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Abstract

The Path to Extreme Precision Radial Velocity With EXPRES

Lily Ling Zhao

2021

The field of exoplanets is currently poised to benefit hugely from improved radial ve-

locity (RV) precision. Extreme precision radial-velocity (EPRV) measurements, capable

of detecting planetary signals on the order of 10-30 cm s−1, will deliver integral planetary

parameters, be sensitive to a missing category of lower-mass planets, grant a deeper under-

standing of multi-planet architectures, and support both current and future space missions

such as TESS and JWST. The ability of EPRV to deliver mass estimates is essential for

comprehensively characterizing planets, understanding formation histories, and interpret-

ing atmospheric spectra.

Until recently, RV precision had stalled at around 1 m s−1, i.e. signals with a semi-

amplitude of less than 1 m s−1could not be faithfully detected. We demonstrate with

HARPS, UVES, and CHIRON observations of α Cen the need for better data, not just more

data. Even with over a decade of observations at around 1 m s−1 precision, large areas of

mass/period parameter space remained unprobed. Higher-fidelity data is needed to signif-

icantly push down detection limits.

EXPRES, the EXtreme PREcision Spectrograph, was one of the first next-generation

spectrographs to go on sky. Installed at the 4.3-m Lowell Discovery Telescope in 2017 and

commissioned through 2019, EXPRES is a fiber-fed, ultra-stabilized, echelle spectrograph

with a high median resolving power of R ∼ 137, 000 and an instrument calibration stability

of 4-7 cm s−1, a factor of 10 better than previous instruments.

The stringent requirements of EPRV measurements along with the stability of EX-

PRES and similar instruments changes how we must extract, calibrate, and model the re-

sultant spectral data. This dissertation discusses the work that must be done in this new
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regime in terms of data pipelines and modeling stellar signals and showcases some initial

progress. We present EXPRES’ data pipeline, a new data-driven method for wavelength

calibration, and the current state of the field for disentangling stellar signals.

The EXPRES extraction pipeline implements a flat-relative, optimal extraction model

and excalibur for wavelength calibration. Excalibur is a hierarchical, non-parametric

method for wavelength calibration developed as part of this thesis work. Calibration

line-positions are de-noised by using all calibration images to construct a model of the

accessible calibration space of the instrument. This denoising returns wavelengths a factor

of five more precise than previous polynomial-based methods. With EXPRES data, excal-

ibur reduced the overall RMS of RV data sets for all targets tested by 0.2-0.5 m s−1. This

consistent reduction in overall RMS implies that excalibur is addressing an instrumental,

red-noise component that would otherwise permeate all exposures.

With instrumental noise lowered and extraction error reduced, intrinsic stellar vari-

ability and the resulting apparent RVs now dominate the error budget for EPRV measure-

ments. The EXPRES Stellar Signals Project (ESSP) released high-fidelity, spectroscopic

data from EXPRES and photometric observations from the automatic photoelectric tele-

scopes (APTs) for four different stars. This allowed for a self-consistent comparison of the

19 different methods submitted, which represent the current state of the field in disentan-

gling stellar signals. The analysis of results is ongoing work.

Currently, the best performing method give a final RV RMS of 1.2 m s−1. Submitted

methods nearly always do better than classic methods of decorrelating RVs from stellar

signals. We found that methods returning the lowest RV RMS often used the full spectra

and/or flexible statistical models such as Gaussian processes or principal component anal-

ysis. However, there was a concerning lack of agreement between methods. If we hope to

improve on current advancements and develop methods achieving sub-meter-per-second

RMS, we must introduce more interpretability to methods to understand what is and is

not working. A densely sampled, high-resolution data sensitive to all categories of stellar
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variation is needed to understand all types of stellar signals.

This dissertation work centers on the question of achieving EPRV capabilities for de-

tecting planets incurring reflex velocity signals on the order of 10-30 cm s−1. We consider

what needs to be done, describe current development towards this goal, and discuss the

future work that remains before sub-meter-per-second precision can become a regular re-

ality. We emphasize the power of data-driven pipelines to account for variations in data

for EPRV applications and beyond. Empirically backed conclusions for mitigating photo-

spheric velocities are summarized from the results of the ESSP along with next steps and

additional data requirements. Progress is being made, but there remains much work to be

done.
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Chapter 1

Introduction

On February 17, 1600, Giordano Bruno was burned at the stake for (among many other

things) suggesting that the universe is filled with stars hosting planets much like our solar

system (Aquilecchia, 2021). In 2019, Michel Mayor and Didier Queloz were awarded the

Nobel Prize in Physics for their discovery of the first exoplanet orbiting a solar-type star.

This first discovery, 51 Peg b, was found using the radial velocity (RV) method

(Mayor & Queloz, 1995), alternatively referred to as Doppler spectroscopy or the wob-

ble method. RVs are a measure of how Doppler shifted a star’s spectrum is. A star hosting

planet(s) will orbit the system’s common center of mass; this movement gives rise to char-

acteristic, periodic Doppler shifts in the star’s spectrum.

The resultant RVs are a function of stellar, planetary, and orbital parameters as given

by Equation 1.1 below.

RV = K · cos(v + ω) + e · cos(ω) (1.1)

Here, v is the true anomaly, ω is the argument of periastron, e is the eccentricity of the

orbit, and K is the semi-amplitude. K is defined in Equation 1.2 and will be described in

more detail below. The true anomaly gives the angle between the direction of periapsis

and the position of the orbiting body at the focus of the ellipse being orbited (see Figure

1.1). It can easily be calculated using the guiding center approximation. The argument of
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Figure 1.1: Change in orbital parameters and accompanying RV curve. Each column
shows three different values for either (left to right) true anomaly v, argument of perias-
tron ω, eccentricity e, or inclination i. The associated RV value for the different changes, if
viewing the orbit from the bottom of the page, is given below each orbit in the correspond-
ing color. Different true anomaly values trace a planet’s position along its orbit. The true
anomaly along with eccentricity, which describes the oblateness of the orbit, defines the
shape of the orbit. Changing arguments of periastron or inclination change the orientation
of the orbit but not the shape.

periastron, ω, gives the angle of the periastron point from the plane of reference.

The true anomaly describes where a planet is along its orbit and, along with the eccen-

tricity, gives the shape of the orbit. The argument of periastron describes the orientation of

this orbit. These variables therefore uniquely describe an orbiting body’s position relative

to the point it is orbiting. This allows us to derive a planet’s orbital parameters from fitting

its RV measurements.

Figure 1.1 shows an example of an orbit with different true anomaly (column 1),

argument of periastron (column 2), and eccentricity (column 3) values. The accompanied

RV curve for the different values, when viewing the orbit from the bottom of the page,

is given below each orbit. RV measurements allow us to characterize planet orbits by

deriving these three parameters from the shape of the RV time series.

The magnitude of the signal is given by K, also known as the RV semi-amplitude. It

represents the largest movement the planet will invoke in its host star if on a circular orbit.
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The value of K in units of m s−1 is given by:

K = 28.4329m s−1 1
√

1 − e2
·

Mpl sin(i)
M jup

·

(
M? + Mpl

M�

)−2/3

·

(
P

1yr

)−1/3

(1.2)

where Mpl is the mass of the planet in Jupiter masses (MJup), i is the inclination of the

orbit, M? is the mass of the host star in solar masses (M�), and P is the period of the planet

in years. The inclination of the orbit with respect to the observer is essentially degenerate

with the mass of the orbiting planet. RV measurements can only pick up on movement

towards and away from the observer.

The right-most column of Figure 1.1 shows the 2D project of an orbit with different

inclinations. The plane of reference for the inclination angles given is perpendicular to the

face of the page. An inclination of 90◦, i.e. an edge-on orbit, would lie flush with the page

while an inclination of 0◦, i.e. a face-on orbit, would be perpendicular to the page and

produce no measurable RV signal. The sine of the inclination scales the magnitude of RV

signal.

Close-in, large planets around lower-mass stars have larger K values, meaning they

produce a larger RV signal that will be easier to detect. Less massive, far-away planets are

harder to detect with RVs. For example, 51 Peg b is a short-period planet almost half the

size of Jupiter and invokes a RV signal with a semi-amplitude of 56.24 m s−1 (Petersburg

et al., 2020). It was discovered with ELODIE, a spectrograph with a measurement precision

of 7 m s−1 (Mayor & Queloz, 1995).

Earth, on the other hand, at less than one 300th the mass of Jupiter and at a distance

of 1 AU, invokes a reflex velocity on the Sun with a semi-amplitude of only 0.09 m s−1.

Depending on the mass of the host star, Earth-like planets in the habitable zone give K

values of approximately 0.1-0.3 m s−1.
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1.1 Building RV Precision

The RV method is still one of the two most prolific ways for discovering exoplanets. As

the field has progressed, more and more planets with smaller and smaller semi-amplitudes

have been discovered. Figure 1.2 plots exoplanets discovered with either transits or RVs

as a function of their mass and period. Points are colored by their discovery method.

Diagonal lines mark constant semi-amplitude values assuming a host-star mass of 1 M�.

Until recently, RV precision had stalled at around 1 m s−1. The measurements from

available instruments and data analysis methods at the time were unable to faithfully mea-

sure the movement of stars due to orbiting planets with K less than 1 m s−1. This limitation

prevented RV surveys from detecting lower-mass or further-out planets.
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Figure 1.2: Planets discovered by transit (blue) or RVs (orange) plotted by mass and pe-
riod. Planet properties, including discovery method, are pulled from exoplanets.org
with over 98.8% of all discovered planets shown. Lines of constant semi-amplitude, K,
assuming a solar-mass host star are shown for K = 1 m s−1 (black, dotted), K = 0.3 m s−1

(black, dashed), and K = 0.1 m s−1 (green, solid). Note, RV points < K = 1 m s−1 line
orbit stars less than one solar mass. Venus, Earth, and Jupiter are also plotted as V, E, and
J respectively.
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This is further demonstrated in Chapter 2 using the αCentauri star system as an ex-

ample. Even decades of observations at the 1 m s−1 level leave large areas of mass/period

parameter space un-probed (Zhao et al., 2018). Additional observations of the same qual-

ity will add little. It will take higher-fidelity data to significantly push down detection

limits.

We know from Kepler and other survey missions that nearly all stars have one or

more exoplanets, with Earth-size planets among the most common (Borucki et al., 2011;

Batalha, 2014). Of Sun-like stars, 10-25% could play host to Earth-sized worlds orbiting

in the habitable zone (Petigura et al., 2013; Burke et al., 2015; Christiansen et al., 2016;

Fulton et al., 2017). Lower-mass planets are abundant in the galaxy, but they are missing

from RV surveys because the measurements were not sensitive enough to measure these

smaller-amplitude signals.

The radial velocity method remains the primary way to measure mass estimates for

exoplanets, which is needed in characterizing planets. The transit method, which mea-

sures a dip in light as a planet orbits between its host star and the telescope, imposes strict

limitations on the orbital alignment of the planet with respect to the observer. Transit tim-

ing variations from planet-planet interactions may provide rough estimates of a planet’s

mass, but will only work for transiting planets in multi-planet systems. Astrometric mea-

surements could deliver mass estimates similar to RVs, but must be done with space-based

instruments and has yet to yield any confirmed planets. Without more precise RV measure-

ments, we are incapable of deriving mass estimates and gaining a deeper understanding of

the most common and easily most popular population of planets.

The push for extreme-precision radial-velocity (EPRV) capabilities is being driven

by this need for better RV measurements to characterize planets. EPRV work centers on

the goal of breaking the 1 m s−1 precision boundary, striving instead to achieve the 10-30

cm s−1 precision needed to detect Earth-like planets.
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1.2 The Power of EPRV

Furthering EPRV capabilities will impact all areas of exoplanetary science. EPRVs will

not just discover more planets, but the mass estimates and orbital characterization from this

work will help characterize these planets, their dynamics, and possible formation histories.

Alongside planets, EPRV work will also further solar physics and understanding of stellar

variability and activity. EPRV characterization of planets is additionally essential for the

success and efficiency of many current and future space telescopes.

Enabling the RV detection of lower-mass planets will build the number of available

mass estimates and orbital parameters for this under-probed population. Coupled with

radius-measurements for transiting planets, we can begin to fill in the mass-radius diagram

for lower-mass planets. Mass and radius measurements together allow us to derive planet

density, construct models of planet composition, and interpret atmosphere spectroscopy.

EPRV measurements will establish a more complete dynamical picture of planetary

systems. In addition to low-mass planets, the increased sensitivity of EPRV measurements

will be able to find previously missed planets in multi-planet systems. More precise mea-

surements will give better constraints on measured orbital parameters.

In the case of transiting planets, more sensitive RV measurements will be able to

pick up on smaller Rossiter-McLaughlin signals, which inform the alignment of a planet’s

orbit with the stellar spin axis. Orbital misalignment has been shown to be increasingly

common for a range of planet types (Schlaufman, 2010; Winn et al., 2010; Louden et al.,

2021). Measuring this misalignment is therefore critical for understanding star and planet

formation. An understanding of the complete dynamics of multi-planet systems along with

orbital alignments will help inform migration models and planet formation simulations.

As with all RV measurements, any observation is of course to first-order an obser-

vation of a star. EPRV work will produce a catalog of extremely stable, high resolution
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stellar spectra. In addition to deriving stellar properties, the success of EPRV work will

depend on understanding how changes from intrinsic stellar variability and activity fea-

tures imprint on stellar spectra. This related work will help build our understanding of

stellar physics and surface features.

Ongoing and future missions will benefit from EPRV characterization of planets.

Transit surveys, like the ongoing TESS and CHEOPS missions and the planned PLATO

mission, make use of RVs to help confirm planet candidates, return orbital parameters,

and calculate planet bulk densities. Precursor observations and RV characterization will

allow for better informed target selection for future missions, such as JWST, the Nancy

Grace Roman Space Telescope, LUVOIR, or HabEx. This preliminary work is expected to

dramatically raise the efficiency of these missions.

1.3 The Requirements of EPRV

Though young, the need for better RV characterization of planets and their orbits has made

EPRV a rapidly growing field. Several “next-generation" instruments are already online

returning sub-meter-per-second single-measurement precision (e.g. Pepe et al., 2013; Jur-

genson et al., 2016; Petersburg et al., 2020; Suárez Mascareño et al., 2020; Carmona et al.,

2018; Seifahrt et al., 2018; Gilbert et al., 2018; Schwab et al., 2016a) with many more

optical and infrared spectrographs being commissioned, built, or planned (e.g. Thompson

et al., 2016; Bouchy et al., 2017; Gibson et al., 2018; Szentgyorgyi et al., 2014).

Spectroscopic RV measurements are in essence measuring the change in spectral line

position as a function of wavelength. A Doppler shift of 10 cm s−1 corresponds to a line

shift of approximately two-ten-thousandths (0.0002) of a pixel. Given 9 µm pixels made

of Si atoms that are approximately 0.2 nm in diameter, the 10 cm s−1 Doppler shift from an

Earth-like planet is roughly equivalent to a change in line position over the width of 9 Si

atoms. Measuring such a signal requires many spectral lines and a through understanding
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of every other source of potential changes to these lines.

Achieving this extreme precision enters into a new regime of measurement require-

ments. The hardware and engineering specifics of instruments must be held to a new

standard of stability. The data from these next-generation spectrographs will have to be

carefully extracted to produce high-fidelity spectra. The resultant spectra will need to be

modeled in innovative ways to produce RV measurements that truly capture center-of-

mass Doppler shifts invoked by orbiting planets rather than other changes present in the

spectra.

1.3.1 Hardware

Echelle spectrographs are the chosen optical framework for EPRV work due to their abil-

ity to generate higher resolution spectra with greater separation of spectral features. An

echelle grating is used to split light into many different wavelengths that are then aligned

via collimating lenses. The collimated light then passes through cross-dispersing prisms

that split the light into a series of echelle "orders." Each order represents a subset of the

total wavelength range, with higher echelle orders corresponding to shorter, bluer wave-

lengths. The higher the echelle order, the more wavelength overlap there will be between

the end of one order and the beginning of the next.

Controlling the stability of data for EPRV work begins not at the instrument, but at

the telescope. The front-end module must ensure observations are trained on the same

part of a star throughout an integration and that the light from this star is entering into the

instrument optics in the same way at the same angle. Variation in the illumination of the

optical elements can introduce instabilities to the line positions. In very much the opposite

way, light must not be allowed to travel the same way through multi-mode fibers, which

can generate coherent wave fronts. This gives rise to speckle patterns that can introduce

variations to line shapes that could be mistaken for line shifts.
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Instruments must be stabilized in terms of temperature, pressure, and vibrations in

order to produce consistent, precise data. Movement due to vibrations or expansions from

temperature and/or pressure changes will change the nature of the optical path and ulti-

mately the appearance of the light that gets projected onto the detector. For EPRV work,

the temperature should be stable to roughly 1 mK and the pressure stable to 10−7 Torr

(Fischer et al., 2016).

The detector recording light information must be well characterized. The process

of fabricating CCDs, the typical detector used for optical spectrographs, introduces small

variations in pixel position and size that can introduce errors in an EPRV context. Spectral

lines could appear to shift not because they are actually shifting in wavelength, but because

the detector’s pixels are moving under them (Dumusque et al., 2015). Pixel position can

vary up to 90 nm and pixel size can vary up to 150 nm depending on the pixel stitching

stepper used (Fischer et al., 2016). The charge transfer efficiency (CTE) of each pixel will

also vary, requiring care when interpreting the raw data into photon counts.

To determine wavelength-dependent RV shifts, we must carefully characterize the

wavelengths corresponding to each detector pixel. This is typically done using a calibra-

tion source that gives rise to a set of lines with known wavelengths. Classically, gas cells

containing a purified gas, such as ThAr or I2, were used. When excited, these gas cells

produce a set of emission lines whose wavelengths are known from their molecular struc-

ture and atomic physics. By observing where these lines fell on the detector, a model can

be constructed relating detector position to wavelength.

More precise and stable wavelength calibration is now possible with the recent devel-

opment of laser frequency combs (LFCs) and etalons (Wilken et al., 2012; Molaro et al.,

2013; Probst et al., 2014). These devices use femtosecond mode-locked lasers to generate

a dense set of uniformly spaced, narrow emission lines with wavelengths known to 20-

digit precision (Murphy et al., 2007; Li et al., 2008; Steinmetz et al., 2008). These LFCs

and etalons make it possible to cover large wavelength ranges with lines of known wave-
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length, producing a well characterized, stable data set to use when constructing a model

for wavelength as a function of detector pixel.

EXPRES

The EXtreme PREcision Spectrograph, EXPRES, was one of the first EPRV spectrographs

to be commissioned and start collecting on-sky data. Built and supported by a Yale-based

team, EXPRES was installed at the 4.3-m Lowell Discovery Telescope (LDT) (Levine et al.,

2012) near Flagstaff, AZ in December 2017. As an optical spectrograph, EXPRES has

a wavelength range of 390 − 780 nm. It is on-sky about 125 (partial) nights per year

conducting a RV survey of the brightest, nearby stars (Brewer et al., 2020).

A custom front-end module stabilizes the position of the star relative to the input

fiber, corrects for atmospheric dispersion of the image up to an airmass of about 1.2, and

controls how the observed light is injected into the instrument. The spectrograph itself is

housed in a vacuum enclosure that regulates the temperature and pressure of the optical

elements.

The optical bench is made of invar, a particularly thermally inert material. Vibration

dampeners isolate the optical bench from the enclosure and the enclosure from the floor,

which itself is an isolated slab to guard against vibrations from telescope movement. An

additional thermal enclosure made of polyurethane foam panels surrounds the vacuum

chamber.

Light from the spectrograph is projected onto a Semiconductor Technology Asso-

ciates (STA) detector, which suffers less from pixel position errors and has a measured

quantum efficiency variation of 3.3%. Science light travels down a rectangular fiber

(33 × 33 µm) to preserve resolution. This fiber is aligned so the long, 33 µm edge lines

up with detector columns, thereby minimizing the number of columns light of a given

wavelength falls on.

A custom designed camera barrel minimizes the effect of variations in light injection
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and reduces changes in the line spread function. The line spread function (LSF) describes

the shape of the light being projected by the optical elements onto the detector. The EX-

PRES LSF is well described by a Gaussian. The lenses in EXPRES’s camera barrel are

specifically designed to stabilize the LSF so it changes very little across the detector. The

width of the PSF does change some across the detector, but the change is slow. This insures

that the LSF change for lines as they shift between neighboring pixels is minimal.

Figure 1.3 plots the full-width half max (FWHM) of ThAr and LFC lines across

the detector. Each marker is colored by the measured FWHM of an emission line fit to

a Gaussian. The resolution of EXPRES ranges from 120,000 to 150,000 with a median

resolution of R ∼ 137, 000 (Blackman et al., 2020). Higher resolution means EXPRES can

separate out more spectral features and provide fine sampling of spectral lines. There are

approximately four pixels per resolution element in EXPRES data.
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Figure 1.3: Resolution of EXPRES across the detector. ThAr and LFC lines are plotted by
absolute echelle order (y-axis) and detector x pixel (x-axis). Each line, which represents
a delta function convolved with the instrument’s line spread function, is colored by the
measured FWHM from fitting the calibration line to a Gaussian. The FWHM of lines do
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11



EXPRES uses a Menlo Systems laser frequency comb for precise wavelength cali-

bration (Steinmetz et al., 2008; Probst et al., 2014, 2020). The light from this calibration

source is injected after the front-end module directly into the spectrograph. It follows the

same path as the science light and is projected onto the same pixels.

Measuring the shift between several consecutive LFC exposures provides a measure-

ment of the instrument calibration stability, i.e. how much a spectra appears to be shifting

due to instrument variations alone. EXPRES exhibits an instrument calibration stability

of 4-7 cm s−1. Figure 1.4 shows the shifts measured over approximately 30 minutes of

consecutive LFC exposures.

1.3.2 Data Analysis

EPRV measurements necessitate high-fidelity pipelines that return clean spectra. Pipelines

take the raw data from the instrument, i.e. an array of counts per detector pixel, and return
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Figure 1.4: The instrument calibration stability of EXPRES as measured by over 30 min-
utes of consecutive LFC exposures. Because the calibration light only travels through the
instrument optics, any apparent shifts in consecutive LFC exposures represent shifts due
to instrument variation. The LFC exposures shown here exhibit a final RMS of approxi-
mately 6 cm s−1 after a linear trend, which is easy to calibrate out, has been removed.

12



spectra, a measure of the emission from the observed source as a function of wavelength.

Stable hardware helps produce stable raw data. An understanding of the hardware and

raw data can inform pipeline construction to accommodate any defects or variations in the

hardware.

Differences in CTE, for example, are commonly corrected using a flat-field image.

A flat-field image is an exposure of white light, provided by a tunable LED in the case of

EXPRES, that illuminates all detector pixels that light from the fiber falls on. Because there

are no absorption or emission features in the smooth, white-light source being injected, any

variations in this flat-field exposure can be attributed to pixel-level CTE changes. Measur-

ing these changes allows us to learn about the behavior of detector pixels and enables us

to correct for them.

Flat-fielding is an excellent example of using a measurement of known variation in

raw data that is then corrected for through the data pipeline. EXPRES’s data pipeline

extracts spectra by scaling a composite, nightly flat-field to recreate the observed data

from other sources (Petersburg et al., 2020). This flat-relative optimal extraction inherently

folds in CTE corrections, removes the blaze function introduced by the echelle optics, and

mitigates the effects of localized cosmic-ray hits. More specifics of this pipeline are given

in Chapter 3.

Though flat-fielding is hardly new, recent work has shown that a similar philosophy

can be used to address changes in the LSF or the calibration state of the spectrograph.

Spectro-perfectionism is an algorithm for extracting data that incorporates a thorough un-

derstanding of the LSF across the detector in order to forward model this effect in the raw

data (Bolton & Schlegel, 2010; Cornachione et al., 2019). By collecting data that charac-

terize the LSF behavior across the data, spectro-perfectionism can use this information to

correct for LSF changes.

Wavelength calibration, the process of matching each pixel to the wavelength of life

being projected onto it, is also improved by using the calibration data itself to learn more

13



about the instrument. RV measurements are inherently a measure of line shifts with respect

to wavelength. The dispersion, or difference in wavelength between one pixel and a neigh-

boring pixel, changes with wavelength. This makes wavelength calibration an essential

yet nontrivial step of the pipeline.

Chapter 4 describes excalibur, a hierarchical, non-parametric method for wavelength

calibration. Excalibur uses calibration images to construct the complete, accessible cali-

bration space of an instrument. It then uses local calibration images or time to pinpoint

an instrument’s location in this space for each exposure. The calibration images inform

a model of how the instrument can vary. Using this model, we can re-create more faith-

ful calibration line positions that suffer less from measurement error. This gives a better

sense of the calibration state and corresponding wavelength calibration for the instrument

at each observation.

The cm s−1 stability of EPRV instruments has changed how we must extract, model,

and calibrate this new regime of data. The future of extraction pipelines lies in methods

that take advantage of the information such stable raw data provides of the instrument

itself, and turn this knowledge into an opportunity to correct for any variations in the

instrument’s optical elements or detector via the data pipeline. Only with precise, high-

fidelity spectra will the subtler effects of stellar signals become clear.

1.3.3 Stellar Signals

Discovering and characterizing planets with the RV method depends on being able to

measure true Doppler shifts in observed spectra. Independent of the instrument and data

pipeline, stellar photospheres themselves are evolving and changing, sometimes in pe-

riodic ways. These photospheric velocities manifest as spectral line shape changes and

make it significantly trickier to measure small shifts in these changing lines.

Photospheric velocities arise from both intrinsic stellar variations, such as stellar pul-
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sations or granulation, as well as activity features, such as darker star spots or brighter

faculae and plages. The effect of these variations change in both behavior and magni-

tude for different spectral lines and evolve on a range of timescales (Davis et al., 2017;

Dumusque, 2018; Meunier et al., 2017). The resultant line shape changes skew measure-

ments of line shift and add potentially periodic noise to derived RV measurements. In

order to increase RV precision, we must be able to disentangle these stellar signals from

true center-of-mass shifts due to orbiting planets.

The different types of stellar variability are summarized in Table 1.1 along with their

timescale and impact on RVs. We briefly describe each category below.

P-mode oscillations arise when pressure waves propagate to the surface of stars, caus-

ing the envelope of the star to expand and contract. This occurs on the timescale of minutes

for main-sequence stars, with hotter stars experience oscillations of higher frequency and

amplitude (Arentoft et al., 2008; Kjeldsen et al., 2005; Bouchy et al., 2005; Mayor et al.,

2003). These pulsations can introduce RV variations of 0.1 to 1 m s−1 for main-sequence

stars (Dumusque et al., 2011b; Chaplin et al., 2019).

In solar-type stars, convection gives rise to a granulation pattern that induces a “con-

vective blueshift" (Lanza et al., 2019; Cegla et al., 2018; Dumusque et al., 2011b; Linde-

gren & Dravins, 2003; Kjeldsen & Bedding, 1995; Dravins, 1982). The center of granu-

lation cells are formed from convective upflow and appear blueshifted. The darker edges

Table 1.1: Types and Effects of Stellar Variability and Activity

Variation Type Timescale RV Variation [m s−1]
Oscillations minutes 0.1-1
Granulation minutes to hours 0.4-0.8
Super-Granulation hours to two days 0.3-0.7
Activity Features:

Suppressing Convective Blueshift days to month 0.4-1.4
Rotation days to month 1-10
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of the granules represent the convective downflow, which would appear redshifted as it is

moving away from the surface of the star. The unequal area between the middle upflow

and edge downflow regions creates a net RV blueshift, i.e. the convective blueshift, and

changes spectral lines to appear asymmetric.

The surface of a star will feature different realizations of granulation that change on

the order of a few minutes to hours. Different granulation patterns will integrate to different

net RV shifts, meaning the magnitude of the convective blueshift in stars and its effect on

stellar lines is also changing. These differences can result in random RV variations on

the order of 0.4 to 0.8 m s−1. The amplitude tends to increase with the Te f f of the star

(Meunier et al., 2015).

Supergranulation is a similar effect caused by large granulation cells outlined by the

magnetic network of a star. These cells can persist for hours or up to two days and manifest

as RV variations between 0.3 and 0.7 m s−1(Meunier et al., 2015; Meunier & Lagrange,

2019; Rincon & Rieutord, 2018; Rieutord & Rincon, 2010)

Activity features, such as darker star spots and brighter faculae and plage regions,

can arise in the presence of strong magnetic activity on a star (Jeffers et al., 2013; Lovis

et al., 2011; Dumusque et al., 2011a; Boisse et al., 2011; Huélamo et al., 2008; Desort

et al., 2007; Saar, 2003; Hatzes, 2002; Saar & Donahue, 1997). Magnetic activity can act

to suppress convection in a star, which will change the convective blueshift signal. This

change can result in an RV variation of 0.4 to 1.4 m s−1 (Meunier et al., 2010).

Activity features are localized regions on the surface of a star. The features, as well

as their effects, will rotate along with the star and come in and out of view. Darker,

lower temperature spots will give off less flux than brighter, hotter faculae and plages.

The presence of activity features can therefore change the flux distribution of a star. As

a star rotates, half of the star will appear to be blueshifted as it rotates towards us, while

the other half will appear redshifted as it rotates away from us. Typically, this effect will

even out, but the different flux from activity features could break this balance, introducing
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potentially 1 to 10 m s−1 variations depending on the size of the feature and stellar rotation

rate (Meunier et al., 2010; Aigrain et al., 2012; Haywood et al., 2014).

Traditionally, stellar signals have been decorrelated from radial-velocity measure-

ments using global activity indicators. These indicators aim to gauge magnetic activity on

the target star, presence of activity features, or magnitude of line shape changes at the time

of each exposure (Figueira, 2013; Dumusque et al., 2011c; Boisse et al., 2009, e.g.). For

example, magnetic activity on the star has been shown to correlate with emission in the

core of Ca II H&K lines (Meunier & Lagrange, 2013; Saar et al., 1998), the CA infrared

triplet (Saar & Fischer, 2000), and the H-α line (Giguere et al., 2016; Robertson et al.,

2014; Skelly et al., 2008).

Other favorites include properties of the cross-correlation function (CCF) often used

to derive RVs. The CCF can be thought of as an average of all line shapes in the spectrum.

It is therefore sensitive to line shape changes that appear in most lines, but will blur out

lines behaving in different ways. The CCF bisector provides a measure of asymmetry in

the CCF (e.g. Queloz et al., 2001; Povich et al., 2001) while the FWHM of the CCF can be

used as a measure of the amount of line changes that result in a blurred, wider CCF (e.g.

Queloz et al., 2009).

Decorrelating RV measurements against these global activity indicators has not shown

success in disentangling stellar signals at the sub-meter-per-second level (Fischer et al.,

2016). Recent years have seen an explosion in different methods attempting to address the

issue of stellar signals.

Methods vary in the type of data used. Some methods present more advanced ways

of modeling RVs and activity indicators together (e.g. Rajpaul et al., 2015; Barragán et al.,

2019; Gilbertson et al., 2020). Other methods try new decompositions of the CCF to isolate

shape changes (e.g. Collier Cameron et al., 2020; Zhao & Tinney, 2020; de Beurs et al.,

2020). A growing class of methods are using the full spectra in their analysis to identify

variations on a line-by-line basis or model expected changes from stellar variability (e.g.
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Jones et al., 2017; Dumusque, 2018; Lafarga et al., 2020; Holzer et al., 2020; Rajpaul

et al., 2020; Holzer et al., 2021). These new methods make use of a range of methodology,

such as Gaussian process (GP) modeling, principal component analysis (PCA), fourier

transforms, etc.

Many of the most recent methods being employed and developed are discussed in

more detail in Chapter 5 and compared based on results using EXPRES data as part of

the EXPRES Stellar Signals Project (ESSP) (Zhao et al., 2020). As part of the ESSP, 19

different methods were tested on a consistent set of EXPRES data, allowing for a direct

comparison of the performance of these different methods. Though ongoing work, the

ESSP has helped establish the current state of the field for disentangling stellar signals and

has clarified what is needed to push progress forward.

RV measurements are essential for discovering and characterizing planets, deriving their

composition, and informing formation simulations. We need EPRV measurements to move

the field forward (Chapter 2). As more and more EPRV spectrographs come on line striv-

ing for sub-meter-per-second precision, they will all face the same hardware, pipeline, and

stellar issues.

These instruments will have to make use of data-driven pipelines that use the data

to characterize and correct for variations in the raw data, such as flat-relative extraction

(Chapter 3) or excalibur for wavelength calibration (Chapter 4). Interpreting the resultant

spectra requires diagnosing how stellar variability and activity features can change the

observed spectra (Chapter 5). We can only confidently detect planets with K < 1 m s−1

if true center-of-mass shifts from orbiting planets are faithfully disentangled from stellar

signals.

To work towards EPRV measurements is to work in a new regime. Errors that were

negligible before become dominant. Correcting for such sources reveals new errors that
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previous data was not sensitive enough to perceive. This thesis encompasses a variety of

work that addresses some error sources, reveals others, and takes stock of the current state

of the field. Chapter 6 will give a summary of the work and discuss future directions to

continue down this extreme precision road.

19



Chapter 2

Planet Detectability in
the Alpha Centauri System
Lily L. Zhao1, Debra A. Fischer, John Brewer, Matt Giguere, Bárbara Rojas-Ayala

We use more than a decade of radial velocity measurements for α Cen A, B, and Prox-

ima Centauri from HARPS, CHIRON, and UVES to identify the M sin(i) and orbital periods

of planets that could have been detected if they existed. At each point in a mass-period

grid, we sample a simulated, Keplerian signal with the precision and cadence of existing

data and assess the probability that the signal could have been produced by noise alone.

Existing data places detection thresholds in the classically defined habitable zones at about

M sin(i) of 53 M⊕ for α Cen A, 8.4 M⊕ for α Cen B, and 0.47 M⊕ for Proxima Centauri.

Additionally, we examine the impact of systematic errors, or “red noise" in the data. A

comparison of white- and red-noise simulations highlights quasi-periodic variability in the

radial velocities that may be caused by systematic errors, photospheric velocity signals, or

planetary signals. For example, the red-noise simulations show a peak above white-noise

simulations at the period of Proxima Centauri b. We also carry out a spectroscopic analysis

of the chemical composition of the αCentauri stars. The stars have super-solar metallicity

1Originally published as: Zhao, L., Fischer, D. A., Brewer, J., Giguere, M., & Rojas-Ayala, B. 2018, The
Astronomical Journal, 155, 24. I processed the different data sets and ran simulations of planet signals to
determine what types of planets were detectable with the data available at the time.
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with ratios of C/O and Mg/Si that are similar to the Sun, suggesting that any small planets

in the α Cen system may be compositionally similar to our terrestrial planets. Although

the small projected separation of α Cen A and B currently hampers extreme-precision ra-

dial velocity measurements, the angular separation is now increasing. By 2019, α Cen A

and B will be ideal targets for renewed Doppler planet surveys.

2.1 Introduction

Over the past two decades, hundreds of exoplanets have been detected with the radial

velocity technique, opening a new subfield of astronomy. In 2009, the NASA Kepler mis-

sion (Borucki et al., 2011; Batalha et al., 2013) used the transit technique to dramatically

advance our understanding of exoplanet architectures, especially for low-mass planets.

Burke et al. (2015) used the Q1-Q16 Kepler catalog (Mullally et al., 2015) with the Chris-

tiansen et al. (2015) pipeline completeness parameterization to assess planet occurrence

rates for Kepler G and K dwarfs. For exoplanets with radii 0.75 ≤ Rplanet ≤ 2.5 R⊕ and

orbital periods, 50 ≤ Porb ≤ 300 days, they find an occurrence rate, F0 = 0.77 planets

per star, with an allowed range of 0.3 ≤ F0 ≤ 1.9. The Burke et al. (2015) Kepler data

analysis suggests that most GK stars have rocky exoplanets and portends a bright future

for the discovery of low-mass planets orbiting nearby GK stars with the radial velocity

technique, once precision is improved.

At a distance of 1.3 parsecs, the three stars in the αCentauri system are our clos-

est neighbors. The stars of the central, α Cen AB binary system orbit each other with

a semi-major axis of 24 AU and an eccentricity of 0.524 (Pourbaix & Boffin, 2016).

Though planets are now known to be common, there has been theoretical speculation

about whether planets would form in such a close binary system (Thébault et al., 2006,

2008, 2009). Simulations have shown that if planets do form in this system (Quintana &

Lissauer, 2006; Quintana et al., 2007; Guedes et al., 2008), there are regions where they
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can reside in dynamically stable orbits (Wiegert & Holman, 1997; Quarles & Lissauer,

2016) around either α Cen A and α Cen B. Furthermore, approximately 20% of known

planets orbit stars that are components of binary star systems. Particularly interesting is

the case of HD 196885 AB, a stellar binary system with a semi-major axis of 24 AU and

an eccentricity of 0.409, similar to the orbit of α Cen AB, with a known planet orbiting the

primary star (Correia et al., 2008; Fischer et al., 2009; Chauvin et al., 2007). The case of

HD 196885 Ab provides empirical evidence that the formation of planets is not precluded

around α Cen A or B.

The third star, Proxima Centauri, is a smaller M dwarf and orbits this pair with a semi-

major axis between 8,700 and greater than 10,000 AU (Wertheimer & Laughlin, 2006;

Kervella et al., 2017b). The αCentauri system has long been a key target for Doppler

planet searches from southern hemisphere observatories(Murdoch et al., 1993; Endl et al.,

2001; Dumusque et al., 2012; Endl et al., 2015). While no planets have yet been discovered

around α Cen A or B (c.f. Dumusque et al., 2012; Hatzes, 2013; Rajpaul et al., 2016),

an Earth-mmass planet has been detected orbiting Proxima Centauri using the Doppler

technique (Anglada-Escudé et al., 2016). This recent discovery has increased interest in

the system and the proximity of these stars is an enormous advantage for missions that

aim to obtain images of any exoplanets. As human exploration ventures beyond our solar

system, these closest stars will surely be our first destination.

In this work, we publish radial-velocity observations of α Cen A and B, obtained at

the Cerro Tololo Interamerican Observatory (CTIO) with the Echelle Spectrograph (es)

from 2008 - 2010 and the CTIO High Resolution (CHIRON) spectrograph. These data,

together with archived data from the High Accuracy Radial Velocity Planet Searcher

(HARPS) and the Ultraviolet and Visual Echelle Spectrograph (UVES) of α Cen B and

Proxima Centauri are used to test planet detectability and place constraints on the mass

and orbital periods of putative planets that may remain undetected around these three stars.
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2.2 The alpha Centauri System

Alpha Centauri is a hierarchical triple-star system. The primary and secondary compo-

nents, α Cen A and B, are main-sequence stars with spectral types G2V and K1V, respec-

tively, that are gravitationally bound in an eccentric orbit with a semi-major axis of about

24 AU. The two stars currently have an angular separation of about 5 arcseconds, which is

not resolvable with the naked eye. Their combined brightness of -0.27 magnitudes makes

α Cen AB one of the brightest objects in the southern hemisphere. The third star in this

system, α Cen C or Proxima Centauri, was discovered in 1915 (Innes, 1915) and is a rel-

atively faint V = 11.1 magnitude M6V dwarf at a projected angular separation of 2.2 deg

from α Cen AB.

