy

)(
ḣcd − Zcd

)
− 1

4N2

(
hxy
(
ḣxy − Zxy

))2
)
,

δLG
δḣab

=
1

2κ

√
h

(
1

2N

(
ḣab − Zab

)
− 1

2N
hxy
(
ḣxy − Zxy

)
hab
)
,

δLG
δḣab

=
1

2κ

√
h
(
Kab −Khab

)
,

πab =
δLG
δḣab

=
1

2κ

√
h
(
Kab −Khab

)
.

(7.36)

Using this expression for our canonical momentum we can express K terms of our
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canonical variables πab and hab.

habπ
ab =

1

2κ
hab
√
h
(
Kab −Khab

)
,

π =
1

2κ

√
h (K − 3K) ,

−κπ√
h

= K.

(7.37)

From this we can express the extrinsic curvature Kab and ḣab entirely in terms of

canonical variables

πab =
δLG
δḣab

=
1

2κ

√
h

(
Kab +

κπ√
h
hab
)
,

Kab =
2κπab√

h
− κπ√

h
hab,

ḣab = 2N

(
2κπab√

h
− κπ√

h
hab
)

+DaNb +DbNa.

(7.38)

Now we have all of the tools required to compute the ADM Hamiltonian

HADM = πabḣab −
1

2κ
N
√
h
(

(3)R +KabK
ab −K2

)
,

= πabḣab −
1

2κ
N
√
h

(
(3)R +

(
2κπab√

h
− κπ√

h
hab

)(
2κπab√

h
− κπ√

h
hab
)
− κ2π2

h

)
,

= πab
(

2N

(
2κπab√

h
− κ π√

h
hab
)

+DaNb +DbNa

)
− 1

2κ
N
√
h

(
(3)R + 4κ2πabπ

ab

h
− 2κ2π

2

h

)
,

HADM = 2κN
πabπab√

h
− κN π2

√
h
− 1

2κ
N
√
h(3)R + 2πabDaNb,

= h
1
2

(
N

[
2κh−1πabπab − κh−1π2 − (3) 1

2κ
R

]
− 2Nb

[
Da

(
h−

1
2πab

)]
+ 2Da

(
h−

1
2Nbπ

ab
))

.

(7.39)

In the last line we decomposed the 2πabDaNb term so we can isolate a total divergence

which we can eliminate. If we vary HADM with respect to the lapse, N , and the shift,

Na, we respectively obtain the following constraints

− 1

2κ
(3)R + 2κh−1πabπab − κh−1π2 = 0, (7.40)
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Da

(
h−1/2πab

)
= 0, (7.41)

as a result of the both Ṅ and Ṅa being absent from (7.39).

Equation (7.40) is known as the Hamiltonian constraint while (7.41) is known as

the diffeomorphism constraint. (7.41) is called the diffeomorphism constraint because

it describes the fact that two metrics Φ ∗ hab → qab which can be transformed into

one another via a diffeomorphism, Φ, describe the same physics. This means that

our configuration space as it is currently formulated possesses a redundancy because

not every unique spatial metric corresponds to a unique physical situation. However

this redundancy can be remedied by defining the configuration space to only consist

of equivalence classes between spatial metrics that can be transformed into one an-

other via a diffeomorphism. We call this redefinition of the configuration space of

general relativity superspace [235]. This redefinition has the following mathematical

consequences. Let’s assume the vector field, vb, is an infinitesimal generator of diffeo-

morphisms on hab. If both hab and Φ ∗ hab describe the exact same physics where Φ

is generated by vb, then it follows that

∫
πab
(
δhab +

1

2
(Davb +Dbva)

)
= πabδhab. (7.42)

This is true when

Da

(
h−1/2πab

)
= 0. (7.43)

Thus defining the configuration space of general relativity as the equivalence class of

spatial metrics, hab, which can be transformed into each other via a diffeomorphism

always ensures that the momenta, πab, always satisfies the diffeomorphism constraint

(7.41).

This way of defining the phase space ensures (7.41) is always satisfied. The Hamil-

tonian constraint (7.40) shares a resemblance to the reparameterized one particle

Hamiltonian we worked out earlier. This is a result of ‘time’ being treated on an
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equal footing to space in general relativity just as it was when we previously repa-

rameterized that one particle system. Physically this constraint is a result of the

gauge freedom present in how one chooses to foliate space-time using hypersurfaces

Σt. Unlike (7.7) our constraint is not linear in the conjugate momentum of the ‘time’

variable/coordinate. For (7.7) we could solve (7.5) to obtain the true time evolution

of the system and recover a non-vanishing Hamiltonian. Doing the analogous calcu-

lation is not trivial for (7.40). This means that we will be quantizing a Hamiltonian

constraint as opposed to a regular Hamiltonian. Our constraint will annihilate any

physically realizable quantum state of gravity/geometry.

To facilitate the quantization of (7.40) we shall express it in the following form

2κh−1Gabcdπ
abπcd − 1

2κ
(3)R = 0,

Gabcd =
1

2
(hachbd + hadhbc − habhcd) ,

(7.44)

where we introduced the DeWitt supermetric Gabcd. One can use Dirac’s prescription

for quantization and promote πab and hab to operators as we have done below

πab → π̂ab = −i~ δ

δhab
,

hab → ĥab.

(7.45)

Before we can quantize (7.44) though we have to talk about the ambiguity inherent in

ordering its operators. To illustrate this let’s introduce a much simpler Hamiltonian

H = apa where a is the sole degree of freedom and pa is its conjugate momentum.

Classically these three Hamiltonians, H = apa, H = paa, and H = p
1
2
a ap

1
2
a represent

the same system. However if we quantize these Hamiltonians and require that our

wave function satisfies Ĥψ(a) = 0 we immediately notice that these three Hamiltoni-

ans don’t yield equivalent quantum systems. As a matter of fact one of the operator

orderings, H = p
1
2
a ap

1
2
a , doesn’t even yield a trivial Hamiltonian due its momentum

being raised to a fractional power. The same issue present for this initially innocuous
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Hamiltonian is present for our exceedingly more complicated ADM Hamiltonian.

There is no universally accepted operator ordering for theWheeler DeWitt (WDW)

equation and thus we will simply choose the simplest one for illustration purposes,

(
2~2κh−1Gabcd

δ

δhab

δ

δhcd
+

1

2κ
(3)R

)
Ψ (hab) = 0. (7.46)

The formal WDW equation, Ĥconstraint

(
hab,

~
i

δ
δhab

)
, understood in its abstract sense

in which a factor ordering has not been prescribed has inspired a lot of thought into

the nature of quantum gravity. First of all an equation whose argument is Ψ(hab)

can be interpreted as yielding a probability density which in theory may permit us

to calculate the probability that a certain space-time configuration is realizable given

a set of boundary conditions. This suggests that we can view quantum gravity in

a probabilistic manner somewhat akin to ordinary quantum mechanics. However

the applicability of this analogy is limited because in quantum gravity there are no

external observers unlike in ordinary quantummechanics. In addition it has motivated

the introduction of path integrals [110, 114, 115] to the study of quantum gravity and

all of the interpretational descriptions of the wave function of the universe, Ψ(hab),

that comes from them.

Despite some progress in understanding the WDW equation written in these ADM

variables no known formal solutions of it have been proven to exist. One avenue which

can shed light on the WDW equation despite not knowing what operator ordering

it should be expressed in is the Euclidean-signature semi-classical method. As we

will show in the upcoming next, regardless of which operator ordering one chooses,

one can recover in the WDW equation’s semiclassical limit a Euclidean-signature

functional Hamilton-Jacobi equation. A proof that formal solutions exist for this

Euclidean-signature functional Hamilton-Jacobi equation may be arrived at using

known mathematical methods in a manner which isn’t possible with its Lorentzian
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signature counterpart for reasons we will discuss in detail soon.

7.4 Quantum Cosmology

As we previously mentioned, there is no known way of solving (7.46) in closed form.

In theory though, if one could solve the functional WDW equation expressed in an

operator ordering where the commutator between the Hamiltonian constraint and

the diffeomorphism constraint closes then one could potentially find a wave function

which describes the evolution of a universe that is in concord with the isotropic and

homogeneous FLRW model which is currently our best model for the history of the

universe after the Planck epoch. The complete freezing out of inhomogeneous modes

though is not permissible due to the uncertainty principle that naturally originates

from (7.45).

The difficulty of solving the WDW equation can be seen as a result of it naturally

including inhomogeneous modes. This is so because inhomogeneous fields have a non-

vanishing number of degrees of freedom present at each point in space-time. Therefore

any inhomogeneous field theory defined on a continuous manifold is going to have

infinitely many degrees of freedom and thus an infinite dimensional phase space.

Because our theory at the classical level admits inhomogeneous space-times/modes

its Hamiltonian formalism is complicated which in turns results in an exceedingly

complicated WDW equation after quantization.

From this understanding one may argue that a way to obtain a simpler equation of

quantum gravity would be to freeze out inhomogeneous space-times at the classical

level and then quantize the resulting theory. Doing so is called symmetry reduction.

At the classical level this is usually applied to the EFE when one is trying to find

an isotropic and homogeneous solution to them. For our purposes we are going

to do this at the Lagrangian level and then obtain a Hamiltonian from our reduced
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Lagrangian. Doing so will give us a finite dimensional Hamiltonian and thus will result

in a partial differential equation that may be solvable. The solutions of this equation

though would not possess all of the quantum information that analogous solutions of

(7.46) would possess. Nonetheless, its formulation would serve as a useful toy model

of quantum gravity that can help us understand certain qualitative features of it.

Furthermore these toy models of quantum gravity can allow us to test mathematical

methods which have applications beyond quantum cosmology such as the Euclidean-

signature semi-classical method.

To exclude at the classical level inhomogeneous space-times we first have to define

what it means for a space-time to be homogeneous. To do this we will borrow heavily

from [48, 233]. A space-time, (M, gab), is homogeneous if there exists a set of isometries

for each foliating hypersurface, Σt, of the space-time such that these isometries map

any point on the hypersurface, p ∈ Σt, to any other point on the hypersurface,

q ∈ Σt. This set of isometries forms a Lie group, G, where the elements of the Lie

group, s ∈ G, are space-time isometries s ∗ gab = gab. This Lie group, G, is an "m"

dimensional continuous manifold which can be mapped onto any hypersurface, Σt,

which foliates the homogeneous space-time. Furthermore this Lie group is a subgroup

belonging to the group of diffeomorphisms that can act on (M, gab).

Let’s pick an arbitrary point on an arbitrary time-slice of space-time p ∈ Σt. If

our space-time is homogeneous then there exists an isometry which maps our point,

p ∈ Σt, to any other point on Σt. Therefore for each point on our hypersurface,

q ∈ Σt, there is a corresponding element, s ∈ G, of our Lie Group which maps p

into it, s(p) = q, where p and q are any two points on Σt. This mapping means that

our Lie group acts transitively on any Σt. If this mapping is one-to-one then our

Lie group acts simply transitively. For our purposes of analyzing only the Bianchi

models we can restrict ourselves to simply transitive Lie groups without losing any

generality [160]. This ability to map the elements of G to each Σt which foliates
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our space-time suggests that the dimensions of G and the dimensions of Σt are the

same dim Σt = dim G = 3. Thus in addition to our Lie group acting in a simply

transitive manner on the hypersurfaces it is also a finite dimensional manifold. In

the language of group theory, a group is smooth and continuous if there exists a

spectrum of elements which are infinitesimally close to the group’s identity element,

s = I+εaξ
a+O(ε2) ∈ G, and any other arbitrary element in the group can be reached

by multiplying these infinitesimal elements/transformations with each other.

In our expansion around the identity element of our Lie group, ξa are vector fields

which act as generators of the group and εa are the infinitesimal group parameters.

Vector fields in general are the generators of diffeomorphisms, which include our

isometries that act on the hypersurfaces that foliate space-time in the manner we

described above. A Lie group and its elements are obtained by exponentiating their

generators which are vector fields, ξa, which themselves have to form a Lie algebra.

We will provide a heuristic argument for this statement.

The composition of two infinitesimal group transformations generated by ξa obeys

the following intuitive property Φξ
ε ◦Φξ

ε = Φξ
2ε. If we act upon an arbitrary point, xa,

using an infinitesimal transformation around the identity element we obtain Φξ
ε(x

a) =

xa + ε ξa + ε2Y a +O(ε3) where Y a is an unknown quantity we wish to deduce. First

we will evaluate the left hand side of our composition

Φξ
ε(Φ

ξ
ε(x

a)) = Φξ
ε(x

a + ε ξa + ε2Y a) +O(ε3),

= xa + ε ξa + ε2Y a + εξa
(
xb + εξb

)
+ ε2Y a +O(ε3),

= xa + 2εξa + ε2
(
2Y a + ξb∂bξ

a
)

+O(ε3).

(7.47)

Now we will evaluate the right hand side

Φξ
2ε(x

a) = xa + 2εξa + 4ε2Y a +O(ε3). (7.48)
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We can equate (7.47) with (7.48) if we set Y a = 1
2
ξb∂bξ

a. This results in Φξ
ε(x

a) =

xa + ε ξa + ε2 1
2
ξb∂bξ

a + O(ε3). Carrying out the above expansion and comparison to

higher order results in the following representation for the elements which make up

our Lie group of isometries

Φξ
ε =

∞∑
n=0

1

n!
εn
(
ξb∂b

)n
= eεξ,

ξ = ξb∂b.

(7.49)

The partial derivatives were introduced by using the fact that in order to recover

the notion of a vector space on a curved manifold without referencing its embedding

space one may define directional derivatives on each tangent space of the manifold

associated with each point on it. These directional derivatives on the tangent spaces

of a curved manifold allows one to recover a notion of a vector space.

In order for the elements that are generated by exponentiating vectors to form

a Lie group the vectors themselves have to satisfy a certain algebraic relation. This

algebra can be ascertained by using the expansion we just employed to evaluate

Φξ1
ε1Φξ2

ε2Φξ1
−ε1Φξ2

−ε2 up to second order in the infinitesimal group parameters. Doing so

results in Φξ1
ε1Φξ2

ε2Φξ1
−ε1Φξ2

−ε2 = xa + ε1ε2 [ξ1, ξ2]a + O(εn), where the commutator is

[ξ1, ξ2]a = ξb1∂bξ
a
2 − ξb2∂bξa1 . The commutator is anti-symmetric and linear in both of

its arguments.

Because the product of two or more elements of a group is itself an element of the

group we know that Φξ1
ε1Φξ2

ε2Φξ1
−ε1Φξ2

−ε2 = Φξ3
ε3. Evaluating the left and the right sides

of the expression we just wrote down allows one to eventually deduce the following

algebraic relationship between these three vectors

[ξa, ξb] = −C̃c
abξc, (7.50)

where C̃c
ab is antisymmetric in a and b, and C̃c

ab = −C̃c
ba. The antisymmetric quan-
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tity, C̃c
ab, are the structure constants of the algebra. As a result of the commutator

being anti-symmetric and linear in its arguments the following Jacobi identity can be

obtained from evaluating [ξa, [ξb, ξc]] and using (7.50)

C̃e
abC̃

d
ec + C̃e

bcC̃
d
ea + C̃e

caC̃
d
eb = 0. (7.51)

Equations (7.50) and (7.51) completely define the Lie algebra of our vector fields

which generate isometries.

Because the elements of our Lie group are isometries they are generated by Killing

vector fields. The Killing vector fields associated with a manifold are a set of vectors

which generate infinitesimal transformations which preserve all distances on the man-

ifold. For example a set of vectors which point clockwise and are the same length on

a circle can generate an infinitesimal flow which preserves the distances between all

points on the circle as it rotates clockwise. Therefore our Killing vector fields which

satisfy (7.50) and (7.51) also satisfy the Killing equation

Lξgab = ∇aξb +∇bξa = 0. (7.52)

To move forward with our construction we need to find a basis which is invariant

with respect to the group of isometries which define homogeneous space-times. A set

of basis vector fields which are invariant under the action of our Killing vector fields

can be found by solving the following equation

0 = [ξI , VJ ]a =
(
ξbI∂bV

K
J

)
ξaK − V K

J C̃
L
IKξ

a
L. (7.53)

This equation can be obtained by considering the action, Φε∗V a(xb) =
∂Φa−ε
∂xc

V c
(
Φε(x

b)
)
,

of an isometry, Φξ
ε , on a vector, V a(xb), defined on a hypersurface where we notion-

ally suppressed the Killing vector ξ. By writing this equation out and expressing
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our unknown invariant basis vectors, V k
j , in terms of a set of known Killing vectors,

V a
j = V k

j ξ
a
k , which themselves form a basis on the tangent space, one can arrive at

(7.53). The integration of this equation globally over the hypersurface is not trivial.

However it can be shown locally, in a Euclidean patch of Σt that invariant vector

fields exist which is sufficient for our purposes.

These invariant vector fields, V a
j , themselves form a Lie algebra

[Va, Vb] = Cc
abVc. (7.54)

If these invariant vector fields exist and represent an independent non degenerate set

of basis vectors, then there must also exist on the cotangent space of our manifold a

set of invariant dual basis vector fields, ωga, which satisfy ωgaV
a
j = δgj . Our invariant

dual basis fields satisfy the Maurer–Cartan relations

dωc =
1

2
Cc
abω

a ∧ ωb, (7.55)

where Cc
ab are the same structure constants which define the Lie algebra of our invari-

ant vector fields in (7.54). Using this basis of invariant one forms we can construct

the following class of homogeneous spatial metrics

hab =
L2

6π
hijω

i
aω

j
b , (7.56)

where hij is a symmetric 3 by 3 matrix composed of coefficients which only depend

on time. The L2 term is a constant with units of length, the exact units such a

meters or parsecs are immaterial at the moment. See equation (9.1) for more info on

L. The dual basis can be subjected to coordinate transformations for each group of

isometries we will consider in such a way that hij can be diagonalized and expressed
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as the following

(hij) = diag
(
e2α(t)+2β+(t)+2

√
3β−(t), e2α(t)+2β+(t)−2

√
3β−(t), e2α(t)−4β+(t)

)
, (7.57)

where (α, β+, β−) are the Misner variables [169, 170]. The two beta variables measure

the anisotropy present in space-time while α is related to either its absolute or relative

volume.

As a result of (7.57) all we need are a set of three invariant basis one forms which

obey (7.55). If we can specify all of the structure constants that would be of interest

to us then we can in principle solve for the one forms. Because our Lie group of

isometries has three dimensions, it is generated by a set of three Killing vector fields

ξ1, ξ2, and ξ3 which obey (7.50) where a, b, and c range from 1 to 3. As a result

the invariant vector fields in (7.54) have the exact same cardinality. From this we

can infer that Cc
[ab] = Cc

ab admits up to nine independent constants. By decomposing,

Cc
ab, into its symmetric and antisymmetric components we can recover the Bianchi

classification of all real three dimensional Lie algebras.

First we will express Cc
ab as the sum of two 3 by 3 matrices, one symmetric and

one antisymmetric, by contracting the structure constants with the antisymmetric

Levi-Cevita symbol

1

2
Cc
abε

abd =: n(cd) + A[cd] = ncd + εcdeve, (7.58)

where ve is a vector with three independent components. Using this equation we can

express the structure constants as

Cc
ab =

1

2
(Cc

ab − Cc
ba) =

1

2
Cc
deε

defεfab = εfabn
cf + δcbva − δcavb. (7.59)

We can insert this into the Jacobi identity (7.51) to obtain the surprisingly simple
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Group type k n1 n2 n3

Class A I 0 0 0 0
II 0 + 0 0

VII 0 0 + + 0
VI 0 0 + − 0
IX 0 + + +
VIII 0 + + −

Class B V + 0 0 0
IV + 0 0 +

VII η + 0 + +
VI η + 0 + −

Table 7.1 Classifications of Bianchi algebras taken from [48] where ni are the diag-
onal elements of nab.

relation

nabvb = 0. (7.60)

Because nabis a symmetric 3 by 3 matrix (7.58) we can interpret vb as its kernel and

as an eigenvector. As a result we can diagonalize nab and set vb = (k, 0, 0). From this

reparameterization of Cc
ab we are left with only four independent constants. From

these four independent constants we can classify 9 types of Lie algebras. The form

of these constants can be further reduced to be either, −1, 0, or 1 by rescaling the

invariant basis of vector fields in (7.54).

For the case when vb = (0, 0, 0) there are six distinct diagonal three by three

matrices, nab, which have unique ranks and signatures. These are outlined in the table

below and correspond to the class A Bianchi models. When k 6= 0 the symmetric

matrix nab at most can be rank two and from this we have four class B Bianchi models.

We will only consider in this dissertation Bianchi A models. Reasons for this will be

given at the end of this section.

Using this classification scheme we can express (7.54) for general Bianchi A and

B models as
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[V1, V2] = −kV2 + n3V3

[V2, V3] = n1V1

[V3, V1] = kV3 + n2V2.

(7.61)

In this dissertation we will only consider the Bianchi A models. This is so because

only the Bianchi A models satisfy the principle of symmetric criticality due to the

nature of the structure constants which define the Lie algebras that generate their

space-times isometries. Symmetric criticality means that reducing the degrees of free-

dom at the Lagrangian level is equivalent to reducing the degrees of freedom at the

level of the equations of motion (Einstein field equations). This enables a straight-

forward quantization procedure. Despite not satisfying the principle of symmetric

criticality, Bianchi B models can be quantized [207] using a more complicated pro-

cedure. Thus the Euclidean-signature semi-classical method which we will describe

in the next section can possibly be applied to the Bianchi B models as well. Doing

so would constitute an interesting future project which can facilitate expanding the

scope of the Euclidean-signature semi-classical method.

If we include a cosmological constant, an aligned electromagnetic field, and a free

homogeneous scalar field into (7.34) we will obtain the following classical action which

will ultimately result in the WDW equation we will be analyzing in this dissertation

S =
1

2κ

∫
N
√
h
(

(3)R +KabK
ab −K2 − 2Λ− κ

8π
FabF

ab − κ∂aφ∂aφ
)

d4x,

(7.62)

where Fab is the classical electromagnetic tensor and φ is a free homogeneous scalar

field. If we insert (7.56) into (7.62) while temporarily ignoring the electromagnetic

contribution and setting L =
√

6π, the following Lagrangian density is obtained
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LGS =
6

2κ

1

N
e3α
(
−α̇2 + β̇2

+ + β̇2
−

)
+ e3α 1

2N
φ̇2 −Ne3αΛ

κ
− 1

2κ
Ne3αV (α, β+, β−),

(7.63)

where the upper-dot, ,̇ signifies a time derivative and V (α, β+, β−) is (3)R, and its

form depends on the structure constants associated with the Bianchi A models we

are interested in. Also GS stands for "Gravity-Scalar". In addition we eliminated a

total derivative by insisting that variations at the boundary vanish and the lapse, N ,

is a function of time only and never vanishes.

If we apply the standard Legendre transformation to (7.63) we obtain

HGS = pαα̇ + pβ+ β̇+ + pβ− β̇− + pφφ̇− LGravity,

HGS =
e−3αN

(
6e6α(V (α, β+, β−) + 2Λ) + κ

(
κ
(
−p2

α + p2
β+

+ p2
β−

)
+ 6p2

φ

))
12κ

.

(7.64)

Varying (7.64) with respect to the lapse and reinstating L results in the vanishing

Hamiltonian constraint for the gravity-scalar components of the theory

HGS−Constraint = 36π3κ
(
κ
(
−p2

α + p2
β+

+ p2
β−

)
+ 6p2

φ

)
+ L6(V (α, β+, β−) + 12Λe6α) = 0,

(7.65)

where we absorbed the constant into the potential term, V (α, β+, β−), and the α

term. For any Bianchi A model this Hamiltonian constraint can be quantized using

Dirac’s prescription to obtain the WDW equation. The electromagnetic field portion

in (7.62) contributes to the potential in (7.65) and can be computed separately from

the gravitational sector by solving Maxwell’s equations in a Bianchi A space-time.

For the following calculations we will be working in units in which κ = 1
2
. We

will compare two methods for obtaining the electromagnetic contribution to (7.65)
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and ultimately the WDW equations we will be considering. The first method will

be based on directly quantizing the class of classical Hamiltonians for Bianchi A

models that was developed in [234]. This will lead to a semi-classical treatment of

our electromagnetic degree of freedom and will give us the exact WDW equations we

will be considering for the rest of this dissertation. However we will also do a full

quantum treatment of the electromagnetic degree of freedom and compare the two

approaches. We will assume that all of our electric and magnetic fields are parallel

to each other as was done in [124, 234]. We will only consider the case when a single

aligned electromagnetic field is present. It would be of practical interest though to

study the quantum cosmology of Bianchi I models when a pure magnetic field is

present due to recent evidence [184, 223] for the existence of a femto Gauss strength

intergalactic magnetic field that has been uncovered by observing gamma rays. semi-

classical methods such as the Euclidean-signature semi-classical method can certainly

aid in that proposed program.

With this in mind our first task is to obtain solutions for Maxwell’s equations for

the following class of diagonal Bianchi A space-times

ds2 = −N2dt2 +
L2

6π
habω

aωb, (7.66)

where N is the lapse, hab is (7.57), L is a quantity which has units of length, of which

the exact units are immaterial for our purposes, and ωa are a basis of one forms

which are invariant under the action of the Lie group generated by the Bianchi A Lie

algebra in question. For now we will set L =
√

6π` where ` is a quantity which has a

magnitude of unity and has units of ‘length’. Starting from

A = A0dt+ A1ω
1 + A2ω

3 + A3ω
3 (7.67)

and using the fact that dωc = 1
2
Cc
abω

a ∧ ωb to aide us in computing F = dA =
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1
2
Fabω

a ∧ ωb results in the following expression for Fab

Fab = Ab,a − Aa,b + AcC
c
ab. (7.68)

In (7.68) differentiation is done through a vector dual acting on our one forms ωa

which we denote as Xa. Thus Ab,a = XaAb. The action for the electromagnetic

contribution (7.69) is the following

Smatter =

∫
N
√
h

(
− 1

16π
FabF

ab

)
dx4. (7.69)

Writing the action (7.69) in terms of its vector potential A and our structure constants

results in the Lagrangian density which was derived in [234]

L = ΠsAs,0 −NH,

L = ΠsA0,s −N
2π√
h

ΠsΠphsp

− N
√
h

16π
hikhsl

(
2A[i,s] + AmC

m
is

) (
2A[k,l] + AmC

m
kl

)
,

(7.70)

where

Πs =
∂L

∂ (X0As)
=
hsj
√
h

4Nπ

(
−A0,j + Aj,0 + AαC

α
0j

)
. (7.71)

We allow the shift Nk to vanish because we are only considering diagonal Bianchi A

models. If we invoke the homogeneity of (7.66) then we can say that Ai,j = 0, and

A0,j = 0, where both i and j are restricted to run from 1 to 3, which results in (7.70)

simplifying to

L = ΠsAs,0 −N

[
2π√
h

ΠsΠphps +

√
h

16π
hikhslCm

klC
n
isAmAn

]
. (7.72)

To ensure we are only considering an aligned electromagnetic field we will shall

set A2, A3, Π2, and Π3 to zero and only consider the electromagnetic field produced
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by A1 and Π1; doing so results in the following Lagrangian density

L = Π1A1,0 −N

[
2π√
h

Π1Π1h11 +

√
h

16π
hikhslC1

klC
1
isA1A1

]
. (7.73)

Due to the form that the structure constants of the Bianchi A models possess Ca
bc = 0

where a does not equal either b or c and our spatial metrics being diagonal, it can

be easily shown that hikhslC1
klC

1
is = 2h11

h
, where h is the determinant of (7.57). This

allows us to obtain the following set of Maxwell’s equations when A1 and Π1 are

varied in (7.73)

Ȧ1 − 4Nπ
1√
h

Π1h11 = 0 (7.74)

and

Π̇1 +N
1

4π

1√
h
h11A1 = 0. (7.75)

For the last equation we applied an integration by parts to the term Π1A1,0 and

dropped the total derivative which vanishes at the spatial boundary. The solutions

for (7.74) and (7.75) are

A1 =
√

2B0cos(θ(t)) (7.76)

Π1 =
1

2
√

2π
B0sin(θ(t)) (7.77)

where θ(t) is an integral which is immaterial for our purposes and B0 is an integration

constant. Inserting (7.76) and (7.77) back into (7.73) results in

L =Π1A1,0 −N
B2

0

4π
√
h
h11

(
sin(θ(t))2 + cos(θ(t))2

)
= Π1A1,0 −N

B2
0

4π
e−α(t)+2β+(t)+2

√
3β−(t),

(7.78)

From (7.70) we can easily identify the electromagnetic Hamiltonian as

Hem =
B2

0

4π
e−α(t)+2β+(t)+2

√
3β−(t), (7.79)
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which can be added to resultant Hamiltonian constraint one obtains if they apply

standard canonical techniques to both the purely gravitational and free homogeneous

scalar field coupled to gravity sectors of the Lagrangian we had earlier in (7.65)

e−3α(t)
(
−p2

α + p2
β+

+ p2
β− + 12p2

φ

)
+ e3αV (α, β+, β−) +

B2
0

4π
e−α(t)+2β+(t)+2

√
3β−(t) = 0.

(7.80)

Quantizing (7.80) using the semi general factor ordering proposed by Hartle-Hawking

[110], multiplying each side by e3α(t), and rescaling B0 results in the following WDW

equation with the electromagnetic potential

∂2ψ

∂α2
−B∂ψ

∂α
− ∂2ψ

∂β2
+

− ∂2ψ

∂β2
−
− 12

∂2ψ

∂φ2

+ e6αV (α, β+, β−)ψ + 48Λe6αψ + 2b2e2α+2β++2
√

3β−ψ = 0,

(7.81)

where B can be any real number.

As the reader can verify for the cases when A1 = 0, A3 = 0, Π1 = 0, and Π3 = 0

the resulting electromagnetic term is

U2 em = 2b2e2α+2β+−2
√

3β− , (7.82)

and the case when A1 = 0, A2 = 0, Π1 = 0, and Π2 = 0 results in the term reported

in [234]

U3 em = 2b2e2α−4β+ . (7.83)

These three aligned electromagnetic fields which exist when their respective structure

constants are non-zero for the models under consideration yield the following WDW

equations for the Bianchi A models
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∂2ψ

∂α2
−B∂ψ

∂α
− ∂2ψ

∂β2
+

− ∂2ψ

∂β2
−
− 12

∂2ψ

∂φ2

+ V (α, β+, β−)ψ + 48Λe6αψ + 2b2e2α−4β+ ∨ 2b2e2(α±
√

3β−+β+)ψ = 0,

(7.84)

where we list the potentials and possible electromagnetic field configurations of all of

the Bianchi A models below. The symbol ∨ is the logical ‘or’ operator.

Neglecting the free homogeneous scalar field for now, if we start with (7.73) and

directly quantize our component of the total Hamiltonian constraint which is propor-

tional to the lapse N we obtain a similar, but slightly different contribution to the

potential. Simplifying the term in brackets of (7.73) via (7.57) results in the following

contribution to the Hamiltonian constraint derived from (7.62)

Hem = N

[
e−α+2β++2

√
3β− (16π2Π1Π1 + A2

1)

8π

]
. (7.85)

The term (16π2Π1Π1 + A2
1) commutes with our total Hamiltonian constraintHGravity−Constraint+

Hem. Thus we can solve the following WDW equation constructed by directly quan-

tizing (7.85) and adding it to the rest of our constraint (7.66)

∂2Ψ

∂α2
− ∂2Ψ

∂β2
+

− ∂2Ψ

∂β2
−
− 12

∂2Ψ

∂φ2
− e2α+2β++2

√
3β−

(
−2π

∂2Ψ

∂A2
1

+
1

8π
A2

1Ψ

)
+ V (α, β+, β−)Ψ + 48Λe6αΨ = 0,

(7.86)

by first solving this eigenvalue problem

−2π
∂2Ψ

∂A2
1

+
1

8π
A2

1Ψ = bnΨ, (7.87)

where Ψ is a function of α, β+, β−, and A2
1. This is simply the Schrödinger equation
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Bianchi Type V (α, β+, β−)
I 0
II 1

3
e4(α+β++

√
3β−)

VI h=−1
4
3
e4α+4β+

VII h=0
4
3
e4(α+β+) sinh2

(
2
√

3β−
)

VIII 1
3
e4α−8β+

(
4e12β+ sinh2

(
2
√

3β−
)

+ 4e6β+ cosh
(
2
√

3β−
)

+ 1
)

IX 1
3
e4α−8β+

(
4e12β+ sinh2

(
2
√

3β−
)
− 4e6β+ cosh

(
2
√

3β−
)

+ 1
)

Table 7.2 The potentials for of the Bianchi A models in terms of Misner variables.

for a harmonic oscillator whose eigen-solutions are well known

Ψ = ψ (α, β+, β−) e−
A2

1
8πHbn− 1

2

(
A1

2
√
π

)
bn =

1

2
(1 + 2n) .

(7.88)

Inserting our Ψ from (7.88) into (7.86) yields

∂2ψ

∂α2
−B∂ψ

∂α
− ∂2ψ

∂β2
+

− ∂2ψ

∂β2
−
− 12

∂2ψ

∂φ2

+ V (α, β+, β−)ψ + 48Λe6αψ + 2bne
2α−4β+ ∨ 2bne

2(α±
√

3β−+β+)ψ = 0,

(7.89)

where the ordering parameter B has been reinstated. This WDW equation is similar

to what we had before except for the fact that the strength bn of the electromagnetic

field is now quantized thanks to (7.88). This feature wasn’t present before because

we first solved the Ai equations (7.74) in terms of the Misner variables and thus

eliminated the electromagnetic field degree of freedom as opposed to quantizing it

first. For now though working with (7.84) is sufficient for what will follow.

The WDW equation (7.84) is analogous to the time dependent Schrödinger equa-

tions for Bianchi A quantum cosmology. Viewing the WDW equation as Ĥ⊥ψ = 0

and trying to relate it to the conventional Schrödinger equation results in the problem

of time manifesting itself as

i~
∂ψ

∂t
= NĤ⊥ψ = 0, (7.90)
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where ∂ψ
∂t

= 0. Due to the absence of the time derivative term of the Schrödinger

equation in the WDW equation, the construction of a unitary time evolution oper-

ator is not trivial, thus leading to the potential breakdown of a simple probabilistic

interpretation of the wave function of the universe.

A Klein-Gordon current

J =
i

2
(ψ∗∇ψ − ψ∇ψ∗) (7.91)

can be defined [179, 230] which could be used to construct a probability density. It

however, possesses unattractive features such as it vanishing when the wave function

used to construct the current is purely real or imaginary and not always being positive

definite.

