
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Fall 10-1-2021

Practicality of Quantum Random Access Memory Practicality of Quantum Random Access Memory

Connor Hann
Yale University Graduate School of Arts and Sciences, chann1127@gmail.com

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Hann, Connor, "Practicality of Quantum Random Access Memory" (2021). Yale Graduate School of Arts
and Sciences Dissertations. 346.
https://elischolar.library.yale.edu/gsas_dissertations/346

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/346?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Practicality of Quantum Random Access Memory

Connor T. Hann

2021

Quantum computers are expected to revolutionize the world of computing, but major

challenges remain to be addressed before this potential can be realized. One such

challenge is the so-called data-input bottleneck: Even though quantum computers

can quickly solve certain problems by rapidly analyzing large data sets, it can be

difficult to load this data into a quantum computer in the first place. In order to

quickly load large data sets into quantum states, a highly-specialized device called

a Quantum Random Access Memory (QRAM) is required. Building a large-scale

QRAM is a daunting engineering challenge, however, and concerns about QRAM’s

practicality cast doubt on many potential quantum computing applications.

In this thesis, I consider the practical challenges associated with constructing a

large-scale QRAM and describe how several of these challenges can be addressed.

I first show that QRAM is surprisingly resilient to decoherence, such that data

can be reliably loaded even in the presence of realistic noise. Then, I propose a

hardware-efficient error suppression scheme that can further improve QRAM’s relia-

bility without incurring substantial additional overhead, in contrast to conventional

quantum error-correction approaches. Finally, I propose experimental implementa-

tions of QRAM for hybrid quantum acoustic systems. The proposed architectures

are naturally hardware-efficient and scalable, thanks to the compactness and high

coherence of acoustic modes. Taken together, the results in this thesis both pave the

way for small-scale, near-term experimental demonstrations of QRAM and improve

the reliability and scalability of QRAM in the long term.

Practicality of Quantum Random Access Memory

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Connor T. Hann

Dissertation Director: Liang Jiang, Steven M. Girvin

December, 2021

Copyright © 2021 by Connor T. Hann

All rights reserved.

ii

Contents

1 Introduction 1

1.1 Quantum computing . 1

1.2 The data-input bottleneck . 3

1.3 Quantum random access memory (focus of this thesis) 3

1.4 Summary of main results and thesis organization 5

2 Quantum random access memory 7

2.1 Quantum oracles . 7

2.1.1 The query model . 7

2.1.2 The versatility of data-lookup oracles 11

2.1.3 Oracles in context: use in quantum algorithms 19

2.2 QRAM: an architecture for implementing quantum oracles 31

2.2.1 Quantum routers . 32

2.2.2 Fanout QRAM . 33

2.2.3 Bucket-brigade QRAM . 37

2.2.4 QROM and hybrid architectures 41

2.3 Practical challenges . 43

2.3.1 High quantum hardware cost 44

2.3.2 Decoherence, error correction, and fault tolerance 45

2.3.3 Long-range interactions . 46

iii

2.3.4 Fair comparisons with classical hardware 47

3 Noise resilience of the bucket-brigade QRAM 49

3.1 Prior studies of noise in QRAM . 52

3.1.1 Effects of noise on the fanout QRAM 52

3.1.2 Effects of noise on the bucket-brigade QRAM 54

3.2 Noise resilience of the bucket-brigade QRAM 57

3.2.1 Intuition . 57

3.2.2 Proof of noise resilience . 58

3.2.3 Classical simulation of noisy QRAM circuits 68

3.3 Implications of QRAM’s noise resilience 72

3.3.1 Noise resilience without inactive routers 72

3.3.2 Noise resilience of hybrid architectures 78

3.3.3 Resilience to logical errors in error-corrected QRAM 81

3.4 Conclusions and Outlook . 84

4 Hardware-efficient error suppression 87

4.1 Motivation and background . 88

4.1.1 Practical challenges with error-corrected QRAM 89

4.1.2 Error symmetrization . 90

4.2 A general scheme for hardware-efficient error suppression 99

4.2.1 A simple example . 100

4.2.2 General error-suppression scheme 108

4.2.3 Numerical demonstrations . 116

4.2.4 Comparison with error symmetrization 118

4.3 Hardware-efficient error suppression applied to QRAM 119

4.3.1 Effective QRAM channel . 120

4.3.2 Infidelity of QRAM with error suppression 125

iv

4.3.3 Failure probability of QRAM error suppression 131

4.3.4 Numerical demonstrations . 132

4.4 Conclusions and Outlook . 133

5 Quantum acoustic implementations of QRAM 137

5.1 Recent experimental progress in quantum acoustics 138

5.2 Quantum computing with acoustics, approach 1: multimode Hamilto-

nian engineering . 140

5.2.1 Hamiltonian engineering in multimode cQAD 141

5.2.2 Frequency selectivity . 144

5.2.3 Estimates of achievable coupling rates 150

5.2.4 Estimates of gate fidelities . 158

5.3 Quantum computing with acoustics, approach 2: stabilized cat qubits 162

5.3.1 Review of cat qubits . 163

5.3.2 Stabilized cat qubits in multimode cQAD 170

5.3.3 Multiplexed stabilization of cat qubits 179

5.3.4 Sources of crosstalk . 184

5.3.5 Crosstalk mitigation: filtering 188

5.3.6 Crosstalk mitigation: mode frequency optimization 195

5.4 Hardware-efficient QRAM architectures with quantum acoustics . . . 197

5.4.1 Constructing quantum routers from acoustic modes 198

5.4.2 A cQAD QRAM implementation 202

5.5 Conclusions and Outlook . 203

A Copying classical data to the bus 204

B Effective operator formalism 208

v

List of Figures

1.1 Typical quantum-computing workflow. A classical description of the

problem is specified, and this classical data is input into a quantum

processor. Then, a quantum algorithm is run, and measurements are

performed to extract the desired result. 2

2.1 Classical and quantum data-lookup oracles. Both the classical (a) and

quantum (b) oracles provide access to a classical data vector x =

(x0, . . . , xN−1). For a classical oracle, the input and output of a query

are both classical numbers, while for a quantum oracle, the input and

output of a query are both quantum states. 8

2.2 Geometric interpretation of the Grover operator (adapted from Ref. [21]).

The Grover operator is a product of two reflections: a reflection along

|good〉, followed by a reflection about |ψ〉. These reflections act as

rotations within the plane spanned by |good〉 and |bad〉. 25

vi

2.3 Quantum router. (a) Schematic of a quantum router. The router

directs an incident qubit |b〉 at its top port out of either the left or

right output ports conditioned on the state |a〉 of the router. When

|a〉 = |0〉 (|1〉), the incident qubit leaves out of the left (right) port. (b)

Example of a quantum circuit that implements the routing operation

using two controlled-SWAP gates, one conditioned on the control being

|0〉 (open circle) and the other conditioned on the control being |1〉

(filled circle). 32

2.4 Fanout QRAM. Each address qubit controls the states of all routers

within the corresponding level of the binary tree. A bus qubit injected

at the top node then follows the path (blue) to the specified memory

element. 33

2.5 Fanout QRAM circuit for N = 8. The bus and address registers are

indicated by rails at the top of the diagram, and the routers are indi-

cated by the rails below. For each router shown on the left, there are

three rails: one for the router’s internal state, and two for the router’s

two output modes. All qubits comprising the routers are initialized to

|0〉. The path of the bus is highlighted in blue for the case where the

three address qubits are initialized to |i〉 = |101〉. The action of the xi

gates in the middle of the circuit is defined in Fig. 2.6. 35

2.6 Data-copying circuit. A Z gate is applied to the qubit conditioned on

the value of xi. 36

2.7 Bucket-brigade QRAM, utilizing routers with three sates: wait |W 〉,

route left |0〉, and route right |1〉. The address qubits themselves are

routed into the tree, carving out a path to the memory. 37

vii

2.8 Bucket-brigade QRAM circuit for N = 8. The bus and address regis-

ters are indicated by rails at the top of the diagram, and the routers

are indicated by the rails below. For each router shown on the left,

there are three rails: one for the router’s internal state, and two for the

router’s two output modes. All qubits comprising the routers are ini-

tialized to |W 〉. The path of the bus is highlighted in blue for the case

where the three address qubits are initialized to |i〉 = |101〉. To com-

plete the query, operations U †2 and U †1 must subsequently be applied,

but we omit them here for clarity. 39

2.9 QROM circuit. The circuit implements operation (2.63) by iterating

over all N possible states of the address register. The j-th gate flips

the state of the bus qubit if the address register (Add.) is in state |j〉

and xj = 1, otherwise the gate acts trivially. 42

2.10 Hybrid circuit. All M = 2m possible states of the first m address

qubits are iterated over sequentially, as in QROM. Conditioned on

these qubits, the remaining address qubits are used to query an (N/M)-

cell classical memory via QRAM. In the circuit shown, logN = 4 and

m = 2. The boxes labelled QRAM implement (2.63), using either

the fanout or bucket-brigade architecture. At the j-th iteration (j ∈

[1,M]), the data elements {x[(j−1)N/M], . . . , x[j(N/M)−1]} are queried by

the QRAM. Only the first two iterations are shown. The circuit depth

is O(M logN), and the circuit uses O(N/M + logN) qubits, which

includes the O(N/M) ancillary qubits required by the QRAM (not

shown). 43

viii

3.1 Conceptual picture of noise resilience. Each ket represents the state

of the QRAM when a different memory element is queried, with the

superposition of kets representing a superposition of queries to different

elements. When a router r suffers an error (red lightning bolt), it

corrupts only the subset of queries where r is active (indicated by

thick red kets); other queries in the superposition succeed regardless.

Because most routers are only active in a small fraction of queries,

most queries succeed and the total infidelity is low. 58

3.2 Error configurations. (a) Example composite Kraus operator Kc(t).

The single-router Kraus operators Kc(r,t) comprising the tensor product

Kc(t) are arranged geometrically according to the routers on which

they act. Branches of the tree are classified as either good or bad

according to the locations of the errors Km>0. (b) Query to an element

k 6∈ g(c). Routers are labelled with their ideal, error-free states, and

routers outlined in red suffer errors. Because one of the active routers

suffers an error, the query is liable to fail. 61

3.3 Error propagation. (a,b) Constrained propagation during queries to

elements ∈ g(c). The error in the leftmost router can propagate upward

into the left output of the router indicated by the dashed box. The

circuits on the left show that the error does not propagate further,

regardless of whether the router is inactive (a) or active (b). In the

circuit diagrams, red boxes denote errors Km>0, and the red arrows

indicate how the error propagates (i.e. how the error transforms under

conjugation by the routing operation). (c) Error propagation is not

constrained during queries to elements 6∈ g(c). Note that the state of

the router dictates how the error propagates in these examples. . . . 62

ix

3.4 Favorable error scaling. For a variety of error channels, the query infi-

delity (black dots) is calculated numerically and plotted as a function

of the tree depth logN (note the logarithmic scaling on both axes).

The region defined by the upper bound (3.27) is shown in gray in each

plot. Plotted infidelities are averages over many randomly generated

binary data sets {x0, . . . xN−1}. Each such data set is generated by ran-

domly choosing each xi to be 0 or 1 with equal probability. Error bars

are smaller than the dot size. The error rate for all plots is ε = 10−4. 70

3.5 Error propagation with two-level routers. (a) A query to memory ele-

ment j ∈ g(c), with an error Km>0 applied to the red-outlined router.

The circuit on the left shows how the error propagates through the

router indicated by the dashed box. In this case, the error does not

propagate into branch j. (b) A query to a different memory element

i ∈ g(c). In this case, the error propagates upward into branch j, in

contrast to the situation in (a). 73

3.6 Favorable error scaling with two-level routers. For a variety of error

channels, the query infidelity (black dots) is calculated numerically and

plotted as a function of the tree depth logN . Linear fits for each data

set are shown as dashed lines, with the corresponding slopes given on

each plot. Fits are performed only on data points with logN ≥ 3

so that the slopes are not skewed by finite-size effects at small logN .

Slopes ≤ 3 are consistent with the scaling argument in the text. The

error rate for all plots is ε = 10−4. 77

4.1 Error-suppression scheme of Ref. [117]. A collection of M quantum

computers perform a the same computation in parallel (indicated by

the blank boxes). The parallel computations are interspersed by re-

peated projections onto S. 94

x

4.2 Quantum circuit for realizing a projection on the subspace S. 95

4.3 A minimal error-suppression circuit. The circuit uses M = 2 applica-

tions of the channel U to suppress the infidelity of the output state ρψ

by a factor of 1/2 (for applicable channels). 101

4.4 General error suppression circuit. The circuit uses M applications of

the channel U to suppress the infidelity of the output state ρψ by a

factor of 1/M (for applicable channels). 109

4.5 Infidelity (a) and failure probability (b) of the general error-suppression

scheme for various noise channels. Red dots indicate exact numerical

results (performed by enumerating all possible quantum trajectories),

while solid lines correspond to the analytical expressions derived in

Section 4.2.2. Note that logM = 0 (equivalently, M = 1) corresponds

to the case where no error suppression is used, for which 1 − F = p

and Pfail = 0. 117

xi

4.6 Queries with constrained error propagation. The circuit illustrates how

the address and bus qubits can be injected into the QRAM when the

input state is |ψ〉, without allowing errors to propagate back when

the input state is |φ〉 = |ψ⊥〉. When the address and bus registers

are initialized in |ψ⊥〉, the first gate in the circuit flips the control

qubit from |1〉 to |0〉. All of the controlled-SWAP gates in the circuit

then act trivially, so errors from the QRAM cannot propagate back to

the address and bus registers. An example error and its subsequent

propagation are illustrated by the red boxes labelled E. The address

and bus registers can be error corrected in order ensure that they are

not themselves subject to errors. Errors from the QRAM can then

propagate to logical errors (denoted EL) on the “input” rail, but these

logical errors do not propagate to the other logical qubits provided the

controlled-SWAP gates are implemented fault tolerantly. 123

4.7 Error suppression applied to QRAM. (a) Query infidelity. We plot

log2(1−F) as a function of log2(M), where F denotes effective QRAM

query fidelity obtained via error suppression. The solid lines indicate

linear fits, and the fitted slopes of -1.00, -0.97, -1.00 demonstrating

good agreement with the expected 1/M suppression. (b) Failure prob-

ability. The failure probabilities for all channels appear to approach

constants, consistent with the expectation that Pfail = O(p) indepen-

dent of M . 133

5.1 Multimode cQAD. A nonlinear superconducting circuit (red) is piezo-

electrically coupled to (a) a bulk acoustic wave resonator, (b) a surface

acoustic wave resonator, or (c) an array of phononic crystal resonators. 140

xii

5.2 Phonon-phonon gates. SWAP: Applying two drives with ω2 − ω1 =

ωB − ωA creates an effective coupling between modes A and B. CZ:

Applying a single drive with ω1 = ωA + ωB − ωC creates an effective

three-mode coupling between modes A, B, and C. Frequency shifts

of strongly hybridized modes (dark blue) can enable selective coupling

when the modes are otherwise uniformly spaced (dashed lines denote

uniform spacing). See Section 5.2.2 for further details. 142

5.3 Sets of (a) uniformly and (b) nonuniformly spaced modes. (c,d) The

frequency differences between successive modes are plotted to illustrate

the behavior of νj,j+1. (c) For uniformly spaced modes, νj,j+1 is con-

stant. (d) For nonuniformly spaced modes, νj,j+1 varies on the scale of

∆ν. 144

xiii

5.4 Nonuniform mode spacing. (a) External mode hybridization. The

coupling between phonons and an external mode causes strongly hy-

bridized modes (dark blue) to deviate from the otherwise uniform spac-

ing (dashed lines). The arrows show examples of how this nonunifor-

mity gives rise to nondegenerate resonance conditions: modes A and

B can be coupled by the applying drives indicated by solid arrows,

while modes A, B, and C can be coupled by applying the drive in-

dicated by the dashed arrow. (b) Frequency differences shrink signif-

icantly within a bandwidth D of the external mode. (c) Two mode

families. Simultaneously coupling the transmon to two mode families

(blue, green) enables selective two-mode coupling between modes from

different families. Selectivity is only guaranteed in a finite region S,

and an example of such a region is highlighted in (d). The use of an

external mode C enables selective three-mode coupling. (e) Compos-

ite resonator. Nonuniform mode spacing in composite resonators arises

due to partial reflections at the interface(s). For example, with a single

interface, a simple transfer matrix treatment [183] reveals that the FSR

is periodically modulated, as in (f). Selective three-mode coupling can

be enabled by restricting the transmon phonon-coupling bandwidth

(regions with negligible coupling are shaded in gray), or by using an

external mode as in (c). 147

xiv

5.5 SAW and BAW devices with engineered nonuniformity. (a) The modes

of a SAW resonator are coupled to both a transmon and a copla-

nar waveguide (CPW) resonator. Hybridization with the resonator

mode creates nonuniformity. (b) Mode frequencies of the device in (a).