The recent astrometric analyses of α Cen A (van Leeuwen, 2007; Pourbaix & Boffin,

2016; Kervella et al., 2017a) yield an orbital parallax between 743 and 754 mas, corre-

sponding to a distance of 1.33 to 1.35 pc away. The three stars in the αCentauri system

are our closest stellar neighbors.

2.2.1 Doppler Analysis

Observations of αCentauri A and B were obtained with the 1.5-m telescope at the Cerro

Tololo Interamerican Observatory (CTIO) in Chile. From 2008 - 2010, the refurbished

Echelle Spectrometer (ES) was used to collect data. The ES was located in the Coudé

room; however no other attempt was made to stabilize the thermal environment of the

spectrograph and both diurnal and seasonal variations resulted in temperature changes of

several degrees in the Coudé room. Light from the telescope was coupled to this instrument

with an optical fiber and a slit was positioned at the focus to set the resolution to ∼ 48, 000.

However, the slit width was manually set with a micrometer and was not very precise,

therefore, we expect that slight variations in the resolution occurred over time.

23



In 2011, we replaced the ES with the CHIRON spectrograph (Tokovinin et al., 2013).

This instrument was also placed in the Coudé room and the optical fiber was changed

to an octagonal fiber to reduce modal noise in our spectra. CHIRON was not in a vacuum

enclosure, however the combination of thermal insulation and a thermally controlled space

inside the Coudé room stabilized the temperature drifts to +/- 2 K. There are four observing

modes with CHIRON ; for our observations of αCentauri A and B we adopted a fixed-width

slit at the focus of the optical fiber that provided an instrumental resolution of R ∼ 90,000

at the expense of a ∼ 30% light loss. A small fraction of light was picked off from the light

path inside the spectrograph and sent to a photomultiplier tube to determine the photon-

weighted midpoint and correct for the barycentric velocity during our observations.

The ES and CHIRON both use an iodine cell to provide the wavelength solution and

to model Doppler shifts (Butler et al., 1996). The iodine cell is inserted into the light

path for all of the program observations where radial velocities will be measured. The

forward modeling process that we use also requires high-SNR, high-resolution template

observations and a very high resolution Fourier transform spectrum (FTS) of the iodine

cell, obtained at the Pacific Northwest National Labs (PNNL) Environmental Molecular

Sciences Laboratory (EMSL). Template observations are made without the iodine cell and

are bracketed by several observations of bright, rapidly rotating B-stars through the iodine

cell. The B-star observations are used to model the wavelength solution and the spectral

line spread function (SLSF) of the instrument. The template observation is deconvolved

with the SLSF, providing a higher resolution, iodine-free spectrum for modeling Doppler

shifts. With the template observation, Ts and the FTS iodine spectrum, I2, the model is

constructed as:

(Ts × I2) ∗ S LS F (2.1)

and a Levenberg-Marquardt least squares fitting is used to model the program observa-

tions. The error budget for the CHIRON radial velocity (RV) measurements accounts for
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instrumental errors (including variations in temperature, pressure, and vibrations), modal

noise in the octagonal fiber, algorithm errors in the analysis, and the inclusion of velocity

effects (granulation, spots, faculae) from the surface of the stars. For the αCentauri AB

stars, flux contamination from the companion star turned out to be the most significant

error source.

2.2.2 Spectroscopic Analysis

The stellar properties and chemical abundances of α Cen A and B were determined by

using the spectral synthesis modeling code, Spectroscopy Made Easy (SME), described

in Brewer et al. (2016), to analyze several iodine-free spectra obtained with the CHIRON

spectrograph in 2012. The stellar parameters that we derive, as well as some compar-

ison data that represent the range of values from the published literature with available

uncertainties, are listed in Table 2.1.

Because we have analyzed 28 α Cen A and B spectra, the rms of those spectroscopic

parameters is one way to assess uncertainties. However, for all spectroscopic parameters,

we find that the rms is too small to provide a plausible estimate of uncertainties. Instead,

we adopt the more conservative model parameter uncertainties that were established us-

ing the same SME modeling technique for more than 1600 stars observed with the Keck

HIRES spectrograph (Brewer et al., 2016). Following Brewer et al. (2016), small empirical

corrections were applied to the elemental abundances of α Cen AB to account for slight

systematic trends that occur as a function of temperature with our analysis method.

Our spectroscopic analysis yields an effective temperature of 5766 ± 25 K for α Cen

A, and 5218 ± 25 K for α Cen B. The effective temperature for α Cen A is consistent with

the effective temperature measurement derived from angular-diameter measurements by

Boyajian et al. (2013) and consistent with the G2V spectral classification (Perryman et al.,

1997; van Leeuwen, 2007). The calculated effective temperature for α Cen B is similarly
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consistent with the results of Boyajian et al. (2013) and the K1V spectral classification.

Both stars have a super-solar metallicity, [Fe/H]= 0.22 ± 0.03 and 0.24 ± 0.03 for

α Cen A and B, respectively, consistent with other published values, e.g., Anderson &

Francis (2011). We measure a C/O ratio of 0.47 ± 0.05 and Mg/Si of 1.05 ± 0.03 for

α Cen A, similar to the solar value. The results for α Cen B are nearly identical with a C/O

ratio of 0.49 ± 0.05 and a Mg/Si ratio of 1.05 ± 0.03, the same as α Cen A. Because the

ratios of abundances in stellar photospheres evolve slowly over main-sequence lifetimes

(Pinsonneault et al., 2001; Turcotte & Wimmer-Schweingruber, 2002), we can use the

C/O and Mg/Si ratios as a proxy for disk compositions. Brewer & Fischer (2016) showed

that most stars have low C/O ratios, leaving the Mg/Si ratio important for regulating the

geology of planetesimals. The implication is that any rocky planets forming around α Cen

A or B could have a composition and internal structure that may be similar to the solar

system terrestrial planets.

The temperature and [Fe/H] for Proxima Centauri were derived from infrared K-band

features in XSHOOTER spectra available from the ESO Public Archive. The observations

were carried out in Period 92 using a slit width of 0.4" (R ∼9100) and were reduced

following the standard recipe described in the XSHOOTER pipeline manual2 (Vernet et al.,

2011). The wavelength calibration for the spectra was based on telluric lines, using a

modified version for XSHOOTER data of the IDL-based code xtellcor_general by Vacca

et al. (2003). The Proxima Cen spectra were convolved with a Gaussian kernel to degrade

the resolution to R ∼2700, in order to use the Na I, Ca I, and H2O-K2 indices calibrated

to provide metallicity estimates for M dwarf stars by Rojas-Ayala et al. (2012). With this

technique, we derive Te f f = 2879 ± 50 K and [Fe/H]= 0.08 ± 0.12 and a spectral type

of M5.5V. The metallicity for Proxima Cen is slightly lower than that of α Cen A and B;

however, the uncertainty in the Proxima Cen measurement is four times the uncertainty for

α Cen A or B. Proxima Centauri should share the same chemical composition as α Cen A

2http://www.eso.org/sci/software/pipelines/
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and B unless those stars had a significantly different accretion history than Proxima.

2.2.3 Isochrone Analysis

Using spectroscopic parameters (Te f f , [Fe/H], [Si/H]) and distance, we derive the best fit

models to the Yale-Yonsei (Y2) isochrones (Demarque et al., 2004) to estimate the stellar

mass, radius, and age for α Cen A and B. Our stellar masses (listed in Table 2.1) agree

well with other published values (Lundkvist et al., 2014; Pourbaix & Boffin, 2016) and

the radius is consistent with the angular-diameter measurement by Kervella et al. (2017a).

The isochrone-derived age for α Cen A is 5.17+1.03
−0.97 Gyr, slightly older than the Sun and

consistent with previous age estimates. Our isochrone model for α Cen B gives a younger

age with large uncertainties, 2.53+3.12
−1.89 Gyr. The posterior in the isochrone fit shows a peak

at younger ages for α Cen B that is ill-constrained by log g and distance. However, the

ages for the two stars do agree within their uncertainties.

The log g, stellar mass, and radius of Proxima Cen were determined by adopting the

age of ∼5 Gyr that we estimate for α Cen AB, and interpolating the temperature onto a

solar-metallicity isochrone for main-sequence, low-mass stars from Baraffe et al. (2015).

Because M dwarfs evolve very slowly after the pre-main-sequence phase, any errors in

the adopted age of the star will not significantly affect the derived stellar model. The

Baraffe et al. (2015) isochrones were only calculated for solar metallicity; therefore, the

isochrone model parameters will not account for the slightly super-solar metallicity of

Proxima Centauri. The isochrone model parameters for Proxima Cen are also compiled in

Table 2.1.

2.2.4 Chromospheric Activity

The chromospheric activity of α Cen A and B was monitored Henry et al. (1996) by mea-

suring emission in the cores of the Ca II H & K lines relative to continuum bandpasses
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(i.e., the S HK values), scaled to the long-term Mount Wilson H & K study (Wilson, 1978;

Vaughan et al., 1978; Duncan et al., 1991; Gray & Baliunas, 1995). The S HK values to-

gether with the B − V of the star can then be transformed to log R′HK, which is the fraction

of bolometric luminosity from the lower chromosphere after subtracting off photospheric

contributions (Noyes et al., 1984). Using log R′HK instead of S HK allows for a straight-

forward comparison of chromospheric activity that is independent of spectral type.

Chromospheric activity provides a good way to estimate rotation periods and ages

(Noyes et al., 1984), even for older and more slowly rotating stars. Both α Cen A and B

are chromospherically quiet stars with estimated rotation periods of about 22 and 41 days,

respectively (Morel et al., 2000). This is typical of stars that are about the age of the Sun.

Coronal cycles have been measured at X-ray and UV wavelengths with periods of 19 and

8 years for α Cen A and B, respectively (Ayres, 2014, 2015).

A recalibration of chromospheric activity-age relation and a calibration of stellar ro-

tation to stellar age (gyrochronology) was carried out by Mamajek & Hillenbrand (2008).

Their revised calibration returns activity and gyrochronology ages of 6.6 and 4.4 Gyr for

α Cen A and 5.2 and 6.5 Gyr for α Cen B. Mamajek & Hillenbrand (2008) estimate un-

certainty in these ages of about 1.5 Gyr for the activity calibration and 1.3 Gyr for their

gyrochronology technique.

2.2.5 Stellar Ages

Stellar ages can be estimated in several ways: from isochrone fitting, stellar activity, stellar

rotation speed (gyrochronology), dynamical measurements of the visual binary orbit, or

galactic kinematics. In the case of a binary star system, we expect that the stars are co-eval;

both stars should yield an independent estimate for the age of the binary system. Taking

the average of the stellar ages for both α Cen A and B estimated from the ages tabulated in

Table 2.1, we calculate a weighted mean age for the αCentauri system of 5.03± 0.34 Gyr.
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2.2.6 Stellar Orbits

Pourbaix et al. (1999) used published astrometry and radial velocity (RV) data from the Eu-

ropean Southern Observatory Coudé Echelle Spectrograph to derive the orbital parameters

for the α Cen A and B stellar binary system. Pourbaix & Boffin (2016) refined this binary

star orbit by supplementing their previous analysis with 11 years of high-precision RV

measurements from the HARPS spectrograph and some additional astrometric data from

the Washington Double Star Catalog (Hartkopf et al., 2001). They derive an orbital period

of 79.91 ± 0.013 years and eccentricity of 0.524 ± 0.0011, and masses MA = 1.133±0.005

M� and MB = 0.972 ± 0.0045 M�. We use their published orbital parameters to plot the

projected orbit of α Cen B around α Cen A in Figure 2.1. The projected separation be-

tween the two stars reaches a local minimum in 2016, but will increase to observable

levels by 2019.

Proxima Centauri has a projected separation of 15, 000 ± 700 AU from α Cen AB

and a relative velocity with respect to α Cen AB of 0.53 ± 0.14 km s−1 (Wertheimer &

Laughlin, 2006). Wertheimer & Laughlin (2006) used Hipparcos kinematic information

and carried out Monte Carlo simulations to determine the binding energy of Proxima Cen

relative to α Cen AB. They found a high probability that Proxima Cen is gravitationally

bound and near apastron in a highly eccentric orbit. More recently, Kervella et al. (2017b)

added published HARPS RV measurements and likewise concluded that Proxima Centauri

is gravitationally bound to the α Cen AB stars, traveling in an orbit with eccentricity of

0.50+0.08
−0.09 with an orbital period of ∼ 550, 000 years.

2.3 Exoplanet Searches

The three stars in the αCentauri system have been targets of different precision, radial-

velocity surveys to search for exoplanets from southern hemisphere observatories (Endl
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Figure 2.1: Projected orbital plane of α Cen A and B. The angular separation reaches a
temporary minimum just under 4” in 2017 and the angular separation begins to increase
in 2018. By 2020, the separation exceeds 5."5 and ground-based, radial-velocity searches
can resume without suffering significant contamination from the companion star.
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et al., 2001; Dumusque et al., 2012; Endl et al., 2015). In 2012, a planet was announced

orbiting α Cen B (Dumusque et al., 2012) using data from the HARPS spectrograph. While

that putative signal was later shown to be a sampling alias in the time series data (Rajpaul

et al., 2016), Anglada-Escudé et al. (2016) subsequently discovered a low-mass planet

orbiting Proxima Centauri, a M5.5V star. The orbital period of Proxima Cen b is 11 days,

which places this planet at the appropriate distance from its host star to fall within the

habitable zone. This detection was a record-breaking discovery because of the low mass

of the planet, although the habitability of this world is now being debated. Airapetian et al.

(2017) find that the planet orbiting Proxima Centauri will incur a significant atmospheric

loss of oxygen and nitrogen in addition to a massive loss of hydrogen because of the high-

energy flux from this relatively active M dwarf (Airapetian et al., 2017).

There are several reasons why Doppler planet searches around the binary stars α Cen

A and B are well-motivated. The stars are bright, allowing for high cadence and signal-to-

noise spectra. The declination of the stars is −60 degrees, close to a southern polar orbit,

so that the observing season stretches between nine months and a year depending on the

position of the observatory. Dynamical simulations (Wiegert & Holman, 1997) show that

any planets in the system are likely to be nearly aligned with the binary-star orbit; this

implies that any RV amplitude would not be strongly attenuated by orbital inclination.

However, there are some challenges for planet detection, formation, and long-term

stability around α Cen A or B. One key concern is that the semi-major axis of the binary

star orbit is only about 24 AU (Pourbaix & Boffin, 2016) and the orbital eccentricity of

0.524 means that the separation of the stars is only 16.3 AU at periastron passage. While

Wiegert & Holman (1997) demonstrate that any existing planets would be dynamically

stable if they orbit within a few AU of either star, the close proximity of the stars has led to

theoretical speculation about whether planets could have formed in the first place around

α Cen A or B (Barbieri et al., 2002; Quintana et al., 2002; Quintana & Lissauer, 2006;

Quintana et al., 2007; Thébault et al., 2008, 2009). Encouragingly, 20% of detected exo-
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planets have been found in binary star systems orbiting one or the other star. An especially

interesting case is the binary star HD 196885 AB. With a semi-major axis of 24 AU and

an eccentricity of 0.409, this is a close analog of the α Cen AB binary pair. HD 196885 A

is known to host a gas-giant planet with M sin(i) of ∼ 3 MJup and an orbital period of 3.69

years (Correia et al., 2008; Fischer et al., 2009; Chauvin et al., 2007).

Doppler surveys generally avoid binary stars with separations less than ∼5 arcseconds

because additional RV errors can be incurred by flux contamination from the companion

star. At the next periastron passage of α Cen AB (May 2035) the projected separation of

the two stars will be less than 2 arcseconds. However, with an orbital plane that is only

11 degrees from an edge-on configuration, the projected separation of α Cen AB reached

a secondary minimum of ∼ 4 arcseconds in 2017. Figure 2.1 shows the relative orbit

of α Cen B orbiting α Cen A, projected onto the plane of the sky. Beginning in 2012,

the angular separation between the two stars decreased to 5.44” and flux contamination

from the binary-star companion was observed in the radial-velocity measurements and

was exacerbated on nights of poor seeing conditions.

For the CHIRON data, while there was code developed to scale the flux taking into

account contamination, the improvement was insufficient for precision radial velocity mea-

surements. The RVs listed in the Dumusque et al. (2012) paper were restricted to observa-

tions obtained through 2011 that had better than one arcsecond seeing. No HARPS radial

velocities were published for 2012 because the seeing conditions were not adequate to

avoid flux contamination during that year. Wittenmyer et al. (2014) and Bergmann et al.

(2015) have presented methods for modeling flux-contaminated spectra to reach an rms

of a few meters per second. However, this more complex modeling does not reach sub-

meter-per-second precision, the precision needed to contribute to the detection of planets

with velocity semi-amplitudes less than one or two meters per second. The current small

projected angular separation of α Cen AB may force a hiatus in ground-based Doppler

programs for this system until 2019 or 2020.
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2.3.1 Constraints from Existing Data

The existing Doppler planet searches allow us to place constraints on the mass-period

parameter space where planets would have been detected if they existed. Conversely, we

can see what type of planets would have escaped detection.

Data from the Echelle Spectrograph (ES), CHIRON, HARPS, and UVES were com-

piled to constrain exoplanet detections for α Cen A, B, and C (Proxima). Radial velocities

of both α Cen A and B were obtained by our team using the ES between 2008 - 2011 and

the CHIRON spectrograph between 2011 - 2013 at the 1.5-m Cerro Tololo Interamerican

Observatory (CTIO) in Chile. The HARPS spectrograph is located at the 3.6-m ESO La

Silla telescope. HARPS radial velocities of α Cen B were obtained between February 2008

and July 2011 and published by Dumusque et al. (2012). We also use published RVs of

Proxima Centauri from HARPS that span 2005 - 2016, and published RVs from 2010 -

2016 at the Ultraviolet and Visual Echelle Spectrograph (UVES) on the Very Large Tele-

scope at Cerro Paranal in Chile (Anglada-Escudé et al., 2016). Both CHIRON and UVES

are calibrated using the iodine cell technique while HARPS is calibrated using the simul-

taneous Thorium-Argon reference method Tokovinin et al. (2013); Anglada-Escudé et al.

(2016).

The 1.5-m CTIO telescope is part of the Small to Moderate Aperture Research Tele-

scopes (SMARTS) consortium. The ES was a recommissioned, fiber-fed spectrograph lo-

cated at the 1.5-m CTIO telescope. The typical, single-shot precision of the ES was about

7 m s−1. This spectrograph was replaced in 2011 with the CHIRON spectrograph, which

was immediately upgraded and recommissioned in 2012 with new optical coatings, a new

CCD, better temperature control, and octagonal fibers (Tokovinin et al., 2013). While the

short term velocity rms reached 0.5 m s−1 for bright, single stars observed with CHIRON

(Tokovinin et al., 2013), a serious short-coming for RV measurements of α Cen A and B

RV measurements is that the front end fiber feed was designed with a 2."7 field of view
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to maximize the number of collected photons during poor seeing conditions on the 1.5-m

telescope. When CHIRON was re-commissioned in 2012, the angular separation of α Cen

A and B was only 5."5 and there was significant flux contamination from the compan-

ion star on nights when the seeing was worse than one arcsecond. By 2013, the angular

separation of AB had decreased so the flux contamination increased and there were few

nights when the rms of the RV measurements was less than three times the average scatter

per night. We tested a new Doppler code that included a scaled flux from the compan-

ion star, as described by Bergmann et al. (2015); however, we were only able to reach a

single-shot precision of ∼ 15 m s−1 from the flux contaminated spectra for α Cen A and

B. We prefer to retain the original velocities, rather than velocities from our scaled flux

analysis, because they more clearly identify nights with spectral contamination that should

be rejected.

Figure 2.2 shows all of the binned RV measurements collected by the ES (left of the

vertical dashed line) and CHIRON (right of the vertical dashed line) for α Cen A (top panel)

and α Cen B (bottom panel). Flux contamination from the companion stars causes the

velocities for α Cen A to decrease (shifting toward the velocity of α Cen B) and velocities

for α Cen B to increase. The effect of flux contamination is apparent in Figure 2.2. The

nights with poor seeing conditions that resulted in flux contamination were excluded from

the published HARPS data (Dumusque et al., 2012). To eliminate nights at the CTIO with

significant flux contamination, we determined an acceptable threshold for the measured

contamination. After subtracting out the binary trend from both data sets, the resulting

RV measurements should be Gaussian distributed about zero. However, contaminated

data will lie far away from the mean. We fit a Gaussian curve to the distribution of each

data set and consider any data point more than 3σ away from the distribution’s mean

as suffering from considerable contamination. Figure 2.3 shows the distribution (black),

fitted Gaussian curve (blue), and subsequent cuts (orange). The 3σ cuts frame the bulk of

the observations, thereby excluding only nights that deviate significantly from the mean.
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Figure 2.2: Data of α Centauri A (top) and α Centauri B (bottom) taken at the CTIO
Telescope from 2009 to 2012. The Echelle Spectrograph was switched to CHIRON in
2011, as shown by a dashed line on each graph. Observations are binned by night. Blue
points represent the data points used in the simulations. Observations falling more than
3σ away from the average due to contamination were cut, shown here in orange.
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Figure 2.3: A histogram of the de-trended radial velocity measurements for each night
at the CTIO Telescope of α Cen A (top) and α Cen B (bottom). Each histogram is fit to
a Gaussian, shown in blue. Nights where data fall more than 3σ away (shown by red,
vertical lines) most likely suffer contamination from the other star and are cut. Retained
nights are shown in blue in Figure 2.2.
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Table 2.2: Relative, Binned RV Data from the Telescope. A stub of this table is provided
in the printed version of this paper and the complete table is available in the online version
of this paper

Star JD-2440000 RV m s−1 Err m s−1 Source
A 14689.5270 -239.82 7.20 Echelle
A 14834.8477 -187.13 4.64 Echelle
B 14834.8350 119.94 4.05 Echelle
B 14835.8154 126.48 4.74 Echelle

Data that is retained and used in the simulations are shown in Figure 2.2 in blue while

cut data is plotted in orange. This contamination is visually obvious and increases with

time following 2011 as the stars orbit closer and closer together (see Figure 2.1). All

velocities removed are skewed in the direction to be expected from contamination (e.g.

down for α Cen A and up for α Cen B). Additionally, this choice of cut vets more data

points from the set of α Cen B observations, which further suggests contamination since

α Cen A is the brighter star and would therefore cause more significant contamination in

α Cen B observations than the other way around.

In Table 2.2, we list the nightly-binned, radial-velocity measurements on nights where

there was not significant flux contamination from the companion star for αCentauri A and

B, resulting in 228 data points for α Cen A and 241 points for α Cen B. The uncertainty

on our single measurements is of the order 5 m s−1 for ES data and 1.1 m s−1 for CHIRON

data with regards to α Cen A. The uncertainty for α Cen B observations is approximately

4.4 m s−1 for ES data and 1.2 m s−1 for CHIRON data. Because the errors are not pure

white noise, the error for each binned observations is taken to be the average of the formal

errors of every point that night. The rms of the final, nightly-binned radial velocities is 7.2

m s−1 for α Cen A over 4.13 years and 8.9 m s−1 for α Cen B over 4.38 years.
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2.4 Simulations

Using the cleaned and nightly-binned velocities for α Cen A and B from the ES and CHI-

RON spectrographs at CTIO, the published HARPS velocities for α Cen B, and the HARPS

and UVES velocities for Proxima Cen, we carried out Monte Carlo simulations to assess

whether planets of a given mass with orbital periods between 2 and 1000 days would have

been detectable. The maximum orbital period of 1000 days was chosen because we expect

that dynamical influences from the binary orbit of the α Cen AB stars would destabilize

orbits of putative planets beyond about 2 AU (Wiegert & Holman, 1997). We restricted

the detectability simulations for Proxima Centauri (α Cen C) to the same time baseline,

searching for significant signals well beyond the habitable zone of the low-mass star. The

minimum orbital period of 2 days is arbitrary, but avoids spurious 1-day sampling aliases

in the CHIRON and HARPS data sets.

For the detectability simulations, we established a grid in planet mass and orbital pe-

riod parameter space for each of the stars (α Cen A, B, and Proxima Centauri) and injected

a simulated Keplerian signal at each grid point, adopting stellar mass values from Pourbaix

& Boffin (2016). For simplicity, our simulations assume circular orbits and single-planet

architectures. Grid points are spaced on a hybrid log-linear scale to adequately sample the

parameter space.

The simulations reveal the detectable M sin(i) of the planet. While our simulations

test M sin(i) rather than planet mass, planets are expected to inherit the 79◦ orbital incli-

nation of the binary star system (Wiegert & Holman, 1997). Therefore, we expect that the

M sin(i) value is close to the true mass of any planets around either α Cen A or B.

The statistical significance of the injected signal was determined by assuming the null

hypothesis. In other words, we assess the probability that a signal of similar strength to

our injected Keplerian signal would be produced by random errors in our data. Planets that
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are more massive or in closer orbits will produce stronger reflex velocities in the host stars

that give rise to stronger, coherent signals. These planets are more easily detected as their

signals are harder to reproduce by noise alone. Our simulations test what strength of signal

is necessary to overcome the inherent noise in the data and produce a coherent, detectable

signal from a planet. We tested planet detectability in the presence of both white noise and

the red noise present in the reported RVs.

2.4.1 White-Noise Simulations

We simulated Keplerian RVs with identical temporal sampling and error bars as the ob-

served data sets, preserving any window functions in the observations. Our white-noise

simulations assume that the radial velocity scatter is completely captured by white noise

that is scaled to the quoted error bars. The simulated radial velocities for the white-noise

simulations were created with a random draw from a Gaussian distribution that was scaled

to the formal error at the time of each observation. The mean of the formal errors for the

binned ES and CHIRON data is 0.48 m s−1 for αCentauri A and 0.51 m s−1 for αCentauri

B (but, as we show later, the systematic errors in the ES and CHIRON data are significantly

larger). The binned HARPS data of αCentauri B have a mean error of 1.0 m s−1. The stan-

dard error for the combined, binned HARPS and UVES data of Proxima Centauri are on

average 0.94 m s−1. We generated 1500 sets of time-series, white-noise RV data. The sim-

ulated radial velocities were created by adding realizations of white noise to theoretical

Keplerian models at each mass-period grid point.

Using a Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982), the periodogram

power for the simulated Keplerian velocities was then compared to the periodogram power

of the 1500 white noise data sets at each grid point. The data sets that are dominated by

white noise produce a power spectrum with multiple low peaks at many periods, while a

detectable Keplerian signal will produce a tall peak at the correct orbital period. Examples
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Figure 2.4: Comparing generated Keplerian signals to noise. An example periodogram
of a significant detection (solid line) and an insignificant planetary signal (dashed-line)
are given for white noise (black, top) and red noise (red, bottom). On both graphs, a blue,
horizontal line marks the peak height that is greater than the maximum peak height in 99%
of 1500 instances of pure noise. This corresponds to a p-value of less than 0.01 for the
signal. Therefore, periodograms with peaks higher than this line are considered significant.
The vertical, green, dashed line on both graphs marks the period of the generated signal.
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of significant vs. insignificant periodograms are given in Figure 2.4 for both white noise

(top) and red noise (bottom).

To decide whether the RVs with an injected Keplerian signal would be detectable with

current observations, we calculate a p-value at each grid point. The p-value gives the prob-

ability that the injected radial-velocity data produces the same signal as only random noise.

The p-value is defined as the fraction of comparisons where the white-noise simulations

yield a greater maximum peak height than the simulated Keplerian signal. Planets produc-

ing significant signals will more consistently give stronger periodogram peaks, resulting

in lower p-values. Larger p-values indicate that the signal produced by the planet has no

more significance than white noise alone. We adopt an arbitrary but often used threshold

p-value of 0.01, meaning that fewer than 1 of 100 white noise simulations produced a

periodic signal that was stronger than a simulated Keplerian signal. 3

Figure 2.5 shows the white noise detectability simulations for α Cen A, α Cen B, and

Proxima Cen. The p-values and color gradients are scaled so that a boundary appears

where Keplerian signals yield a p-value of 0.01. Signals with lower p-values (above this

boundary) would have likely been detected if they existed, while Keplerian signals with

p-values greater than 0.01 would be buried in the white noise given the stated errors of the

CHIRON and HARPS programs. The CHIRON and HARPS data sets for α Cen B are kept

separate as they are unique in their sampling and would lead to different aliasing as well as

exhibit different instrumental errors. Analyzing the two data sets separately allowed our

results to capture these differences. Additionally, while combining the two data sets helps

to push white-noise detection limits lower, the red-noise simulations suffer instead. The

CHIRON data, with more systematic errors, serve to reduce the sensitivity of the HARPS

data rather than give better results. The upper right panel of Fig 2.5 has a dot indicating

3The purpose of this analysis is to assess the strength an injected Keplerian signal requires to produce
a signal significantly distinct from what would be produced by pure noise in the current observations. We
consider each scenario individually and therefore do not make any adjustments to account for the multiple
comparisons problem.

44



the mass and period of Proxima Cen b (Anglada-Escudé et al., 2016).

2.4.2 Red-Noise Simulations

Our analysis using the white-noise simulations described above will not account for any

systematic or quasi-periodic instrumental errors, analysis errors, photospheric jitter, or

even actual planets. To investigate the impact of systematic errors or red noise sources,

we treat the reported residual velocities from subtracting out the binary orbit from the

observations as coherent noise. This is a worst-case scenario and we note that it is possible

to improve detectability by de-correlating some of these noise sources using techniques

like line bisector variations or FWHM variations to estimate photon noise (e.g. Dumusque

et al., 2012; Rajpaul et al., 2016; Anglada-Escudé et al., 2016).

These residual velocities are assumed to capture uncorrected observational errors,

including instrumental errors and stellar jitter. The residual velocities would also contain

any potential planetary signals. For this red noise simulation, we simply interpreted the

residual velocities as pure red noise, and continued the same simulation described for

white noise, adding Keplerian signals parameterized by each point of a mass-period grid.

A comparison of the red and white noise analysis can be useful for highlighting possible

planetary signals as well as quasi-periodic errors in our radial velocity data.

For the Monte Carlo, red noise simulations, the radial-velocity residuals were added

to 1500 freshly generated white noise realizations and to the theoretical Keplerian signal

at each point of a mass-period grid. The periodograms of the red-noise simulations now

contain stronger power than the white-noise simulations, meaning the simulated Keple-

rian signal must generally have a larger amplitude to reach a p-value of 0.01 (see Figure

2.4). Figure 2.6 shows the red noise simulations for α Cen A from CHIRON (upper left),

Proxima Centauri (upper right), α Cen B from CHIRON (lower left) and α Cen B from

HARPS (lower right). Solid, black lines on each plot show a power law that was fit to the
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Figure 2.5: White-noise simulations. Mass vs. period grids showing the significance
at which a planet of such a mass and period would have been detected assuming only
the reported errors for observations of (a) αCentauri A from ES and CHIRON, (b) Prox-
ima Centauri from HARPS and UVES, (c) αCentauri B from ES and CHIRON, and (d)
αCentauri B from HARPS. A p-value of less than 0.01 (indicated by shades of blue) is
considered significant. Green vertical bands mark the conservative habitable zone where
liquid water could persist for most of the stellar lifetime and the lighter green covers the
optimistic habitable zone (as defined by Kopparapu et al. (2013)). A power law was fit to
the detectability border of the α Cen B ES and CHIRON data and is plotted on the α Cen
B HARPS grid as a dashed line. The location of Proxima Cen b is indicated with a dot.
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detectability border from the white-noise simulations for each data set.

2.5 Results

Our white-noise simulations are summarized in Figure 2.5. Because both the original error

bars and times of observation are retained, the white-noise simulations will preserve our

ability to identify window functions in the sampling of our data. These simulations ex-

clude planets in the conservative habitable zone of each star with a M sin(i) of greater than

53±13 M⊕ for α Cen A, 8.4±1.5 M⊕ for α Cen B, and 0.47±0.08 M⊕ for Proxima Cen-

tauri. However, this is an overly optimistic scenario. Doppler measurements are known to

have contributions to the derived radial velocities that arise from instability of the instru-

ment, errors in the analysis, and velocities in the stellar photosphere from spots, faculae,

granulation, p-mode oscillations, or meridional flows (e.g., Santos et al., 2000; Saar &

Fischer, 2000; Queloz et al., 2001; Wright, 2005; Lagrange et al., 2010; Meunier et al.,

2010; Borgniet et al., 2015). These velocities can obscure the Doppler signals that arise

from orbiting exoplanets. The white noise simulations will not capture these noise sources

because of an implicit assumption that the measurement errors are captured by the formal

RV uncertainties.

In contrast, our red-noise simulations, shown in Figure 2.6, represent a worst-case

scenario. For these simulations, we assume that the time-series radial velocities contain

only coherent noise. This noise is added directly to random white noise and the generated

Keplerian signals, effectively preserving any temporal coherence in the noise.

In practice, radial velocities can be treated with Gaussian Process Regression (Rajpaul

et al., 2016) or decorrelated using line bisectors or the FWHM of the cross correlation

function (Dumusque et al., 2012) to mitigate the impact of non-Keplerian radial velocities

on exoplanet detectability. Red noise has also been empirically modelled (Tuomi et al.,

2013) Therefore, our red-noise simulations slightly underestimate planet detectability. The
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Figure 2.6: Red-noise simulations. Mass vs. period grids showing the significance at
which a planet of such a mass and period would have been detected assuming that the
current data of (a) αCentauri A from ES and CHIRON, (b) Proxima Centauri from HARPS
and UVES, (c) αCentauri B from ES and CHIRON, and (d) αCentauri B from HARPS
is simply red noise. The color scale to p-value is the same as for Figure 2.5. A power
law was fit to the detectability border given by the white-noise simulations and is plotted
here as a black line. The orange parameter space indicates areas where planets could still
remain undetected. The conservative and optimistic habitable zones are the same as Fig
2.5. Proxima Centauri b is indicated on subfigure (b) by a dot.
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white-noise and red-noise simulations together frame the mass-period boundary where

existing Doppler surveys constrain the existence of planets orbiting the αCentauri stars.

The boundary between parameter space where planets would be detected or missed

in the presence of white noise (Fig. 2.5) or red noise (Fig. 2.6) is approximately defined

by the lowest mass at each period for which the p-value of the generated Keplerian RV

exceeds our threshold of 0.01. This border for the white-noise simulations is both lower

and smoother compared to the red-noise simulations. To more closely investigate these

differences, we subtract the detectability border of the white-noise simulations, MWN , from

the detectability border of the red-noise simulations, MRN . This difference is plotted as a

function of period in Figure 2.7 for α Cen A (top), α Cen B (middle), and for Proxima Cen

(bottom). Peaks in this difference plot will occur due to quasi-periodic noise sources or

planetary signals. Interesting to note is the peak at around 675-720 days that can be seen in

both the CHIRON and HARPS observations of α Cen B. Additionally, similar peaks appear

in both the α Cen A and α Cen B CHIRON data near 65, 150, and 575 days. The bottom

plot in Figure 2.7 includes a vertical, dashed line at the period of Proxima Centauri b,

around which a clear peak can be seen.

2.6 Discussion

2.6.1 Detectability

We have carried out simulations to show how past Doppler surveys of the αCentauri stars

constrain the probability of exoplanets over the mass-period parameter space shown in Fig-

ures 2.5 and 2.6. While the Doppler technique can only derive M sin i, rather than the true

planet mass, the dynamical influences of the binary star system mean that any stable plan-

ets are more stable and therefore more likely to be nearly co-planar with the 79◦ inclination

of the stellar binary system (Wiegert & Holman, 1997; Quarles & Lissauer, 2016). This
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Figure 2.7: Difference in detectability between the red-noise simulations and the white-
noise simulations from subtracting the two detectabliity borders for αCentauri A (top),
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suggests that the M sin(i) is approximately the actual planet mass for prospective planets

around α Cen A or B. We show that Earth analogs could still exist around either α Cen

A or B and would not have been detected by the past decade of precision radial velocity

searches. Continued, high-cadence, high-precision radial velocity observations could still

reveal Earth-sized planets within this star system, even within the habitable zones of each

of the three stars.

At each point in the parameter space of M sin(i) and orbital period, we sample a

Keplerian signal at the actual time of the observations with added white noise scaled to the

errors to provide a baseline of planet detection space. These simulations exclude planets

within the conservative habitable zone of each planet with a M sin(i) of greater than 53

M⊕ for α Cen A, 8.4 M⊕ for α Cen B, and 0.47 M⊕ for Proxima Centauri on average.

This result for α Cen B comes from the HARPS data set; the CHIRON data set excludes

planets in the habitable zone of α Cen B to greater than 23.5 M⊕. We then repeat our

analysis using the actual velocity scatter after subtracting the binary star orbit as “red”

noise in addition to the white noise. We assess the probability that this signal could have

been produced by noise alone by calculating a p-value, the fraction of comparisons where

noise-only simulations yield greater periodogram power than the Keplerian signal at any

grid point. The color scales of Figures 2.5 and 2.6 pivot around a p-value of 0.01, which

would be marginally detectable.

Both the white-noise and the red-noise simulations preserve the cadence of observa-

tions. Because observations are a discrete sampling of a continuous signal, aliases appear

in periodograms that can be mistaken for true, astrophysical signals. These commonly

correspond to periodicities of the sidereal year, sidereal day, solar day, and synodic month

(Dawson & Fabrycky, 2010). For example, reduced sensitivity can be seen in all four data

sets presented in Figure 2.5 around 300-400 days, which likely corresponds to the annual

constraints the Earth’s orbit around the Sun places on observations.

We subtract the white-noise mass-period boundary that occurs at a p-value of 0.01
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from that same boundary in the red-noise simulations to highlight periodicities present in

the residual radial velocities. Even after implementing the cuts described in section 3.1,

we acknowledge that some of the remaining RV measurements may still be affected by

small amounts of contamination, which effectively contributes to the red noise. The peaks

apparent in Figure 2.7 could correspond to quasi-periodic systematic errors, stellar jitter, or

even planetary signals. For example, peaks that appear consistently in the CHIRON data for

both α Cen A and α Cen B (e.g. at 65, 150, and 575 days), are indicative of instrumental or

systematic errors since it is improbable that both stars will exhibit the same astrophysical

velocity signals. Also potentially interesting are the periods where peaks in the CHIRON

and HARPS data of α Cen B align (e.g. at around 700 days). Because these peaks appear

in observations from two different instruments with different data reduction pipelines, it

seems unlikely that the same peaks would arise in both data sets from instrumental or

systematic error; however, these peaks could still be the result of astrophysical velocity

signals. In the case of Proxima Centauri, it is illustrative to note a distinct signal at the

period of the recently discovered Proxima Cen b. A Keplerian signal would produce a red

noise source in the velocities of that star; this peak is likely due to the signal produced by

Proxima Cen b that is retained in the residual radial velocities.

Radial velocity precision approaching 10 centimeters per second will ultimately be

needed to detect exoplanets with smaller masses and longer orbital periods in the yet to be

probed parameter space around α Cen A and B. There are several challenges for reaching

such high RV precision. Some of the issues should be relatively straightforward to address.

For example, the p-mode oscillations of α Cen A have a radial velocity amplitude of 1− 3

m s−1 (Butler et al., 2004),which adds random scatter to radial velocities. The p-mode am-

plitudes in α Cen B are much weaker with a semi-amplitude of only 0.08 m s−1 (Kjeldsen

et al., 2005); however, changing granulation patterns also introduce radial velocity scatter

at the level of 0.6 m s−1 for both stars on timescales ranging from 15 minutes to several

hours (Dumusque et al., 2012; Del Moro, 2004). Both p-mode oscillations and granulation
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change on relatively short periods, allowing the observing strategy to be tailored to dra-

matically reduce these noise sources. For example, a series of exposures over ten minutes

is sufficient to average over the high frequency p-mode signals.