To deal with the problem of time we will choose one of our variables (α, β+, β−, φ)

to act as an evolution parameter [84]. The Misner variable, α, is a good candidate to

be our "clock" for various reasons. The scale factor, α, would be an intuitive clock

to use because it corresponds to the size of our models and thus is fundamentally

intrinsic to them. In addition if we look at the kinetic portion of (7.84) we can

rewrite it as
e−3αpiGijp

j

~p =
(
pα, pβ+ , pβ− , pφ

)
Gij = diag (−1, 1, 1, 12) ,

(7.92)

where the signature associated with pα in our symmetry reduced DeWitt supermetric

has the same sign as the time component of our metric (7.66). A downside to using

α as an internal clock though is that classically Bianchi universes can experience a

transition from an expansionary epoch to contractionary one which causes α to "tick"

backwards. An alternative is to use pφ as our internal clock as has been done in loop

quantum cosmology [16–18]. If pφ is a conserved quantity then classically φ always
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increases monotonically and thus in a quantum cosmological context emerges as a

candidate for time. In this dissertation we will use both α and φ, as our internal

clocks depending on what points the author wishes to elucidate.
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Chapter 8

The Euclidean-Signature

Semi-Classical Method

8.1 A Family Of Modified Semi-Classical Methods

As we previously alluded to, the Euclidean-signature semi-classical method is far

more than a standalone mathematical technique one can apply to the symmetry-

reduced WDW equation in hopes of solving it. Instead it is a methodology towards

carrying out semi-classical calculations for a plethora of different theories. These

theories range from one dimensional problems in ordinary quantum mechanics, to

bosonic relativistic field theories and to formal quantum gravity. Depending on the

complexity of the problem, the exact steps one needs to take after applying the

Euclidean-signature semi-classical method to fully solve it is still a work in progress.

Nonetheless this method has already generated some interesting results for quantum

anharmonic oscillators and a class of relativistic scalar field theories [164, 176]. As

we will demonstrate, the nature by which these results have been obtained provides

us with good reasons to further develop this method and apply it towards more

complicated finite and infinite dimensional problems.
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In order for the applications of this method to quantum cosmology to be under-

stood in their proper context we will, in moderate detail, illuminate the applications

that the Euclidean-signature semi-classical method has for ordinary quantum mechan-

ics and bosonic relativistic field theory. We will discuss how a variant of this semi-

classical method can be successfully applied to a class of nonlinear oscillators to obtain

a set of asymptotic expansions which converge faster to the known exact solution than

the corresponding expansions found using conventional (Rayleigh/Schrödinger) per-

turbation theory. We will also show how this method applies to bosonic relativistic

field theories and to the formal WDW equation.

The quantum anharmonic oscillators are an important set of systems in their

own right. On a basic level, the bosonic quantum field theories we will introduce

later can be understood as a continuum of quantum anharmonic oscillators present

at each point in Minkowski space-time. As a result of the importance of this general

class of models it can be used to motivate and showcase the utility of our class of

modifications to standard semi-classical methods. We will briefly summarize the work

conducted in [176] to highlight the methodological nature of the techniques that the

author employed to study a variety of WDW equations with.

The Hamiltonian for the anharmonic oscillators is

Ĥ =
−~2

2m

n∑
i=1

∂2

∂x2
i

+
1

2
m

n∑
i=1

ω2
i (xi)

2 + A(x), (8.1)

where xi are independent Cartesian coordinates, ωi are the oscillation frequencies

along the xi Cartesian coordinate axis, and A(x) is a function whose zeroth, first and

second order Taylor series expansion around x = 0 vanishes

A(0, . . . , 0) =
∂A(0, . . . , 0)

∂xi
=
∂2A(0, . . . , 0)

∂xi∂xj
= 0. (8.2)

We will require that the potential, 1
2
m
∑n

i=1 ω
2
i (xi)

2 + A(x), satisfies a convexity
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condition and that it only possesses a unique global minimum at x = 0. In addition

a coercivity condition is imposed on A(x) to bound it from below and the oscillation

frequencies, ωi, satisfy an optional [176] non resonance condition. We will denote the

potential in (8.1) as

V =
1

2
m

n∑
i=1

ω2
i (xi)

2 + A(x), (8.3)

Given our Hamiltonian (8.2) we can construct the following ground state time

independent Schrödinger equation

Ĥψ~ = E~ψ~. (8.4)

We can propose that the wave function/eigenfunction which satisfies (8.4) can be

expressed in the following form

ψ~(x) = N~e
−S~(x)/~, (8.5)

where N~ is a normalization constant and S~ itself can be expanded as a series of

functions which are proportional to ever increasing powers of ~

S~(x) ' S(0)(x) + ~S(1)(x) +
~2

2!
S(2)(x) + · · ·+ ~n

n!
S(n)(x). (8.6)

Inserting (8.6) into the left hand side of (8.4) results in a sequence of expressions

which are proportional to powers of ~. If we expand our ground state eigenvalue,

E~, in powers of ~ then we can match the expressions on the right hand side to the

expressions on the left hand side which share the same power of ~. The expansion of

E~ in powers of ~ is the following
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E~ := ~(0)E~ ' ~
(
E(0) + ~E (0)

(1) +
~2(0)

2!
E(2) + · · ·+ ~n(0)

n!
E(n) + · · ·

)
, (8.7)

where E(i) are constants which we will have to solve for each order of ~. Equating both

sides in the manner we described above results in the following sequence of equations

1

2m
∇S(0) · ∇S(0) − V = 0, (8.8)

− 1

m
∇S(0) · ∇S(1) +

1

2m

(n)

∆S(0) = E(0) (8.9)

− 1

m
∇S(0) · ∇S(2) −

1

m
∇S(1) · ∇S(1) +

1

m
(n)∆S(1) = 2E(1) (8.10)

− 1

m
∇S(0) · ∇S(3) −

3

m
∇S(1) · ∇S(2) +

3

2m
(n)∆S(2) = 3E(2), (8.11)

and for arbitrary, k ≥ 2

− 1

m
∇S(0) · ∇S(k) −

1

2m

k−1∑
j=1

k!

j! (k − j)!
∇S(j) · ∇S(k−j) +

k

2m
(n)∆S(k−1) = kE(k−1).

(8.12)

As we will demonstrate soon, in order for S(k≥1) to be smooth and globally defined

we will need to set E(i) to be the following unique constants

E(0) =

[
1

2m

(n)

∆S(0)

]
(0, . . . , 0), (8.13)

E(1) =

[
1

2m

(n)

∆S(1) −
1

2m
∇S(1) · ∇S(1)

]
(0, . . . , 0), (8.14)
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(0)

E(k−1)=

[
1

2m
(n)∆S(k−1) −

1

2m

k−1∑
j=1

(k − 1)!

j! (k − j)!
∇S(j) · ∇S(k−j)

]
(0, . . . , 0). (8.15)

When we introduce the form of the Euclidean-signature semi-classical method tai-

lored for quantum cosmology we will discuss in depth the construction of excited

states using this method.

When the ansatz (8.5) and expansions (8.6), and (8.7) are inserted into the time

independent Schrödinger equation (8.4) the resultant zeroth order in ~ equation (8.8)

is the vanishing energy Hamilton Jacobi equation with an inverted potential −V .

Despite the Hamilton Jacobi equation having an inverted potential, our ansatz (8.5)

naturally relates solutions of the inverted potential Hamilton Jacobi equation to so-

lutions for the non-inverted potential time independent Schrödinger equation. If a

smooth and globally defined solution to (8.8) can be proven to exist then known

microlocal methods [71, 90, 116, 117, 176] can be used to integrate the higher order

S(k≥1) linear transport equations. In the context of quantum mechanics the solu-

tions of the higher order transport equations yield quantum corrections to the wave

function, e−S0(x)/~, which can be computed sequentially after obtaining a smooth and

globally defined solution to (8.8).

As a result of the properties we imposed on the original potential, V , this inverted

potential, Vip = −V , has properties which allows us to invoke certain mathemati-

cal theorems we otherwise wouldn’t be able to invoke for the original non-inverted

potential problem. Using these mathematical theorems which apply to the inverted

potential Hamilton Jacobi equation it can be proven [176] that smooth and globally

defined solutions of it exist. We will reveal what these theorems are and how they

were used to prove the existence of smooth and globally defined solutions to (8.8).

In general the solutions, S(x0, ti, tf ), of the Hamilton Jacobi equation are equal to
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the classical actions, S(x0, ti, tf ) =
∫ tf
ti
L(x(t), ẋ(t))dt, of their corresponding system.

Thus if we want to prove the existence of smooth and globally defined solutions

to (8.8) it is natural to start with the classical action for our inverted potential

anharmonic oscillators

S (x0) :=

∫ 0

−∞

{
1

2
m

n∑
i=1

[(
ẋi(t)

)2
+ ω2

i

(
xi(t)

)2
]

+ A (x)

}
dt. (8.16)

If we can prove that solutions which satisfy certain properties exist for this action’s

corresponding Euler-Lagrange equations then we can prove that smooth and globally

defined solutions to (8.8) exist. The type of solution curves in configuration space

whose existence we wish to prove are those which begin at t = 0 at some arbitrary

point, x0, with a unique initial velocity, v0, which then asymptotically approach as

t → −∞ the global maximum of Vip which is the origin, x = 0. As a result of the

Hamilton Jacobi equation describing a system with total energy zero the velocity

must also asymptotically approach zero as t→ −∞.

The curves we just described which approach the origin as t→ −∞ reside in the

following affine space of curves

Dx := {γ ∈ H1 (I,Rn) | I = (−∞, 0]

γ(t) = x(t), limt→0 γ(t) = x0 ∈ Rn }
(8.17)

where H1 (I,Rn) are the distribution of curves in the Sobolov space with norm

‖γ(·)‖H1(I,Rn):=

{∫ 0

−∞

n∑
i=1

[(
ẋi(t)

)2
+ ω2

i

(
xi(t)

)2
]
dt

}1/2

. (8.18)

As a result of our modified semi-classical method yielding an inverted potential Hamil-

ton Jacobi equation we can invoke the Sobolov embedding theorem [46, 61] which

states that these curves have a finite norm
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‖γ(·)‖L∞(I,Rn):= sup
t∈I

√√√√ n∑
i=1

(xi(t))2 <∞, (8.19)

and that these curves vanish at infinity

lim
t↘−∞

|γ(t)|= lim
t↘−∞

√√√√ n∑
i=1

(xi(t))2 = 0. (8.20)

From the consequences of the Sobolov embedding theorem it can be proven [176]

that minimizers of the action (8.16) or solutions to the corresponding inverted po-

tential Euler-Lagrange equations do exist and that solutions which satisfy the above

properties also always satisfy

Eip(x(t), ẋ(t)) :=
m

2

n∑
i=1

(
ẋi(t)

)2
+ Vip(x(t))

=
m

2

n∑
i=1

(ẋ(t))2 − V (x(t))

= 0.

(8.21)

Thus we can denote

S(0)(x) = Sip [γx] (8.22)

as the minimizers of our action (8.16) where γx is a curve in the configuration space of

our anharmonic oscillator which satisfies the properties we listed above and at t = 0

equals some arbitrary point in Rn.

Using the Banach space version of the implicit function theorem [1] it can be

shown [176] that the class of minimizers denoted by (8.22) are smooth and globally

defined solutions of the inverted potential Hamilton Jacobi equation (8.8). In addition

the Banach space version of the implicit function theorem allows us to show that the

gradient of the action can be used to find the second set of initial conditions once we

know x0
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p0 :=

(
∂S
∂x1

, . . . ,
∂S
∂xn

)
x0

= mv0.

(8.23)

In general the gradient of our action or solution to (8.8) according to the aforemen-

tioned implicit function theorem yields the family of curves which asymptotically

approach the origin whose proof we lightly sketched out above

m
dxi(t)

dt
=
∂S
∂xi

(
x1(t), . . . , xn(t)

)
, (8.24)

where (x1(0), . . . , xn(0)) = x0.

Using (8.24) and the chain rule of calculus we can rewrite our linear transport

equations (8.9), (8.10), and (8.12) as

dS(1)

dt

(
x1(t), . . . , xn(t)

)
=

(
1

2m

(n)

∆S(0) − E(0)

)(
x1(t), . . . , xn(t)

)
, (8.25)

dS(2)

dt

(
x1(t), . . . , xn(t)

)
=

(
1

m

(n)

∆S(1) −
1

m
∇S(1) · ∇S(1) − 2E (0)

(1)

)(
x1(t), . . . , xn(t)

)
,

(8.26)

and for k ≥ 2

dS(k)

dt
(x1(t), . . . , xn(t))

=
(

k
2m

(n)
∆S(k−1) − 1

2m

∑k−1
j=1

k!
j!(k−j)!∇S(j) · ∇S(k−j) − kE(k−1)

)
(x1(t), . . . , xn(t))

(8.27)

It can be seen that in order for the time integral of the right side of these equations

to converge that the constants, E(i), which when summed approach the eigenvalue for

our ground state solution must satisfy (8.13), (8.14), and (8.15).

Using a smooth and globally defined S(0) the higher order transport equations can

be integrated to generate smooth and globally defined quantum corrections to the

quantum anharmonic oscillators. These collections of results can be used to prove
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that an asymptotic solution exists for the time independent Schrödinger equation

when its potential has the same properties of the anharmonic oscillators we just

analyzed. One such system is the Mathieu oscillator which the author obtained some

preliminary results for. The terms the author obtained for its ground state appear to

have properties which suggest that they are Borel summable. We will discuss soon

what these properties are. The Mathieu oscillator has been the subject recently for

the exact WKB method [122].

For the specific cases of the quartic, sectic, octic, and dectic oscillators the poten-

tial is given below

Vκ(x) =
1

2
mω2

ox
2 + gx2κ, (8.28)

where κ is respectively, 2, 3, 4, and 5, and g in the context of perturbation theory

is a perturbative parameter, but for our purposes is just a constant of arbitrary size.

For this model it was observed that the wave function computed using the above

method possessed the more-rapid-than-Gaussian decay known to hold for the exact

solutions to these problems. This behavior begins to manifest itself at leading order

in N~e
−S~(x)/~. In addition the eigenvalues found using this method matched those

found using conventional Rayleigh/Schrödinger perturbation theory.

The quartic case proved to be especially interesting because the 25 terms which

were computed in closed form possessed the following properties. The derivatives,{
dS(0)

dx
, . . . ,

dS(25)

dx

}
, are all odd in x and have uniformly definite sign on each of the in-

tervals (∞, 0) and (0,∞). Also the following quantum corrections,
{
S(`)(x), ` = 2, 3, 4, . . . , 25

}
,

satisfy the property that their signs on the intervals which they are defined on alter-

nate with ` and that they decay from their global maximum as |x| → ∞. Furthermore

it was observed that that the sequence of ratios

{
−S(`)(0)

(0)
E(`)

, ` = 2, 3, . . . , 25

}
decreases

monotonically with increasing `.

If the remaining countably infinite number of terms which make up (8.6) also
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possess these aforementioned properties then the series in (8.6) can be Borel summed

∞∑
`=2

S(`)(x)~`

`!
(8.29)

which would result in an exact closed form solution

(0)

ψ (x) := Ne−
s(0)(x)

~ −S(1)(x)−S(x)
~ −

∑∞
`=2

S(`)(x)~`

`! (8.30)

to (8.4) for the κ = 2 potential of (8.28). These same properties were observed by

the author when he did the analogous calculation for the Mathieu oscillator

Ĥ =
−~2

2m

(0)

ψ ∂2

∂x2
+ V(0)

(
cosh

x

2L
− 1
) (0)

ψ , (8.31)

which was previously investigated recently using the exact WKB method. In (8.31)

V0 is a positive constant and L is constant with units of ‘length’. The proof that the

remaining terms also possess these properties is a work in progress.

In light of the terms which make up (8.6) for the quartic oscillator’s wave function

appearing to be Borel summable, and the fact that all of the anharmonic oscillators

analyzed with this modified semi-classical method so far exhibit this expected faster-

than-Gaussian decay it is fruitful to perform a leading order comparison between the

traditional WKB method and the modified semi-classical one we detailed above.

If we insert

ψ~(x) = N~e
iSWKB(x)/~, (8.32)

into (8.4) and apply the standard textbook WKB procedure we obtain at leading

order
1

2m

(
∂SWKB

∂x

)2

+
1

2
mω2

ox
2 + gx4 = En. (8.33)

If one tried to directly solve this equation via integration they would obtain a very non-
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trivial expression for SWKB. Because the quartic anharmonic oscillator is a potential

well, one can try to obtain an estimate of its energy using the standard connection

formula ∫ √√
8Engm+m4ω4

4gm
−mω2

4g√√
8Engm+m4ω4

4gm
−mω2

4g

SWKBdx =

(
n+

1

2

)
π~. (8.34)

Given how complicated this integral is, it isn’t even clear if such an expression is

inevitable for En. In addition, due to the concavity of the potential in (8.33) we

cannot indirectly tackle this problem using the vast array of mathematical theorems

we previously employed for the general anharmonic oscillators. This example suggests

that the standard WKB method is not a simple and natural formalism for tackling

many important problems in physics.

However if we insert (8.5) into (8.4) we obtain

1

2m

(
∂SIP
∂x

)2

− 1

2
mω2

ox
2 − gx4 = 0 (8.35)

which corresponds to a classical system with a total energy of zero, but one that

admits a negative potential energy. As a result the kinetic energy of this system can

be positive when its potential energy is negative or zero when the potential energy

is zero. Thus the solutions of this equation can correspond to the dynamics of a real

classical system. In particular its leading order solution is

Sip =
(4mgx2 + 2m2w2)

3/2

12
√

2mg
(8.36)

which manifestly demonstrates the expected rate of decay of the wave function.

From this elementary example it should be clear why in some cases our modified

semi-classical method is a more versatile and natural tool than the WKB method. For

the class of problems we discussed, the leading order implementation of this method

yields an inverted potential Hamilton Jacobi equation whose solutions correspond
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to real classical trajectories of the inverted potential system. This allows one to

employ already established mathematical results to ascertain further properties of the

classical action which would not be possible if one started from the standard WKB

ansatz because it doesn’t admit a leading order equation for this class of potentials

whose solutions are purely real. As we previously mentioned the class of systems this

modified method applies to are not trivial. Anharmonic oscillators form the basis

of understanding infinite dimensional quantum field theories. Some QFTS can be

rudimentarily understood as a space-time with an anharmonic oscillator existing at

each one of its points. Therefore it is no small feat that this modified semi-classical

method is technically superior to the WKB method for analyzing this class of finite

dimensional problems.

Most importantly, the set of established mathematical results that the application

of this modified semi-classical method allowed us to use can be generalized to infinite

dimensional systems. One such system in four space-time dimensions is quantum φ4

theory whose Hamiltonian can be expressed as

Ĥ =

∫
R3

{
−~2

2

δ2

δφ2(x)
+

1

2
∇φ · ∇φ(x) +

m2

2
φ2(x) + λφ4(x)

}
d3x (8.37)

where δ2

δφ2(x)
is the second functional derivative with respect to the scalar field φ(x). In

order to define the full quantum theory one would need to apply regularization to the

functional derivatives and let the coupling constants, (m,λ), run under the influence

of a renormalization flow. However we can ignore those requirements if we only apply

our method to leading order. We will begin by picking the following ground state

ansatz for our wave functional
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ψ~[φ(·)] = N~e
−S~[φ(·)]/~,

S~[φ(·)] ' S(0)[φ(·)] + ~S(1)[φ(·)] +
~2

2!
S(2)[φ(·)] + . . . ,

(0)

E~' ~
{
E(0) + ~E(1) +

~2(0)

2!
E(2) + . . .

}
,

(8.38)

which we will insert into the functional analog of (8.4). The notation, φ(·), will be

taken to be boundary data induced on the following Euclidean hypersurface at t = 0

R4 =
{

(t,x) | t ∈ R,x ∈ R3
}

(8.39)

of a scalar field, Φ, which we will take to be a generalized function defined in the

following region

R4− := (−∞, 0]× R3. (8.40)

By treating Φ as a generalized function in the same sense that the Dirac delta is a

generalized function/distribution will allow us to define the map Φ : (−∞, 0]→ R∞.

Inserting (8.38) into the functional version of (8.4) and only keeping terms which

are independent of ~ yields the following vanishing-energy-Euclidean-signature func-

tional Hamilton-Jacobi equation

∫
R3

{
1

2

δS(0)

δφ(x)

δS(0)

δφ(x)
− 1

2
∇φ · ∇φ(x)− m2

2
φ2(x)− λφ4(x)

}
d3x = 0. (8.41)

The term "Euclidean-signature" was included because if the classical analog of φ4

theory in (8.37) was formulated in Euclidean-signature as opposed to Lorentzian sig-

nature and if the following substitution was made, pφ →
S(0)

δφ(x)
, the resulting equation

would be (8.41).

The methods that we outlined for the finite dimensional case were generalized [164]

to this infinite dimensional case which were then used to find a unique minimizers for
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Ies [Φ] :=

∫
R3

∫ 0

−∞

{
1

2
Φ̇2 +

1

2
∇Φ · ∇Φ +

1

2
m2Φ2 + λΦ4

}
dtd3x, (8.42)

for arbitrary boundary data, φ(·), prescribed at t = 0. These unique minimizers

resulted in the following classical action

S(0)[φ(·)] = Ies [Φφ] . (8.43)

Then using a generalized version of the Banach space implicit function theorem it

was shown that this function (8.43) was smooth and globally defined in the domain

of interest and that it does indeed satisfy the Euclidean-signature functional Hamilton

Jacobi equation (8.41)

1

2

∫
R3

∣∣∣∣δS(0)[φ(·)]
δφ(x)

∣∣∣∣2 d3x =

∫
R3

{
1

2
∇φ · ∇φ(x) +

1

2
m2φ2(x) + λφ4(x)

}
d3x. (8.44)

Thus it was proven that a fundamental solution, S(0)[φ(·)], exists which in theory

allows one to compute the quantum corrections associated with the ground state wave

functional (8.38) of φ4 theory. To go from theory to practice, transport equations must

be constructed which take into account the regularization of functional derivatives of

the Hamiltonian and the running of the coupling constants. Such a program is a

work in progress [164, 165].

As a result of this program for studying bosonic relativistic field theories not

requiring splitting the theory up into one part which is a free theory and another

part which contains interactions it can potentially be a useful tool to study Yang-

Mill theory. This is so because the Lie algebra which generates the non-abelian Lie

group which underlines Yang-Mills theory is not perfectly suited to be studied using

standard perturbation theory. This is so because standard perturbation theory at
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the zeroth order neglects certain interactions which results in transforming the non-

abelian Lie group into an abelian one which generates multiple copies of Maxwell’s

theory. As one proceeds to apply perturbation theory to higher and higher orders

one is attempting to recapture more and more of the non-abelian aspects of Yang-

Mill theory. The Euclidean signature-semi-classical method on the other hand can

preserve the structure of the non-abelian Lie group even at leading order and does so

as one includes additional quantum corrections. Therefore it is hoped that one day

this program may be able to shed [165] some light on the very important ‘mass-gap’

problem.

Given the abundance of potential applications this methodology has for physics

and the fact that it is currently in an early stage of development it is important

to apply the techniques we outlined in this section to a wide variety of problems.

By doing so we can better ascertain the limitations of this methodology while also

simultaneously highlighting its strengths which can further guide its development.

The author did this by applying this methodology to a variety of finite dimensional

systems found in quantum cosmology which possess different properties than those

considered earlier by J.Bae [20]. In the next section we will showcase the form of the

Euclidean-signature semi-classical which is tailored for quantum cosmology and show

how it can potentially be applied to the formal infinite dimensional WDW equation

of quantum gravity.

8.2 Euclidean-Signature Semi-Classical Method For

Quantum Cosmology and Gravity

As a result of obtaining the WDW equation (7.84) from quantizing a constrained

system which was subject to symmetry reduction this particular application of the

Euclidean-signature semi-classical method is going to differ somewhat from what
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we previously considered. The most notable difference between the WDW equation

and the Schrödinger equation is that the Hamiltonian appears to annihilate, Ĥψ =

0, any physically realizable state. As a result the crucial step we took earlier of

expanding (8.7) the energy eigenvalues, En, in powers of ~ will be absent from this

particular application of the Euclidean-signature semi-classical method. As a result

our equations will be simpler but their results will be more difficult to interpret. This

is especially true when it comes to delineating ‘ground’ states from ‘excited’ states.

This is why from here on out we will be labeling the quantum cosmological ‘ground’

and ‘excited’ states with a ‘’.

The method we are about to outline was applied by Joseph Bae to the quantum

diagonal Bianchi IX WDW equation [20]. Using it he was able to prove the existence

of a smooth and globally defined asymptotic ‘ground’ state solution for any arbitrary

Hartle-Hawking ordering parameter [110]. In addition he was able to investigate

leading order ‘excited’ states of the quantum Bianchi IX models. The ability of this

modified semi-classical method to facilitate a definition of ‘excited’ states for finite

dimensional constrained theories makes it a valuable tool in quantum cosmology.

Our application of this method will be somewhat different from what was previ-

ously carried out by J.Bae. Because he was only considering a vacuum model there

was no preferred length scale. As a result, in his mathematical analysis he was able

to effectively reduce the degrees of freedom of the Bianchi IX minisuperspace model

by one. Furthermore the solution [178] of the Euclidean-signature Hamilton Jacobi

equation he was working with induced a specific flow in β space. Notably the flow

induced by the ‘wormhole’ solution of the Bianchi IX Euclidean-signature Hamilton

Jacobi equation drives [20, 22] the anisotropic variables, β+(t) and β−(t), to the origin

as t→∞, irrespective of their initial location in β space, which we hold to be purely

real. As a result, the equations corresponding to the quantum corrections for the

Bianchi IX models were solved by integrating them along a flow induced in a subset
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of minisuperspace. The integrals for the quantum corrections that were previously

considered only yielded smooth and globally defined quantities if the variables, β+(t)

and β−(t), being integrated vanish as t→∞.

Our approach will differ from this because we are including matter sources which

pick out preferred length scales. Also our solutions to the Euclidean-signature Hamil-

ton Jacobi equation don’t induce a flow in minisuperspace which drives the β variables

to the origin. Instead we will show that either the transport equations which cor-

respond to our quantum corrections are directly solvable by picking a clever ansatz

which reduces the task of solving them to an algebraic problem or that the sequence

of transport equations terminates after a finite number of them have been solved.

Thus our application of the Euclidean-signature semi-classical can be considered a

novel one. In particular we will apply the following approach to the quantum Taub,

Bianchi IX, Bianchi VIII, Bianchi VIIh=0, and Bianchi II models when a cosmological

constant and aligned electromagnetic field are present.

Our outline of this method will follow closely [175]. The method described in this

section and its resultant equations can in principle be used to find solutions (closed

and asymptotic) to a wide class of quantum cosmological models such as all of the

diagonal Bianchi A, Kantowski Sachs models, and the FLRW models. The first step

is to quantize the vanishing constraint (7.65) while introducing proper units into our

WDW equation by setting κ = Ḡ
2c3

, where we rescaled G so that Ḡ = 4πG. Second

we will rescale L so that L̄ =
√

6πL. Doing these two steps results in the following

WDW equation

(
LPlanck
L̄

)4(
∂2ψ

∂α2
−B∂ψ

∂α
− ∂2ψ

∂β2
+

− ∂2ψ

∂β2
−
− ~

(
LPlanck
L̄

)
12
∂2ψ

∂φ2

)
+ L̄2e6αV (α, β+, β−)ψ + 48L̄2Λe6αψ + L̄−22b2e2α−4β+ ∨ 2b2e2(α±

√
3β−+β+)ψ = 0,

(8.45)
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where the rescaled Planck length is LPlanck =
(
Ḡ~
c3

)1/2

. The next step we will take in

solving the WDW equation is to introduce the ansatz

(0)

Ψ~= e−S~/~ (8.46)

where S~ is a function of (α, β+, β−, φ). We will rescale S~ in the following way

S~ :=
Ḡ

c3L̄2
S~ (8.47)

where S~ is dimensionless and admits the following power series in terms of this

dimensionless parameter

X :=
L2

Planck

L̄2
=

Ḡ~
c3L̄2

. (8.48)

The series is given by

S~ = S(0) +XS(1) +
X2

2!
S(2) + · · ·+ Xk

k!
S(k) + · · · , (8.49)

and as a result our initial ansatz now takes the following form

(0)

Ψ~= e−
1
X
S(0)−S(1)−X2!

S(2)−···. (8.50)

Substituting this ansatz into the Wheeler-DeWitt equation and requiring satisfaction,

order-by-order in powers of X and ~, and setting L̄ = 1 leads immediately to the

sequence of equations

(
∂S(0)

∂α

)2

−
(
∂S(0)

∂β+

)2

−
(
∂S(0)

∂β−

)2

− 12

(
∂S(0)

∂φ

)2

+ U = 0, (8.51)

2

[
∂S(0)

∂α

∂S(1)

∂α
−
∂S(0)

∂β+

∂S(1)

∂β+

−
∂S(0)

∂β−

∂S(1)

∂β−
− 12

∂S(0)

∂φ

∂S(1)

∂φ

]
+B

∂S(0)

∂α
−
∂2S(0)

∂α2
+
∂2S(0)

∂β2
+

+
∂2S(0)

∂β2
−

+ 12
∂2S(0)

∂φ2
= 0,

(8.52)
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2

[
∂S(0)

∂α

∂S(k)

∂α
−
∂S(0)

∂β+

∂S(k)

∂β+

−
∂S(0)

∂β−

∂S(k)

∂β−
− 12

∂S(0)

∂φ

∂S(k)

∂φ

]
+k

[
B
∂S(k−1)

∂α
−
∂2S(k−1)

∂α2
+
∂2S(k−1)

∂β2
+

+
∂2S(k−1)

∂β2
−

+ 12
∂2S(k−1)

∂φ2

]
+

k−1∑
`=1

k!

`! (k − `)!

(
∂S(`)

∂α

∂S(k−`)

∂α
−
∂S(`)

∂β+

∂S(k−`)

∂β+

−
∂S(`)

∂β−

∂S(k−`)

∂β−
− 12

∂S(`)

∂φ

∂S(k−`)

∂φ

)
= 0,

(8.53)

where U is the total potential

U = e6αV (α, β+, β−)ψ + 48Λe6αψ + 2b2e2α−4β+ ∨ 2b2e2(α±
√

3β−+β+). (8.54)

We will refer to S(0) in our WDW wave functions as the leading order term, which

can be used to construct a semi-classical approximate solution to the Lorentzian

signature WDW equation, and call S(1) the first order term. The S(1) term can

also be viewed as our first quantum correction, with the other S(k) terms being the

additional higher order quantum corrections, assuming that they are smooth and

globally defined. This is reflected in the fact that the higher order transport equations

depend on the operator ordering used in defining the Wheeler Dewitt equation, which

is an artifact of quantization. Additionally in some cases one can find a solution to the

S(1) equation which allows the S(2) equation to be satisfied by zero. Then one can write

down the following as a solution to the WDW equation for either a particular value

of the Hartle-Hawking ordering parameter, or for an arbitrary ordering parameter

depending on the S(1) which is found.

(0)

Ψ~= e−
1
X
S(0)−S(1) (8.55)

.

This can be easily shown. Let’s take S(0) and S(1) as arbitrary known functions

which allow the S(2) transport equation to be satisfied by zero. Then the k = 3
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transport equation can be expressed as

2

[
∂S(0)

∂α

∂S(3)

∂α
−
∂S(0)

∂β+

∂S(3)

∂β+

−
∂S(0)

∂β−

∂S(3)

∂β−
− 12

∂S(0)

∂φ

∂S(3)

∂φ

]
= 0 (8.56)

which is clearly satisfied by S(3)=0. The S(4) equation can be written in the same

form as (8.56) and one of its solution is 0 as well, thus resulting in the S(5) equation

possessing the same form as (8.56). One can easily convince oneself that this pattern

continues for all of the k ≥ 3 S(k) transport equations as long as the solution of the

S(k−1) transport equation is chosen to be 0. Thus if an S(1) exists which allows one

to set the solutions to all of the higher order transport equations to zero the infinite

sequence of transport equations generated by our ansatz truncates to a finite sequence

of equations which allows us to construct a closed form wave function satisfying the

WDW equation. Not all solutions to the S(1) transport equation will allow the S(2)

transport equation to be satisfied by zero; however for the particular systems dealt

with in this dissertation we were able to find S(1)’s which cause the S(2) transport

equation to be satisfied by zero for them, thus allowing one to set all of the solutions

to the higher order transport equations to zero as shown above. This enabled us to

construct new ‘ground’ state closed form solutions for our Lorentzian signature WDW

equations for arbitrary ordering parameters.

There is still some work that needs to be done to rigorously define ‘excited’ states

within the contexts of the quantum cosmological application of this method. However

the definition which has done a satisfactory job of describing ‘excited’ states for the

Bianchi IX models and for the Taub models [20, 39] starts with the ansatz given

below

Ψ~ = φ~e
−S~/~ (8.57)

where φ~ and φk denote quantum corrections to the ‘excited’ states and should not
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be confused with the free scalar field φ and

S~ =
c3L̄2

Ḡ
S~ =

c3L̄2

G

(
S(0) +XS(1) +

X2

2!
S(2) + · · ·

)

is the same series expansion as before and φ~ can be expressed as the following series

φ~ = φ(0) +Xφ(1) +
X2

2!
φ(2) + · · ·+ Xk(∗)

k!
φ(k) + · · ·, (8.58)

with X being the same dimensionless quantity as before. Inserting (8.57) with the

expansions given by (8.49) and (8.58) into the Wheeler DeWitt equation (8.45) and by

matching equations in powers of X and ~ leads to the following sequence of equations.