The CPW resonator mode and the phonon mode with which it most

strongly hybridizes are shown in dark blue. (c) A 3D transmon cou-

ples to both a microwave cavity mode and to phonon modes from two

BAW resonators with different FSRs (the difference is engineered by

reducing the thickness of the substrate under one of the transducers).

(d) Mode frequencies of the device in (c). 149

5.6 Comparison of the coupling rate expressions with numerical Floquet

calculations. (a), (b) Coupling rates g
(1,2)
v plotted as a function of

drive strength. (c), (d) Coupling rates plotted as a function of the

phonon mode detuning δA. The uncorrected coupling rates exhibit

two resonant peaks, at δA = 0 and δA + ν = δB = 0, corresponding

to resonant processes where phononic excitations in modes A or B are

converted to transmon excitations. Because of the AC Stark shift, these

peaks are red-shifted in both the numerical Floquet calculation and the

corrected expressions. The additional resonant peaks in the numeri-

cal calculation correspond to multiphoton resonances where phononic

excitations are converted to transmon excitations by exchanging an

integer number of photons between the two drive fields [180]. It is

important to carefully avoid these peaks in the experiments. Parame-

ters for all plots: gk/2π = 10MHz, δA/2π = 100MHz, ν/2π = 10MHz,

∆ν = ν/10. In order to account for the AC Stark shift, we also specify

α/2π = 150MHz, and we take δ1/2π = 1GHz in the calculation of g
(1)
v .

In (c), ξ1,2 = 0.17, and in (d) ξ1 = 0.27. 157

xv

5.7 Comparison of direct and virtual operations. (a,b) log10(1 − F) for

the direct and virtual SWAP operations, respectively. The couplings

are optimized subject to constraints (gd ∈ [0, g], constraints on gv are

discussed in Section 5.2.3). (c) Comparison of direct and virtual SWAP

operations. The log ratio of the infidelities is plotted, with the virtual

operations attaining higher fidelities in the blue region. (d,e) Log10

infidelity for the direct and virtual CZ operations. (f) Comparison of

CZ operations. For reference, the symbols { ,�,N,�,F} respectively

denote the decoherence rates κ (phonon) and γ (transmon) measured in

Refs. [150], [152], [158], [154], and [155]. Note, however, that the plots

are generated using typical parameter values, not specific values from

any one experiment. Parameters: g/2π = 10MHz, δ/2π = 100MHz,

ν/2π = 10MHz, and ∆ν/2π = 1MHz. 161

5.8 Multimode cQAD cat-qubit architecture (adapted from Ref. [125]).

(a) Unit cell. A collection of phononic resonators couples to a reservoir

that consists of a nonlinear buffer mode, filter, and waveguide. This

single unit cell may be represented schematically as in (b) and tiled in

one or two dimensions as in (c) in order to scale. 171

xvi

5.9 Multiplexed stabilization and crosstalk mitigation. (a) Frequency mul-

tiplexing. Because the desired couplings (g2a
2
nb
†ei∆it+H.c.) are detuned

by different amounts, photons lost to the environment via the buffer

have different frequencies. When the corresponding emitted photons

(green lines) are spectrally well resolved, |∆n − ∆m| � 4|α|2κ2, the

modes are stabilized independently. Dissipation associated with pho-

ton emissions at frequencies inside the filter passband (yellow box) is

strong, while dissipation associated with emission at frequencies out-

side the passband is suppressed. (b),(c) Crosstalk suppression. Red

lines in (b) denote photon emission frequencies associated with various

correlated errors, calculated for the specific phonon mode frequencies

plotted in (c). The mode frequencies are deliberately chosen so that all

emissions associated with correlated errors occur at frequencies outside

the filter passband (no red lines fall in the yellow box). In other words,

Eqs. (5.61) and (5.62) are simultaneously satisfied for any choices of the

indices that lead to nontrivial errors in the cat qubits. See Section 5.3.3

for further details. 175

xvii

5.10 Multiplexed stabilization. (a) Comparison of stabilization for ∆n = 0

and |∆n−∆m| � 4|α|2κ2. Wigner plots are shown of two storage modes

after evolution under the master equation ρ̇ = −i[H, ρ] + κbD[b], with

H given by (5.68). The storage modes are initialized in a product state

|β1〉 |β2〉 that does not lie in the code space but which is a steady state

of (5.73). Thus, when ∆n = 0 (left plots), the evolution is (approxi-

mately) trivial. The left two plots thus also serve as Wigner plots of

the initial state |β1〉 |β2〉. However, when |∆1 − ∆2| � 4|α|2κ2 (right

plots), the system evolves to the code space, defined here by α =
√

2.

(b) Validity of approximating Eq. (5.73) by Eq. (5.75). Master equa-

tions (5.73,5.75) are simulated (with decoherence added to each mode

via the dissipators κ1D[a] and κ1D[a†a]), and the expectation value

of 1 − Pc is computed once the system reaches its steady state. Here

Pc denotes the projector onto the cat code space, and the subscripts

“actual” and “ideal” denote expectation with respect to the steady

states of (5.73) and (5.75), respectively. The ratio of expectations,

plotted on the vertical axis, quantifies the relative increase in popula-

tion outside the code space. A ratio ∼ 1 indicates the approximation

works well. Parameters are chosen from the ranges |α|2 ∈ [1, 4] and

|∆1 −∆2|/κ2 ∈ [5, 100]. 180

xviii

5.11 Suppression of Type I errors. (a) Plots of κeff(M) as a function of the

detuning, δ, of the unwanted term. (b) Master equation simulations.

The system is initialized with a single excitation in the storage mode

and evolved according to the dynamics ρ̇ = −i[(g2ab
†eiδt + H.c.) +

Hbuffer+filter, ρ] + D[L(3)](ρ). These dynamics are analogous to those

generated by H(3) and L(3); in both cases the unwanted term induces

losses at rates κeff(M). Simulation results are indicated by open circles,

and the analytical expressions for κeff(M) are plotted as solid lines.

Parameters: α =
√

2, κc/g2 = 10, J/g2 = 5. For (b), δ = 4J , as

indicated by the dashed line in (a). 189

5.12 Suppression of Type II errors. (a) Plots of γeff(M) as a function of the

detuning, δ1 − δ2, of the effective Hamiltonian. (b) Master equation

simulations. The storage mode is initialized in the even parity cat state

and evolved according to the dynamics ρ̇ = −i[H̄(4), ρ] + D[L(4)](ρ).

Simulation results are indicated by open circles, and the analytical

expressions for γeff(M) are plotted as solid lines. Parameters: α =
√

2, κc/g2 = 10, J/g2 = 5. Rather than specify values for g and δ1,2,

we simply fix χeff(M)/g2 = 0.2. For (b), δ = 3J , as indicated by the

dashed line in (a). 194

5.13 Optimized mode frequencies. (a) Plot of the optimized frequencies of

the five phonon modes. (b) Emitted photon detunings. Red dashed

(solid) lines indicate photons emitted via parity-non-preserving Type I

(Type II) processes. The yellow box covers the region [−50, 50] (2π ×

MHz), representing a bandpass filter with center frequency ωb and a

4J = 2π× 100 MHz passband. The fact that no red lines lie inside the

yellow box indicates that all Type I and II processes are sufficiently far

detuned so as to be suppressed by the filter. 197

xix

5.14 A controlled-SWAP gate can be implemented using a combination of

beamsplitter and phase-shift operations [211]. 198

5.15 A cQAD quantum router. The router consists of four acoustic qubits,

illustrated schematically in (a). These qubits are equipped with a

quantum routing operation, which can be implemented using either of

the circuits in (b) or (c). The circuit in (c) uses one fewer controlled-

SWAP gate, which may be advantageous for near-term demonstrations. 200

5.16 A qutrit-based cQAD quantum router. The router consists of four

acoustic qutrits, each composed of two acoustic qubits, as illustrated

schematically in (a). The routing operation can be implemented with

the circuit shown in (b). 201

5.17 A cQAD QRAM. Each box denotes a single quantum router, with the

outputs of routers at one level of the tree acting as inputs to the routers

at the next level down. 202

A.1 Circuits for copying classical data. (a) Two-level circuit. The bus

qubit is encoded within a physical two-level system and initialized in

|+〉. A Z gate flips the bus to |−〉 conditioned on the classical data.

(b) Three-level circuit. The bus qubit is encoded within a two-level

subspace of a physical three-level system and initialized in |0〉. The X̃

gate (see text) flips the bus to |1〉 conditioned on the classical data. (c)

Query circuit for QRAM initialized in an arbitrary state. The circuits

assumes three-level routers, so the bus is initialized in |0〉 and circuit

(b) is employed within each QRAM block to copy data to the bus.

An analogous circuit can be constructed for two-level routers. The

ancillary qubits comprising the QRAM’s routers (not shown) can be

initialized in an arbitrary state. 205

xx

List of Tables

3.1 Infidelity scalings of QRAM architectures. N denotes the size of the

classical memory being queried, and bucket-brigade is abbreviated as

BB. The first three architectures have circuit depth O(logN) and re-

quire O(N) qubits. For the hybrid architectures, M ≤ N is a tun-

able parameter that determines the circuit depth, O(M logN), and

the number of qubits, O(N/M + logN). 51

3.2 Algorithm categorization. Algorithms are sorted based on how the

size of the classical memory, N , and the number of queries, Q, scale

with the number of qubits, n. When N = exp(n), QRAM is the

only suitable architecture, assuming poly(n) query times are required.

When Q = poly(n) quantum error correction may not be required,

depending on the physical error rates. For the examples in the last

two rows, Q also depends on the particular algorithm used and the

desired precision; we assume these are chosen such that Q = poly(n).

We omit the case of N = poly(n) and Q = exp(n), for which the query

complexity is exponential in the problem size. 85

4.1 Summary of the error-suppression scheme of Ref. [117]. Though the

infidelity decreases with M , the failure probability and hardware over-

head both increase linearly with M . 99

xxi

4.2 Comparison of our error-suppression scheme with that of Ref. [117].

Both schemes provide a 1/M suppression of the infidelity, but our

scheme offers improvements in failure probability and overhead. . . . 119

5.1 Catalog of terms in the Hamiltonian (5.14). Summations run over all

drives and all modes, including the transmon mode q, for which λq = 1

and δq = 0. 152

xxii

Acknowledgements

First, I would like thank my advisors, Liang Jiang and Steve Girvin. Both Liang and

Steve have been incredible mentors to me over the last five years. When I started as

a graduate student, I hardly knew anything about the fields of quantum information

and quantum computing, but Liang and Steve were always incredibly patient and

provided me with excellent guidance. I really appreciated the freedom that they

afforded to me to pursue my own interests and the encouragement they provided

along the way. I always left our meetings feeling excited about the research ahead.

I would also like to thank my other two committee members, Shruti Puri and Rob

Schoelkopf. Shruti has been so incredibly generous in taking time to teach me about

everything from cat qubits, to error correction, to quantum algorithms, and it was

always enjoyable puzzling over problems together. Similarly, it was a great privilege

to be able to work so closely with an experimental group like Rob’s, and I’m grateful

for all that Rob taught me about circuit QED and effective academic writing. I count

myself as extremely fortunate to have been able to work so closely with both Shruti

and Rob over the course of my PhD.

I want to thank all of my friends and collaborators at the Yale Quantum Institute,

the University of Chicago, and the AWS Center for Quantum Computing. All of these

communities have been so welcoming and supportive, and it was a pleasure to learn

from and collaborate with such amazing groups of people. I also want to thank the

administrators at each of these institutes for all that they do to create such wonderful

xxiii

communities.

Finally, I want to thank my friends and family. My friends at Yale and beyond

have made the past five years memorable and enjoyable, and my parents and sisters

always supported and encouraged me. I couldn’t have done this without the love and

support of my fiancé, Emily, and this thesis is dedicated to her.

xxiv

Chapter 1

Introduction

1.1 Quantum computing

Quantum computers are devices that exploit quantum phenomena—such as superpo-

sition, entanglement, and interference—in order to perform computations. In prin-

ciple, these quantum effects can be leveraged to solve certain problems much faster

than is possible with conventional classical computers. For example, Shor’s quantum

factoring algorithm can factor large integers exponentially faster than the best-known

classical algorithms [1]. The presumption that factoring large numbers is difficult un-

derlies many modern-day cryptography schemes, including RSA encryption [2], so

quantum computers are poised to have a significant impact on the field of cryptogra-

phy as a result [3]. Similarly, quantum computers can be programmed to simulate the

dynamics of other quantum systems, with simulation times exponentially faster than

what is achievable classically [4]. The ability to efficiently simulate large quantum

systems would be transformative for the fields of chemistry, physics, and materials

science [5]. There exist numerous other examples of quantum algorithms that provide

speedups over their classical counterparts [6].

Fig. 1.1 illustrates a typical workflow for solving some computational problem

1

0.1244 7.5423 0.0007

2.1003 0.1846 0.0001

5.9233 0.1245 1.0261

Classical data
e.g. molecule description,

system Hamiltonian

Quantum algorithm
e.g. phase estimation

. . .

. . .

. . .

. . .

. .
 .

Classical output
e.g. energy spectrum

. .
 .Data input Measurement

Figure 1.1: Typical quantum-computing workflow. A classical description of the problem
is specified, and this classical data is input into a quantum processor. Then, a quantum
algorithm is run, and measurements are performed to extract the desired result.

with a quantum computer. The problem-solving process beings with some classical

data that constitutes a description of the problem to be solved. This data is fed

into a quantum computer, where it serves as the input to an appropriate quantum

algorithm. The quantum algorithm is executed, and finally the system is measured

in order to extract a classical output that encodes the solution to the problem.

As an example, suppose that we wish to calculate the ground state energy of some

complicated quantum system, such as an interacting many-body system or molecule.