Additional challenges to higher RV precision include requirements of higher stability

for next generation spectrographs (temperature and pressure stability), improved wave-

length calibration, calibration of both CCD stitching and random pixel position errors, and

mitigation of modal noise for multi-mode fibers (Fischer et al., 2016). It seems likely that

ongoing efforts to address these engineering challenges will be successful. Techniques for

modeling or decorrelating Doppler velocities that arise from stellar photospheres are less

mature. Significant progress on disentangling stellar noise sources is required so that clean

orbital velocities can be obtained. Currently, the two stars are separated by less than 5”,

giving rise to cross contamination between the two stars and preventing high-precision,

radial-velocity measurements. As the separation between α Cen A and B begins to in-

crease in 2019, radial velocity measurements will help to push constraints even lower and

could ultimately lead to the discovery of Earth-like planets.
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Chapter 3

An Extreme Precision Radial Velocity Pipeline:
First Radial Velocities from EXPRES
Ryan R. Petersburg, J. M. Joel Ong, Lily L. Zhao1, Ryan T. Blackman, John M. Brewer,

Lars A. Buchhave, Samuel H. C. Cabot, Allen B. Davis, Colby A. Jurgenson, Christopher

Leet, Tyler M. McCracken, David Sawyer, Mikhail Sharov, René Tronsgaard, Andrew E.

Szymkowiak, Debra A. Fischer

The EXtreme PREcision Spectrograph (EXPRES) is an environmentally stabilized,

fiber-fed, R = 137, 500, optical spectrograph. It was recently commissioned at the 4.3-m

Lowell Discovery Telescope (LDT) near Flagstaff, Arizona. The spectrograph was de-

signed with a target radial-velocity (RV) precision of 30cm s−1. In addition to instrumental

innovations, the EXPRES pipeline, presented here, is the first for an on-sky, optical, fiber-

fed spectrograph to employ many novel techniques—including an “extended flat” fiber

used for wavelength-dependent quantum efficiency characterization of the CCD, a flat-

relative optimal extraction algorithm, chromatic barycentric corrections, chromatic cali-

bration offsets, and an ultra-precise laser frequency comb for wavelength calibration. We

describe the reduction, calibration, and radial-velocity analysis pipeline used for EXPRES

1Originally published as: Petersburg, R. R., Ong, J. M. J., Zhao, L. L., et al. 2020, The Astronomical
Journal, 159, 187. I co-wrote and developed the EXPRES pipeline along with the other two co-first authors
and continue to help with upkeep and running of the pipeline.
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and present an example of our current sub-meter-per-second RV measurement precision,

which reaches a formal, single-measurement error of 0.3 m s−1 for an observation with

a per-pixel signal-to-noise ratio of 250. These velocities yield an orbital solution on the

known exoplanet host 51 Peg that matches literature values with a residual RMS of 0.895

m s−1.

3.1 Introduction

Results from the NASA Kepler mission show that small planets with radii between 1–4

R⊕ are found orbiting 20–50% of main-sequence stars (Winn & Fabrycky, 2015). While

such transit surveys, such as Kepler, K2, and TESS, have revealed a wealth of planets,

few of these planets have had their masses measured; mass estimates which do exist are

typically radial-velocity (RV), dynamical masses. More precise RV measurements are re-

quired to determine mass estimates for these planets, particularly small rocky ones, than

are possible with pre-existing RV spectrographs. Were they available, these mass measure-

ments would shed light on planetary structure, bulk density, and the mass-radius relation

for sub-Neptune-mass planets.

To meet these needs, a new generation of RV spectrographs is now emerging: the

Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observa-

tions (ESPRESSO: Pepe et al., 2013) and The EXtreme PREcision Spectrograph (EXPRES:

Jurgenson et al., 2016) are now on sky taking data, while the NN-explore Exoplanet Inves-

tigations with Doppler spectroscopy spectrograph (NEID: Schwab et al., 2016b) is in the

commissioning phase. These new extreme-precision radial velocity (EPRV) spectrographs

are driving towards the sub-10-centimeter-per-second radial-velocity precision needed to

detect a true Earth twin around a Sun-like star.

Extremely precise spectrographs in turn demand extremely precise data reduction

pipelines. The fidelity of the data and error estimates returned by these data reduction
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pipelines is paramount if groundbreaking discoveries returned from such instruments are

to be credible. To this end, a complete science reduction, extraction, and analysis pipeline

was newly developed and tailored for EXPRES data. In what follows, we begin with a brief

description of the instrument and the calibration strategy. We then describe the analysis

performed by our pipeline on EXPRES data, and present the first radial velocity measure-

ments from the instrument.

3.2 Instrument Description

The EXtreme PREcision Spectrograph (EXPRES) is a fiber-fed, white-pupil EPRV spec-

trograph with a design resolution of R = 150, 000 and a wavelength range of 3800 − 7800

Å. In practice, Blackman et al. (2020) show that the median resolution is better character-

ized as R ∼ 137, 500 with a maximum resolution reaching R ∼ 150, 000 in some regions

of the detector. EXPRES is environmentally stabilized in a vacuum enclosure and is sit-

uated at Lowell Observatory’s 4.3-m Lowell Discovery Telescope (LDT) near Flagstaff,

Arizona. The multi-instrument port configuration of the LDT allows for high-cadence,

flexible scheduling of stars (up to 280 partial nights per year).

Owing to various changes to the hardware configuration during commissioning, we

have divided radial velocities from EXPRES into different calibration epochs, with an in-

dependent RV offset fitted for each epoch. Each epoch demarcates changes introduced to

either the configuration of the echellogram on the CCD, the shape of the PSF, or the sta-

bility of our calibration sources. A summary of the changes that delineate the beginning

of each epoch can be found in Table 3.1.

The inputs to EXPRES are a 33×132µm science fiber as well as a 60×180µm extended

fiber. The extended fiber is wider than the science fiber in the cross-dispersion direction,

allowing for higher SNR flat-fielding for all pixels illuminated by light from the science

fiber, particularly at the cross-dispersion edges. Both fibers are also supplemented by their
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Table 3.1: Instrumental Epochs
Epoch Start End Changes Before Epoch Start

0 - 2018-04-15 Commissioning
1 2018-04-15 2018-06-15 Increased CCD pre-settle time
2 2018-06-15 2018-11-08 Fiber change;

CCD rotation
3 2018-11-08 2019-02-07 Original science fiber replaced;

Calibration unit rebuilt
4 2019-02-07 2019-08-04 LFC beat frequency mitigated;

fiber agitator repaired
5 2019-08-04 - realignment of FEM;

replacement of LFC PCF

own square simultaneous fibers, though these are not used in normal operation.

The flat field light source is provided by a custom solution: a collection of 25 LEDs

integrated on a single compact chip. The wavelength range of the LEDs cover the entire

bandwidth of EXPRES, and the relative power of each LED is tuned to approximately

match the inverse response of the spectrograph. Light from these LEDs, averaging 12.5

W, is coupled into an integrating sphere and subsequently injected into both the extended

and science fibers.

Wavelength calibration is carried out with a Menlo Systems laser frequency comb

(LFC; similar to those in Steinmetz et al., 2008; Probst et al., 2016). Three LFC exposures

are taken through the science fiber every 15-30 minutes throughout a night. Two ThAr

exposures are taken each night, once at the beginning and once at the end. The LFC is set

to standby between each set of calibrations to reduce wear on nonlinear optical elements,

and is only turned on approximately one minute before the next exposure is needed, to

suppress turn-on transients.

Barycentric corrections are derived from the EXPRES exposure meter, a R ≈ 100

spectrograph with an EMCCD detector and a bandpass that covers the spectral range of

the LFC. During each science observation, the exposure meter takes a continuous series of

1 s exposures. Further technical details can be found in Blackman et al. (2019).
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3.3 Analysis of EXPRES Data

The EXPRES pipeline is written in Python and makes heavy use of the SciPy stack (Vir-

tanen et al., 2020). We show a schematic representation of it in Figure 3.1. In brief, the

following steps are taken:

• At the start of each calibration epoch, several hundred extended flat images are

taken. These are used to construct a master extended flat-field image, which is

divided out from all exposures in the corresponding calibration epoch.

• Each night, 30 dark and 30 science flat images are taken. They are used to reduce

and extract the science frames taken the same night.

• Echellogram orders are traced using the reduced science flats, a scattered light model

is removed, and a flat-relative optimal extraction is performed.

• Wavelength solutions are interpolated for all science frames using bracketed LFC

exposures, seeded by a nightly Thorium Argon source, as a calibration reference.

• Telluric lines are identified empirically with SELENITE (Leet et al., 2019) and la-

belled for later analysis.

• For exposures marked for RV analysis, we obtain radial velocities with two methods:

cross-correlation against a line mask and a forward model.

We describe each of these steps in some detail below.
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3.3.1 Reduction

The EXPRES detector is an STA1600LN CCD backside-illuminated image sensor with a

10, 560 × 10, 560 array containing 9µm × 9µm pixels. The CCD is divided into 16 equal

5280 × 1320 pixel sections (two rows of eight) each with their own independent output

amplifier and, thus, corresponding gain (see Table 3.2). Further information about the

EXPRES CCD can be found in Blackman et al. (2020).

In the context of the EXPRES pipeline, “reduction” refers to the conversion of these

16 independent regions read in analog-to-digital units (ADU) to a full two-dimensional

frame in units of photoelectrons. The reduction steps are as follows, dependent on the

type of image being reduced (science, dark, science flat, or extended flat):

1. Subtract a bias frame constructed from the overscan regions (all).

2. Multiply each amplifier region by the corresponding gain coefficient (all).

3. Median combine calibration frames (dark, science flat, extended flat).

4. Subtract the reduced dark image (science, science flat, extended flat).

5. Divide by the reduced master extended flat (science, science flat).

6. Approximate the noise model using photon (Poisson) and read noise (science, sci-

ence flat).

7. Trace the echelle orders (science flat).

8. Approximate the scattered light using a two-dimensional b-spline model (science,

science flat).

In the following subsections, we go into detail about each of the above steps. In-

formation about the reduction of exposure meter data can be found in Blackman et al.

(2019).

61



3.3.1.1 Overscan

Each of the EXPRES CCD amplifier regions have overscans along both the serial (hori-

zontal) and parallel (vertical) registers. The serial overscan is 5300 × 180 pixels along

the right side of each amplifier region and the parallel overscan is 20 × 1320 pixels along

the center line of the CCD (at the bottom of the upper regions and the top of the lower

regions). Because these overscans contain virtual pixels read out by the same electronics

as the real amplifier region, the EXPRES reduction pipeline uses them to approximate the

bias of the CCD. The process is as follows:

1. Calculate the mean of the serial overscan region along its horizontal axis.

2. Smooth this mean using a cubic b-spline with knots every ∼ 100 pixels.

3. Correct the rows in the parallel overscan region by subtracting the overlapping

smoothed serial overscan region.

4. Calculate the mean of the parallel overscan region along its vertical axis.

5. Smooth this mean using a cubic b-spline with knots every ∼ 100 pixels.

6. Construct a bias for each pixel in the amplifier region by summing the corresponding

row from the serial overscan and column from the parallel overscan.

The mean and subsequent spline fit for the overscan regions of a single amplifier region

are shown in Figure 3.2. This process is executed for all exposures, including darks.

3.3.1.2 Gain

The independent amplifier gains for the EXPRES CCD (Table 3.2) were determined em-

pirically by matching the edges of neighboring amplifier regions based on stacked bias-

subtracted extended flat images. We median combine 20 columns along each edge of two
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Note that the counts shown in the parallel overscan were first subtracted by the first 20
rows of the serial overscan smoothed mean, generating values close to zero.
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adjacent amplifier regions and determine the factor that minimizes the difference between

them. We repeat this process along each row of amplifier regions, yielding a set of rela-

tive corrections for each row. Then, using the 20 median-combined rows along the center

line of the detector, we determine the single factor that relates the top row of corrected

amplifier regions to the bottom row.

Since these corrections are merely relative, we assume that the mean gain of the 16

amplifier regions given by the manufacturer is approximately correct. Thus, we match the

mean of the empirically determined gain corrections to that given by the manufacturer. We

note that the gains given by the manufacturer were not sufficient at matching the boundary

conditions of the EXPRES CCD: some gain corrections were tweaked by more than 3%.

Table 3.2: EXPRES CCD Gain
Amplifier Empirical STA Amplifier Empirical STA

0 2.57980 2.6645 8 2.69787 2.6945
1 2.55171 2.5352 9 2.65100 2.6422
2 2.53844 2.5218 10 2.64354 2.6367
3 2.52444 2.4065 11 2.60344 2.5502
4 2.51480 2.6024 12 2.60497 2.5571
5 2.49382 2.5686 13 2.59183 2.5630
6 2.52745 2.4816 14 2.62881 2.5691
7 2.53478 2.4960 15 2.72938 2.6111

We were not able to calculate the gains in the typical manner—relating the variance

of each pixel to its mean—because our flat-fielding LED source has an intrinsic variability

that cannot be modeled by photon noise alone. See Blackman et al. (2020) for further

details.

3.3.1.3 Master Extended Flat

In order to measure the quantum efficiency (QE) variations with high signal across the

relevant areas of the CCD, EXPRES employs an “extended flat” fiber. This rectangular fiber

has slightly larger dimensions of 60 × 180µm—as compared to the “science” rectangular
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fiber with dimensions 33×132µm—and is aligned with the center of the science fiber using

a motor-driven mirror (see Figure 3.3. Periodically throughout the operation of EXPRES,

and at least once per epoch (Table 3.1), the flat-fielding LED—typically used for order

tracing and optimal extraction slit modeling—is injected into the extended flat fiber and a

series of more than 100 images are taken of the resultant spectrum.

Using a median combination of these extended flat images, we construct a master

extended flat-field image by dividing out a smooth fit to its echellogram. For each column

of each order, we fit a parametric slit function: the squared convolution of a rectangle

function with a Gaussian function, which has the analytic form

Px,y(A, d, σ) = A
[
Φ

(
y + d/2
√

2σ

)
− Φ

(
y − d/2
√

2σ

)]2

(3.1)

where Φ is the error function, d is the width of the rectangle, σ is the standard deviation

of the Gaussian, and A is the amplitude.
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Figure 3.3: Example cross-dispersion, cross-section of an extended flat as compared to a
science flat. The best fit of Equation (3.1) is given for the extended flat. The resultant
quantum efficiency (QE) corrections are shown in the lower plot and the bounds of the
corrected region are demarcated. Note that these are corrections relative to the mean QE.
The QE corrected science flat is also shown in the upper plot.
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This choice of functional PSF form was motivated by the physical nature of EXPRES

and Fourier optics approximations. The input near field of the spectrograph is a rectangle

function generated by the rectangular fiber. Taking the Fourier transform of the near field

yields an approximation for the far field, which is subsequently morphed as it travels along

the optical path of the instrument. We approximate this morph as a Gaussian function.

Therefore, the resultant near field that is captured by the detector is the inverse Fourier

transform of the modified far field. Invoking the convolution theorem, this detected near

field is simply the convolution of the input rectangular function with a Gaussian function,

which we subsequently square to approximate the total energy of the light as it hits the

detector, yielding Equation 3.1.

Finally, we smooth the best-fit values for A, d, and σ along each order using a cubic

spline with ten equally spaced knots. The parameters from this smooth fit yield the profile

with which we can divide the original extended flat image to generate the master extended

flat-field template.

We only use pixels along the approximately flat portion of the extended slit in this

constructed smooth profile. This decision was made for two reasons:

• there is less signal along the top and bottom edges of the slit, thus there is inherently

more scatter in the flat corrections for these pixels, and

• even with the analytic function that we use, the steep edges of the slit function are

difficult to fit, which leads to systematic problems in the master extended flat.

Since the slit function of the extended flat was designed to be only 50% larger than the

science fiber slit function, the range of pixels covered by the flat portion of the extended

slit does not correct the entire cross-dispersion profile of the science order. Thus, we

also change the motor position of the extended flat injection mirror, which moves the

extended flat slit function along the cross-dispersion direction of the echellogram. We

thereby expand the number of pixels included in the master extended flat by generating

66



a master extended flat image for each mirror position and then mean-combining these

images. This process is completed for each epoch.

3.3.1.4 Noise Model

The two largest contributions to the noise model for any given pixel on the EXPRES CCD

are photon noise and read noise, where these two quantities are measured and summed

in quadrature for each pixel. Photon noise is assumed to be Poisson, such that the stan-

dard deviation is equal to the square root of the photoelectron counts. Read noise, on

the other hand, is calculated empirically for each amplifier. First, the standard deviation

of the nightly stack of dark frames is determined for every bias-subtracted gain-corrected

pixel. Then, the median of these standard deviations is assigned as the read noise for each

amplifier region. We assume that the read noise is consistent throughout each night of

observation.

For the median-combined science flat frame, there is an additional noise term: intrin-

sic variability in the flat-fielding LED. As described in Blackman et al. (2020), the LED

brightness varies by about 0.5% over time. The uncertainty from this variability is propor-

tional to the counts (as opposed to photon noise, which is proportional to the square root

of the counts). Therefore, it too is summed in quadrature to produce the total noise for

the science flats. As with all median- or mean-combined frames, the noise model for the

science flat is divided by the square root of the number of frames.

3.3.2 Spectral Extraction

“Extraction,” in the context of the EXPRES pipeline, refers to the process of converting

reduced two-dimensional CCD data into a series of one-dimensional, normalized spectra,

one for each order of the echelleogram. This process involves tracing the echelle orders,

removing scattered light, executing the optimal extraction, and continuum normalizing the
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resultant spectra. Details for these steps are found in the following sections.

3.3.2.1 Order Tracing

The orders of the echellogram are traced using the reduced science flat frame. First, the

orders are detected using a peak-finding algorithm along the mean-combined center three

columns. Then, for each order, moving from this center-line outward one column at a

time, triplets of neighboring columns are mean-combined and the centroid of the resultant

array is calculated. The right and left ends of each order are determined by setting a

SNR > 30 threshold and stopping the trace once 50 subsequent columns do not reach

this threshold. Finally, these centroids are smoothed along each echelle order using a 6th

degree polynomial. A single set of traces is calculated for each night of observations.

3.3.2.2 Scattered Light

Due to imperfections in the EXPRES optics, some scattered light from the instrument hits

the CCD. This diffuse, scattered light is assumed to be smoothly varying across the detec-

tor and is estimated from the counts in the regions between the orders of the echellogram.

First, a variance-weighted mean and associated uncertainty is calculated for each column

of each inter-order region (including those immediately above and below the traced echel-

logram) using the seven pixels set halfway between adjacent traced orders. These inter-

order background approximations are then smoothed using a cubic b-spline with knots

set every ∼100 columns. Cosmic rays that could potentially skew this smoothed fit are

iteratively rejected using a 5σ outlier cut.

The 2D scattered light image is generated through a quadratic interpolation along

each column of the smoothed inter-order backgrounds. The calculated scattered light is

subtracted from the reduced image before any further extraction. This process is completed

for the science flats, stellar frames, and all wavelength calibration frames. An example of

a subregion of the resultant scattered light approximation is shown in Figure 3.4.
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Figure 3.4: In the upper plot, two-dimensional scattered light approximation for reduced
and median-combined science flat frames taken on October 24, 2019 are shown. The
scales for the two images are not matched in order to empahsize the scattered light. The
cross section of a single column (4000) for both the spectrum and calculated scattered light
is shown in the lower plot. Note that the range of traced orders sets the upper and lower
limits of the calculated scattered light.
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3.3.2.3 Optimal Extraction

The optimal extraction algorithm that we implement in the EXPRES pipeline is an updated

version of the algorithms developed by Horne (1986); Piskunov & Valenti (2002); Zech-

meister et al. (2014). Following along the traces (from Section 3.3.2.1) of each echelle

order, we construct a least-squares estimator for each 33-pixel tall column x:

χ2
x =

∑
y

(Dx,y − Px,ysx)2wx,y (3.2)

where Dx,y are the photoelectron counts for each pixel (x, y) in the reduced data, Px,y is the

model of the slit function corresponding to those same pixels, sx is the extracted spectral

intensity, and wx,y are the weights for each pixel (see Figure 3.5. These weights are in-

versely proportional to the variance of Dx,y (σ2
x,y, as further discussed in Section 3.3.1.4)

and include a binary cosmic ray mask, Mx,y, i.e. wx,y = Mx,y/σ
2
x,y (see Zechmeister et al.

2014). The minimization of Equation (3.2) has an analytic solution:

sx =

∑
y wx,yDx,yPx,y∑
y wx,yPx,yPx,y

. (3.3)

The propagated uncertainty of the extraction

σsx =

√
1∑

y wx,yPx,yPx,y
(3.4)

is rescaled by χred,x as in Zechmeister et al. (2014). However, we smooth χred,x across each

order using a 3rd-order polynomial before applying it to σsx to avoid low number statistic

variance.

Cosmic rays are rejected by iteratively adding to the cosmic ray mask, Mx,y, based

on a tiered outlier rejection algorithm. After calculating sx for an entire order, the residual

(Dx,y−Px,ysx)wx,y for each pixel is calculated. For each column in the order with a pixel that
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Figure 3.5: Section of raw images for a science exposure (above; HD 217014), laser
frequency comb (middle), and calibration flat (below) taken with EXPRES on 24 October
2019. The extraction aperture for our optimal extraction of echelle order 100 is shown on
the flat images as the intersection of the traced order (with vertical extent of 33 pixels)
and the single-column slit at x = 1460, both shown in blue. The reduced counts in the
extraction aperture for each image (i.e. removing hot pixels and QE variations) are shown
in the right panels, as a function of pixel row position y.
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exceeds 8σ, the pixel with the largest residual is rejected and sx is re-calculated for that

column. This process repeats until all 8σ outliers are rejected. Next, this same rejection

process repeats for 2σ outliers that also neighbor previously rejected pixels, thus rejecting

the dim tails of otherwise bright cosmic rays. Importantly, this second step is executed

using two-dimensional pixel information, meaning that a bright cosmic ray on a pixel in a

given column can have its tail rejected in an adjacent column.

The EXPRES pipeline has two distinct methods of approximating the model Px,y in

Equation (3.3):

1. fit each column of the science flat with a parametric slit function (Equation (3.1)),

smooth the parameters along each order using a b-spline, and then normalize the

function; or

2. use the science flat, without normalization, as in Zechmeister et al. (2014).

This yields two modes of operation when extracting data, wherein (1) keeps the echelle

blaze function of each order intact while (2) intrinsically removes the blaze.

We note that using method (2) requires inclusion of the variance prior in the flat σ2
Px,y

,

as well as that for the data σ2
Dx,y

, when determining the weights wx,y of the least-squares

estimator. Therefore, the variance prior for each pixel should instead be constructed as

σ2
x,y = σ2

Dx,y
+ s2

xσ
2
Px,y
, (3.5)

and an additional nonlinear cost term must be added to Equation (3.2) to prevent sx → ∞.

In our case we choose
∑

y lnσ2
x,y.

Thus, the minimization of Equation (3.2) must be solved numerically:

s(n+1)
x =

∑
y w(n)

x,yDx,yPx,y∑
y w(n)

x,yPx,yPx,y + R(n)
x

(3.6)
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where the weights w(n)
x,y for each iteration are calculated using the previous iteration’s so-

lution s(n)
x and s(0)

x is calculated assuming all σ2
Px,y

= 0. The relaxation factor R(n)
x is also

chosen to be

R(n)
x =

∑
y

σ2
Px,y

w(n)
x,y −

∑
y

σ2
Px,y

(
w(n)

x,y

)2 (
Dx,y − s(n)

x Px,y

)2
(3.7)

from the minimization of the modified Equation (3.2). This numerical process is repeated

until a relative tolerance of 10−10 is met. Thus, method (2) is operationally slower than

method (1), but intrinsically accounting for un-corrected QE variations and automatically

removing the blaze without relying on a blaze model outweigh this minor increase in

computational cost.

Removal of the blaze through method (2) can be naively understood by recognizing

Equation (3.2) is approximately solved by sx ≈
Dx
Px

, where Px is the spectral intensity of the

LED source times the blaze and Dx is the spectral intensity of the star times the blaze. Both

Px and Dx describe their respective intensity at the given column x of the order. Therefore,

the resultant continuum of a stellar spectrum extracted using method (2) is simply the

continuum of the star divided by the spectrum of the LED source. Since both of these

are slowly varying functions, we can model the extracted stellar continuum with a simple

linear model for each order, calculated iteratively with 2σ outlier rejection for those pixels

contained in absorption lines. See Figure 3.6 for examples of extracted spectra and the

approximated continua.

In the EXPRES pipeline, we strictly use (2) to extract all data and only use (1) as a

secondary check for our extracted RVs. However, we note that maximizing the SNR of

the cross-correlation function described in Section 3.3.4 requires weights, which increase

with signal-to-noise of the stellar continuum, to be assigned to different portions of the

spectrum. Unfortunately, the posterior uncertainties of the extraction have too much scatter

to provide these weights. We find that using the blaze function is a good proxy for a

smooth weighting function; therefore, we approximate a blaze function model for each
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epoch using the α-hull method (Xu et al., 2019) applied to a science flat extracted with (1).

We find that RV results obtained with (2) including the separately defined blaze function

are superior to those results from spectra extracted with (1).

Extraction method (2) is also the most appropriate choice for wavelength calibration

spectra, such as those from the ThAr lamp and the LFC. The calibration methods used

in Section 3.3.3 are linear and can make use of the scattered posterior uncertainties as

weights when fitting each emission line without systematically shifting results as in cross-

correlation. Additionally, light from the LED, ThAr lamp, and LFC all travel through

approximately the same lengths of fiber, meaning removal of an instrumental response

function (i.e. a calibration “continuum”) should not be necessary when using method (2).

The signal-to-noise ratio (SNR) of a given observation is reported here as the maxi-

mum sx/σsx in echelle order 111. This is effectively the per-pixel SNR at 550 nm, con-

forming to the metric used by Fischer et al. (2016) to compare many contemporaneous

spectrographs. The resolution element of EXPRES contains approximately 4 pixels (Ju-

rgenson et al., 2016), thus the per-resolution-element SNR is simply twice the per-pixel

SNR.

3.3.3 Wavelength Calibration

EXPRES uses a laser frequency comb (LFC) as its primary calibration source, which gen-

erates a series of spectral lines evenly spaced in frequency, whose nominal frequencies νn

satisfy the relation

νn = νrep × n + νoffset, (3.8)

for integers n. The repetition rate νrep and offset frequency νoffset are referenced against a

GPS-disciplined quartz oscillator, providing calibration stability corresponding to a frac-

tional uncertainty of less than 8 × 10−12 for integration times greater than 1 s.

While it is possible to obtain an absolute calibration from the LFC once the free spec-
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tral range of the echellogram has been adequately characterized, the LFC suffers from

poor throughput in very blue and very red orders. In particular, although our instrumen-

tal throughput is sufficient to permit order tracing and extraction from echelle orders 75

through 160 (for 3800 Å≤ λ ≤ 8220 Å), the LFC only sufficiently illuminates echelle

orders 82 through 135 (for 4500 Å≤ λ ≤ 7500 Å). The photonic crystal fiber (PCF) of the

LFC was then replaced in July 2019 due to the decreasing stability of the LFC. With the

replacement, the polarization of the LFC was switched, making the LFC redder and thus

changing the orders illuminated by the LFC to echelle orders 82 through 130 (with the

blue edge at (5300 Å). The polarization switch should significantly increase the lifetime

and stability of the LFC. Consequently, we use ThAr lamp exposures taken at the begin-

ning and end of each night as a secondary calibration source to provide well-constrained

wavelength solutions for orders outside the range of the LFC.

Calibration triplets (3 LFC’s) are taken through the science fiber at roughly 15-30

minute intervals throughout observing, interwoven with science exposures. The exposure

times of these calibration frames are chosen to match the target SNR of the science expo-

sures. While EXPRES is equipped with a secondary square fiber to permit simultaneous

wavelength calibrations, we choose to take calibrations through the science fiber so that

our calibration data sample the same pixels and optical elements as the science exposures.

This strategy aims to homogenize our exposures to pixel-level, uncalibratable systematic

errors. Also, as shown by Blackman et al. (2020), the instrumental stability of EXPRES

is such that sampling the LFC every 15-30 minutes provides enough information to cor-

rect for any instrumental changes throughout the night, as simultaneous calibration would.

Calibration images are taken while the telescope is slewing and so typically cost little

additional time (less than 2 minutes an hour).

A ThAr wavelength solution is generated from each ThAr exposure using the IDL

code thid.pro, developed by Jeff Valenti, which identifies ThAr lines by matching lines

in an exposure against a line atlas. A 6th-order, 2D polynomial is then fitted over pixel
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location x and the absolute echelle order m against the scaled wavelength mλ. Matching

lines against an atlas is performed manually once at the beginning of each calibration

epoch; otherwise, the wavelength solution from the immediately preceding ThAr exposure

is used as an initial guess for the locations of atlas lines in a given ThAr exposure, allowing

this process to be automated. Since the LFC lines are sparse relative to the precision of

the ThAr calibration (1 LFC line every 10 pixels on average with the ThAr calibration

accurate to the nearest pixel), this is sufficient to permit unambiguous mode identification

for the LFC lines.

For any given LFC exposure, the locations of modes are identified by fitting Gaussians

to each peak after a smooth background has been subtracted. An initial, trial wavelength

solution is generated by linearly interpolating the ThAr solutions from the beginning and

end of the night. These are used to determine the mode number n corresponding to the

frequency of each mode. Once again, a 2D polynomial is fitted for mλ as a function of

m and x. Since the LFC produces a far denser set of lines—typically about 20,000 lines

across 50 orders are identified in an LFC exposure, compared to about 4,000 lines across

82 orders in a ThAr exposure—we use a 2D polynomial described by a 10x10 matrix of

coefficients (9th-order in each dimension) for the fit. The locations of the ThAr lines are

also included in the fit in order to constrain the behaviour of this polynomial in echelle

orders that are otherwise inaccessible to the LFC.

For each of the polynomial coefficients describing the wavelength solution, we fit a

smooth function (a cubic polynomial) in time. We have found that interpolating the poly-

nomial coefficients, rather than directly interpolating the pixel-wise wavelength solutions,

is more robust to imperfections in individual calibration frames. This set of 100 functions

is evaluated at the photon-weighted midpoint time of each science exposure to generate a

wavelength solution. This differs from the standard practice at other spectrographs (e.g.

HARPS and ESPRESSO), where a single velocity offset, rather than a time-dependent

wavelength solution, are assigned to each science exposure. We choose to do this in order
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to accommodate time-dependent variations in the characteristics of the instrument, which

may lead to calibration shifts that cannot be adequately described by a single average ve-

locity offset.

We illustrate this in Figure 3.7, where we show the calibration drift over the course

of a single night in the LFC-constrained region of the echellogram. Our radial velocity

solutions (see Section 3.3.4) sample spectral lines that are non-uniformly distributed across

the detector; therefore, it is advantageous to characterize local variations to prevent overall

systematic offsets. Of course, the precise differential velocity imparted by this calibration

drift ultimately depends on the spectral type as well as both barycentric and systemic

velocity of the star under consideration.

As the final step in wavelength calibration, the EXPRES pipeline applies a barycen-

tric correction to the wavelength solution of each stellar observation using the method

described by Blackman et al. (2017). For each 1 s exposure of the exposure meter, a

barycentric correction is calculated using BARYCORR (Wright & Eastman, 2014). The

photon-weighted average barycentric correction is calculated for each of 8 wavelength

bins of the spectra. A third-degree polynomial is then fit to these averages, yielding a

smoothly-varying wavelength-dependent barycentric correction zB(λ) for the observation.

As shown by Tronsgaard et al. (2019), it is important to distinguish this from a photon-

weighted midpoint time used to calculate an overall chromatically-dependent barycentric

correction (e.g., Landoni et al., 2014) as this can impart a ∼10 cm s−1 systematic error

to the radial velocity especially in cases of longer exposure times, high airmass, or poor

seeing.

Finally, we apply zB directly to the wavelength solution:

λbary = λ(vac)
lab

(
1 + zB

(
λ(air)

lab

))
(3.9)

where λlab is the LFC-generated lab-frame wavelength solution and λbary is the wavelength
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Figure 3.7: Calibration drift over the course of a single night (24 October 2019) for the
LFC-constrained region of the echellogram, plotted in terms of the absolute echelle order
number and the pixel column of the CCD. The average calibration drift for the whole night
(∼4.0 m s−1) is of similar magnitude to local variations in the drift, therefore using a single
average velocity offset would necessarily incur significant additional calibration error. In
other words, the wavelength solution along the left and right edges of the shown spectral
format would be offset by -4.0 and +4.0 m s−1 respectively if a single velocity offset were
to be used. Spectral lines used for radial velocity solutions (shown as white dots drawn
from the ESPRESSO G2 linelist) sample the detector in a nonuniform fashion, and result
in different overall velocity offsets depending on spectral type.
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solution in the frame of the solar system barycenter. Because the EXPRES exposure meter

is not in vacuum (as opposed to EXPRES itself), zB(λ) is measured using air-wavelengths.

Therefore, λlab is converted from vacuum to air using the algorithm and parameters derived

by Ciddor (1996) before applying the barycentric correction in Equation (3.9).

3.3.4 Radial Velocity Solutions

The data analysis pipeline of EXPRES employs two distinct computational techniques to

independently extract radial velocities from stellar spectra:

1. a “cross-correlation function” method (CCF; see Baranne et al., 1979) is used to de-

termine a rough estimate of the absolute radial velocity for each observation (Section

3.3.4.1), and

2. a forward model based on a morphed NSO solar spectrum is used to derive a more

precise relative radial velocity curve (Section 3.3.4.2).

Both of these methods are currently implemented in the EXPRES pipeline for self-validation.

Simultaneous results from both methods are presented in Section 3.4. The methods as im-

plemented in the EXPRES pipeline are described as follows.

3.3.4.1 Cross-Correlation

As the first step in our analysis, a CCF method estimates the absolute RV of EXPRES

science targets precise to several tens of cm s−1 (depending on photon noise). We also use

the CCF method to diagnose drifts and instabilities in our calibration sources, using line

lists given by the comb parameters following Equation (3.8) for the LFC or a ThAr line

atlas for the ThAr lamp.

The CCF is constructed from the input spectrum f (λ) as well as a spectral-type

linelist—a set of spectral lines at rest vacuum wavelengths {λi(0)} associated with con-

trast weights {ci} and widths {hi}. For a given trial radial velocity v, the wavelength of each
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line in the linelist is redshifted appropriately to

λi(v) = λi(0)

√
c + v
c − v

. (3.10)

The CCF is then computed as a numerical approximation to the integral

CCF(v) =

∫
dλ f (λ)

∑
i

ciw
(
λ − λi(v)

hi

)
(3.11)

where w is an arbitrary window function approximating a Dirac δ function and λ is with

respect to the barycentric-corrected wavelength solution from Equation (3.9).

The CCF in Equation (3.11) is computed independently for each echelle order with a

variety of trial velocities, and the CCFs for all relevant orders are co-added before a veloc-

ity model is fitted. This is a similar practice to other CCF-based RV pipelines (e.g. Brahm

et al., 2017). When deriving extreme precision radial velocities, we only include orders

falling within the spectral range of the LFC, since in principle it affords considerably bet-

ter sampling density and calibration stability than those regions covered by the ThAr lamp

alone.

An appropriate functional model is then fitted against the co-added values of the CCF.

The position parameter and posterior uncertainties of the fitted model are returned as the

reported velocity and formal errors. Other quantities of astrophysical interest (e.g., ro-

tational broadening width, bisector inverse slope) are also computed from the co-added

CCF.

Our construction of the CCF incorporates the ability to use an arbitrary window func-

tion w. In the current iteration of the EXPRES pipeline, we use a cosine function, matching

other contemporary CCF implementations (e.g. Freudling et al., 2013; Modigliani et al.,

2019; Brahm et al., 2017). We also use a Gaussian functional model to fit the CCF for

our reported radial velocities. Other possible combinations of window functions and CCF
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models are discussed in Section 3.3.4.3.

3.3.4.2 Forward Modeling

In addition to our CCF RV solution, we have developed a new forward-modeling tech-

nique by adapting algorithms developed for the iodine RV technique (Butler et al., 1996)

as well as ideas from the “line-by-line” method developed by Dumusque (2018). Forward-

modelling from empirical stellar spectral templates is known to produce velocities with

less statistical scatter than the CCF method, and typically measures relative rather than

absolute radial velocities (Anglada-Escudé & Butler, 2012). Our modeling process is sim-

plified relative to the iodine method because the optical design of EXPRES was optimized

to provide stability in the line spread function (LSF) of the spectrograph (Jurgenson et al.,

2016; Blackman et al., 2020), eliminating the need to model the instrumental LSF with

several free parameters. In addition, free parameters for wavelength solution and disper-

sion are eliminated since the barycentric wavelength solution (Equation (3.9)) is provided

as part of the nightly optimal extraction.

First, we construct a spectral template for each stellar target. An ideal template will

have very high SNR and will be a good spectral match to the program stars. Our start-

ing point is to obtain a set of four consecutive spectra—each with SNR of about 250—

providing an effective SNR of 500 per pixel or SNR of 1000 per resolution element. As

described by Dumusque (2018), we prefer to use spectra with low barycentric velocities so

that the program spectra shift around the approximate zero point wavelengths. The telluric

contamination is then modeled in each spectrum using SELENITE (Leet et al., 2019) and

divided out. Finally, the set of spectra are co-added.

However, even the co-added spectrum will not provide a high enough SNR for a

robust template. Therefore, we take the additional step of morphing the NSO solar spec-

trum (see Figure 3.8) with a native SNR ∼10,000 and resolution ∼500,000 to match the

co-added, telluric-cleaned spectra for each of our program stars using the following pro-
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Figure 3.8: The high-resolution, high-SNR NSO spectrum (red dashed line) is shifted
and cubic-spline interpolated to the wavelength scale of a program observation (upper
black line). The difference spectrum (bottom black line) is used to identify discrepancies
between the spectra above the photon noise threshold (bottom blue line). A Levenburg-
Marquardt algorithm drives the growth of pseudo-lines until the NSO spectrum has mor-
phed to the match the spectrum of the program star (solid red line). This morphed spectrum
is then used as a template for forward modeling.
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cedure:

1. The co-added program star spectrum is divided into ∼2000 individual chunks that

are 140 pixels (∼2Å) wide within the orders of the spectrum covered by the LFC.

2. The barycentric wavelengths of the program star are used to extract a segment of

the NSO spectrum with generous padding of 200 pixels for modeling shifts. This

segment of the NSO spectrum is shifted to the barycentric frame of the co-added

program star spectrum.

3. A Levenburg-Marquardt (L-M) least squares algorithm is used to (i) determine the

best-fit width for a Gaussian convolution kernel to rotationally broaden the NSO

spectrum, (ii) refine the Doppler shift of the NSO spectrum, and (iii) apply a vertical

shift to align the continuum of the NSO and the co-added spectrum.

4. The rotationally broadened and shifted NSO spectrum is cubic-spline interpolated

onto the wavelength scale of the co-added spectrum.