−
∂φ(0)

∂α

∂S(0)

∂α
+
∂φ(0)

∂β+

∂S(0)

∂β+

+
∂φ(0)

∂β−

∂S(0)

∂β−
+ 12

∂φ(0)

∂φ

∂S(0)

∂φ
= 0, (8.59)

−
∂φ(1)

∂α

∂S(0)

∂α
+
∂φ(1)

∂β+

∂S(0)

∂β+

+
∂φ(1)

∂β−

∂S(0)

∂β−
+ 12

∂φ(0)

∂φ

∂S(0)

∂φ

+

(
−
∂φ(0)

∂α

∂S(1)

∂α
+
∂φ(0)

∂β+

∂S(1)

∂β+

+
∂φ(0)

∂β−

∂S(1)

∂β−
+ 12

∂φ(0)

∂φ

∂S(1)

∂φ

)
+

1

2

(
−B

∂φ(0)

∂α
+
∂2φ(0)

∂α2
−
∂2φ(0)

∂β2
+

−
∂2φ(0)

∂β2
−
− 12

∂2φ(0)

∂φ2

)
= 0,

(8.60)

−
∂φ(k)

∂α

∂S(0)

∂α
+
∂φ(k)

∂β+

∂S(0)

∂β+

+
∂φ(k)

∂β−

∂S(0)

∂β−
+ 12

∂φ(k)

∂φ

∂S(0)

∂φ

+ k

(
−
∂φ(k−1)

∂α

∂S(1)

∂α
+
∂S(1)

∂β+

∂S(1)

∂β+

+
∂φ

(∗)
(k−1)

∂β−

∂S(1)

∂β−
+ 12

∂φ
(∗)
(k−1)

∂φ

∂S(1)

∂φ

)

+
k

2

(
−B

∂φ(k−1)

∂α
+
∂2φ

(∗)
(k−1)

∂α2
−
∂2φ(k−1)

∂β2
+

−
∂2φ(k−1)

∂β2
−
− 12

∂2φ(k−1)

∂φ2

)

−
k∑
`=2

k!

`! (k − `)!

(
∂φ(k−`)

∂α

∂S(`)

∂α
−
∂φ(k−`)

∂β+

∂S(`)

∂β+

−
∂φ(k−`)

∂β−

∂S(`)

∂β−
− 12

∂φ(k−`)

∂φ

∂S(`)

∂φ

)
= 0.

(8.61)

It can be seen from computing dφ(0)(α,β+,β−,φ)

dt
= α̇

∂Φ(0)

∂α
+ β̇+

∂Φ(0)

∂β+
+ β̇−

∂Φ(0)

∂β−
+ φ̇

∂Φ(0)

∂φ
,

and extrapolating from (4.9, 4.18− 4.20) of [175] what φ̇ is in terms of S(0) that φ(0)
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is a conserved quantity under the flow of S0. This means that any function F
(
Φ(0)

)
is

also a solution of the equation (8.59). Wave functions constructed from these functions

of φ0 are only physical if they are smooth and globally defined. If we choose our

φ0 to have the form f (α, β+, β−, φ)m1 g (α, β+, β−, φ)m2 where f (α, β+, β−, φ) and

g (α, β+, β−, φ) are some functions which are conserved under the flow of S(0) and

vanish for some finite values of the Misner variables then we must restrict mi to be

either zero or a positive integer. For bound states, mi can plausibly be interpreted

as graviton excitation numbers [19]. This makes our ‘excited’ states akin to bound

states in quantum mechanics like the harmonic oscillator whose excited states are

denoted by discrete integers as opposed to a continuous index. This discretization of

the quantities that denote our ‘excited’ states is the mathematical manifestation of

quantization one would expect excited states to possess in quantum dynamics. If our

conserved quantities do not vanish in minisuperspace then our ‘excited’ states can be

interpreted as ‘scattering’ states akin to the quantum free particle and mi can be any

pair of real numbers.

As we will show soon, these ‘excited’ state transport equations can be solved in an

elegant manner for the Taub and Bianchi II models. Studying both the mathematical

properties of our ‘excited’ state transport equations and of the various models they can

be applied to can shed light on how the Euclidean-signature semi-classical method can

be applied to other problems in physics. In a previous study [21] the perturbations of

the LRS Bianchi IX models were quantized to obtain an interpretation of the Bianchi

IX model’s ‘excited’ states; it may prove useful to do the same for the LRS Bianchi

II models to show that the ‘excited’ states that this method can provide are indeed

actual excited states. Additional information about ‘excited’ states can be found in

[175].

We can quantize the Hamiltonian (7.40) and diffeomorphism/momentum (7.41)

constraint we defined earlier in section 3 of chapter 7 irrespective of choosing their
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operator ordering to obtain their quantum analogs

Ĥ⊥
(
hab,

~
i

δ

δhab

)
Ψ[hab] = 0, (8.62)

and

Ĵi
(
hab,

~
i

δ

δhab

)
Ψ[hab] = 0. (8.63)

Technically the operator orderings one may choose for these quantized constraints are

restricted by the fact that the commutator, [Ĥ⊥(x), Ĥ⊥(y)], should close naturally

without any anomalies emerging in the form of new constraints. The solution of this

problem is currently outstanding. What is known though is that the diffeomorphism

constraint can be expressed in an operator ordering which allows the action of its

quantized version to ensure that that physically realizable wave functions, Ψ[hab], are

invariant under diffeomorphism on the spatial metric

Ψ [ϕ∗hab] = Ψ[hab]. (8.64)

Regardless of the operator ordering one chooses for these constraints one can

propose the following ansatz for the ‘ground’ state solution to the WDW equation

(0)

Ψ~ [hab] = e−S~[hab]/~ (8.65)

where S~[hab] is expanded in powers of ~ in the following manner

S~[hab] = S(0)[hab] + ~S1[hab] +
~2

2!
S(2)[hab] + · · ·+ ~k

k!
S(k)[hab] + · · · . (8.66)

Applying the momentum constraint to (8.65) results in each one of the terms(8.66)

which make up S~[hab] being invariant under the group of diffeomorphism of hab
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S(k) [ϕ∗γ] = S(k)[γ], k = 0, 1, 2, . . . . (8.67)

Irrespective of the operator ordering one chooses for the Hamiltonian constraint, due

to the operator ordering problem itself being an artifact of quantum mechanics, the

zeroth order equation our ansatz (8.65) produces when it is inserted

Ĥ⊥
(
hab,

~
i

δ

δhab

)
e−S(0)[hab]/~−S(1)[γ]−··· = 0 (8.68)

into the Hamiltonian constraint is the functional Euclidean-signature Hamilton Jacobi

equation

(
16πG

c4

)2(
hachbd −

1

2
habhcd

)
δS(0)

δhab

δS(0)

δhcd
+ h(3)R(hab) = 0 (8.69)

where h is the determinant of hab. In keeping with our approach of focusing for

now on the zeroth order in ~ equation pertaining to infinite dimensional field the-

ories the following question naturally arises. Is there an established mathematical

method for proving the existence of a diffeomorphism invariant fundamental solution,

S(0)(ϕ
∗hab) = S(0)(hab), to the Euclidean-signature functional differential Hamilton-

Jacobi equation ( 8.69)?

A stab at answering this question can be undertaken by generalizing the techniques

we outlined for the anharmonic oscillator and the subsequent relativistic bosonic

field theory. For the anharmonic oscillator we were trying to prove the existence

of solutions to its inverted potential Euler Lagrange equations which satisfied an

initial and asymptotic condition. For general relativity this generalizes to looking for

Riemannian metrics which satisfy a certain boundary and asymptotic condition. If we

can prove the existence of such a class of Riemannian metrics that would represent

the first step towards proving that the classical Euclidean-signature action which
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corresponds to those metrics is indeed a smooth and globally defined solution to

(8.69).

We can use the fact that in a vacuum or when only conformally invariant matter

sources are present that a special class of solutions to Einstein’s equations exists when

the four dimensional Ricci scalar vanishes, R(gEucl) = 0. Without loss of generality if

we start our search for solutions to Einstein’s equations when R(gEucl) = 0 our task

of minimizing the corresponding Euclidean-signature action functional is simplified.

In addition to simplifying our task this condition allows us to avoid the pitfalls which

have plagued other approaches to quantum gravity. One such approach is based

on Euclidean-signature path integrals. However it is plagued by the problem that in

general the Riemannian metrics it sums over results in an action which is not bounded

from below which causes the integral for the wave function to diverge. However when

R(gEucl) = 0 the conformal degree of freedom which results in the action being

unbounded [97, 98] from below is frozen and thus vanishing of the Ricci scalar is a

natural condition we should impose for the method we would like to employ.

Because we can seek to minimize the relevant action when R(gEucl) = 0 we have a

good idea of what types of Riemannian metrics we are looking for. As a result of the

positive action theorem [77, 212, 237] we know that the action of any asymptotically

Euclidean Riemannian metric which satisfies R(gEucl) = 0 is positive. On a basic

level this is a result of the additional boundary terms we encountered earlier not

vanishing when asymptotic flatness is a boundary condition. Thus in the same way

we knew which types of curves we wanted to prove the existence of for the anharmonic

oscillator we know which types of metrics corresponding to the Euclidean-signature

Hamilton Jacobi equation we wish to prove the existence of. Thus the previous success

of this method for proving the existence of smooth and globally defined solutions to

the Euclidean-signature functional Hamilton Jacobi equation for φ4 theory provides

a road map for doing the same for the formal WDW equation.
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In addition to having a road map which doesn’t rely on previous techniques which

possess long standing unresolved issues, our method has another advantage over the

traditional Euclidean path integral approach. This method doesn’t require the use of a

Wick rotation like the Euclidean path integral approach. The Euclidean path integral

approach like our method seeks to solve the Lorentzian signature WDW equation.

However, performing a Euclidean path integral over Riemannian metrics and matter

fields would normally result in a solution to the Euclidean signature WDW equation.

Despite this drawback, proving the convergence of the path integral in Euclidean-

signature is in principle easier to do than in Lorentzian signature. Most importantly

though, any result obtained via a Euclidean-signature path integral can hopefully be

Wick rotated retroactively to satisfy the Lorentzian signature WDW equation. The

problem is that there is no generally accepted Wick rotation that can accomplish this.

The form that such a Wick rotation would take is an outstanding problem in itself.

However our method requires no Wick rotation. We get to take advantage of the

simplicity of working with Euclidean-signature equations without having to worry

about how to relate our results back to the original Lorentzian signature problem

in question. Our method naturally relates the solutions of the Euclidean-signature

functional Hamilton Jacobi equation of quantum gravity to the wave function of the

formal Lorentzian signature WDW equation.

As we have shown in this chapter the Euclidean-signature semi-classical method

can be applied to an impressive array of finite dimensional and infinite dimensional

systems. In particular its applications to certain infinite dimensional systems are

highly promising. The Euclidean-signature semi-classical method can potentially pro-

vide us with fascinating insights into bosonic relativistic field theory and quantum

gravity that other presently known methods cannot. As a result the further develop-

ment of this method is a worthy task. To aid in the development of this method in

the upcoming chapters we will expand upon the types of finite dimensional systems
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that this method can be applied to by considering quantum cosmological models with

matter sources, which, as we previously mentioned, possess different properties than

the model investigated by J.Bae [20]. In what follows we will work in a set of units

in which X = 1, unless stated other wise.
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Chapter 9

Quantum Taub Models

9.1 Introduction

Throughout the entirety of this chapter we will not consider the free scalar field and

will thus drop all terms which depend upon its existence from the aforementioned

formalism and the Taub WDW equation. The metric formulation of the Taub models

is given below

ds2 = −N2dt2 +
L2

6π
e2α(t)

(
e2β(t)

)
ab
ωaωb,(

e2β(t)
)
ab

= diag
(
e2β+(t), e2β+(t), e−4β+(t)

)
,

ω1 = cosψdθ + sinψ sin θdφ,

ω2 = sinψdθ − cosψ sin θdφ,

ω3 = dψ + cos θdφ,

(9.1)

where ωi are the one forms defined on the spatial hypersurface of the Bianchi IX

models. Using these one forms and dωc = 1
2
Cc
abω

a ∧ ωb, one can recover the Bianchi

IX structure constants, Cc
ab, listed in table 1. In addition L has units of ‘length’

and sets a scale for the spatial size of our cosmology. This can be seen because any

shift in the scale factor eα(t)+δ where δ is a real number can be reabsorbed into L2.
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Beyond inspecting (9.1), it can be known that eα(t) acts as the scale factor of the

Taub models in these Misner variables by computing
√
− det(4) g of the metric tensor

(9.1) expressed in orthonormal coordinates, yielding L3

(6π)
3
2
e3α(t) which measures the

total volume of our closed space-time.

As (9.1) implies, the Hamiltonian formulation of the Taub models can be ascer-

tained by starting with (7.65), setting pβ− = 0, and then setting β− = 0 for the

Bianchi IX potential term, V (α, β+, β−), listed in table 2. The Bianchi IX models

possess a rich history and have been studied in a multitude of different contexts.

Investigations into them began with the works of Misner, Ryan, and Belinskii, Kha-

latnikov, and Lifshitz [32, 33, 169, 206]. What partly made these models so appealing

was that they shared the 3-sphere spatial topology of the k=1 FLRW models, which

were widely believed to be a good approximation for our physical universe until more

precise cosmological observations [80] suggested the real possibility that our universe

may indeed by flat k = 0. In addition the classical equations which govern the dy-

namics of the Bianchi IX mini-superspace variables, which we will take to be the

Misner variables (α, β+, β−) [169, 170] admit chaotic solutions [28, 66, 73, 180]. It

was originally thought that the chaos present near its singularity, which took the

form of an erratic sequence of Kasner contractions and expansions could explain why

we observe the universe to be mostly homogeneous, hence the origin of the name

Mixmaster [169]. The quantum diagonalized Bianchi IX models were first studied

by Misner [170], and later by Moncrief-Ryan [178]; among others in a plethora of

different contexts, such as supersymmetric quantum cosmology [78, 100, 101, 161].

Recently they were investigated using the traditional WKB method [67].

The classical Taub models [222] and its extension, the Taub-NUT models have a

rich history of their own, which includes being used to model the space-time around

a black hole [134, 185]. Recently work has been conducted in finding new solutions to

the symmetry reduced Wheeler DeWitt equation of the LRS Bianchi IX models [132]
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using Killing vectors and tensors. Their quantum cosmology has also been investi-

gated within the context of the generalized uncertainty principle [31] and using the

WKB approximation [65, 79]. We will further expand upon what was previously done

by proving the existence of a countably infinite number of closed form ‘excited’ states

for the quantum Taub models when a cosmological constant is present and study-

ing how matter sources such as an aligned electromagnetic field and a cosmological

constant can affect ‘excited’ states of the Taub models.

Also new solutions to the Taub WDW equation will be obtained when both a

cosmological constant and aligned electromagnetic field are present. The reason the

author chose to include an electromagnetic field goes beyond showcasing the util-

ity of the Euclidean-signature semi-classical method. Recent evidence [184, 223]

for the existence of a femto Gauss strength intergalactic magnetic field has been

uncovered by observing gamma rays. This provides further reasons to continue

[89, 128, 131, 133, 140, 156, 190] studying electric/magnetic fields through the lens

of quantum cosmology. Through studying the effects of electric/magnetic fields on

quantum universes we can potentially better understand how seeds of anisotropy de-

veloped in our early universe which we can observe [6, 35, 118] today in the CMB.

Recent work [123, 129, 173, 188] has been conducted in trying to determine what

signatures a primordial magnetic field would induce on the various computable spec-

trum’s derived from the CMB. By studying what effects electromagnetic fields induce

on both ‘ground’ state and ‘excited’ state wave functions of the Taub models we can

contribute to the theoretical portion of that task.

The wave functions we will obtain through this method are easiest to interpret

in a qualitative manner when we allow Λ < 0. Choosing a negative cosmological

constant does not necessarily make our solutions non-physical. Recently there has

been some interesting work [45, 111, 112, 172, 231] done in studying inflation with

a negative cosmological constant and the connection between asymptotically AdS
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(a) α = 2 Λ = 0 b = 0 (b) α = 2 Λ = 0 b = 3

Figure 9.1 Plots of the potential as a function of β+ in (9.2) when α = 2.

wave functions to classical cosmological histories which exhibit phenomenology that

one expects from universes with a positive cosmological constant. From a theoretical

point of view it is worthwhile to study quantum cosmologies that possess a negative

cosmological constant.

Using the WDW equation(7.89) we previously wrote down, throwing out its ∂2ψ
∂β2
−

term, and setting β− = 0 for the Bianchi IX potential in table II yields the equation

which we will exclusively focus on throughout this chapter.

∂2Ψ

∂α2
−B∂Ψ

∂α
− ∂2Ψ

∂β2
+

+

(
e4α−8β+

3

(
1− 4e6β+

)
+

2e6αΛ

9π
+ 2b2e2α−4β+

)
Ψ = 0, (9.2)

where B is the Hartle-Hawking [110] ordering parameter, b2 is the strength of the elec-

tromagnetic field; and Λ is normalized differently than in (7.89), and is dimensionless.

Adding an electromagnetic field results in the potential well in (9.2) becoming more

shallow as b2 increases as can be seen in (9.1).

This chapter will be organized as follows. First we will apply the Euclidean-

signature semi-classical method to the quantum Taub models when both a cosmo-

logical constant and a primordial electromagnetic field are present to obtain a closed

form ‘ground’ state solution. In addition we will find two closed form ‘excited’ state

solutions when Λ = 0 and b 6= 0 which demonstrate the fantastical effects an aligned

electromagnetic field can induce on the ‘excited’ states of the Taub models.
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We will then prove the existence of a countably infinite number of Taub ‘excited’

state solutions when a cosmological constant is present. Afterwards we will prove

the existence of ‘ground’ state asymptotic solutions for the ‘wormhole’ [178] and ‘no

boundary’ [103] cases and then comment on the mathematical differences between

the two. Finally we will qualitatively discuss the large number of wave functions

computed in this work and give some concluding remarks. We will interpret our wave

functions by their atheistic characteristics. For example we will assume, as was done

in [93], that each visible peak which is present for our wave functions represents a

geometric state a quantum universe can tunnel in and out of.

9.2 Closed Form ‘Ground’ And ‘Excited’ State So-

lutions For The Quantum Taub Models With A

Cosmological Constant And An Aligned Electro-

magnetic Field

The author found the following S(0) associated with the Euclidean signature Hamilton

Jacobi equation(8.51) of (9.2)

S(0) := b2(−α− β+)− Λe4(α+β+)

36π
+

1

6

(
2e6β+ + 1

)
e2α−4β+ , (9.3)

which is the standard ‘wormhole’ solution with two additional terms for our matter

sources. When Λ = 0 and the electromagnetic field vanishes(b = 0), (9.3) reduces

to the standard ‘wormhole’ solution [178] adapted to the Taub models. The author

was unable to find solutions to (8.51) with the aforementioned matter sources which

reduce to either the analogues of the Taub ‘no boundary’ [103] or "arm" solutions

[26]. This potentially suggests that there is something special about the ‘wormhole’
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solution.

Inserting (9.3) into our S(1) equation results in

− 9πb2(2
∂S(1)

∂α
− 2

∂S(1)

∂β+

+ B)− Λe4(α+β+)(2
∂S(1)

∂α
− 2

∂S(1)

∂β+

+ B)

+ 6πe2(α+β+)(2
∂S(1)

∂α
− 2

∂S(1)

∂β+

+ B) + 3πe2α−4β+(2
∂S(1)

∂α
+ 4

∂S(1)

∂β+

+ B + 6) = 0,

(9.4)

which is satisfied by the very simple expression

S(1) :=

(
−B

2
− 1

)
α− β+, (9.5)

that surprisingly is independent of Λ and b. Another interesting feature of this solution

is that it can be absorbed into the terms of (9.3) which are linear in α and β+(
b2(−α− β+)

)
.

Despite it not being the only solution to (9.4) and it’s simple nature we claim

that we are justified in employing it to construct our closed form solutions to (9.2)

because it generates such fascinating wave functions as we will show shortly. The

non-trivial effects that these wave functions imply for the universes that they describe

should be chronicled as possible phenomena that a toy model of quantum gravity can

induce on the evolution of a quantum universe(s). In addition physically this solution

makes sense because the effects of quantum corrections S(k>0) in our wave function

should become negligible compared to the leading order term S(0) as α increases

which is the case as can be seen by comparing (9.5) to (9.3). In addition this

exact quantum correction (9.5) is obtained if one solves the vacuum Taub Wheeler

Dewitt equation using separation of variables and then constructs a superposition of

separable solutions using a specific kernel [178] to integrate the Bessel K functions.

Keeping this in mind we will proceed using (9.5) and insert it into equation (8.53),

yielding
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(a) α = −1 Λ = −1 b = 0 (b) α = −1 Λ = −1 b = 5

(c) α = 1.5 Λ = −3 b = 0
(d) α = 1.5 Λ = −3 b = 6.5

Figure 9.2 Plots of (9.7) when our matter sources and α are varied

− 9π

(
4b2(

∂S(2)

∂α
−
∂S(2)

∂β+

) + B2

)
− 4Λe4(α+β+)(

∂S(2)

∂α
−
∂S(2)

∂β+

)

+ 12 π e2α−4β+

(
2e6β+(

∂S(2)

∂α
−
∂S(2)

∂β+

) +
∂S(2)

∂α
+ 2

∂S(2)

∂β+

)
= 0.

(9.6)

When B = 0 this equation is satisfied by S(2) = 0 which as was previously shown

allows us to construct the following closed form solution to the Taub WDW equation.

Ψmatter = e

(
(b2+1)(α+β+)+ Λe

4(α+β+)

36π
− 1

6(2e6 β++1)e2α−4β+

)
. (9.7)

Comparing (9.7) to our two ansätze (8.46) and (8.57) indicates that our closed form

solution is a ‘ground’ state. Figures 9.2a to 9.2d further support this. In our discus-

sion section we will analyze the physical implications of the behavior of these wave

functions(figs 9.2a-9.2d) as our matter sources Λ and b2 are varied.

As of the writing of this dissertation the author found two ‘excited’ state solutions

for the quantum Taub models when an electromagnetic field is present. Using (9.3)

when (Λ = 0), the author found the following family of conserved quantities which
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satisfies (8.59)

φ(0) :=
(
−3b2e2(α+β+) − e4α−2β+ + e4(α+β+)

)n
. (9.8)

Because (9.8) vanishes for finite values of the Misner variables n is required to be

quantized in the sense that it is restricted to only taking on positive integer values

and thus our ‘excited’ states are bound states. In this thesis we will find and analyze

the first two closed form ‘excited’ states. An extension of the work we shall present

would be to prove that a countably infinite number of ‘excited’ states exist when both

an electromagnetic field and cosmological constant are present. We will comment on

the feasibility of this in the next section.

For the first ‘excited’ state when n = 1 the author found the following solution to

the φ1 equation which causes the rest of the φk equations to be satisfied by zero as

will be explained in more detail in the next section

φ(1) := 9b2 − 6e2(α+β+). (9.9)

For the case when n = 2 the author had to solve up to the φ3 equation to find a

closed form solution to (9.2). The sequence of φks needed to find the second ‘excited’

state are given below

φ(1) := 63b2e4(α+β+) − 24e6(α+β+) + 18e6α, (9.10)

φ(2) := 108
(
6b2e2(α+β+) + 2e4α−2β+ − 9b4

)
, (9.11)

φ(3) := 972
(
4e2(α+β+) − 6b2

)
. (9.12)

We will plot these ‘excited’ states below in figures 9.3 and discuss the physical
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(a) n = 1 α = −1 b = 0 (b) n = 1 α = −1 b = 1.5

(c) n = 1 α = −1 b = 5 (d) n = 2 α = −1 b = 0

(e) n = 2 α = −1 b = 1.5 (f) n = 2 α = −1 b = 5

Figure 9.3 Figures (a)-(c) are of the first closed form ‘excited’ state when an elec-
tromagnetic field is present while figures (d)-(f) are of the second ‘excited’ state when
an electromagnetic field is present. For both sets of figures we varied the values of
the electromagnetic field.

consequences of the electromagnetic field b2 by examining the atheistic characteristics

of our wave functions in a similar manner to what was done in [93] at the end of this

chapter.

When B 6= 0 (9.6) becomes more challenging to solve. To proceed, we will set

b = 0 and find a suitable coordinate change u(α, β+), v(α, β+) which simplifies our

transport equation
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∂S(2)

∂α
=
∂S(2)

∂u

∂u

∂α
+
∂S(2)

∂v

∂v

∂α
∂S(2)

∂β+

=
∂S(2)

∂u

∂u

∂β+

+
∂S(2)

∂v

∂v

∂β+

.
(9.13)

Inserting (9.13) into (9.6) and choosing u = eα+β+ , v = e−α+β+ results in the following

simplification

(
8u5v4Λ + 12π v

(
1− 4u3v3

)) ∂S(2)

∂v
− 9π u

(
B2v3 − 4

∂S(2)

∂u

)
= 0 (9.14)

whose solutions can be found using Mathematica’s DSolve. Once a family of solutions

for (9.14) is found one can insert u = eα+β+ and v = e−α+β+ back into it to obtain

f =
3

8
π B2

S(2) := (f)RS

[
x3
(
−e2β+

)
Λ + 9π x2e2β+ − 9π e4α +6β+ + 9π e4α + Λe6α+8β+&,

log
(
e2α+2β+ − x

)
6π x− x2Λ

&

]

+ c1

(
1

9
e4α−2β+

(
−9e6β+ +

Λe2 α+8β+

π
+ 9

))
.

(9.15)

RS stands for Root-sum in (9.15) means summing
log(e2α+2β+−x)

6π x−x2Λ
over the roots of

x3
(
−e2β+

)
Λ + 9π x2e2β+ − 9π e4α +6β+ + 9π e4α + Λe6α+8β+ = 0.

9.3 Proof Of Infinite Sequence Of ’Excited’ State

Solutions For Quantum Taub Models

To construct our ‘excited’ states we need a family of smooth and globally defined

solutions to the equation (8.59). The author was able to obtain the following fam-
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ily of such solutions to equation (8.59) when both a cosmological constant and an

electromagnetic field are present

φ(0) :=
(
27π b2e2(α+β+) + Λe6(α+β+) − 9π

(
e6 β+ − 1

)
e4α−2β+

)n
. (9.16)

Finding (9.16) represents the second step in proving that a countably infinite number

of ‘excited’ states exist for the quantum Taub models when both an aligned electro-

magnetic field and cosmological constant are present. As will become apparent to the

reader soon, the first step was obtaining a closed form ‘ground’ state solution for the

quantum Taub models when both an aligned electromagnetic field and cosmological

constant are present. We will discuss the next steps after we prove that a count-

ably infinite number of smooth and globally defined ‘excited’ states do exist for the

quantum Taub models when only Λ is present. Afterwards though we will study the

leading order ‘excited’ states that this φ0 (9.16) produces.

To begin we will use this φ0

φ(0) :=
(
Λe6(α+β+) − 9π

(
e6 β+ − 1

)
e4α−2β+

)n
. (9.17)

Because our φ(0)(9.17) clearly vanishes for some finite values of the Misner variables,

in order to ensure that our wave functions are smooth and globally defined we must

restrict n to be either zero or a positive integer. As was mentioned before, this

manifestation of quantization is one of the reasons why we refer to these states as

‘excited’ states.

We will now proceed to demonstrate that there are a countably infinite number

of closed form solutions to the Taub WDW equation, each corresponding to an ‘n’

for the case when φ0 is (9.17) and
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S(0) := −Λe4(α+β+)

36π
+

1

6

(
2e6β+ + 1

)
e2α−4β+ ,

S(1) := −α− β+.

(9.18)

We will start by observing that the source term for our ‘excited’ state transport

equations (8.61) for k ≥ 1 reduces to

k

(
∂φ(k−1)

∂α
−
∂φ(k−1)

∂β+

)
+
k

2

(
∂2φ(k−1)

∂α2
−
∂2φ(k−1)

∂β2
+

)
, (9.19)

because when B=0 the non-trivial solutions to the ‘ground’ state transport equations,

S(0) and S(1), allow all of the higher order S(k≥2) transport equations to be satisfied

by zero, which results in the S(`) terms in (8.61) to vanish. Thus our ‘excited’ state

transport equation for any kth quantum correction to the nth ‘excited’ state is

−
∂φ(k)

∂α

∂S(0)

∂α
+
∂φ(k)

∂β+

∂S(0)

∂β+

+ k

(
∂φ(k−1)

∂α
−
∂φ(k−1)

∂β+

)
+
k

2

(
∂2φ(k−1)

∂α2
−
∂2φ(k−1)

∂β2
+

)
= 0.

(9.20)

Because of the linearity and signs of the derivatives present in (9.19) all expres-

sions of the form x1e
x2α+x2β+ which are contained, and expressed within φk−1 as a

sum Σixie
xiα+xiβ+ + Σi · · · vanish from the source term of the φk transport equations.

If we insert (9.17) into (9.19) when k=1 it is evident that we obtain a sum of ex-

ponentials which is composed of 1
2
n(1 + n) terms, as can be checked by examining

the cumbersome resultant expression. In addition the homogeneous portion of the

transport equations (9.20) contains a sum of exponentials thanks to (9.18). Thus it is

natural to try as an ansatz for φ1 a sum of exponentials composed of 1
2
n(1+n) terms,

φ1 :=
∑ 1

2
n(n+1)

i=1 xie
yiα+ziβ+ . The author for n=1, 2, and 3 inserted the aforementioned

ansatz into (9.20) when k=1 and was able to find unique solutions for the three, nine,

and eighteen coefficients (xi, yi, zi) required to respectively express in closed form the
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first quantum correction to the first, second and third Λ 6= 0 ‘excited’ quantum Taub

states. For the k=2 transport equations the source term for the n=1 case vanished

because its respective φ1 was 54π e2α+2β+ ; thus allowing the sequence of ‘excited’

state transport equations to truncate, resulting in a closed form ‘excited’ state solu-

tion to (9.2). On the other hand for n=2 and n=3 states the author modified the

aforementioned ansatz
∑ 1

2
(−k+n+1)(−k+n+2)

i=1 xie
yiα+ziβ+ so that it contains the same

number of terms as the source of the transport equations it was intended to solve.

Using this modified ansatz the author was able to find the three and nine coefficients

respectively required to compute φ2 for the second and third ‘excited’ states. The

source term for the the k=3 transport equation vanished when n=2 because its φ2 was

17496π2e4(α+β+), thus allowing us to construct a closed form solution for the second

‘excited’ state. However when n=3 the source term did not vanish, but rather was

composed of only one exponential c1e
c2α+c3β+ , whose coefficients the author was able

to solve for which resulted in φ3 being 14171760π3e6α+6β+ . We will explicitly present

the aforementioned results for the n=1, 2 and 3 states after we prove that a countably

infinite number of closed form ‘excited’ states exist which are of a particular form that

we will introduce shortly. Using the three closed form solutions the author found, he

was able to notice a pattern in how powers of eβ+ and eα varied between terms, and

in the total number of terms present for each kth quantum correction given a value of

n and deduced the following ansatz for the kth quantum correction given any positive

integer value of n

φk =
n−k∑
i=0

(
−i−k+n∑
j=0

b({i, j, k})e(2α(i−k+2n)+2β+(4i+3j+2k−n))

)
. (9.21)

In the above expression b({i, j, k}) is a constant determined by substituting (9.21)

back into the ‘excited’ state transport equations (9.20). The b({i, j, 0}) coefficients

can be read directly from (9.17).

After we present the explicit n=1, 2, and 3 solutions it will become clear to the
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reader how the author was able to deduce this particular form for the solutions of

(9.20) when Λ 6= 0. When we set n=k we obtain

φn = e2nα+2nβ+b({0, 0, n}), (9.22)

which results in the source term of the φn+1 equation vanishing, and subsequently

allowing the φn+1 transport equation to be satisfied by zero. This allows one to

truncate the infinite sequence of transport equations and show that if (9.21) is indeed

the general form for a family of solutions to the transport equations then one only

needs to solve n transport equations to obtain the closed form nth ‘excited’ state of

the Λ 6= 0 quantum Taub models. To prove that there exists a family composed of

a countably infinite number of solutions, all with the form of (9.21), we will insert

(9.21) into our source term (9.19) to obtain after simplification

f(i, j, k, n) = k(i+ j + k − n− 1)(5i+ 3j + k + n)

− 6
−k+n+1∑
i=0

(
−i−k+n+1∑

j=0

f(i, j, k, n)b({i, j, k − 1})e(2α(i−k+2n+1)+2β+(4i+3j+2(k−1)−n))

)
.

(9.23)

The coefficient of our source term vanishes when j = 1 − i − k + n, which is the

upper limit of our sum over j. Thus we can rewrite our sum for the source term as

f(i, j, k, n) = k(i+ j + k − n)(5i+ 3j + k + n)

− 6
n−k∑
i=0

(
−i−k+n∑
j=0

f(i, j, k, n)b({i, j, k − 1})e(2α(i−k+2n+1)+2β+(4i+3j+2(k−1)−n))

)
.

(9.24)

We were able to change the range of our sum for i because (k-n-1-k+n)=-1 is below

our starting value of j=0. Our next step is to insert (9.21) into (9.20) which after

much simplification results in
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− 18π
n−k∑
i=0

(
−i−k+n∑
j=0

(3i+ 2j + k)b({i, j, k})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n−2))

)

+ 36π
n−k∑
i=0

(
−i−k+n∑
j=0

(i+ j + k − n)b({i, j, k})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n+1))

)

− 6Λ
n−k∑
i=0

(
−i−k+n∑
j=0

(i+ j + k − n)b({i, j, k})e(2α(i−k+2n+2)+2β+(4i+3j+2k−n+2))

)

− 54π
n−k∑
i=0

(
−i−k+n∑
j=0

f(i, j, k, n)b({i, j, k − 1})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n−2))

)
= 0.

(9.25)

For the second and third sum their coefficients vanish when j = −i− k + n, thus we

can rewrite our kth ‘excited’ state transport equation for n to be

− 18π
n−k∑
i=0

(
−i−k+n∑
j=0

(3i+ 2j + k)b({i, j, k})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n−2))

)

+ 36π
n−k−1∑
i=0

(
−i−k+n−1∑

j=0

(i+ j + k − n)b({i, j, k})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n+1))

)

− 6Λ
n−k−1∑
i=0

(
−i−k+n−1∑

j=0

(i+ j + k − n)b({i, j, k})e(2α(i−k+2n+2)+2β+(4i+3j+2k−n+2))

)

− 54π
n−k∑
i=0

(
−i−k+n∑
j=0

f(i, j, k, n)b({i, j, k − 1})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n−2))

)
= 0.

(9.26)

If we examine the first and fourth sums we see that their summation bounds are

the same, the exponentials terms e(2α(i−k+2n+1)+2β+(4i+3j+2k−n−2)) they contain are the

same, and their coefficients do not vanish within the range which they are summed.

Thus if we were to relate the variables b({i, j, k}) and b({i, j, k − 1} using only the

first and fourth sum in (9.25) it is evident we would obtain a 1
2
(1 − k + n)(2 − k +

n) × 1
2
(1− k + n)(2− k + n) diagonal matrix with a non zero determinant
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−18π k

. . .

−18π (3(n− k) + k)





b({0, 0, k})

b({0, 1, k})
...

b({n− k, 0, k})



=



54π k(k − n− 1)(k + n)b({0, 0, k − 1})

54π k(k − n)(k + n+ 3)b({0, 1, k − 1})
...