We begin by first constructing a classical description of this system. We enumerate

the interactions between the various particles and their strengths, or, more generally,

we write down the system’s Hamiltonian. Next, this classical data is loaded into the

quantum processor and used as input to the quantum phase estimation algorithm [7–

9]. This algorithm can calculate the ground state energy in a time that scales only

polynomially with the system size1, in contrast to the exponential time required by

classical algorithms. After the algorithm has been run, the solution to the problem—

the ground state energy—is encoded in the state of the quantum processor. We

extract this solution by measuring the qubits that comprise the processor.

1. This assumes the ability to efficiently prepare the system in a state that has a large overlap
with the ground state—a non-trivial assumption.

2

1.2 The data-input bottleneck

In practice, the process of loading classical data into a quantum processor can some-

times be quite difficult, a problem referred to as the data-input bottleneck. For

example, there could be a very large amount of data to load, as is frequently the

case in quantum algorithms for machine learning [10]. Alternatively, the quantum

algorithm might require that the data is presented in a very particular form, e.g.,

encoded in the amplitudes of a quantum state (see Chapter 2).

Frequently, this input bottleneck problem is abstracted away by invoking a quan-

tum oracle [11–13]. An oracle is a theoretical device that makes the input data

accessible to the quantum computer in a suitable way, but the mechanism by which

the oracle enables this access—how the oracle actually operates—is left unspecified.

This abstraction can be quite useful, for example, when analyzing the complexity of

quantum algorithms [12].

If quantum computers are to be used to solve problems faster than their classi-

cal counterparts, however, it is crucial that we specify how to implement every step

of problem-solving process (Fig. 1.1). In particular, the question of how data is to

be loaded into the quantum processor must be explicitly addressed. Indeed, any

quantum algorithms that obtain speedups with the aid of abstract oracles are neces-

sarily incomplete; an implementation of the requisite oracles is required to apply the

algorithm in practice.

1.3 Quantum random access memory (focus of this

thesis)

Quantum random access memory (QRAM) [14–19] is a highly-specialized quantum

architecture that could solve many of the challenges associated with loading classical

3

data into quantum processors. With a classical RAM, any single data item stored in

memory can be quickly loaded into the central processor. In contrast, with a QRAM,

multiple different classical data items can be loaded simultaneously in superposition.

QRAM thus acts as a link between the classical and quantum worlds. Indeed, QRAM

can serve as a fast and general-purpose implementation of a quantum oracle, and

access to QRAM would solve the data-input bottleneck problem in many applications.

Actually constructing a large QRAM, however, is expected to be very challenging.

The main obstacle is that building a QRAM requires a number of qubits that scales

linearly in proportion to the size of the data set being loaded. As one considers appli-

cations involving larger data sets, the hardware cost of QRAM grows, and issues of

scalability become increasingly important. For example, if the QRAM is to be both

reliable and hardware efficient, the underlying quantum hardware must be simulta-

neously highly coherent and highly compact. Moreover, even with highly-coherent

components, errors will become inevitable as the size of the QRAM grows, so it is

crucial that some means of reliably loading data even in the presence of errors is

developed.

These scalability problems are not fundamentally different from those faced by

universal quantum computers. Solutions to these problems developed in context

of universal quantum computing, however, cannot always be practically applied to

QRAM. For instance, conventional approaches to quantum error correction [20] can

result in impractically high overheads when applied to QRAM [18]. At the same

time, QRAM is a highly-specialized architecture that serves a limited purpose, and

the challenges of scalability can and should be addressed with this specialization in

mind. Implementing QRAM does not require a universal set of quantum operations,

for example, and this fact can be exploited to simplify QRAM architectures.

Ultimately, in order to make constructing a large-scale QRAM practical, specifically-

tailored solutions to QRAM’s scalability problems will be required. Developing such

4

solutions is the main focus of this thesis.

1.4 Summary of main results and thesis organiza-

tion

In Chapter 2, we begin by providing a basic review of quantum oracles and the query

model of computation. We also review a representative sample of quantum algorithms

in order to illustrate the ubiquity and utility of quantum oracles. We then introduce

the notion of QRAM, and give a self-contained review of the topic. We conclude the

chapter by enumerating several of the practical challenges associated with QRAM’s

implementation.

In Chapter 3, we study the effects of noise and decoherence on QRAM. We

show that QRAM can be surprisingly resilient to decoherence, such that high-fidelity

queries can be performed even in the presence of realistic decoherence. More pre-

cisely, we prove that the infidelity a QRAM query scales only polylogarithmically

with the memory size (i.e. polynomially in the number of address bits) even when all

components are subject to arbitrary noise channels, and we verify this scaling numer-

ically. Further, we describe several corollaries of this result that enable significant

architectural simplifications for QRAM.

In Chapter 4, we present an efficient scheme for further suppressing errors in

QRAM queries. In contrast to quantum error correction, which typically entails a

large overhead when applied to QRAM, our scheme is hardware efficient, with an

overhead that is independent of the memory size. We first quantify the error sup-

pression capabilities of our scheme for general quantum operations, then tailor our

analysis to QRAM. Though our scheme cannot match the exponential error suppres-

sion achieved by quantum error correction, it is suitable for use in near-term devices.

Indeed, taken together, the results of Chapters 3 and 4 demonstrate that small- to

5

medium- scale QRAM can be reliably implemented using realistically-noisy quantum

hardware available today.

Finally, in Chapter 5 we propose experimental implementations of QRAM in cir-

cuit quantum acoustodynamics systems. In these systems, highly-compact acoustic

modes are the primary carriers of quantum information, and the architectures we

propose are naturally hardware-efficient as a result. We describe two distinct archi-

tectures: The first is based on Hamiltonian engineering in multimode systems and is

better suited for near-term implementation. The second is based on dissipative cat

qubits and enables fault-tolerant QRAM queries with low overhead.

For Chapters 3 to 5, we discuss conclusions, open questions, and directions for

future research at the end of each chapter.

Throughout this thesis, we assume familiarity with the basic notions of quantum

computing. Ref. [21] provides an excellent introduction to the topic. Additionally,

Chapter 5 assumes familiarity with circuit quantum electrodynamics. We refer the

reader to Ref. [22] for a pedagogical introduction and to Ref. [23] for a recent review.

6

Chapter 2

Quantum random access memory

2.1 Quantum oracles

2.1.1 The query model

The computational power of quantum computers is frequently analyzed in the so-

called query model of computation. In this section, we describe the query model,

introducing the concept of an oracle and the notion of query complexity. Refs. [11–

13] all provide excellent reviews of these topics.

Suppose that we wish to solve some computational problem. Without loss of

generality1, we may assume that the input to the problem—a specification of the

problem instance to be solved—is some classical data vector x. In the query model,

this input is only accessible through an oracle (sometimes also referred to as a black

box) that can be queried to reveal information about x. Though the oracle will provide

information about x when prompted, how exactly it retrieves this information is left

unspecified. The goal is to solve the problem using as few queries to the oracle as

1. In some settings, it is more natural to assume that the input is some function f , rather than
a data vector x. Provided that the domain of f is a set of consecutive integers, then the latter can
be reduced to the former by taking a data vector that specifies the outputs of the function over the
set, xi = f(i).

7

Classical Oracle

. . .

Input Output

Quantum Oracle

. . .

Input Output

(a)

(b)

Figure 2.1: Classical and quantum data-lookup oracles. Both the classical (a) and quantum
(b) oracles provide access to a classical data vector x = (x0, . . . , xN−1). For a classical
oracle, the input and output of a query are both classical numbers, while for a quantum
oracle, the input and output of a query are both quantum states.

possible, without exploiting any details about how the oracle might operate.

Oracles can be either classical or quantum. The simplest example of a classical

oracle is a so-called data-lookup oracle, illustrated in Fig. 2.1(a). The oracle is queried

by providing it with an index i as input, and the oracle subsequently outputs the

corresponding vector element xi.

A natural generalization of this classical data-lookup oracle is the quantum data-

lookup oracle, illustrated in Fig. 2.1(b). In the quantum case, the inputs and outputs

of the oracle query are quantum states, and the query itself is some unitary operation,

O
(DL)
x , that implements the mapping

O(DL)
x |i〉A |b〉B = |i〉A |b⊕ xi〉B , (2.1)

where the label b denotes an arbitrary computational basis state, and ⊕ denotes

addition modulo 2. The superscripts A and B denote two quantum registers; the

state of register A specifies which element to look up, and the query encodes this

8

element into the state of register B. Note that applying the oracle a second returns

the system to its initial state

O(DL)
x |i〉A |b⊕ xi〉B = |i〉A |b⊕ xi ⊕ xi〉B = |i〉A |b〉B . (2.2)

It follows that O
(DL)
x is unitary (and involutory), independent of the details of the

classical data. It should be emphasized that, though the inputs and outputs of the

query are quantum, the data being queried is classical. In this way, quantum oracles

act as an interface between classical data and quantum algorithms.

As an aside, let us comment on the dimensionality of the quantum registers A

and B. Suppose x is a length-N vector, with entries xi each specified by d binary

digits. It then suffices to choose A to be n-qubit register, where n ≡ log2N . This

way, the Hilbert space dimension of A is N , which is sufficient to index all elements

of x. It suffices to choose B to be a d-qubit register because a single qubit is sufficient

to store a single classical bit. As an example, suppose that we wish to query the 5-th

element of a length-8 vector (N = 8), where the vector elements are specified by 2

binary digits (d = 2), e.g. x5 = 01. The corresponding query is,

O(DL)
x |101〉A |00〉B = |101〉A |01〉B , (2.3)

where for simplicity we have set |b〉B = |00〉B. Note that, for the A register, the index

i = 5 is specified by the corresponding binary decomposition, 101.

Quantum data-lookup oracles are strictly more powerful than their classical coun-

terparts. Indeed, a quantum data-lookup oracle can easily be used to emulate the

corresponding classical data-lookup oracle; simply prepare the input state |i〉A |0〉B,

query O
(DL)
x , and measure the B register of the resultant state |i〉A |xi〉B. The in-

creased power of quantum oracles derives from the fact that they may be queried in

superposition. If one prepares the register A in a superposition of different states, it

9

follows from the linearity of quantum mechanics that O
(DL)
x will look up the corre-

sponding vector elements in superposition,

O(DL)
x

N−1∑
i=0

αi |i〉A |b〉B =
N−1∑
i=0

αi |i〉A |b⊕ xi〉B . (2.4)

As we discuss later in this chapter, this ability to perform queries in superposition

is exploited by a great many quantum algorithms in order to reduce the number of

queries required to solve a problem, i.e. to provide quantum speedups.

In the query model, the complexity of a problem is naturally quantified by the

number of queries that are required to solve it. This number is referred to as the query

complexity of the problem. Upper bounds on the query complexity can be obtained

by constructing specific algorithms to solve the problem, while lower bounds can be

obtained through a variety of methods (e.g., the classical [24] and quantum [25] ad-

versary methods, or polynomial methods [26]; see Refs. [12, 27] for reviews). Though

such bounds are intrinsically interesting in the context of quantum complexity theory,

upper bounds can also be translated into more practical statements in the context

of the usual circuit model of quantum computation [21]. For example, suppose an

algorithm solves some problem using O(Q) queries to the oracle O
(DL)
x and O(S)

additional constant-depth operations. Then, given a depth-T quantum circuit to

implement O
(DL)
x , we can construct a quantum circuit with depth O(QT + S) that

solves the same problem (simply replace each oracle query by the circuit implementing

O
(DL)
x). This statement has an important implication: any efficient algorithm in the

query model can be immediately translated into an efficient algorithm in the circuit

model if efficient implementations of the requisite oracles are available.

10

2.1.2 The versatility of data-lookup oracles

In this section, we describe how data-lookup oracles can be leveraged to perform a

variety of other interesting functions. Specifically, we show how querying a data-

lookup oracle enables one to implement analogous phase-flip oracles, encode classical

data in the amplitudes of quantum states, and synthesize unitary operations. Such

techniques are used in a wide variety of quantum algorithms, as discussed later in

this chapter.

Phase-flip oracles

A phase-flip oracle, O
(PF)
x , is defined to be the unitary operator which applies a −1

phase to a computational basis state conditioned on the corresponding element of the

binary data vector x,

O(PF)
x |i〉 = (−1)xi |i〉 . (2.5)

That is, O
(PF)
x applies a−1 phase to computational basis state |i〉 if xi = 1. Otherwise,

if xi = 0, the oracle acts trivially. Grover’s algorithm for searching an unstructured

database famously employs such an oracle [28], and we discuss this application further

in Section 2.1.3.

There is a well-known construction [21] that allows one to implement O
(PF)
x using

a single query to the corresponding data-lookup oracle O
(DL)
x . The trick is to prepare

the output qubit in the state |−〉 ≡ (|0〉 − |1〉) /
√

2, then query O
(DL)
x ,

O(DL)
x |i〉A |−〉B =

1√
2
|i〉A

(
|0⊕ xi〉B − |1⊕ xi〉B

)
= (−1)xi |i〉A |−〉B . (2.6)

The second line is obtained by observing that interchanging |0〉 and |1〉 in the state |−〉

gives− |−〉. Notice that the state of the qubit B is not changed by the query (this is an

11

example of “phase kickback,” a phenomenon widely exploited in quantum computing).

It follows that the query does not entangle the qubit B with the register A, and so

the qubit B can be discarded. The phase-flip oracle may thus be implemented as

O
(PF)
x

=

O(DL)
x

|−〉 |−〉

(2.7)

More generally, by conjugating the B register with Hadamard gates, O
(DL)
x can

be used to apply a −1 phase to the joint state |i〉A |b〉B conditioned on both the

corresponding data vector element and the state of the B register,

(I ⊗H)O(DL)
x (I ⊗H) |i〉A |b〉B = (−1)xib |i〉A |b〉B , (2.8)

where the implementation of O
(PF)
x described above corresponds to the case of b = 1.

Eq. (2.8) can be understood as analogous to the statement that conjugating the target

qubit of a CNOT gate with Hadamards yields a CZ gate,

•
=

•
H H •

(2.9)

The generalized phase-flip oracle described by Eq. (2.8) is also frequently used in the

quantum algorithms literature.

Amplitude encoding oracles

An amplitude encoding oracle, O
(AE)
x , is defined to be a unitary operator which en-

codes the entries of a length-N data vector, x, into the amplitudes of a logN -qubit

quantum state,

O(AE)
x

(
|0〉⊗ logN

)
=

1

|x|2

N−1∑
i=0

xi |i〉 ≡ |ψ(x)〉 , (2.10)

12

where |x|2 = (
∑

i |xi|2)1/2. The ability to encode a data vector in the amplitudes of

a quantum state is frequently assumed in quantum algorithms for linear algebra and

machine learning [10], and quantum chemistry [29], for example. More generally, the

ability to implement O
(AE)
x for any x enables one to prepare arbitrary quantum states.

We now describe two well-known methods for implementing O
(AE)
x using related data-

lookup oracles.