5. A difference spectrum is calculated. Nodes are dropped down consecutively at

points where the absolute value of the difference spectrum exceeds a threshold,

characterized by the photon noise of the co-added spectrum. Pixels with the largest

residuals in the difference spectrum are modeled first. The maximum number of

nodes is 60, but depending on the chunk there are typically about a dozen nodes

required to model the NSO spectrum for each 130-pixel chunk.

6. At each node a positive or negative Gaussian feature with a width characterized by

the line spread function of EXPRES is used to perturb the NSO spectrum; the depth

of the morphing feature is determined by L-M fitting of the residuals.

7. Iterative growth of the morphing lines stops when the residuals of the difference

spectrum are consistent with photon noise.
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8. Each chunk of the template is weighted according to the amount of spectral infor-

mation, using the SNR and the derivative of intensity I with pixel:

∑ δI λ
c δλ

1
SNR

(3.12)

Once the template for each star has been generated, a L-M fit is executed for every

140-pixel chunk of the program star spectra. Telluric-affected pixels in each observation

are assigned zero weight in the fit. There are only two free parameters for each chunk:

a Doppler shift and continuum normalization scale factor. Thus, each chunk—45 LFC-

calibrated orders each with about 47 chunks yielding ∼2,000 total chunks—provides an

independent measurement of the relative RV for the star. The RV for each chunk is sub-

sequently subtracted by the mean of that chunk over all observations, thus removing any

offsets that might occur because of geometric anomalies in the detector while preserving

the spread in RV variations.

Weights for each chunk are determined using empirical arguments, the χ2 of the L-M

fit, and a chunk-specific modifier based on its relative temporal scatter. Chunks that do

not contain any absorption lines in the stellar template as well as chunks that yield relative

velocities greater than ±1000 m s−1 are assigned zero weight. Moreover, chunks that have

χ2 > 5.0 (typically occurring if an incorrect stellar template was used or a telluric line was

missed, for example) and remaining chunks that are among those with the largest 3% of

reduced χ2 are all assigned zero weight.

Because some chunks have less spectral information, there will be more scatter in

the RVs derived from these chunks. For example, chunks in the blue part of the spectrum

typically have several absorption lines, but chunks in the red part of the spectrum may have

only one spectral line meaning the L-M fitting will not be well-constrained. Likewise,

telluric contamination within a given chunk can manifest as large scatter in the RV over
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time. Therefore, the non-zero weight for given chunk i within an observation j is

w−1
i, j = χ2

i, j

∑n
j(vi, j − v̄ j)2

n − 1
(3.13)

where v̄ j is the median velocity for all chunks of observation j and n is the total number of

observations for a given stellar target. The reported RV measurement for each observation

is thus a weighted mean of the individual chunk velocities and the formal error is the

corresponding standard error of the weighted mean.

3.3.4.3 Further Analysis

Once RVs have been derived, the extracted spectra and CCFs are passed down the pipeline

for more sophisticated analysis. The spectral range of EXPRES is intended to permit char-

acterisation of stellar activity and planetary atmospheric absorption lines. For chromo-

spheric activity in particular, we extract the Ca ii line core emission ratio index S HK (using

the parametric model of Isaacson & Fischer, 2010), calibrated to yield results consistent

with the Mt. Wilson Observatory catalogue (Duncan et al., 1991).

We also aim to incorporate spectroscopic activity indicators directly into the RV so-

lution methodology. For example, in addition to using a rectangular “box” function and

truncated cosine in the CCF, which are implemented in other similar velocity analysis

codes (e.g. Freudling et al., 2013; Modigliani et al., 2019; Brahm et al., 2017), the EX-

PRES analysis code implements CCF computation using Gauss-Hermite window functions

of the form

w(x) =
1√

2nn!
√
π

Hn(x) exp
[
−

x2

2

]
, (3.14)

where Hn is the nth (physicists’) Hermite polynomial. Computing higher-order CCFs as

coefficients in a Hermite-functional decomposition, and more generally with respect to dif-

ferent orthogonal basis functions, will permit more sophisticated analysis of stellar activity
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(via a sparse description of variations in the CCF line profile), as an alternative parame-

terization to current derived observables (such as the CCF bisector inverse slope/FWHM).

Alternatively, data-driven decorrelation of stellar activity from bulk radial velocities, or

alternative template-based RV solution methodologies (Holzer et al., in prep), may be pos-

sible once we have built up an archive of stellar spectra.

3.4 Initial Results - HD 217014

We now present velocities derived with this pipeline based on 47 observations of HD

217014 (51 Peg) over the ten month span between the beginning of Epoch 4 and December

1, 2019. We do so to examine various sources of uncertainty and error in the velocimetric

pipeline, while avoiding the known instrumental instabilities inherent in Epochs 1-3 (see

Blackman et al., 2020; Szymkowiak et al., in preparation, for details), and to compare

the two radial velocity methods outlined in Section 3.3.4. Observations with an SNR less

than 160 are not included in this analysis. We construct our CCF using the G2 linemask

from the ESPRESSO pipeline (Freudling et al., 2013; Modigliani et al., 2019) and a cosine

window function. We also fit all RVs with a single planet Keplerian model, constrained

by the literature value of the orbital period (4.2308 days, Wang & Ford, 2011). This

Keplerian model is parameterized by the velocity semi-amplitude (K), the eccentricity (e),

the argument of periastron, and a phase of periastron.

Table 3.3: EXPRES Commissioning RVs of 51 Peg (full data set available online)
BMJD Vcc f cm s−1 V f m cm s−1 RV Epoch SNR

58639.45844 −3320697 ± 20 5739 ± 32 4 385
58641.45174 −3331424 ± 44 −5035 ± 42 4 179
58643.46218 −3321644 ± 34 4854 ± 34 4 225
58644.46095 −3322776 ± 35 3527 ± 34 4 233
58646.45596 −3330577 ± 39 −4045 ± 38 4 203

...
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Figure 3.9: Phased radial velocities, Keplerian orbital fits, and residuals for EXPRES ob-
servations of 51 Peg b. The figure is labelled with the RMS residual to the fitted orbital
solution, as well as the median formal error σv of all data points shown.
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Figure 3.9 shows the resulting radial velocities from both the CCF and Forward Model

methods along with their respective orbital fits. Because the CCF uses a linelist with abso-

lute wavelengths, the fit systemic velocity of −33.2603(5) km s−1 (in excellent agreement

with Gaia Collaboration, 2018) has been removed. For each of the RV epochs, we also

fit an independent velocity offset relative to the overall offset. For epochs 4 and 5, these

are −1.5(4) m s−1 and 1.2(5) m s−1 when using the CCF method, and −1.2(8)m s−1 and

0.8(7) m s−1 when using the forward model. These offsets account for modifications to

the instrumental systematics owing to the various fiber changes and realignments. The

offsets differ slightly in magnitude between the two RV analysis methods because they

intrinsically weigh regions of the detector differently, accentuating or mitigating certain

instrumental systematics.

We show the values of the Keplerian fit parameters in Table 3.4 along with the RMS

residual and the median formal error (σv). The parameter uncertainties were derived by

taking the square root of the product of the posterior variances and reduced χ2 of the least

squares fit. By way of comparison, we also perform the same procedure with eight years

of archival velocities from the HIRES instrument on the Keck I telescope (corrected for

instrumental systematics per Tal-Or et al., 2019) and four months of data from the HARPS

DRS (Trifonov et al., 2020). The EXPRES orbital solution parameters for 51 Peg are

consistent with those returned from these previous studies, but with higher precision due

to the improved formal errors. The two EXPRES RV methods are also internally consistent,

with the forward model producing a slightly more favorable RMS. Finally, we note that

Table 3.4: Fit parameters for 51 Peg b
Instr. K m s−1 e RMS m s−1 σv m s−1

EXPRES CCF 56.24 ± 0.14 0.000 ± 0.002 0.924 0.340
EXPRES FM 56.26 ± 0.13 0.007 ± 0.003 0.875 0.335
HARPS DRS 53.4 ± 1.6 0.062 ± 0.010 0.941 1.023

HIRES 56.7 ± 0.4 0.020 ± 0.007 2.74 1.169
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the RMS of the EXPRES fit residuals approximately matches that of the HARPS DRS, with

the EXPRES fit returning parameters more comparable with literature values (Bedell et al.,

2019; Wilson et al., 2019; Wang & Ford, 2011).

3.5 Discussion

Each step of the pipeline contains several free parameters — for instance, the degree of the

fitting polynomials to use for the spatial wavelength solution fits and temporal smoothing,

as well as various SNR threshholds for calibration line identification and order inclusion in

the CCF. To assist community users of the instrument, we have opted, as far as possible, to

preselect reasonable default values for most of these parameters, which may be overridden

at runtime. In what follows, we document some nonobvious but critical aspects of these

systematics, and we illustrate some aspects of the decision-making process for choosing

our default values for some of these parameters.

3.5.1 Formal vs. True Velocity Errors

Since the formal velocity errors returned from the CCF fitting procedure are constructed

only from the co-added CCFs and their propagated errors, they do not account for effects

like wavelength calibration error (inducing spurious velocity shifts) or time estimation er-

ror (via erroneous barycentric corrections). Instead, they mostly reflect velocity estimation

error due to photon noise being propagated to the CCF.

On the other hand, the formal velocity errors returned from the forward model fitting

procedure does include some information about relative uncertainty in certain regions of

the EXPRES detector. For instance, a chunk that tends to have a telluric line will naturally

incur more spread in the measured RV for that chunk. Therefore, even though this chunk

is down-weighted by our analysis, its spurious effect still propagates to the RV error.

These assumptions are bourne out in Figure 3.10, showing these formal errors as
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a function of the observation SNRs. The CCF points depend essentially only on pho-

ton noise and potentially CCD readout and optimal extraction systematics—which we are

confident of having adequately accounted for—up to some constant that may depend on

e.g. the choice of CCF linemask or window function, or intrinsic astrophysical properties

of the target. Conversely, the Forward Model formal errors contain much more scatter that

we believe folds in some uncertainty from telluric contamination and, potentially, stellar

noise. Thus, our estimation of the true photon noise limit of EXPRES is better described by

the propagated errors of the CCF analysis, though the two analyses yield quite similar re-

sults. As shown in Figure 3.10, we define this limit to be 30cm s−1 for a single observation

at the EXPRES target SNR of 250.

Following our diagnosis and repair of the LFC beat frequency noted in Table 3.1, we

measured the remaining uncalibratable velocity errors arising from wavelength calibration

in particular to be relatively small—between 4 and 6cm s−1 RMS (Szymkowiak et al., in
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Figure 3.10: Formal RV errors returned from both RV fitting procedures, plotted against
the per-pixel SNR (as a characterization of photon noise) for velocities from Section 3.4.
EXPRES’s target SNR of 250 is shown with a vertical line and the approximate associated
formal error of 30 cm s−1 is shown with a horizontal line. Note that data here with SNR
less than 160 are not included in Figure 3.9.
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prep). There also exist several other sources of error (e.g. from uncalibratable instru-

mental systematics and guiding errors), that constitute additional contributions to the RV

error budget. To correctly estimate the velocimetric error, one needs to appropriately ac-

count for and then combine these error terms (e.g. by adding them in quadrature) with the

formal value reported from the RV analysis. A detailed inventory of these error sources

(Blackman et al., 2020) estimates the combined instrumental and guiding errors of EX-

PRES at ∼10cm s−1. Thus the single observation error of EXPRES is clearly dominated by

the apparent photon noise.

3.5.2 Chromatic Dependences

Many of the novel techniques that we have adopted in the EXPRES pipeline involve the

introduction of chromatic dependences into quantities that have previously been consid-

ered to be uniform with wavelength, such as calibration offsets and the barycentric offset

velocity. It therefore behooves us to investigate possible chromatic effects that emerge at

the end of the CCF velocity-solving and orbit-fitting procedure.

The CCF analysis in Section 3.4 was performed by co-adding CCFs derived from

echelle orders 126 through 86 (4850 Å≤ λ ≤ 7150 Å) before fitting an absorption-line

model to derive a velocity. These orders are those for which at least Nmin = 19 LFC lines

are detected that pass both the SNR threshhold and all quality checks imposed by our

peakfitter (Nmin depends on the degree of the polynomial fitted to the wavelength solution,

which is a free parameter in our code, as are the threshhold values for these quality checks).

In Figure 3.11, we show the RMS residuals from the orbital solutions that arise when

we repeat these analyses while varying the range of echelle orders used when co-adding

CCFs; our default parameter selections are indicated with the red dotted lines. In particu-

lar, this means extrapolating the wavelength solution and chromatic barycentric correction

beyond the spectral range of the LFC, which covers echelle orders 130 through 82, and of
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the chromatic exposure meter, which covers orders 135 through 86 (∼ 4650 Å≤ λ < 7150

Å).

For this data set, we see that there is a sharp dependence on the bluest order co-added

into the CCF. Moreover, we see that the introduction of orders redder than the LFC cutoff

also slightly increases the RMS error to the fit. Recalling that the wavelength solution

outside of the LFC region is largely constrained by the ThAr lamp, this potentially implies

a calibration offset between the LFC and the ThAr lamp, despite both sources illuminating

the instrument through the same fiber.

On the other hand, we do not see any similarly sharp cutoff when extrapolating the

chromatic barycentric correction to outside of the wavelength range covered by the expo-

sure meter. This suggests that the wavelength dependences of our barycentric corrections

(detailed more fully in Blackman et al. 2019) are generally smooth enough for robust ex-

trapolation.
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Figure 3.11: RMS scatter from orbital solutions fitted to HD 217014 as a function of bluest
and reddest echelle order included in the CCF computation. Points along each diagonal
indicate sets of velocities computed with the same number of echelle orders. At least 10
echelle orders have been included in all CCF computations. Dotted red lines show the
default parameters used in the preceding sections.

93



Finally, it is possible to choose narrower ranges of echelle orders that yield smaller

RMS errors than our default parameter selection. However, we note that this is potentially

dependent on the specifics of the CCF linelists used in the computation and also possibly

on underlying astrophysical properties of the science targets and other fortuitous factors.

We have opted to include as many orders as can be accurate, so as to minimize photon

noise, while still leaving the option to include fewer orders available to end-users.

3.6 Conclusion

The commissioning process on the EXPRES instrument is essentially complete, along with

the development of an optimal extraction pipeline that we have been using for preliminary

RV analysis through both CCF and forward modelling techniques. Within the instrumen-

tal back-end (i.e. limiting ourselves to the calibration unit and the spectrograph proper),

we have determined our photon-noise-limited RV errors to be approximately 0.3 m s−1

for a single observation with SNR of 250. With EXPRES’s current observing strategy of

four observations per night per target, this result implies a nightly measurement error of

only 0.15 m s−1. While our on-star measurement error appears to be ∼0.9 m s−1—based

on residual RMS to an orbital fit of 51 Peg b—we must also note that our RV analysis

pipeline does not fully address photospheric velocity sources, telluric contamination, or

longer-term instrumental errors. These other sources of RV scatter are beyond the scope

of this paper although we are actively investigating them. The RV precision presented

in this paper, therefore, represents our worst-case scenario in the absence of further im-

provements. We anticipate upcoming hardware improvements and more sophisticated RV

solution methodologies to only enhance our measurement precision and long-term instru-

mental stability.

Moreover, there are multiple parts of the pipeline that remain under active develop-

ment. We are investigating the use of spectro-perfectionism (Bolton & Schlegel, 2010;
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Cornachione et al., 2019) as an alternative to optimal extraction. We are also exploring

a hierarchical, non-parametric wavelength solution that takes advantage of the low de-

grees of freedom allowed in a stabilized instrument and the density of lines offered by

new wavelength calibrators (Zhao et al., 2021). There are also plans to implement a more

data-driven approach (as in Bedell et al. 2019, with modifications to permit chromatic

barycentric corrections) as yet a third RV analysis technique.

These caveats notwithstanding, we have demonstrated that the technical innovations

that have been invested into the development of novel instrumentation and software anal-

ysis techniques for EXPRES have largely paid off — they have permitted us to unambigu-

ously attain sub-meter-per-second on-sky radial velocity precision. Presently, this makes

EXPRES the most precise EPRV spectrograph in the northern hemisphere.

Finally, we hope the lessons we have learned in the process of commissioning this

instrument, and the techniques we have developed, to be of some value to the community

of EPRV instrument builders moving forward.
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Chapter 4

Excalibur: A Non-Parametric, Hierarchical
Wavelength-Calibration Method for
a Precision Spectrograph
Lily L. Zhao1, David W. Hogg, Megan Bedell, Debra A. Fischer

Excalibur is a non-parametric, hierarchical framework for precision wavelength-calibration

of spectrographs. It is designed with the needs of extreme-precision radial velocity (EPRV)

in mind, which require that instruments be calibrated or stabilized to better than 10−4 pix-

els. Instruments vary along only a few dominant degrees of freedom, especially EPRV

instruments that feature highly stabilized optical systems and detectors. Excalibur takes

advantage of this property by using all calibration data to construct a low-dimensional

representation of all accessible calibration states for an instrument. Excalibur also takes

advantage of laser frequency combs or etalons, which generate a dense set of stable cali-

bration points. This density permits the use of a non-parametric wavelength solution that

can adapt to any instrument or detector oddities better than parametric models, such as

a polynomial. We demonstrate the success of this method with data from the EXtreme

PREcision Spectrograph (EXPRES), which uses a laser frequency comb. When wave-

1Originally published as: Zhao, L. L., Hogg, D. W., Bedell, M., & Fischer, D. A. 2021, The Astronomical
Journal, 161, 80. I developed an implementation of excalibur to run on EXPRES data and ran all tests to
assess excalibur performance.

97



lengths are assigned to laser comb lines using excalibur, the RMS of the residuals is about

five times lower than wavelengths assigned using polynomial fits to individual exposures.

Radial-velocity measurements of HD 34411 showed a reduction in RMS scatter over a

10-month time baseline from 1.17 to 1.05 m s−1.

4.1 Introduction

Precise, radial-velocity programs have been fruitful in finding and characterizing extra-

solar planets (e.g. Mayor et al., 2011; Bonfils et al., 2013; Plavchan et al., 2015; Butler

et al., 2017). These programs typically make use of spectrographs with resolutions on the

order of 50, 000 − 100, 000, which correspond to line widths on the order of 3000 m s−1.

The state of the art RV precision reached 1 m s−1 by 2016 (Fischer et al., 2016). The

newest generation of instruments aim to reach 0.1 m s−1 precision, the required precision

to detect terrestrial worlds. This requires new spectrographs to be calibrated or stabilized to

better than 10−4 of a pixel (assuming that the spectrographs are well sampled). Two next-

generation spectrographs, EXPRES and ESPRESSO, have been commissioned for more

than a year and are demonstrating < 0.1 m s−1 instrumental errors and ∼ 0.2 m s−1 errors

on stars (Pepe et al., 2013; Jurgenson et al., 2016; Blackman et al., 2020; Petersburg et al.,

2020; Brewer et al., 2020; Suárez Mascareño et al., 2020).

Traditionally, wavelength solutions are constructed by fitting a polynomial to lines

from a calibration source in order to describe the relationship between wavelength and

pixel for each echelle order (Butler et al., 1996; Lovis & Pepe, 2007; Cersullo et al.,

2019). In this framework, each calibration image is treated independently. The returned

wavelength solutions worked well at the level of 1 m s−1 precision.

The move towards 0.1 m s−1 RV precision, necessitates higher-fidelity calibration data

and wavelength models. These models need to account for high-order spatial variations

that can arise from small imperfections in the optics of an instrument and non-uniformity
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in detector pixel sizes/spacing. There has been significant effort in using an entire set of

calibration images to identify incongruous ThAr lines (Coffinet et al., 2019) or obtain high-

resolution Fourier transform spectra of reference cells (Wang et al., 2020). It has also been

found that using multiple polynomials in the dispersion direction, tuned to capture detector

defects, better describes the wavelength solution than a single, continuous polynomial

(Milaković et al., 2020).

Here, we propose to simplify and improve calibration programs for EPRV hardware

systems with two practical yet innovative ideas. The first flows from the fact that calibra-

tion sources—which include arc lamps (in some wavelength ranges), etalons, and laser-

frequency combs (LFCs)—illuminate the spectrograph with very stable, very dense sets of

lines–almost every location in the spectrograph image plane is surrounded by nearby, use-

ful calibration lines. This enables use of a calibration methodology that is non-parametric,

or not defined by a prescribed, analytic function described by a finite number of parame-

ters: If every point in the spectrograph detector is sufficiently surrounded by nearby cali-

bration lines, the wavelength solution can, for example, be made simply as an interpola-

tion of the calibration data. The density of lines removes the need to enforce any func-

tional form for the wavelength solution (such as a continuous ninth-order polynomial). In

some ways, this is a generalization of recent work that has demonstrated the efficacy of

constructing a wavelength solution as multiple, segmented polynomials (Milaković et al.,

2020). A non-parametric approach will improve calibration accuracy by not forcing the

choice of a parametric form that may bias the calibration, especially when the chosen

function is inappropriate (as, for example, polynomials are at detector edges).

The second simple idea follows from the observation that most physical systems have

only a few dominant degrees of freedom, meaning most spectrographs vary along only

a small number of axes in “calibration space”, or the (very high-dimensional) space of

all possible wavelength solutions. This is particularly true of EPRV instruments, which

are equipped with stringent environmental stabilizing. The thermomechanical stability of
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these instruments reduces the variations they experience to something that can be rep-

resented by a low-dimensional framework. That is, spectrographs, especially stabilized

ones, should have few environmentally accessible degrees of freedom. This renders it in-

advisable to fit each calibration exposure or calibrate each science exposure independently.

Instead, all the calibration data (or all the data) should be used to determine the calibration

space in which the instrument can and does vary. Subsequent calibration work then need

only determine where in the small, accessible part of calibration space the spectrograph

was located for each exposure.

In the context of probabilistic models, this structure is hierarchical: The calibration

data are used not just to determine the wavelength solution at one moment, but also to de-

termine the possible calibration space of wavelength solutions at all moments. In statistics,

this concept is often described as de-noising: we can improve calibration by recognizing

that every calibration exposure contains information about every other calibration expo-

sure. Thus, every exposure can be improved (i.e., de-noised) with information from every

other exposure.

The method we propose here—excalibur—embodies these ideas. It is a non-parametric,

hierarchical, data-driven method to generate a wavelength model. By being non-parametric,

it delivers enormous freedom to the wavelength solution to match or adapt to any instru-

ment or detector oddities. By being hierarchical, it restricts that freedom tremendously,

but it does so appropriately for the empirically determined variations in a spectrograph.

The method excalibur is designed for temperature-controlled, fiber-fed spectrographs

with good calibration sources, such as laser-frequency combs, or etalons. We have in

mind EPRV instruments and EPRV science cases, primarily because the need for good

wavelength calibration is so great in this field. Irregardless, we expect excalibur to have

applications for other kinds of spectrographs in other contexts. Excalibur should be appli-

cable to other spectrograph with low-dimensional variability, though the precision of the

returned wavelengths will depend on the available calibration sources (more discussion in
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Section 4.6 below) .

4.2 Method

The excalibur method is designed to take many calibration images, each containing a

series of calibration lines with known wavelengths and well-fit detector positions, and

de-noise and interpolate this information into a full wavelength model applicable to all

exposures taken‘ with the instrument. It operates on two core ideas; The wavelength

solution should be allowed flexibility, but it lives in a very low-dimensional calibration

space where the degrees of freedom are set by the limited kinematics of the spectrograph

hardware. Excalibur therefore assumes that the space of possible calibration states for an

instrument is low-dimensional but assumes very little about the forms of those states.

Excalibur also assumes dense-enough calibration line coverage with well-fit line cen-

ters to provide sufficient constraints on an interpolated wavelength solution across an

echelle order. Upstream errors in line center positions may propagate through excalibur

wavelength models. The required line density is dependent on the required precision of

the returned wavelength model; larger spacing between lines offer less constraint and are

likely to return worse wavelengths. We revisit and quantify these conditions in Section

4.6.

Wavelength calibration is usually posed in the following way: Given an exposure n,

and echelle order m, there is a relationship between the two-dimensional (x, y)-position on

the detector and the wavelength λ

λ(x, y,m, n) = f (x, y,m; θn) , (4.1)

where θn represents the parameters describing the wavelength solution for a given expo-

sure.
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Classically, pipelines employ polynomials to construct smooth wavelength solutions

for each exposure. For example, the EXPRES pipeline sets the function f (x, y,m; θn) from

Equation 4.1 to a 2D, 9th-order polynomial, where θn represents the polynomial coeffi-

cients, cni j, unique to each exposure n (Petersburg et al., 2020).

λ(x,m, n) =

9∑
i=0

9∑
j=0

cni j xi m j + noise , (4.2)

Here, the y-dependence is dropped as, in our framing, this dependence is carried by spec-

tral order m. The line position on the detector is therefore uniquely identified by echelle

order m and pixel in the dispersion direction, x. The coefficients cni j are interpolated

from the time of calibration exposures to time tn of a science exposure n by a third-order

polynomial with respect to time. This third-order polynomial is evaluated at the time

of non-calibration, science exposures to re-construct the coefficients for a 2D, 9th-order

polynomial wavelength solution for that exposure. Each calibration image obtains its cni j

coefficients independently.

Given a stabilized instrument with low degrees of freedom, however, the calibration

of any image can be reliably informed by the calibration of every other image. The cali-

bration data themselves can be used to develop a low-dimensional basis for expressing the

space of all possible calibrations for a spectrograph with few degrees of freedom.

If the space of all calibration possibilities is in fact K-dimensional (where K is a small

integer, i.e 2 or 8 or thereabouts), and if the calibration variations are so small that they can

be linearized, then the function f (x,m; θn) from Equation 4.1 should be low-dimensional.

In excalibur, we transpose the calibration model—making the position x a function of

λ—into the following form

x(λ,m, n) = g0(λ,m) +

K∑
k=1

ank gk(λ,m) , (4.3)
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where g0(λ,m) is the fiducial or mean or standard calibration of the spectrograph, the ank

are K scalar amplitudes for each exposure n, and the gk(λ,m) are basis functions expressing

the “directions” in calibration space that the spectrograph can depart from the fiducial

calibration. The resultant x(λ,m, n), a list of calibration line positions for a given exposure,

can be regarded as the calibration state of the spectrograph for that exposure. When this

calibration structure is used to deliver a wavelength solution, x(λ,m, n) can be inverted

back into λ(x,m, n) to recover wavelengths for each detector position x and echelle order

m (Bauer et al., 2015).

The challenge is to learn these basis functions, gk(λ,m), from the data and get the K

amplitudes, ank, for every exposure n. There are many ways to discern the basis functions.

In this paper, we present one implementation of excalibur using principal component anal-

ysis (PCA) (Pearson, 1901; Jolliffe & Cadima, 2016). A PCA is justifiable in the limit

where exposures have very high signal-to-nose ratio, as is usually the case with typical

calibration images. There are many alternatives to PCA for this dimensionality reduction;

we return to this point in Section 4.5 below.

4.2.1 Dimensionality Reduction: De-Noising of Calibration Frames

Excalibur will use calibration images to determine 1) the space in which an instrument

varies and 2) where in the accessible calibration space the spectrograph existed for each

exposure. For each calibration exposure, n, excalibur requires a full list of lines, (λ,m)

that are expected to appear in each calibration exposure. Each line is uniquely defined

by a combination of echelle order, m, and “true” or theoretical wavelength, λ. There

are many strategies for identifying calibration line positions and matching them to their

assigned wavelengths; this problem is left out of scope for this work.

Excalibur assumes that line positions have been identified “correctly,” as in the posi-

tion of a calibration line is determined the same way as the position of a stellar line when
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Basis vectors describing calibration space

. . .

1. Dimensionality Reduction and DenoisingInput
For each exposure, , a list of calibration line 
positions, , with known wavelengths,  , 
and echelle orders, .

2. Find Calibration State for 3. Interpolate

Line Position, 

Output
Full de-noised wavelength model

invert to

Figure 4.1: A cartoon representation of the excalibur method, as described in Section
4.2. We exaggerate variations in measured line position, changes in calibration space, and
interpolation deviations for clarity. In step one, dimensionality reduction and denoising
(§4.2.1), the complete set of line positions for all exposures is analyzed to return a set of
K basis vectors, gn, which represent different ways the spectrograph calibration changes.
These basis vectors span the K-dimensional calibration space of the spectrograph, which
includes all possible wavelength solutions. In step two (§4.2.2), the amplitude of each
basis vector, an,k, is interpolated to return the calibration state for a specific science expo-
sure, returned as a set of de-noised calibration lines. The assigned wavelengths of these
de-noised line positions are then interpolated onto other pixels in step three (§4.2.3) to con-
struct a full wavelength model that returns wavelength as a function of detector position x
and echelle order m.
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extracting RVs. This also inherently assumes that the calibration lines are not subject to

an effect that the science exposures are not, for example differences in charge transfer

inefficiency, non-linearities in the PSF, etc. We caution that systemic errors or large un-

certainties in fitting line positions easily propagate through to biases in the wavelength

models returned by excalibur. For more discussion, see Section 4.7.

For each exposure, n, every line, (λ,m), has an associated fitted (measured) detector

position, x(λ,m, n), for example x-pixel in an 2D extracted echelle order. Fitted line centers

that are missing from an exposure (e.g. because the fit failed due to noise, the line is not

in its usual echelle order, etc.) can be assigned a NaN (hardware not-a-number) for that

exposure instead. Let there be P lines per exposure. Excalibur reads in a N × P matrix of

line positions for each of P lines for each of N exposures.

The mean of measured line position over the set of calibration exposures represents

the fiducial, or standard calibration of the spectrograph, g0(λ,m). In this implementation

of excalibur, principal component analysis is performed on the difference between this

fiducial calibration and each individual line position. The returned principal components

serve as basis functions, gk(λ,m), expressing the possible deviations of the spectrograph

from this fiducial calibration. The magnitude of each principal component for each expo-

sure, ank, represents the scalar amplitude of these deviations for each exposure. Excalibur

then uses a small number, K, of principal components to reconstruct a de-noised version

of the line positions as formulated in Equation 4.3.

Missing line center measurements, which were previously marked by NaNs, are re-

placed with de-noised estimates. This is done iteratively until the estimates of missing line

centers change by less than 0.01%. This process can be repeated on line centers deemed

as outliers by some metric, to account for lines that may have been mis-identified or mis-

fit. The principal components from the final iteration are used to define the spectrograph’s

calibration space, while the associated amplitudes for each component pinpoint where in

that calibration space the spectrograph is located for each calibration exposure.
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Algorithm 1: Dimensionality Reduction and De-Noising
Data: line positions x(λ,m, n) for each exposure n, with wavelengths λ and

echelle orders m
Result: Basis vectors of the low-dimensional calibration space gk(λ,m) and

location of exposures in calibration space expressed by amplitudes an,k

while change in missing or outlier line centers > 0.01% do
g0(λ,m) = x(λ,m, n);
using Singular-Value Decomposition, find U,Σ,V s.t.
UΣV∗ = (x(λ,m, n) − g0(λ,m));

let an,k = U · Σ and gk(λ,m) = V;
x(λ,m, n) = g0(λ,m) +

∑K
k=1 ank gk(λ,m) for x(λ,m, n) = NaN where K is a a

small integer
end

4.2.2 Interpolating Calibration Position

In excalibur, the amplitude, an,k, of each principal component is interpolated to determine

the calibration state of the spectrograph. For example, the amplitude can be interpolated

with respect to time to recreate the calibration state of the spectrograph at different times.

The choice of what to interpolate against depends on the dominant contribution to variation

in the calibration of the instrument.

In the implementation of excalibur presented here, the amplitudes of the principal

components are interpolated linearly with respect to time. This is discussed more in Sec-

tion 4.5.2. Let a prime denote values related to a science exposure n′ for which we want

wavelengths. We use linearly interpolated magnitudes, an′,k at time tn′ to construct the cali-

bration state of the spectrograph for that point in time. Using interpolated amplitudes, an′,k,

and the basis vectors, gk(λ,m), returned by the de-noising process, a new set of calibration

lines, x′(λ,m, n′) can be constructed for any exposure as formulated in Equation 4.3.
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4.2.3 Interpolating a Wavelength Solution

From the de-noising step, excalibur can now construct a set of calibration lines, x′(λ,m, n′)

for any exposure n′. To construct a wavelength solution, we invert x′(λ,m, n′) to λ(x′,m, n′)

by interpolating known wavelengths of the calibration lines over detector position. For

instance, interpolating the known wavelengths vs. line centers onto every integer x will

generate wavelengths for each pixel in an echelle order.

After experiments, we found that a cubic-spline interpolation that enforces mono-

tonicity, such as a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpo-

lator, works well for interpolating wavelengths onto pixels. A cubic spline allows for

more flexibility than a parameterized function, while the enforced monotonicity allows

the wavelength solution, λ(x′,m, n′), to be invertible and prevents spurious deviations that

may befall a cubic spline. Choices in interpolation scheme, K, and other tests are further

discussed in Section 4.5.3.

The implementation of excalibur described here is hosted on GitHub2.

Algorithm 2: Generating Wavelength Solution
Data: the fiducial calibration of the spectrograph g0(λ,m); magnitudes of the

principal components for each exposure an,k; basis vectors spanning the
calibration space of the spectrograph gk(λ,m);

Result: Wavelengths for detector positions x′(m, n′) of exposure n′ with time tn′ ,
where the prime is used to denote values relevant to this new exposure

Find an′,k by interpolating an,k with respect to tn′;
x′(λ,m, n′) = g0(λ,m) +

∑K
k=1 an′k gk(λ,m) where K = 6;

for each unique m do
interpolate λ with respect to x′(λ,m, n′) onto pixels x′(m, n′);

end

2https://www.github.com/lilyling27/excalibur
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4.3 Data

We tested excalibur using data from EXPRES, the EXtreme PRecison Spectrograph. EX-

PRES is an environmentally-stabilized, fiber-fed optical spectrograph with a median re-

solving power R = λ/δλ =∼ 137, 000, over a wavelength range of 390 − 780 nm (Jurgen-

son et al., 2016; Blackman et al., 2020). EXPRES has two different wavelength calibration

sources, a thorium argon (ThAr) lamp and a Menlo Systems laser frequency comb (LFC).

LFCs are unique in that the wavelengths of their emission lines are stable and exactly

known at pico-meter accuracy (Wilken et al., 2012; Molaro et al., 2013; Probst et al.,

2014).

Rather than using a simultaneous calibration fiber, two to three LFC exposures are

obtained roughly every 30 minutes while the telescope is slewing to new targets. ThAr

exposures are taken at the beginning and end of each night. All calibration data are taken

through the science fiber, so that calibration light travels down the same optical pathway

and is projected onto the same pixels as the science observations. Light passes through a

pupil slicer and double scrambler before being injected into a rectangular fiber, which is

fed through a mechanical agitator to ensure modal mixing(Petersburg et al., 2018).

LFC lines cover echelle orders 84-124, which contain approximately 19200 calibra-

tion lines. Though our results are primarily based on work with LFC data, there will be

some discussion of applications to arc lamps below. ThAr lines cover all 86 extracted

orders of EXPRES (echelle orders 75-160), which include approximately 5300 lines. For

both the LFC and ThAr data, lines that appeared in less than 60% of exposures were not

included in the analysis. Similarly, exposures with more than 60% of expected lines miss-

ing were cut from the analysis. A list of echelle orders m, line wavelengths λ, and pixel

positions x were calculated by the EXPRES pipeline (Petersburg et al., 2020) for every

line of every exposure and read into excalibur.
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Line positions from the EXPRES pipeline are generated as follows. A ThAr wave-

length solution is generated from each ThAr exposure using the IDL code thid.pro,

developed by Jeff Valenti. This code identifies ThAr lines by matching lines in an expo-

sure against a line atlas. Line matching is carried out in an automated and unsupervised

way with a Levenburg-Marquardt minimization routine. Once each line’s position is iden-

tified and matched to a wavelength from the line atlas, a sixth-order, 2D polynomial is fit

over pixel location x, echelle order m, and scaled wavelength mλ (wavelengths are scaled

in order to distinguish lines that may appear in more than one order).

Flat-relative, optimally extracted LFC data is background-corrected using a univariate

spline. Each peak in an echelle order is then fit with a Gaussian. The mean of this fitted

Gaussian to a single peak is taken to be the center of the line. For each line, the ThAr

wavelength solution is used to estimate the mode number of a line. The precise wavelength

is then calculated using

fn = n × fr + f0 (4.4)

where the repetition rate, fr, is known from the design of the LFC, and the offset frequency,

f0, has been determined by Menlo Systems, the manufacturer of the LFC.

In order to comfortably satisfy the assumption that there exists only low-order vari-

ation, which is needed for excalibur, we used exposures from after the LFC stabilized

following servicing in summer 2019, where the photonic crystal fiber was replaced and

the polarization was changed to shift the wavelength range of the LFC redwards. In the

results presented here, we use 1227 LFC exposures and 78 ThAr exposures taken between

October 14 and December 18, 2019 on 29 unique nights.
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4.4 Tests

We perform a series of tests to validate the performance of excalibur and benchmark excal-

ibur-generated wavelengths against wavelengths generated by a classic, non-hierarchical,

parametric method. To implement training-validation tests, we leave out a subset of cali-

bration lines with known wavelengths as a “validation” sample, generate wavelengths for

these lines using the remaining data, and compare the predicted wavelength to the assigned

wavelength of each line. This inherently folds in errors in the measured line center of each

calibration line, but this contribution to the residuals will be the same across all tests.

To assess the classic, polynomial-driven method of wavelength calibration, we take

each LFC exposure and separate the lines into even- and odd-indexed lines. We then

construct a wavelength solution using only the odd-indexed lines and use that wavelength

solution to predict wavelengths for the even-indexed lines; i.e. a polynomial is fit to just

the odd-indexed lines and then evaluated at the detector positions of the even-indexed lines

(see Equation 4.2). We then generate a wavelength solution using only the even-indexed

lines and use it to predict wavelengths for the odd-indexed lines.

To test the interpolation step of excalibur (§4.2.3), we employed excalibur on all

LFC exposures with odd-indexed lines removed. The resultant basis vectors, gk(x, y,m),

and amplitudes, ank, are therefore only informed by the even-indexed lines of each LFC

exposure. We then predict wavelengths for the odd-indexed lines that had been excluded

and compare these predictions to their assigned wavelengths. This allows us to test how

accurately an interpolated wavelength solution can predict wavelengths.

To test the denoising step of excalibur (§4.2.1, §4.2.2), we employed excalibur on a

randomly selected 90% of all LFC exposures. This means the basis vectors, gk(x, y,m),

and weights, ank, were constructed using only information from 90% of all exposures. We

used the results to predict wavelengths for all the lines in the remaining 10% of calibration
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exposures. This allows us to test how well we can pinpoint the calibration state of the

spectrograph using excalibur.

The polynomial and interpolation tests remove the same 50% of lines from each expo-

sure while the denoising test completely removes a randomly selected 10% of calibration

exposures and their associated line position measurements. Errors from interpolation will

be localized, extending only to neighboring lines. We therefore aggressively remove ev-

ery other line to ensure we are capturing these local effects. The PCA denoising, on the

other hand, folds in information of all lines from all exposures. Here, it is sufficient to

completely remove 10% of exposures, a traditional training/validation fraction. Since the

information being removed varies between each test depending on its focus, we present

the results per line, treating each line as an independent test.