−54π k(5(n− k) + k + n)b({n− k, 0, k − 1})


To prove that a solution of the form (9.21) exists for the kth quantum correction

to the nth ‘excited’ state we must prove that the matrix associated with (9.26) always

has a non-zero determinant when both k and n are positive integers, and 1 ≤ k ≤ n.

Luckily this isn’t difficult. All the exponential terms that show up in the second

and thirds sums in (9.26) are a subset of the exponentials that appear in the first

and fourth sums. This is easy to see, for the second term in our sum if we were to

reexpress j as (J-1) we would obtain

36π
n−k∑
i=0

(
−i−k+n∑
J=1

(i+ J + k − n− 1)b({i, J − 1, k})e(2α(i−k+2n+1)+2β+(4i+3J+2k−n−2))

)
(9.27)

which is a summation of the same exponential terms present in the first and fourth

sums of (9.26), except that the range of the variable J which is being summed over is

reduced. Hence only a subset of the exponentials which are summed in the first and

fourth terms are present in the second term. The same can be easily shown for the

3rd term by substituting into i, I-1
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−6Λ
n−k∑
I=1

(
−I−k+n∑
j=0

(I + j + k − n− 1)b({I− 1, j, k})e(2α(I−k+2n+1)+2β+(4 I+3j+2k−n−2))

)
.

(9.28)

Now that we established that (9.26) can in principle be expressed as a system

of 1
2
(1 − k + n)(2 − k + n) linear equations, where the equations are grouped by

the exponential term that the known b(i, j, k − 1) and unknown b(i, j, k) coefficients

are multiplied to; our next task is to deduce the characteristics of the matrix which

represents this system. We aim to prove that this matrix is always invertible for

the values of n and k we are exclusively considering. To accomplish this we will

explicitly write out the matrix elements and show that they clearly are the elements

of a triangular matrix with non vanishing diagonal elements.

If we start with the first sum in (9.26) we see that initially the number of terms

which are summed are n-k+1 when i=0, then n-k when i=1, then n-k-1 when i=2,etc...;

this pattern continues until the single i=n-k term b({n − k, 0, k}) is summed. With

this information for each kth quantum correction we aim to relabel our b({i, j, k})

using only a single index b({x(i, j), k}) that is a function of both i and j and monoton-

ically increases in units of one by noticing that when the subsequent i index increases

by one, then one less term is summed in the j index. Thus to relabel our sum we want

to find a labeling scheme such that for every summation over i starting with i=1 we

add (-i-k+n+2) to our index x(i, j) before summing over j again. This can be found

by solving this recursion relation {f(i + 1) = f(i) − i − k + n + 1, f(0) = 0} which

yields −1
2
i(i+ 2k − 2n− 3). This allows us to rewrite the first sum in (9.26) as

−18π
n−k∑
i=0

(
−i−k+n∑
j=0

(3i+ 2j + k)b({j − 1

2
i(i+ 2k − 2n− 3), k})e(2α(i−k+2n+1)+2β+(4i+3j+2k−n−2))

)
,

(9.29)
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and subsequently define the diagonal elements of our matrix as

M{j− 1
2
i(i+2k−2n−3)+1,j− 1

2
i(i+2k−2n−3)+1} = −18 π (3i+ 2j + k) (9.30)

For the second term using our aforementioned relabeling of b({i, j, k}) and replac-

ing j with J-1 we obtain

g(i, J, k, n) = (i+ J + k − n− 1)

36π
n−k∑
i=0

(
−i−k+n∑
J=1

g e(2(α(i−k+2n+1)+β+(4i+3J+2k−n−2)))b

({
J − 1

2
i(i+ 2 k − 2n− 3)− 1, k

}))
.

(9.31)

Because the labels of b({x(i, j), k}) in (9.29) and (9.31) differ by 1 in our labeling

scheme, the terms which correspond to (9.31) are off diagonal terms to the left of

the diagonal terms of (9.29). In other words the coefficients of b({x(i, j), k}) which

are multiplied to the same exponential e(2(α(i−k+2n+1)+β+(4i+3J+2k−n−2))) differ between

(9.29) and (9.31) by 1 in x(i, j), thus the terms in (9.31) appears either right before

the diagonal terms of (9.29) or not at all because not all of the exponents in (9.29)

are summed in (9.31). These one space to the left non diagonal terms are

M{J− 1
2
i(i+2k−2n−3)+1,J− 1

2
i(i+2k−2n−3)} = 36π (i+ J + k − n− 1). (9.32)

For the third and final sum we need to consider for our matrix, all of the terms

are also to the left of our diagonal terms (9.29). This can be shown by expressing

the coefficients in b({x(i, j), k}) (9.28) as b
({
j − 1

2
(I− 1)(I + 2k − 2n− 4), k

})
. In

relation to the diagonal elements (9.29) these elements will be −i− k + n + 2 terms

to the left
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M{j− 1
2
I(I+2k−2n−3)+1,j− 1

2
(I−1)(I+2k−2n−4)+1} = −6Λ(I + j + k − n− 1). (9.33)

All of the other elements in our matrix besides (9.33), (9.32), and (9.30) vanish,

leaving us with a triangular matrix with non vanishing diagonal elements. Hence

we have proved that the system of linear equations for the coefficients for the kth

quantum correction to the nth ‘excited’ states (9.21) are always uniquely solvable.

We can obtain explicit values of the b({i, j, 0}) coefficients from our φ0 (9.17), which

enable us to solve the system of linear equations for b({i, j, 1}), whose solutions allow

us to solve for the system of linear equations for b({i, j, 2}) and etc all the way up to

the coefficients b({i, j, n}) for the nth quantum correction. Afterwards the rest of the

higher order transport equations can be satisfied by zero and thus we can write out

a closed form solution for the nth ‘excited’ state to the Taub WDW equation when

Λ 6= 0.

This concludes our proof for the existence of a countably infinite number of ‘ex-

cited’ states for the Taub models when a cosmological constant is present. Before

moving on we should reflect on what the Euclidean-signature semi-classical method

has afforded us. Using our modified semi-classical we were able to solve a problem

which up to this point has not been solved in closed form using elementary functions.

The Taub WDW equation when a cosmological constant is present is not separable

PDE, thus it is a non-trivial equation to solve.

By using the Euclidean-signature equations that our modified semi-classical gave

us, we were able to prove the existence of solutions to a non-trivial Lorentzian sig-

nature PDE without having to perform a Wick rotation. Our ability to construct

this proof and obtain our closed form solutions using these Euclidean-signature equa-

tions suggests that there is some property inherent in our equations which makes
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them easier to solve than their Lorentzian signature counterparts. Thus the success

of this method in proving the existence of a countably infinite number of ‘excited’

states for the Taub models when a cosmological constant is present further motivates

applying this method to even more formidable Lorentizan signature problems, such

as the functional WDW equation and, Bosonic and Yang Mills [164, 165, 177] field

theories.

As previously mentioned, we already have completed both steps one and two for

proving the existence of a countably infinite number of solutions to the Taub WDW

equation both a cosmological constant and aligned electromagnetic field are present.

Because we have a closed form φ0 and ‘ground’ state solution to the Taub WDW

equation when both matter sources are present it is reasonable to assume that a

modification of the steps we just performed to obtain the main result of this chapter

and arguably of the second portion of this dissertation can be used to prove the

existence the aforementioned ‘excited’ states. Thus we conjecture that a countably

‘infinite’ number of ‘excited’ states do exist for the quantum Taub models when both

previously mentioned matter sources are present for the operator ordering we choose

in this thesis.

We will attach in the appendix a Mathematica code which has as its only input

the positive integer ‘n’ and gives all ‘n’ non trivial quantum corrections to the nth

‘excited’ state and its corresponding closed form solution. Using similar techniques

and reasoning to our proof, one can find a simpler ansatz for the quantum corrections

for the case when Λ = 0.

φk := e4αn−2αk

n−k∑
j=0

e−6β+j−2β+k+4β+n b{j,k} (9.34)

The advantage of this simpler ansatz is that it allows us to write a code which we

will also include in the appendix that is able to compute exact closed form ‘excited’

state solutions to the Taub WDW equation far faster than the code which uses the
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Λ 6= 0 ansatz.

Below are the explicit quantum corrections to the first five ‘excited’ states gener-

ated by our code.

φ1 := 54π e2(α+β+)

φk>1 := 0

(9.35)

φ2 := 17496π2e4(α+β+))

φ1 :=
459

2
π Λe8α+8β+ − 1944π2e6α+6β+ + 1458π2e6α

φk>2 := 0

(9.36)

φ3 := 14171760π3e6(α+β+)

φ2 := 144342π2Λe10α+10β+ + 787320π3e8α+2β+ − 1180980π3e8α+8β+

φ1 :=
1053

2
π Λ2e14α+14β+ +

15309

2
π2Λe12α+6β+ − 18225

2
π2Λe12α+12β+

+ 26244π3e10α−2β+ − 65610π3e10α+4β+ + 39366π3e10α+10β+

φk>3 := 0

(9.37)

φ4 := 21427701120π4e8(α+β+)

φ3 := 892820880π4e10α+4β+ − 1428513408π4e10α+10β+ + 178564176π3Λe12α+12β+

φ2 := −59521392π4e12α+6β+ + 39680928π4e12α+12β+ + 21257640π4e12α

+
1121931

2
π2Λ2e4(4α+4β+) + 7164612π3Λe14α+8β+ − 9447840π3Λe14α+14β+

φ1 := 393660π4e14α−4β+ − 1417176π4e14α+2β+ + 1653372π4e14α+8β+ − 629856π4e14α+14β+

+ 945π Λ3e20α+20β+ + 21870π2Λ2e18α+12β+ − 24786π 2Λ2e18α+18β+

+ 164025π3Λe16α+4β+ − 380538 π3Λe16α+10β+ + 216513π3Λe16α+16β+

φk>4 := 0

(9.38)
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φ5 := 52069313721600π5e10(α+β+)

φ4 := 1735643790720π5e6(2α+β+) − 2892739651200π5e12α+12β+ + 367332019200π4Λe14α+14β+

φ3 := 32141551680π5e2(7α+β+) − 96424655040π5e14α+8β+ + 68874753600π5e14α+14β+

+ 1014166575π3Λ2e18α+18β+ + 11861763120π4Λe16α+10β+ − 16740391500π4Λe16α+16β+

φ2 :=
3072735

2
π2Λ3e22α+22β+ +

63871335

2
π3Λ2e20α+14β+

− 78830415

2
π3Λ2e20α+20β+ + 212576400π4Λ e18α+6β+

− 542069820π4Λ e18α+12β+ + 336579300π4Λ e18α+18β+ + 446410440π5e16α−2β+

− 1785641760π5e16α+4β+ + 2295825120π5e16α+10β+ − 956593800π5e16α+16β+

φ1 := 1485π Λ4e26α+26β+ + 47385π2Λ3e24α+18β+ − 52245π2Λ3e24α+24β+ + 557685π3Λ2e22α+10β+

− 1246590π3Λ2e22α+16β+ + 688905π3Λ2e22α+22β+ + 2854035π4Λ e20α+2β+

− 9743085π4Λ e20α+8β+ + 10924065π4Λe20α+14β+ − 4035015π4Λe20α+20β+ + 5314410π5e18α−6β+

+ 42515280π5e18α+6β+ − 31886460π5e18α+12β+ + 8857350π5e18α+18β+ − 24800580π5e18α

φk>5 := 0

(9.39)

The first three plots(figs 9.4a-9.4c) are of a superposition of the first five closed

form ‘excited’ states ψn and the ‘ground state
(∑5

n=0 e
−n2

ψn

)2

for three different

value of α.

The last three plots(figs 9.5a-9.5c) are semi-classical ‘excited’ states with both of

our matter sources constructed using (9.16)
(∑5

n=0 e
−1.5(n+1.1)2

φ0Ψmatter

)2

for a fixed

value of α for three different values of b. We will discuss the qualitative properties of

these plots in our discussion section towards the end of this chapter.
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(a) α = −2 Λ = −1 (b) α = 0 Λ = −1

(c) α = 2.5 Λ = −1

Figure 9.4 Superposition
(∑5

n=0 e
−n2

ψn

)2

of the first five closed form ‘excited’
states ψn and the ‘ground state for three different value of α.

(a) α = −1 Λ = −1 b = 0 (b) α = −1 Λ = −1 b = 1.5

(c) α = −1 Λ = −1 b = 5

Figure 9.5 Plots of
(∑5

n=0 e
−1.5(n+1.1)2

φ0Ψmatter

)2

where Ψmatter is (9.7) and φ0 is
(9.16) for three different values of b.
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9.4 Quantum Taub ‘Wormhole’ Model Via Euclidean-

Signature semi-classical Method

The goal of this section will be to prove the existence of asymptotic solutions
(0)

Ψ~=

e−S(0)−S(1)− 1
2!
S(2)−··· to the Taub WDW equation for arbitrary Hartle-Hawking ordering

parameter B. Beginning with the ‘wormhole’ S(0) and the following S(1)

Swh(0) :=
1

6

(
2e6β+ + 1

)
e2α−4β+ ,

Swh(1) :=

(
−B

2
− 1

)
α− β+.

(9.40)

We will integrate the transport equations along the classical Hamilton Jacobi flows

which are produced by (9.40) and use them to show via induction that smooth and

globally defined solutions exist for all of the higher order k ≥ 2 transport equations.

Upon setting c = 1, G = 1, and L = 1 if we were to apply standard variational

techniques to the Einstein-Hilbert action

IEH =
1

16π

∫
Ω

√
− det g (R (gab)) d

4x (9.41)

for the metric (9.1) we would derive the following action

IADM =

∫
I

dt
{
pαα̇ + pβ+ β̇+ −NH⊥

}
, (9.42)

where

H⊥ : =
(6π)1/2

4 e3α

((
−p2

α + p2
β+

)
+ e4α

[
e−8β+

3
− 4e−2β+

3

])
. (9.43)

If we vary (9.42) with respect to the lapse N which acts as a Lagrange multiplier we

obtain the familiar Hamiltonian constraint
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H⊥
(
α, β+, pα, pβ+

)
= 0. (9.44)

An explicit demonstration of these standard variational techniques applied to the full

Bianchi IX models which can trivially be repurposed for metric (9.1) as can be seen

in [175].

It can be identified that our Hamililton Jacobi equation (8.51) when both Λ and

b vanish is related the Euclidean-signature form of our Hamililtonian constraint

NEucl HEucl:=NEucl
(6π)1/2

4 e3α

((
p2
α − p2

β+

)
+ e4α

[
e−8β+

3
− 4e−2β+

3

])
(9.45)

by the substitution

pα −→
∂Swh(0)

∂α
,

pβ+ −→
∂Swh(0)

∂β+

.

(9.46)

Keeping this in mind we can obtain the following differential equations for α(t) and

β+(t)

α̇ =
(6π)1/2

2e3α
NEucl pα,

β̇+ =
−(6π)1/2

2 e3α
NEucl pβ+ ,

(9.47)

where pα and pβ+ are (9.46). We can easily obtain explicit solutions to these flow

equations by exploiting our freedom to choose the lapse NEucl to be any smooth,

globally defined nonvanishing function of the Misner variables. As we previously

mentioned we have the freedom to choose NEucl because it acts as a choice of gauge

which bestows a physical meaning to our evolution parameter "t". We require our

lapse to not vanish in order to ensure that no catastrophic signature changes occur
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in our space-time.

Via (9.46) and (9.40) we obtain

pα =
1

3

(
2e6β+(t) + 1

)
e2α(t)−4β+(t),

pβ+ =
2

3

(
e6β+(t) − 1

)
e2α(t)−4β+(t),

(9.48)

which results in these flow equations for α(t) and β+(t) for general NEucl

α̇ =

√
π

6

(
2e6β+(t) + 1

)
NEucl e

−α(t)−4β+(t)

β̇+ = −
√

2π

3

(
e6β+(t) − 1

)
NEucl

(
e−α(t)−4β+(t)

)
.

(9.49)

If we set

NEucl =

√
6

π
eα(t)+4β+(t) (9.50)

and insert it into our flow equations (9.49) we obtain

α̇ = 1 + 2e6β+(t),

β̇+ = 2− 2e6β+(t),

(9.51)

which can be trivially solved resulting in

α(t) = α0 +
1

6
log
(
e6β+0

(
e12t − 1

)
+ 1
)

+ t,

β+(t) = −1

6
log
((
e−6β+0 − 1

)
e−12t + 1

)
,

(9.52)

where α0 and β+0 are the initial values of α and β+ when t=0. For the following

allowable range of initial values α0 ∈ (−∞,∞) , β+0 ∈ (−∞,∞) our solutions

are globally defined and real when the evolution parameter t ranges from (0,∞).

Classically these solutions are the flow in minisuperspace induced by (9.40), measured

with respect to our evolution parameter whose physical meaning is derived from our

choice of lapse (9.50). Our solutions for the evolution of α and β+ (9.52) reveal
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that the flow in minisuperspace induced by our ‘wormhole’ solution leads to some

interesting geometrical implications for the Euclidean-signature form of our Taub

space-time(9.1)

ds2 = N2
Eucl dt

2 + e2α(t)
(
e2β(t)

)
ab
ωaωb(

e2β(t)
)
ab

= diag
(
e2β(t)+ , e2β(t)+ , e−4β(t)+

)
.

(9.53)

Regardless of our initial conditions (α0, β+0) when our evolution parameter t → ∞,

α −→ ∞ and β+ −→ 0. Geometrically this means our ‘wormhole’ flow induces in

our metric (9.53) the following evolution; initially the space described by (9.53) has

a finite radius dictated by α0 and a certain amount of anisotropy determined by

β+0. However as our evolution parameter grows our space-time will approach a flat

isotropic state due to the aforementioned t −→∞ behavior of α and β+. It is because

of this behavior that our Swh(0) is called the ‘wormhole solution’. It should be noted that

despite using Euclidean-signature Hamilton Jacobi flows; we are proving the existence

of asymptotic solutions to the Lorentzian-signature Wheeler DeWitt equation.

Moving forward with our proof we will choose this natural looking ansatz as our

form for the higher order k ≥ 2 quantum corrections

Swh
(k) = 6e−2(k−1)αΣwh

(k) (β+) . (9.54)

In terms of this ansatz our ‘wormhole’ Swh(0) has the followings Σ(0)

Σwh
(0) =

1

6

(
e−4β+ + 2e2β+

)
(9.55)

so that

Swh
(0) = e2αΣwh

(0) (β+) . (9.56)

Using (9.56), (9.55), (9.54), and (9.40) we can rewrite our 3 ≥ k ≥ 2 transport
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equations as

∂Σwh
(0)

∂β+

∂Σwh
(2)

∂β+

+ 4Σwh
(0)Σ

wh
(2) = −B

2

4
, (9.57)

∂Σwh
(0)

∂β+

∂Σwh
(3)

∂β+

+ 8Σwh
(0)Σ

wh
(3) =

3

2

∂2Σwh
(2)

∂β2
+

+ 3
∂Σwh

(2)

∂β+

, (9.58)

and our k ≥ 4 equations as

∂Σwh
(0)

∂β+

∂Σwh
(k)

∂β+

+ 4(k − 1)Σwh
(0)Σ

wh
(k) =

k−2∑
l=2

k!

(
4(l − 1)(k − l − 1)Σwh

(l) Σwh
(k−l) −

∂Σwh
(l)

∂β+

∂Σwh
(k−l)
∂β+

)
2l! (k − l)!

− 1

2
k

(
−2

∂Σwh
(k−1)

∂β+

−
∂2Σwh

(k−1)

∂β2
+

+ 4(k − 3)(k − 2)Σwh
(k−1)

)
.

(9.59)

When β+ = 0,
∂Σwh

(0)

∂β+
= 2e0

3
− 2

3
e0 = 0 and Σwh

(0)(0) = 1
2
. Thus we can sequentially

write out Σwh
(k)(0) as follows

Σwh
(2)(0) = −B

2

8
, (9.60)

Σwh
(3)(0) =

1

4

[
3

2

∂2Σwh
(2)

∂β2
+

+ 3
∂Σwh

(2)

∂β+

]
(0),

etc · · ·

(9.61)

As the reader can verify using (9.51) and (9.55)

−3e4β+

(
∂Σwh

(0)

∂β+

∂Σwh
(k)

∂β+

)
=
dΣwh

(k)

dt
, (9.62)

which allows us to convert (9.57), (9.58) and (9.59) into

dΣwh
(k)

dt
+ 4

(
−e6β+ − 1

2

)
(k − 1)Σwh

(k) =
dΣwh

(k)

dt
− 2

dα

dt
(k − 1)Σwh

(k) = Λk (9.63)
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where Λk denotes the right hand side of the original equations (9.57), (9.58), or (9.59)

multiplied by −3e4β+ . If we start with k=2 and integrate (9.63) we obtain

Σwh
(2)(β+(t) = e2α(t)

(
Σwh

(2)(β+0) +

∫ t

1

3

4
B2e4β+(s)−2α(s) ds

)
. (9.64)

As we previously established as t→∞ so does α(t). Thus in order to ensure that our

quantum corrections S(k≥2) are smooth and globally defined we must use our freedom

to pick Σwh
(2)(β+0) so that the term proportional to e2α(t) vanishes as t→∞. Because

our range of t is from (0,∞), in order for our term which is proportional to e2α(t) to

vanish we must equate

Σwh
(2)(β+0) = −

∫ ∞
1

3

4
B2e4 β+(s)−2α(s) ds. (9.65)

This choice of Σwh
(2)(β+0) allows us to rewrite (9.64) as

Σwh
(2)(β+(t)) = −e2α(t)

(∫ ∞
t

3

4
B2e4 β+(s)−2α(s) ds

)
. (9.66)

which facilitates us using L’Hôpital’s rule to show that the desired limit (9.60) as

t→∞ is reached

−
(∫∞

t
3
4
B2e4 β+(s)−2α(s) ds

)
e−2α(t)

,

−
3
4
B2e4 β+(t)−2α(t)

2α̇e−2α(t)
,

−
3
4
B2e4 β+(t)

2α̇
,

lim
t→∞

Σwh
(2)(β+(t)) = lim

t→∞
−

3
4
B2e4 β+(t)

2α̇
= −B

2

8
,

(9.67)

where limt→∞ β+(t) = 0. The reader can easily verify the limt→∞ α̇ = 3. After
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inserting our expressions for α(t) and β+(t) into (9.65)

Σwh
(2)(β+0) = −

∫ ∞
1

3B2e−2(α0+s)

4 ((e−6β+0 − 1) e−12s + 1)2/3 3
√
e6β+0 (e12 s − 1) + 1

ds (9.68)

we can verify that Σwh
(2) is smooth and globally defined by observing that as long as

β+0 is real that taking the derivative of (9.68) an arbitrary number of times with

respect to β+0 does not disturb the convergence of this integral(9.68). The e−2α0 is

a constant which could have been absorbed into Σwh
(2)(β+0).

Now that we have shown that Σwh
(2) is smooth and globally defined we can move

on to computing the higher order Σwh
(k) terms. Assuming that

{
ΣWh

(2) , . . . ,Σ
Wh
(k−1)

}
, for

k ≥ 2 have been shown to be smooth and globally defined we can express Σwh
(k) as

Σwh
(k)(β+(t)) = e2(k−1)α(t)

(
Σwh

(k)(β+0) +

∫ t

1

e−2(k−1)α(s)Λ(k)(s) ds

)
. (9.69)

There is only one choice for Σwh
(k)(β+0) which allows the kth quantum correction to be

smooth and globally defined

Σwh
(k)(β+0) = −

∫ ∞
1

e−2(k−1)α(s)Λ(k)(s) ds. (9.70)

Via inspection of (9.58) and (9.59) it can be concluded that our Λ(k) term is solely

composed of a sum of our aforementioned smooth and globally defined functions{
ΣWh

(2) , . . . ,Σ
Wh
(k−1)

}
and their derivatives with respect to β+, multiplied by the smooth

and globally defined function −3e4β+(t). Thus our source terms for our transport Σwh
(k)

equations are always globally defined. Furthermore because of the exponential decay

of e−2(k−1)α(s) for k ≥ 2 as s→∞, our integral (9.70) always converges and is smooth

and globally defined. Using this choice of Σwh
(k)(β+0) we can rewrite (9.69) as
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Σwh
(k)(β+(t)) = −e2(k−1)α(t)

(∫ ∞
t

e−2(k−1)α(s)Λ(k)(s)ds

)
, (9.71)

which allows one to easily apply L’Hôpital’s rule to show that the desired limit as

β+ → 0 when t → ∞ is achieved. If we were to insert our expressions for α(t)

into (9.71) it would be straightforward to conclude that arbitrary differentiation with

respect to β+0 does not disturb its convergence and that (9.71) remains smooth and

globally defined.

This conclude ours proof by induction that smooth and globally defined solu-

tions exist for arbitrary ordering parameter B for all of the ‘ground’ state quan-

tum corrections of the form (9.54) when (9.55), (9.56), and (9.40) hold. In the

process we have also proved the existence of a full asymptotic solution of the form
(0)

Ψ~= e−S(0)−S(1)− 1
2!
S(2)−··· for any arbitrary ordering parameter. Hopefully the nature

of the convergence of this asymptotic solution can be explored in a future work. For

information on how to prove that the quantum corrections associated with the ‘ex-

cited’ state transport equations are smooth and globally defined we refer the reader

to section 5 of [175] and to the references contained within it.

Even though the vacuum quantum Taub models are solvable [166] using separation

of variables for any ordering parameter, it isn’t trivial to obtain solutions which

possess the forms of (8.46) and (8.57). Via ordinary separation of variables the Taub

WDW equation admits two Bessel functions as its solutions which in principle can be

used to construct all of the solutions of the quantum Taub models via superposition.

However only a limited number of integrals involving Bessel function are known in

closed form. In addition even if one can evaluate those integrals numerically there

is still the issue of using the correct kernel to obtain wave functions which possess

non-trivial characteristics.

These non-trivial characteristics include the wave function’s behavior being de-

pendent upon α which as was previously mentioned is our internal clock and also
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dictates the size of our Taub universes. Another non-trivial feature is the manifesta-

tion of discreteness in our wave functions which is showcased in our ‘excited’ states

that we have computed thus far. The Euclidean-signature semi-classical method is

able to bypass the aforementioned difficulties and obtain closed form wave functions

which possess these non-trivial characteristics.

We went through the trouble of integrating the transport equations along the flow

generated by Swh(0) in order to prove that smooth and globally defined solutions exist

for all of them. However due to the mathematical simplicity present in the quantum

Taub models we can directly solve for an arbitrary kth level quantum correction

Swh(k)(α, β+) by solving elementary differential equations. The explicit form of the

Swh(2) (α, β+) transport equation when our ansatz (9.53) is employed is

8e−4β+

(
∂Σwh

(2)

∂β+

− e6β+

(
∂Σwh

(2)

∂β+

+ 2Σwh
(2)

)
− Σwh

(2)

)
− 3B2 = 0; (9.72)

which can be easily solved, yielding

Swh(2) (α, β+) := e−2α

(
eβ+B2 sin−1

(
e3β+

)
8
√

1− e6 β+
+

eβ+c1√
1− e6β+

)
. (9.73)

This expression is only smooth and globally defined when a specific value of c1 is cho-

sen. As β+ → 0 the first term of (9.73) which is proportional to 1√
1−e6β+

approaches

B2π
16

. In order for (9.73) to not blow up we must ensure that 1
8
eβ+B2 sin−1

(
e3β+

)
+eβ+c1

vanishes when β+ → 0, which is accomplished if we set c1 = −B2π
16

. This results in

the following k = 2 quantum correction

Swh(2) (α, β+) := −e−2α

(
eβ+B2 cos−1

(
e3β+

)
8
√

1− e6β+

)
(9.74)

which has the established limit (9.60) when β+ → 0 as the reader can verify.

Thanks to the existence and uniqueness theorem for ordinary differential equa-

tions, each one of our solutions to the ‘ground’ state transport equations we found by
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integrating along the flow of Swh(0) are equivalent to the explicit solutions of those same

transport equations as long as they are smooth and globally defined. Because we were

able to show that picking the right integration constant for a particular Swh(k) results in

it being a smooth and globally defined function, we know that we can obtain smooth

and globally defined explicit solutions such as (9.73) by picking a unique constant of

integration. Thus all of our results regarding smooth and globally defined solutions

to the ‘ground’ state transport equations we previously obtained also apply to our

explicit solutions.

Our Swh(2) quantum correction has the interesting property that it is undefined in

the real plane when β+ > 0 due to the domain of cos−1
(
e3β+

)
. However cos−1

(
e3β+

)
can be analytically continued into the complex plane by expressing it as an integral

cos−1
(
e3β+

)
:=

∫ β+

−∞

3e3x

√
1− e6x

dx− π

2
. (9.75)

Despite analytically continuing cos−1 into the complex plane the quantum correc-

tions we computed thus far remain real valued functions because every instance of

cos−1
(
e3β+

)
is multiplied by a term which becomes complex valued when β+ > 0,

which ultimately results in a real expression.

We can go further and explicitly compute the ‘ground’ state k = 3 quantum

correction which is

f =
B2e−4α+2β+

32 (1− e6β+)5/2

Swh(3) (α, β+) := f

(
2e6β+

√
1− e6β+B cos−1

(
e3β+

)2
+ 2
√

1− e6β+B cosh−1
(
e3β+

)2

+ 3
√

1− e6β+
(
e6β+ − 4

)
− 3e3β+

(
2e6β+ − 5

)
cos−1

(
e3β+

))
(9.76)
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and in principle compute further more complicated explicit expressions for the

higher order ‘ground’ state quantum corrections.

We will now move on and compute the φwh(2) quantum correction for the first and

second ‘excited’ states of the wormhole quantum Taub models. We will seek ‘excited’

state quantum corrections which possess the form

φwh(k) = e(4n−2k)αχ(k) (β+) . (9.77)

For our φwh(0) we will use
((
e6β+ − 1

)
e4α−2β+

)n , and when n=1 our φ(1) is −6e2(α+β+).

Thus using (9.74) we can write out the φwh(2) transport equation for the first ‘excited’

wormhole state

9e3β+B2
(√

1− e6β+
(
e3β+ + 2e9β+

)
+
(
1− 4e6β+

)
cos−1

(
e3β+

))
= 8

(
1− e6β+

)5/2 ∂χ(2)

∂β+

,

(9.78)

whose solution is

φwh2 = χ(2) = −
3B2

(
e6β+ + e3β+

√
1− e6β+

(
2e6β+ − 1

)
cos−1

(
e3β+

)
− 1
)

8 (e6 β+ − 1)2 . (9.79)

For n = 2, φwh1 = −6e6α
(
4e6β+ − 3

)
, which allows us to write down the following

φwh(2) equation for the second ‘excited’ state

9eβ+

(
e3β+

√
1− e6β+

((
2e6 β+ + 1

)
B2 − 576

)
−
(
4e6 β+ − 1

)
B2 cos−1

(
e3 β+

))
+ 4
√

1− e6 β+

(
e6 β+

(
4χ(2)(β+)−

∂χ(2)

∂β+

)
+
∂χ(2)

∂β+

+ 2χ(2)(β+)

)
= 0,

(9.80)

whose solution allows us to write the following as our φwh(2) quantum correction for the
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(a) α = −2 B = −1 (b) α = −1.1 B = −1

(c) α = 1 B = −1

Figure 9.6 Plots of
∣∣ψwh∣∣2 for the ‘wormhole’ vacuum quantum Taub ‘ground’ state

constructed out of Swh(0) , Swh(1) ,Swh(2) , and Swh(3) .

second ‘excited’ state for arbitrary Hartle-Hawking ordering parameter B

φwh(2) = e4α
3e−2β+

((
e6β+ − 1

) (
288− B2

)
− e3β+

√
1− e6β+

(
2e6β+ − 1

)
B2 cos −1

(
e3β+

))
4 (e6β+ − 1)

.

(9.81)

In principle with the help of a computer algebraic system we can continue to find

closed form quantum corrections for the ‘ground’ state equations and then use those

quantum corrections to find additional quantum corrections for the ‘excited’ state

transport equations.

Below we will plot ‘ground’ and ‘excited’ states for our ‘wormhole’ wave func-

tions which include our analytically continued quantum corrections that we calcu-

lated above. The first three set of plots(figs 9.6a-9.6c) are of the ‘wormhole’ ‘ground’

states when we include the Swh(2) and Swh(3) quantum corrections when B = −1. The

second set of three plots(figs 6a-6c) are of the second ‘wormhole’ ‘excited’ state which

include the Swh(2) , Swh(3) , and φ
wh
2 quantum corrections when B = −1.
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(a) α = −2 B = −1 (b) α = −1.1 B = −1

(c) α = 1 B = −1

Figure 9.7 Plots of
∣∣ψwhn=2

∣∣2 for the second ‘wormhole’ vacuum quantum Taub ‘ex-
cited’ state constructed out of both ‘ground’ and ‘excited’ state quantum corrections
up to k = 2.

We will qualitatively discuss the interesting features of these plots in our discussion

section later. For now we will move on and derive the ‘no boundary’ asymptotic

solutions for the quantum Taub models, which have different properties than our

wormhole solutions and whose existence have implications for the Bianchi IX models.

9.5 Quantum Taub ‘No Boundary’ Wave Functions

The ‘no boundary’ Snb
(0) solution for the quantum Taub models can easily be found by

setting the β− term in the ‘no boundary’ S(0) [102] for the full Bianchi IX models to

zero, which results in

Snb
(0) :=

1

6

(
1− 4e3β+

)
e2α−4β+ . (9.82)

The reader can easily verify that the following Snb
(1) term satisfies equation (8.52)
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when Snb
(0) is inserted into it

Snb
(1) :=

1

2
α(4− B)− 5β+

2
. (9.83)

If we seek a Snb
(2) which possesses the form of our ansatz (9.54) which we used earlier for

the ‘wormhole case’, the resultant S(2) differential equation is satisfied by a remarkably

simple function compared to the ‘wormhole’ case

Snb
(2) :=

1

8

(
B2 + 9

)
eβ+−2α. (9.84)

Unlike the ‘wormhole’ case whose Σ(2) was the rather exotic −B2e−2α

(
eβ+ cos−1(e3β+)

8
√

1−e6β+

)
with its cos−1

(
e3β+

)
which needs to be analytically continued when β+ > 0, ‘the no

boundary’ Σ(2) is simply 1
8

(
B2 + 9

)
eβ+ . This points to a fundamental difference be-

tween the ‘wormhole’ and ‘no boundary’ quantum Taub models. In addition this could

suggest that the ‘wormhole’ and the ‘no boundary’ Bianchi IX models [175] possess

significant differences as well. As a result of the simple nature of the Snb
(2) quantum

correction we will be able to prove that an asymptotic solution exists for arbitrary

ordering parameter for the ‘no boundary’ case using a more straightforward method

than the one we applied to the ‘wormhole’ case. The existence of this ‘no boundary’

asymptotic solution for the Taub models is possible evidence that an asymptotic ‘no

boundary’ solution exists for the full quantum Bianchi IX models as well. This is an

important observation because the proof of a ’ no boundary’ solution existing for the

Bianchi IX models is still an open problem.