The first method requires only two queries to a data-lookup oracle but requires

postselection, with a success probability that depends on x. First, Hadamard gates

are applied to all logN qubits to prepare them in an equal superposition over all N

computational basis states,

(H |0〉)⊗ logN =
1√
N

N−1∑
i=0

|i〉S , (2.11)

where the superscript S will be used to distinguish the (logN)-qubit system register

from ancillary registers. Then, an ancillary register A1 is added, and a data-lookup

oracle O
(DL)
y is queried,

O(DL)
x

1√
N

N−1∑
i=0

|i〉S |0〉A1 =
1√
N

N−1∑
i=0

|i〉S |yi〉A1 . (2.12)

where y ≡ x/|x|∞, and |x|∞ = maxi |xi| (the vector y is proportional to x, but

normalized so that |yi| ≤ 1 for all i). Next, another ancillary qubit, A2, is added, and

A2 is rotated conditioned on the state of A1, resulting in the state

1√
N

N−1∑
i=0

|i〉S |yi〉A1

(
yi |0〉A2 +

√
1− |yi|2 |1〉A2

)
. (2.13)

One then measures the qubit A2 in the standard basis and postselects on obtaining

13

the outcome |0〉. A2 is then discarded, yielding the (normalized) state

1

|x|2

N−1∑
i=0

xi |i〉S |yi〉A1 . (2.14)

Finally, O
(DL)
x is queried again to erase the data stored in the register A1,

O(DL)
x

1

|x|2

N−1∑
i=0

xi |i〉S |yi〉A1 =
1

|x|2

N−1∑
i=0

xi |i〉S |0〉A1 . (2.15)

Discarding A1 yields the desired state |ψ(x)〉.

In the above procedure, the probability of successful postselection is

1

N

N−1∑
i=0

|yi|2 =
1

N

|x|22
|x|2∞

. (2.16)

When the entries of x are relatively uniform, with no entries significantly larger than

the others, this success probability can approach 1. In such cases, one can efficiently

encode the vector x in the amplitudes of a quantum state [30]. However, in the worst

case, the success probability is only 1/N , as |x|∞ ≤ |x|2. Thus efficient amplitude

encoding is not possible in general using this approach. We note that the success

probability can be improved to O(1) using amplitude-amplification, at the cost of

O(
√
N) additional oracle queries [31, 32]. In fact, the quantum search lower bound of

Ref. [24] implies that at least Ω(
√
N) queries to O

(DL)
x are required to prepare |ψ(x)〉

with near-unit probability.

As a brief aside, the big-O and big-Ω notation is defined as follows. We say

f(x) = O(g(x)) if |f(x)| ≤ cg(x) for all x ≥ x0, where c and x0 are constants.

Similarly, we say f(x) = Ω(g(x)) if |f(x)| ≥ cg(x) for all x ≥ x0. Put simply, O

denotes an asymptotic upper bound, while Ω denotes an asymptotic lower bound.

The second method for implementing O
(AE)
x requires O(logN) queries to data-

lookup oracles and is deterministic. However, the approach requires that additional

14

information about |x| (namely, its sub-norms) also be accessible via data-lookup

oracles. This procedure is described in Refs. [33–36], and we summarize it below.

First, define pj to be the probability that the first w qubits of |ψ(x)〉 are in state

|j〉,

pj =
1

|x|22
∑

prefix(i)=j

|xi|2 (2.17)

where j ∈ {0, 1}w, and prefix(i) = j denotes the set of all bit strings i that have their

first w bits equal to j. The procedure builds up |ψ(x)〉 qubit by qubit, starting by

preparing single qubit in the state

|ψ1〉 =
√
p0 |0〉+

√
p1 |1〉 . (2.18)

Observe that the probability that this qubit is |0〉 is equivalent to the probability that

the first qubit of |ψ(x)〉 is 0.

To add the remaining qubits, we require data-lookup oracles O
(DL)

θ(w) . Here, the

entries of the data vector θ are defined as θj = cos−1
√
pj0/pj, where j is a w-bit

string, and j0 is a (w + 1)-bit string with the last bit equal to 0. Qubits are then

added to the state via the following recursive procedure,

|ψw〉 =
∑

j∈{0,1}w

√
pj |j〉

O
(DL)

θ(w)−−−→
∑

j∈{0,1}w

√
pj |j〉 |θj〉

−−−→
∑

j∈{0,1}w

√
pj |j〉

(√
pj0
pj
|0〉+

√
pj1
pj
|1〉
)
|θj〉

O
(DL)

θ(w)−−−→
∑

j∈{0,1}(w+1)

√
pj |j〉 = |ψw+1〉 . (2.19)

In the second line, the oracle O
(DL)

θ(w) is queried, and the result is stored in an ancillary

register. In the third line, a new qubit is added to the state, and this qubit is

15

rotated (conditioned on the state of the ancillary register) by an angle θj. Finally,

in the third line, O
(DL)

θ(w) is queried again to erase the data stored in the ancillary

register, which is subsequently discarded. Starting with |ψ1〉, the above procedure

can be repeatedly applied to prepare states |ψ2〉 , . . . |ψw〉, where |ψw〉 has the same

measurement statistics as the first w qubits of the state |ψ(x)〉. After logN−1 rounds,

corresponding to 2(logN − 1) oracle queries, the desired state |ψlogN〉 = |ψ(x)〉 has

been prepared.

This procedure illustrates that it is possible to efficiently prepare an arbitrary

quantum state when equipped with suitable data-lookup oracles [33]. In this context,

efficient refers to the query complexity; the total number of oracle queries scales only

polynomially with the number of qubits. If the oracles themselves can be imple-

mented via polynomial-depth circuits, then it follows that the above procedure fur-

nishes polynomial-depth state-preparation circuits. For example, Ref. [37] employs

this procedure to find polynomial-depth state-preparation circuits in the situation

where the amplitudes of |ψ(x)〉 are related to some efficiently-integrable probability

distribution.

Unitary synthesis

The problem of unitary synthesis is to implement an arbitrary N × N unitary U ,

specified by a list of its matrix elements. That is, if you are handed matrix represen-

tation of U written out in full on a sheet of paper (or, more practically, stored in some

classical data structure), how can you construct a quantum circuit that implements

U? In answer to this question, explicit gate-based constructions have been found that

allow one to decompose an arbitrary U into sequences of O(N2) single- and two-qubit

gates [38–42]. A theoretical lower bound of Ω(N2) gates can be obtained via counting

arguments [43, 44], so these constructions are optimal.

Alternatively, there exist oracle-based constructions that allow one to implement

16

an arbitrary unitary U assuming that access to the matrix elements is provided

by suitable oracles [36, 45–47]. We describe two such constructions below, thereby

demonstrating that suitable oracles enable the synthesis of arbitrary unitaries. More-

over, the number of oracle queries required in these constructions is generally2 O(N).

Therefore, in special cases where the requisite oracles can be implemented using only

poly(n) gates, these oracle-based construction can provide polynomial reductions in

the gate complexity relative to the gate-based constructions of Refs. [38–42].

The first construction is based on a reduction [46] of unitary synthesis to Hamil-

tonian simulation. Given a unitary U , we define a corresponding Hamiltonian

H =

 0 U

U † 0

 , (2.20)

where H acts on a Hilbert space that twice as large as that which U acts on, i.e. with

one additional qubit. Because H2 = I, we have that

e−iHt = cos(t)I − i sin(t)H, (2.21)

and hence that

e−iHπ/2 |1〉 |ψ〉 = −i |0〉 (U |ψ〉) . (2.22)

Thus, the ability to simulate evolution under H enables one to apply U to an arbitrary

state |ψ〉. Now, assuming a data-lookup oracle that accesses matrix elements of

U is available, one can easily construct a data-lookup oracle that accesses matrix

elements of H. Hence, oracle-based algorithms for Hamiltonian simulation (discussed

further in Section 2.1.3) can be applied to implement U . With an optimal algorithm,

e.g. quantum signal processing [48], the required number of queries is O(N).

2. The counting arguments of Ref. [43, 44] do not apply to the situation where U -dependent oracles
are invoked.

17

The second construction [36, 45, 47] is based on the decomposition of U into a

product of Householder reflections [49]. First, define

U ′ = |0〉 〈1| ⊗ U + |1〉 〈0| ⊗ U †, (2.23)

and observe that the ability to implement U ′ enables one to apply U to an arbitrary

state |ψ〉,

U ′ |1〉 |ψ〉 = |0〉 (U |ψ〉) . (2.24)

Now, using the Householder reflection decomposition, one can show [47] that U ′ can

be expressed as a product of N reflections,

U ′ =
N∏
i=1

Rwi , (2.25)

where

Rwi = I − 2 |wi〉 〈wi| , (2.26)

and

|wi〉 = (|1〉 |i〉 − |0〉 |Ui〉)/
√

2. (2.27)

Here, |Ui〉 is an amplitude encoding of Ui, the i-th column of U ,

|Ui〉 =
1

|Ui|2

N−1∑
j=0

Uji |j〉 . (2.28)

The reflection Rwi can be implemented with the aid of an amplitude encoding oracle

O
(AE)
wi ,

Rwi = O(AE)
wi

(I − 2 |0〉 〈0|)(O(AE)
wi

)
†
, (2.29)

where (I − 2 |0〉 〈0|) is a multiply-controlled phase gate (it imparts a −1 phase to

18

|0〉, but does nothing to orthogonal states). Finally, we note that O
(AE)
wi can be

straightforwardly implemented using an oracle, O
(AE)
Ui

that implements an amplitude

encoding of the i-th column of U [36]. Therefore, amplitude encoding oracles for the

columns of U enable one to implement U itself. The total number of oracle queries

required is O(N), since each of the N reflections Rwi can be implemented in a constant

number of queries.

2.1.3 Oracles in context: use in quantum algorithms

In this section, we review several quantum algorithms that invoke quantum oracles.

The purpose of this review is two-fold: First, these examples illustrate the ubiquity

of oracles in the quantum algorithms literature. Second, these examples highlight the

important role that oracles play as an interface between classical data and quantum

algorithms.

We review algorithms for period-finding (factoring) [1], unstructured search [28],

and Hamiltonian simulation [29], and we justify this selection as follows. Perhaps sur-

prisingly, there are only three main classes of quantum algorithm from which nearly3

all modern quantum algorithms are derived: factoring, search, and simulation [50].

For example, factoring gave rise to the more general procedure of quantum phase

estimation [7], which, together with algorithms for Hamiltonian simulation, forms

the basis of the so-called HHL algorithm for solving linear systems [51]. The HHL

algorithm, in turn, underlies nearly all quantum algorithms for linear algebraic prob-

lems, with numerous applications in data analysis and machine learning [10, 52, 53].

Below, we discuss one example from each of the three classes (factoring, search, and

simulation), with the understanding that these examples are representative of a much

broader set of algorithms.

3. Notably, these classes do not include variational algorithms or algorithms for demonstrating
quantum computational supremacy.

19

Importantly, we show how each of the three paradigmatic examples can be framed

in the query model, and by extension that nearly all algorithms can be framed in

this model. However, we caution the reader that this framing does not imply that

a general-purpose oracle implementation (such as QRAM) is required to run most

quantum algorithms. In some cases, the structure of a problem can be exploited

to construct efficient implementations of the requisite oracles. On the other hand,

there are many applications where no such structure exists, and for these applications

a general-purpose oracle implementation is necessary. Refs. [34, 51, 54–66] provide

examples of algorithms that require a general-purpose oracle implementation because

there is no obviously-exploitable structure in the data.

Period finding

The problem statement of the period-finding algorithm is as follows. Suppose that

you are presented with a length-N classical data vector x and promised that the data

is periodic,

xi = xi+r, for all i, (2.30)

for some unknown period r. Further suppose that this data vector is accessible only

through an oracle. The goal is to determine r with as few oracle queries as possible.

Classically, any algorithm to solve this problem necessarily requires at least Ω(r)

queries. An optimal approach is thus simply to query each element of x sequentially,

until a repeated element is obtained (we assume that there are no repeated values

within a single period for simplicity). Because r ∼ N in the worst case, the query

complexity of the classical algorithm is O(N).

With the assistance of a quantum oracle, this problem can be solved with only

a single query [1, 21]. The algorithm uses two registers, A and B, with n = logN

qubits and d qubits, respectively. Here d denotes the number of binary digits needed

to specify a data vector element xi. The algorithm begins by initializing both registers

20

in the all-|0〉 state, and a layer of Hadamard gates is applied to register A to prepare

it in an equal superposition state. Then, a data-lookup oracle O
(DL)
x is queried. After

the query, the state of the system is

O(DL)
x (H⊗n ⊗ I) |0〉A |0〉B =

1√
N

N−1∑
j=0

|j〉A |xj〉B . (2.31)

To proceed, we need to introduce the quantum Fourier transform. The quantum

Fourier transform, QFT, is a unitary operation that we define through its action on

the basis states,

QFT |j〉 =
1√
N

N−1∑
k=0

e2πi jk/N |k〉 , (2.32)

where the coefficients on the right hand side can be recognized as those which appear

in the classical discrete Fourier transform. Now, in anticipation of applying the

quantum Fourier transform, observe that |xj〉B can be expressed as

|xj〉B =
1√
r

r−1∑
s=0

e2πi js/r |xs〉B , (2.33)

where

|xs〉B ≡
1√
r

r−1∑
j=0

e−2πi js/r |xj〉B . (2.34)

Inserting the expression (2.33) into Eq. (2.31), the state of the system at this point

in the algorithm is

1√
rN

N−1∑
j=0

r−1∑
s=0

e2πi js/r |j〉A |xs〉B =
1√
rN

r−1∑
s=0

(
N−1∑
j=0

e2πi js/r |j〉A
)
|xs〉B

=
1√
r

r−1∑
s=0

(
QFT |s/r〉A

)
|xs〉B , (2.35)

where for simplicity we have assumed that N is an integer multiple of r in order to

express the state on the second line directly in terms of QFT. Applying the inverse

21

quantum Fourier transform, (QFT)†, to register A then yields,

1√
r

r−1∑
s=0

|s/r〉A |xs〉B . (2.36)

Finally, register A is measured, and one of the different possible outcomes, s/r, is

obtained (each outcome occurs with probability 1/r). Remarkably, most of these

different measurement outcomes provide sufficient information to determine r, which

can be obtained through the continued fractions algorithm [21]. Thus, the period can

be determined with only a single query to a quantum oracle.

This period-finding algorithm is the core of Shor’s famous factoring algorithm [1].

In that context, the structure of the problem can be exploited to develop an efficient

implementation of the requisite oracle. In the case of Shor’s algorithm, the periodic

data is of the specific form

xj = ajmodM, (2.37)

where a and M are positive integers that have no common factors, with a < M . For

data of this form, the corresponding oracle,

|j〉 |0〉 → |j〉 |ajmodM〉 , (2.38)

can be implemented efficiently [21]. In contrast, in order to apply the period-finding

algorithm to a periodic but otherwise unstructured data vector x, a general-purpose

implementation of O
(DL)
x would be required, i.e. an implementation that works for

any data vector x.

Grover’s algorithm

The problem statement of Grover’s algorithm is as follows. Suppose that you are pre-

sented with a classical database and promised that an element of interest is contained

22

somewhere within the database. Further suppose that the database is accessible

through an oracle. The goal is to determine the location of the element of interest

with as few queries to the oracle as possible. In the simplest incarnation, the database

is a length-N binary vector x, with (N−1) of the entries equal to 0 and a single entry

equal to 1. The element of interest is the single vector element for which xi∗ = 1, and

the goal is to find the index i∗ of this element. For brevity, we present the algorithm

in this simplified context.

Any classical algorithm to solve this problem requires O(N) queries. The optimal

approach is simply to check entries of x one-by-one until finding the marked element.

Clearly, this approach requires checking O(N) elements of the vector on average.