The residuals of a wavelength solution represent the difference between the wave-

length solution evaluated at the line position of a calibration line, and the assigned theo-

retical wavelength (i.e. from Equation 4.4 for LFC lines) on a line-by-line basis in every

exposure. The reported RMS of a wavelength solution is therefore the per-line RMS, i.e.

RMS/line [m s−1] =

√√√√ N∑
n=1

P∑
p=1

[ (λn,p,pred.−λp,theory)
λp,theory

× c]2

N × P
(4.5)

where λp,theory is the theoretical wavelength for line p, λn,p,pred. is the wavelength predicted

by the constructed wavelength solution for line p in exposure n, and residuals from all P

lines from all N exposures are used, for a total of N×P lines. The difference in wavelength

is converted to units of m s−1, a more intuitive metric for EPRV work.

4.4.1 Results

Histograms of the per-line residuals for each of the above described polynomial, interpo-

lation, and denoising tests (respectively) are shown in Figure 4.2. Note that the spread
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Figure 4.2: Difference in predicted and theoretical wavelengths for the wavelength calibra-
tion tests described in Section 4.4. The per line RMS as defined in Equation 4.5 is given in
the top-right corner in each method’s corresponding color. Incorporating denoising returns
the smallest spread in residuals.

in residuals is much smaller for both the denoising and interpolation tests relative to the

results of the polynomial wavelength solution.

The per-line residuals from the denoising test also exhibit smaller spread than inter-

polation alone. This suggests that the spectrograph truly is accurately represented by a

low-dimensional model. Recreating line positions using this model gives better line po-

sition estimates than treating each exposure independently. The low-dimensional model

does not incorporate noise from individual line measurements. Returning more precise,

denoised line positions results in smaller per-line residuals.

Excalibur-generated wavelengths also exhibit less structure in the returned residuals.

For a randomly selected example LFC exposure, Figure 4.3 plots each line with respect

to its echelle order (y-axis) and x-pixel on the detector (x-axis) colored by the difference

between the predicted and theoretical wavelength for that line in units of m s−1.

The residuals of the classic, polynomial wavelength solution is shown in the top plot

of Figure 4.3. There is a lot of vertical structure and some hints of a periodic, diagonal

structure as well. The residuals of the interpolation test for the same exposure is shown in

the bottom plot of Figure 4.3. There is no coherent structure here and smaller residuals.
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Figure 4.3: Residuals of a single LFC exposure plotted with respect to detector position
(as defined by echelle order and x-pixel) for parametric (top) and non-parametric (bottom)
wavelength calibration methods. Each line is colored by the difference between the pre-
dicted wavelength and the theoretical wavelength for each line, given in units of m s−1.
High-order structure, i.e. vertical stripes and patchiness, is apparent in the residuals to a
polynomial wavelength solution, which assumes smoothness.

This shows how the flexibility of an interpolated model can account for high-order

instrument or detector defects, which emerged as structure in the residuals of the classic,

smooth, polynomial-driven wavelength solution. This same flexibility may similarly allow

interpolated wavelength solutions to account for position errors in pixel image blocks for

different detectors depending on how the interpolation is framed (Fischer et al., 2016;

Milaković et al., 2020).

Though the interpolated wavelength solution returns lower, less-structured residuals

than the polynomial wavelength solution when guided by LFC lines, the flexibility of an

interpolated wavelength solution can result in much worse residuals when not properly

constrained, for example in regions between widely separated calibration lines. The left

plot of Figure 4.4 shows the residuals when ThAr calibration lines, which are much fewer

and less regularly-spaced than LFC lines, are run through excalibur and used to predict

wavelengths for the (completely independent) LFC exposures taken during the same range

of time. Over-plotted in yellow are the positions of the ThAr lines.

Note that running excalibur informed by only ThAr lines cannot be regarded as a
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direct comparison to the LFC runs, as the increased uncertainty and variability in ThAr

line positions alone makes the resultant wavelength predictions an order of magnitude

worse, hence the different scale of the colorbar in the left plot of Figure 4.4 as compared

to Figure 4.3. All the same, the residuals are in general worse where lines are further apart

(for example, in redder echelle orders) than where lines are denser.

Figure 4.4 (right) plots the residuals for a subset of order 94 for both a polynomial-

based method and a PCHIP-based method guided by either ThAr lines or LFC lines. The

PCHIP model with ThAr lines (orange, dashed curve) returns huge residuals between two

widely-separated ThAr lines that extends out of frame. The classic, polynomial fit exhibits

similar residuals in both amplitude and shape regardless of whether the set of ThAr lines

or LFC lines are used. An interpolated wavelength solution using LFC lines (black, solid

curve) exhibits the lowest residuals.

The move to an interpolated wavelength solution is driven by the assumption that
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Figure 4.4: Residuals when using ThAr lines to predict wavelengths for LFC lines. Left:
residuals for a single LFC exposure plotted with respect to detector position and colored
by residual, as in Figure 4.3. The positions of ThAr lines are over-plotted in yellow. In
general, residuals are greater between ThAr lines with greater separation. Right: Compar-
ison of polynomial and interpolated wavelength solutions using either just ThAr lines or
LFC lines for a subset of echelle order 94. The shape of the residuals from a polynomial
fit are similar whether using ThAr lines or LFC lines. A PCHIP interpolated wavelength
model guided by LFC lines returns the smallest residuals.
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a high density of calibration lines allows for more freedom in the resultant wavelength

solution. This freedom allows the wavelength solution to more accurately ascribe wave-

lengths. This flexibility, however, is no longer justified in the regime where there are large

separations between calibration lines, as this no longer provide sufficient constraint on the

interpolated wavelength solution, as is the case in some regions of a classic ThAr lamp.

4.4.2 Impact on Radial Velocity Measurements

We tested excalibur-generated wavelengths on RV measurements using EXPRES obser-

vations of HD 34411, which are presented in Table 4.1. HD 34411 is a G0V star. It is

4.8 Gyr old and relatively quiet (logR′HK = −5.09) (Brewer et al., 2016). Because HD

34411 has no known planets and should have a smaller contribution from stellar signals, it

is a good star to test the effects of the wavelength calibration on the RMS of the returned

RVs. We use 114 observations of HD 34411 taken between October 8, 2019 and March 5,

2020 with SNR 250. Radial-velocity measurements were derived using a chunk-by-chunk,

forward-modeling algorithm ran by the EXPRES team (Petersburg et al., 2020).

Figure 4.5 compares the resultant RVs when using a classic, ninth-degree polyno-

mial wavelength solution and an excalibur-generated wavelength model. Using excalibur-

generated wavelengths reduces the RMS of the entire data set from 1.17 m s−1 with the

classic wavelength solution to 1.05 m s−1. This is equivalent to removing an independent,

Table 4.1: EXPRES RVs using Excalibur Wavelengths. The full data set is available online

JD-2440000 RV m s−1 Error m s−1

18764.4771 3.139 0.335
18764.4791 1.035 0.332
18764.4810 3.074 0.324
18771.4179 -1.927 0.342
18771.4196 2.688 0.357

...
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Figure 4.5: HD 34411 RVs measured with EXPRES. We zoom in on all but 8 of the expo-
sures, which were taken over 150 days later. All RVs are shown in blue; nightly binned
RVs are over-plotted as orange squares. The RMS of the data set and the RMS of the
binned values are given in the top-left corner. Left: RVs derived using a polynomial-based
wavelength solution. Right: RVs derived using wavelengths from the implementation of
excalibur presented in this paper.

additive noise component of 0.52m s−1 (=
√

1.172 − 1.052).

We conducted a direct test of a classically-generated wavelength solution with excal-

ibur-wavelengths on four other data sets. All targets showed a reduction in or comparable

RV RMS. The results from these data sets can not be interpreted as directly as with HD

34411, though, due to larger contributions from stellar variability, known planets, etc. As

completely mitigating these different effects is out of scope for this paper, we focus here

on the results with HD 34411.

4.5 Choose Your Own Implementation

We have described and tested only one implementation of excalibur. Using PCA and an

interpolated wavelength solution is a statistically straight-forward step towards a complete

hierarchical and non-parametric wavelength model. It is possible to upgrade both the

denoising and wavelength solution steps to true models. It is also possible, of course,

to implement either step individually. A hierarchical framework can be used to simply
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denoise the lines before they are fit to a parametric model, and a non-parametric model

can be used on lines that have not been denoised.

For the dimensionality reduction and denoising, the PCA could be replaced by a

probabilistic PCA model or other probabilistic linear reduction methods, such as het-

eroscedastic matrix factorization (HMF)(Tsalmantza & Hogg, 2012). It is also possible

to move to non-linear reduction methods, like a Guassian process latent-variable model,

an auto-encoder, a normalizing flow (e.g. Kramer, 1991; Woodbridge et al., 2020). Using

a non-linear denoising model could enable excalibur to capture large-scale changes as well

as small variations in calibration state.

The wavelength solution could also move past interpolation. For example, a Gaussian

process could be used that is constrained to ensure monotonicity. Replacing each step with

a model will allow for full, hierarchical Bayesian inference. This means the uncertainty

from wavelength calibration could be completely marginalized out. Doing so will have the

largest impact if the wavelength calibration is a significant fraction of the error budget.

The implementation of excalibur presented here, using PCA for denoising and inter-

polating a wavelength solution, uses various global variables and methods that we believe

are or are close to optimal for constructing a high-fidelity wavelength solution. The fol-

lowing subsections will describe each choice and the associated decision-making process.

4.5.1 Dimensionality of the Calibration Space, K

The dimensionality of the calibration space within which the spectrograph lives is repre-

sented by K. In practice, it is the number of principal components, or basis vectors, used

to reconstruct the de-noised line centers. K needs to be large enough so that all variability

in the spectrograph is captured. Too large, however, and the reconstruction will begin to

incorporate noise, thereby defeating the purpose.

Figure 4.6 shows the fiducial calibration state and the first 9 principal components
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Figure 4.6: Top: The fiducial calibration of the spectrograph, i.e. the mean line positions
for each line throughout the epoch of stability. The following 3× 3 grid of plots show the
first nine principal components constructed using LFC lines. These principal components
represent the basis vectors along which the calibration of the spectrograph can deviate from
the fiducial calibration. For each principal component, or basis vector, each calibration line
is plotted according to its echelle order and x-pixel and colored by the value of the basis
vector for that line. Principal components beyond the sixth one become steadily more
dominated by noise.
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constructed using LFC lines, which represent deviations from the fiducial calibration state.

There is clear structure in the first and second principal components. Components three

through six show smaller or more localized structure. Components three and four have

aberrant behavior on the edges of the two bluest echelle orders, where lower signal results

in more variation in the line fits. Later principal components become dominated by noise

and show less coherent structure.

In deciding a K value, we ran denoising tests, as described in Section 4.4, for K values

spanning from 2 to 512. The resultant per-line RMS for each test is plotted in Figure 4.7.

One would expect the returned wavelengths to get increasingly more accurate with larger

K until components that represent only noise are incorporated. Residuals might then get

worse before ultimately starting to get better again with large K, which marks when the

model starts over-fitting the data. Though the returned RMS never gets worse, we find

that the improvement plateaus between K = 6 and K = 128. Comparisons of wavelengths

returned by a K = 6 model vs. a K = 32 model show significant differences in less than

10 bluer lines, which are known to have greater error and variance in their measured line
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Figure 4.7: Per-line RMS of returned wavelength models for different values of K. Per-
line RMS, as defined in Equation 4.5, provides a measure of the accuracy of a wavelength
model. There is a dotted, vertical line at K = 6, and a dotted, horizontal line is the RMS
for K = 6. The improvement at around K = 6 plateaus.
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positions. We therefore settled on a K value of six.

4.5.2 Interpolation of Calibration State to Science Exposures

Figure 4.8 shows the amplitude of the first and second principal component with respect

to time on the left. Though there exists a complex overall shape to the amplitudes with

respect to time, a clear linear trend exists within each night. This is shown by the right plots

in Figure 4.8. As the beginning-of-night and end-of-night calibration sets always include

LFC exposures, we use a simple linear interpolation to interpolate principal component

amplitudes with respect to time.

The choice in interpolation method can help guide how many wavelength calibration

images are truly needed. It is unnecessary to take calibration images at times where the

same information can be reconstructed at the desired precision by a well-chosen interpo-

lation scheme. For example, with the EXPRES data shown here, it is clear that nightly

calibration images are needed, but for a linear trend, only two calibration images through-

out the night are strictly required.

We also tested an implementation of excalibur where the K principal components

within a night were fit to a cubic with respect to time rather than linearly interpolated. This

emulates the current, polynomial-based wavelength solution implemented in the EXPRES

pipeline, where polynomial fits to calibration files are interpolated to science exposure

by fitting polynomial coefficients with respect to time to a cubic. We found that using a

cubic in place of linear interpolation returns comparable RV RMS for most targets, though

appears to do better when a night has sparse calibration data. This suggests that the nightly

behavior of EXPRES with respect to time is well described by a cubic function, but LFC

exposures are typically taken with enough frequency that a linear interpolation provides a

good approximation (see Figure 4.8)

The amplitudes an,k can also be interpolated with respect to any good housekeeping
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Figure 4.8: Amplitude of the first two principal components shown as a function of time
(left) or hour from midnight (right). The top row of plots shows the amplitudes for the first
principal component while the bottom row shows the amplitudes for the second principal
component. Lines show the result of a linear interpolation. In the top, right plot, the
temperature of the optical bench is also plotted in orange. In the right plots, the principal
component amplitudes for each night have been artificially offset by the median amplitude
per night. All days are therefore roughly on the same scale, but the y-axis is different from
the left plots. In the right column, points are colored by the MJD of each exposure.
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data, not just time. Best results will come from interpolating with respect to whatever

is most strongly correlated with the calibration state of the spectrograph. For example,

with EXPRES, which is passively temperature controlled, the returned amplitudes an,k were

extremely correlated with the optical bench temperature, as shown in the top-left plot of

Figure 4.8, suggesting it would also be possible to interpolate the amplitudes with respect

to temperature.

Another pertinent example would be a spectrograph that is mounted on the telescope,

and therefore moves with the telescope. In this case, it may be important to interpolate

at least in part with respect to the position of the telescope, which enables the resultant

calibration to incorporate the gravitational loading experienced by the spectrograph.

4.5.3 Interpolation of Wavelengths with Respect to Pixel

In the implementation described and tested by this paper, interpolation of wavelengths over

pixel is done order-by-order using a Piecewise Cubic Hermite Interpolating Polynomial

(PCHIP) interpolator. This interpolation incorporates the flexibility needed to model the

changing dispersion of the spectrograph across an echelle order along with any detector

defects while also enforcing monotonicity, which we know must be true across any one

echelle order.

A simple linear interpolation would give erroneously low values everywhere. Due

to the dispersion intrinsic to echelle spectrographs, the wavelength change between pixels

grows greater with greater wavelengths, even within an order. This means that the function

of wavelength vs. pixel across an echelle order will always be monotonically increasing

and concave down everywhere.

Though less of an issue with LFC lines, a more classic cubic spline interpolation can

run into issues with arc lines, which are irregularly spaced or even blended. Close lines

appearing at virtually the same pixel location but with different wavelengths could coerce
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Figure 4.9: Residuals from different interpolation schemes over pixels in echelle order 100.
ThAr lines, shown as blue circles, are used to construct a wavelength solution that is then
evaluated at each LFC line, shown as blue vertical lines. The residuals of each wavelength
solution for a subset of the order is shown on the left. Histograms of the residuals for each
method for the complete order is shown on the right. Note: there is a blended ThAr line at
approximately pixel 5300, the right most ThAr lines plotted.

a cubic spline into a very high slope. This is demonstrated by the green line in Figure 4.9,

which shows the results of interpolating between ThAr lines rather than LFC lines. A line

blend appears at approximately pixel 5300, causing the spline to twist to nearly vertical

to account for both points. This leads to huge deviations from the correct wavelengths

around this line blend as the extraneously high slope of the spline is accounted for.

These huge digressions can be avoided by allowing for some smoothing in the inter-

polation. In Figure 4.9, we show an example in orange using SciPy’s implementation of a

univarate spline. While the result appears to follow the calibration lines much better, the

smoothing ultimately causes larger residuals that are spatially correlated (Fig. 4.9, right).

In all echelle orders, the edges are overestimated while the middle will be underestimated,

shown by the flattened shape of the histogram of residuals. The resultant wavelength solu-

tion is underestimating the curvature of the pixel-wavelength relation, giving rise to similar

issues as with an inflexible, parametric wavelength solution. Introducing this smoothing

parameter is enforcing a smoothness we have no reason to believe is true of the data,

thereby re-introducing one of the problems with parametric models.

123



We instead turn to the PCHIP algorithm, which damps down huge deviations in the

traditional cubic spline by requiring the resulting interpolated function be monotonic.

Monotonicity is a constraint we know must be true for any one echelle order. Though

the PCHIP interpolator shows a similar issue as a classic cubic spline around the ThAr

line blend at pixel 5300, the effect is much smaller and affects fewer pixels. Figure 4.9,

right, shows that using the PCHIP interpolator returns the lowest spread residuals.

There likely exists an even more fitting model between an overly-constrained poly-

nomial fit or a completely free spline interpolation. For example, there has been suc-

cess interpolating wavelengths with respect to pixel using a segmented polynomial in the

dispersion direction, especially when tuned to known detector defects (Milaković et al.,

2020). Stiffer, more constrained splines or carefully chosen knot position may afford the

perfect marriage of freedom and constraint that will better describe wavelength changes

with pixel.

4.6 Application to Other Spectrographs

We focus on an EPRV use-case here because there is a strong need for wavelength cal-

ibration in the EPRV community. EXPRES is representative of the newest generation of

EPRV spectrographs, and an LFC provides stable, dense calibration lines with known

wavelengths, ideal for excalibur. The applicability of excalibur to any one instrument is a

detailed question of the kind of variance experienced by the spectrograph and calibration

sources available, but we hope to provide some approximate benchmarks and diagnostics

here.

Implementing excalibur will require an existing library of calibration exposures that

span the range of calibration space accessible by the spectrograph, or at least the space

accessed by the science exposures being calibrated. A new set of calibration exposures

would be needed for any changes to the instrument that could significantly change the
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accessible calibration space. While there is no exact cutoff for how many exposures are

needed, the number is certainly much larger than K, the dimensionality of the calibration

space. More calibration exposures will help with denoising . The number of calibration

exposures required throughout a night will depend on how much the instrument varies

throughout the night as well as the chosen interpolation scheme, as mentioned in Section

4.5.2.

As an empirical assessment of the needed line density, we removed LFC lines from

the EXPRES data and calculated the per-line RMS of the returned wavelengths for the

removed lines. These tests are similar to the interpolation test explained in Section 4.4,

in that a fraction of lines are systematically removed from the analysis. An increasing

fraction of lines are removed to simulate different line densities. For these line density

tests, though, we are also implementing denoising unlike the pure interpolation test of

Section 4.4.

Figure 4.10 plots the scatter of residuals of the wavelengths returned by excalibur as

a function of separation between lines in units of resolution element. It gives an approxi-

mate estimation of the expected error between lines of different separation. Note, however,
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Figure 4.10: Per-line RMS as a function of spacing between lines in units of resolution
element. The average line spacing is calculated using the average distance between LFC
lines across its wavelength range.
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that the stability of the lines and their measured line centers quickly becomes the domi-

nant error source in calibration lamps over the separation between lines. Additionally, in

this assessment, the lines remain uniformly spaced. The needed line density depends on

the resolution of a given spectrograph, the needed precision of the returned wavelength

solution, and the chosen interpolation scheme.

This implementation of excalibur to EXPRES data interpolates calibration informa-

tion to the science data using surrounding calibration exposures. Simultaneous calibration

data can be used to reinforce the determined calibration state of an instrument at the time

of science exposures. This simultaneous calibration data can come from calibration light

shined through a reference fiber or any meta-data (e.g. temperature, pressure, time, etc.)

that correlates with the calibration. For example, we have seen that the calibration state

of EXPRES is correlated with the temperature of the optical bench, even with the optical

bench temperature varying by less than one degree. This correlation is not seen in the RVs,

suggesting the changes with temperature are calibrated out at the wavelength stage.

With a simultaneous reference fiber, the position of calibration lines taken through the

reference fiber can simply be concatenated to the array of line positions taken through the

science fiber. Both sets of lines will then be used when the low-dimensional basis is con-

structed. This allows the simultaneous calibration information to contribute to constructing

the complete calibration space of the spectrograph and pinpoint where the spectrograph is

in that calibration space for any exposure.

The calibration for any science exposure with a simultaneous reference can be de-

termined by finding the amplitude of each basis vector that most closely recreates the

calibration line positions through the reference fiber. These amplitudes can then be used

to recreate the calibration line positions through the science fiber as well. This replaces

the need to interpolate the basis vector amplitudes from calibration exposures to science

exposures, something that is done with respect to time in the example implementation

described in this paper. The result is likely to be even more precise, as this method incor-
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porates more data. This method, as with all analysis involving a simultaneous reference

fiber, will work only as well as the reference fiber’s ability to trace changes in the main

science fiber.

It is also possible to apply excalibur to etalon data with some modifications. The

simplest implementation is if the free spectral range (FSR) and therefore wavelength of

each line of the etalon is well known. The etalon data can be interpolated onto a set of

fiducial lines with set wavelengths. These fiducial lines would therefore be identifiable by

echelle order and wavelength alone, with only their line positions varying with different

exposures. This returns us to the same framework as developed for the case of an LFC.

This marks the simplest implementation of excalibur on etalon data, as the uncertainty of

a line’s wavelength is upstream of the model rather than built in.

Incorporating the FSR as part of the excalibur model will require introducing a free

parameter to capture changes in the FSR independent of variation in an instrument’s cal-

ibration state. The calibration state can then be described with respect to mode number,

which will be used to uniquely identify a calibration line across exposures rather than

wavelength. The FSR is then used to determine how the mode number of each line maps

to wavelength for a given exposure. The FSR must not vary so much that the change in

this mode-number-to-wavelength mapping becomes non-linear. This model would require

a simultaneous reference or other housekeeping data that can be used to determine the FSR

for every exposure.

In terms of dimensionality reduction, most physical systems should have only a few

dominant axis along which they vary, meaning excalibur should be adaptable to a wide

range of instrument designs. With PCA, this can be tested by plotting the amplitude of

the returned principal components, which should fall quickly after a few components. It

should be noted that this only provides a measure of the variance in the PCA space, and

is not an explicit test of the end-to-end variation in the resulting model. This condition is

therefore necessary but not sufficient if implementing excalibur with PCA.
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It could still be possible to run excalibur on a spectrograph that has a high-dimensional

calibration space, meaning a large number of basis vectors are required to capture all the

variance in the spectrograph. In this regime, there is always the risk of over-fitting. Reg-

ularizing the principal component amplitudes, for example insisting the amplitudes for

higher principal components be smaller, can help to return reasonable models (Foreman-

Mackey et al., 2015) . Within such a framework, excalibur may still deliver good results.

For the results presented here, the data was broken up into different eras of stability

based on where the principal component amplitudes showed huge deviations. This was

done visually, though there exists many change-point detection algorithms that could be

used (Aminikhanghahi & Cook, 2017). There is a trade-off in including more exposures

between introducing greater variation, but also more data to offer constraints that may

be optimized. Here, an era of stability was chosen manually in order to focus on sepa-

rating out time-domain intervals in which the data is relatively homogeneous, e.g. most

exposures show the same calibration lines. Homogeneity is, of course, implicitly required

when implementing PCA. Different denoising models will be able to account for different

amounts of stability or lack thereof.

Lastly, we caution that excalibur is extremely sensitive to upstream changes that may

effect the line centers. For example, PCA is good for detecting variability, but is agnostic

to the source of the variability. This is why the principal components shown in Figure

4.6 exhibit errant values for bluer LFC lines, which are lower signal and therefore exhibit

more variation in their fitted line centers. It is essential that the line positions being fed

to excalibur capture only the changes in the spectrograph’s calibration state, not potential

errors in the fitted line centers.
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4.7 Discussion

We show that excalibur returns a lower per-line RMS than classic, parametric methods

by a factor of 5 (Section 4.4). The residuals were also smoother, exhibiting less spatial

correlation (Figure 4.3). Using excalibur wavelengths reduced the RMS in RVs of HD

34411 from 1.17 m s−1 to 1.05 m s−1(Section 4.4.2).

In implementing excalibur on EXPRES data, we have successfully constructed a

model of EXPRES’s accessible calibration space, confirming that EXPRES truly is an in-

strument with low-degrees of freedom. Excalibur does not make any claims about what

variability each basis vector represents. Those interested in interpreting the variability are

encouraged to investigate how the amplitude of the different vectors varies with different

housekeeping data to find their source.

Starting with a list of calibration lines with known wavelengths and well-fit line cen-

ters for each calibration exposure, excalibur will de-noise and interpolate the given lines

into a full wavelength solution. Excalibur leverages the stability of contemporary EPRV

instruments and high density of lines made available by new calibration sources, such as

LFCs and etalons, to achieve more accurate wavelengths. Excalibur therefore assumes

dense enough calibration lines to properly constrain a non-parametric wavelength model,

and that the instrument has low degrees of freedom.

Denser calibration lines allow us to move to more flexible wavelength models, which

can then account for non-smooth features in the wavelength solution. Stabilized spec-

trograph hardware makes it more likely that the calibration space of the instrument is

low-dimensional. All calibration images in a given generation of stability can therefore be

used to constrain the accessible calibration space of the spectrograph as well as where in

that calibration space the spectrograph lies. We have described only one, fairly simplistic

implementation of excalibur here. There are many options for both the de-noising and
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interpolation steps, as mentioned in Section 4.5.

An advantage of this implementation of excalibur, where PCA is applied to line po-

sitions from all LFC exposures, is the ability to isolate exposures that exhibit errant vari-

ation, which is typically associated with flawed exposures. This allowed us to quickly

vet for problematic LFC exposures, which otherwise would have required visual inspec-

tion of all 1200+ LFC exposures. In a classic framework where each calibration exposure

is treated independently, these aberrant exposures would likely have persisted undetected

and are liable to sway the resultant wavelength solutions for at least an entire night.

On the other hand, PCA captures all variance, regardless of source. Though excal-

ibur endeavors to capture only variation in the instrument, the PCA is also sensitive to

uncertainties and failures in the upstream line-position fitting. For example, we have seen

that lower-signal lines that are harder to fit faithfully will have greater variety in returned

line positions, which is in turn captured by the PCA. In this sense, excalibur is actually a

model of not just the instrument, but all the upstream choices used to drive live positions.

High-fidelity line positions are essential to ensure the PCA is capturing variations in just

the spectrograph’s calibration rather than changes in how well a line can be fit or other

effects.

Along those lines, we caution that with any wavelength solution, there is a perfect de-

generacy between what is defined as the “position of the line” and the resultant wavelength

solution. If, for example, a cross correlation method is used to extract RVs from the data,

a systematic difference may be introduced depending on what exactly is defined to be the

line position, whether it be the mode of a Gaussian fit, the first moment of a complicated

PSF, or the output of some particular peak-finding algorithm, etc. In principle, the best

way to mitigate this uncertainty would be to use a calibration source that looks like a star.

Compared to traditional methods, which involve fitting high-order polynomials, ex-

calibur has several useful statistical properties. Excalibur is technically robust to localized

issues that arise from either the calibration source or the pipeline used to return line po-
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sitions. With an interpolated wavelength model, one errant line position will only effect

the resultant wavelength model out to the close, neighboring lines. The effect of an out-

lier is diminished and kept localized. In contrast, an entire parametric fit will be affected

by a single errant line, changing the wavelength solution for the entire exposure for a 2D

fit. Through de-noising and outlier rejection, excalibur adds additional robustness against

erroneous line positions.

The locality of the interpolation caries other benefits as well. Manufacturing artifacts

in the detector or other optical elements can lead to non-smooth structure in the wave-

length solution that can not be captured by polynomials or other smooth functions (see

Figure 4.3). An interpolated model introduces greater flexibility, enabling the model to

account for such high-order effects. As discussed in Section 4.5.3, there are better and

worse interpolators for the task, which may differ for different instruments and different

calibration sources. Instead of using an interpolator at all, there might be better results

from implementing something more sophisticated, such as a kernel method or a Gaussian

process with a kernel adapted for the specifics of an instrument. There is in principle an

enormous number of non-parametric methods to explore, which we leave outside the scope

of this paper.

Similarly, PCA is just one of many possible dimensionality-reduction methods. We

chose to implement excalibur using PCA here for simplicity and computational tractabil-

ity. PCA is a good option because the instrument changes here are small enough that a

linear model is an approrpiate representation of the changes. If excalibur was updated

to a full probabilistic model, the PCA along with the interpolation model would have to

be upgraded to something with better probabilistic properties. Other, nonlinear denoising

methods may be more robust to large changes, allowing all calibration images ever taken

with an instrument to be used to construct the accessible calibration state regardless of

hardware adjustments. Further discussion of other implementations of excalibur can be

found in Section 4.5.
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Excalibur can be applied to any data that contains information about the calibration

state of the spectrograph (see Section 4.6). For example, though LFC and ThAr exposures

are used as an example in this paper, excalibur would work similarly for an etalon or any

other arc lamp with a list of lines and assigned wavelengths. Simultaneous calibration

information can easily be accounted for by simply including the line position informa-

tion from the simultaneous reference when constructing a low-dimensional basis of the

instrument’s calibration space.

Once we have defined a calibration space that captures all possible degrees of free-

dom for a stabilized spectrograph, there are many options for pinpointing where the spec-

trograph is located within that calibration space. Good housekeeping data, such as temper-

ature or pressure could be used in addition to or instead of time (as mentioned in Section

4.5.2). Telemetry that is seen to be correlated with the calibration state of the spectrograph

can even be added to the data used to construct the low-dimensional basis. Furthermore,

all exposures taken with the spectrograph in principle contains information about the cali-

bration state of the spectrograph. Theoretically, tellurics, lines in science exposures, or just

the trace positions themselves could also be used to determine an instrument’s calibration

state, thereby providing free simultaneous calibration information.

Excalibur is designed and optimized for extreme-precision, radial-velocity spectro-

graphs. In the battle to construct a high-fidelity data pipeline for extreme-precision radial-

velocity measurements, we have shown that excalibur represents a step towards mitigating

the error from wavelength calibration, as demonstrated by tests using EXPRES data (Sec-

tion 4.4). Though the focus was on EPRV instruments here, excalibur should be largely

applicable to nearly any astronomical spectrograph.
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Chapter 5

The EXPRES Stellar Signals Project II.
State of the Field of Disentangling
Photospheric Velocities
Lily L. Zhao1, Debra A. Fischer, Gregory W. Henry, Eric B. Ford, Alex Wise, Michael

Cretignier, Rachael M. Roettenbacher, Samuel H.C. Cabot, Suzanne Aigrain, Oscar Bar-

ragan, Megan Bedell, Lars Buchhave, Joãoo Camacho, Heather Cegla, Jessi Cisewski-

Kehe, Andrew Collier Cameron, Zoe L. de Beurs, Sally Dodson-Robinson, Xavier Du-

musque, João Faria, Christian Gilbertson, Charlotte Haley, Justin Harrell, David W.

Hogg, Parker Holzer, Ancy Anna John, Baptiste Klein, Marina Lafarga, Catherine Lembo,

Florian Lienhard, Annelies Mortier, Belinda Nicholson, Michael Palumbo, Vinesh Raj-

paul, Victor Ramirez Delgado, Christopher J. Shallue, Andrew Vanderburg, Pedro Viana,

Jinglin Zhao, Norbert Zicher, John M. Brewer, Andrew E. Symkowiak, Ryan R. Petersburg,

Joe Llama

Measured spectral shifts due to intrinsic stellar variability (e.g. pulsations, granula-

tion) and activity (e.g. spots, plages) are the largest source of error for extreme precision

1The project is originally described in: Zhao, L., Fischer, D. A., Ford, E. B., et al. 2020, Research Notes
of the American Astronomical Society, 4 156. I processed all the provided data including spectra, CCFs,
and activity indicators. As intellectual lead for the ESSP, I analyzed the results from each method and wrote
the summary report. I also developed and contributed results for the ResRegGen and ResRegDis methods.
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radial velocity (EPRV). Several methods have been developed to disentangle stellar sig-

nals from true center-of-mass shifts due to planets. The EXPRES Stellar Signals Project

(ESSP) presents a self-consistent comparison of 23 different methods tested on the same

extreme-precision spectroscopic data from EXPRES. Methods either derived new activity

indicators, constructed new models for mapping an indicator to the needed RV correction,

or separated out shape- and shift-driven RV components. Method results were compared

based on the total and nightly scatter of returned RVs, agreement with other methods,

and correlation with activity indicators. Though nearly all submitted methods do better

than the classic linear decorrelation method for mitigating stellar signals, no method is

yet reducing the RV RMS to the necessary sub-meter-per-second levels. There exists a

concerning lack of agreement between methods, even for those returning similar final RV

RMS values. This highlights the danger of using the RMS alone to assess method per-

formance, a common practice that must be used with caution. Continued progress in this

field necessitates increased interpretability of methods, high-cadence data to capture stel-

lar signals at all time scales, and continued tests like the ESSP using consistent data sets

with more advanced metrics for method performance.

This work is ongoing.

5.1 Introduction

With the new generation of extreme-precision spectrographs, sub-meter-per-second radial

velocity (RV) measurement precision has become achievable (Pepe et al., 2013; Schwab

et al., 2016a; Jurgenson et al., 2016; Blackman et al., 2020; Petersburg et al., 2020; Suárez

Mascareño et al., 2020; Brewer et al., 2020). Photospheric velocities from intrinsic stellar

variability and activity features are now the dominant source of RV scatter.

A star’s radial velocity is measured by modeling Doppler shifts in absorption lines

of stellar spectra. Different forms of stellar variability will change spectra such that lines
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will appear shifted, deeper/shallower, or asymmetric. These line shape changes can be

mistaken for true center-of-mass shifts in the RV analysis. In this way, stellar signals will

add errors to the resultant RV measurements and can even masquerade as periodic, false

planet signals.

With RV precision better than one meter per second, we must contend with obscur-

ing photospheric velocities that arise from stellar oscillations (Mayor et al., 2003; Bouchy

et al., 2005; Kjeldsen et al., 2005; Arentoft et al., 2008), granulation (Dravins, 1982; Kjeld-

sen & Bedding, 1995; Lindegren & Dravins, 2003; Dumusque et al., 2011b; Meunier et al.,

2015; Cegla et al., 2018; Lanza et al., 2019), super granulation (Rieutord & Rincon, 2010;

Rincon & Rieutord, 2018; Meunier & Lagrange, 2019), and activity features such as spots,

faculae, or plages (Saar & Donahue, 1997; Hatzes, 2002; Saar, 2003; Desort et al., 2007;

Huélamo et al., 2008; Boisse et al., 2011; Dumusque et al., 2011a; Lovis et al., 2011; Jef-

fers et al., 2013; Cabot et al., 2021). The various types of photospheric velocities imprint

on a star’s spectrum in different, potentially quasi-periodic ways and evolve on a range of

timescales.

Pressure gradients in the convective zones of stars result in p-mode oscillations with

time scale of a few minutes, where the frequency and amplitude of these oscillations in-

creases slightly with Te f f (Mayor et al., 2003; Bouchy et al., 2005; Kjeldsen et al., 2005;

Arentoft et al., 2008). This movement can cause RV variations from 10 cm s−1 up to 1

m s−1 (Dumusque et al., 2011c; Chaplin et al., 2019).

Solar-type stars will also exhibit granulation patterns, which arise from convection in

the outer layers of the star (Dravins, 1982; Lanza et al., 2019; Kjeldsen & Bedding, 1995;

Lindegren & Dravins, 2003; Dumusque et al., 2011b; Cegla et al., 2018). Upflow in the

middle of granulation cells appear blueshifted while the downflow in the narrow, dimmer

edge regions appear redshifted. This creates a net RV blueshift, known as convective

blueshift, and causes spectral lines to appear asymmetric.

Different realizations of granulation, which change on the timescale of a few minutes
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to hours, will integrate to different net RV shifts. These changes result in varying magni-

tudes of the convective blueshift and its resultant spectral line shape changes. This effect

can introduce random RV variations of 0.4 to 0.8 m s−1 and increases with the Te f f of the

star (Meunier et al., 2015). Supergranulation describes large cells outlined by the mag-

netic network, which can persist for hours to up to two days (Rieutord & Rincon, 2010;

Rincon & Rieutord, 2018; Meunier & Lagrange, 2019). They give rise to similar issues as

granulation and can introduce RV variations of 0.3 to 0.7 m s−1 (Meunier et al., 2015).

Strong magnetic activity can also generate activity features in the photosphere of a

star, i.e. darker starspots or brighter faculae and plages (Saar & Donahue, 1997; Hatzes,

2002; Saar, 2003; Desort et al., 2007; Huélamo et al., 2008; Boisse et al., 2011; Dumusque

et al., 2011a; Lovis et al., 2011; Jeffers et al., 2013). This magnetic activity will suppress

convection in a star and change the magnitude of convective blueshift relative to a quiet

photosphere, resulting in an integrated RV change of 0.4 to 1.4 m s−1 (Meunier et al.,

2010).

Activity features rotate in and out of view as the star rotates. Spots, with a lower

temperature, suppress flux while faculae and plages, with a higher temperature, increase

flux. The presence of activity features therefore change the integrated flux distribution of

the star. As a star rotates, the side of the star rotating towards the observatory appears

blueshifted while the side rotating away appears redshifted. If the same amount of flux is

coming from both sides (i.e., the star is featureless), these effects cancel each other out.

Changes in flux due to activity features can break that balance and introduce up to 0.4

m s−1 variations on the Sun (Saar & Donahue, 1997; Meunier et al., 2010). The different

temperatures of activity features locally modify absorption and emission processes and

produce asymmetry in the integrated spectral line profiles that vary with stellar rotation.

Traditionally, stellar signals have been decorrelated from radial-velocity measure-

ments with the use of activity indicators. These indicators aim to gauge magnetic activity

on the target star and/or presence of activity features for each exposure (e.g. Boisse et al.,
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2009; Dumusque et al., 2011c; Figueira, 2013). Popular indicators include properties of

the cross-correlation function (CCF) used to derive RVs, such as various CCF bisector

asymmetry measurements (e.g. Queloz et al., 2001; Povich et al., 2001) or the full-width

half max of the CCF (e.g. Queloz et al., 2009). The CCF can be thought of as an average

of all line shapes in the spectrum, and is therefore only sensitive to line shape changes that

appear in most lines. Magnetic activity on the star has also been shown to correlate with

emission in the core of Ca II H&K lines (396.96 nm and 393.47 nm respectively; Saar

et al., 1998; Meunier & Lagrange, 2013), the Ca infrared triplet (849.8, 854.2, and 866,2

nm; Saar & Fischer, 2000), and the H-α line (656.28 nm; Skelly et al., 2008; Robertson

et al., 2014; Giguere et al., 2016).

Linearly decorrelating RVs against activity indicators has not shown success in disen-

tangling stellar signals to sub-meter-per-second precision (Fischer et al., 2016). Recently,

more advanced methods have been proposed to disentangle stellar signals from true center-

of-mass RV shifts. Gaussian process (GP) models have been used to more flexibly model

stellar signals (Haywood et al., 2014; Faria et al., 2016; Rajpaul et al., 2017; Angus et al.,

2018). Methods using different activity indicators and a Bayesian framework were found

to deliver more robust results (Dumusque et al., 2017).