Before we proceed it should be pointed out that if we allow the Hartle-Hawking

ordering parameter to take on complex values, then we can form two closed form

‘ground’ state solutions to the Wheeler DeWitt equation using just (9.82), (9.83)

when B = ±3i. A potential complication though of allowing the Hartle Hawking

parameter to assume complex values is that it may fundamentally change the nature of
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the Wheeler DeWitt equation in such a way that it yields non-physical solutions. This

issue of a complex Hartle-Hawking ordering parameter should be further investigated.

For now though we will move forward assuming that the ordering parameter B is an

arbitrary real number.

After continuing the process of inserting the explicit forms of the Snb
(k−1) quantum

corrections into the kth ‘ground’ state transport equations; the author found that

each kth order quantum correction can be expressed as

Snb
(k≥2) := g(k)eβ+(k−1)−2α(k−1). (9.85)

This is very straightforward to show. First we’ll rewrite equation (8.53) as

2

[
∂S(0)

∂α

∂S(k)

∂α
−
∂S(0)

∂β+

∂S(k)

∂β+

]
+k

[
B
∂S(k−1)

∂α
−
∂2S(k−1)

∂α2
+
∂2S(k−1)

∂β2
+

]
+

k−2∑
`=2

k!

`! (k − `)!

(
∂S(`)

∂α

∂S(k−`)

∂α
−
∂S(`)

∂β+

∂S(k−`)

∂β+

)
+2k

(
∂S(1)

∂α

∂S(k−1)

∂α
−
∂S(1)

∂β+

∂S(k−1)

∂β+

)

= 0.

(9.86)

Next we will insert into (9.86) the following equations (9.85), (9.83) and (9.82) which

will yield

k−2∑
`=2

3(`− 1)k! g(`)(k − `− 1)g(k − `)
`! (k − `)!

+ (k − 1)(4g(k)− 3(k − 2)kg(k − 1)) = 0,

(9.87)

where all of the dependency on α and β+ has dropped out which has turned the

problem of finding higher order quantum corrections into simply an algebraic one.
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We can easily solve for g(k)

g(k) =

∑k−2
`=2

3(`−1)k!g(`)(k−`−1)g(k−`)
`!(k−`)!

4− 4k
+

3

4
(k − 2)kg(k − 1), (9.88)

and it is evident that g(k) is always a well defined number assuming that (g(2), . . . , g(k − 1))

are also well defined numbers. All that we need to compute sequentially an arbitrary

number of coefficients, g(k), starting with g(2) which can clearly be read off from

(9.84) to be g(2) = 1
8

(
B2 + 9

)
. With g(2) known we can write out the following

asymptotic ‘ground’ state solution to the Taub WDW equation

ψnb := e

(
−
∑∞
k=2

g(k)e
β+(k−1)−2α(k−1)

k!
− 1

6(1−4e3β+)e2α−4β+− 1
2
a(4−B)+

5β+
2

)
. (9.89)

Even though the vacuum Taub WDW equation can be solved in closed form for

arbitrary ordering parameter, we don’t know a-priori which superposition of Bessel

functions leads to the wave function which can be well approximated by a finite

number of terms of (9.89) or a Borel summation of all of terms.This shows that the

Euclidean-signature semi-classical method can even shed light on problems which can

in a sense be solved using other techniques.

An outstanding problem in quantum cosmology is whether a smooth and globally

defined solution exists for the Bianchi IX WDW equation for any arbitrary ordering

parameter of the form (5.19) where its S(0) is the ‘no boundary’ solution found in

[103]. As previously mentioned Joseph Bae [20] was able to prove the existence of

an asymptotic solution to the Bianchi IX WDW equation for the ‘wormhole’ case.

The Taub model can be seen at the classical level as a subset [150] of the Bianchi IX

models and therefore by proving that a ‘no boundary’ asymptotic solution does exist

for the Taub model we provide hope that one also exists for the ‘no boundary’ form

of the Bianchi IX models. If a ‘no boundary’ solution does not exist for the Bianchi
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IX it may reveal something interesting about this method of quantizing cosmology.

Attached in the appendix section will be a Mathematica code which explicitly

computes this asymptotic solution using (9.88) up to any order k.

We will leave the proof for the existence of asymptotic ‘excited’ state solutions for

another time. For now though we will be content to find the semi-classical φ0 term

and the φ1 quantum correction for the ‘no boundary’ case. The author found the

following family of conserved quantities along the flow of Snb
(0) which satisfies (8.59)

as the reader can easily verify

φnb
0 :=

((
e3β+ − 1

)
eβ+−2α

)n
. (9.90)

Because our φnb
0 possesses zeros within the domain of real Misner variables we must

restrict n to be a positive integer so our wave functions are smooth and globally

defined. Using a computer algebraic system and the ansatz (9.77) the ordinary dif-

ferential equation for φ1 can be solved which yields the following quantum correction

φnb
1 := −

3ne−2αn−2α
(
eβ+
(
e3β+ − 1

))n+1 (
4e6β+(n+ 1)− e3β+(4n+ 7) + n+ 2

)
4 (e3β+ − 1)3 .

(9.91)

The general form of φnb
2 for any n is far too cumbersome to include in this chap-

ter, however below we will display this quantum correction for arbitrary ordering

parameter for the first and second ‘excited’ states.

φnb
2 n=1 := w

(
e6β+

(
B2 + 432e3 − 27

)
+
(
e3 − 3

)
e3β+

(
B2 + 432e3 − 27

)
+ e6B2 − 3e3B2 + 3B2 − 27e6 + 81e3 + 351

)

w = −e−6α e
3β+
(
e3β+ − e3

)
16 (e3 − 1)3

(9.92)
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(a) α = −2 (b) α = 0

(c) α = 2

Figure 9.8 Plots of
∣∣ψnb∣∣2 for the ‘no boundary’ vacuum Taub ‘ground’ state (9.89)

which includes quantum corrections up to k = 2.

φnb
2 n=2 := w

((
e3 − 1

) (
e3β+ − 1

) (
e6β+ +

(
e3 − 3

)
e3β+ + 3− 3e3 + e6

)
B2

+ 27

((
8− 65e3 + 88e6

)
e9β+ +

(
e3 − 4

) (
8− 65e3 + 88e6

)
e6β+

−
(
40 + 70e3 − 268e6 + 65e9

)
e3β+ + 33 + 8e3

(
−5− 4e3 + e6

)))
w = −e−8α e

4β+
(
e3β+ − e3

)
8 (e3 − 1)4

(9.93)

We will now plot some interesting Taub no boundary wave functions composed of

(9.93), (9.91), (9.90), and (9.89) which are in the form of (8.46) and (8.57). The first

three plots(figs 9.8a-9.8c) are of the ‘no boundary’ ‘ground’ states (9.89) computed

up to the Snb
(2) quantum correction for different values of α when B=0.

The next three plots 9.9 are of the second ‘excited’ state where we include quantum

corrections up to k = 2 for different values of α.
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(a) α = −1.6
(b) α = 2.825

(c) α = 3

Figure 9.9 Plots of
∣∣ψnbn=2

∣∣2 for the second ‘no boundary’ vacuum quantum Taub
‘excited’ state including terms up to k = 2.

In the next section we will discuss qualitatively the behavior of our wave functions

and the physical implications that can be extrapolated from them.

9.6 Discussion

To begin analyzing our results we first need to adopt an interpretation for the wave

functions we computed. Two interpretations of quantum mechanics which in the past

have been used to extrapolate physics from Wheeler Dewitt wave functions within the

context of quantum cosmology are the consistent histories approach [105] and pilot

wave theory [47]. However, for our purposes, we will use the following admittingly

naive interpretation which we will briefly outline. Even though we cannot interpret

|ψ|2 as a probability density due to the lack of a known dynamical unitary operator for

the symmetry reduced Wheeler Dewitt equation, if we fix α and only consider wave

functions which approach zero as β+ → ±∞ then our wave functions are reminiscent

of normalizable probability densities as can be seen from our plots. Each point in
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those plots at a fixed α represents a potential geometric configuration that a quantum

universe described by those wave functions can possess. Associated with each of those

points in β+ space at a fixed α is a value of |ψ|2; it is not unreasonable to conjecture

that the greater the value of |ψ|2 is, the more likely a Taub universe will possess

the geometry dictated by β+. For example if |ψ (α, β+1) |2> |ψ (α, β+2) |2 we would

interpret this to mean that a Taub universe described by ψ when it reaches a size

dictated by α is more likely to have a spatial geometry which possesses a level of

anisotropy described by the value of β+1 as opposed to β+2.

A shortcoming of our interpretation is that it cannot assign numerical values of

probability to a micro ensemble of Taub universes with different values of α, because∫∞
∞ |ψ|

2dβ+ is not conserved in α. Nonetheless we are picking this interpretation

because it is intuitive for the solutions we are dealing with and facilitates the elucida-

tion of the points the author wishes to make. This will be the interpretation we use

throughout this entire dissertation. In essence the author was inspired to pick this in-

terpretation because he would like to let the bare solutions speak for themselves. The

author strongly encourages future work to be done in extrapolating physics for the

results presented in this dissertation using both the Bohmian and consistent histories

approaches, in conjunction with other quantitative methods. What follows will be an

attempt to extrapolate the physical implications of a cosmological constant and an

electromagnetic field in the development of a quantum Taub universe from our wave

functions by examining their aesthetic characteristics. We interpret the peaks that

appear in our wave functions the same way they are interpreted in [93], as possible

geometric states a quantum universe can tunnel in and out of.

Our second set of figures in 9.2 emphatically shows how our matter sources can

affect the quantum cosmological evolution of a Taub universe. If we compare figures

9.2a and 9.2b we see that the electromagnetic field b2 causes the wave function

originally in figure 9.2a to be peaked at a higher value of anisotropy and be more
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narrow. Physically this indicates a quantum mechanism by which an electromagnetic

field can increase the level of anisotropy in the early universe. Additionally it can

also cause the geometry of a universe to be more defined in the sense that its wave

function of the universe becomes sharply peaked at a specific value of β+ as opposed

to being spread out in β+ space as figure 9.2a is.

The above two effects that our electromagnetic field has on our wave functions

in figures(9.2a-9.2b) could have had a profound impact on the formation of pockets

of anisotropy in our actual early universe if similar behavior was present in its wave

function of the universe. Furthermore, because the electromagnetic field causes the

geometry of our quantum Taub universe to be more sharply defined it could have also

played a role in the transition of a universe from one which could only be adequately

described using quantum mechanics to one which can be described adequately using

classical mechanics.

Figures(9.2c-9.2d) sheds interesting light on other effects that our two matter

sources can have on the evolution of a quantum universe. For the vacuum quantum

Taub ‘wormhole’ when α = 1.5 our wave function sharply peaked at isotropy(β+ = 0).

As α continues to grow that peak at isotropy rapidly sharpens. However when Λ < 0

no matter how large α becomes the wave function peaks at some non-zero value of

β+. In other words no matter how large α becomes there is always some residual

anisotropy present as is shown in figure 9.2c. However in figure 9.2d we see that

an electromagnetic field can actually decrease the level of anisotropy present in the

early universe at certain stages of its development as measured by our clock α as can

be seen by how the wave function is centered at isotropy. This points to how the

electromagnetic field in conjunction with other matter sources can have a myriad of

different effects on the quantum evolution of a universe.

Moving on to our ‘excited’ states (figs 9.3a-9.3f) when Λ = 0 we see even more

spectacular effects from our primordial electromagnetic field. When b2 = 0 our ‘ex-
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cited’ states have two peaks which represent two potential geometric configurations

our quantum Taub universe can tunnel in and out of. For the vacuum ‘wormhole’ case

as α grows the multiple peaks merge into one central peak located at isotropy(β+ = 0).

This behavior makes sense because as we previously mentioned eα classically repre-

sents the scale factor of our cosmology and we expect that quantum effects, such as

tunneling, would be most prominent when a universe is small and possesses a very

high energy density and diminish as it grows in size. Of course no matter how large

a universe becomes it is fundamentally quantum mechanical, but the probabilities

of those quantum mechanical effects manifesting on large macroscopic scales rapidly

diminishes as it grows in size. In other words our ‘excited’ state quantum Taub

universes experience a phase transition over a certain range of α where they tran-

sition from a universe where tunneling between different geometric configurations is

common to one where it is exceedingly rare.

When our electromagnetic field is turned on we see some profound effects. For

b = 1.5 an additional peak emerges which represents another likely geometric con-

figuration our quantum Taub universe can tunnel into as can be seen by comparing

figures 9.3d and 9.3e. This additional state was created quantum mechanically by

our electromagnetic field. This is somewhat similar to how the introduction of non-

commutativity in the minisuperspace variables of the quantum Bianchi I [229] and

Kantowski Sachs [93] models can cause additional states that can be tunneled in and

out of to appear in the form of additional peaks in their respective wave functions.

in their respective wave functions As our field grows in strength all of the peaks

eventually merge into one central peak as can be seen in figure 9.3f. This effect of an

electromagnetic field creating an additional state which a quantum universe can tun-

nel in and out of can be seen also in figure 9.5b. Thus it appears for ‘excited’ states of

our quantum Taub universes that the effects which a primordial electromagnetic field

has on them are highly dependent upon its strength. When the field is somewhat
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weak it can create additional states that our quantum universe can tunnel in and out

of, and when it is strong it can destroy those states, leaving only one sharply defined

state left. Our results encourage studying other anisotropic quantum cosmologies

such as the Bianchi I models using the Euclidean-signature semi-classical method

when an magnetic field and a cosmological constant are present in order to establish

if the plethora of effects we detailed in this dissertation are generic to anisotropic

quantum cosmologies.

Using our aforementioned analysis of the first 10 plots the reader can handily

interpret in the manner which we have done thus far the wave functions for our

superposition of ‘excited’ states (9.4a-9.4c) and our semi-classical ‘excited’ states (figs

9.5a-9.5c) when both matter sources are present.

The vacuum ‘wormhole’ case for arbitrary ordering parameter has some interesting

mathematical properties which we have already mentioned. It should be stressed that

these properties are only present when B 6= 0 and that they manifest themselves

differently within our wave functions for different values of the ordering parameter.

Nonetheless for B = −1 our vacuum ‘wormhole’ wave functions behave peculiarly

in comparison to the ones we computed earlier in this chapter. For large negative

α << 0 our vacuum ‘wormhole’ asymptotic wave function which possesses terms up

to Swh(3) behaves as a ‘ground’ state as we would expect it to as indicated in figure 9.6a.

As α continues to grow the wave function behaves as a pseudo-Gaussian traveling to

the right in the positive β+ direction.

However around α = −1.1 something drastic happens, a second peak forms which

is illustrated in figure 9.6b and thus makes our ‘ground’ state aesthetically resemble an

‘excited’ state. This is why we constantly employ ’ ’ to denote ‘ground’ and ‘excited’

states in our work. Unlike in ordinary quantum mechanics the lines between ‘ground’

and ‘excited’ states are not as sharply defined. Using our ‘ground’ state equations we

can obtain terms which do not manifest the discretization in their quantum numbers
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that we showed to be present in our φ0 terms, and yet the states constructed from

them share some properties we expect out of ‘excited’ states. This further suggests

that more theoretical work is necessary to rigorously delineate between the ‘ground’

and ‘excited’ states of a theory which possesses a vanishing Hamiltonian. Another

interesting feature of our wave functions is that these two peaks which our Taub

universe can tunnel in between emerges as our α reaches a threshold, as opposed to

being continuously present for small α < 0’s as is the case of our closed form ‘excited’

states(figs 9.4a-9.4c). Our ‘excited’ states(figs 9.7a-9.7c) which include terms up to

Swh(3) and φwh2 don’t overtly manifest the properties one typically expects from ‘excited’

states as is exemplified in figures (9.4a-9.5c). At most we see a small second peak

form when α = 1 in figure 9.7c.

Moving on to our ‘no boundary’ asymptotic solutions, if we start with our ‘ground’

state figures (9.8a-9.8c) we see that for small values of α our wave function forms a

peak around a negative value of β+ and is moving to the right from the negative

β+ axis. For larger values of α our wave function forms a peak around a positive

value of β+ as it continues to travel to the right. However at a certain value of α

our travelling Gaussian changes direction and eventually resides at the origin as its

magnitude continues to grow as α grows. This behavior of our wave function not being

bounded from above for real values of the Misner variables poses a complication in our

efforts to obtain a physically meaningful picture of what is going on using our method.

If we naively interpreted our ‘no boundary’ states as such using our purely qualitative

method we would conclude that the universe described by our wave function can only

exist when α =∞ because that state is infinitely more likely to occur then any other

geometric configuration because our wave function approaches ∞ as α → ∞. Such

an interpretation makes no sense. A potential way to remedy this problem can be by

choosing a different way to construct an inner product between ψnbs.

Our ‘no boundary’ excited states can be interpreted similarly to our other ‘excited’
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states with the aforementioned caveat. One noteworthy feature of our plots is that

in 9.9b our wave function peaks at an extremely anisotropic value of β+, but then

quickly snaps back towards isotropy at α = 3. It will require more work to determine

if this "snapping" behavior is a generic feature belonging to all quantum Taub ‘no

boundary’ ‘excited’ states.

9.7 Concluding Remarks

Despite the vast number of results that we presented there now seems to be as many

unanswered questions. In the author’s own estimation this is a positive sign that

the research we conducted is worthwhile and that continued pursuit of it will lead

to a further understanding on how matter sources such as an electric/magnetic field

and a cosmological constant could have impacted the evolution of the early universe.

Because our universe in its most primordial moments of existence was quantum in

nature and inhomogeneous, and anisotropic it is important to catalogue all of the

possible effects that quantum mechanics can induce on its development so we can

have a complete understanding on all of the different ways it could have evolved.

By studying the ‘ground’ and ‘excited’ states of the quantum Taub models with an

aligned electromagnetic field and negative cosmological constant we have reinforced

and expanded the known possible phenomena that quantum mechanics could induce

on a primordial universe.

From a mathematical point of view we have showcased the strength of the Euclidean-

signature semi-classical method for tackling Lorentzian signature problems. The au-

thor hopes that the plethora of results obtained in this chapter, in conjunction with

all of the results in the second portion of this dissertation, will promote its further

development.

In terms of quantum cosmology a good next step would be to apply this method to
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the Bianchi I models. Because of the simplicity of the Bianchi I model we can compare

the Euclidean-signature semi-classical method to the traditional WKB method. In

addition it is worth studying the Bianchi I models to determine if the effects of matter

sources on the Taub models that we documented are also present in the Bianch I

models. Eventually in order to compute potentially observable quantum corrections

in the CMB from a primordial magnetic field we will need to include inhomogeneities

and study non-aligned electromagnetic fields. The author believes that the results

in this chapter represents a first step to obtaining observable quantum corrections in

the CMB from a possible primordial magnetic field.
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Chapter 10

Quantum Bianchi IX and VIII With

Λ, Aligned Electromagnetic Field,

Free Scalar Field, and Stiff Matter

10.1 Bianchi IX And VIII Models

The metric formulations of the Bianchi IX and VIII models are given below

ds2 = −N2dt2 +
L2

6π
e2α(t)

(
e2β(t)

)
ab
ωaωb,(

e2β(t)
)
ab

= e2β+(t) diag
(
e2
√

3β−(t), e−2
√

3β−(t), e−6β+(t)
)
,

ω1 = dx− k sinh(ky)dz,

ω2 = cos(x)dy − sin(x) cosh(ky)dz,

ω3 = sin(x)dy + cos(x) cosh(ky)dz,

(10.1)

where k=1 is for the Bianchi VIII models and k=i corresponds to the Bianchi IX

models. Using the general form of the WDW equations (7.84) and the potentials

from table 2 with the inclusion of a stiff matter potential term which has the form

prescribed in [227] we can ascertain that the WDW equations for the Bianchi IX and
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VIII models with a cosmological constant, aligned electromagnetic field, free scalar

field, and stiff matter are

∂2Ψ

∂α2
−B∂Ψ

∂α
− ∂2Ψ

∂β2
+

− ∂2Ψ

∂β2
−
− 12

∂2Ψ

∂φ2
+ U±Ψ = 0

U± = (f) e6β+

(
e6β+ sinh2

(
2
√

3 β−

)
± cosh

(
2
√

3β−

))
+

2e6aΛ

9π
+ Uem +

1

4
f + ρ

Uem = 2b2e2α−4β+ ∨ 2b2e2(α±
√

3β−+β+)

f =
4

3
e4α−8β+ ,

(10.2)

where ρ denotes stiff matter and the plus sign, +, in U± corresponds to the Bianchi

VIII models and the minus sign, −, the Bianchi IX models.

The WDW equation for the Taub models with an exponential scalar field, eφ, and

aligned electromagnetic field potential is given below

∂2Ψ

∂α2
−B∂Ψ

∂α
− ∂2Ψ

∂β2
+

− 12
∂2Ψ

∂φ2
+ VΨ = 0

V =

(
e4α−8β+

3

(
1− 4e6β+

)
+ e6α+φ

)
+ 2b2e2α+2β+ .

(10.3)

Beyond free scalar fields being good candidates for clocks, their inclusion can be seen

as a first step towards a more general program. Right now we are only considering

homogeneous scalar fields for our cosmological models. But as we have shown earlier,

the Euclidean-signature semi-classical method can also be applied to models where

the scalar field varies with position such as relativistic bosonic φ4 theory. Thus

by including a homogeneous scalar field we are testing the waters for the eventual

inclusion of a non-homogeneous scalar field in our cosmological models that we wish

to study using our modified semi-classical method. By quantizing that scalar field

we can introduce primordial fluctuations into our models which is a necessary step

for computing quantum cosmological corrections to observables such as the CMB
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spectrum. The ability of this method to handle all kinds of scalar fields in general

makes it potentially well suited for studying non-homogeneous quantum cosmology.

The Bianchi VIII quantum/classical models have not been as thoroughly studied

as the Bianchi IX models we discussed in the last chapter. However, there have been

some interesting investigations [23, 155, 186] into them and exact solutions of them

have been obtained in both classical and quantum regimes. We shall expand upon

what is known for the quantum Bianchi IX and VIII models by including matter

sources and applying the Euclidean-signature semi-classical method to them.

This chapter will have the following structure. First we will apply the Euclidean-

signature semi-classical method to the Bianchi IX and VIII models with the afore-

mentioned matter sources. Doing so will give us semi-classical solutions to them.

The semi-classical wave functions we will obtain in closed form when a negative

cosmological constant is present behave similarly in a qualitative sense to the wave

functions reported in [189] which were obtained using complexification and are ex-

pressed as contour integrals. This supports the idea that our semi-classical wave

functions reasonably capture the effects of our matter sources, including our aligned

electromagnetic field. In addition, the fact that we were able to find closed form

solutions to the Euclidean-signature Hamilton Jacobi equation which can be used

to construct semi-classical solutions to the Lorentzian signature symmetry reduced

WDW equation without needing to use a Wick rotation further shows the promise of

this method to be a useful alternative [175] to Euclidean path integrals [97, 98] for

tackling problems in quantum gravity.

Next we will study wave functions of the Bianchi IX models with our matter

sources which have as their classical analogues trajectories in minisuperspace in which

β− is fixed at zero. Next we will turn our attention to the Taub models and briefly

analyze them when an exponential scalar field and aligned electromagnetic field po-

tentials are present. Finally we will present a few closed form solutions to the WDW
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equation for the Bianchi IX and VIII models. We will use the same interpretational

scheme that we presented in the last chapter to understand the wave functions in this

chapter.

10.2 Bianchi VIII and IX Quantum Cosmology With

An Aligned Electromagnetic Field, Scalar Field,

Cosmological Constant, And, Stiff Matter

The author found the following solutions to the Euclidean-signature Hamilton Jacobi

equations (8.51) when an electromagnetic field, scalar field, cosmological constant,

and stiff matter are present

S1
(0±) =

1

6
e2α−4β+

(
2e6β+ cosh

(
2
√

3β−

)
± 1
)

∓ Λe4α+4β+

36π
∓ αb2 ∓ β+b2 +

φ
√
ρ

2
√

3
,

(10.4)

S2
(0±) =

1

6
e2α−4β+

(
2e6β+ cosh

(
2
√

3β−

)
± 1
)

− Λe4α−2β+−2
√

3β−

36π
− αb2 +

β+

2
b2 +

√
3

2
β−b2 +

φ
√
ρ

2
√

3
,

(10.5)

S3
(0±) =

1

6
e2α−4β+

(
2e6β+ cosh

(
2
√

3β−

)
± 1
)

− Λe4α+2β+−2
√

3β−

36π
− αb2 +

β+

2
b2 −

√
3

2
β−b2 +

φ
√
ρ

2
√

3
.

(10.6)

In our solutions the plus + sign or the top operation in ± and ∓ are for the Bianchi

IX models while the bottom symbols/operators are for the Bianchi VIII models. It

is interesting to note that in the limit of our matter sources vanishing these solutions

approach the well known ‘wormhole’ [178] Bianchi IX solutions and its analogue for

the Bianchi VIII models. The author was unable to find elementary solutions to (8.51)

with the aforementioned matters sources that exhibited this property for the Bianchi

195



IX ‘no boundary’ [103] or "arm" solutions [26], or for their Bianchi VIII analogues

[34]. As we previously mentioned for the Taub models, this suggests that there is

something special about the ‘wormhole’ solution.

Using these expressions we can obtain a semi-classical solution to the WDW equa-

tion expressed in the Hartle-Hawking semi general operator ordering which respects

the 2π
3

symmetry in β space present in the Bianchi IX potential when our electro-

magnetic field is zero (b = 0) or a solution to the WDW expressed in an alternative

operator ordering when b 6= 0.

As pointed out by Moncrief and Ryan in [178] and shown explicitly in [96], using a

different operator ordering for the Wheeler DeWitt equation than the Hartle-Hawking

one [110] allows one to construct wave functions which satisfy it if one possesses

pure imaginary solutions to its corresponding Lorentzian signature Hamilton Jacobi

equation. We will review the derivation presented in [96] which allows us to construct

solutions using just an S(0). The Hamiltonian constraint for the Bianchi A models

can be expressed as

H = GABpApB + U = 0 (10.7)

where GAB is the DeWitt supermetric and pi are the canonical momenta. Likewise

the regular Lorentzian signature Hamiliton Jacobi is expressed as

GAB ∂J

∂xA
∂J

∂xB
+ U = 0. (10.8)

Because (10.8) is the Lorentzian signature Hamilton Jacobi equation the signs in its

derivatives are the opposite of those for the Euclidean case. That means for the

Bianchi VIII and IX models with a cosmological constant, a primordial electromag-

netic field, scalar field, and stiff matter (10.8) is satisfied by our previous solutions

(10.4), (10.5), and (10.6) multiplied by
√
−1 such that J =

√
−1S i(0). This allows us
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to rewrite (10.8) as

GABpApB +GAB ∂S i

∂xA
∂S i

∂xB
= GAB(x)π∗AπB = 0 (10.9)

where

πA = pA −
√
−1

∂ S i

∂xA
(10.10)

and is quantized as follows

π̂A = −
√
−1

∂

∂xA
−
√
−1

∂ S i

∂xA
. (10.11)

Due to this quantization, wave functions of the form Ψ = e−S
i
(0) mathematically

behave in the following way

π̂BΨ = 0. (10.12)

Thus we can satisfy the Bianchi VIII and IX WDW equations when a cosmological

constant, a primordial electromagnetic field, scalar field, and stiff matter are present

if we order the WDW as follows

1√
|G|

[
π̂∗A

(√
|G|GABπ̂B

)]
Ψ = 0. (10.13)

We will first study a semi-classical solution

Ψ =
1

3

(
e−S

1
(0 +) + e−S

2
(0 +) + e−S

3
(0 +)

)
(10.14)

to the WDW equation(10.2) when b = 0 and then turn our attention to a closed form

solution which satisfies (10.13) when b 6= 0. As we previously mentioned there are two

candidates for our evolution parameter α and φ. Even though φ is in some respects

a better variable because classically it is guaranteed to increase monotonically for

the Bianchi VIII and IX models we are considering, we will analyze (10.14) using α
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because it better facilitates the author’s ability to convey the physical implications of

our wave functions for this particular case. Below are three plots of (10.14) for three

different values of α.

(a) α = −1 Λ = −1
(b) α = 1.65 Λ = −1

(c) α = 2 Λ = −1

Figure 10.1 Three different plots of (10.14) for three different values of α where we
suppress the the φ degree of freedom.

When α is less than 1.6 our wave function’s peak is located at the origin in β space

which corresponds to isotropy. For negative values of α our wave function is roughly

spread evenly around the origin as can be seen in figure (10.1a). Thus we can say that

figure (10.1a) describes a universe with a "fuzzy" geometry. As α grows through, our

wave function becomes more sharply peaked at the origin. This is expected because

geometrical "fuzziness" described by a wave function which is spread out in β space

is a quantum effect we intuitively expect to diminish as the universe grows in size

dictated by α.

However around α ≈ 1.6 a dent forms where the wave function used to have

an isotropic peak as can be seen in (10.1b) and our wave function begins to split
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apart. This is a result of the influence of our negative cosmological constant Λ. As

α continues to grow our wave function splits into three parts whose peaks are not

centered around the origin. This indicates that the cosmological constant for our wave

function acts as a driver of anisotropy by tearing our wave functions away from the

origin in β space. This is reminiscent of how a positive cosmological constant causes

distant objects which are not gravitational bound to each other in the universe to

accelerate away from each other. Of course this is just an analogy because our wave

function is in minisuperspace, not space-time.

The wave function shown in (10.1c) is aesthetically similar to the wave functions

[189] which were computed by employing Chern-Simons solutions in Ashtekar’s vari-

ables. Investigating the connection between the caustics which were studied in [189]

and these elementary closed form solutions to the Euclidean-signature Hamilton Ja-

cobi equation could potentially yield some interesting results.

In comparison to the exotic and technical methods which were used to compute

Bianchi IX wave functions with a negative cosmological constant in [189], the fact that

the Euclidean-signature semi-classical method allowed us to compute similar Bianchi

IX wave functions in closed form and expressed in terms of elementary functions is

an impressive feat. This provides further support that the Euclidean-signature semi-

classical method is an effective way to prove the existence of solutions to Lorentzian

signature equations.

Another way of visualizing how the cosmological constant is a driver of anisotropy

in our wave functions is through the plots in figure (10.2).

Moving on to the case when an electromagnetic field is present we will analyze the

solution to (10.13) constructed from (10.4). We don’t lose much from not analyzing

(10.5) and (10.6) because those are just (10.4) rotated by ±2π
3

in β space. In figure
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(a) Λ = −1 (b) Λ = −1

Figure 10.2 Two plots of the wave functions constructed from (10.4), (10.5), and
(10.6) which show their maximum values in β space as a function of α. The red
line corresponds to (10.6), the green line corresponds to (10.5), and the purple line
corresponds to (10.4).

3 are four plots which showcase the possible effects that an aligned electromagnetic

field can have on our particular ‘ground’ state wave functions.

As can be seen by comparing figures (10.3a) and (10.3b) one of the effects of our

electromagnetic field is that it causes our wave function to form a peak at a larger

value of β+ than it would otherwise. However, owing to the primordial nature of our

electromagnetic field for large values of α this effect is far less drastic as can be seen

by comparing figures (10.3c) and (10.3d). This suggests that an electromagnetic field

can play a decisive role in increasing the prevalence of anisotropy in the early universe

but still allow for a universe which becomes roughly isotropic as it continues to grow

in size. To test this assertion, in the future we will need to study other quantum

cosmological models with more general electromagnetic fields. In addition we would

need to add inhomogeneities to those models. For now this finding contributes towards

a theoretical understanding of how a primordial electric/magnetic field could have

influenced the seeds of anisotropy in the early universe and how those seeds developed

as it grew in size.

Another noticeable effect of our electromagnetic field is that it causes our wave

function to be more sharply peaked at smaller values of α than it otherwise would
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be as can be seen by comparing figures (10.3a) and (10.3b). This suggest that an

electromagnetic field could play a role in causing a universe which initially possesses

a "fuzzy" geometry in the sense that its wave function of the universe is evenly

spread over β space to transition to one which is sharply peaked at a particular point

in β space. This transition from a "fuzzy" geometry to a semi-classical one could

occur if the primordial electromagnetic field was something that emerged in an early

universe at some point in its evolution or was present in the beginning, but its effects

were initially suppressed by Planck or GUT level physics. Such a mechanism being

present in general anisotropic quantum cosmologies can help explain how a universe

can transition from a state where it can only be accurately described using quantum

mechanics to one which can be adequately described by classical mechanics.

A surprising effect of our electromagnetic field is that it can actually reduce the

level of anisotropy of a quantum universe at certain values of α. This can be seen by

comparing figures (10.3c) and (10.3d). Our cosmological constant has a proclivity

towards causing our wave functions to be centered at a negative value of β+ while our

aligned electromagnetic field causes our wave functions to shift toward the positive

portion of the β+ axis. Thus for certain values of α these two competing effects to

increase anisotropy can cancel each other out and result in a reduction of anisotropy.

This effect may also be caused by an aligned electromagnetic field and other forms of

matter. Visually this dual nature concerning the tendencies of our two matter sources

to induce anisotropy in our quantum cosmological models can be visualized in figure

(10.4).

We should note that this dual nature may be a result of us considering an

aligned electromagnetic field and not one which has components in multiple directions.
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(a) α = −1 Λ = −1 b = 0 (b) α = −1 Λ = −1 b = 1

(c) α = 1 Λ = −1 b = 0 (d) α = 1 Λ = −1 b = 1.4

Figure 10.3 These are four plots of our wave functions constructed from (10.4) with
listed values for their cosmological constant and electromagnetic field.