Grover’s algorithm [28], solves this problem using only O(
√
N) oracle queries. The

algorithm begins by initializing a register of n = logN qubits in the state |0〉⊗n. A

layer of Hadamard gates is applied to prepare these qubits in the equal superposition

state

|ψ〉 =
1√
N

N−1∑
i=0

|i〉 . (2.39)

After this preparation, a unitary operator G, called the Grover operator, is repeatedly

applied to the state. The Grover operator is defined as

G = (2 |ψ〉 〈ψ| − I)O(PF)
x , (2.40)

where O
(PF)
x is a phase-flip oracle defined in the previous section. The operator

(2 |ψ〉 〈ψ| − I) is sometimes referred to as an inversion about the mean because of its

effect when applied to a generic state,

(2 |ψ〉 〈ψ| − I)
N−1∑
i=0

αi |i〉 =
N−1∑
i=0

(2α− αi) |i〉 (2.41)

where α =
∑N−1

i=0 αi/N denotes the mean value of the coefficients αi.

23

The effect of the Grover operator on the state |ψ〉 has an elegant geometric inter-

pretation [21]. Let us define

|good〉 = |i∗〉 , (2.42)

|bad〉 =
1√

N − 1

∑
i 6=i∗
|i〉 . (2.43)

The initial state |ψ〉 can thus be expressed as

|ψ〉 =

√
N − 1

N
|bad〉+

√
1

N
|good〉 , (2.44)

hence |ψ〉 lies in the plane spanned by |good〉 and |bad〉. As illustrated in Fig. 2.2,

G has the net effect of rotating |ψ〉 in this plane. This is because both O
(PF)
x =

(I − 2 |i∗〉 〈i∗|) and (2 |ψ〉 〈ψ| − I) act as reflections within this plane. This geometric

reasoning can be applied to show that

Gk |ψ〉 = cos

(
2k + 1

2
θ

)
|bad〉+ sin

(
2k + 1

2
θ

)
|good〉 , (2.45)

where cos(θ/2) = 〈ψ|bad〉 =
√

1− 1/N . Thus, each application of G rotates the

state by an angle of θ towards the state |good〉.

Leveraging these results, we see that in the limit of N � 1, the state after k =
√
Nπ/4 applications of G is

G(
√
Nπ/4) |ψ〉 ≈ |good〉 = |i∗〉 . (2.46)

Measuring the system then reveals the location i∗ of the marked item. Because each

application of G requires only a single query to O
(PF)
x , the total number of queries

required is only O(
√
N).

If Grover’s algorithm is to be applied in practice, a means of implementing O
(PF)
x is

24

Figure 2.2: Geometric interpretation of the Grover operator (adapted from Ref. [21]). The
Grover operator is a product of two reflections: a reflection along |good〉, followed by a
reflection about |ψ〉. These reflections act as rotations within the plane spanned by |good〉
and |bad〉.

required. In some settings, the structure of the problem can be exploited to provide an

efficient implementation. For example, Grover’s algorithm can be applied to provide

quadratic speedups in the search for solutions to problems in the complexity class

NP [21]. The relevant property of problems in this complexity class is that potential

solutions can be efficiently checked. That is, there exists some efficiently-computable

function f(i) such that f(i) = 1 if i is a solution to the problem, and f(i) = 0

otherwise. Now, because any efficient classical circuit can be made reversible and

hence mapped to an efficient quantum circuit, the operation

|i〉 |0〉 → |i〉 |f(i)〉 , (2.47)

can be performed efficiently. This operation is simply a data-lookup oracle, which

can be used to realize the phase-flip oracle required by Grover’s algorithm. Thus, for

problems in NP, the ability to efficiently check solutions classically directly furnishes

an efficient quantum circuit to implement the requisite oracle. In contrast, if Grover’s

25

algorithm is applied to search an unstructured database, there is no structure that can

be readily exploited to construct an oracle implementation. In this case, a general-

purpose implementation of O
(PF)
x is required, i.e. an implementation that works for

any data vector x.

Hamiltonian simulation

The problem statement of Hamiltonian simulation is as follows. You are presented

with an arbitrary quantum state |ψ〉, as well as a description of some Hamiltonian,

H, where this description is accessible through a set of oracles (defined below). The

goal is to construct a unitary U which simulates the evolution under H for a time t

in order to prepare the state

U |ψ〉 = e−iHt |ψ〉 , (2.48)

using as few queries to the oracles as possible. Furthermore, the error in the simulation

should be bounded so that |U − e−iHt| ≤ ε, according to some metric.

In general, simulating quantum systems using classical computers is hard—the

required resources scale exponentially in the size of the system. However, as suggested

by Feynman [67], and first shown explicitly by Lloyd [4], quantum computers can

perform such simulations efficiently. In the years since, numerous quantum algorithms

for Hamiltonian simulation have been proposed [29, 46, 48, 68–70], based on a variety

of different methodologies. To review all of these different approaches is beyond the

scope of this thesis. Instead, as an illustrative example, we review the algorithm of

Ref. [29], chosen for its relative simplicity and near optimality. We highlight the role

that oracles play in this algorithm, and we also describe other types of oracles that

are frequently used in Hamiltonian simulation algorithms.

We begin by first outlining the main steps of Ref. [29]’s algorithm, then discussing

the required oracles and how they are used. The algorithm of is based on a Trotteri-

zation approach, where the evolution for a time t is decomposed into r intervals, each

26

of length t/r,

U = e−iHt =
(
e−iHt/r

)r
. (2.49)

The operator Ur ≡ e−iHt/r can be expanded in a Taylor series as

Ur ≈
K∑
k=0

1

k!
(−iHt/r)k, (2.50)

where the series is truncated at order K. Together, the parameters r and K determine

the accuracy of the simulation, and we describe how they are to be chosen below.

Next, the algorithm leverages the fact that any Hamiltonian may be decomposed into

a linear combination of unitary operators,

H =
L∑
`=1

α`H`, (2.51)

where each H` is unitary. Inserting this expression into Eq. (2.50) yields,

Ur ≈
K∑
k=0

L∑
`1,...,`k=1

(−it/r)k
k!

α`1 . . . α`kH`1 . . . H`k . (2.52)

It will be convenient to define

βj ≡
(t/r)k

k!
α`1 . . . α`k , (2.53)

Vj ≡ (−i)kH`1 . . . H`k , (2.54)

where the index j is used as a shorthand for the indices {k, `1, . . . , `k}, and we note

that each Vj is unitary. With these definitions,

Ur ≈
∑
j

βjVj. (2.55)

27

At the core of the algorithm is a technique for realizing unitary4 transformations of

the form (2.55), which we describe below. Using this technique, the algorithm simply

applies Ur a total of r times to perform the simulation.

To implement unitaries of the form (2.55) we assume access to two oracles, O
(AE)√
β

and select(V). The first oracle, O
(AE)√
β

, is an amplitude encoding oracle,

O
(AE)√
β
|0〉 =

1√
s

∑
j

√
βj |j〉 , (2.56)

where we have defined s ≡ |√β|22. The second oracle, select(V), acts on two registers

and is defined as

select(V) =
∑
j

|j〉 〈j| ⊗ Vj. (2.57)

Now, we define the operator

W ≡
[(
O

(AE)√
β

)†
⊗ I
]

select(V)

[
O

(AE)√
β
⊗ I
]
, (2.58)

and observe that

W |0〉 |ψ〉 =
1

s
|0〉Ur |ψ〉+

√
1− 1

s2
|Φ〉 , (2.59)

where |Φ〉 is some state orthogonal to |0〉 in the first register. To proceed, it is

convenient to choose the number of Trotter steps r such that s = 2, and one can

show that s = 2 is obtained for the choice r = ln(2)T , with T ≡ |α|1t. This choice of

r dictates that we must choose K = O(log(T/ε)) to guarantee an error of at most ε.

With these choices, one can verify that

−WRW †RW |0〉 |ψ〉 = |0〉Ur |ψ〉 , (2.60)

4. We note that
∑
j βjVj is not necessarily unitary, but will be approximately unitary for suffi-

ciently large K. For simplicity, we neglect subtleties associated with nonunitarity.

28

where R = (I − 2 |0〉 〈0|) ⊗ I is a controlled-phase gate on the first register. The

construction in Eq. (2.60) is an instance of a more general framework, oblivious

amplitude amplification [69], which itself is an extension of Grover’s algorithm. For

the sake of brevity, however, we do not describe the framework here. Finally, we see

from Eq. (2.60) that the operator (−WRW †RW) constitutes an implementation of

Ur. Moreover, the implementation requires only a constant number of queries to the

oracles O
(AE)√
β

and select(V).

Let us analyze the query complexity of this algorithm. The algorithm performs

r = ln(2)T applications of Ur, each of which requires only a constant number of

oracle queries to implement. The query complexity is thus O(T), i.e. linear in t.

This complexity has no dependence on ε because the oracles O
(AE)√
β

and select(V)

depend implicitly on ε through the parameter K = O(log(T/ε)). For this reason, a

more commonly used input model is to assume access to analogous oracles, O
(AE)√
α

and

select(H), that do not depend on ε. As described in Ref. [29], O
(AE)√
β

and select(V)

can be implemented using O(K) queries to O
(AE)√
α

and select(H). Thus, with respect

to these latter oracles the query complexity is O(T log(T/ε)). This complexity is

not quite optimal, but there now exist more sophisticated algorithms [70] that can

achieve a provably optimal query complexity of O(T +log(1/ε)), i.e. additive in t and

log(1/ε).

The algorithm that we have just described operates in the so-called linear com-

bination of unitaries (LCU) input model. The defining feature of the LCU model

is that the Hamiltonian is decomposed into a linear combination of unitaries as in

Eq. (2.51), and information about the Hamiltonian is accessed through two oracles:

an amplitude encoding oracle that provides information about the coefficients (e.g.,

O
(AE)√
α

or O
(AE)√
β

), and a select-type oracle that provides information about the uni-

taries (select(H) or select(V)). There exists another common input model that is

worth mentioning: the d-sparse Hamiltonian input model [46, 48]. In this model, the

29

Hamiltonian is assumed to have at most d non-zero matrix elements per row, and

information about these matrix elements is accessible through two oracles,

O
(DL)
H |j, k〉 |0〉 = |j, k〉 |Hjk〉 , (2.61)

Of |j〉 |k〉 = |j〉 |f(j, k)〉 . (2.62)

The first, O
(DL)
H , is simply a data-lookup oracle that, given row and column indices

j and k, looks up the corresponding matrix element of H. The second oracle looks

up the locations of non-zero matrix elements: given row and column indices j and k,

Of computes the index of the k-th non-zero entry in row j, denoted by f(j, k). Note

that Of computes the index f(j, k) in place, i.e. it overwrites the input k.

Whatever the input model, implementations of the requisite oracles are required to

deploy a Hamiltonian simulation algorithm. In some situations, additional promises

on the structure of H can be exploited to develop efficient oracle implementations. For

example, if H corresponds to the Hamiltonian of some physical system (as opposed

to an arbitrary Hermitian matrix), symmetry or locality constraints can facilitate

efficient oracle implementations. However, it is not always the case that the H under

consideration corresponds to the Hamiltonian of some well-structured physical sys-

tem. Indeed, Hamiltonian simulation is a widely-used subroutine in other quantum

algorithms, many of which have nothing to do with simulating physical systems. In

cases where structure cannot be exploited to develop efficient oracle implementations,

general-purpose oracle implementations are required. We describe such implementa-

tions in the next section.

As an additional remark: For the rest of the thesis, we consider general-purpose

implementations of data-lookup oracles. But as the above example demonstrates,

Hamiltonian simulation algorithms tend to require more exotic oracles, namely select-

type oracles such as select(H) and in-place data-lookup oracles such as Of . The very

30

same architectures we develop for implementing data-lookup oracles can be straight-

forwardly extended to also implement these other oracles.

2.2 QRAM: an architecture for implementing quan-

tum oracles

In this section, we introduce quantum random access memory (QRAM) [14–19], which

is a general-purpose architecture for the implementation of quantum oracles. QRAM

can be understood as a generalization of classical RAM; the classical addressing

scheme in the latter is replaced by a quantum addressing scheme in the former. More

precisely, in the case of classical RAM, an address i is provided as input, and the

RAM returns the memory element xi stored at that address. Analogously, in the case

of QRAM, a quantum superposition of different addresses |ψin〉 is provided as input,

and the QRAM returns an entangled state |ψout〉 where each address is correlated

with the corresponding memory element,

|ψin〉 =
N−1∑
i=0

αi |i〉A |0〉B QRAM−−−−→ |ψout〉 =
N−1∑
i=0

αi |i〉A |xi〉B , (2.63)

where N is the size of the data vector x, and the superscripts A and B stand for

“address” and “bus” respectively. The reader will recognize Eq. (2.63) as the action of

the data-lookup oracleO
(DL)
x defined in Eq. (2.4); QRAM is an architecture specifically

designed to implement such oracles.

QRAM has two features that make it particularly appealing: general applicability

and efficiency. QRAM can implement O
(DL)
x for arbitrary x, and the time required to

implement this oracle is only O(logN) (albeit at the cost of O(N) ancillary qubits).

Together, these two features make QRAM appealing for use as an oracle implementa-

tion in a wide variety of quantum algorithms, especially those that require O(logN)

31

Incident state

Router

Left output Right output

Incident

Router

Left

Right

(a) (b)Route left Route right

Figure 2.3: Quantum router. (a) Schematic of a quantum router. The router directs an
incident qubit |b〉 at its top port out of either the left or right output ports conditioned on
the state |a〉 of the router. When |a〉 = |0〉 (|1〉), the incident qubit leaves out of the left
(right) port. (b) Example of a quantum circuit that implements the routing operation using
two controlled-SWAP gates, one conditioned on the control being |0〉 (open circle) and the
other conditioned on the control being |1〉 (filled circle).

query times in order to claim exponential speedups over their classical counterparts.

QRAM can serve as an oracle implementation in quantum algorithms for machine

learning [10, 34, 52, 53, 58, 60, 66, 71], chemistry [72, 73], and a host of other ar-

eas [28, 36, 51, 54, 55, 63, 74–76], as described in the previous section.

Below, we describe several variants of the QRAM architecture. We begin by

introducing the basic building blocks of QRAM, quantum routers, in Section 2.2.1.

Next, in Sections 2.2.2 and 2.2.3 we describe the fanout QRAM and the bucket-brigade

QRAM architectures, both based on quantum routers. Finally, in Section 2.2.4, we

describe quantum read-only memory (QROM) and hybrid architectures, which can

perform operation (2.63) using fewer qubits but longer query times.

2.2.1 Quantum routers

In both classical and quantum random accesses memories, each location in memory

is indexed by a unique binary address. To read from the memory, an address is

provided as input, and the memory element located at that address is returned at

the output. In the classical case, transistors are the physical building blocks of the

addressing scheme: they act as classical routers, directing electrical signals to the

memory location specified by the address bits. Analogously, in the quantum case,

quantum routers are the fundamental building blocks of the addressing scheme.

32

Figure 2.4: Fanout QRAM. Each address qubit controls the states of all routers within the
corresponding level of the binary tree. A bus qubit injected at the top node then follows
the path (blue) to the specified memory element.