There has also been a move towards capturing the effects of stellar activity at the level

of the 1D spectrum, i.e. before calculating the CCF and extracting RVs (e.g. Davis et al.,

2017; Dumusque, 2018; Meunier et al., 2017). The use of pixel-level statistical techniques

has revealed that different lines show different behaviors and levels of sensitivity to stellar

activity.

With many promising methods being developed to address the issue of stellar signals,

we present here a head-to-head comparison of many of these methods on real data. For four

stars—HD 101501, HD 26865, HD 10700, and HD 34411—the EXPRES Stellar-Signals

Project released high-fidelity EXPRES data that are representative of next-generation spec-

trographs as well as differential photometry from the APTs (Zhao et al., 2020). Eleven
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teams tested 16 different methods (with different variations for a total of 23 different meth-

ods) on the data provided. All methods used the provided data products (i.e. spectra, CCFs,

RVs, and/or derived activity indicators), which allows us to compare the performance of

methods on exactly the same data. No methods made use of the provided photometry.

The data and targets are described more in Section 5.2. Section 5.3 gives an overview

of all methods tested and highlights commonalities between methods. The resultant RVs

produced by different methods are compared in Section 5.4. Section 5.5 gives a summary

of all methods and the pertinent results. Section 5.6 discusses the different assumptions

made by methods that define the current state of the field. From there, we make sugges-

tions for future method development and data challenges. We conclude in Section 5.7.

5.2 Data

The data sets for the ESSP include spectroscopic data from the Extreme Precision Spec-

trograph (EXPRES) and ground-based photometric measurements from the Fairborn Auto-

matic Photoelectric Telescopes (APTs) for four targets—HD 101501 (61 UMa), HD 26965

(omi2 Eri), HD 10700 (τ Ceti), and HD 34411 (lam Aur). Here, we describe the EXPRES

and APTs instruments, as well as the four targets. We provide benchmarks for the amount

of scatter that is expected for the EXPRES instrument and pipeline independent of con-

tributions from stellar signals. Stellar parameters for each target are tabulated in Table

5.1.
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5.2.1 Spectroscopic Data From EXPRES

EXPRES an optical (390 − 780 nm), fiber-fed spectrograph with a median resolution of

R ∼ 137, 000 (Jurgenson et al., 2016). The instrument was fully commissioned at the 4.3-

m Lowell Discovery Telescope (LDT) (Levine et al., 2012) near Flagstaff, AZ in January

2019 and is being used for a Doppler planet survey on about 125 (partial) nights per year.

The spectrograph is housed in a vacuum enclosure to achieve temperature and pressure

stabilization. A Menlo Systems laser frequency comb (LFC; Wilken et al., 2012; Molaro

et al., 2013; Probst et al., 2014, 2020; Milaković et al., 2020; ?) ranging from ∼490-730

nm is used for precise wavelength calibration.

The instrument calibration stability for EXPRES ranges between 3-7 cm s−1 using

consecutive LFC spectra taken for over thirty minutes to an hour (Blackman et al., 2020).

Figure 5.1 shows the RV scatter of over an hour of consecutive LFC exposures. The

resultant RMS is 3.21 cm s−1 after a linear trend is removed. The instrument calibration
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Figure 5.1: Perceived shift in LFC spectra in units of m s−1 across an hour of consecutive
LFC exposures. These perceived shifts are attributed to variations in the instrument and
therefore give a measure of the instrument stability. The RMS of shifts across this hour is
given in the top-left corner.
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stability can be thought of as the minimum RMS achievable by the EXPRES hardware.

An exposure meter picks off 2% of the light from behind the fiber entrance to the

spectrograph to monitor the photon flux for chromatic barycentric corrections. This expo-

sure meter system also terminates exposures when the target signal-to-noise ratio (SNR)

of 250 per pixel at a wavelength of about 550 nm is reached.

Two or three consecutive exposures are obtained for each target star per night to

improve the nightly-binned precision (Brewer et al., 2020). The on-sky, analytical single-

measurement precision for exposures with a SNR of 250 (per pixel at λ=550 nm) is about

0.3 m s−1 (Petersburg et al., 2020). This matches the typical intranight RMS scatter for

consecutive observations.

One-dimensional spectra are extracted using a flat-relative, optimal extraction pipeline

(Zechmeister et al., 2014; Petersburg et al., 2020). Extracted spectra were made available

to the ESSP participants along with chromatic barycentric-corrected wavelengths (Black-

man et al., 2017). Two sets of wavelengths are provided, one set with a classic polynomial

wavelength solution, and one set generated using excalibur, a hierarchical, non-parametric

wavelength solution (Zhao et al., 2021). The provided spectra also included a model of

telluric lines generated using SELENITE (Leet et al., 2019), a continuum model, and the

associated blaze function to recover photon counts.

In addition to extracted spectra, cross-correlation functions (CCF), forward-modeled

RVs, and classic activity indicators were provided for each observation. Unless otherwise

stated, teams used the provided spectra, CCFs, RVs, and activity indicators as inputs to

their methods, thereby ensuring a consistent comparison between the different method

results.

5.2.1.1 Default RVs

The standard EXPRES pipeline derives RV measurements using a forward-modeling tech-

nique (Brewer et al., 2020). A template spectrum is constructed using three consecutive
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observations taken on one night of a given target star. Each observed spectra is then bro-

ken into two-angstrom chunks that are shifted and scaled to match this template spectrum.

Chunk-by-chunk (CBC) RVs are derived for each exposure by finding the weighted av-

erage of all chunks in a spectra. Chunks that behave more stably over time are weighted

higher while chunks that return a high RV scatter are down weighted. CBC RVs for all

four targets are given in Table 5.2.

Table 5.2: CBC RVs. A stub of this table is provided here for reference; the full RV data
sets are published online

Target Time [MJD] RV [m s−1] Err. [m s−1]
HD 101501 58524.466 -0.338 0.322
HD 101501 58524.491 2.38 0.325
HD 101501 58524.497 2.66 0.308

...
...

...
HD 26965 58715.487 -0.101 0.435
HD 26965 58719.469 -1.85 0.368
HD 26965 58719.472 -1.44 0.408

...
...

...
HD 10700 58710.457 0.075 0.388
HD 10700 58710.458 -2.25 0.377
HD 10700 58710.46 -3.03 0.387

...
...

...
HD 34411 58764.475 3.47 0.324
HD 34411 58764.477 1.98 0.34
HD 34411 58764.479 4.8 0.314

...
...

...

CBC RVs derived from on-sky EXPRES data regularly return sub-meter-per-second

RMS and intra-night scatter (INS) that matches the analytical 30 cm s−1errors. Figure 5.2

depicts RVs from six photospherically quiet stars observed with EXPRES (which are not

a part of this study). The nightly-binned RMS of these pipeline RV measurements range

from 0.5 to 0.8 m s−1. The average INS over nights (using only nights with more than

one observation) ranges from 0.1 to 0.4 m s−1. These stars demonstrate the RV precision
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Figure 5.2: EXPRES RVs for six quiet stars. Shown RVs are derived using a chunk-by-
chunk (CBC) forward modeling scheme and binned by night. The RMS of these nightly-
binned RVs are given in the top-right corner along with the average intra-night scatter
(INS).

achievable by EXPRES data in the absence of strong photospheric velocities adding scatter.

Complete mitigation of RV contribution from stellar signals should result in a similar final

RMS values.

5.2.1.2 Default CCFs

We provided CCFs as well as the resultant CCF RVs for each spectra. These CCFs were

generated using the code described in Ford et al. (2021), CCF masks based on the pub-

licly available ESPRESSO masks of the closest matching spectral type, and a rectangular

window function. Note that we found the CBC RVs to have consistently lower RV scatter

than the CCF RVs, and so the default RVs for methods were the CBC RVs.

Since the EXPRES pipeline returns flat-relative extractions, it was important to ac-

count for the varying SNR of each line. Lines for the CCF were weighted using the
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product of the ESPRESSO-mask provided weight and a constructed weight factor based on

the median signal-to-noise (SNR) ratio (assuming only photon-noise). For lines that show

up in multiple orders, the SNR weight factor was computed separately for the line in each

order.

Lines which overlapped with a telluric feature (as identified by SELENITE) during

any observation were rejected for all observations. Lines that were shifted beyond the

edge of a given order during any observation were excluded from use within that order for

all observations. Only pixels with a wavelength calibration from the LFC (∼490-730 nm)

were used to construct the CCFs.

5.2.1.3 Default Activity Indicators

Each observation was also accompanied by several common activity indicators and their

empirically determined errors. Spectroscopic activity indicators provided include the S -

value, a measure of the emission in the core of the Ca II H&K lines (Meunier & Lagrange,

2013; Saar et al., 1998), and measures of changes in the Hα line core emission (Skelly

et al., 2008; Robertson et al., 2014; Giguere et al., 2016). Both the Hα emission (i.e. a

measure of the depth of the normalized Hα line), and the equivalent width of the Hα line

were provided.

We also provided a number of activity indicators derived from the CCF. The differ-

ence in the center of the CCF at the top of the CCF as compared to the bottom of the CCF

is a measure of the skew in the CCF bisector (CCF BIS) (Queloz et al., 2001) and the ve-

locity span indicator (Vspan) (Boisse et al., 2011). Varying spectral line profiles will result

in changes to the CCF full width at half maximum (FWHM), which is often used as an

activity indicator (e.g. Queloz et al., 2009). We also provide the results of fitting the CCF

to various, asymmetric profiles, such as a bi-Gausisan (Figueira, 2013) or a skew normal

probability distribution function (Simola et al., 2019), where the asymmetry parameter of

these profiles is reported as an activity indicator.
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Analytical errors are provided where possible. Otherwise, empirical errors were de-

termined by finding the spread in calculated indicators for seven chromospherically quiet

stars. Using a total of approximately 400 observations of these seven stars, a histogram of

indicator values was plotted and fit to a Gaussian. The width of this Gaussian is taken to

be the empirical error for the given activity indicator.

5.2.2 Photometry from APT

Ground-based photometry for all four ESSP target stars was obtained with either the T4

(0.75 m) or T12 (0.8 m) automatic photoelectric telescopes (APTs) at Fairborn Observatory

in southern Arizona. The data presented here were largely taken with T4, with some of the

photometry for HD 34411 taken with T12. The T12 APT went out of operation after the

2017-18 observing season, but operated in the same way as the T4 APT.

The T4 APT is equipped with a single channel photometer that uses an EMI 9124QB

bi-alkali photomultiplier tube to measure the difference in brightness between the program

star and three nearby comparison stars in the Strömgren b and y passbands. To improve

the photometric precision, we combine the differential b and y magnitudes into a single

(b + y)/2 “passband". The precision of a single observation with T4 or T12, as measured

from pairs of constant comparison stars, is around ∼0.0015 mag on good nights. Both the

T4 and T12 APT are described in Henry (1999), where further details of the telescope,

precision photometer, and observing and data reduction procedures can be found.

Several years of photometry from the APTs were available for each ESSP target. In

each photometric data set, we identify a long-term trend that is modeled by applying Gaus-

sian smoothing to the light curve with a 100-day window. A window of 100 days was

chosen to find trends on the order of observing seasons while preserving the signal on

the timescale of individual stellar rotations. These trends can be subtracted off to remove

large-scale variation in the photometry from stellar signals (e.g., variations across activity
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cycles). Photometry and this smooth trend is given for all four targets in Table 5.3.

The photometric data were interpolated to the time stamps of the given spectroscopic

data and associated RVs using a Gaussian process (GP) model with a quasi-periodic ker-

nel from the george package (Ambikasaran et al., 2015). The GP was trained on the most

recent six years of APT data. While the GP regression returned reasonable interpolated

median values and 1σ uncertainties, we were unable to estimate well-principled extrapo-

lated photometric values for RV timestamps taken after the last photometric measurement.

Table 5.3: Photometry and Long-Term Trend. A stub of this table is provided here for
reference; the full photometric data sets are published online.

Target Time [MJD] (b + y)/2 [mag] Trend [mag]
HD 101501 49095.696 -0.00145 -0.653
HD 101501 49095.782 -0.0023 -0.653
HD 101501 49096.783 0.00425 -0.653

...
...

...
HD 26965 49239.941 -0.00231 -2.29
HD 26965 49245.933 0.00084 -2.29
HD 26965 49246.93 0.00139 -2.29

...
...

...
HD 10700 50392.762 -0.00435 -2.63
HD 10700 50396.743 0.00115 -2.63
HD 10700 50397.735 0.00325 -2.63

...
...

...
HD 34411 53699.829 0.00075 -1.11
HD 34411 53700.842 0.00265 -1.11
HD 34411 53702.821 -0.00085 -1.11

...
...

...

5.2.3 Targets

The four ESSP stars, as described in Table 5.1, are being observed as part of the EXPRES

100 Earths survey (Brewer et al., 2020). The targets range in activity level as predicted

by log R′HK values. For each target, Table 5.4 gives the number of RV measurements, the
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number of nights where spectra were acquired, and the time baseline for each data set.

Figure 5.3 shows the measured RVs and photometry.

Table 5.4: Amount of Spectroscopic and Photometric Data for ESSP Targets

RVs
HD Num. No. Spec. Nights Start/End Date
101501 45 22 Feb. 10, 2019 - Nov. 26, 2020
26965 114 37 Aug. 20, 2019 - Nov. 27, 2020
10700 174 34 Aug. 15, 2019 - Nov. 27, 2020
34411 188 58 Oct. 8, 2019 - Nov. 27, 2020

Photometry
HD Num. No. Phot. Nights Start/End Date
101501 3290 2113 Apr. 18, 1993 - Jun. 22, 2020
26965 1631 1500 Sep. 9, 1993 - Feb. 20, 2020
10700 1369 1007 Nov. 5, 1996 - Jan. 24, 2020
34411 1214 816 Nov. 25, 2005 - Apr. 3, 2018

HD 101501 is the most chromospherically active (Isaacson & Fischer, 2010, log R′HK=

−4.483) of the four ESSP targets. The EXPRES RVs exhibit an RMS scatter of 4.89 m s−1.

A GP model of this data preconditioned on photometry found a statistical preference for

an activity-only model (Cabot et al., 2021).

HD 26965 is a K1V star with log R′HK= −4.928 (Isaacson & Fischer, 2010) that ex-

hibits an RV RMS scatter of 3.19 m s−1. Previous RV analysis of HD 26965 using HIRES

(Vogt et al., 1994), PFS (Crane et al., 2006), CHIRON (Tokovinin et al., 2013), and HARPS

(Mayor et al., 2003) RV data from 2001 to 2016 revealed a periodic signal of about 42.364

days (Díaz et al., 2018). Additional data from the Dharma Planet Survey, which added

RVs collected from 2014 to 2015, concluded that there exists a 42.38 day periodic signal

from a planet, and that the stellar rotation rate of the star measured from stellar activity in-

dicators is between 39-44.5 days (Ma et al., 2018). Analysis using the complete set of RV

data from the California Legacy Survey (CLS), taken from 1987 through 2020, attributes

the periodicity to stellar signals (Rosenthal et al., 2021).
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Figure 5.3: (Left column) EXPRES radial velocities obtained in 2019 and 2020 and (right
column) several years of APT ground-based differential photometry obtained for the four
ESSP stars: HD 101501, HD 26965, HD 10700, and HD 34411. Both RVs and photometry
time series are relative to the median value subtracted. The photometric observations
were smoothed in 100-day windows to capture long-term trends; the red line shows the
smoothing model. The time intervals of the EXPRES RVs are marked in the right column
of photometry points by gray, vertical lines. The GP interpolation of the photometric data
to the RV timestamps are over plotted as green points.

HD 10700, i.e. τ Ceti, is an older (Brewer et al., 2016, 12.4 Gyr) and chromospheri-

cally quiet (Isaacson & Fischer, 2010, log R′HK= −4.976) star. The EXPRES RVs exhibit an

RMS scatter of 1.8 m s−1 dominated by a five-minute periodic variation that matches what

we would expect from p-modes. Seven planet candidates have been published, though

three of these signals (planet candidates b, e, and d) were later retracted (Tuomi et al.,

2013; Feng et al., 2017). Typically, three to five consecutive EXPRES observations are

taken of τ Ceti. On August 25, 2019 and October 8, 2019, more than twenty consecu-

tive observations were taken, covering a span of approximately 40 minutes, to search for
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p-mode oscillations.

HD 34411 is most similar to the Sun of all four targets; it is a 4.8 Gyr, G0V star

(Brewer et al., 2016; Gaia Collaboration, 2018). The star has low chromospheric activity,

with log R′HK= −5.085 (Isaacson & Fischer, 2010). The EXPRES RVs show an RMS scatter

of 1.78 m s−1.

5.3 Methods

Eleven teams tested sixteen different methods with the goal of isolating out true center-

of-mass shifts. Table 5.5 lists all methods along with variations on each method. The

“Input” column specifies the primary type of provided data that was input into the method,

whether the extracted spectra, the CCF, or the RVs along with activity indicators. The

“Run Time" column gives an estimate of the computational expense of the method by

specifying what the method was run on and the order of magnitude of time it took to run.

Related publications to each method are given where available; otherwise, the name of the

most pertinent author to contact for each method is listed.

A short description of each method is given below including any specifics to the

implementation represented here and data requirements. Similar methods are compared

and contrasted. Longer descriptions of each individual method can be found in latter

sections and the provided appropriate references.

Methods are grouped into subsections according to the type of input data used: the

RVs with global indicators (§5.3.1), the CCFs (§5.3.2), or the extracted (pixel-level) spec-

tra (§5.3.3 and 5.3.4).
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5.3.1 Methods That Use RVs and Classic Activity Indicators as Input

Activity indicators aim to gauge the magnetic activity present on the target star, presence

of activity features, or the expected amplitude of stellar signals. These indicators are global

parameters; one value is determined for each spectrum. One can fit a model relating the

activity indicators and apparent RVs in an attempt to remove or mitigate the effect of stellar

signals on measured RVs. Classically, this was done using a simple linear fit.

We present the results of a classic linear decorrelation with the provided activity in-

dicators to serve as a baseline result. RVs are plotted against the different indicators inde-

pendently and fit to a line as a function of indicator value. The fitted line evaluated at the

value of the different indicators is then subtracted from the RV measurements.

More recent work has developed novel ways of linking indicators to RV measure-

ments and modeling out the stellar component of the RV measurements. Indicator-dependent

methods will only be sensitive to signals that are reflected in the provided indicators; for

example, if the used indicators do not track the effects of oscillation or granulation, then

these methods will not return models sensitive to these effects. Teams who used RVs and

indicators as input were asked to use the provided forward-modeled CBC RVs and the

given indicators.

A Gaussian Process Linear Ordinary Differential Equation (ODE) Maker (GLOM)

developed by the PennState team, is a Julia package that uses a shared, latent Gaussian

Process (GP) to model both RV and indicator time series concurrently. This makes use of

the flexibility of a GP model while also constraining the model with indicator time series to

capture only stellar signal related variations. GLOM can be thought of as a generalization

of the MDGP method described in previous work and implemented in pyaneti (Rajpaul

et al., 2015; Barragán et al., 2019). This method requires dense sampling throughout the

characteristic time scale of the signal being modeled (e.g. the stellar rotation period). It is

utilized for many of the submitted methods here that generate an indicator for the presence
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of stellar signals. More information can be found in Gilbertson et al. (2020) or Section

5.8.1.

Fourier Domain Principal Component Analysis (FDPCA), developed by the Sidera

team, translates RV and indicator time series into the Fourier domain to capture coher-

ences between the different, likely periodic time series regardless of whether they are in

phase. The Fourier series for the RV and indicator time series are run though a princi-

pal component analysis (PCA) to derive activity-indicator-related axes of variation and

the magnitude of this variation. The results presented here were trained on the RV, Hα

emission, and CCF FWHM time series. The model incorporated increasing numbers of

principal components until 95% of the total variation was captured. This method requires

observations to cover the entire phase range of the signal being modeled. Observations

should be dense in phase space, not just time. A more in-depth description can be found

in Section 5.8.2.

The Gaussian Process Regression Network (GPRN) method, developed by the Porto

team, models RVs and indicators through a neural net framework where each node is an

independent GP model and the weights of each node are also determined by a GP model.

While each node and weight can be represented by an independent GP, hyper-parameters

and priors may be shared between models to reduce the number of free parameters. For the

results presented here, one node was defined by a GP with a quasi-periodic kernel while

GPs with squared-exponential kernels were used for the weights with no shared hyper-

parameters. The models were trained on the RV and CCF FWHM time series. The GPRN

method is still being developed; preliminary results are included here. A more in-depth

description can be found in Section 5.8.3.
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5.3.2 Methods That Use the Cross Correlation Function (CCF) as In-

put

The CCF has long been used in endeavors to mitigate the effects of stellar signals. CCFs

are computed by cross correlating a given spectra with a mask tuned to where spectral line

centers are expected to appear. The mask can either be binary (i.e. 1 where there is a line,

0 where not) or incorporate different line widths and window functions.

As this mask is shifted relative to a stellar spectrum, the convolution of the two will

give larger or smaller values depending on how well the mask lines up with the spectral

absorption lines. A perfect alignment of the mask with the bottom of every spectral line

will result in the lowest cross-correlation value. The shift that results in the lowest CCF

point is taken to be the RV shift of the spectrum.

In shifting, the CCF will sample the shape of all the spectral lines included in the

mask, including the wings of these lines. Lines can be weighted differently according to

their depth or their SNR. The resultant CCF therefore provides a sort of weighted average

of all the line shapes in the spectrum. This makes the CCF a powerful tool for capturing

line shape distortions. On the one hand, averaging over all lines in a mask strengthens

the signal of any line shape changes present; on the other, this averaging may blur out the

different changes seen in individual lines.

Four methods used the CCF as input. They differ in their approach to modeling shape

deformations within the CCF and how to separate these from translational shifts that can

be attributed to true center-of-mass motion of the target star from orbiting planets.

The Self-Correlation Analysis of Line Profiles for Extraction of Low-Amplitude Shifts

(SCALPELS) method, submitted by the Andrews and PennState teams, uses PCA to model

the variations in a CCF’s auto-correlation function. Because the auto-correlation function

is intrinsically insensitive to translational differences, SCALPELS is not sensitive to true

shifts in the CCFs. The measured RV time series can then be projected onto the identi-

154



fied principal components to derive and subtract out the shape-driven component of the

measured RV while preserving the shift-driven component. The results presented here use

only the first two principal components to guard against incorporating noise into the model.

SCALPELS operates in the wavelength-domain and as such does not require any additional

information about the star or dense time sampling. Using PCA means the model benefits

from wider ranges of stellar activity states producing a large range of variation within the

CCFs.

SCALPELS uses PCA in a similar way to FDPCA, where the principal components

are used as a new basis with which to construct denoised measured RV shifts due to stellar

signals. SCALPELS uses PCA on the auto-correlation function of the CCFs while the

FDPCA method implements PCA on the Fourier series of the RV and indicator time series.

The SCALPELS+GLOM method is another use of PCA. The amplitudes of the prin-

cipal components for each observation, which describe the magnitude of variation, are

treated as activity indicators and input into GLOM to be co-modeled with the RV measure-

ments. For the results presented here, the latent GP model used the sum of two Matérn 5
2

kernels. This introduction of a GP model introduces relevant data requirements, such as

dense-sampling in time, to the method. More information about both implementations of

SCALPELS can be found in Collier Cameron et al. (2020) as well as Section 5.9.1.

The CCF Prime method, submitted by the OxBridGen team, uses higher order deriva-

tives of a GP modeled reference CCF (here a mean combined CCF) to fit shape changes.

While the first GP derivative is sensitive to translational differences, the second derivative

and above instead model shape changes. These higher-derivatives are used to recreate the

shape-driven component of the measured RVs, which can then be subtracted out. The

CCF Prime method is still being developed; preliminary results are included here. A more

in-depth description of the CCF Prime method can be found in Section 5.9.2.

The FourIEr Phase SpecTrum Analysis (FIESTA) method, submitted by the PennState

team, isolates line shape changes using a Fourier basis with respect to velocity. Horizontal,
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translational differences will manifest as a constant shift at all frequencies in this basis.

Shape-driven shifts can therefore be isolated as frequency-dependent shifts. The results

presented here run a PCA on the derived shifts for each frequency and uses the ampli-

tudes from this PCA as input into GLOM. This is similar to how PCA is used within the

SCALPELS+GLOM framework, which is distinct from the use of PCA in the SCALPELS

or FDPCA methods. FIESTA requires careful normalization of the CCFs for each obser-

vation, as vertical translational differences could be mistaken for a shape change. More

information can be found in Zhao & Tinney (2020) and Section 5.9.3.

The SCALPELS, CCF Prime, and FIESTA methods all implement a change of basis

to separate out the shape- and shift-driven components of the measured RVs. While these

methods are conceptually similar, they make different assumptions on the appropriate ba-

sis and dimensionality of the variations being modeled. High SNR for observations are

more necessary with CCF Prime (for more accurate GP derivatives) and FIESTA (to allow

for incorporating higher frequencies) than SCALPELS, but the use of PCA by SCALPELS

is more dependent upon the assumption that the shape-driven changes are the dominant

source of variation.

The CCF Linear Regression method, submitted by the ML_EPRVs team, uses ma-

chine learning to model variations in the residuals of each CCF as compared to a reference

CCF, constructed by median-combining all CCFs. Differential CCFs are normalized (in

terms of amplitude and overall variance) and then sampled at a small-number of locations

across the velocity range of the CCFs. More observations allow for more sampling lo-

cations. For the results presented here, the CCFs were sampled at four to six locations.

For each observation, an associated weight was fit for these different CCF locations. This

method does not use timing information, and so does not care about the sampling of ob-

servations, but does benefit from more observations.

For all four targets, a slightly more complicated CCF Linear Regression model was

also implemented, wherein the Hα emission value for each observation was included in the

156



model with its own fitted weight parameter to help predict variations due to stellar signals.

For HD 26965, which hosts a proposed planet, a third model that incorporates a weighted

Keplerian was also implemented. More information can be found in de Beurs et al. (2020)

and Section 5.9.4.

All methods attempting to model line shape changes, such as the four described here,

will be helped by data with high resolution. Higher resolution spectra contain more in-

formation about the shape of each spectral line and will therefore more faithfully capture

the shape deformations being modeled. This is true whether the shape changes are being

modeled as averaged in the CCF or in the spectra itself.

5.3.3 Line-by-Line Methods

The remaining methods take the full, extracted spectra as input. Several methods, de-

scribed in this section, use the spectra to determine preferred lines or regions of spectra to

use in deriving RV measurements. Methods that model variation throughout the complete

spectra are described in the following section (§5.3.4).

Three methods focused on carefully picking which lines to include when construct-

ing a CCF. It has recently become clear that spectral lines will respond in different ways to

stellar variation both in terms of behavior and magnitude of response (Davis et al., 2017;

Thompson et al., 2017; Wise et al., 2018; Dumusque, 2018; Cretignier et al., 2020a). Iso-

lating lines that are less swayed by stellar signals or other occluding effects will help in

calculating CCFs and RVs resilient to other variations and ultimately more representative

of true, center-of-mass shifts in the spectra.

The CCF Mask-VALD method, submitted by the PennState team, used line center

information from the Vienna Atomic Line Database (VALD) to vet line blends and tested

a range of CCF mask window widths, where a Gaussian window function was used for all

lines. The optimal cutoffs for distance between line centers and mask window width were
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found empirically by minimizing the RMS of the resultant CCF RVs. More details can be

found in Section 5.10.1

The CCF Mask-BIS and CCF Mask-RV methods, both submitted by the Warwick

team, use correlations with the BIS activity indicator or the provided CCF RVs to vet

lines. RVs for individual lines were found by fitting each line to a Gaussian and using the

mean of this fit as the line center. Lines were excluded if their RVs were found to scatter

greater than 10-15 m s−1 or their RVs were found to be strongly correlated with the BIS

or CCF RV (i.e. the Pearson correlation coefficient is greater than some cutoff, where the

cutoff depends on the specific indicator used and target). The RVs of the remaining lines

are averaged to compute a combined RV for each observation. More details can be found

in Lafarga et al. (2020) and Section 5.10.2.

Note that CCF Mask-RV is not the only method to use the RV as an activity indicator

(see, for example, the discussion of the ResRegGen and ResRegDis methods below). This

use case assumes that all variation in the measured RVs is dominated by stellar signals.

We know that instrument systematics are not the dominant source of error in these data

sets, as seen from EXPRES data of quiet stars (see Figure 5.2). While there are no obvious

planetary signals, this does not preclude planet signals on the order of or smaller than the

stellar signal amplitude adding variation to the RVs.

All three of the above methods fit lines to a Gaussian profile to determine line parameters—

such as line center, width, etc.—or change in line parameters. The provided SELENITE

telluric model was also used in all three cases to remove lines within ∼30 km s−1 of a

telluric feature.

The Geneva team also implemented a line-by-line (LBL) RV analysis. The LBL RVs

were derived relative to a master spectrum using post-processed spectra (Dumusque et al.,

2011b). The provided EXPRES spectra were (1) merged (i.e. all echelle orders were

combined), (2) continuum normalized using RASSINE (Cretignier et al., 2020b), and then

(3) further cleaned of tellurics and first-order morphological variations using YARARA
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(Cretignier et al., 2021). Lines returning a poor fit to the master spectrum or exhibiting

larger scatter than expected from the median RV error were not included in the final com-

bined RV calculation.

PCA was used to de-noise the results at either the spectral level, denoted here as

LBL+PCASpec., or produce a metric of variation at the line-by-line RV level, LBL+PCARV.

At the spectral level, the first three components of a weighted PCA are used to recreate a

denoised representation of the spectra. These de-noised spectra are then used to construct

a master spectrum and derive LBL RVs.

PCA was also run on the LBL RVs themselves to identify variations across all lines

and across all observations. Rather than denoising, here PCA is instead used to determine

the magnitude of variation that is then treated like an activity indicator against which the

combined LBL RVs are decorrelated with a multi-linear regression. LBL RVs derived and

decorrelated using RV-level PCA are described as the LBL+PCARV method.

Both methods can also be combined, which are here represented by the LBL+PCASpec./RV

method. Though both LBL+PCASpec. and LBL+PCARV use PCA, it is important to note

that PCA is used on different data products for the two methods and to different ends.

The difference is similar to the difference between how PCA is utilized in the SCALPELS

method versus the SCALPELS+GLOM method. More details about deriving LBL RVs

and the RASSINE and YARARA methods can be found in Dumusque (2018); Cretig-

nier et al. (2020b, 2021). More information about the LBL+PCASpec., LBL+PCARV,

and LBL+PCASpec./RV implementations represented in this report can be found in Section

5.10.3.

The Pairwise Gaussian Process RV Extraction (PWGP) method, submitted by the

OxBridGen team, breaks the spectrum into chunks and uses GPs to model and align pairs

of chunks. The behavior of each chunk across all observations is used to determine which

areas of the spectrum are more or less sensitive to variation from telluric contamination or

stellar signals. In the limit where each chunk contains one line, which the implementation

159



presented here approaches, the PWGP method can be thought of as an approximate line-

by-line approach. A Matérn 5
2 kernel is used to model and align each chunk. Chunks ex-

hibiting unusually high scatter or strong correlation with activity indicators are excluded.

The RV for each observation is then calculated as a weighted average of the remaining

chunks, where the RV error for each chunk is determined via a MCMC analysis. More

information can be found in Rajpaul et al. (2020) and Section 5.10.4.

For all these methods, there exists a trade off. Increasing the selectivity of lines or

chunks to include will better mitigate the effects of stellar signals and other possible causes

of line shape variation. Using less data, however, will increase the photon noise. These

methods would all benefit from high SNR observations, which decreases the photon noise

that must be contended with. This allows for confident RV estimates from relatively few,

very stable lines.

5.3.4 Methods That Model the Spectra

While the methods described in the previous section treated each line/chunk as indepen-

dent, the below methods model the entire spectra as a whole. Of course, in some ways the

methods of the previous section do take into account information across the whole spectra,

for example when setting cutoffs using all lines or running PCA on all lines.

The Doppler-Constrained Principal Component Analysis (DCPCA) method, submit-

ted by the PennState team, runs PCA on spectra shifted by the best-guess RV and uses

the resultant PCA amplitudes, a measure of the amount of primary variation present in

each exposure, as activity indicators. Though the PCA is run on the spectra, this use case

of PCA is more similar to the LBL+PCARV method (or SCALPELS+GLOM), where the

amplitude of the variation, not the axes of variation (i.e. the principal components), are

the result of interest. To cut down on the noise that gets input into the PCA, only the

spectral regions surrounding lines included in the default ESPRESSO masks used are fed
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into the PCA. These indicators are then either linearly decorrelated against RVs (DCPCA)

or co-modeled with RVs using GLOM (DCPCA+GLOM). More information can be found

in Jones et al. (2017) or Section 5.11.1.

The Hermite-Gaussian Based Radial Velocity (HGRV) method and Stellar Activity

F-statistic for Exoplanet Surveys (SAFE) statistic, submitted by the YaleWI team, simi-

larly uses information from the entire spectrum to derive an activity indicator. The HGRV

method derives RVs by fitting the difference between observed lines and a template spec-

trum to a first-order Hermite-Gaussian function, the scaling of which is directly propor-

tional to the magnitude of shift between the observed and template lines.

The SAFE statistic uses higher order Hermite-Gaussian functions to try and fit for any

remaining variation beyond the bulk shift captured by the first-order Hermite-Gaussian.

From this fit, SAFE infers the possibility that variation from chromospheric variation is

present in the given spectrum. This method assumes spectral lines are approximately

Gaussian in shape and all spectra are appropriately normalized, but carries no require-

ments in terms of cadence of observations or range of activity states sampled. The SAFE

statistic for each observation can be used as an activity indicator. The HGRV+SAFE re-

sults presented here come from co-modeling the provided CBC RVs and derived SAFE

statistics with GLOM. More information can be found about the HGRV and SAFE methods

in Holzer et al. (2020) and Holzer et al. (2021) respectively as well as in Section 5.11.2.

Results for this method are forthcoming.

The Zeeman Least-Squares Deconvolution (ZLSD) method, submitted by the Lien-

hardMortier team, incorporates the effects of magnetic line broadening when modeling

each spectrum. Accounting for this effect when deriving RVs mitigates the chances that

it will lead to a spurious RV measurement. This method also produces a measure of the

magnetic activity on the star at the time of observation, which has been shown to be a

powerful activity indicator (Haywood et al., 2020). A stable LSF and high resolution al-

lows more subtle line broadening effects to become detectable. The ZLSD method is still
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being developed; preliminary results are included here. More information can be found in

Section 5.11.3. Results for this method are forthcoming.

The ResRegGen and ResRegDis methods, both submitted by the CCA team, uses the

residuals of observed spectra to a template spectrum to regress against different housekeep-

ing data—such as activity indicators—and derive the stellar photosphere contribution to

the measured RV shifts. ResRegGen uses a generative framework for which Hα equivalent

width and CBC RVs are used as labels to derive the activity-component of the measured

RVs. ResRegDis, on the other hand, uses a discriminative framework where the full resid-

uals of each observation are used to inform the appropriate correction to the measured

RVs. The discriminative framework is slightly more agnostic to the labels used, meaning

ResRegDis is not as tied to the information available in the activity indicators included in

the model as ResRegGen. Both methods use a linear, first-order model and residuals to a

reference template constructed using wobble (Bedell et al., 2019).

Both ResRegGen and ResRegDis implement a “cross-validation" (CV) framework.

This guards against over-fitting as the model is constructed without information from the

subset of data that the model is then evaluated at. For ResRegDis, each observation is left

out one at a time to construct an independent model. For ResRegGen, eighths of the data

are left out at a time to speed up the computation time. For reference, the “self" test variant

for ResRegGen (ResRegGen Self) is included, wherein all data are used to construct the

model. The ResRegGen and ResRegDis methods are still being developed; preliminary

results are included here. More information about ResRegGen and ResRegDis can be

found in Sections 5.11.4 and 5.11.5 respectively.

5.4 Results

For each method, teams submitted “clean RVs" representing the measured RV shift of the

star cleaned of stellar signals and other modeled variations determined to be separate from
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true center-of-mass shifts. Where directly modeled, the RV signal due to these variations,

which we will refer to as “activity RVs," was also submitted along with any indicators

that the method derived. For some methods, the clean and activity RVs represent different

components of the model and so do not sum to the original RVs provided. The clean RVs

and provided activity RVs from all methods are plotted in Section 5.12 along with their

periodograms.

5.4.1 RV RMS of Method Results

Table 5.6 gives the change in overall and nightly RMS for each method as compared to the

RMS of the provided, uncorrected CBC RVs provided. The nightly RMS, or intra-night

scatter (INS), represents the average scatter over all nights with more than one observation.

Positive ∆RMS values indicate that the method returned a lower RMS than the original.

Negative ∆RMS values means there was more spread in the returned RVs than in the

original provided RVs. Methods are ordered in the same order as described in the Methods

section above (§5.3).
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The final RMSs of the clean RVs for all methods are plotted in Figure 5.4. The height

of each bar as well as its position along the x-axis scales with the overall RMS of the

returned clean RVs. Each bar is mapped to its corresponding method across the x-axis,

along which the methods are ordered by decreasing RMS from left to right.

Each bar is colored by the type of data the method takes in as input, corresponding

Figure 5.4: Final overall RMS of the clean RVs submitted for each of the four targets. The
height and x-position of each bar scales with the final RMS. Bars are colored by the type
of input data used. For each target, the RMS of the original, uncorrected EXPRES CBC
RVs is shown as a black bar with its height emphasized by a horizontal dashed line across
the full plot. The average intra-night scatter of the EXPRES CBC RVs is also marked with
a horizontal dash-dotted line. Methods returning similar RMS values to each other that
cluster together are emphasized via green shading.
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to the break down of methods in Section 5.3 above. Note that here, all methods that use

a sort of activity indicator, classic or newly derived (e.g. amplitudes from PCA, etc.), are

grouped together regardless of the input data needed to derive the indicator used.

The historical method of decorrelating RVs against classic activity indicators, shown

in Figure 5.4 as dark-orange bars, does not produce a significant decrease in RMS. The

decrease is modestly significant for HD 101501, the most active of the targets given.

For each of the four targets, there are one or more clusters of methods returning a

similar RV RMS, which can be seen as overlapping bars in Figure 5.4. For HD 101501,

there is a cluster of methods returning a final RMS of approximately 2.5 m s−1, i.e. a 48%

decrease in RMS. The HD 26965 results exhibits a cluster at 2.7 m s−1 (16% decrease) and

2.3 m s−1 (28% decrease). The HD 10700 (τ Ceti) results cluster around 1.6 m s−1 (13%

decrease). The HD 34411 results cluster at 1.5 m s−1 (15% decrease) and 1.4 m s−1 (22%

decrease). The methods that are returning similar RMS values and forming these clusters

differ in their approach to disentangling stellar signals, and in fact the methods that are

clustered together even differ from target to target.

The self test version of ResRegGen, ResRegGen Self, always returns a lower RMS

than the cross-validation implememtation of ResRegGen. Furthermore, ResRegGen self

is often among the methods returning the lowest RMS value. Given the difference between

the resultant RMS for the self and cross-validation versions of ResRegGen, this is more

a statement of the difference between these two frameworks rather than the ResRegGen

method itself.