When both a negative cosmological constant and an electromagnetic field are present,

isotropy is more likely to be reached at a smaller value of α than it is when either

one or none of the matter sources are present. When an aligned electromagnetic field

and a negative cosmological constant are present the magnitude of our wave functions

decay as α continues to grow past a point. These results are in concord with those

that the author observed in his previous works where he studied the effects of aligned

electromagnetic fields on Taub [39], Bianchi II, and VIIh=0 [38] quantum cosmologies.
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(a) α = −1 Λ = −1 b = 0

Figure 10.4 This plot shows the maximum values of our wave functions in β space as
a function of α. The green plot is of the wave function constructed from (10.4) when
no matter sources are present. The purple line is when both a negative cosmological
constant Λ = −3 and an electromagnetic field b = 2 are present. The red line is when
just an electromagnetic field b = 2 is present.

10.3 IX Quantum Cosmology On The β+ Axis

In this section we will further explore Bianchi IX quantum cosmologies with mat-

ter sources by analyzing wave functions which correspond to classical trajectories in

minisuperspace where β− starts at a fixed point in β space. To start we need to

pick an S(0) which induces a flow in minisuperspace which possesses fixed points. To

determine this we will write out the classical flow equation for an arbitrary S(0)

pα =
∂S(0)

∂α
,

pβ+ =
∂S(0)

∂β+

,

pβ− =
∂S(0)

∂β−
,

pφ =
∂S(0)

∂φ,

(10.15)
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(a) φ = 0 b = 0
(b) φ = 0 b = 2

Figure 10.5 Two plots of (10.23) for two different values for the strength of the
electromagnetic field.

α̇ =
(6π)1/2

2e3α
N

∣∣∣∣
Eucl

pα,

β̇+ =
−(6π)1/2

2e3α
N

∣∣∣∣
Eucl

pβ+ ,

β̇− =
−(6π)1/2

2e3α
N

∣∣∣∣
Eucl

pβ− ,

φ̇ =
−(6π)1/2

2e3α
N

∣∣∣∣
Eucl

pφ,

(10.16)

where N |Eucl is the lapse. The lapse N |Eucl can be any function of the Misner

variables and φ as long as it never vanishes or changes sign within the range −∞ to∞

of all four variables. To keep our analysis straightforward we will set N |Eucl = 2eα

(6π)1/2 .

Using this lapse and (10.4) results in the following classical flow equations

dα

dt
=

1

3
e2α−4β+

(
2e6β+ cosh

(
2
√

3 β−

)
± 1
)

− Λe4α+4β+

9π
− b2,

(10.17)

dβ+

dt
=− 2e2α+2β+ cosh

(
2
√

3β −

)
+ bb2 +

Λe4α+4β+

9π
+

2

3
e2α−4β+

(
2e6β+ cosh

(
2
√

3β−

)
± 1
)

),

(10.18)
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dβ−
dt

= −
2e2α+2β+ sinh

(
2
√

3β −
)

√
3

, (10.19)

dφ

dt
= −

√
ρ

2
√

3
. (10.20)

As it can be seen when β− = 0 the time derivative of β− vanishes which indicates that

if β− is initially zero, then it will remain zero indefinitely. Thus the wave functions

we will find and analyze correspond to classical trajectories in minisuperspace where

β− is initially zero.

Despite this we stress that we are not analyzing the LRS Bianchi IX models.

Even though we will be eventually setting β− = 0 in our calculations, the existence

of a β− axis will impact our wave functions through the derivatives of β− that will

appear in our calculations which do not vanish when β− = 0. As the reader can verify,

(10.4) is the only S(0) with matter sources for the Bianchi IX models which possesses

this fixed point at β− = 0 in its flow equations.

If we start with the case when only an aligned electromagnetic field is present(Λ =

0) we can insert the entirety of (10.4) into (8.52) which will give us a complicated

looking transport equation. However because β− = 0 is a fixed point on the β− axis

we can set β− = 0 for this complicated transport equation which results from inserting

(10.4) into (8.52). The resultant transport equation as the reader can verify can be

solved by inserting this ansatz into it

S1
(1) β−=0 := x1α + x2φ, (10.21)

which yields the following solution

S1
(1) β−=0 :=

1

2
α(−B− 6)−

√
3b2φ

2
√
ρ
. (10.22)
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This is our first quantum correction for our Bianchi IX quantum cosmologies which

correspond to classical cosmologies which are formed from a flow in minisuperspace

which starts on a fixed point on the β− axis. The above quantum correction takes

into account the existence of the β− axis in the full Bianchi IX models by taking the

full derivative of S1
(0+) in (8.52). An interesting feature of this quantum correction

is how the aligned electromagnetic field b, stiff matter ρ, and the scalar field φ are

coupled.

Using this first order quantum correction (10.22) and

S1
(0+) β−=0 :=

1

6
e2α−4β+

(
2e6β+ ± 1

)
+ αb2 + β+ b2 +

φ
√
ρ

2
√

3
.

(10.23)

We can study the quantum cosmology of Bianchi IX ‘ground’ states which are re-

stricted to the β+ axis. In addition, because our wave functions only possess three

minisuperspace variables we can use φ as our time parameter to obtain wave functions

which are easy to interpret via their aesthetic qualities.

Starting with the Bianchi IX models we form the following wave function

ψ1
β−=0 = e−S

1
(0+) β−=0

−S1
(1) β−=0 (10.24)

and plot them for two different values b of the aligned electromagnetic field as can

be seen in (10.5). As can be seen in figure (10.5a) when b = 0 our wave function is

describing a quantum universe which is most likely in a geometric configuration in

which its scale factor α ≈ .6 and β+ = 0. However when we turn on our aligned

electromagnetic field its wave function is now peaked at a larger value of both α and

β+.

Next we will examine Bianchi IX ‘excited’ states which are restricted to the β+ axis

when an electromagnetic field and cosmological constant are present. For notational

206



convenience we will represent the quantum corrections, φk, to the ‘excited’ states

as Φk. First we insert the entirety of (10.4) into (8.59); then only after taking the

derivative of (10.4) with respect to β− do we set β− = 0 which results in the following

homogeneous transport equation

b2∂φ(0)

∂α
− b2∂φ(0)

∂β+

− 1

3
e2 α−4β+

∂φ(0)

∂α
,−

2

3
e2α+2β+

∂φ(0)

∂α
− 2

3
e2α−4β+f (β +) +

2

3
e2α+2β+f (β+) ,

+ 2
√

3
√
p
∂φ(0)

∂φ
+

Λe4α+4β+

9π

∂φ(0)

∂α
,

− Λe4α+4β+

9π

∂φ(0)

∂β+

= 0.

(10.25)

The author found the following solutions to this transport equation

φ1
0 =
(

9π e4α−2β+ − 9π e4(α+β +) + 27π b2e2(α+β+) + Λe6 (α+β+)
)n

(10.26)

where in order for φ1
0 to be globally defined and smooth we must restrict n to be

either a positive integer or zero. Using (10.26) we form the following wave function

Ψ1
β−=0 = φ1

0+e
−S1

(0+) β−=0
−S1

(1) β−=0 (10.27)

which we plot in (10.6). Figure 6 emphatically shows that when both a negative

cosmological constant and an electromagnetic field are present the effects of the elec-

tromagnetic field are dependent upon its strength. When the field is relatively weak

as can be seen (10.6a) and (10.6b) it can cause an additional highly probable geo-

metric state to come into existence which our quantum universe can tunnel in and

out of. However when the electromagnetic field is strong it can also destroy a highly

probable state, leaving only one highly probable state that a quantum universe can

be in. This ability to create an additional state that a quantum universe can tunnel

in and out of is similar to how non-commutativity in the minisuperspace variables
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can cause new quantum states to emerge in the quantum Kantowski-Sachs [93] and

Bianchi I models [229]. Chronicling these effects of our aligned electromagnetic field

can help us understand what our early universe could have been like.

(a) φ = 0 Λ = −1 b = 0 n = 1 (b) φ = 0 Λ = −1 b = 1.5 n = 1

(c) φ = 0 Λ = −1 b = 3 n = 1

Figure 10.6 Two plots of (10.27) for the first ‘excited’ states of our Bianchi IX
wave functions restricted to the β+ axis for two different values of the strength of the
electromagnetic field b.

10.4 Quantum Taub Models With A Scalar Field

The author found the following S(0) for the quantum Taub models when an expo-

nential scalar potential and an aligned electromagnetic field are present

S4
(0) :=

1

6
e2α−4β+ +

1

3
e2α+2β+ − c

8
e4α−2β++φ

− αb2 +
β+b2

2
− b2φ

4
,

(10.28)
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(a) α = 1 c = −1 φ = 0 (b) α = 1 c = −1 φ = −5

(c) α = 1 c = −1 φ = 5

Figure 10.7 These are three plots of our Taub wave functions when an exponential
scalar potential is present.

where c can in principle be any real number. However for the purposes of elucidating

the points the author wishes to make we will assume c < 0. Utilizing (8.51) the

author found the following S(1) quantum correction to (10.28)

S4
(1) :=

1

2
α(−B− 2)− β+ −

φ

2
. (10.29)

The existence of (10.28) and (10.29), suggest that an analogous closed form solution

involving an exponential scalar field potential may exist for the Bianchi IX models as

well.

First we will plot e−S
4
(0)
−S4

(1) when B = 0 and b = 0 and use both α and φ as our

internal clocks.

Our plots (10.7) indicate that as our scalar potential decays the universes described

by these wave functions approaches isotropy. However when our scalar potential
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increases in magnitude these universes become more anisotropic. Similar qualitative

behavior may be present for other types of scalar potentials such as φn.

These effects are interesting in themselves, however to further determine how

typical or robust they are, more general scalar fields need to be studied. To accomplish

this in the future various approximate techniques which do not rely on obtaining closed

form solutions would need to be employed. However for the meantime these findings

encourage further work to be done to determine how scalar fields affect quantum

cosmological evolution in anisotropic models.

For the case when an aligned electromagnetic field is present we will use φ as our

sole internal clock. As can be seen in figure 8, if we use φ as our internal clock, the

aligned electromagnetic field induces some dramatic effects on our wave functions. If

we compare (10.8a) to (10.8b) we see that the electromagnetic field causes the very

‘fuzzy’ wave function in (10.8a) to become sharp, or peaked at a certain value α and

β+. This effect would be present even if we kept φ = 0. As φ increases, our wave

functions travel in the negative α direction which indicates that the universes we are

describing are more likely to be smaller in size as φ grows. In addition as φ grows it

moves in the positive β+ direction which indicates its anisotropy in general increases

as φ increases. The fact that the Euclidean-signature semi-classical method was able

to generate such a wealth of information for the solutions of (10.3) further shows its

ability to prove [20, 175] the existence of solutions to Lorentzian signature equations.
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(a) b = 0 c = −1 φ = 0
(b) b = 1.5 c = −1 φ = −2

(c) b = 1.5 c = −1 φ = 3

Figure 10.8 These are three plots of our Taub wave functions when an exponential
scalar potential and aligned electromagnetic are present.

10.5 Closed Form Solutions To Bianchi IX and VIII

WDW

If we start with (10.4) and set Λ = 0, and solve the equation which results from

inserting (10.4) into (8.52), we obtain the following S(1) quantum correction
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S1
(1±) := αx1 +

1

8
(B + 2x1 + 6) log

(
sinh

(
2
√

3β−

))
+ β+

(
1

4
(−B− 6)− x1

2

)
∓ φ

(√
3 b2(B + 2)

8
√
ρ

+

√
3b2 x1
4
√
ρ

)
,

(10.30)

where x1 is an arbitrary constant, and B is the Hartle-Hawking ordering parameter.

Technically this S(1) term is not smooth and globally defined, however we can form

smooth and globally defined wave functions from it if we restrict (B + 2x1 + 6) to be

−8y, where y is either zero or a positive integer. Using (8.53) we can obtain solutions

to (10.2) of the form e−S
1
(0±)
−S1

(1±) , when Λ = 0 and our aligned electromagnetic field

is given by 2b2e2α−4β+ if the constants (x1, ρ, b, B) in (10.30) satisfy the following

relations

3b4(B− 2x1 + 2)2

32ρ
− 2B x1 + 2x12 = 0

B + 2x1 + 6 = 0.

(10.31)

Beyond these closed form solutions we can also construct smooth and globally defined

wave functions using (10.4) and (10.30) as long as (B+ 2x1+ 6) is a negative integer

which is a multiple of 8. The question of solving the higher order transport equations

for the Bianchi IX and VIII models when an aligned electromagnetic field is present in

the other two perpendicular directions could be the topic of a future investigation. For

now we will be content with this closed form solution for an aligned electromagnetic

field.

For the sake of completeness we will report a few other closed form solutions that

the author found for the vacuum Bianchi IX and VIII models which were reported

in earlier works. For the vacuum Bianchi IX models when ρ = 0, Λ = 0, and b = 0,

Joseph Bae [20] found two families of quantities which are conserved under the flow

produced by (10.4), and thus satisfy (8.59). The author then modified those quantities
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so that they are conserved under the flow given by (10.4) for the Bianchi VIII models.

Thus we will use the following quantities which satisfy (8.59) for the vacuum Bianchi

IX and VIII models

φ1
0± := Sm1Om2,

S =
(
e4α−2β+

(
e6β+ ∓ cosh

(
2
√

3 β−

)))
,

O =
(
e4α−2β+ sinh

(
2
√

3β−

))
,

(10.32)

where m1 is either zero or a positive integer for the Bianchi IX case, or can be any

number for the Bianchi VIII models, m2 is always either zero or a positive integer.

Joseph Bae found the following solution to (8.52) for the vacuum Bianchi IX models,

which also happens to satisfy (8.52) for the vacuum Bianchi VIII models

S(1 Bae) := −1

2
α(B + 6). (10.33)

Solutions of the form φ1
0±e
−S(0±)−S1

(1 Bae) exist for the vacuum Bianchi VIII and IX

models for the following values of (B,m1,m2)

(B = ±6,m1 = 0,m2 = 0)

(B = ±2
√

33,m1 = 1,m2 = 0)

(B = ±2
√

33,m1 = 0,m2 = 1)

(10.34)

More information on these closed form solutions can be found in [37].
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Chapter 11

Quantum Bianchi II and VIIh=0

11.1 Bianchi II and VIIh=0 Models

The Bianchi II and VIIh=0 models which we will focus on in this chapter have the

following one forms respectively

ω1 = dy + xdz

ω2 = dz

ω3 = dx,

(11.1)

ω1 = cos(z)dx+ sin(z)dy

ω2 = − sin(z)dx+ cos(z)dy

ω3 = dz.

(11.2)

Their corresponding WDW equations are

∂2Ψ

∂α2
−B∂Ψ

∂α
− ∂2Ψ

∂β2
+

− ∂2Ψ

∂β2
−

+ UiΨ = 0,

UII =
1

12
e4α+4β++4

√
3β− + 24Λe6α + 2b2e2α+2β++2

√
3β− + ρ,

UV II =
4

3
e4(α+β+) sinh2

(
2
√

3β−

)
+ 24Λe6α + 2b2e2α+2β++2

√
3β− + ρ,

(11.3)
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where ρ denotes stiff matter and Λ is scaled differently from (7.84).

This chapter will be organized as follows. We will first apply the Euclidean-

signature semi-classical method to rederive closed form solutions to the Bianchi II

WDW equation that are similar to the ones first derived by [186]. Afterwards we will

show how all of the equations that this method provides can be solved which will give

us a family of asymptotic and closed form solutions. In the process we will obtain a

novel asymptotic solution to the vacuum Bianchi II WDW equation. Then we will

obtain new solutions to the Bianchi II WDW equation when a cosmological constant,

primordial aligned electromagnetic field and stiff matter are present and discuss its

‘excited’ states. Next we will take a detour from applying our modified semi-classical

method and turn our attention to the non-commutative quantum Bianchi II models

with a primordial aligned electromagnetic field, and stiff matter.

Moving on from Bianchi II we will turn our attention to the quantum Bianchi

VIIh=0 models. Using the Euclidean-signature semi-classical method we will first

study its vacuum ‘ground’ and ‘excited’ states. Afterwards we will study its ‘ground’

states when matter sources are present. Once we have computed all of our wave

functions we will interpret [178] them by their aesthetic characteristics. Finally we

will provide some concluding remarks.

11.2 ’Ground’ States Of The Vacuum Bianchi II Wheeler

DeWitt Equation

As was reported in [186], there are three solutions to the Euclidean-signature Hamilton

Jacobi equation (8.51) that corresponds to the Bianchi II WDW equation (11.3) when

Λ = 0, b = 0, and ρ = 0, and they are given by

S1
(0) :=

1

12
e2(α+

√
3β−+β+), (11.4)
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S2
(0) :=

(
1

12
e2α+2

√
3β−+2β+ + f(2α + 2β+)

)
, (11.5)

S3
(0) :=

(
1

12
e2α+2

√
3β−+2β+ + g(2α +

√
3β− − β+)

)
, (11.6)

where f(x) and g(x) are arbitrary single variable functions. In this section we will

study ‘ground’ state solutions to the Bianchi II Wheeler DeWitt equation obtained

using the Euclidean-signature semi-classical method. The superscripts for the S(k)

terms in this chapter will play the role of an index to keep track of them unless stated

otherwise.

Starting with (11.4) if we insert it into our first ‘ground’ state transport equation

(8.52) we obtain the following simple differential equation

2
∂S(1)

∂α
− 2
√

3
∂S(1)

∂β−
− 2

∂S(1)

∂β+

+ B + 6 = 0. (11.7)

This transport equation in principle has infinitely many solutions. However for the

purposes of trying to find a S(1) which will allow the solutions to the higher order

k ≥ 2 transport equations to be satisfied by zero, we will choose the following to be

our S(1)

S1
(1) :=

1

2

(
−B + 2x2 + 2

√
3x3− 6

)
α + x2β+ + x3β−, (11.8)

where x2 and x3 are free parameters, which can be real or complex. We choose this

linear form because when we insert it into the S(2) transport equation (8.53), its source

term can be made to vanish by adjusting our free parameters. To clearly illustrate

this if we insert (11.8) into the source term of the S(2) transport equation we obtain

the following expression
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f(x2, x3) = B2 − 4
(

2
√

3(x2− 3)x3− 6x2 + 2x32 + 9
)
, (11.9)

which can be easily made to vanish by solving for one of its free parameters (x2,x3)

such that f(x2,x3)=0. The constraint of f(x2,x3)=0 was first derived in [186]. If we

solve for x2, the following S(1) will allow all of the higher order transport equations

to be satisfied by zero and will allow us to easily write out a closed form solution for

any arbitrary ordering parameter B to the Bianchi II Wheeler DeWitt equation

S1
(1) :=

1

2

(
−B + 2x2 + 2

√
3x3− 6

)
α + x2β+ + x3β−

x2 =
B2 − 8x32 + 24

√
3x3− 36

8
(√

3x3− 3
) .

(11.10)

This results in us obtaining one of the solutions compatible with the constraint that

was first reported in [186] to the Bianchi II WDW equation for any arbitrary ordering

parameter B

ψ = e

(
−x3(2α+

√
3β−−β+)√
3

− 1
12
e2(α+

√
3β−+β+)−

(B2+12)(α+β+)

8(
√

3x3−3)
+ 1

2
α(B+2)−2β+

)
.

(11.11)

A nice feature of this solution is that it still possesses the free parameter x3, which

allows one to form a wide variety of wave functions from it using superposition.

The above is a procedure that in some cases [39] can be employed to find closed

form ‘ground’ state solutions to the Wheeler DeWitt equation using the Euclidean-

signature semi-classical method.

Moving on to (11.5) if we choose f to be x1e2α+2β+ where x1 is a free parameter

and apply the same procedure we obtain an S(1) which possesses one free parameter

S2
(1) := x2α +

√
3β− +

(
B
2

+ x2
)
β+, (11.12)
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and when inserted into (8.53) results in a source term −1
2
B2 − 6 which does not

vanish for any real values of the ordering parameter, but does vanish when B = 2
√

3i.

However if we want a solution involving a real value of the ordering parameter we can

use the Euclidean-signature semi-classical method to construct an asymptotic solution

to the Bianchi II Wheeler Dewitt equation for any arbitrary ordering parameter for

this S(0) (11.5).

If we choose the following ansatz for our higher order k ≥ 2 quantum corrections

S2
(k) := g(B)ke

(−2α(k−1)−2(k−1)(
√

3β−+β+)); (11.13)

and insert it into (8.53) we can prove that the problem of solving the higher order

transport partial differential equations reduces to solving a recurrence equation, where

we are solving for some function, g(B)k, of the Hartle-Hawking ordering parameter.

The first step in our proof is to insert (11.13) into the homogeneous portion of equation

(8.53) which results in the following expression

2(k − 1)g(B)ke
−2(k−2)(α+

√
3β−+β+). (11.14)

The next step is to rewrite the source terms of equation (8.53) as follows

For k = 2

2

[
B
∂S(1)

∂α
−
∂2S(1)

∂α2
+
∂2S(1)

∂β2
+

+
∂2S(1)

∂β2
−

]
+ 2

(
∂S(1)

∂α

∂S(1)

∂α
−
∂S(1)

∂β+

∂S(1)

∂β+

−
∂S(1)

∂β−

∂S(1)

∂β−

)
(11.15)
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For k = 3

3

[
B
∂S(2)

∂α
−
∂2S(2)

∂α2
+
∂2S(2)

∂β2
+

+
∂2S(2)

∂β2
−

]
+ 6

(
∂S(1)

∂α

∂S(2)

∂α
−
∂S(1)

∂β+

∂S(2)

∂β+

−
∂S(1)

∂β−

∂S(2)

∂β−

)
(11.16)

For k > 3

k

[
B
∂S(k−1)

∂α
−
∂2S(k−1)

∂α2
+
∂2S(k−1)

∂β2
+

+
∂2S(k−1)

∂β2
−

]
+

k−2∑
`=2

k!

`! (k − `)!

(
∂S(`)

∂α

∂S(k−`)

∂α
−
∂S(`)

∂β+

∂S(k−`)

∂β+

−
∂S(`)

∂β−

∂S(k−`)

∂β−

)

+ 2k

(
∂S(1)

∂α

∂S(k−1)

∂α
−
∂S(1)

∂β+

∂S(k−1)

∂β+

−
∂S(1)

∂β−

∂S(k−1)

∂β−

)
(11.17)

As the reader can easily verify if we were to insert (11.13) into the source terms (11.15)

and (11.16), the resulting expressions would be some constants which are proportional

to the exponential component of (11.13), and thus would allow one to calculate the

k=2 and k=3 quantum corrections by simply solving for g(B)k and inserting it back

into (11.13). To prove that this is the case for the higher order k > 3 quantum

corrections all we need to do is insert our S2
(k) and our linear S2

(1) into (11.17). Doing

so yields the following amazing simplification

− 2(k − 2)k(B− 6k + 12)g(B)k−1e
−2(k−2)(α+

√
3β−+β+)

+
k−2∑
`=2

k!

`! (k − `)!

(
− 12(l − 1)(k − l − 1)g(B)le

−2(k−2)(α+
√

3β−+β+)g(B)k−l

)

+ 2(B + 6)(k − 2)kg(B)k−1e
−2(k−2)(α+

√
3β−+β+).

(11.18)

Putting this all together, and solving for g(B)k results in
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g(B)k =

∑k−2
l=2 −

12(l−1)k!(k−l−1)g(B)lg(B)k−l
l!(k−l)!

2− 2k
− 6k(k − 2)g(B)k−1. (11.19)

As the reader can see, our infinite sequence of linear partial differential equa-

tions has become a recurrence relation for our higher order quantum corrections. A

computer algebra system like Mathematica can easily compute the terms of this re-

currence relation and as a result the S2
(k) quantum corrections can in principle be

obtained to any order k. The above calculation presents an alternative to [20] for

obtaining asymptotic solutions to the Wheeler DeWitt equation using the Euclidean-

signature semi-classical method.

We have constructed a method to obtain all of the S2
(k) quantum corrections to

the semi-classical wave function
(0)

Ψ~= e−
1
X
S2

(0) , and as a result are able to construct a

wide variety of asymptotic solutions to the Bianchi II Wheeler DeWitt equation for

any Hartle-Hawking ordering parameter

S2
(k, k>3) :=

(∑k−2
l=2 −

12(l−1)k!(k−l−1)g(B)lg(B)k−l
l!(k−l)!

2− 2k
− 6k(k − 2)g(B)k−1

)
e(−2α(k−1)−2(k−1)(

√
3β−+β+))

S2
(2) :=

1

4

(
B2 + 12

)
e−2α−2(

√
3β−+β+)

S2
(3) := −9

2

(
B2 + 12

)
e−4α−4(

√
3β−+β+)

(0)

Ψ~= e−
1
X
S2

(0 ±)
−S2

(1)
−X

2!
S2

(2)
−X

2

3!
S2

(3)
−
∑∞
k=4

Xk−1

k!
S2

(k) .

(11.20)

It would be instructive to see through some manner of non trivial summation such

as a Borel sum if the resulting asymptotic terms converge to some wave function

which behaves in an interesting fashion. Regardless of the convergence properties

of these terms, the fact that such an asymptotic solution can be found in the first

place is remarkable. There are other problems in physics where such a technique for
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computing an asymptotic expansion can prove to be very useful.

The explicit forms of the S2
(2) and S2

(3) quantum corrections shown above can be

easily computed by the reader using (11.14), (11.15), and (11.16). Our quantum

corrections possess the important property that they decay as α grows. Because α is

related to the spatial size of our Bianchi II universe, physically it makes sense that our

quantum corrections become increasingly important the smaller our universe becomes,

while conversely becoming negligible in the classical limit of α >> 0. Because our

solutions are asymptotic we only need to sum up a finite number of terms to get

a good approximation for the full wave function. As a result of our solutions being

asymptotic we will qualitatively analyze the properties of the following wave functions

which are composed from S2
(0), S2

(1), and S2
(2)

ψ = e

(
1
24

(
−3(B2+12)e−2(α+

√
3β−+β+)−2e2(α+β+)

(
e2
√

3β−+12ix1
)
−24x2(α+β+)−24

√
3β−−12β+B

))
,

(11.21)

where we made x1 an imaginary number. Because both x1 and x2 are free parameters

there are infinitely many different wave functions we can choose to analyze. To narrow

things down for our purposes we will set x2 and the ordering parameter B equal to

zero, and then form the following wave function Ψ =
∫∞
−∞ e

−x12
ψdx1 based on the

linearity of the WDW equation resulting in

Ψ =
√
πe

(
1
12

(
−18e−2(α+

√
3β−+β+)−e2(α+

√
3β−+β+)−3e4(α+β+)−12

√
3β−

))
. (11.22)

We will display three plots (figures 1, 2, and 3) of this wave function for different

values of α below and discuss them qualitatively towards the end of this chapter.
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(a) α = −1.5 x2 = 0 B = 0
(b) α = 0 x2 = 0 B = 0

(c) α = 1.5 x2 = 0 B = 0

Figure 11.1 Plot of |Ψ|2 from (11.22) for three different values α.
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11.3 Solving The ‘Excited’ State Transport Equa-

tions In Closed Form

Even though the quantum Bianchi II models without any matter sources can be solved

in closed form via separation of variables, applying this method has allowed us to

obtain explicit quantum corrections to semi-classical wave functions of the form (8.50).

For some cases such as the Taub models [178] superpositions of separable solutions

can be constructed using integration which yield wave functions having the form of

(8.50). Computing an exact expression which looks like
(0)

Ψ~= e−
1
X
S(0)−S(1)−X2!

S(2)−···

though is contingent upon knowing how to integrate usually some Bessel function

times a kernel such as e−ω2 in closed form. As we have shown in the previous section

our modified semi-classical method allows us to bypass those mathematical difficulties

and obtain solutions which are more mathematically transparent. In addition the

wave functions that this method obtains for us possess non-trivial characteristics such

as their behavior being highly dependent upon α, which as was previously mentioned

is our internal clock and also dictates the scale factor of our Bianchi II universes.

Another non-trivial feature is the manifestation of discreteness in our wave functions

which will be showcased in our ‘excited’ states later on.

We will now go over how all of the ‘excited’ state transport equations can be

solved for the case when (11.4) is our S(0). As it can be seen from our ‘excited’ state

transport equations (8.59-8.61), in order to solve them we first need solutions to their

ground state counterparts (8.51-8.53). If we insert (11.4) into (8.59) we obtain

(
∂φ(0)

∂α
−
√

3
∂φ(0)

∂β−
−
∂φ(0)

∂β+

)
= 0, (11.23)

223



which is an elementary linear transport equation which has the following solutions

φ1
(0) := f1

((
3α +

√
3β−

)
,
(

3β+ −
√

3β−

))
, (11.24)

where f1 is a function of both the expressions 3α +
√

3β− and 3β+ −
√

3β−. As a

result we have infinitely many choices for our φ(0). We can exploit the properties of the

‘excited’ state transport equations and our solutions to the ‘ground’ state equations

to pick an ansatz which will give us the forms for all of our φ(k) terms. Using the

same reasoning presented in [175] for the Bianchi IX models we will pick the following

to be our ansatz for the higher order φ(k) terms

φ1
(k) := j(B)ke

(
(m1−2k)α+ 1√

3
(−6k+m1−m2)β−+(m2−2k)β+

)
. (11.25)

The parameters (m1,m2) in certain circumstances can plausibly be interpreted as

graviton excitation numbers for the ultra long wavelength gravitational wave modes

embodied in the (β+, β−) anisotropic degrees of freedom [21]. If we assume (m1,m2)

represent physical quantities then they must be real numbers, despite the fact that

states with complex (m1,m2) can also satisfy the Wheeler DeWitt equation as will be

shown below. Because our φk terms do not vanish anywhere, m1 and m2 can be any

real numbers, and if they lead to excited states they would be scattering states. Before

we solve for the explicit form of j(B)k we will pick a different ansatz to showcase the

versatility of this method.

If we choose our φ1
0 to be (α +

√
3β−)m1 (3β+ −

√
3β−)m2 , we can obtain leading

order bound states because both of our expressions vanish for real finite values of

the Misner variables. Going beyond leading order we can actually find a closed form

solution to the Bianchi II Wheeler Dewitt equation by simply inserting (α+
√

3β−)m1

(3β+ −
√

3β−)m2e−S
1
(0)
−S1

(1) into it and noticing that for m2 = 1, m1 = 0, and x3 =
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1
4

(
4
√

3−
√

B2 + 12
)
that it is satisfied by

ψ =
1

3

(
3β+ −

√
3β−

)
e

(
1
12

(
−e2(α+

√
3β−+β+)+2α

(
2
√

3
√

B2+12+3B−6
)

+
√

B2+12(3β−+
√

3β+)−12(
√

3β−+β+)
))
.

(11.26)

This solution shows that one doesn’t have to stick to the type of ansätze used in [175]

to find solutions to the Wheeler Dewitt equation using this method. As a matter

of fact it may be more advantageous for the sake of finding ‘excited’ states for the

vacuum Bianchi II models after choosing (11.4) to be our S(0) to use a different ansatz

than (11.25) as we will discuss soon.

Moving on, if we pick (11.10) to be the S(1) for our ‘excited’ state transport

equations, a significant simplification occurs. Because our closed form solution (11.11)

is constructed solely from an S(0) and an S(1) term all of the higher order S(k) terms

can be set to zero as was explained earlier. This significantly simplifies our ‘excited’

state transport equations because they depend on those higher order S(k) terms which

we can set to zero. The same is true for any Bianch A model which has a closed form

solution where its S(k>1) terms vanish(an even greater simplification occurs if (11.3)

is satisfied by e−S(0)). As a result our sequence of transport equations becomes

−
∂φ(k)

∂α

∂S(0)

∂α
+
∂φ(k)

∂β+

∂S(0)

∂β+

+
∂φ(k)

∂β−

∂S(0)

∂β−

+ k

(
−
∂φ(k−1)

∂α

∂S(1)

∂α
+
∂S(1)

∂β+

∂S(1)

∂β+

+
∂φ

(∗)
(k−1)

∂β−

∂S(1)

∂β−

)

+
k

2

(
−B

∂φ(k−1)

∂α
+
∂2φ

(∗)
(k−1)

∂α2
−
∂2φ(k−1)

∂β2
+

−
∂2φ(k−1)

∂β2
−

)
.

(11.27)

Our situation supremely simplifies further if we can find a φk which is able to satisfy

its associated transport equation when it equals zero. If φk = 0 satisfies the kth

order ‘excited’ state transport equation then the k+1th order transport equation will
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reduce to

−
∂φ(k+1)

∂α

∂S(0)

∂α
+
∂φ(k+1)

∂β+

∂S(0)

∂β+

+
∂φ(k+1)

∂β−

∂S(0)

∂β−
= 0, (11.28)

which is satisfied by φk+1 = 0. Thus the k+2th order transport equations reduces to

−
∂φ(k+2)

∂α

∂S(0)

∂α
+
∂φ(k+2)

∂β+

∂S(0)

∂β+

+
∂φ(k+2)

∂β−

∂S(0)

∂β−
= 0 (11.29)

and it is also satisfied by φk+2 = 0. When a kth order φk equation is satisfied by

zero, all of the higher order φk+n transport equations can also be satisfied by zero as

well. This results in a truncation of the infinite sequence of ‘excited’ state transport

equations to a finite sequence and allows one to find closed form solutions to the

Wheeler DeWitt equation for any model to which the above applies to. Inserting our

ansatz (11.25) into (11.27) yields

j(B)k−1

(
3m1

(
B2 + 8m2 + 36

)
− 3m2

(
B2 + 16m2 − 36

)
+ 144k2

(√
3x3− 3

)
− 144k

(√
3x3− 3

)
+ 24m2

1 − 8x3(m1 + 2m2)
(√

3m1 −
√

3m2 − 3x3 + 6
√

3
))

+ 24
(√

3x3− 3
)
j(B)k = 0,

(11.30)

which allows us to easily find a simple recurrence relation for j(B)k

j(B)k =
1

24
(√

3x3− 3
)j(B)k−1

(
3m1

(
B2 + 8m2 + 36

)
− 3m2

(
B2 + 16m2 − 36

)
+ 144k2

(√
3x3− 3

)
− 144k

(√
3x3− 3

)
+ 24m2

1

− 8x3(m1 + 2m2)
(√

3m1 −
√

3m2 − 3x3 + 6
√

3
))
.

(11.31)

This recursion relation can be solved in closed form using Mathematica in terms

of Pochhammer functions. The full expression is too long and cumbersome to express

in this chapter. However we will display the explicit form for j(B)k and all of our φk’s
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when our closed form solution (11.11) has x3=0

j(B)k =
1

π

(
(−6)k cos

(
1

12
π
√
m1

(
B2 + 8m2 + 36

)
−m2

(
B2 + 16m2 − 36

)
+ 8m2

1 + 36

)
Γ

(
k − 1

12

√
8m2

1 +
(
B2 + 8m2 + 36

)
m1 −m2

(
B2 + 16m2 − 36

)
+ 36 +

1

2

)
Γ

(
k +

1

12

(√
8m2

1 +
(
B2 + 8m2 + 36

)
m1 −m2

(
B2 + 16m2 − 36

)
+ 36 + 6

)))

φk = j(B)ke

(
(m1−2k)α+ 1√

3
(−6k+m1−m2)β−+(m2−2k)β+

)
.