As shown in Fig. 2.3(a), a quantum router is a device that directs incident signals

along different paths in coherent superposition, conditioned on the state of a routing

qubit. For example, if the routing qubit is in state |0〉 (|1〉), then a qubit incident

on the router is routed to the left (right). If the routing qubit is in a superposition

of these states, then the incident qubit is routed in both directions in superposition,

becoming entangled with the routing qubit in the process. Quantum routers can

also be understood through the language of quantum circuits Fig. 2.3(b); the routing

operation is a unitary that can be implemented via a sequence of controlled-SWAP

gates (Fredkin gates).

2.2.2 Fanout QRAM

A QRAM can be constructed out of quantum routers as shown in Fig. 2.4 (see Chapter

6 of Ref. [21]). A collection of routers is arranged in a binary tree, with the outputs

of routers at one level of the tree acting as inputs to the routers at the next level

down. The memory is located at the bottom of the tree, with each of the N memory

cells connected to a router at the bottom level. To query the memory, all routing

qubits are initialized in |0〉, and a register of logN address qubits is prepared in the

33

desired state. All routing qubits at level ` of the tree are then flipped from |0〉 to |1〉

conditioned on the `-th address qubit. To retrieve the memory contents, a so-called

bus qubit is prepared in the state |0〉 and injected into the tree at the top node. The

bus follows the path indicated by the routers down to the memory. Upon reaching

a memory cell, the contents of that memory cell are copied into the state of the bus

(more on this below). Note that because we consider classical data, the data can

be copied without violating the no-cloning theorem. For simplicity, we assume that

each memory element xi is a single bit, in which case a single bus qubit suffices to

store the memory element (higher-dimensional data can be retrieved using multiple

bus qubits). Finally, the bus is routed back out of the tree via the same path, and

all routers are flipped back to |0〉 in order to disentangle them from the rest of the

system.

Importantly, because the routers operate coherently, the above procedure allows

one to query multiple memory elements in superposition, as in Eq. (2.63). If the

address qubits are prepared in a superposition of different computational basis states,

the bus is routed to a superposition of different memory locations.

In this architecture, the total time required to perform a query (or, equivalently,

the circuit depth) is only O(logN). The ability to perform queries in logarithmic

time can be crucial for algorithms that invoke QRAM in order to claim exponential

speedups over their classical counterparts. However, this speed comes at the price

of a high hardware cost. To perform operation (2.63), both the fanout and bucket-

bridgade architectures require O(N) ancillary qubits to serve as routers.

We have described the operation of the fanout QRAM in the language of quantum

routers for simplicity. Of course, the QRAM’s operation can be equivalently described

in the usual circuit model, and in Fig. 2.5 we provide an equivalent circuit for the

case of N = 8. The circuit is divided into several stages. During the first stage,

labelled U1, the circuit flips the routers at each level of the tree conditioned on the

34

Address

Bus

Routers

Figure 2.5: Fanout QRAM circuit for N = 8. The bus and address registers are indicated
by rails at the top of the diagram, and the routers are indicated by the rails below. For each
router shown on the left, there are three rails: one for the router’s internal state, and two
for the router’s two output modes. All qubits comprising the routers are initialized to |0〉.
The path of the bus is highlighted in blue for the case where the three address qubits are
initialized to |i〉 = |101〉. The action of the xi gates in the middle of the circuit is defined
in Fig. 2.6.

35

=

Figure 2.6: Data-copying circuit. A Z gate is applied to the qubit conditioned on the value
of xi.

corresponding address qubit. All of the multi-target CNOT gates can be applied in

parallel, and this stage can be decomposed into a sequence of single-target CNOT

gates with depth O(logN). Next, during the stage labelled U2, the bus qubit is

routed to the appropriate position by the quantum routers. Note that, because the

destination of the bus is not known a priori, routing operations must be performed

for all routers.

During the next stage, U3, the classical data is copied to the state of the bus.

This copying is accomplished with the aid of the circuit shown in Fig. 2.6. The

circuit applies the Pauli operator Z to a qubit conditioned on the classical value xi.

To see how this circuit implements the required data-copying operation, observe that

the bus qubit in Fig. 2.5, initialized to |0〉, is mapped to |+〉 ≡ (|0〉 + |1〉)/
√

2 by

the first Hadamard gate. For input state |+〉, the circuit of Fig. 2.6 leaves the state

as |+〉 if xi = 0 and flips the state to |−〉 if xi = 1. Thus, the circuit encodes the

classical value xi into the qubit state in the {|+〉 , |−〉} basis. See Appendix A for

further details on this data-copying procedure, including an explanation for why data

is copied in the {|+〉 , |−〉} basis, as opposed to {|0〉 , |1〉}.

During the final two stages the bus qubit is routed back to its original position

(U †2), and the states of all routers are reset to |0〉 (U †1). At the conclusion of the

circuit, the bus qubit contains the data specified by the address register. Thus, the

circuit implements the desired operation (2.63).

36

Figure 2.7: Bucket-brigade QRAM, utilizing routers with three sates: wait |W 〉, route left
|0〉, and route right |1〉. The address qubits themselves are routed into the tree, carving out
a path to the memory.

2.2.3 Bucket-brigade QRAM

As we will describe in Chapter 3, the fanout QRAM architecture is impractical due

to a high susceptibility to decoherence. Refs. [14] proposed the so-called “bucket-

brigade” QRAM architecture as a potential solution to this decoherence problem.

We describe the architecture in this section, deferring the discussion of decoherence

to Chapter 3.

The bucket-brigade architecture of Ref. [14] is a variant of the fanout architecture

with two major modifications. The first modification is that the two-level routing

qubits are replaced with three-level routing qutrits. In addition to the |0〉 (route left)

and |1〉 (route right) states, each router also has a third state, |W 〉 (wait). We refer

to the states |0〉 , |1〉 as active, and the state |W 〉 as inactive. We assume that all

routers are initialized in the |W 〉 state, and that the action of the routing operation is

trivial when the routing qutrit is in the |W 〉 state. Each router’s incident and output

modes are also now taken to be physical three-level systems, and each address qubit

is encoded within a two-level subspace of a physical three-level system.

The second modification is that the address qubits are themselves routed into the

tree during a query. When an address qubit encounters a router in the |0〉 (|1〉) state,

37

it is routed to the left (right) as usual. When an address qubit encounters a router

in the |W 〉 state, the states of the router and incident mode are swapped, so that the

router’s state becomes |0〉 (|1〉) when the incident address was |0〉 (|1〉). The physical

implementation described in Ref. [14] provides a helpful example to visualize how

these operations could be realized: the authors envisage the routers as three-level

atomic systems, with the address qubits encoded in the polarization states of flying

photons. (Note that the two polarization states constitute a two-level subspace of

a physical three-level system, since the photonic mode may also be in the vacuum

state.) When a photon encounters an atom in the |W 〉 state, it is absorbed, and in

the process it excites the atom to the |0〉 or |1〉 state conditioned on its polarization.

When subsequent photons encounter the excited atom, they are routed accordingly.

To query the memory, the address qubits are sequentially injected into the tree

at the root node. The first address qubit is absorbed by the router at the root node,

exciting it from |W 〉 to the {|0〉 , |1〉} subspace in the process. When the second

address qubit is injected into the tree, is routed left or right, conditioned on the state

of the router at the root node. The state of the first address qubit thereby dictates

the routing of the second. The second address is subsequently absorbed by one of

the routers at the second level of the tree. The process is repeated, with the earlier

addresses controlling the routing of later ones, carving out a path of active routers

from the root node to the specified memory element. Once all address qubits have

been routed into the tree, the bus qubit is routed down to the memory and the data

is copied as before. Finally, the bus and all address qubits are routed back out of

the tree in reverse order to disentangle the routers. Here again, we emphasize that

multiple memory elements can be queried in superposition, as in Eq. (2.4), because

all routing operations are performed coherently.

As with the fanout QRAM, the operation of the bucket-brigade QRAM can be

equivalently described in the language of quantum circuits. We provide an example

38

Address

Bus

Input

Routers

Figure 2.8: Bucket-brigade QRAM circuit for N = 8. The bus and address registers are
indicated by rails at the top of the diagram, and the routers are indicated by the rails below.
For each router shown on the left, there are three rails: one for the router’s internal state,
and two for the router’s two output modes. All qubits comprising the routers are initialized
to |W 〉. The path of the bus is highlighted in blue for the case where the three address

qubits are initialized to |i〉 = |101〉. To complete the query, operations U †2 and U †1 must
subsequently be applied, but we omit them here for clarity.

39

circuit for N = 8 in Fig. 2.8. The circuit is divided into several stages. During the

first stage, labelled U1, the address qubits are routed into the tree one by one. When

the `-th address qubit reaches the incident port of a router at level ` of the tree, a

swap gate is performed that exchanges the state of the router and its incident port.

This way, the `-th address qubit is stored in a router at level `, and this router may

be used to route subsequent address qubits to lower levels. This stage of the circuit

can be performed in O(logN) depth [77].

The stages labelled U2 and U3 are the same as in the fanout QRAM; they route the

bus qubit to the appropriate destination, then copy data to the bus (see Appendix A

for further details on data copying). Next, the operation U †2 is applied to route the bus

back to its original location. Finally, to complete the query, U †1 is applied to return

the address qubits to their original locations and reset the routers to their initial

states. For simplicity, these last two stages, U †2 and U †1 , are omitted from Fig. 2.8.

Quantum walk implementation

For context, we note that a variant of the bucket-brigade QRAM based on quantum

walks was recently proposed in Ref. [78]. In that work, the bus consists of a quantum

particle that executes a quantum walk on a binary-tree graph. In particular, the

particle is imbued with a property, “chirality,” that dictates whether it moves left or

right at each vertex, and this property is controlled by the initial address in such a

way that the bus is routed to the appropriate memory location as the quantum walk

proceeds. We refer the interested reader to Ref. [78] for further details.

The authors of Ref. [78] claim three potential benefits of their scheme. The first is

that the scheme is highly parallelized, such that queries only require O(logN) time to

perform. While this does constitute an improvement over the original bucket-brigade

QRAM papers [14, 15], which claimed O(log2N) query times, it matches the O(logN)

query time of the circuit of Fig. 2.8.

40

The second claimed benefit is an improved resilience to decoherence relative to the

standard bucket-brigade QRAM. The basis for this claim is that the quantum walk

implementation does not utilize quantum routers, so the bus is never entangled with

all O(N) nodes of the binary tree. Instead, the bus is only ever entangled with the

O(logN) qubits comprising the initial address. As a result, the infidelity of a query is

expected to scale as O(T logN), where T = O(logN) is the query time. As we show

in Chapter 3, however, the infidelity of the standard bucket-brigade QRAM has the

same scaling; despite the fact that the standard bucket-brigade QRAM entangles the

bus with O(N) routers, the infidelity of a query only scales as O(T logN). Thus, in

light of our results, the quantum-walk implementation does not seem to provide any

advantage with respect to decoherence.

The third claimed benefit is that the use of quantum walks could allow for a

simpler implementation of QRAM. For example, time-dependent control may not be

required in the quantum-walk implementation [79], and it is conceivable that imple-

menting QRAM via quantum walks could be easier in some experimental platforms.

Further work is required to determine whether the quantum walk implementation

would provide real practical benefits for these or other reasons.

2.2.4 QROM and hybrid architectures

The fanout and bucket-brigade architectures allow one to perform queries in O(logN)

time using O(N) qubits. These fast query times are essential for algorithms that must

rapidly load large classical data sets in order to claim exponential speedups over their

classical counterparts, e.g., quantum machine learning algorithms [10, 52, 53, 58, 71].

However, in algorithms that only require comparatively small data sets to be loaded,

e.g. simulating local Hamiltonians [29, 46, 70, 73, 80, 81], slower query times can be

sufficient. Circuits that use fewer qubits at the price of longer query times can be

better suited for such algorithms.

41

0 1 2 3 4 5 6 7

Add.

Bus

Figure 2.9: QROM circuit. The circuit implements operation (2.63) by iterating over all
N possible states of the address register. The j-th gate flips the state of the bus qubit if
the address register (Add.) is in state |j〉 and xj = 1, otherwise the gate acts trivially.

Indeed, this allocation of resources, O(logN) time and O(N) qubits, represents

one extreme; at the other extreme are architectures that perform queries inO(N logN)

time using O(logN) qubits [81–83]. In fact, there exists a family of architectures that

interpolate between these two extremes to leverage this space-time trade-off [18, 19,

36, 84]. We refer to these as hybrid architectures, and we describe them in this section.

Fig. 2.9 provides a straightforward example of a circuit that performs queries in

O(N logN) time using only O(logN) qubits. To query a memory of size N , a se-

quence of N multiply-controlled Toffoli gates is applied, where each gate has logN

controls (the address qubits) and one target (the bus qubit). The circuit sequentially

iterates over all N possible addresses, flipping the bus qubit conditioned on the cor-

responding classical data. The circuit requires only O(logN) qubits, but it has depth

O(N logN), since each multiply-controlled Toffoli gate can be performed in depth

O(logN) [85]. Adopting the nomenclature introduced in Ref. [81], we refer to such

circuits as Quantum Read-Only Memory (QROM)5.

More generally, circuits can be constructed that trade longer query times for

fewer qubits by combining QROM and QRAM, as shown in Fig. 2.10. We introduce

a tunable parameter M ≤ N , defined to be a power of 2. That is, M = 2m, with m an

5. The terminology “read-only” is somewhat misleading. In this thesis, we only consider reading
data from QRAM/QROM, as in Eq. (2.63). One could also use variants of QRAM/QROM to write
to a classical memory, but writing multiple different elements to a classical memory in superposition
is not possible.

42

QRAM QRAM

Add.

Bus ...

Figure 2.10: Hybrid circuit. All M = 2m possible states of the first m address qubits
are iterated over sequentially, as in QROM. Conditioned on these qubits, the remaining
address qubits are used to query an (N/M)-cell classical memory via QRAM. In the circuit
shown, logN = 4 and m = 2. The boxes labelled QRAM implement (2.63), using either the
fanout or bucket-brigade architecture. At the j-th iteration (j ∈ [1,M]), the data elements
{x[(j−1)N/M], . . . , x[j(N/M)−1]} are queried by the QRAM. Only the first two iterations are
shown. The circuit depth is O(M logN), and the circuit uses O(N/M + logN) qubits,
which includes the O(N/M) ancillary qubits required by the QRAM (not shown).

integer in the interval [0, logN]. The idea is to divide the full classical memory into M

blocks, each with N/M entries. These blocks are queried one by one using a QRAM of

size N/M concatenated with a QROM-like iteration scheme. The total hardware cost

of the scheme is O(logN + N/M), comprising O(logN) qubits for the address and

bus registers and O(N/M) ancillary qubits for the QRAM. The total circuit depth

is O(M logN) because each of the M iterations in the circuit can be performed in

depth O(logN). Therefore, by tuning the parameter M , one can interpolate between

large-width, small-depth circuits like QRAM, and small-width, large-depth circuits

like QROM. The hybrid circuit reduces to QRAM for M = 1, and QROM for M = N .

2.3 Practical challenges

In this section, we describe some of the practical challenges associated with con-

structing a large-scale QRAM. Though the main results of this this thesis serve to

mitigate some of these challenges, others remain, and the question of whether large-

scale QRAM can be used to facilitate quantum speedups, either in principle or in

43

practice, remains open.