Similarly, the use of GLOM to co-model RVs and indicators almost always results in a

lower RV RMS than the alternative (i.e. SCALPELS+GLOM as compared to SCALPELS re-

sults or DCPCA+GLOM as compared to DCPCA results). In some cases, the use of GLOM

across methods returns RVs with a similar RMS (see SCALPELS+GLOM, FIESTA+GLOM,

and DCPCA+GLOM for HD 101501 and likewise FIESTA+GLOM and DCPCA+GLOM

for HD 10700). This suggests that GLOM is a powerful tool for modeling out variation in
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a time series regardless of the indicator(s) it is given.

Methods that operate along very similar principles often return very different RV

RMS results. For instance, despite there being three methods that model the CCF with a

change of basis (i.e. SCALPELS, CCF Prime, and FIESTA) the resultant RVs from these

methods return very different RMS values. The same is true of the different line-by-line

methods (shown as light blue bars in Figure 5.4). While some of the LBL methods do

return similar RV RMS values, there is a large spread in the values returned.

We see here that the different methods do have a notable impact on the resultant RMS

of the clean RVs, yet it is impossible to say from this one-dimensional metric what exactly

is being modeled out by each method. Just because a method is returning a lower RMS

does not necessarily mean it is doing better at mitigating stellar signals specifically. Such

a statement cannot be inferred from the RMS alone.

5.4.2 Comparing Methods

Through the ESSP, all teams were given the same set of EXPRES data to use with their

respective methods and model out stellar signals. This being real data, we do not exactly

know what the expected stellar signals should be for each target. As the data are consis-

tent among all methods, though, we would expect the stellar signal being removed to be

consistent between methods successfully modeling photospheric velocities. The activity

RVs for each method should therefore be correlated with one another.

We perform a pairwise comparison of the activity RVs returned by each method. For

methods that do not naturally derive the RVs due to stellar signals, we approximate these

activity RVs as the RV shift removed, i.e. we take the difference between the provided,

EXPRES CBC RVs and the submitted clean RVs to be the activity RVs. For each pair

of activity RV time series, we use the Pearson correlation coefficient (PCC) to gauge the

strength of correlation between the activity RVs derived by two different methods.
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Figure 5.5 shows markers for each pair of methods colored by the PCC between

the activity RVs each pair of methods returned. The first column of each plot shows the

PCC of each set of activity RVs against the provided EXPRES CBC RVs. A PCC of

> 0.4 with an associated p-value of < 0.05 (square markers in Figure 5.5 is considered

statistically significant, as established by the spread of PCCs returned from comparing

series of randomly generated numbers of the same length as the RV data sets.

Comparisons between two methods that both submitted activity RVs are shown as

filled in markers. Comparisons involving activity RVs that were recreated as the difference

between the provided RVs and submitted clean RVs are not filled in. Only submitted

methods are included; the results from classic linear decorrelation with standard activity

indicators are not shown.

The top of each plot recreates a scaled bar graph of the final RMS of the clean RVs

for each method. These insets are meant to help associate each method with their final

returned clean RV RMS. Methods that returned similar final RMS values, as well as the

relevant correlation markers, are highlighted in shades of green, mirroring the shading in

Figure 5.4.

As expected, most PCCs are positive, but there is little significant correlation. Even

methods returning similar RMS values to one another (i.e. markers close to the diagonal)

are often not deriving activity RVs that are significantly correlated with one another. The

methods returning the most similar RVs (as highlighted via green shading) are correlated

for HD 10700 and HD 34411, but not for HD 26965. HD 101501, the most chormospher-

ically active of the four stars, has the most correlation amongst the activity RVs returned.

Methods returning lower clean RV RMS (i.e. methods closer to the bottom or further

to the right of each subplot) are more likely to have activity RVs significantly correlated

with other methods’. These methods are even more likely to be significantly correlated

with the provided EXPRES CBC RVs (see the first column of each plot). If the derived

activity RVs of these lower-RMS methods are subsuming much of the signal in the pro-
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Figure 5.5: Pairwise comparisons between the activity RVs of all submitted methods.
Each marker represents a pairing; the color of the marker gives the PCC between the
activity RVs of two methods. Methods that did not submit activity RVs (for which the
difference between the original and clean RVs was used instead) are shown as marker
outlines. Significant PCC values (i.e. PCC > 0.4) are shown as squares while a PCC < 0.4
is depicted with a circle. The first column of each plot gives the PCCs with the provided
CBC RVs. The following rows/columns have methods ordered from top to bottom and
left to right by decreasing total RMS, the same as how methods are ordered in Figure 5.4.
At the top of each subplot in green is a scaled bar-graph of the resultant RMS for each
method. As mirrored from Figure 5.4, methods that returned similar final RMS values are
shaded in green along with their associated correlation coefficients.

vided EXPRES RVs, then we would expect to see them show greater correlation with the

provided RVs and all other methods that use the provided RVs as a starting point.
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Variations on a method are nearly always significantly correlated with one another.

Namely, the activity RVs returned by SCALPELS and SCALPELS+GLOM are significantly

correlated for all four targets. The same is true for the three CCF Linear Regression

variations (i.e. CCF LR, CCF LR + Hα, and CCF LR + Keplerian) and the three residual-

regression based methods (i.e. ResRegGen, ResRegGen Self, and ResRegDis).

Variations on line-by-line methods also agree with each other. The results of CCF

Mask-BIS and CCF Mask-RV are always correlated as are the results of LBL+PCASpec.,

LBL+PCARV, and LBL+PCASpec./RV. However, the activity RVs returned by these similar

methods do not correlate strongly with each other. Correlation with the PWGP activity

RVs is particularly troublesome in the case of HD 26965 and HD 10700, where they are

not correlated with the activity RVs returned from any other method.

The results of the DCPCA+GLOM method are often not even correlated with the

results of the DCPCA method despite both being informed by the same indicator. The

DCPCA+GLOM activity RVs in fact rarely exhibit significant correlation with the results

of any other method across all four targets.

5.4.3 Correlation with Indicators

While we do not know exactly what the stellar signal is in these real data sets, we do

have access to activity indicators, both classic and those derived from submitted methods,

that aim to capture the level of magnetic activity, or amplitude of stellar signal, for each

exposure. Of course, we have no assurances that any single indicator is a perfect tracer of

the presence or magnitude of stellar signals. All the same, it is instructive to investigate

whether the returned activity RVs of the various methods are correlated with any indicator.

While not necessary, a correlation may be sufficient to lend interpretability to method

results.

It has been established that activity indicators should not be expected to share a strict
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linear relation with the activity RV as phase differences are liable to blur out any linear

relation (Santos et al., 2014; Collier Cameron et al., 2019). In an attempt to allay this

mismatch, we use the Spearman’s rank correlation coefficient (SCC) to determine the cor-

relation between activity RVs and activity indicators. The SCC gives a measure of the

commensurable monotoncity of two data sets rather their linearity.

Since activity indicators themselves are imperfect, as is our ability to define the exact

relation between indicators and stellar signals, a low SCC between an indicator time series

and activity RV time series is not unexpected. At the same time, the existence of a strong

correlation between indicator and activity RVs is encouraging.

Figure 5.6 shows markers similar to those in the correlation matrices of Figure 5.5, but

here denoting SCC values for indicator/method pairs. The activity RVs from each method

are compared to classic activity indicators S -value, Hα equivalent width, CCF BIS, and

CCF FWHM. Method results are also compared with indicators generated as the result of

one of the submitted methods. For SCALPELS+GLOM, FIESTA, and DCPCA, the first two

PCA amplitudes (denoted PCA1 and PCA2) are included as indicators. For CCF Prime,

the coefficient corresponding to the second derivative term of the linear model serves as

an indicator (see Equation 5.5).

We want to establish whether the activity RVs from a method are significantly corre-

lated with any of the activity indicators more so than the clean RVs returned by the method.

To place the SCCs in context, the SCC for both the clean and activity RVs as compared

with the indicator time series (SCCC and SCCA respectively) are shown connected by a

line for each indicator/method pair. The marker associated with the SCCC is on the left

while the SCCA marker is on the right of each pair. Each marker is vertically offset by their

SCC value, meaning the slope of the connecting line scales with the change in correlation

strength from clean to activity RVs.

Some of the submitted methods are specifically guided by a given indicator. This

relationship is highlighted by purple boxes in Figure 5.6. For example, the ResRegGen
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Figure 5.6: Correlation strength between activity RVs of submitted methods and activity
indicators both classic (top four rows) and derived (bottom seven rows). Similar to Figure
5.5, here the color of each marker denotes the Spearman’s rank correlation coefficient
(SCC) with significant values (i.e. |S CC| > 0.4 ) shown as square markers and constructed
activity RVs (i.e. provided RVs - clean RVs) shown as marker outlines. The first column
in each plot shows the SCC for each indicator time series with the provided EXPRES CBC
RVs. Markers are also shifted vertically by their SCC. For each indicator/method pair, two
markers are given connected by a line; the smaller, left marker in each pair gives the SCC
with the clean RVs (SCCC) while the larger, right marker gives the SCC with the activity
RVs (SCCA). The vertical offset and difference in color between the two markers alludes
to the change in correlation strength. Purple boxes are drawn around indicator/method
pairs where the method in question is directly informed by the given indicator.

results shown here use the Hα equivalent width as a label, and so the Hα equivalent width

and ResRegGen pair of markers has a purple box around it. As the highlighted methods

make use of the indicator in question, there is more reason to expect a strong correlation

between the two, though it is still possible that the exact relation is not captured by an SCC

value.
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Methods returning activity RVs that do exhibit significant correlation with indica-

tor time series by and large do not also return significantly correlated clean RVs, lending

confidence to the measured coorelation with the activity RVs. Clean RVs are rarely cor-

related with indicators, and only ever when the provided EXPRES RVs are themselves

correlated with the indicator in question. The amplitude of the first principal component

from SCALPELS (SCALPELS PCA1) is correlated with the provided EXPRES RVs for all

four targets.

As before, the activity RVs returned for HD 101501 exhibit the most consistent cor-

relation with nearly all indicators. The provided, EXPRES CBC RVs for HD 101501 are

themselves correlated with most indicators. Many of the clean RVs for HD 101501 remain

correlated with indicators. In fact, for certain methods, the clean RVs exhibit significant

SCC values with indicators while the activity RVs do not.

The activity RVs returned by the SCALPELS+GLOM method are significantly corre-

lated with the PCA amplitudes being modeled by GLOM for all four targets. Recall that

SCALPELS+GLOM was also strongly correlated with SCALPELS results from Figure 5.5.

Neither is true for the DCPCA+GLOM results. The results of ResRegGen are correlated

with Hα equivalent width for all targets except HD 26965 while the results of ResRegGen

self are not correlated with Hα equivalent width for any target.

The amount of correlation with classic vs. derived indicators changes from tar-

get to target. For HD 34411, some methods return activity RVs correlated with clas-

sic indicators while the derived indicators result in very few significant correlation. For

HD 10700, on the other hand, the derived indicators tend to show more significant corre-

lations than do classic indicators. The S -Value shows the most correlation with activity

RVs for HD 10700. CCF BIS and CCF FWHM exhibit more significant correlations for

HD 101501 and HD 34411 than for the other two targets.
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5.4.4 HD 26965 Results

One of the benefits of including the HD 26965 data as part of the ESSP was to gain a

deeper understanding of the ∼40 day, periodic signal. This period had previously been

associated with both the stellar rotation rate of the star and with a potential orbiting planet

(Díaz et al., 2018; Ma et al., 2018; Rosenthal et al., 2021).

For each of the submitted methods, we compare the periodogram of the clean RVs

and the activity RVs, as shown in Figure 5.7 in blue and orange respectively. We also in-

clude periodograms of the provided EXPRES RVs and all RVs from the California Legacy

Survey (Rosenthal et al., 2021) in the top row for reference. We focused on the power for

periodicities between 39 and 44.5 days, the proposed stellar rotation rates for HD 26965

(Ma et al., 2018). The maximum power in this period range along with the corresponding

p-value is given in the top-left corner of each subplot.

Methods with more power (within the highlighted period range) in the clean RV pe-

riodogram are shown in blue subplots while methods with more power in the activity RV

periodogram is shown in orange. Four methods either have no significant peaks for those

periods or return similar power in both the clean and activity periodograms.

Six out of twenty methods attribute the ∼40 day period to stellar signals while eleven

of the methods produced clean RVs that still contain the ∼40 day period. Five of the six

methods that believe the signal is due to stellar variations returned five out of the six lowest

RMS values for their clean RVs. As we saw with the lack of correlation between activity

RVs from different methods in Figure 5.5, here we see again that the different methods do

not agree on what the stellar signal is.
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Figure 5.7: Periodograms of clean and activity RVs for HD 26965. The top row shows
the periodogram for the provided EXPRES CBC RVs (left) and over 30 years of RVs from
the California Legacy Survey (CLS) on the right (Rosenthal et al., 2021). Periodograms
of the clean (blue) and activity (orange) RVs are given for all twenty of the methods that
submitted ESSP results for HD 26965. Horizontal dashed and solid blank lines denote
p-values of 0.1 and 0.01 respectively. The proposed period for HD 26965 b, 42.38 days, is
marked by a vertical, dashed blue line while the range given for the stellar rotation rate, 39-
44.5 days, is shaded orange (Ma et al., 2018). The maximum power in this shaded region
for both the clean (C) and activity (A) RV periodogram is given in the top-left corner of
each subplot along with the corresponding p-value of the peak. Methods are ordered left-
to-right and top-to-bottom by the difference between the clean and activity periodogram
peaks. Subplots for methods with a stronger signal with the clean RVs have blue axes, and
orange axes for a stronger periodicity in the activity RVs.

5.5 Summary

Using EXPRES data as a test bed for several different methods, the ESSP is able to make

a direct comparison between the results of twenty-three methods (including method vari-
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ants) for disentangling stellar signals from true center-of-mass shifts. Methods returned

clean RVs, with stellar signals removed, and activity RVs, which capture the variation that

was removed.

The different methods varied in the type of data read in, metric for the presence

of photospheric velocities, and mitigation of these signals once detected. We compared

method results based on the total and nightly RMS of the returned clean RVs, agreement

between activity RVs, and correlation between activity RVs and activity indicators.

5.5.1 Categories of Methods

Methods for disentangling stellar signals operate along three broad lines. Some methods

innovate on the idea of activity indicators and use different models to derive a metric

for the amplitude of the stellar signal present in an observation. Other methods instead

use such indicators and construct models for mapping this amplitude measurement to the

appropriate RV correction.

The last category of method separates the data into components that inform the true

bulk shift of the star and components that add variability. For instance, line-by-line meth-

ods separate variable lines from more stable lines that are assumed to be a better tracer

of the true bulk shift of a star. Many of the methods that model the CCF determine the

shape-driven component of the measured RVs as opposed to the shift-driven component.

Table 5.7 summarizes all submitted methods along these three lines. Variations on

the same method idea are not included. Some methods naturally produce a metric as well

and so operate along more than one of the three lines.
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5.5.2 Method Results

The historical standard of linearly decorrelating RVs against activity indicators rarely

changes the resultant RV RMS significantly. This method of mitigating stellar signals

is not sufficient in an EPRV context.

Most of the submitted methods reduce the RV RMS for all targets. However, no

method is able to completely model out the contribution from stellar signals. EXPRES

data of quiet stars exhibit an RMS of 0.5-0.8 m s−1; no method2 was able to reduce the RV

RMS to less than 1.2 m s−1.

The average intra-night scatter changes very little, but does increase for some meth-

ods. Whether the INS increases or decreases can also change for different targets with the

same method. We do not expect the magnetic field of a star to change on the timescale

of a single night and even less so for consecutive observations taken on the same night.

This means that any signal from magnetically-driven stellar variability should be the same

for all observations taken within a night. Methods that increase the INS may benefit from

taking this information into account.

The activity RVs returned by the different methods exhibit a concerning lack of agree-

ment with one another. All methods were used on the same data set and so should be

capturing the same stellar signal. Of course, different methods may have varying levels of

success in modeling the observed stellar signal or be more/less sensitive to different types

of photospheric velocities. We found that even methods resulting in similar RV RMS

values do not return correlated activity RVs.

This lack of agreement makes it difficult to confidently state what signal is being

modeled and removed by each method to result in the observed RMS reduction. It is also

a demonstration of why RV RMS alone is an incomplete metric for method performance,

2We do not include the results of the ResRegGen Self method as it is not considered to be statistically
rigorous. This result was mainly included as a test of the importance of incorporating cross validation into
models.
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as is fails to establish the nature of what a method is capturing.

This disagreement is further highlighted with the HD 26965 results. Whether or not

HD 26965 hosts a planet changes depending on the method used. Some methods model out

the ∼40 day period as due to photospheric velocities while others attribute that periodicity

to true center-of-mass shifts.

For some methods, the derived activity RVs do exhibit a significant correlation with

activity indicators. While this is an encouraging result that suggests those methods are

in fact disentangling photospheric velocities, it is irresponsible to expect all activity RVs

to correlate with imperfect indicators. Such a correlation is only one small step towards

understanding exactly what signal a method is modeling and whether that signal is truly

due to photospheric velocities or an orbiting planet.

5.6 Discussion

An increasing number of EPRV instruments are already online returning sub-meter-per-

second single-measurement precision (e.g. Pepe et al., 2013; Jurgenson et al., 2016; Pe-

tersburg et al., 2020; Suárez Mascareño et al., 2020; Carmona et al., 2018; Seifahrt et al.,

2018; Gilbert et al., 2018; Schwab et al., 2016a) with many more optical and infrared

spectrographs being commissioned, built, or planned (e.g. Thompson et al., 2016; Bouchy

et al., 2017; Gibson et al., 2018; Szentgyorgyi et al., 2014). The impressive engineering

feat of these different instruments is opening up a new regime of extremely stable and

precise spectroscopic data. However, each of these instruments and the data they take will

have to contend with added RV scatter due to stellar noise unless we can mitigate these

effects to sub-meter-per-second levels. None of the methods presented in this paper were

able to achieve that with the data sets provided.

Though there is no one single method clearly performing the best or any sub-meter-

per-second RMS result, this collection of methods and results brings clarity to the ap-
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proaches and assumptions that define current progress. Here, we will highlight some of

the commonalities between methods to frame the current state-of-the-field. From this,

we derive suggested future directions both for method development and continued data

challenges like this one.

5.6.1 Common Approaches and Assumptions Between Methods

The choice of input data changes the information made available to each method. For

instance, indicator-driven methods will only be able to pick up on stellar signals that are

tracked by the indicators used. Similarly, CCF-based methods will only be able to account

for variations that are present in the CCF. It is interesting to note that none of the submitted

methods made use of the provided photometry.

Both CCF-based methods and methods that use the full spectra can only account for

line shape variations at the level of the resolution of the spectrograph. Higher resolution

data will contain more information about line shape changes. Methods modeling shape

changes may benefit from implementing low-pass filtering tuned to the resolution of the

spectrograph. This would prevent methods from being swayed by higher-frequency varia-

tions than is allowable by the spectrograph resolution and therefore must be due to noise.

The effect of stellar signals is, in all cases, tied to either a classic activity indicator,

shape variations, or increased scatter. It is worth considering if stellar signals may mani-

fest in a way that is not captured by these metrics. We know that indicators are imperfect.

Stellar variation that introduces a shift rather than an asymmetry would currently be com-

pletely missed. Taking increased scatter to be synonymous with stellar variation/activity

may prove a dangerous parallel as we have seen that a reduction in RMS does not neces-

sarily equate with mitigating a stellar RV component.

Many methods assume a large range of activity states or, more specifically, that these

activity states manifest in the data in a large range of ways. Methods that use PCA assume
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that stellar signals are the primary source of variation. Using correlations with indicators

or increased scatter to determine the presence of stellar signals is also helped by having a

large range of activity states sampled.

Template CCFs and spectra are needed for many methods. Methods varied in whether

they used the mean, median, or more advanced modeling (e.g. wobble) to construct this

template. These templates are most often used to highlight variations away from the tem-

plate, which are then attributed to the presence of stellar signals. The template itself

should therefore not carry any significant variations and would ideally be representative

of a quiet CCF/spectrum. Only then can the template be used as a reference to isolate the

effects of stellar signals in each individual CCF. Constructing a mean or median template

CCF/spectrum and using it in this way therefore assumes an even sampling of activity

states that will average out. It would be worthwhile to investigate how dependent method

results are on the template used.

On a similar note, many methods assume the line shape and CCF shape is well-

described by a Gaussian. We see no evidence otherwise with the EXPRES data, for which

great pains were taken to stabilize the instrument LSF across the detector. Were this not

the case, however, any variations from a Gaussian fit could be mistaken for shape changes

due to stellar signals.

Many methods make the assumption that Gaussian processes and principal compo-

nent analysis are good models for stellar signals. Different methods, however, implement

GPs and/or PCA in distinct ways. For instance, GLOM uses GP to model a time series

while the GPRN model uses GPs to define a neural net framework. CCF Prime forms a

basis out of the derivatives of a GP model. In each case, GP is implemented towards dif-

ferent ends and requires different assumptions of the appropriate kernel, hyper parameter

priors, etc.

PCA can be used to construct a variation specific basis or as a measure of the ampli-

tude of variation. Roughly speaking, the distinction can be made based on what aspect of
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the PCA is used. Some methods (e.g. FIESTA, DCPCA, LBL+PCARV, SCALPELS+GLOM)

use just the amplitudes for each component derived from PCA as indicators of varia-

tion and therefore photospheric velocities. Other methods (e.g. FDPCA, SCALPELS,

LBL+PCASpec.) make use of the principal components themselves to denoise spectra or

model the RV shift tied to the variation being modeled by the PCA.

Unless otherwise specified, methods assume true center-of-mass shifts have been re-

moved or that they can be removed. Most methods make use of the derived RVs to align

CCFs/spectra, even while we know these measured RVs are swayed by stellar signals. It

may be worth looking into whether iterating with clean RVs produced by methods given

different results, provided we are confident the corrections are truly removing only stellar

signals.

Methods also operate under the self test framework (i.e. no built-in cross-validation),

meaning all data is used to construct the model, unless otherwise stated. From comparing

the results between ResRegGen and ResRegGen Self, we saw that the ResRegGen Self

method always returned a lower RMS but returned activity RVs that were not even corre-

lated with the activity indicator used to guide the model. This suggests that the ResRegGen

Self model is over-fitting as it contains signals that are not informed by the indicator, some-

thing the cross-validation aspect of ResRegGen guards against.

5.6.2 Future Directions for Methods

While the reduction in RMS for the cleaned RVs of the different methods is encouraging,

as a one-dimensional metric of method performance, it is not clear what exactly is resulting

in this reduced scatter. This is especially worrisome given the lack of agreement between

method results. To progress, methods should be held to a higher level of interpretability.

It is necessary to understand what exactly methods are tracing in order to develop them

further and be confident that potential planetary signals are preserved.
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Interpretability is easier to establish when there is a known ground truth—i.e. what

the stellar signal is expected to be, and what is a true center-of-mass shift. One such test

would be to inject simulated, center-of-mass shifts into real data. Methods that are truly

only picking up on line shape changes and asymmetries will preserve these injected shifts.

The most informative simulations will be shifts of the magnitude similar to the RMS of

the data and at periods near the stellar rotation rate or its harmonics, as these signals will

be the hardest to disentangle.

A kind of ground truth is also known for well-characterized systems, the prime ex-

ample of which is our Sun. The Sun remains one of the few stars for which we know we

can definitively remove all planet shifts. Any remaining variation in the solar spectra will

be from stellar signals or instrumental variation. We are also able to trivially image the

surface of the Sun. With several solar telescopes expected to accompany next-generations

instruments coming on line, simultaneous observations using different instruments along

with photometry and surface maps will help isolate stellar signals from unique instru-

mental variation. Dense sampling and high cadence will additionally be immensely more

achievable for the Sun than with other stars.

At the same time, the field should be careful not to lean on solar data, or simulations

constructed with only solar data, too exclusively. Stellar signals and their spectral mani-

festations may differ for different types of stars. It is necessary to build up the ability to

convincingly simulate or thoroughly characterize stellar signals that arise from a range of

spectral types to ensure that method performance is universal.

All the different metrics being used to trace the presence of stellar signals should be

tried with all the different methods being employed to mitigate the effects of stellar signals

(i.e. as outlined in columns one and two of Table 5.7). Rather than trying to find one,

“best" method as they are currently named, we should instead be testing all combinations

of metrics and mitigation strategies to fully explore the parameter space.

Results of the different separation methods (i.e. methods outlined in column three of
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Table 5.7 should be compared with one another to see if any ground truth can be estab-

lished. For instance, all the line-by-line methods work to identify lines that are more or

less variable. It would be informative to understand which lines the methods agree on and

for which lines they differ. Using physical information about the different lines, e.g. the

line’s element, transition specifics, formation level in the stellar photopshere, etc., can lend

interpretability to these line-by-line methods and other methods that identify variation in

the spectra.

Line-by-line methods have thus far primarily used scatter in returned RV, correlation

with different activity indicators (classic or otherwise), and error of resultant RV to vet

lines or chunks. More advanced methods for vetting may be interesting to explore. For

instance, a periodogram of the RVs returned could be used to vet for time series that show

power at troubling periods, e.g. the stellar rotation rate. Clustering analysis may also

be useful in identifying lines or chunks with similar properties and help link problematic

chunks with one another.

The axes of variation revealed by the different PCA methods could be picking up on

the same variations. Commonalities between methods lends significance to the variations

captured, which could be traced back to effects we would expect from an understanding of

stellar physics. Different methods decomposing the CCF should have some commonalities

even if the basis used varies greatly.

None of the methods analyzed here made use of photometry, though such efforts exist

(e.g. Aigrain et al., 2012; Cabot et al., 2021). As an independent probe of activity on the

stellar surface, photometry has proved useful for insuring the signal being modeled with a

method arises from the star. Incorporating photometric information into more methods will

help with method interpretability by tying the modeled RV signals to a separate measure

of activity. High-precision, simultaneous photometry should be collected for more stars to

this end.
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5.6.3 Future Directions for Data Challenges

Comparing methods with consistent data sets will grow increasingly important as EXPRES

and other next-generation spectrographs continue collecting high-fidelity data. For this

report, we carried out only a few fairly simplistic test using the RMS of submitted RVs and

correlation coefficients. We have seen that RMS is not sufficient to capture exactly what a

model is doing, and we know that activity indicators are neither perfect nor expected to be

linearly correlated with stellar signals.

The field would greatly benefit from the development of more representative compar-

ison metrics that do a more complete job of diagnosing the extent to which methods are

capturing the effects of stellar signals. Invoking a periodicity dependence or expectation

for the effects of stellar signals beyond increasing scatter would be a good start. Establish-

ing a standard suite of assessments for all methods will help place old and new methods in

context.

Future data can serve as the truest validation set for methods trained on the already

provided data. More data will also likely sample a greater range of activity states, resulting

in additional variation in the observed spectra that will help method performance.

The existing data along with any future data can also be used to empirically deter-

mine data requirement limits for the different methods. We can synthetically degrade the

data sets provided to methods to establish how method performance depends on different

aspects of the data sets. For example, in addition to total number of data points, the ca-

dence of the data (e.g. n observations in a month vs. n observations over a year) or nightly

sampling (e.g. three observations per night or only one) can be adjusted. The SNR of the

observations can also easily be degraded or the resolution.

There are currently several data pipelines and methods for extracted spectra and re-

moving instrumental signals (Petersburg et al., 2020; Cretignier et al., 2020b; Zhao et al.,

2021; Cretignier et al., 2020b). It is worth considering the affect different extraction
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pipelines may have on the ability to model out stellar signals. Method performance could

change with the degree to which instrument variations are addressed, wavelength calibra-

tion, whether the echelle orders are merged, continuum normalization, etc.

Similarly, adjusting CCF masks and construction methods is ongoing research, as

we saw with the various CCF Mask methods. The best CCF line list, mask window, and

pipeline may differ for different stars but also for different use cases. For instance, the

method results given here chose quiet lines to return quiet RVs, but there may be a use

case for choosing the identified variable lines instead to construct a CCF mask meant to

highlight the signatures of stellar variability. Though we requested that all CCF methods

use the provided CCFs for this report, exploration is warranted as to how different CCFs

may change the results of these methods.

Currently, no methods or indicators are directly sensitive to granulation or super-

granulation. Granulation persists on the time scale of minutes while super-granulation has

a time-scale of hours to days. We know from MHD simulations that the signatures from

granulation are present in the spectra, but we remain insensitive to this effect with our

current indicators and data.

Before we can disentangle the effect from granulation, we must understand it. This

will require very densely sampled observations at high-enough resolution. “High-enough"

resolution scales with the size of activity feature we are interested in. Given the time-scale

of (super-)granulation, the ideal data set will have very dense sampling over the course of

a night for four to five consecutive nights in order to capture both short-term granulation

features and potentially day-long super-granulation effects.

5.7 Conclusions

Twenty-three different methods (including variations) were tried on EXPRES data to pro-

duce a consistent comparison of method results on data that are representative of extreme-
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precision instruments. The methods tested return lower RMS values than the classic decor-

relation methods in nearly all cases. Though EXPRES data of quiet stars regularly return

RMS values of 0.5-0.8 m s−1, no method is yet reducing the RMS of more chromospher-

ically active stars to sub-meter-per-second levels. Lack of agreement between the signal

being modeled out by different methods makes it difficult to determine whether models are

truly picking up on stellar signals and stellar signals alone.

In order to better mitigate the effects of stellar signals, we must demand greater inter-

pretability of methods. Progress can only be made if we are confident about what signals

a method is modeling out. This will also ensure that other signals, such as those from

planets, will be preserved.

Method results should be compared for well-characterized data sets with known plan-

etary signals, for example solar data or data with injected Keplerian shifts. Continuing to

use consistent data sets will be paramount for understanding the differences between meth-

ods, though there is much room for improving the tools used to compare results.

To address all types of stellar signals, we must collect data that are sensitive to all

the different sources of stellar variation and activity. In particular, oscillations and (super-

)granulation remain poorly characterized; a high-resolution data set of densely sampled

observations over four to five nights is needed to understand this signal and make it possi-

ble to correct for it. Armed with a high quality data set, the ESSP can also be repeated for

degraded cadence, resolution, SNR, etc. as an empirical test of the data quality needed to

achieve EPRV measurements that are clean of stellar signals.

Currently, there is progress being made in mitigating stellar signals but much work

remains to be done. Stable, high-resolution, high-cadence data must be a priority in order

to probe all types of stellar signals. We will not be able to successfully detect Earth-like

planets until photospheric velocities from inherent stellar variability and activity features

can be disentangled to below the 50 cm s−1 level.
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5.8 In-Depth Descriptions of Methods That Use RVs and

Classic Activity Indicators as Input

5.8.1 GLOM

GLOM, developed by members of the PennState Team, is a software package for joint GP

modeling of several parameters, such as Doppler shifts along with one or more activity

indicator time series (Gilbertson et al., 2020). The model is based on the assumption

that all time series can be modelled using a latent variable G(t), which is described by

a Gaussian process and a covariance function γ. The GLOM implementation can also

incorporate a non-zero mean function, mn(t) for each set of variables being modeled.

RVs and activity indicators are then modeled together using the latent GP G(t), its

derivatives, and this mean function. For N total number of parameter time series, the

framework is as follows:

q0(t) = m0(t) + a0,0G(t) + a0,1Ġ(t) + a0,2G̈(t) + ε0(t)

q1(t) = m1(t) + a1,0G(t) + a1,1Ġ(t) + a1,2G̈(t) + ε1(t)

...

qN(t) = mN(t) + aN,0G(t) + aN,1Ġ(t) + aN,2G̈(t) + εN(t)

(5.1)

Each qn(t) is the time series of the variables being modeled. The latent GP is given by

G(t), while the variables an,0, and an,1 where n = 1, ...,N are free parameters. The mean

function is included as mn(t) and εn(t) represents measurement uncertainties.

GP models are a powerful tool for modeling stochastic behavior and therefore very

apt for modeling photospheric velocities. However, they are liable to vacuum up all sig-

nals in a data set, including, for instance, planet signals. By modeling several time series

simultaneous, this method places constraints on the GP model by incorporating the in-
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formation from activity indicators into the GP modeling. This guides the model to only

pick up on signals that can be tied to the provided indicators. Introducing indicators into

the modeling does increases the size of the correlation matrix, making the method more

computationally expensive.

The method requires RVs and corresponding indicator time series for each observa-

tion. Photometry can be used to establish a constraint on the stellar rotation period of the

target. GLOM can be run for different combinations of RV and indicator time series, with

different results depending on the indicator used. GLOM is incorporated as a part of many

later methods that establish different indicators of activity.

The success of the method is dependent on the sampling of the data, which should be

relatively close in time and appropriateness of the chosen GP kernel. It would be better to

have less observations but a denser sampling throughout the characteristic time scale of the

signal being modeled (i.e. the stellar rotation rate). The GP model adopts a quasi-periodic

kernel along with constant offset and jitter terms for each time-series. Some care must be

taken in choosing the priors for the GP hyper-parameters, which will change for different

data sets.

5.8.2 FDPCA

Fourier Domain Principal Component Analysis, submitted by the Sidera team, detects

common patterns in the Fourier coefficients of RV and activity-indicator time series and

uses this to predict the stellar signal component of the RV. Moving to the Fourier domain

allows the method to identify and remove correlated signals even if they are out of phase.

First, the non-uniform Fourier transforms of all activity-indicator time series and RVs

are computed. Next, the activity-indicator Fourier series are scaled so that they have unit

variance in the time domain. The Fourier series for each activity indicator are then stacked
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into a matrix to form a set of explanatory variables for the RV Fourier series:

[
<(F {HαEW}) =(F {HαEW}) <(F {CCF FWHM}) =(F {CCF FWHM}) · · ·

]
(5.2)

where <(F ) and =(F ) are the real and imaginary parts of the Fourier transform, respec-

tively. The matrix is then run through PCA. 3

With activity principal components in hand, the real and imaginary parts of the RV

Fourier series can be regressed onto these principal components. The regression coeffi-

cients are used to determine the contribution of the RV Fourier series that is related to the

activity indicators. This measurement of the chromospheric contribution to the RV Fourier

series can then be inverse transformed back into the time domain to find the stellar signal

correction needed for each RV. Parseval’s theorem is used to recover the correct variance

of the RV activity contribution.

Implementing this method requires RVs and indicators taken at the same time stamps.

The power of this method comes from identifying coherences between the provided indi-

cators and the RV measurements.

In order to use this method to measure a signal, the observations must completely

cover the phase of the signal. For example, to capture the effects of a rotating activity

feature, the observations must completely sample the star’s rotation. It is not just a question

of dense sampling of observations, the observations must cover the entire phase range.

As with all methods that invoke PCA, there is always the question of how many

principal components to incorporate. For the results presented here, principal components

were included until 95% of the total variance was captured.

3FDPCA was implemented with the following python packages: Flatiron Institute’s finufft for non-
uniform FFTs, sklearn.preprocessing.StandardScaler for scaling Fourier series to have unit vari-
ance, sklearn.decomposition.PCA for the PCA, and sklearn.linear_model.LinearRegression
for the linear regression.
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5.8.3 GPRN

The Gaussian Process Regression Network method, submitted by the Porto team, adap-

tively combines GP models to jointly describe variations in the RVs and activity indicators.

The structure of a GPRN is similar to that of an artificial neural network, with indepen-

dent GPs acting as both nodes and weights. Following the work of Wilson et al. (2012), a

GPRN can model a function y(x) as

y(x) = W(x)f(x) + σyz(x). (5.3)

On this network f(x) and W(x) are independent GPs,

f j(x) ∼ GP(0, k f ) for j = 1, ..., q,

Wi j(x) ∼ GP(0, kw) for i = 1, ..., p and j = 1, ..., q,
(5.4)

This framework is capable of accommodating input dependent signal and noise corre-

lations between multiple output variables, input dependent length-scales and amplitudes,

and leads to heavy tailed predictive distributions.

The method requires RVs and activity indicators as inputs, where each RV measure-

ment must have a corresponding activity indicator taken at the same time stamp. For

instance, non-simultaneous photometry could not be used as an indicator. The number of

nodes and weights, as well as the associated co-variance functions, can be decided a priori

or a posteriori based on marginal likelihood comparison.

In principle, each one of the GPs that form a node or weight of the neural network has

its own set of associated hyper-parameters and respective priors. However, it is possible to

share hyper-parameters to reduce the number of free parameters, for example between the

GPs acting as weights. For the results presented here, only one node was assumed defined

by a GP with a quasi-periodic co-variance function. GPs with squared-exponential kernels
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were used for the weights with no shared hyper-parameters.

5.9 In-Depth Descriptions of Methods That Use the CCF

as Input

5.9.1 SCALPELS

SCALPELS, submitted by the Andrews and PennState teams, makes use of autocorrelation

functions to separate out Doppler shifts from shape changes that arise due to stellar signals

(Collier Cameron et al., 2020). The autocorrelation function of either the spectra itself or

its CCF can be used. In the velocity domain, the autocorrelation function is invariant to

translation. Projecting the measured velocity time series onto the principal components

of the autocorrelation function isolates shape changes. Because it is translationally invari-

ant, these projected perturbations can be subtracted from the original velocities with the

dynamical shifts preserved.

Applying the method requires either the spectra or the CCF to derive the autocorre-

lation function as well as the barycentric corrected time stamps, RVs, and RV errors for

each observation. From this, SCALPELS will output velocity variations that are driven

by shape changes. Subtracting out these shape-driven velocities leaves the true dynamical

shifts preserved.

Since SCALPELS operates in the wavelength-domain, it does not require any infor-

mation about the star’s behavior (i.e. rotation rate, pulsation timescale, etc.) nor does it

need very dense sampling of the stellar rotation cycle. Ideally, there should be at least

40 observations of a target over a full range of stellar activity states. Observations taken

at different activity states help the PCA of the autocorrelation function identify variations

due to shape changes.

All SCALPELS results presented here use the autocorrelation function of the provided
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EXPRES CCFs. Results can vary with number of principal components incorporated. The

submissions given here used two principal components to minimize the risk of over-fitting.

The PCA results from SCALPELS were also input into GLOM, where the amplitudes

of the principal components, i.e. the magnitude of the shape variation modeled in the CCF,

were treated as activity indicators and modeled along with the RV shifts. This process was

run using the sum of two Matérn 5
2 kernels for the latent GP model.

5.9.2 CCF Prime

The CCF Prime method, submitted by the OxBridGen team, is an exploratory approach to

decomposing the CCF by linearly modeling variations in each spectra’s CCF. A reference

CCF is first constructed by modeling the mean CCF of all observations using a GP with

a square-exponential kernel. Let this reference CCF be denoted by C(v) where v are the

velocities at which the CCF is sampled. The quotient of each CCF against this reference

CCF is then linearly modeled.

Let ci(v) denote the quotients of each CCF against the reference CCF, i.e. ci(v) =
Ci(v)
C(v) ,

where i indexes over all exposures and Ci(v) is the CCF for exposure i. The linear model

is then defined by the following equation

ci(v) = ai + Σ3
k=0bikC(k)(v) (5.5)

where k corresponds to the different derivatives of C(v) with respect to velocity. In this

case, C(0)(v) = C(v). The parameters ai and bik are the linear parameters of the model.