(11.32)

Going back to (11.31) and (11.25) we see that we possess the freedom to pick the

values of any of our free parameters m1, m2, and x3, for any value of k so that φk=0.

When φk=0, the solutions to the subsequent transport equations can be satisfied by

zero as well, thus truncating the infinite sequence of transport equations to a finite

one; enabling us to construct closed form solutions using S1
(0), S1

(1), and φ0......φk−1.

Because for every value of k we can set our free parameters so that φk=0, this enables

us to construct a closed form solution using φ0......φk−1, and because k can take on

every possible positive integer value, we have found an infinite family of solutions

to the Bianchi II Wheeler DeWitt equation for arbitrary ordering parameter. In

addition, because we only need to adjust one of our three free parameters so that

j(B)k=0, each one of our solutions has two free parameters which we can vary. If

we choose x3 to be the parameter which we adjust so that j(B)k=0, each one of our

closed form solutions at a value of k can have their two ‘excitation’ numbers m1 and

m2 be any real number. Naturally, this choice makes the most physical sense in terms

of forming quantum Bianchi II scattering states. However, if we decide that m1 and

m2 are not physical quantities, they can be complex numbers and still satisfy the

Bianchi II Wheeler DeWitt equation.

Despite in principle solving all of the ‘excited’ state transport equations for a

reasonable looking φ0,
(
e3α+

√
3β−
)m1

(
e3β+−

√
3β−
)m1

, if one were to graph these wave
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functions it wouldn’t be straightforward to interpret them as excited states unlike

the Bianchi IX [20] and Taub models [39] which can be easily interpreted as excited

states. Nonetheless the fact that we can solve these equations in the first place is a

big mathematical feat and further shows the prowess of this method for proving the

existence of solutions to Lorentzian signature problems.

Furthermore this does not mean no ‘excited’ states exist for the vacuum Bianchi

II models. In this section we chose to use (11.25) as our φks because it allowed us

to easily solve for all of the ‘excited’ state transport equations. Because our φ0 is a

conserved quantity we could have used any function of it to construct our ‘excited’

states. There very well could exist a φ0 which results in wave functions that have

(11.4) as their semi-classical term that qualitatively behave like ‘excited’ states. In

addition the manifestation of ‘excited’ states for our choice of φ0 may be dependent

on how we define our Hilbert space, which is a task we delineate to a future work.

If we choose a different S(0) such as the infinitely many choices for (11.5) and (11.6)

we may have obtained a simple form for our φ0 which could immediately lead to wave

functions that behave as ‘excited’ states. Studying the perturbations of the LRS

Bianchi II models as was done for the Taub models in [21] would also be very useful

in establishing the existence of vacuum Bianchi II ‘excited’ states. As we will see

though when matter sources are included, our solutions to the φ0 transport equation

does result in wave functions which do behave as ‘excited’ states.

11.4 Closed Form Bianchi II ‘Ground’ States With

Matter Sources

Using the following ansatz
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S4
(0) = −6Λe4α−2

√
3β−−2β+ +

1

12
e2α+2

√
3β−+2β+ + αx1 + β−x3 + β+x2 (11.33)

the author found the following solutions to the Bianchi II Euclidean-signature Hamil-

ton Jacobi equation corresponding to (11.3)

(
∂S4

(0)

∂α

)2

−

(
∂S4

(0)

∂β+

)2

−

(
∂S4

(0)

∂β−

)2

+
1

12
e4α+4β++4

√
3β− + 24Λe6α + 2b2e2α+2β++2

√
3β− + ρ = 0

S4
(0) = −6Λe4α−2

√
3β−−2β+ +

1

12
e2α+2

√
3β−+2β+ − 2αb2 +

1

2
β−

(
2
√

3b2 +
√
ρ
)

+
1

2
β+

(
2b2 −

√
3
√
ρ
)
.

(11.34)

If we insert (11.34) into (8.52) we obtain

− 24Λe4α−2(
√

3β−+β+)
(

2
∂S(1)

∂α
+
√

3
∂S(1)

∂β−
+
∂S(1)

∂β+

+ B
)

+
1

6
e2(α+

√
3β−+β+)

(
2
∂S(1)

∂α
− 2
√

3
∂S(1)

∂β−
− 2

∂S(1)

∂β+

+ B + 6

)
− 4b2∂S(1)

∂α
− 2b2

(√
3
∂S(1)

∂β−
+
∂S(1)

∂β+

)
+
√
ρ

(√
3
∂S(1)

∂β+

−
∂S(1)

∂β−

)
− 2b2B = 0;

(11.35)

which in accordance with our previous reasoning can be satisfied by the following

simple solution

S4
(1) :=

1

2
α(−B− 2) +

√
3β−
2

+
β+

2
. (11.36)

Inserting this into the source term of (8.53) yields −B2

2
which vanishes when B =

0. Thus we have the following solution to the Bianchi II WDW equation when a

cosmological constant, aligned electromagnetic field and stiff matter are present
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(a) α = −1
4 Λ = −1 b=0 ρ = 0

(b) α = −1
4 Λ = −1 b=7 ρ = 0

(c) α = 1
4 Λ = −1 b=0 ρ = 0 (d) α = 1

4 Λ = −1 b=7 ρ = 0

Figure 11.2 Plots of (11.37) for |Ψ|2 when our aligned electromagnetic field and α
are varied

Ψ = e6Λe4α−2(
√

3β−+β+)− 1
12
e2(α+

√
3β−+β+)+2αb2+α− 1

2
β−(2

√
3b2+

√
ρ+
√

3)+ 1
2
β+(−2b2+

√
3
√
ρ−1).

(11.37)

To understand what effects the aligned electromagnetic field (b2) has on our wave

function (11.37) we construct a series of plots in 11.2, and discuss them at the end of

this chapter.

We can obtain a solution for any Hartle-Hawking ordering parameter if we consider

the case when only a cosmological constant is present. If we start with the following
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semi-classical term

S5
(0) = −6Λe4α−2

√
3β−−2β+ +

1

12
e2α+2

√
3β−+2β+ (11.38)

and insert it into (8.52) we obtain the following S5
(1)

S5
(1) :=

1

2
α(−B− 2) + β−x1 + β+

(
2−
√

3x1
)
. (11.39)

When (11.39) is inserted into (8.53) we obtain this source term −3B2 − 4(1 − 2x1)2

which vanishes when x1± = 1
4

(
2±
√

3Bi
)
. This allows us to construct two indepen-

dent solutions to the Bianchi II WDW equation, one for each of the two possible

values of x1± and sum them up to obtain

Ψ =
(
e
iβ−B

2 + e
1
2
i
√

3β+B
)
e

(
1
12

(
72Λe4α−2(

√
3β−+β+)−e2(α+

√
3β−+β+)+6α(B+2)−3iB(β−+

√
3β+)−6(

√
3β−+β+)

))
.

(11.40)

These solutions non-trivially depend on the ordering parameter. When B = 0

these solutions are real, otherwise they are complex. We plot them for three different

values of α in 11.3 and will discuss them in detail towards the end of this chapter.
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(a) α = −1 Λ = −1 B=1 (b) α = 0 Λ = −1 B=1

(c) α = 1
2 Λ = −1 B=1

Figure 11.3 Plots of (11.40) for |Ψ|2 for different values of α.

11.5 Closed Form ‘Excited’ States Of The Λ 6= 0

Bianchi II Wheeler DeWitt Equation

The author was able to find the following φ0 for the case when only a cosmological

constant is present.

φ5
0 :=

(
e

1
3(3β+−

√
3β−)

)m1
(

48Λe6α−4
√

3β− + e4(α+β+)
)m2

. (11.41)

This φ0 suggests that the ‘excited’ states of the quantum Bianchi II models when

a cosmological constant is present have some interesting properties. When Λ > 0

our ‘excited’ states are scattering states because none of the terms exponentiated by

our graviton excitation numbers m1 and m2 vanish for any real values of the Misner

variables. However when Λ < 0 the terms associated with m1 don’t vanish, while the

term exponentiated bym2 does vanish for real values of the Misner variables. Thus for

Λ < 0 our m1 term can be any real number, while m2 is restricted to being either zero
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(a) α = −1 Λ = −1 B=0
(b) α = 0 Λ = −1 B=0

(c) α = −1 Λ = −1 B=0 (d) α = 0 Λ = −1 B=0

Figure 11.4 Plots of (11.42) when |ΨExcited|2 for various values of α when m1 = −3
and m2 = 1.

or a positive integer. The ‘excited’ states for the quantum Bianchi II models when

Λ < 0 are hybrid scattering/bound states. This property is shared with the quantum

Bianchi VIII models [40], which the author studied as well. The higher order φ5
k terms

in principle can be found by solving the rest of the transport equations. However, due

to S5
(0) possessing two terms with different α dependence, it is more difficult to solve

these transport equations as opposed to the ones we encountered earlier. The author

in trying to solve the φ5
1 terms computed an unenlightening integral expression which

we will omit. The plots we will show will be leading order in φ ‘excited’ states.

To construct our graphs we will set m1 = −3 and m2 = 1 and graph the modulus

squared of the following wave function

ΨExcited =
10∑
m=1

(
φ5

0

)m
Ψ, (11.42)

where Ψ is our exact wave function (11.40). We will also graph cross sections of

our 3D plots when β+ = 0.
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11.6 Non-Commutative Quantum Bianchi II With

Matter Sources

In this section we shall study the quantum non-commutative Bianchi II models when

an aligned electromagnetic field and stiff matter are present. To do so we shall

use the following deformation of the ordinary commutation relations between the

minisuperspace variables

[αnc, β+nc] = iθ1, [αnc, β−nc] = iθ2, [β−nc, β+nc] = iθ3. (11.43)

This type of deformation of the configuration or phase space of a finite dimensional

theory is employed in non-commutative quantum mechanics [30, 43, 44]. The non-

commutative quantum Bianchi II models with stiff matter were thoroughly investi-

gated in [7]. In this section we will follow their methodology and extend their results

by including an aligned electromagnetic field.

The purpose of imposing these non-commutative relations on the minisuperspace

of our Bianchi II models is to obtain a better understanding of how non-commutative

space-time could have affected cosmological evolution in the early universe. Many

theories of quantum gravity predict that space-time itself manifests some form of

discretization. One way for this supposed discretization to manifest mathematically

is in the coordinates (t, xi) of space-time possessing non vanishing commutation re-

lations. For example in String Theory/M-Theory a non-commutative gauge theory

emerges when describing the low energy excitations of open strings in the presence of

a Neveu-Schwarz constant background B field [86, 213]. As a result there has been a

renewed interest in the study of non-commutative space-times.

A non-commutative space-time version of general relativity has been proposed [94]

and in theory one can use it to directly study the full impact that non-commutative

space-time has on classical cosmological evolution. However formulating general rela-
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tivity in a non-commutative space-time results in a theory that is incredibly non-linear

and very difficult to work with mathematically. A way to obtain some understanding

of how non-commutative space-times can affect cosmology was proposed by [93]. In-

stead of directly studying the cosmology of a theory of gravity with a non-commutative

space-time one can study a cosmology with deformed minisuperspace commutative

relations as presented in (11.43). The justification for this can be summed up by

saying that it is reasonable to expect that a full noncommutative space-time the-

ory of gravity would result in some effects which can be captured by introducing

non-commutativity in the minisuperspace of its homogeneous cosmologies. Thus by

studying non-commutative minisuperspace homogeneous cosmologies we are study-

ing an effective toy model of a non-commutative theory of gravity with its degrees of

freedom reduced by imposing the symmetries present in homogeneous space-times.

To begin the process of solving the non-commutative Bianchi II WDW equation

we will implement the following Seiberg-Witten map [213]

αnc → α− θ1

2
pβ+−

θ2

2
pβ− , β−nc → β−+

θ2

2
pα−

θ3

2
pβ+ , β+nc → β+ +

θ1

2
pα+

θ3

2
pβ− .

(11.44)

Doing so results in the following modified potential term for (11.3) when Λ = 0

U (Ω, β±) =
1

12
e

4
[
α+β++

√
3β−− iθ1

2

(
∂
∂α
− ∂
∂β+

)
− iθ2

2

(√
3 ∂
∂α
− ∂
∂β−

)
+

iθ3
2

(√
3 ∂
∂β+
− ∂
∂β−

)]

+ 2b2e
2
[
α+β++

√
3β−− iθ1

2

(
∂
∂α
− ∂
∂β+

)
− iθ2

2

(√
3 ∂
∂α
− ∂
∂β−

)
+

iθ3
2

(√
3 ∂
∂β+
− ∂
∂β−

)]
+ ρ.

(11.45)

After applying the following coordinate transformation

ξ = Ω + β+ +
√

3β−, κ = Ω +

√
3

3
β−, λ = Ω− 2β+ +

√
3β− (11.46)
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and applying the generalized Baker-Campbell-Hausdorff formula

eη(Â+B̂) = e−η
2[Â,B̂]eηÂeηB̂ (11.47)

we obtain the following WDW equation

−B∂Ψ

∂ξ
− 3

∂2Ψ

∂ξ2
+

2

3

∂2Ψ

∂κ2
−B∂Ψ

∂κ
− 6

∂2Ψ

∂λ2
−B∂Ψ

∂λ

+
1

12
e4ξe−2iθ1

∂
∂κ e−6iθ1

∂
∂λ e

−4
√

3
3

iθ2
∂
∂κ e−

2
√

3
3

iθ3
∂
∂κ e−6

√
3iθ3

∂
∂λΨ

+ 2b2e2ξe−iθ1
∂
∂κ e−3iθ1

∂
∂λ e

−2
√

3
3

iθ2
∂
∂κ e−

√
3

3
iθ3

∂
∂κ e−3

√
3iθ3

∂
∂λΨ + ρΨ = 0.

(11.48)

To solve this equation we will insert this ansatz into it, Ψ = f(ξ)eic1κeic2λ where

c1 and c2 are constants while keeping in mind that eiθ ∂
∂x

eηx ≡ eiηθeηx, resulting in

f(ξ)
(
24b2e2e+2w + e4e+4w + g

)
− 12

(
B
∂f

∂ξ
+ 3

∂2f

∂ξ2

)
= 0

w =
1

2

(
θ1(c1 + 3c2) +

2θ2c1 + θ3c1 + 9θ3c2√
3

)
g = −12iBc1− 12iBc2 + 12ρ− 8c12 + 72c22.

(11.49)

The solution to this equation (11.49) is the following

w = e
1
12(−2B(ξ+w)−e2(ξ+w)) (e2(ξ+w)

)√B2+g
12

f(ξ) = (w)U

(
b2 +

1

12

(√
B2 + g + 6

)
,
1

6

(√
B2 + g + 6

)
,
1

6
e2(ξ+w)

) (11.50)

where U is the hypergeometric U function. There is a generalized Laguerre polynomial

which also satisfies (11.49) but it yields solutions which do not appear to be physical.

Using our ansatz, (11.46), and (11.50) one can express the solutions for the non-

commutative Bianchi II WDW equation (11.3 11.45). In what follows we will set

θ2 = θ1, θ3 = θ1, ρ = 0. We will present a series of plots for our non-commutative
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(a) α = −2 θ1 = 1.5 B = 0 b = 0 (b) α = −2 θ1 = 1.5 B = 0 b = 4

Figure 11.5 These plots of
∣∣∣∫∞−∞ e−1.5(c1−1.3)2

eic1κf(ξ)dc1
∣∣∣2 represent a small subset of

the wave functions we can obtain if we manipulate the non-commutative parameters
θi.

wave
∣∣∣∫∞−∞ e−1.5(c1−1.3)2

eic1κf(ξ)dc1
∣∣∣2 function and discuss them at the end of this

chapter.

11.7 Quantum Vacuum Bianchi VIIh=0 ‘Ground’ And

‘Excited’ States

Moving on to the Bianchi VIIh=0 models, these two solutions were found for its

Euclidean-Signature Hamilton-Jacobi equation(6, 14) by [186]

S6
(0) =

1

3
e2(α+β+) cosh

(
2
√

3β−

)
(11.51)

S7
(0) =

1

3
e2(α+β+) cosh

(
2
√

3β−

)
+ x1e2α+2β+ (11.52)

where x1 is an arbitrary constant.

Starting with (11.51) if we insert it into (8.52) and employ the methodology that

we used to solve the Bianchi II S(1) equation (11.7) we obtain
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S6
(1) = αx1 +

1

12
log
(

sinh
(

2
√

3β−

))
(B + 2x1− 2x2 + 6) + β+x2 (11.53)

where both x1 and x2 are arbitrary constants. Inserting this term into the source

term of equation (8.53) results in an expression which vanishes when our arbitrary

constants equals

{
x1 =

1

24

(
−B2 − 12B− 36

)
, x2 =

1

24

(
36− B2

)}
. (11.54)

This allow us to write down the following solution to the Bianchi VIIh=0 WDW

equation

Ψ = e(
1
24

(B+6)(a(B+6)+β+(B−6))− 1
3
e2(α+β+) cosh(2

√
3β−)). (11.55)

This solution was first reported by [186].

For the Bianchi VIIh=0 ‘excited’ states the author found the following solutions to

the φ0 equations for (11.51)

φ6
0 := e6m2α−6m1β+ sinh

(
2
√

3β−

)m1+m2

. (11.56)

Due to sinh
(
2
√

3β−
)
vanishing we must restrict the values of m1 and m2 so that their

sum m1 +m2 always equals a positive integer or zero. Using (11.56) we can construct

semi-classical ‘excited’ states. We can find closed form solutions to the Bianchi VIIh=0

WDW equation by inserting φ6
0Ψ into it, where we used (11.55) for our Ψ. By doing

so we will find that it is satisfied when m1 = 1
216

(
B2 + 84

)
and m2 = 1

216

(
132− B2

)
.

This leads to the following closed form solution
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Ψexcited = sinh
(

2
√

3β−

)
e(

1
72(−24e2(α+β+) cosh(2

√
3β−)+α(B(B+36)+372)+β+(B2−276))).

(11.57)

This solution has a strange property though. The potential for the Bianchi VIIh=0

models is invariant under the reflection of β− → −β− while our ‘excited’ state isn’t.

This is another instance [37] in which the WDW equation admits solutions which

do not respect the symmetry of its potential. However |Ψexcited|2 does preserve the

symmetry of the potential. This is important because if all of our observables are

dependent upon |Ψexcited|2, then the symmetry which is broken by (11.57) may not

bear any practical consequences. Nonetheless the physical implications of symmetry

breaking solutions of the Wheeler DeWitt equation is a topic which deserves to be

investigated more.

Furthermore it is difficult to obtain an ‘excited’ state wave function which behaves

in a way which is easy to interpret qualitatively. Thus we had to pick a specific value

of the operator ordering parameter B ≥ 23 to obtain solutions which are intuitive to

interpret. The difficulty in computing ‘excited’ states for the vacuum Bianchi II and

VIIh=0 in comparison to the Bianchi IX [20] and Taub models [39] may be a result of

topological differences between their space-times or in mathematical difference of the

Bianchi Lie algebras which define them.
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(a) α = −1 B=23 (b) α = 1
2 B=23

Figure 11.6 Plots of (11.57) for |Ψexcited|2 for various values of α for a specific value
of the ordering parameter.

11.8 Quantum Vacuum Bianchi VIIh=0 ‘Ground’ States

With Matter Sources

For the case when only an aligned electromagnetic field and stiff matter are present

the author found the following solution to the Euclidean-signature Hamiliton Jacobi

equation corresponding to (11.3)

S7
(0) =

1

6

(
3b2

(
−2α +

√
3β− + β+

)
+ 2e2(α+β+) cosh

(
2
√

3β−

)
+

2ρ(α + β+)

b2

)
.

(11.58)

Inserting this expression in (8.52) and seeking an S(1) which is linear in the Misner

variables results in

S7
(1) =

2β+

(
3b4 − ρ

)
3b4 −

α
(
3b4B + 6b4 + 4ρ

)
6b4 . (11.59)

If we insert (11.59) into the source term of (8.53) we obtain 8ρ
b4
− B2

2
− 6 = 0 which

vanishes when our ordering parameter equals B =
2
√

4ρ−3b4

b2
. This allow us to write

down the following solution which satisfies (11.3) when Λ = 0 and B =
2
√

4ρ−3b4

b2
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Ψ = e

(
1
6

(
−3b2(−2α+

√
3β−+β+)−2e2(α+β+) cosh(2

√
3β−)−

2ρ(α+β+)

b2

)
+

2ρ(α+β+)

3b4
+α
√

4ρ−3b4

b2
+α−2β+

)
.

(11.60)

In order for our ordering parameter to be real we require that ρ ≥ 3
4
b4. Nonetheless

if one were interested in studying an asymptotic Bianchi VIIh=0 wave function, then

they may be content to only include the first two terms of the expansion which we

have calculated which doesn’t require them to impose the stringent requirement that

ρ ≥ 3
4
b4.

To accommodate a cosmological constant we have to make our stiff matter term

ρ = 3b4, which results in the following S(0)

S8
(0) = −3Λe4α+2

√
3β−−2β+ +

1

3
e2(α+β+) cosh

(
2
√

3β−

)
+

1

2
b2
(√

3β− + 3β+

)
.

(11.61)

Using the alternative operator ordering presented in [96] we can satisfy the Bianchi

VIIh=0 WDW equation when a cosmological constant, aligned electromagnetic field

and stiff matter are present using just (11.61). However for our purposes we will only

consider semi-classical wave functions ψ = e−S(0) of the form dictated by (11.3). If we

only consider the Bianchi VIIh=0 models with a cosmological constant our S(0) term

simplifies to

S9
(0) =

1

3
e2(α+β+) cosh

(
2
√

3β−

)
− 3Λe4α±2

√
3β−−2β+ . (11.62)

The ± signs of the β− term in (11.62) is a result of the fact that the Bianchi VIIh=0

potential when only a cosmological constant is present is invariant under reflection of

β− → −β−. Via (8.52) and (11.62) we find the following S(1) term
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S9
(1) =

1

2
α(−B− 2) + 2β+. (11.63)

Using the methodology that we have presented throughout this chapter we can show

that a closed form solution to the WDW equation exists when our ordering parameter

equals B = ±2
√

3i using just (8.53), (11.62), and (11.63).

In order to determine how our aligned electromagnetic field effects our quantum

Bianchi VIIh=0 wave functions we will compare the semi-classical wave functions con-

structed from (11.61) and (11.62). We can group average over the reflection symmetry

β− → −β− present in the Bianchi VIIh=0 potential when only Λ is present to obtain

Ψ =
(
e3Λe4α+2

√
3β−−2β+

+ e3Λe4α−2(
√

3β−+β+)
)
e−

1
3
e2(α+β+) cosh(2

√
3β−). (11.64)

In order to see what effects an aligned electromagnetic field has on our Bianchi

VIIh=0 wave function we will group average the semi-classical wave function con-

structed using (11.61) despite the fact that the addition of an aligned electromagnetic

field breaks the reflection invariance in β− of the potential. Doing so gives us (11.65).

We are doing this so we can make a clear comparison between what happens when we

just have a cosmological constant vs when we have both a cosmological constant and

an aligned electromagnetic field. Specifically we want to highlight how the aligned

electromagnetic field affects the anisotropy present in the universes represented by

our wave functions. The actual wave function which has an aligned electromagnetic

field would only have one branch present.

Ψ =
(
e3Λe4α−2(

√
3β−+β+)+

√
3β−b2

+ e3Λe4α+2
√

3β−−2β+
)
e(

1
6(−2e2(α+β+) cosh(2

√
3β−)−3b2(

√
3β−+3β+)))

(11.65)
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(a) α = 0 Λ = −1 b = 0 (b) α = 0 Λ = −1 b = 2
5

Figure 11.7 Plots of (11.65) for two different values of the electromagnetic field b.
Due to the aligned electromagnetic field breaking the reflection symmetry under β−
of the Bianchi VIIh=0 potential the actual wave function only has one ridge present
as opposed to two, as is shown in figure 20(b). Both ridges are plotted so we can
better compare the two wave functions.

11.9 Discussion

The plots for our ‘ground’ state asymptotic wave functions in figures (11.1a-11.1c)

depict a wave travelling down the β+ axis in the negative direction while the scale

factor eα grows. As our clock α "ticks" forward in "time", this universe’s geometric

probability density will be peaked at an ever increasing negative value of β+ and a

roughly constant value of β−. A variety of other asymptotic wave functions which

behave differently could also be constructed using the methods outlined in III.

Moving on to our Bianchi II solutions with matter sources we notice in figures

(11.2a-11.2b) that the aligned electromagnetic field (b2) causes our wave function to

travel in the negative β− direction. It was noted in [162] that magnetic fields within

the context of LRS Bianchi I quantum cosmology induce anisotropy. This is clearly

being mirrored for our particular case of the quantum Bianchi II models. However,

the opposite can happen as well if our wave functions are centered on the positive

portion of the β− axis because increasing the strength of the aligned electromagnetic

field would initially decrease anisotropy by making our β− approach the origin for

certain values of α which we take to be our internal clock. There is mathematical
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evidence that this dual nature of the aligned electromagnetic field is a generic feature

possessed by wave functions computed using this method as can be seen in the Bianchi

IX models [40] and Taub [39] models. If an aligned electromagnetic field was capable of

doing something similar in our early universe then this dual behavior might have been

responsible for producing some recognizable signature in the CMB. More research into

what signatures a primordial magnetic field could have imparted on the CMB within

the context of quantum cosmology is needed. Nonetheless these findings are a good

start.

In addition to inducing anisotropy the electromagnetic field also makes our wave

functions thinner and thus more sharply peaked. This effect of making the wave

function of the universe more sharply peaked could have played an important role in

the early universe by causing quantum states which otherwise would be geometrically

fuzzy, such as those whose wave function possesses multiple peaks [39, 40] to condense

to a far more sharply defined state with one narrow central peak. In other words a

primordial electromagnetic field might have played an important role in the early

universe by facilitating a phase transition from a quantum universe to one that could

be adequately described using classical mechanics.

One last feature to point out about the aligned electromagnetic field is that its

effects rapidly diminish as α grows. As can be seen in figures 11.2c and 11.2d increas-

ing the strength of the aligned electromagnetic field has milder effects on the wave

function then it did in figures 11.2a and 11.2b. This provides a quantum explanation

for why an electromagnetic field might have played a large role in the early universe,

but played a diminishing role as it grew in size.

For figure 11.3c, in order for it to be of sufficient quality the author had to multiply

the wave function by 1020, in actuality its magnitude is far less than the wave functions

in figures 11.3a and 11.3b. This is to be expected because a negative cosmological

constant naively should act as a powerful force of attraction which resists the ten-
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dency of a universe to grow in size. We say naively because as previously mentioned,

recent work [111, 112, 172] has been done showing that phenomena expected of clas-

sical cosmologies with a positive cosmological constant can be derived from certain

quantum cosmological models which possess a negative cosmological constant.

Our wave function (11.40) (Λ < 0) decaying as α grows indicates that the likeli-

hood that this universe will reach a state when α >> 0 is low. Another feature of our

figures (11.3a-11.3c) is that as α grows they become thinner. This shows that as α

grows larger the universe that these wave functions are supposed to represent become

somewhat less fuzzy. Geometric fuzziness is a feature associated with the uncertainty

relation of our minisuperspace as a result of quantum mechanics. As a result the

larger a universe becomes the less we expect those quantum features of fuzziness to

be present.

Our leading order ‘excited’ states when Λ 6= 0, figures (11.4a-11.4d), can be inter-

preted similarly to our other states. One noticeable difference is that their geometry

is more "fuzzy" because the wave functions which describe this universe have mul-

tiple ridges/peaks. This is most clearly illustrated in the α = 0 case where we can

see three distinct ridges, one large ridge and two smaller ridges. Figure 11.4d further

shows this. The potential geometries this Bianchi II universe can take on are located

on one of these three visible ridges. As α grows those ridges appear to fuse and the

geometries become slightly more "sharp", while also becoming more unlikely to occur

due to the magnitude of the wave function decaying. It is also possible that each

one of those ridges represents a "fuzzy" geometric state that our quantum Bianchi II

universe can tunnel in and out of.

For the non-commutative quantum Bianchi II models our wave function behaves

similarly to other non-commutative quantum cosmological models [93, 218] in the

sense that multiple peaks are present when θi 6= 0, and only one defined peak is

present when θi = 0. These multiple peaks indicate that non-commutativity in the
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early universe could facilitate the creation of many possible states which a quantum

universe can tunnel into.

When we include our aligned electromagnetic field in figure 11.5b it doesn’t have

much of an effect. However, because we simplified our wave function by setting all

three non-commutative parameters θi equal to each other, we only looked at a small

subset of possible quantum non-commutative universes. There very well could exist

a region in θ space such that a primordial electromagnetic field has a profound effect

on what states the early universe can tunnel into. Studying the full effects of both

non-commutativity and primordial electromagnetic fields in the early universe could

shed much light on how our homogeneous and isotropic universe came to be.

Our vacuum Bianchi VIIh=0 ‘excited’ states (figures 11.6a-11.6b) are two Gaussian

like peaks which travel in the negative β+ direction. Thus for a specific value of α

our wave function represents a universe which can tunnel in between two relatively

defined anisotropic states. This behavior is unusual if compared to that of other

[20, 39] ‘excited’ states computed using this method. Usually for α < 0 an ‘excited’

state possesses multiple peaks that each represent a geometric configuration a universe

can tunnel in and out of. However when α grows large, α >> 0, those peaks merge

into a single peak. This process can be interpreted as one in which a spatially small

universe which is quantum in nature evolves into a spatially larger universe which

behaves more in line with classical physics. This merger of the peaks never happens

for our Bianchi VIIh=0 ‘excited’ state, the two peaks remain separate for all values of

α.

This difference in how the ‘excited’ states of these models behave may be accounted

for by the different properties of the groups that the Bianchi VIIh=0 and IX models

are based on. The Lie algebra corresponding to the Bianchi VIIh=0 models is the Lie

algebra of the group of isometries of the plane, while the Lie algebra of the Bianchi IX

models is associated with the rotational SO(3) group associated with the sphere. The
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mathematical differences between these models underlining groups or their topological

differences may account for the different behavior of their ‘excited’ states for large

α. By further comparing and contrasting these models, we can learn more about

how ‘excited’ states are defined within the context of this method and in quantum

cosmology.

For our quantum Bianchi VIIh=0 models with matter sources (figures 11.7a-11.7b)

it can be seen that when the aligned electromagnetic field b2 is zero our wave function

is peaked around β+ = 1
2
and β− = 0. However when our aligned electromagnetic

field increases in strength the ridges overtake the aforementioned peak and our wave

function represents a fuzzier and more anisotropic universe. Making a wave function

of the universe less geometrically defined is another potential effect that an electro-

magnetic field can have. Within the context of non-commutative quantum cosmology

this could mean creating additional peaks which otherwise wouldn’t be present.
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Chapter 12

Definitive Concluding Remarks:

Where The Future Lies

The work documented in this dissertation contributes towards a much wider project

that is occurring in physics in which Euclidean signature systems are being studied

to test the validity of a multitude of conjectured dualities that point to a relationship

between gravity and gauge theories. The AdS/CFT correspondence that we discussed

earlier is an example of gauge/gravity duality. An important feature of the AdS/CFT

correspondence is that it is also a strong/weak correspondence. This means that the

observables of a strongly interacting gravitational theory can be computed using a

weakly coupled perturbative CFT. On the other hand the observables of a strongly

coupled CFT can be obtained by using a weakly interacting gravitational theory. A

systematic approach for doing this is currently being investigated, but for a select

few problems, [3, 147, 211] this strong/weak correspondence was able to be put into

practice and generate some novel results.

This strong/weak correspondence is expected to be a generic feature of gauge/gravity

duality. Thus other conjectured manifestations of gauge/gravity duality which are

not limited to CFTs or AdS space are also expected to share this feature. It is this
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strong/weak correspondence in gauge/gravity duality that dictates the nature of the

calculations which are presently performed in holographic [24, 42, 92, 167] cosmology.

As a result of the intersection between QFT and gravity, and the two-sidedness of

gauge/gravity duality, there are a multitude of avenues for testing the validity and

robustness of these conjectures. One such avenue is through lattice simulation [154].

LFT can be used to study correlation functions of non-perturbative quantum field

theories in their strong coupling limits. From gauge/gravity duality, these strongly

coupled quantum field theories can in theory be related to some weakly interacting

gravitational theory. In terms of holographic cosmology, one can relate the observables

of a strongly coupled QFT to the cosmological observable known as the CMB power

spectrum for the values of its spherical harmonic decomposition, `, which preserve

the imprint of phenomenon from an epoch of the pre-recombination universe in which

gravity can be considered a weakly interacting theory.

Using standard LFT methods, this investigation into holographic cosmology is

limited to strongly coupled QFTs on flat backgrounds. However, with the QFE,

we can extend the scope of strongly coupled QFTS that can be considered. Using

the QFE we can study strongly coupled QFTs on curved Riemannian manifolds and

see if they are related to any known weakly interacting gravitational theories. By

taking strongly coupled QFTs which have already been shown to be dual to some

cosmological models and studying them on a curved Riemannian manifold we can

assess the robustness of these dualities. Studying such strongly coupled QFTs on

Riemannian manifolds may also give insights into the Euclidean domain-wall/QFT

correspondence that is commonly employed in holographic cosmology. Testing the

validity of these dualities for different signatures and geometries is vital towards fully

understanding their implications.

A future project that can be undertaken using the QFE is to assess the robustness

of the duality between (2+1) quantum gravity and 2D Liouville field theory. If one
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Wick rotates (2+1) quantum gravity they get a Euclidean 3-dimensional model of

quantum gravity. Using the QFE we can further assess the duality of this Euclidean

signature 3-dimensional model of quantum gravity and Liouville field theory on a

curved compact 2D manifold. We can also use the results we directly reported on in

this dissertation to construct a LFT on an 3D Riemannian manifold and try to estab-

lish a correspondence between an 3D strongly coupled QFTs and weakly interacting

theories of gravity.