It is important to note that most of the challenges described below only become

seriously problematic for large memory sizes. For small or intermediate memory sizes,

building a QRAM is not fundamentally different from building a universal quantum

computer. After all, one could implement the operation O
(DL)
x simply by running

the circuit Fig. 2.8 on a universal quantum computer. In fact, building a small-

scale QRAM is arguably easier than building a universal quantum computer because

QRAM does not require a universal gate set. As we describe below, however, at

large memory sizes there arise a distinct set of practical challenges for QRAM. As

a result, implementing a large-scale QRAM could prove significantly more difficult

than implementing a fault-tolerant universal quantum computer. In this regard, the

results of this thesis are encouraging; in the subsequent chapters we show that several

of these challenges are not as problematic as was previously thought. Still, further

work will be required to develop practical implementations of large-scale QRAM.

2.3.1 High quantum hardware cost

The central practical challenge associated with constructing a large-scale QRAM is

the high quantum hardware cost: QRAM requires O(N) qubits to query a memory

of size N . This large overhead is an inevitable consequence of the fact that the query

time is only O(logN). Indeed, a simple counting argument can be used to show

that if the query time is O(logN) then the hardware overhead must necessarily be

O(N). (Of course, the hardware overhead can be reduced if longer query times can

be tolerated, but this is unacceptable in some applications.)

This O(N) overhead may be impractical in certain applications. For example, the

relevant values of N could easily reach millions or billions for quantum algorithms in

big data or machine learning. At least as many qubits would be required to build

the requisite QRAM. Scaling to this many qubits is a daunting engineering challenge,

44

but it may be possible at some point in the future.

2.3.2 Decoherence, error correction, and fault tolerance

As a direct consequence of the large hardware overhead, QRAM implementations can

be highly susceptible to decoherence. In naive implementations, the decoherence of

even a single qubit can ruin an entire query. All qubits must then have decoherence

rates ε � 1/N if queries are to be performed with high fidelity. Additionally, if a

QRAM is queried Q times during the course of some algorithm, then the decoherence

rates must further satisfy the requirement ε � 1/(QN) because an error in a single

query could, in principle, derail the entire algorithm. This becomes a very stringent

requirement in applications where both N � 1 and Q� 1.

As we show in Chapter 3, this problem can be mitigated to an extent by employ-

ing the bucket-brigade QRAM architecture. With the bucket-brigade architecture,

the required decoherence rate need only satisfy ε � 1/(Q polylogN), but even this

requirement could still be challenging to satisfy. Indeed, error rates in current state-

of-the art platforms are on the order of ε ∼ 10−3, and with such error rates one could

only query a memory with N = 100 entries order Q ∼ 10 times before decoherence

becomes overwhelming. Therefore, some amount of quantum error correction (or er-

ror suppression, see Chapter 4) will likely be necessary for any application requiring

more than a handful of queries [16].

In Chapter 4, we provide a detailed discussion of the challenges associated with

implementing an error-corrected QRAM; we summarize this discussion here. Un-

fortunately, the use of quantum error correction for QRAM only serves to magnify

QRAM’s already large overhead. With error correction, QRAM requires O(N) log-

ical qubits to implement. Each logical qubit, in turn, can comprise a large num-

ber of physical qubits. While the hardware cost for error-corrected QRAM is still

technically O(N), the big-O notation can hide a large prefactor—potentially several

45

orders of magnitude. Furthermore, when the qubits comprising QRAM are error cor-

rected, the logical operations performed between them must be implemented fault

tolerantly. Unfortunately, the main operation used in QRAM—quantum routing—is

a non-Clifford operation, so implementing this operation in the usual Clifford + T

fault-tolerance model requires magic state distillation [86, 87]. The need for many

magic state factories further inflates the overhead.

As we show in Chapters 4 and 5, the challenges associated with error correction

can be mitigated to an extent. In Chapter 4 we show how the QRAM query infidelity

can be suppressed without incurring an additional O(N) overhead, and in Chapter 5

we propose hardware-efficient QRAM architectures that are compatible with low-

overhead fault tolerance.

2.3.3 Long-range interactions

A classical data structure of size O(N) is required to hold the classical data vector

x, and in order to access any part of this data structure in only O(logN) time,

QRAM necessarily requires long-range interactions. Indeed, the need for long-range

interactions is evident in Figs. 2.4 and 2.7. As in the figures, suppose that the classical

data are stored in a one-dimensional data structure whose physical extent (i.e. its

length) is Nd, where d denotes the length of a single memory cell. The physical

separation between adjacent routers at the lowest level of the tree is then only d,

but this separation doubles at each higher level of the tree. Towards the top of the

tree, routers are physically separated from one another by distances approaching Nd.

Therefore, for sufficiently large N , long-range interactions will be required to connect

routers at the top levels of the tree6.

Some hardware platforms, such as Rydberg atoms [88, 89], boast native long-range

6. Note that the distances can be reduced if a higher-dimensional data structure is used, but
long-range interactions will still eventually be required.

46

interactions that could be exploited for this purpose. Alternatively, a large-scale

QRAM can be built in a modular fashion, and entanglement between far-separated

modules could be used to enable the requisite long-range connectivity [90–94]. Never-

theless, the need for long-range interactions may add additional hardware complexity

that could further complicate the construction of a large-scale QRAM.

2.3.4 Fair comparisons with classical hardware

In order to claim that QRAM can facilitate a genuine quantum speedup for some

application, a fair comparison must be made with comparable classical hardware.

Refs. [30, 95] argue that, because QRAM assumes access to O(N) quantum routers

operating in parallel, it is appropriate to compare with a parallel classical computer

with O(N) processors. Indeed, if each quantum router requires a classical co-processor

to control the routing operations or implement error correction, then O(N) classical

processors are already required to operate a QRAM. It is prudent to ask whether

any purported quantum speedups still hold when assuming access to such highly-

parallelized classical resources. Of course, the need to make a fair comparison with

classical hardware does not affect our ability to construct a large-scale QRAM. Rather,

it only constrains the potential applications where QRAM might be used to obtain a

quantum speedup.

Consider the case of Grover’s search algorithm as an example. Suppose a QRAM

is used to search an unstructured database of size N . A marked element can be found

in only O(
√
N) QRAM queries using Grover’s algorithm [28]. Since each query takes

O(logN) time, the total time required to find the marked element is O(
√
N logN).

Given to access to a classical computer with O(N) processors operating in parallel,

however, it is possible to solve this same problem in only O(logN) time. One simply

arranges the classical processors in a binary tree, and the address of the marked

element can be passed up the tree in only O(logN) time. Thus, in this instance we

47

see that the quantum device provides no speedup over a comparable classical device.

The recent advent of so-called quantum-inspired classical algorithms [96–98] provides

another example of this phenomenon. In contrast, simulating evolution under a local

Hamiltonian is one example of an application where a fair comparison with classical

hardware does not imperil the quantum speedup.

48

Chapter 3

Noise resilience of the

bucket-brigade QRAM

The idea of QRAM has faced skepticism because of the practical challenges outlined

in Section 2.3. Indeed, the question of whether QRAM can be used to facilitate

quantum speedups, either in principle or in practice, has not been definitively set-

tled. A central practical concern is the seemingly high susceptibility of QRAM to

decoherence [14, 16]. As we discuss below, naive implementations of QRAM perform

operation (2.63) with an infidelity that scales linearly with the size of the memory.

Such implementations are not scalable. As the memory size increases, the infidelity

grows rapidly without quantum error correction, yet the overhead associated with er-

ror correction can quickly become prohibitive because all O(N) ancillary qubits need

to be corrected [18].

Refs. [14, 15] proposed the bucket-brigade QRAM architecture as a potential so-

lution to this decoherence problem, though this solution has also faced skepticism.

Proponents argue that the bucket-brigade QRAM is highly resilient to noise, in that

it can perform operation (2.63) with an infidelity that scales only polylogarithmi-

cally with the size of the memory. This favorable scaling could allow for high-fidelity

49

queries of large memories without the need for quantum error correction, thereby

mitigating the aforementioned scalability problem. This noise resilience, however,

has only been derived for contrived noise models that place severe constraints on the

quantum hardware [14–16], thus casting doubt on the viability of the bucket-brigade

architecture. Indeed, while several proposals for experimental implementations of

QRAM have been put forth [15, 17, 99–102], to our knowledge there has yet to be

an experimental demonstration of even a small-scale QRAM1. Absent from this de-

bate has been a fully general and rigorous analysis of how decoherence affects the

bucket-brigade architecture.

In this chapter, we study the effects of generic noise on the bucket-brigade QRAM

architecture. Our main result is that the architecture is far more resilient to noise than

was previously thought (our main scaling results are summarized in Table 3.1). We

rigorously prove that the infidelity scales only polylogarithmically with the memory

size even when all components are subject to arbitrary noise channels, and we verify

this scaling numerically. Remarkably (and perhaps counter-intuitively), this scaling

holds even for noise channels where the expected number of errors scales linearly

with the memory size. Our analysis reveals that this remarkable noise resilience is

a consequence of the limited entanglement among the memory’s components. We

leverage this result to show that significant architectural simplifications can be made

to the bucket-brigade QRAM, and that hybrid architectures [18, 19, 36, 84], which

implement (2.63) with fewer qubits but longer query times, can also be made partially

noise resilient. We also show that these benefits persist when quantum error correction

is used. Importantly, the present work shows that a noise-resilient QRAM can be

constructed from realistically noisy devices, paving the way for small-scale, near-term

experimental demonstrations of QRAM.

1. Note that the “random access quantum memories” demonstrated in Refs. [103–105] are distinct
from QRAM; these experiments do not demonstrate the quantum addressing needed to perform
operation (2.63).

50

Architecture Infidelity scaling

Fanout QRAM N logN

Standard BB QRAM log2N

Two-level BB QRAM log3N

Hybrid fanout N logN +M log2N

Hybrid BB M log2N

Table 3.1: Infidelity scalings of QRAM architectures. N denotes the size of the classical
memory being queried, and bucket-brigade is abbreviated as BB. The first three architec-
tures have circuit depth O(logN) and require O(N) qubits. For the hybrid architectures,
M ≤ N is a tunable parameter that determines the circuit depth, O(M logN), and the
number of qubits, O(N/M + logN).

This chapter is organized as follows. In Section 3.1, we review prior works that

studied the effects of noise on QRAM. The main result of this chapter is presented

in Section 3.2: we prove that the query infidelity of the bucket-brigade architecture

scales only polylogarithmically when its components are subject to generic mixed-

unitary error channels (the full proof for arbitrary error channels is given in Ref. [77]).

Importantly, these proofs assume that all components of the QRAM (both active

and inactive) are susceptible to decoherence, in contrast to prior works. Next, in

Section 3.3, we discuss various implications and extensions of this result. We show

that the use of three-level memory elements in the original bucket-brigade architec-

ture is superfluous and that the architecture can be significantly simplified (while

maintaining noise resilience) by instead using two-level memory elements. We also

show that the bucket-brigade architecture can also be employed to imbue hybrid ar-

chitectures with partial noise resilience. Additionally, we prove that error-corrected

implementations of the bucket-brigade architecture are resilient to logical errors, and

we discuss the practical utility of error-corrected QRAM. Finally, in Section 3.4 we

conclude by discussing the implications of these results in the context of potential

algorithmic applications.

51

The results in this chapter are primarily based on Ref. [77]: CTH et al., Resilience

of quantum random access memory to generic noise, PRX Quantum 2, 020311 (2021).

3.1 Prior studies of noise in QRAM

In this section, we review earlier results concerning the effects of noise on QRAM. We

begin by illustrating that the fanout architecture is highly susceptible to decoherence

and hence impractical. This impracticality motivated the development of the bucket-

brigade QRAM. While earlier works claimed that the bucket-brigade architecture

could be resilient to decoherence, all of the earlier arguments rested on the problematic

notion of decoherence-free inactive routers; we review these arguments and their

shortcomings.

3.1.1 Effects of noise on the fanout QRAM

The fanout architecture is impractical due to its high susceptibility to decoherence.

In this architecture, each address qubit is maximally entangled with all routers at

the respective level of the tree, similar to a GHZ state. As a result, the decoherence

of any individual router is liable to ruin a query. As an example, suppose that the

routers are subject to amplitude-damping errors. The loss of an excitation from any

router at level ` collapses all other level-` routers—and the `-th address qubit—to

the |1〉 state. Any terms in the superposition where the `-th address qubit was in the

|0〉 state prior to the error are thus projected out, thereby reducing the fidelity by a

factor of 2 on average.

More generally, suppose that each router suffers an error with probability ε at

each time step during the query. The final state Ω of the full system (address, bus,

52

and routers) can then be written as a statistical mixture

Ω = (1− ε)T (N−1) Ωideal + . . . (3.1)

where Ωideal is the error-free state, T = O(logN) is the number of time steps required

to perform a query, and “. . .” denotes all states in the mixture where at least one of

the N − 1 routers has suffered an error. We define the query fidelity as

F = 〈ψout|TrR (Ω) |ψout〉 , (3.2)

where TrR indicates the partial trace over the routers. The routers are traced out

because only the address and bus registers are passed on to whatever algorithm has

queried the QRAM; the routers are ancillae whose only purpose is to facilitate the

implementation of O
(DL)
x .

As illustrated by the amplitude-damping example, the problem with the fanout

implementation is that the no-error state Ωideal is generally the only state in the

mixture (3.1) with high fidelity. Neglecting the low-fidelity states, the query infidelity

scales as

1− F ∼ εNT, (3.3)

to leading order in ε. We refer to this linear scaling of the infidelity with the memory

size as unfavorable because error probabilities ε � 1/NT are required to perform

queries with near-unit fidelity. This stringent requirement severely constrains the

size of fanout QRAMs. For example, error probabilities ε ∼ 10−3 would restrict the

maximum size of a high-fidelity fanout QRAM to less than N ∼ 100 memory cells.

While quantum error correction can be used to suppress the error rates in principle,

the additional hardware overhead can be prohibitive [18] because all O(N) routers

53

must be error corrected. Thus, because of its high susceptibility to decoherence, the

fanout architecture is not regarded as scalable.

3.1.2 Effects of noise on the bucket-brigade QRAM

The bucket-brigade QRAM architecture was originally proposed as a means to over-

come practical challenges associated with noise. As described in Section 2.2.3, all

quantum routers in the bucket-brigade architecture have three states, two active

states (|0〉 = route left, |1〉 = route right) and one inactive state (|W 〉 = wait). At

the beginning of a query, all routers are initialized to the inactive |W 〉 state. As the

address qubits are routed into the tree, logN routers are excited to active states,

while the remaining (N − 1)− logN routers remain in the inactive state2. This lim-

ited number of active routers is central to all prior arguments for the bucket-brigade

architecture’s noise resilience.

To demonstrate the noise resilience of the bucket-brigade QRAM, the original pa-

pers [14, 15] adopt an error model where only active routers are prone to decoherence.

For example, the active states of a router could correspond to some energetically ex-

cited states with finite lifetimes, whereas the inactive state could correspond to a

relatively stable ground state. Alternatively, the process of exciting a router to an

active state could be very noisy in comparison to simply idling in the inactive state.

Whatever the justification, if only active routers are prone to decoherence, then it

follows from the limited number of active routers that the bucket-brigade architecture

is resilient to noise. For example, Ref. [16] studied the bucket-brigade QRAM with

routers subject to |0〉 ↔ |1〉 bit-flip errors, with the |W 〉 states assumed to be error

free. In this case, the expected number of errors is only ε logN , because only the

logN active routers are prone to errors. The expected number of errors also scales

2. When multiple different memory elements are queried in superposition, each router is generally
in a superposition of active and inactive states. Only logN routers are active within in each branch
of the superposition corresponding to a definite address.