The first derivative term in equation 5.5 is sensitive to shift-induced variations on

the CCF. The second derivative and higher picks up on shape distortions instead. In this

way, decomposing the CCF variations into different terms separates out changes due to

dynamic shifts versus changes due to differences in shape. Using only derivatives of two

or higher to recreate the time series will result in CCFs with only the variations due to
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shape changes. The effects of these shape changes can then be removed from the time

series. The coefficients of the derivative terms (i.e. k ≥ 2) can also be used as activity

indicators, as they reflect the magnitude of CCF variations due to changes in shape.

This method is conceptually similar to the SCALPELS method described in Section

5.9.1. In this framework, the quotients (ci(v)) of each observation’s CCF over a reference

CCF is modeled whereas in SCALPELS the autocorrelation function of the CCF or spec-

trum is used. For SCALPELS, the autocorrelation function is intrinsically insensitive to

transitional shifts. For CCF Prime, the higher-order (> 2) derivatives are insensitive to

transitional shifts. These higher-order derivatives and their coefficients in the linear model

capture the variation in the CCF and the magnitude of the variation, much as PCA does

for SCALPELS. The coefficients of the linear model can also act as an activity indicator

(much as the amplitudes from the PCA are used for SCALPELS+GLOM). As the CCF

Prime method remains exploratory, more work needs to be done to establish whether the

different derivatives create an orthonormal basis as PCA does.

The CCF Prime method requires only normalized CCFs and is straightforward to

implement. Higher resolution data will contain more information on the line profile dis-

tortions being modeled. Higher SNR observations will give more accurate derivatives.

The observations should sample a broad range of activity states. This ensures that changes

in the CCF due to stellar signals are not reflected in the combined, reference CCF. With

many different manifestations of stellar signals in the range of CCFs, the specific features

of any given activity state will be blurred out.

5.9.3 FIESTA

The FIESTA method, submitted by the PennState team, decomposes the CCF of a spec-

trum into Fourier basis functions (Zhao & Tinney, 2020). The shifts of each of these basis

functions are then calculated for a range of Fourier frequencies. A pure CCF shift will
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manifest as a constant shift in all Fourier frequencies and can easily be subtracted out.

Shape deformations, however, will be frequency dependent. This decomposition there-

fore parameterizes the effects of stellar signals as a series of shifts at each frequency for

each CCF. These frequency-dependent shifts can be used together as a multi-dimensional

activity indicator.

The FIESTA method reads in CCFs for each observation. These CCFs must be prop-

erly normalized as a vertical offset could also produce a frequency-dependent shift that

would be mistaken for a shape deformation. Observations with greater SNR allow for

more frequencies to be incorporated.

The activity indicators produced by FIESTA were post-processed using principal com-

ponent analysis (Zhao et al. in prep) and modeled jointly with dynamical RV shifts using

GLOM (as described in Section 5.8.1).

5.9.4 CCF Linear Regression

The CCF Linear Regression method, submitted by the ML_EPRVs team, makes use of

machine learning to model variations in the CCF that are expected to be due to stellar

signals (de Beurs et al., 2020). Specifically, the machine learning model predicts the dif-

ference between a Gaussian fit to the CCF and the true velocity shift. This prediction can

then be subtracted from the input RVs to give corrected RVs.

This method requires CCFs for each exposure and best fit RVs. The CCFs are first

shifted by the best-fit RVs so there are no translational difference between the different

CCFs. This allows the model to instead focus on shape variations. The model is fed

differential CCFs, i.e. the residuals from subtracting a reference CCF (made by taking

the median of all CCFs) from each CCF. These differential CCFs are normalized by the

median and standard deviation of each point in the CCF across all observations. This

normalization serves to scale the variations so they are roughly equal
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In order to reduce the complexity of the model, only about four to six locations across

the residual CCFs are modeled using a linear regression model. The more observations

there are, the more locations can be used without the risk of over fitting. The base model

for a single CCF and assocaited RV is given by:

RV = w1 ·CCF1 + w2 ·CCF2 + · · · + wv ·CCFv (5.6)

where CCFv is the value of the differential CCF at velocity v and wv is the associated

weight parameter that is fit for.

Two slightly more complicated models were also tested. For all targets, Hα informa-

tion was added to the model to give:

RV = w1 ·CCF1 + w2 ·CCF2 + · · · + wv ·CCFv + b · Hα (5.7)

where Hα is the derived Hα emission for the given exposure and b is the associated weight

that is fit for like the wv weights are. For HD 26965, a fitted Keplerian was also added with

a fitted weight parameter d as follows:

RV = w1 ·CCF1 + w2 ·CCF2 + · · · + wv ·CCFv + b · Hα + d · Keplerian (5.8)

This CCF Linear Regression method does not use timing information. Though it

benefits from more observations, the cadence of these observations does not matter. More

observations allow for more locations in the differential CCFs to be included in the model,

allowing it to potentially pick up on more shape variations. The method can be sensitive

to choice of location across the differential CCFs, which require some fine-tuning.
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5.10 In-Depth Descriptions of Line-by-Line Methods

5.10.1 Generating CCF Masks with VALD Input (CCF Mask-VALD)

The PennState team generated and tested a series of different CCF masks. These masks

aim to generate cleaner CCFs by mitigating the effects of variable lines, blended lines,

telluric contamination, and lines strongly affected by stellar variability and activity.

In generating these CCF masks, first an automatic line-fitting code finds all spectral

lines and fits them to a Gaussian with a linear offset. Fitted line depths are used as mask

weights for each line. Any spectral line with a line center falling withing 30 km s−1 of

features in the provided SELENITE telluric model were removed.

A line list from the Vienna Atomic Line Database (VALD) is used to vet lines too near

each other in order to avoid line blends. For each target, an optimal definition of “too near"

was empirically determined, where any lines with centers closer than a given line blend

cutoff were removed. Cutoffs ranging between 0 to 27 km s−1 in intervals of 3 km s−1 were

tested.

Masks used a Gaussian window function. Different mask widths were tried where

the sigma of the Gaussian window function ranged from one to eight pixels. The optimal

mask window width and line blend cutoff was decided by the combination that gave the

lowest resultant RV RMS.

Generating these masks requires the spectra along with a telluric model. The approxi-

mate RV shift of each spectra as well as the expected line velocity width makes line-fitting

easier. The target star’s stellar temperature and log g are needed for the VALD line list.
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5.10.2 CCF Masks with Less Activity Sensitive Lines(CBC Mask-BIS

and CCF Mask-RV)

The Warwick team constructed weighted, binary masks to remove the contributions from

blended lines or lines particularly sensitive to stellar signals (Lafarga et al., 2020). Spectral

lines are found by identifying relative minima in a high SNR stellar template built by

coadding the EXPRES observations and parametrized by fitting a Gaussian function. This

gives an initial line list with rest wavelengths for all lines. Only lines with widths, depths,

and asymmetry that fall between a specified range (as specified in Lafarga et al. (2020)) are

kept. This ensures that the included lines are clear, sharp lines with no obvious blends. The

provided SELENITE telluric model is used to vet for any lines too near a telluric feature.

RVs are then computed for each individual line in each of the observations. Each line

is fit to a Gaussian. The mean of this Gaussian is taken to be the line center, which is then

compared to the initial line list. Lines are determined to be either sensitive or insensitive

to photospheric velocities based on how correlated they are with a given activity indicator.

The Pearson correlation coefficient is used to gauge the degree of correlation. Lines were

established as in active if they had a coefficient less than 0.2-0.4 and spread in RVs less than

10-15 m s−1 (with the specific cutoff depending on the target). Active lines had correlation

coefficients greater than 0.3-0.5 with RVs or a correlation coefficient less than or equal to

-0.3 in the case of the BIS-guided mask.

Very correlated lines are likely to be strongly affected by stellar signals. If a line’s

RVs exhibit a lot of scatter, it becomes difficult to tell whether a line is truly uncorrelated

with an activity indicator, or if the correlation is merely lost among the scatter. Therefore,

lines that exhibit a large RV scatter are also discarded. The remaining lines that exhibit

little to no correlation with activity indicators are averaged to compute a final RV for each

exposure.

The results presented in this report used either the CCF BIS (CCF Mask-BIS) or the
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CCF RV (CCF Mask-RV) as an indicator to establish what lines are strongly correlated

with stellar signals. Note, the CCF RV and individual line RV are not fully independent,

which could bias the correlations measured. Other than choice of indicator, there is no

specific tuning required for this method.

For this method, the data must be high enough resolution to resolve line blends. The

data should also be stable enough that the dominate variations in lines are due to stellar sig-

nals and not instrumental or other non-astrophysical effects. More observations, especially

over a greater range of activity states, will result in a better measure of correlation.

5.10.3 Spectral Cleaning, Line-by-Line RVs, and PCA (LBL RVs+)

The Geneva team used a combination of spectral cleaning techniques and line-by-line RVs.

The provided spectra were first continuum normalized using RASSINE, an open source

python package that makes use of convex hulls to determine continuum points (Cretignier

et al., 2020b). YARARA was then used to clean the spectra of tellurics and first-order

morphological variations away from a median spectra (Cretignier et al., 2021). Using this

post-processed spectra, a master spectrum and tailored stellar mask (to avoid line blends)

was developed for each star.

Line-by-line RVs were extracted, where RVs for each spectral line are derived relative

to the star-specific master spectrum (Dumusque, 2018). The degree to which lines are

affected by stellar signals or observational systematics varies from line to line, as reflected

in the spread of each line-specific RV across all observations.

PCA was then used to identify variations across all lines in all observations, where

each observation has been corrected by its average RV. The first three principal components

are used to decorrelate the average RV signal for each observation using a multi-linear

regression.

This method is run using merged spectra, where all echelle orders of a spectrum
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have been merged to form one, long spectrum. The basic method described here requires

little tweaking to run, but implementing YARARA can get increasingly more complex if

it is used to do a more tailored job of removing instrumental systematics. Because each

line now stands alone, this analysis does require higher SNR spectra in comparison with

a classic CCF. In order to use YARARA to disentangle telluric features, the input set of

observations must have a good coverage of different barycentric shifts in order to separate

the stellar lines from the telluric lines. For best performance from the PCA, it is ideal if

the observations also cover a wide range of stellar activity states.

This method outputs RVs for every line as well as the principal, non-Dopplerian vari-

ations in these RVs from the PCA. The PCA here is run directly on the line RVs or the

spectra itself rather than chromospheric proxies, such as more classic activity indicators.

The PCA step might be swayed by outliers or the presence of large variation, e.g. hardware

changes, abnormal observing conditions, etc. By using the whole spectrum and treating

each line independently, LBL RVs reveal how individual lines are affected by variations

from either stellar signals or instrument systematics. This gives a better picture of how

these affects are manifesting in the spectra.

There are three flavors of LBL results presented here. The SHELL LBL RV results

uses PCA at the spectral level while the YARARA LBL results implement PCA on the

recovered RVs for each line. Both methods can also be combined by first applying the PCA

decomposition to the spectra, extracting LBL RVs from that spectra, and the decomposing

the resultant LBL RVs with another PCA. These results are included as SHELL+YARARA

LBL RVs.

5.10.4 PWGP

The Pairwise Gaussian Process RV Extraction method, submitted by the OxBridGen team,

uses GPs to model and then align all pairs of spectra with each other (Rajpaul et al.,
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2020). These pairwise RVs can then be combined to establish differential stellar RVs

without having to construct a master template. The pairwise matching is done on a highly

localized basis, i.e. each spectra is broken up into many different “chunks" with each

chunk containing one to a few spectral features.

These smaller chunks can then be treated as independent measures of the spectral

shift, where some chunks will be more affected by stellar variability than others. More

sophisticated implementations are possible, for example modifying the GP modeling of

spectral chunks to model stellar variability in addition to Doppler shifts. For the results

presented in this report, spectral chunks that appeared “contaminated" by stellar variability

were simply not used when computing final RVs.

The PWGP method reads in spectra. A Matérn 5
2 kernel is used to model and align

each chunk, with different hyper-parameters returned for each chunk. This can get quite

computationally expensive, but is helped by the pairwise framework. Though the method

requires little tuning to run, some thought must go into deciding which chunks are consid-

ered “contaminated" and what to do with them.

There are many possible metrics to use in determining which chunks appear to be

contaminated. The chunk itself may exhibit unusually large variation from one exposure to

another, suggesting there are stellar signals or tellurics present in the chunk that is causing

it to return such a large range of RV measurements. Similarly, the RV error of a chunk

may be higher than typical. The RVs of a chunk may also show statistically significant

correlation with an activity indicator, suggesting the RV from that chunk is mostly due to

stellar signals rather than true dynamical shifts.

Tuning the cut offs for which chunks to include requires balancing between the RMS

of the final RVs and the error bars on these measurements. Removing too many chunks

will exclude too much data from the process, thereby increasing the error bars for each RV

measurement. Not removing enough chunks means noise will continue to be incorporated

into the final RV measurements, thereby resulting in greater RV scatter.
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After cutting contaminated chunks, the RV measurements of the remaining chunks

are combined to recover final RVs. The RV from each chunk is inversely weighted by

the scatter in returned RVs for that chunk as determined via a Markov chain Monte Carlo

(MCMC) analysis. By using a MCMC, the resultant weight incorporates both the photon

noise and uncertainty from the GP fit.

Using GP modeling to align spectra should perform better (as compared to non-GP

models) with lower-resolution and lower-SNR spectra. However, having higher SNR/resolution

spectra is needed in the following step of identifying contamination.

This method benefits from using a principled, GP modeling framework for spectral

interpolation and alignment. This precludes the need to generate a master template and

indeed does not require any information about where lines are, what they may look line

(i.e. depth, width, etc.), or how they might change with stellar signals. On the other hand,

the model also can not incorporate any prior knowledge of stellar or telluric contamina-

tion and does not distinguish between different forms of contamination whether stellar,

terrestrial, or instrumental.

5.11 In-Depth Descriptions of Methods That Model the

Spectra

5.11.1 DCPCA

The Doppler-Constrained Principal Components Analysis method, submitted by the PennState

team, identifies the largest variations in RV shifted spectral data using PCA (Jones et al.,

2017). The resultant principal components highlight where the spectra is changing the

most while the corresponding amplitudes of each principal component captures the mag-

nitude of this change for each observation. By feeding the PCA the full spectral format, the

PCA is able to pick up on changes at the pixel level. The principal component amplitudes
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can be used as an activity indicator.

The DCPCA method requires spectra and initial guess RVs for each observation.

Since the observations were provided with wavelengths in a barycentric frame and there

were no hot-Jupiters present, a constant was used for the initial guess. The spectra were

first shifted by the best-fit RV for each observation and then interpolated onto a common

wavelength grid using a GP with a Matérn 5
2 kernel. Some tuning of what parts of the

spectra to include in the PCA will help ensure the PCA is not picking up on variations

from the instrument or tellurics. While the method can be run on the full spectrum, the

results reported here used the areas of spectra near lines specified in different CCF masks

(see Section 5.10.1 for a discussion of the diffrent masks). This helps to avoid telluric

contamination and blended lines.

The number of principal components to incorporate into the analysis can be chosen

in a number of ways. As always, only principal components with significant features (i.e.

are not only noise) should be used. With enough exposures, a classic cross-validation test

can be used to gauge the performance of incorporating different numbers of components.

More observations will likely result in more significant components. A component can

also be tied to photospheric velocities if the amplitudes of the component are correlated

with activity indicators.

Data with a high SNR and high resolution makes variations in the spectra clearer. A

broad wavelength coverage would also help, as it would encompass more changes.

For the results presented in this report, the amplitudes of the first two principal com-

ponents were used as indicators. The publically available ESPRESSO masks (also used to

generate the provided CCFS) were used to determine which segments of the spectra were

fed into the PCA. The RVs were decorrelated against the resultant principal component

amplitudes via both a simple linear regression and using the GLOM framework with the

sum of two Matérn 5
2 kernels.
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5.11.2 HGRV+ SAFE

The Hermite-Gaussian based Radial Velocity method, submitted by the YaleWI team, es-

timates the RV shift of a stellar spectrum using Hermite-Gaussian functions. For each

line, the difference between a template spectrum and a shifted spectrum can be modeled

by scaling a first-degree Hermite-Gaussian function under the assumption that all spectral

lines have shapes that are approximately Gaussian density-shaped. The scaling coefficient

directly maps to the magnitude of the shift.

The Stellar Activity F-Statistic for Exoplanet surveys statistic uses several, higher or-

der Hermite-Gaussian functions (excluding the first-degree Hermite-Gaussian function) to

test for variability in the line shapes that may be attributable to stellar signals. SAFE gives

an F-statistic that can be used in a hypothesis-testing framework with the null hypothe-

sis that all the coefficients of the Hermite-Gaussian terms are zero, which would suggest

that there is not significant line shape variations from photospheric velocities present. The

higher the SAFE statistic value, the less likely that the null hypothesis—that there are no

changes due to stellar signals present—is correct, meaning it is therefore more likely that

the effects of stellar signals are present.

Implementing the HGRV method and deriving the SAFE only requires a set of contin-

uum normalized spectra. SAFE is sensitive to poor normalization, so it is important that

the normalization is carried out well. Since the method does not incorporate time informa-

tion, it is agnostic to the cadence and time coverage of observations. More observations

with higher SNR help to produce a better estimate of a template spectrum, which is used

in the method.

The results presented here represent RVs derived using the HGRV method and cleaned

of contamination from stellar signals using GLOM on the principal component amplitudes

from applying PCA to the Hermite-Gaussian coefficients. Note, that in the use of GLOM,

the method does become sensitive to the cadence of observations. The resultant Hermite-
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Gaussian coefficients from deriving SAFE are used as an activity indicator to constrain a

GP model of the chromospheric contribution present in each RV measurement.

5.11.3 ZLSD

The Zeeman Least-Squares Deconvolution method, submitted by the LienhardMortier

team, uses a mask that takes into account the magnetic sensitivity of each line as estab-

lished by the line’s Landé factor. By taking this Zeeman broadening into account, ZLSD

provides an RV measurement that is less sensitive to magnetic variability and also pro-

duces an estimate of the magnetic field and filling factor of the star at the time of the

observation.

The method takes spectra as input. In order to prepare the spectra for the ZLSD algo-

rithm, the blaze, continuum, telluric, and read-noise information is also needed. Though

the total number of observations does not really matter, the observations should be of high

resolution, high precision, and preferably redder. Higher resolution spectra will allow

more subtle line broadening changes to become detectable. Stabilised data will prevent

variations in the instrumental profile that could be mistaken for Zeeman broadening. As

Zeeman broadening is dependent on wavelength, the effect becomes more pronounced and

therefore more measurable towards the red/infrared.

The resultant RV measurements from this modeling will be less sensitive to the mag-

netic variability that accompanies stellar signals. The estimate of the magnetic field/filling

factor of the star can also be used as an activity indicator. Hemispherically-averaged line-

of-sight magnetic field has been shown with the Sun to be the best activity indicator known

to date (Haywood et al., 2020).

The ZLSD method is still under development and improvements are continuously

being made. The results cited here represent the performance of an early experimental

version which did not capitalize on the full flexibility of the approach. The non-magnetic
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basis of the ZLSD pipeline is presented in Lienhard et al. (2021, in prep.).

5.11.4 ResRegGen

ResRegGen, submitted by the CCA team, takes the residuals of each observed spec-

trum against a shifted template spectrum and regresses these residuals against house-

keeping data, such as the derived RVs, activity indicators, or instrumental measurements.

ResRegGen operates under a generative framework, as in it constructs a model using a

finite number of housekeeping data sets to predict what the residuals will look like. In do-

ing so, ResRegGen establishes what properties of the residuals can be tied to the different

effects being traced by the housekeeping data, be it stellar signals, instrument systematics,

or whatever else it is given. The effects not due to an orbiting planet can then be removed.

For N observations, let F represent all residuals for each pixel of a spectra to a model

while Q represents all housekeeping data being used including the RV. Then we use ∆ fn

to denote the residuals of a given observation n and q̂n to represent the predicted RV

correction for that observation. For a realistic test, for each observation n or validation set,

the ∆ fn residuals should be left out of F. RV corrections can then be calculated as follows:

q̂n = ∆ fn
dF
dQ
·

[
dF
dQ
·

dF
dQ

]−1

(5.9)

where dF
dQ represents the spectral residuals being regressed against the housekeeping data.

This is a first-order regression model. The housekeeping data can vary depending on what

is needed to give a complete, orthogonal representation of the variations being modeled.

Implementing this method requires spectra of each observation and housekeeping

data associated with each spectra. The template spectrum can be generated in any number

of ways. Higher resolution spectra will preserve more evidence of stellar variability in the

residuals. The regression itself is trivial to implement.

By incorporating all the spectral residuals, ResRegGen is able to incorporate infor-
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mation from every pixel of the spectral data. The housekeeping data is then used to try

and predict the behavior of different pixels. Incorporating more data that traces different

effects makes the method more sensitive to different causes of spectral variations. On the

flip side, the method is also incapable of tracing any variation not associated with the pro-

vided housekeeping data. The regression will be poorly constrained if the data used are

not all independent and affect a real change on the residuals being modeled.

The method outputs the magnitude of change to the RVs expected from these varia-

tions, though it is not straightforward to interpret exactly what variations the regression is

picking up on.

For the results presented in this report, a model spectrum was generated using wobble,

a data-driven method for extracting RVs by inferring the underlying spectral components

(Bedell et al., 2019). The CBC RVs and Hα equivalent width are used as housekeeping

data. Expected RV offsets are calculated using a cross-validation framework where an

eighth of the data at a time, where that eighth is left out of the model construction. For

reference, the results where all data is used is given as ResRegGen self results. For both

the self and cross-validation frameworks, all observations are used to construct the model

spectrum with wobble.

5.11.5 ResRegDis

ResRegDis, submitted by the CCA team, is similar to ResRegGen and also regresses spec-

tral residuals to a shifted template against housekeeping data; ResRegDis, however, op-

erates under a discriminative framework as opposed to the generative framework with

ResRegGen. With a discriminative framework, ResRegDis uses the residuals to predict

the housekeeping data. The result is a prediction of the magnitude of RV shift due to

observation-specific spectral variations (as captured in the residuals to a spectral model).

As with ResRegGen, let F represent the array of all spectral residuals, ∆ fn the resid-
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uals for a given observation n, and Q be the array of RVs acting a labels. The predicted

RV correction for each observation, q̂n, can then be calculated

q̂n = ∆ fn ·
(
FT F + αI

)−1
FT Q (5.10)

where α represents an opportunity to introduce expected amount of information, for ex-

ample uncertainties on the spectral residuals or spectral resolution.

The inputs, implementation, and output for the ResRegDis method is the same as

for the ResRegGen method described above. After acquiring the residuals to a template

spectra and associated RVs for each spectra, the method takes seconds to run. The only

housekeeping data used for ResRegDis are the CBC RVs for each exposure.

The discriminative framework is more agnostic about precisely what housekeeping

data is included. The regression itself works to construct an orthogonal transformation

that can be mapped onto the derived RVs. This framework is more appropriate in the

regime where the spectra is varying in more ways than can be captured by the provided

housekeeping data. Since it is not clear whether known activity indicators trace all pos-

sible spectral variations due to stellar signals, the discriminative framework may be more

appropriate for disentangling photospheric velocities from true center-of-mass shifts.

In truth, there is a latent model that produces both the housekeeping data and the

spectral variations, namely the activity and intrinsic variability of the target stars. Both

the generative and discriminative frameworks move between the products of this latent

model, just in different directions. Both the ResRegGen and ResRegDis methods are

ongoing work; the results presented here are an initial implementation of the two methods.
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5.12 Submitted RVs of All Methods

The following section show the submitted RVs, both clean and activity RVs where avail-

able, as well as their periodograms. Given the large nature of the figures, their content is

described here in the text.

The top-right plot shows the originally provided EXPRES RVs (first column) along

with the periodogram (second column) in black and the periodogram of the time sampling

in green. The rest of the rows show the submitted clean RVs in blue. Each figure is labeled

by the team and method name.

The subsequent column shows a periodogram of the clean RV in blue. If provided,

the periodogram of submitted activity RVs are also shown in orange. A significance level

of p-value = 0.01 is shown as a horizontal, black line across the periodograms. A p-value

of 0.1 is shown as a dashed black line. Axes with the words “No Submission" are shown

for methods still awaiting submissions.
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Figure 5.8: Submitted results for HD 101501. For each periodogram, p-values of 0.01 and
0.01 are shown as horizontal solid and dashed black lines respectively.
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Figure 5.9: Submitted results for HD 26965.
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Figure 5.10: Submitted results for HD 10700.
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Figure 5.11: Submitted results for HD 34411.

214



5.13 Acknowledgements

These results made use of the Lowell Discovery Telescope at Lowell Observatory. Low-

ell is a private, non-profit institution dedicated to astrophysical research and public ap-

preciation of astronomy and operates the LDT in partnership with Boston University,

the University of Maryland, the University of Toledo, Northern Arizona University and

Yale University. DAF acknowledges support for the design and construction of EXPRES

from NSF MRI-1429365, NSF ATI-1509436 and Yale University. DAF gratefully ac-

knowledges support to carry out this research from NSF 2009528, NSF 1616086, NASA

80NSSC18K0443, the Heising-Simons Foundation, and an anonymous donor in the Yale

alumni community. This work was supported by a grant from the Simons Foundation

(675601 and EBF). G. W. H. acknowledges long-term support from NASA, NSF, Ten-

nessee State University, and the State of Tennessee through its Centers of Excellence

program. LLZ gratefully acknowledges support from the NSF GRFP under Grant No.

DGE1122492. RMR acknowledges support from the Yale Center for Astronomy & Astro-

physics (YCAA) Prize Postdoctoral Fellowship.

5.13.1 Facilities

LDT, TSU:AST

215



Chapter 6

Conclusion

This dissertation has demonstrated the need for higher-precision radial-velocity measure-

ments and explores both the data analysis techniques and spectral modeling needed to

achieve this standard. Extremely precise RVs will detect a population of lower-mass plan-

ets that we know exist from population statistics and begin to characterize these plan-

ets by providing mass estimates. EPRV measurements will also inform the dynamics of

multi-planet systems and star-planet alignment, which will help guide planet formation

and migration theories.

Sub-meter-per-second RV precision will enable a deeper understanding of exoplanet

composition and histories, but will require carefully stabilized instrumentation, high-fidelity

data pipelines, and innovative methods for disentangling photospheric velocities from the

true signals of planets.

6.1 Summary

Previous RV standards with measurement precision on the order of 0.8-1 m s−1 are not

sufficient for finding low-mass, Earth-like planets (Zhao et al., 2018). Chapter 2 analyzed

over a decade of RV measurements from HARPS, UVES, and CHIRON taken of α CenA,

B, and Proxima Centauri, the three closest stars to our Sun. Even with years of data
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of these bright, well characterized stars, we found that there could persist undiscovered

planets in the habitable zone with M sin(i) up to 53 M⊕for α CenA, 8.4 M⊕for α CenB,

and 0.47 M⊕for Proxima Centauri. Simply adding more data of the same quality will not

significantly push down detection limits; we need more stable, better understood data.

Next-generation spectrographs, like EXPRES, have opened up a new regime of hard-

ware stability and resolution. To remain sensitive to the small signals targeted by EPRV

work, the raw data from these highly-stabilized instruments demand high-fidelity extrac-

tion pipelines. These pipelines must not add any extraneous variations themselves, and

additionally should be used as an opportunity to account for any variations in the raw data

(Petersburg et al., 2020).

Excalibur’s hierarchical framework gives an example of using the data itself to learn

about variations in the instrument. Excalibur utilizes all calibration images to construct

a model of the accessible calibration space of an instrument and de-noise line positions

(Zhao et al., 2021). With EXPRES data, excalibur reduced the overall RMS of RV data sets

for all targets tested by 0.2-0.5 m s−1. Implementing data-driven methods for extracting

data produces more stable spectra and ultimately more precise RVs.

The resultant spectra must be carefully modeled in order to return true, center-of-mass

velocities due to orbiting planets that are not swayed by the effects of photospheric veloc-

ities from stellar variability and activity. Many methods have been developed throughout

the years to disentangle true shifts from these stellar signals. The EXPRES Stellar Signals

Project (ESSP) provides the first direct comparison of these different methods on a con-

sistent set of real data representative of next-generation instrumentation. This analysis is

ongoing work.

Nineteen different methods were submitted that implemented a variety of techniques.

The presence of stellar signals or variation in the spectra was gauged using classic indica-

tors, spread in returned RVs or fit parameters, principal component analysis, etc. Different

methods also had their own ways of removing the effects of these stellar signals, such
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as removing identified sources of noise at the cause of greater bias, co-modeling activity

metrics and RVs using Gaussian processes, down weighting areas giving more scatter, etc.

Method performance was evaluated based on final and nightly RMS as well as agree-

ment between methods. There was no one clear method or approach that obviously and

consistently performed the best. Methods most consistently returning the lowest RV RMS

values tended to use the full spectra as input and/or flexible statistical models such as

Gaussian processes or principal component analysis to pick up on variations. All tested

methods generally performed better than the classic linear decorrelation method. The low-

est final RV RMS returned by any method was 1.2 m s−1 on the quietest target. Progress

is being made in the field, but more work, greater interpretability of methods, and high

cadence data is needed to reduce RV RMS down-to sub-meter-per-second levels.

6.2 Discussion

The need for and promise of EPRV measurements has spurred the genesis of many highly

stabilized instruments with the goal of 30-50 cm s−1 RV precision. This new generation

of instruments will be able to produce a growing set of high-fidelity data as they begin

collecting data over the time baselines needed to detect planets with RV and probe a range

of activity states of target stars.

Many of these new instruments are accompanied by solar telescopes that will collect

high SNR, densely sampled, daily data of the Sun. This solar data will allow for more

direct comparisons between instruments and provide a good test set for disentangling solar

photospheric velocities. The observations from every one of these different instruments

will all have to be held up to a high standard of careful data analysis and modeling of

stellar signals.

In the regime of EPRV measurements, data extraction must move towards a frame-

work where the pipeline is utilized as an opportunity to account for even small instabilities
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in the raw data. All exposures from an instrument contain information about the system-

atic instrumental effects that change how light is projected onto the detector and read out

into raw counts. Excalibur makes use of this information via a hierarchical framework. It

uses the set of all calibration images to construct the space of achievable calibration states

of an instrument, i.e. the complete space in which the instrument can and does vary. This

analysis uses the data itself to learn about how changes to the hardware is affecting the

resultant data. Implementing it on other, similarly calibrated EPRV instruments would be

trivial and help reduce a source of red-noise that would otherwise permeate all exposures.

The changes in calibration state identified by excalibur can be traced back to hardware

variations. For example, when implementing excalibur on EXPRES data, we used PCA to

reduce the dimensionality of the calibration space. The amplitude of the first principal

component closely traced the optical bench temperature. The shape of the components

themselves also contain some vertical structure across the detector, which may suggest

defects related to optical elements prior to the cross-dispersion prisms.

The hierarchical framework of excalibur was able to pick up on these changes, which

were then corrected for through the flexibility of implementing a non-parametric pixel-

to-wavelength model. Future work fully understanding these correlations with hardware

properties will make the results of excalibur more interpretable. This could in turn help

diagnose sources of variability in the instrument hardware.

Excalibur can be expanded to work on different instruments. Many next-generation

spectrographs will make use of a simultaneous reference fiber (sim. fiber), which projects

a set of calibration lines onto a different set of pixels during science exposures. Though not

currently handled by excalibur, the idea can easily be adapted to incorporate simultaneous

calibration information. The information from this sim. fiber can similarly be used to char-

acterize the calibration state of the instrument and, in constructing the wavelength solution,

used to pinpoint the spectrograph’s current calibration state through forward modeling.

Preliminary results show that 2D information in the raw data, for example the vertical

219



trace position of the separate echelle orders on the detector, similarly contains information

about the calibration state of the spectrograph. Hardware variations affect the projection of

light onto the detector in all dimensions, not just the dispersion direction that is typically

assessed as a part of wavelength calibration. By characterizing the variations at the 2D

level, we introduce a new source of calibration information. If this information can be

derived simply from the raw data itself, this will effectively provide every spectrograph

with a source of “simultaneous reference" for free.

Using the calibration data itself to characterize instrument variations could poten-

tially carry use cases for any instrument, not just EPRV spectrographs. The hierarchical

framework of excalibur is applicable to any instrument exhibiting only low-dimensional

variation regardless of the amplitude of this variation. In fact, most instruments are ex-

pected to vary in a low-dimensional space given the limited degrees of freedom available

to physical systems. By introducing statistically principled modeling techniques to data

pipelines, extracting spectra from raw data becomes an opportunity to account for varia-

tions in the data and recover more confident measurements.

Well characterized, precise data is required if we hope to model the subtle line-shape

variations that arise from photospheric velocities. The effects of these stellar variations are

known to change in both character and amplitude for different spectral lines. They will

be difficult to tease out if there are also instrumental or pipeline variations changing the

spectra. Stable data is needed to model stellar signals. High-resolution data helps to better

characterize line shape changes.

Apparent RV shifts from photospheric velocities are now the largest source of error

in EPRV work. We have seen that the classic method of linearly decorrelating against a

standard set of activity indicators is not effective in the regime of sub-meter-per-second

percision. More advanced methods that have recently been developed are performing

better, but still not reaching sub-meter-per-second precision. The EXPRES Stellar Signals

Project (ESSP) made it possible to benchmark the current state of the field in disentangling
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stellar signals and make recommendations for next steps.

It is important to start rendering methods for disentangling stellar signals more inter-

pretable. We found that principal component analysis and Gaussian process models are

helpful for identifying the presence of activity and returning lower RMS, but these analy-

sis methods are famously un-interpretable and prone to over fitting. Though the methods

using these techniques performed well, we could only speculate as to why. This specula-

tion was made all the more difficult by the lack of agreement between methods modeling

the same data. In order to truly understand what is working and what is not, we must un-

derstand what exactly the different methods are modeling and how this is being corrected

for.

One way to build interpretability is to use data sets where we believe we know the

proverbial “answer at the back of the book," i.e. what stellar signals are expected and what

magnitude of true, center-of-mass shifts. Next steps include simulating data with injected

RV shifts, so we know what center-of-mass shifts we expect to find in the resultant cleaned

RVs. This would provide a test of whether methods are over fitting and correcting for true

shifts as well as stellar signals. True shifts with amplitudes near the RMS of the data set

and periods near the stellar rotation rate or its harmonics will be the hardest to disentangle.

The true shifts must be carefully simulated so as to not introduce any spurious changes or

artifacts, for example shifting telluric lines along with stellar lines.

A more realistic test could use data of a well-characterized star system where we

believe we know what stellar signals and true shifts to expect. Of course, this test will only

be as useful as the star is well-characterized. The best characterized star will always remain

our Sun. Most next-generation spectrographs will be accompanied by a solar telescope;

the EXPRES solar telescope has already collected almost a year of solar data. The Sun is

only just now coming out of a quiet phase. In the next few years, the community will be

able to build up a repertoire of high-precision, solar spectra exhibiting stellar signals that

will provide a good test bed for different methods.
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We must be careful, however, to not become overly reliant on modeling Solar sig-

nals. We saw with the ESSP results that the greatest agreement between methods returning

similar RV RMS values occurred in the case of HD 34411, a very quiet star, but the most

Sun-like of the four targets. Solar data from HARPS or SOAP simulations, constructed of

resolved NSO observations of the quiet Sun and a Sun spot, have long been the standard

for testing methods that aim to disentangle stellar signals. It is necessary to build the abil-

ity to convincingly simulate or thoroughly characterize the stellar signals that arise from a

range of stellar types to ensure that method performance is universal.

A better understanding of how to disentangle stellar signals will come from forming

collaborations between different methods. Different methods used different metrics to

gauge the presence of activity. A variety of techniques were then used to mitigate the

perceived signal from stellar variability. These two steps were often independent of one

another. Different metrics should be tried with different techniques to fully explore the

parameter space of current methods correcting stellar signals.

We will learn more about how stellar variability is affecting spectra by comparing

line-by-line method results with one another. Three separate teams explored different

methods for identifying quiet vs. active lines with EXPRES data as part of the ESSP. It

would be worthwhile to see for which lines these methods agreed and where they differed.

Were there lines that all methods agreed are quiet or active? Is there are reason for why

methods disagree where they do? The categorization of lines as quiet or active could

potentially be linked to what we understand of the atomic transitions that produce each

line. Lines may also behave differently according to their depth, which inversely correlates

to the depth at which the line forms in the star’s photosphere (Cretignier et al., 2020a).

Several methods used PCA to identify variations in the data, both in the CCF (SCALPELS)

and in the spectra (DCPCA, SHELL LBL). It would be interesting to compare the resultant

PCA decompositions from the different methods. Similar PCA components or amplitudes

may suggest that the different methods are picking up on a similar source of variation. The
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PCA decomposition could then be rendered interpretable if this variation can be traced

back to a signal we would expect to see from stellar variation.

Currently, no method or indicator is directly sensitive to the variation contributed

by stellar pulsations or granulation. The effects of these variations occur on minute to

day-long time scales. Though MHD simulations have shown that the signatures of these

processes should exist in spectra, the currently available observations are likely not sensi-

tive to these changes. The short time scale and small spatial size of granulations requires

very dense sampling over the course of several nights and high resolution to measure. The

community should work towards collecting an ideal data set for detecting the effects of

these oft-ignored contributions to stellar signals. Once we are able to characterize the

effects of these variations, it will be easier to account for them.

We need to better understand the data requirements for disentangling stellar signals.

Removing the contribution for photospheric velocities is essential to being able to measure

true Doppler shifts from low-mass planets. It is only worthwhile to collect data of high

enough quality for which it is possible to model out stellar signals. An initial test would

be to take the EXPRES data provided for the ESSP and reduce the cadence/total number

of observations, SNR, and resolution, etc. of the data set one at a time. Methods can be

tested on the reduced data sets to gauge method performance on data of different quality.

This will allow us to empirically figure out when methods break and give estimates of the

type of data that must be collected if we hope to use it to model out stellar signals and

open up the possibility of detecting planets.

6.3 Conclusion

Enabling EPRV measurements will shed light on low-mass planet compositions, inform

planet formation, and constrain migration theories. Working towards this new regime of

measurement precision has emphasized error sources that we did not have to care about be-
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fore and revealed new sources of error that we did not know about. To measure a signal at

the sub-meter-per-second level changes the acceptable standards for everything, from the

stability and optical design of the instrument to how the resultant data is extracted and cal-

ibrated. Disentagling stellar signals at the level of tens of cm s−1 has become paramount.

Since the installation of EXPRES and ESPRESSO in 2017, more precision spectro-

graphs have gone online and more are planned through at least 2022 that will aim to col-

lect high-precision spectra in the optical/infrared at night and stare at the Sun during the

day. TESS and CHEOPS continue to collect light curves revealing planet candidates that

will need confirmation and mass measurements. Upcoming missions, like JWST and the

Roman Space Telescope, as well as mission concepts, such as LUVOIR and HabEx, are

building science campaigns that will necessitate RV characterization to determine good

planet candidates for atmospheric characterization.

EPRV is still a relatively new field, but it is growing and it is needed. As with any new

field, here at the beginning we are first learning of more problems, and the work lies in

finding solutions within this completely new regime of measurement. The work presented

in this thesis showcases only the beginning of the push towards EPRV measurements.

Progress has been made via more advance data pipelines and an assessment of the state

of the field on addressing stellar signals. Progress will continue to be made, ever pushing

detection limits lower and revealing more about how planets exist.
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