Because we detailed how to discretize an S3, we can generalize the lattice peri-

odization that was utilized to formulate [56] LFTs on R× S2 to construct LFTs on

R× S3 with metric

ds2
4−cyl = dt2 + a2dψ2 + a2 sin2 ψ(dθ2 + sin2 θdφ2), (12.1)

where a is the radius of S3 and the Weyl factor associated with this metric (12.1) is

Ω2
4−cyl = e−2t/a. Doing so opens up the possibility that we can investigate a plethora

of interesting 4D non-abelian gauge theories. The relationship between non-abelian

gauge theories and gravity has been greatly reinforced by double copy theory [41].

Using the QFE we can explore a variety of scattering amplitudes associated with

4D non-abelian gauge theories on curved manifolds. By studying perturbative non-

abelian gauge theories on curved manifolds we can assess if the central results pertain-

ing to double copy theory are valid if the gauge theory is both formulated on R× S3

and is Euclidean-signature. Studying the robustness of the double copy theory us-

ing the QFE can shed a lot of light on gauge/gravity duality. If double copy theory

persists for Euclidean non-abelian gauge theories on curved manifolds then we may

be able to investigate it further by studying the scattering amplitudes of additional

non-abelian gauge theories besides N = 4 super-Yang-Mills theory. Doing so can

help us better understand how to relate these theories to gravity by systematically
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modifying their color components.

It might be possible to relate QFE results for S3 to Lorentzian signature QFTs in

curved space-time. As we previously discussed in detail, the 4D space-time metric,

gab, can be decomposed into a spatial metric for an 3D Riemannian surface and two

non-dynamical gauge components, the lapse, N , and the shift, Na. From this decom-

position, it was shown that Lorentzian signature general relativity can be understood

as the time evolution of a Euclidean signature spatial metric, hab(t), on a fixed mani-

fold, Σ0. Using this interpretation of general relativity and the gauge freedom present

in both the lapse and the shift, we may be able to formulate our lattice field theories

on 4D Lorentzian signature space-times in such a way that they decompose into two

portions, one which depends only on the gauge freedom of general relativity and the

other which depends solely on the spatial metric. The portion which consists of the

spatial metric and the decomposed field theory on it can be solved via the QFE and

the portion associated with the gauge components of the metric, gab, may be handled

via methods that don’t have to contend with the general issue of discretizing a curved

Lorentzian manifold. For more general calculations back reactions can be taken into

account using the QFE by introducing some evolution into the Riemannian metric

itself.

The case can be made that a considerable portion of theoretical physics is currently

devoted to the task of clarifying the meaning and systematizing any of the correspon-

dences which are labeled by arrows that appear in 12.1. As we just discussed, the

QFE can contribute towards a better understanding of the two arrows in 12.1 which

represent gauge/gravity duality. On the other hand, the Euclidean-signature semi-

classical method can potentially aid in both understanding gauge/gravity duality and

domain-wall/cosmology correspondence [76, 217].

Even though we exclusively solved the Lorentzian signature WDW equation, we

did so by solving equations one usually obtains by applying traditional semi-classical
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Figure 12.1 A proposed approach for holographic cosmology. It begins with finding
a domain-wall space-time which is related to the Lorentziain signature cosmological
model originally in question. This corresponding domain-wall space-time may possess
[217] Euclidean signature. From there some form of gauge/gravity duality is used to
find a QFT which is dual to the domain-wall. If the domain-wall has Euclidean sig-
nature then this dual QFT is defined on a Euclidean signature boundary. From there
observables in the domain-wall space-time can be computed using its dual QFT. After
performing the necessary calculations the results can be analytically continued and
be shown through gauge/gravity duality to be the results one would obtain through
a QFT dual to the original cosmological solution in question.
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methods to the Euclidean signature WDW equation. Thus the results presented in the

second part of this dissertation are a two for one deal. By using Euclidean equations

to solve the Lorentzian signature WDW equation we have also found solutions to the

Euclidean-signature WDW equation. One can take any of the many new S(0) and φ0

terms that we found and construct the following WKB semi-classical wave functions

for the associated Euclidean-signature WDW equation

ΨEucl = φ0e
iS(0) . (12.2)

Many calculations in holographic cosmology were conducted using a single per-

turbed scalar field with a background FLRW model. However, if holographic cos-

mology is ever going to become an all encompassing approach to cosmology, the

incorporation of more general anisotropic space-times, such as the Bianchi models,

is crucial. Using our results for the quantum Taub models with matter sources we

can construct an interesting Euclidean anisotropic quantum cosmological model and

study it in the hopes of better understanding what type of Euclidean QFT would

be dual to this model. The same investigation can also be done for the Euclidean

vacuum Bianchi IX models using the results that were found earlier by J.Bae. Test-

ing the robustness of gauge/gravity duality using more general anisotropic theories

of cosmology can only allow us to develop a more complete understanding of what

holography really means.

In addition to further contributing towards the study of gauge/gravity duality

by allowing us to better understand certain Euclidean-signature gravitational models

whose dual gauge theories we can later search for, the Euclidean signature semi-

classical method can also help us better understand the quantum aspect of domain-

wall/cosmology correspondence. It was recently shown [112] that a classical history

that corresponds to a Lorentzian signature dS universe can be extrapolated from
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a quantized Euclidean signature AdS domain-wall through analytical continuation.

For this particular example both the domain-wall and cosmology were isotropic and

homogeneous. If the analogous calculation can be done for an anisotropic Euclidean

domain-wall our modified semi-classical method can be a powerful tool to further

assess this correspondence.

In this dissertation, the author has showcased a multitude of original results which

are highly non-trivial within the context of the broader projects his two advisers are

working on. Those projects, the QFE and the modified/Euclidean-signature semi-

classical method, are highly original and significant endeavors, which have the po-

tential to shed much light on important aspects of physics. Beyond the potential

applications to gauge/gravity duality and holography more applications for these two

methods are given in the introductory section.

To recap the work that the author did. We first furnished a conformal mapping

between R3 and a general 3D spheroid. Using that mapping and direct Monte-Carlo

integration we obtained estimates of the fourth-order Binder cumulant of the critical

3D Ising model on an S3 and a 3-ball with no boundary. The Binder cumultant is an

important observable that one can compute in a CFT and we plan to compare it to

results obtained from applying the QFE to φ4 theory on an S3 at its Wilson-Fisher

critical fixed point. To move towards that goal, we uncovered a way to construct a

Delaunay simplicial approximation to S3 while preserving its largest discrete isometry

group and found out how to obtain the correct magnitude, and signs of the weights

which are assigned to the links and vertices that make up this simplicial approxi-

mation. We then ordered the simplicies in such a way that the boundary condition

∂K = 0 for our simplicial complex is satisfied.

Afterwards we proved the existence of an infinite number of smooth and globally

defined ‘excited’ states for the Taub models when a cosmological constant is present.

It was then shown that an asymptotic solution exists for the ‘no boundary’ Taub
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models. From there we found new semi-classical solutions to the Bianchi IX models

when both a cosmological constant, aligned electromagnetic field and stiff matter were

present. We did similar calculations for the Bianchi II and VIIh=0 models. By doing

so we showed that the Euclidean-signature semi-classical method can be applied to

more general situations than it was previously applied to in the past and thus we

were able to accomplish furthering the framework and assessing it.
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Appendix

12.1 Making Contact With Physical Cosmology

The formalism of quantum cosmology we presented and the matter sources we in-

cluded to originally assess, and further develop the Euclidean-signature semi-classical

method can be seen as representing a first step towards using this method to investi-

gate subjects which are of a great deal of interest to cosmologists. For example, there

has been a significant effort to constrain the magnitude of hypothesized primordial

magnetic fields (PMFs) which could have seeded the early universe, thus enabling the

formation [49, 151, 236] of the micro-Gauss strength magnetic fields we observe in

galaxies [104, 149, 236] today. These hypothesized PMFs may have been generated

during the inflationary [196, 225, 226] epoch or even earlier as a result of phase tran-

sitions [119, 195, 228] occurring at the GUT epoch; other mechanisms [109, 214] for

magnetogenesis have been proposed as well. Trying to constrain the strength of these

theorized PMFs coincides with trying to detect and determine which signatures they

can induce in the CMB.

There are two mains routes through which PMFs can induce distinctive signatures

in the CMB. One route is through their stress energy tensor altering the gravitational

perturbations of the pre-recombination universe, thus modifying the signatures that

we see from baryon acoustic oscillations (BAO). Another route is through the Lorentz

force influencing the behavior of the pre-recombination plasma. These two broad
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effects of the PMFs can manifest themselves in a plethora of ways as a result of

the turbulent and ever changing conditions of the early universe. These effects will

manifest themselves differently than those originating from standard cosmological

perturbations. One reason for this is that the stress energy tensor of the PMFs

induces scalar, vector, and tensor perturbations in which the vector perturbations

don’t rapidly decay. Another reason is that perturbations of magnetic origins are not

suppressed by Silk dampening. One more difference is that their effect on the CMB

temperature and polarization spectrums are most prominent on small scales. Thus

high resolution CMB data is the best way to constrain the strength of PMFs.

The nature of the signatures that PMFs would produce are dependent upon the

strength and form they possess. In the scientific literature PMFs have mainly taken

on two forms, a homogeneous aligned field [2, 130] similar to the ones we introduced

in our quantum Bianchi models and a stochastic background, which is treated on an

equal footing to other stochastic perturbations. The stochastic PMFs can take on

many forms such as being helical, non-helical, scale invariant, etc.

By exploring the anisotropies present in the thermal and polarization power

spectrums of the CMB using the latest Planck and SPT data the strength of a

non-helical PMF at the time of recombination was recently constrained [168] to be

B1Mpc < 1.52nG at the 95 percent C.L. The 1Mpc refers to the comoving field am-

plitude at a scale of 1Mpc and is obtained from smoothing

λ = 1Mpc,

B2
1Mpc =

∫
d3k

(2π)3
e−k

2λ2

PB(k),
(12.3)

the power spectrum of the PMF, PB(k), which is obtained from the two-point function

of the PMF expressed in Fourier space

〈
Bi(k)B∗j (k′)

〉
= δD (k − k′)

(
δij − k̂ik̂j

)
PB(k). (12.4)
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This constraint was obtained by taking into account two types of anisotropies that

PMFs can induce in the CMB spectrums, passive and compensated. Passive con-

straints are prominent on super- and sub-cosmic horizon scales prior to neutrinos

decoupling from the photon-baryon fluid. They arise from the Lorentz force of the

PMFs affecting evolution of the photon-baryon-neutrino fluid before decoupling and

due to its stress-energy tensor. These anistropies persist after neutrino decoupling in

the form of a constant suppression of the amplitudes of the inflationary non-magnetic

perturbations. Thus the presence of a PMF would induce a distinctive signature in

the CMB through these passive modes.

Compensated modes are generated after neutrinos decouple from matter. They

are called compensated because the decoupled neutrinos act as an independent mat-

ter source which can induce anisotropy in the very early universe which negates or

compensates for the anisotropy generated by the PMF on super-horizon scales. Com-

pensated modes can induce anisotropies on sub-horizon scales by altering the velocity

of the baryon fluid via the Doppler effect which is why the study we cited [168] went

to large ` in order to constrain the PMF using high resolution CMB data.

Another signature of a PMF would be non-gaussianity [59] in the modes which

make up the CMB power spectrum. The presence of non-gaussianity means that

the modes are correlated with each other and that higher statistical moments can

be extrapolated from the CMB anisotropies. One such quantity is the third order

statistic known as the CMB bispectrum. By using the bispectrum of the polarization

data from the 2015 Planck results, the strength of the PMF was constrained [5] to be

under 5nG depending on the method which was used to analyze magnetically-induced

non-gaussianity.

Far more stringent limits on the magnitude of a particular PMF were obtained by

first showing that one can induce small-scale baryonic density fluctuations in the pre-

recombination universe. These fluctuations result in an inhomogeneous recombination
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event occurring which may alter the large scale CMB temperature anisotropies to a

detectable degree. Using this information and through numerical simulations, the

following bound [127] was set for the strength of a present day remnant of a PMF

integrated over all scales: B < 47pG.

The study of quantum cosmology has the potential to shed further light on PMFs.

This is especially true of PMFs generated during the GUT epoch. The GUT epoch

has a characteristic energy scale of (1016GeV −1017GeV ) while the inflationary epoch

has an energy scale of (1014GeV ). Thus it is expected that the effects of quantum

gravity should manifest more strongly during the GUT epoch than the inflationary

one, which has been the subject of a previous investigation which we will touch

upon shortly. Even though WDW quantum gravity is not the most fundamental

theory of quantum gravity, it is probably a decent description of nature for energies

somewhat less [137] than the Planck scale (1019GeV ). Therefore the author hopes

that quantum cosmology can shed further light on magnetogenesis during the GUT

era. The understanding of quantum cosmology that the author has obtained while

working on his doctoral work can serve as a good basis for beginning this venture.

Previous efforts [138] to obtain quantum corrections to the CMB power spectrum

have resulted in corrections which are exceedingly small relative to expected system-

atic errors, such as cosmic variance, which are inherent to cosmological observation.

A popular model to extrapolate quantum corrections from is the flat FLRW model

with a single scalar field and a simple potential which yields chaotic inflation

H0Ψ0(α, φ) =
e−3α

2

[
1

m2
P

∂2

∂α2
− ∂2

∂φ2
+ e6αm2φ2

]
Ψ0(α, φ) = 0. (12.5)

After introducing scalar field perturbations

φ→ φ(t) + δφ(x, t), (12.6)
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and expanding the inhomogeneous modes, δφ(x, t), as a Fourier decomposition

δφ(x, t) =
∞∑
k=1

fk(t)e
ik·x, (12.7)

the following equation can be obtained from (12.5)

[
H0 +

∞∑
k=1

Hk

]
Ψ (α, φ, fk) = 0, (12.8)

where Hk [108, 136] is the Hamiltonian which governs the evolution of the perturba-

tions

Hk =
1

2
e−3α

[
− ∂2

∂f 2
k

+
(
k2e4α +m2e6α

)
f 2
k

]
. (12.9)

Next one can apply the quantum analogue of the slow roll condition, ∂
2ψ
∂φ2 << |V (φ)|,

to (12.8) and obtain the following equation

1

2
e−3α

[
1

m2
P

∂2

∂α2
+ e6αm2

PH
2 − ∂2

∂f 2
k

+
(
k2e4α +m2e6α

)
f 2
k

]
Ψk (α, fk) = 0, (12.10)

where mP is the Planck mass, k is the wave number, and H is the quasi static Hubble

scale during inflation.

Applying the Born-Oppenheimer approximation [135] to this WDW equation re-

sults in a sequence of equations that can be solved in a manner similar to those

generated by the Euclidean-signature semi-classical method. Using WKB time

∂

∂t
:= −e−3α∂S0

∂α

∂

∂α
, (12.11)

these equations can be expressed as sequence of Schrödinger equations with additional

gravitational quantum corrections [204] added on to them at each order. The first

order equation one obtains with this method is exactly the Schrödinger equation

expressed in WKB time. The higher order equations have terms which spoil the
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unitarity of the Schrödinger equation. However the dominant quantum correction to

the CMB is going to come [29, 139] mainly from the gravitational correction to the

Schrödinger equation which does not violate unitarity. Thus one can use the standard

inner product from quantum mechanics to compute this dominant contribution which

ultimately for our purposes results in the following spectrum

∆2
(1)(k) ' ∆2

(0)(k)

[
1− 123.83

k3

H2

m2
P

+
1

k6
O
(
H4

m4
P

)]2

, (12.12)

where ∆2
(0)(k) is the standard CMB power spectrum one obtains for this model of

chaotic inflation when no quantum gravitational effects are taken into account. The

quantum correction (12.12) was obtained from truncating a more complicated expres-

sion which vanishes when k ≈ 5.74(H/mP)2/3. This vanishing of the power spectrum

indicates a breakdown in our approximation and thus we should avoid scales close to

the aforementioned k. If we wish to study smaller scales we would need to take into

account higher order quantum corrections.

As it can be seen, the effects of the quantum corrections to the CMB spectrum are

immensely suppressed as a result of the Planck scale mP ≈ 1019GeV . In addition the

spectrum is no longer scale invariant. The quantum correction to the CMB spectrum

is largest when the scale, k, is small because the large (inverse of k) size modes were

the first to enter the horizon and thus were exposed to gravitational quantum effects

for the longest time. Using the standard inflationary scale [143] of 1014GeV we obtain

the following scale dependent expression for the quantum correction

∆2
(1)(k) ' ∆2

(0)(k)

[
1− 1.76× 10−9 1

k3
+
O (10−15)

k6

]2

, (12.13)

which is way too small to be observable given the systematic error we face [192] of

only being able to observe one universe. Despite this calculation not giving us any

physics that we can observe in the CMB it can be used to compare different models
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of quantum gravity. Because loop quantum gravity predicts a radical alteration to

space-time the quantum corrections obtained from that theory are much larger and

can possibly be observed. Thus calculations of this type can allow us to compare

different theories of quantum gravity with each other while giving us results which

we may be able to observe.

Because the quantum Bianchi models were the main conduit through which we ap-

plied, assessed, and further developed the Euclidean-signature semi-classical method,

it is appropriate to discuss whether the classical Bianchi models can be accurate rep-

resentations of our actual universe. There has been a lot of recent work [4, 8, 210]

done on constraining classical Bianchi models using the CMB. The observables one

tries to constrain in these models are the components of the shear tensor, σab. In

terms of the CMB, the shear tensor is a measure of how the redshift of a photon is

dependent upon the direction from which it is travelling from.

The Bianchi models which have been investigated the most in the literature are

the Bianchi V IIh models. This is because they admit both flat and open topologies.

Furthermore, depending on the value of h, these models admit [27] a plethora of

other Bianchi models as their sub types such as the Bianchi V IIh=0, V, and I models.

The Bianchi IX models and its sub type, the Taub models, have not been subject to

constraint using recent CMB data. The reason for this is because these closed models

induce only a quadrupole, (l = 2), contribution to the CMB temperature distribution

and polarization, and thus are difficult to constrain compared to the open and flat

Bianchi models.

For space-times which are near isotropic, the shear tensor can be broken up into

four modes, the scalar, vector, regular tensor and irregular tensor modes. What differ-

entiates the regular from the irregular tensor modes is their initial behavior. Regular

tensor modes initially grow in size while irregular tensors modes decay monotonically.

Modes which decay monotonically are larger at recombination than modes which over-
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all decay more slowly and thus can be better constrained using CMB data. Using

both CMB temperature and polarization data all four modes of the shear tensor were

constrained in [210]. Only taking into account the vorticity which is determined by

the vector mode, the aforementioned studies found that the odds against anisotropic

expansion were 270:1. Taking into account all four modes, one arrives at an astound-

ing 121000 to 1 odds against anisotropic expansion.

This result which strongly disfavors our universe being a Bianchi universe is further

corroborated [8] by a 2019 study on Bianchi I models. For the Bianchi I models,

which correspond to the LRS Bianchi V IIh=0 models, a modified Friedmann equation

was constructed and included a term which scales like stiff matter, Ω0σa
−6, which

measures the anisotropic expansion. Using CMB data the authors of [8] constrained

the present value of that stiff matter term corresponding to anisotropic expansion to

be Ω0σ < 10−15 which is too small to alter either matter-radiation equality or the size

and locations of the peaks corresponding to matter perturbations in the CMB power

spectrum. If big bang nucleogenesis is taken into account the constraint becomes

tighter Ω0σ < 10−23. It should be noted that these constraints are model (GR)

dependent.

From the data obtained from Planck and accepting the assumptions that general

relativity is the correct classical description of gravity, and that dark energy is not an

anisotropic matter source it is incredibly unlikely that our universe had a period of

anisotropic expansion; thus it is unlikely that Bianchi models will serve as the best

description of our universe. Nonetheless Bianchi models are incredibly important to

study and if these two assumptions are challenged the chances that our universe had

a period of anisotropic expansion could dramatically increase. If strong evidence for

anisotropic expansion was found it would cause us to rethink a lot of what we know

about the universe. For example there is a cosmic no-hair theorem [219, 232] which

implies that if inflation did occur in the early universe that it would have reduced
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the universe’s anisotropy to the point that any residual anisotropy left over after

inflation would have no observational consequences. Finding evidence of an epoch of

anisotropic expansion can fundamentally change our understanding of inflation and

perhaps more importantly its underlying physics.

As we demonstrated, the Bianchi models are a rich set of systems one can use to

ascertain what effects quantum gravity possibly induces on cosmic evolution. Because

of their richness they are excellent tools to differentiate different models of quantum

gravity. As implied in the aforementioned investigation [138], general observational

effects of quantum gravity don’t become prominent unless one probes energy scales

which approach the Planck length. Thus until we are able to overcome the hurdle of

observing phenomena which approaches the Planck length Bianchi models will remain

valuable tools to further study and understand quantum gravity.

12.2 Binder Code

Using the following code and the CFT data reported for the five operators included

in table 1 of [141] we performed 100,000 Monte Carlo evaluations with our accuracy

goal set to 5 and calculated 〈σ4〉 to be 1.591463 with an error of 0.000050. This allows

us to obtain the following estimate of the fourth-order Binder cumulant

U4 = 0.391765± 0.000035. (12.14)

The code below can be easily modified to include the additional CFT data [216] that

we used to compute (4.40).

This code defines the h∆,`(r, η) which we wish to calculate through the recursion

relation given in (5.30). The only input for the user is "n", which is the order one

wishes to compute the recursion relation up to.

H[\[CapitalDelta]\[CapitalDelta]_,
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LL_] := {n = 12;,

recursion[a_] := Normal[Series[a /. hh -> h, {r, 0, n}]],

Nest[recursion, {h[\[CapitalDelta]_,

L_] := ((LegendreP[L, \[Eta]]/(

Sqrt[1 - rr^2] Sqrt[-4 \[Eta]^2 rr^2 + (1 + rr^2)^2]) +

Sum[((-((

2^(1 - 4 k)

k ((2 k)!)^2 Pochhammer[1 + L,

2 k])/((k!)^4 Pochhammer[1/2 + L, 2 k])))*(r)^(2*

k)/(\[CapitalDelta] - (1 - L - 2*k)))*

hh[1 - L, L + 2*k], {k, 1, n/2}]

+

Sum[((-((

k (1/2 - k + L) Pochhammer[1/2, k]^2 Pochhammer[

1/4 (3 - 2 k + 2 L),

k]^2)/((1/2 + k + L) (k!)^2 Pochhammer[

1/4 (1 - 2 k + 2 L), k]^2)))*(r)^(2*

k)/(\[CapitalDelta] - ((3/2) - k)))*

hh[(3/2) + k, L], {k, 1, n/2}] +

Sum[((-((

2^(1 - 4 k)

k ((2 k)!)^2 Pochhammer[1 - 2 k + L,

2 k])/((k!)^4 Pochhammer[3/2 - 2 k + L,

2 k])))*(r)^(2*

k)/(\[CapitalDelta] - (2 + L - 2*k)))*

hh[2 + L, L - 2*k], {k, 1,

L/2}])), \[CapitalDelta] = \
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\[CapitalDelta]\[CapitalDelta];,

L = LL;, (((LegendreP[L, \[Eta]]/(

Sqrt[1 - rr^2] Sqrt[-4 \[Eta]^2 rr^2 + (1 + rr^2)^2]) +

Sum[((-((

2^(1 - 4 k)

k ((2 k)!)^2 Pochhammer[1 + L,

2*k])/((k!)^4 Pochhammer[1/2 + L, 2*k])))*(r)^(2*

k)/(\[CapitalDelta] - (1 - L - 2*k)))*

hh[1 - L, L + 2*k], {k, 1, n/2}]

+

Sum[((-((

k (1/2 - k + L) Pochhammer[1/2, k]^2 Pochhammer[

1/4 (3 - 2 k + 2 L),

k]^2)/((1/2 + k + L) (k!)^2 Pochhammer[

1/4 (1 - 2 k + 2 L), k]^2)))*(r)^(2*

k)/(\[CapitalDelta] - ((3/2) - k)))*

hh[(3/2) + k, L], {k, 1, n/2}] +

Sum[((-((

2^(1 - 4 k)

k ((2 k)!)^2 Pochhammer[1 - 2 k + L,

2 k])/((k!)^4 Pochhammer[3/2 - 2 k + L,

2 k])))*(r)^(2*

k)/(\[CapitalDelta] - (2 + L - 2*k)))*

hh[2 + L, L - 2*k], {k, 1, L/2}])))}[[4]], n/2]}[[3]]

This code is the numerator that appears in the four-point function for the critical

3D Ising model and is computed in accordance with (5.28)
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G = (1 + (H[1.412625, 0]*(((4*r)^(1.412625))*(1.0518537)^2)) + (H[

3.82966, 0] (((4*r)^(3.82966))*(0.053029)^2)) + (H[3,

2]*(((4*r)^(3)) ((0.5181489/Sqrt[0.946539])^2))) + (H[5.509,

2] (((4*r)^(5.509))*(0.0172)^2)) + (H[5.02274,

4] (((4*r)^(5.02274))*(0.1319)^2)));

This last piece of code plots the four-point function, showing that our computation

of the four-point function agrees with [209].

{FourPointFunction = (G/(1 +

Abs[z]^1.0362978 + (Abs[z]^1.0362978/

Abs[1 - z])^1.0362978) /. rr -> r /.

r -> Abs[

z/(1 + Sqrt[1 - z])^2] /. \[Eta] -> (z/(1 + Sqrt[1 - z])^2 +

Conjugate[z]/(1 + Sqrt[1 - Conjugate[z]])^2)/(2*

Abs[z/(1 + Sqrt[1 - z])^2]) /. z -> x + I*y);,

Plot3D[FourPointFunction, {x, -1, .5}, {y, -1, 1},

RegionFunction -> Function[{x, y}, Sqrt[x^2 + y^2] < 1 && x < 1/2],

PlotRange -> All]}[[2]]

12.3 Taub ‘Excited’ And ‘No Boundary’ Code

This code produces the n non-trivial quantum corrections to the nth ’excited’ state of

the Λ 6= 0 Taub models which can be used to construct a closed form solution when

the operator ordering parameter B = 0. The only required inputs from the user is

setting n equal to a positive integer and choosing an option h. When h=2 it gives

the ‘excited’ state quantum corrections. When h=3 it gives the closed form ‘excited’

solution to the Taub WDW equation when a cosmological constant is present. When
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h=4 it gives zero indicating that the solution given by h=3 does indeed satisfy the

WDW equation;

{{n = 2, h = 3};,

Table[{Subscript[S,

0] = ((-9 E^(4 \[Alpha] - 2 \[Beta]) (-1 +

E^(6 \[Beta])) \[Pi] +

E^(6 (\[Alpha] + \[Beta])) \[CapitalLambda]))^(n);,

Subscript[S, k] =

Sum[Sum[b[{i, j}]*

E^(6*n*\[Alpha] - 2*(n - i)*\[Alpha] -

2*k*\[Alpha] + -2*n*\[Beta] + 6*j*\[Beta] +

8*\[Beta]*i + 4*\[Beta]*k), {j, 0, n - k - i}], {i, 0,

n - k}];,

asd = ((-D[Subscript[S, k], \[Alpha]]*

D[1/6 E^(2 \[Alpha] - 4 \[Beta]) (1 +

2 E^(6 \[Beta])) - (E^(4 (\[Alpha] + \[Beta])) \

\[CapitalLambda])/(36 \[Pi]), \[Alpha]] +

D[Subscript[S, k], \[Beta]]*

D[1/6 E^(2 \[Alpha] - 4 \[Beta]) (1 +

2 E^(6 \[Beta])) - (E^(4 (\[Alpha] + \[Beta])) \

\[CapitalLambda])/(36 \[Pi]), \[Beta]]) +

k*(D[Subscript[S, -1 + k], \[Alpha]] -

D[Subscript[S, -1 + k], \[Beta]]) + (k/

2)*(D[D[Subscript[S, -1 + k], \[Alpha]], \[Alpha]] -

D[D[Subscript[

S, -1 + k], \[Beta]], \[Beta]]));, \[Alpha] =

Log[x];, \[Beta] = Log[y];,
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Subscript[S,

k] = ((Sum[

Sum[b[{i, j}]*

E^(6*n*\[Alpha] - 2*(n - i)*\[Alpha] -

2*k*\[Alpha] + -2*n*\[Beta] + 6*j*\[Beta] +

8*\[Beta]*i + 4*\[Beta]*k), {j, 0, n - k - i}], {i, 0,

n - k}]) /.

Solve[Simplify[

MonomialList[Simplify[asd], {x, y, 1/x, 1/y}]] ==

Table[0, {i, 1,

Length[Flatten[

Table[Table[b[{i, j}], {j, 0, n - k - i}], {i, 0,

n - k}], 1]]}],

Flatten[Table[

Table[b[{i, j}], {j, 0, n - k - i}], {i, 0, n - k}],

1]]);, ClearAll[\[Alpha]];, ClearAll[\[Beta]];,

Subscript[S, k] =

Expand[Simplify[

First[Subscript[S, k] /. {x -> E^(\[Alpha]),

y -> E^(\[Beta])}]]], ClearAll[x];, ClearAll[y];};, {k, 1,

n}];

o[n] = Table[Subscript[S, g] /. {\[Beta] -> \!\(TraditionalForm\‘

\*SubscriptBox[\(\[Beta]\), \(+\)]\)}, {g, 0, n}],

psi = (Table[1/k!, {k, 0, n}].o[n]) E^(-(1/6) E^(

2 \[Alpha] -

4 SubPlus[\[Beta]]) (1 + 2 E^(6 SubPlus[\[Beta]])) + (
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E^(4 (\[Alpha] + SubPlus[\[Beta]])) \[CapitalLambda])/(

36 \[Pi]) + \[Alpha] + SubPlus[\[Beta]]),

FullSimplify[

D[D[psi, \[Alpha]], \[Alpha]] -

D[D[psi, SubPlus[\[Beta]]],

SubPlus[\[Beta]]] + (1/3 E^(4 \[Alpha] - 8 SubPlus[\[Beta]]) -

4/3 E^(4 \[Alpha] - 2 SubPlus[\[Beta]]) + (

2 E^(6 \[Alpha]) \[CapitalLambda])/(9 \[Pi])) (psi)]}[[h]]

This code produces the n non-trivial quantum corrections to the nth ’excited’

state of the Λ = 0 Taub models which can be used to construct a closed form solution

when B = 0. The only required inputs from the user is setting n equal to a positive

integer and choosing an option h. When h=2 it gives the ‘excited’ state quantum

corrections. When h=3 it gives the closed form ‘excited’ solution to the Taub WDW

equation. When h=4 it gives zero indicating that the solution given by h=3 does

indeed satisfy the WDW equation

{{n = 2, h = 3},

Table[{Subscript[S,

0] = ((-9 E^(4 \[Alpha] - 2 \[Beta]) (-1 +

E^(6 \[Beta])) \[Pi]))^(n);,

Subscript[S, k] =

E^(4*\[Alpha]*n - 2*\[Alpha]*k)*

Sum[E^(-6*\[Beta]*j - 2*\[Beta]*k + 4*\[Beta]*n)*b[j, k], {j,

0, n - k}];,

asd = ((-D[Subscript[S, k], \[Alpha]]*

D[1/6 E^(2 \[Alpha] - 4 \[Beta]) (1 +

2 E^(6 \[Beta])), \[Alpha]] +
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D[Subscript[S, k], \[Beta]]*

D[1/6 E^(2 \[Alpha] - 4 \[Beta]) (1 +

2 E^(6 \[Beta])), \[Beta]]) +

k*(D[Subscript[S, -1 + k], \[Alpha]] -

D[Subscript[S, -1 + k], \[Beta]]) + (k/

2)*(D[D[Subscript[S, -1 + k], \[Alpha]], \[Alpha]] -

D[D[Subscript[

S, -1 + k], \[Beta]], \[Beta]]));, \[Alpha] =

Log[x];, \[Beta] = Log[y];,

Subscript[S,

k] = ((E^(4*\[Alpha]*n - 2*\[Alpha]*k)*

Sum[E^(-6*\[Beta]*j - 2*\[Beta]*k + 4*\[Beta]*n)*

b[j, k], {j, 0, n - k}]) /.

Solve[Simplify[

MonomialList[Simplify[asd], {x, y, 1/x, 1/y}]] ==

Table[0, {i, 1,

Length[Flatten[Table[b[j, k], {j, 0, n - k}], 1]]}],

Flatten[Table[b[j, k], {j, 0, n - k}], 1]]);,

ClearAll[\[Alpha]];, ClearAll[\[Beta]];,

Subscript[S, k] =

Expand[Simplify[

First[Subscript[S, k] /. {x -> E^(\[Alpha]),

y -> E^(\[Beta])}]]], ClearAll[x];, ClearAll[y];};, {k, 1,

n}];

o[n] = Table[Subscript[S, g] /. {\[Beta] -> \!\(TraditionalForm\‘

\*SubscriptBox[\(\[Beta]\), \(+\)]\)}, {g, 0, n}],

psi = (Table[1/k!, {k, 0, n}].o[n]) E^(-(1/6) E^(
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2 \[Alpha] -

4 SubPlus[\[Beta]]) (1 + 2 E^(6 SubPlus[\[Beta]])) + \[Alpha] +

SubPlus[\[Beta]]),

FullSimplify[

D[D[psi, \[Alpha]], \[Alpha]] -

D[D[psi, SubPlus[\[Beta]]],

SubPlus[\[Beta]]] + (1/3 E^(4 \[Alpha] - 8 SubPlus[\[Beta]]) -

4/3 E^(4 \[Alpha] - 2 SubPlus[\[Beta]])) (psi)]}[[h]]

This last piece of codes computes the higher order −Snb(k≥3) terms of the asymptotic

series present in the exponent of our ‘ground’ state ‘no boundary’ wave functions

ψnb := e

(
−
∑∞
k=2

g(k)e
β+(k−1)−2α(k−1)

k!
− 1

6(1−4e3β+)e2α−4β+− 1
2
a(4−B)+

5β+
2

)
. The only input from

the user is an n which is positive integer greater than 2.

{n = 5, Total[{g[2] = 1/8 (9 + BB^2),

Table[{g[k] = 3/4 (-2 + k) k g[-1 + k] + \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(L = 2\), \(\(-2\) + k\)]\(50

\*FractionBox[\(3\ \((\(-1\) + k - L)\)\ \((\(-1\) + L)\)\ \(k!\)\ g[

k - L]\ g[L]\), \(\(\((k - L)\)!\)\ \(L!\)\)]/\((\n

4\ - \ 4\ k)\)\)\), (1/(k!)) g[k]*

E^(-2 \[Alpha] (-1 + k) + \[Beta] (-1 + k))}[[2]], {k, 3,

n}]}[[2]]]}[[2]]
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