54

with logN for the error model considered in Refs. [14, 15, 17], where gates involving

only inactive routers are assumed to be error free.

For error models where only active routers are prone to decoherence, the query

infidelity is

1− F ∼ εT logαN. (3.4)

to leading order in ε, where α is some constant, and we recall that T = O(logN) is the

number of time steps. We refer to this logarithmic scaling of the infidelity with the

memory size as favorable because queries can be performed with near-unit fidelity

so long as the error rate satisfies ε � 1/T logαN . This is a much more forgiving

requirement; memories of exponentially larger size can be queried relative to the

fanout architecture. Indeed, the exponential improvement in scalability suggests that

quantum error correction is not required to query large memories with high fidelity,

provided physical error rates are sufficiently low.

Unfortunately, the above error models can be poor approximations of the noise in

actual quantum hardware. In these contrived models, inactive routers are assumed to

be completely free from decoherence. More realistically, all routers will be prone to

decoherence, independent of whether they are active or inactive. For example, though

several proposals for experimental implementations of the bucket-brigade scheme have

been put forth [15, 17, 99–101], none have proposed a method of engineering routers

that are free from decoherence when inactive. While one can conceive of implemen-

tations in which inactive routers have decoherence rates which are nonzero but far

smaller than those of active routers, it is not obvious whether such implementations

would enjoy the favorable infidelity scaling. Indeed, Ref. [14] conjectured that deco-

herence of inactive routers could significantly increase the infidelity in this case, owing

to the exponentially larger number of inactive routers. Furthermore, Refs. [14, 16]

portray the favorable infidelity scaling as a direct consequence of the assumption that

inactive routers are decoherence-free.

55

Additionally, the above error models have troubling implications in the context

of quantum error correction. Suppose that we try to use quantum error correction

to further suppress errors in the bucket-brigade QRAM architecture. Each of the

physical qubits comprising a quantum router must then be replaced by an error-

corrected logical qubit in order to yield an error-corrected logical router. However, as

argued in Ref. [16], quantum error correction is an active process; one must actively

check for errors and correct them when they occur. As a result, even when an error-

corrected quantum router is idling in the logical |W 〉 state, it is very much active at

the physical level. Thus, when quantum error correction is used, all routers should

be regarded as physically active. If the noise resilience of the bucket-brigade QRAM

is to be attributed to the limited number of active routers (as is done in Refs. [14–

17, 52, 53]), then the use of quantum error correction evidently undermines this

resiliency; the query infidelity would then revert to the same 1 − F ∝ N scaling of

the fanout QRAM. One is led to the paradoxical conclusion that the use of quantum

error correction can actually reduce the query fidelity.

These two factors—the necessity of incorporating more realistic error models and

the paradoxical implications of prior analyses for quantum error correction—motivate

a critical re-examination of the effects of noise on the bucket-brigade QRAM. In

particular, it is prudent to ask whether the favorable scaling still holds when inactive

routers are not assumed to be decoherence-free. Relaxing this assumption causes the

expected number of errors to increase exponentially, from O(logN) to O(N). Because

the expected number of errors in the fanout architecture is also O(N), one might

naively expect that the favorable infidelity scaling no longer holds. However, in the

next section we prove that this is not the case. Perhaps surprisingly, the infidelity of

the bucket-brigade architecture still scales favorably despite the exponential increase

in the expected number of errors. Moreover, the favorable scaling holds for arbitrary

error channels.

56

3.2 Noise resilience of the bucket-brigade QRAM

In this section, we prove that the bucket-brigade QRAM’s query infidelity scales only

polylogarithmically with the memory size, even when all routers (both active and

inactive) are subject to decoherence. We begin by providing an intuitive explanation

for this result based on entanglement within the bucket-brigade architecture. Then,

by carefully analyzing the propagation of errors within the QRAM, we derive an upper

bound on the query infidelity. Finally, we classically simulate QRAM circuits with

routers subject to a variety of realistic error channels in order to verify this bound.

3.2.1 Intuition

The noise resilience of the bucket-brigade architecture can be understood intuitively as

a consequence of the minimal entanglement among the routers, see Fig. 3.1. Suppose

one queries all memory locations in equal superposition. Then in both the fanout and

bucket-brigade architectures, all of the routers are entangled. However, the degree to

which each router is entangled with the rest of the system is quite different between the

two architectures. This difference can be quantified by computing the entanglement

entropy for a given router

S(ρ) = −Tr [ρ log ρ] (3.5)

where ρ is the reduced density matrix of the router, obtained by tracing out the

rest of the system. In the fanout architecture, each router is maximally entangled

with the rest of the system; the reduced density matrix is the maximally mixed

state ρ = I/2 (recall the fanout architecture employs two-level routers), for which

S(ρ) = 1. In contrast, in the bucket-brigade architecture, the entanglement entropy

of a router depends on its location within the tree. A router at level ` (0-indexed) of

the tree is only active in N2−` of the N different branches of the superposition. As

a result, the entanglement entropy decreases exponentially with depth, S(ρ) ∼ 2−`.

57

Routers deeper down in the tree are nearly disentangled from the system, and their

decoherence only reduces the query fidelity by an exponentially decreasing amount.

Thus, despite the fact that exponentially many such errors typically occur, the overall

fidelity can remain high. More precisely, if we posit that the infidelity associated with

an error in a router at level ` scales as ∼ 2−` due to the limited entanglement, and

that εT 2` such routers suffer errors on average, then the total infidelity scales as

1− F ∼
logN∑
`=1

(
2−`
) (
εT2`

)
= εT logN. (3.6)

The infidelity scales only logarithmically with N because the exponential increase in

the expected number of errors with ` is precisely cancelled by the exponential decrease

in the infidelity associated with each. We rigorously justify these claims in the next

section.

+ + + + + ...

Figure 3.1: Conceptual picture of noise resilience. Each ket represents the state of the
QRAM when a different memory element is queried, with the superposition of kets repre-
senting a superposition of queries to different elements. When a router r suffers an error
(red lightning bolt), it corrupts only the subset of queries where r is active (indicated by
thick red kets); other queries in the superposition succeed regardless. Because most routers
are only active in a small fraction of queries, most queries succeed and the total infidelity
is low.

3.2.2 Proof of noise resilience

In this section, we prove that the query infidelity of the bucket brigade architecture

is upperbounded by

1− F ≤ AεT logN, (3.7)

58

where T = O(logN) is the time required to perform a query, ε is the probability of

error per time step, and A is a constant of order 1. This bound holds even when

all N memory elements are queried in superposition, and it holds for arbitrary error

channels, including, e.g., depolarizing errors and coherent errors. Moreover, we as-

sume no special structure in the classical data xi, so our bounds hold independent of

the data.

Our proof is based on a careful analysis of how errors can propagate throughout

the QRAM. Accordingly, we begin by defining our error model. We suppose that

each routing qutrit is subject to an error channel in the form of a generic completely-

positive trace-preserving map,

ρ→ E(ρ) =
∑
i

KmρK
†
m, (3.8)

where the Kraus operators Km obey the completeness relation
∑

mK
†
mKm = I. The

error channel is applied simultaneously to all routers at discrete time steps throughout

the query (see Eq. (3.14) below). In Ref. [77], we prove that the bound (3.7) holds

for arbitrary error channels of the form (3.8). For the sake of brevity and simplicity,

however, here we restrict our attention to channels where (i) there is a no-error

Kraus operator, K0, that is proportional to the identity, and (ii) the remaining Kraus

operators are proportional to unitaries, K†mKm ∝ I. Under these restrictions,

E(ρ) = (1− ε)ρ+
∑
m>0

KmρK
†
m, (3.9)

for some ε ∈ [0, 1]. An operational interpretation of this channel is that one of the

errors Km>0 occurs with probability ε, and no error occurs with probability 1 −

ε. Experimentally relevant examples include bit-flip, dephasing, and depolarizing

channels. The restriction to this form of mixed-unitary channel allows us to make

two assumptions that greatly simplify the proof: (i) the probability that an error

59

occurs is independent of the router state, and (ii) the no-error backaction K0 ∝ I is

trivial. We make no further assumptions about the Kraus operators, and we stress

that they may act non-trivially on the inactive state |W 〉, meaning that inactive

routers can decohere.

It is important to note that this error model only describes decoherence of the

routing qutrits; a router’s incident and output modes may also decohere, and there

may be errors in the gates that implement the routing operation. At the end of this

section, we prove that the bound (3.7) still holds when including these other errors,

but we neglect them for now to simplify the discussion.

The proof proceeds by direct calculation. To bound the infidelity, we first write

the final state Ω as a sum over different error configurations,

Ω =
∑
c

p(c)Ω(c), (3.10)

where an error configuration c specifies which Kraus operator is applied to each router

at each time step. Here, p(c) is the probability of configuration c, and the pure state

Ω(c) = |Ω(c)〉 〈Ω(c)| is the corresponding final state of the system (both quantities

are defined more formally below). The fidelity is thus given by,

F =
∑
c

p(c)F (c), (3.11)

where

F (c) = 〈ψout|TrRΩ(c)|ψout〉 (3.12)

is the query fidelity of the state Ω(c). Our approach is to place an upper bound on

the infidelity by deriving an upper bound on 1− F (c).

Let us formally define Ω(c) and p(c). A QRAM query consists of O(N) routing

operations performed in a predetermined sequence. By design, many of these oper-

60

(a) (b)

Good BadBad

Figure 3.2: Error configurations. (a) Example composite Kraus operator Kc(t). The
single-router Kraus operators Kc(r,t) comprising the tensor product Kc(t) are arranged geo-
metrically according to the routers on which they act. Branches of the tree are classified as
either good or bad according to the locations of the errors Km>0. (b) Query to an element
k 6∈ g(c). Routers are labelled with their ideal, error-free states, and routers outlined in red
suffer errors. Because one of the active routers suffers an error, the query is liable to fail.

ations commute and can be performed in parallel, so that the entire operation can

be written as a quantum circuit with depth T = O(logN) (see circuit diagram in

Fig. 2.8). More precisely, a bucket-brigade QRAM query can be written as,

|ψout〉 |W〉 = UT . . . U2U1 |ψin〉 |W〉 , (3.13)

where |W〉 = |W 〉⊗(N−1) is the initial state of the routers, and Ut is a constant-depth

circuit. Now, let Kc(r,t) denote the Kraus operator applied to router r at time step t,

and define the composite Kraus operator Kc(t) =
⊗N−1

r=1 Kc(r,t) [see Fig. 3.2(a)]. The

final state |Ω(c)〉 is

|Ω(c)〉 =
1√
p(c)

[
UTKc(T) . . . U1Kc(1)

]
|ψin〉 |W〉 , (3.14)

The requirement that |Ω(c)〉 is normalized defines the probability p(c) of obtaining

state Ω(c) in the mixture (3.10). Note that
∑

c p(c) = 1 follows from the Kraus

operators’ completeness relation.

For a given error configuration c, it is convenient to classify branches of the tree as

either good or bad, depending on whether errors Km>0 are ever applied to the routers

61

in the branch [Fig. 3.2(a)]. More precisely, let i denote the set of all routers in the

i-th branch of the tree (corresponding to address i), and let c denote the set of all

routers which have an error Km>0 applied to them at some time step. A branch i

is defined to be good if i ∩ c = ∅, and bad otherwise. To keep the notation simple,

we use g(c) to denote set of good branches. As illustrated in Fig. 3.2(b), queries to

addresses i 6∈ g(c) are liable to fail because they rely on routers that suffer errors.

Incident

Router

Left

Right

Incident

Router

Left

Right

(a)

(b)

Incident

Router

Left

Right

(c)

Figure 3.3: Error propagation. (a,b) Constrained propagation during queries to elements
∈ g(c). The error in the leftmost router can propagate upward into the left output of the
router indicated by the dashed box. The circuits on the left show that the error does not
propagate further, regardless of whether the router is inactive (a) or active (b). In the
circuit diagrams, red boxes denote errors Km>0, and the red arrows indicate how the error
propagates (i.e. how the error transforms under conjugation by the routing operation). (c)
Error propagation is not constrained during queries to elements 6∈ g(c). Note that the state
of the router dictates how the error propagates in these examples.

62

The main observation underlying our proof is that the propagation of errors is

constrained when memory elements ∈ g(c) are queried. Roughly speaking, errors

do not propagate from bad branches into good branches. More precisely, for any

i, j ∈ g(c), errors do not propagate into branch j during a query to element i. We

illustrate this fact with two examples, shown in Figs. 3.3(a,b). In general, errors in

the bad branches can propagate. They can even propagate into an output mode of a

router r in branch j ∈ g(c), but they can never propagate into branch j. Fig. 3.3(a)

shows an example of how such an error propagates through r’s routing operation in

the case where a memory element i 6= j is queried. Because j ∈ g(c), r’s routing qutrit

suffers no errors and is thus in |W 〉. The action of the routing operation is trivial

for a router in |W 〉, so the error does not propagate to other modes. (We reiterate

that we are assuming error-free gates; gate errors are discussed at the end of this

section.) Similarly, Fig. 3.3(b) shows an example of how errors propagate in the case

where j is queried. The error-free routing qutrit is in |1〉, so the routing operation

acts non-trivially on only the incident and right output modes. The error in the left

output mode does not propagate upward. For comparison, in Fig. 3.3(c) we illustrate

that the propagation of errors is not constrained in this way when memory elements

k 6∈ g(c) are queried. As an aside, we note that the constrained error propagation

can be understood as a sort of error transparency [106–108]: when elements ∈ g(c)

are queried, the errors in the bad branches commute with the routing operations in

the good branches.

The constrained propagation of errors has two important consequences. The first

is that a query to memory element i ∈ g(c) always succeeds, meaning that the address

and bus registers are in the desired state |i〉A |xi〉B at the end of the query. This follows

from the fact that errors cannot propagate to any of the routers in branch i. The

second consequence is that, if multiple memory elements i, j, . . . ∈ g(c) are queried in

superposition, the address and bus registers are disentangled from the routers at the

63

end of the query. This follows from the fact that errors are restricted to propagate

within the bad branches, and their propagation is unaffected by routers outside these

branches. Figs. 3.3(a,b) provide an example. As a result, even though errors can

propagate non-trivially among the bad branches during the query, the final state of

the routers is independent of which memory element in g(c) is queried.

It follows that the final state |Ω(c)〉 can be written as

|Ω(c)〉 = |good(c)〉+ |bad(c)〉 , (3.15)

with

|good(c)〉 =

∑
i∈g(c)

αi |i〉A |xi〉B
 |f(c)〉R . (3.16)

Here, |f(c)〉R denotes the final state of the routers with respect to the good branches,

and |bad(c)〉 contains the i 6∈ g(c) terms. We now use the expression (3.15) to place

a lower bound on F (c). First notice that

F (c) ≥ |〈ψout, f(c)|Ω(c)〉|2 , (3.17)

which can be obtained by performing the partial trace in Eq. (3.12) using a basis that

contains the state |f(c)〉 and neglecting the contributions from other states. Then,

defining Λ(c) as the weighted fraction of good branches,

Λ(c) = 〈good(c)|good(c)〉 =
∑
i∈g(c)

|αi|2 (3.18)

we have that

〈ψout, f(c)|good(c)〉 = Λ(c) (3.19)

|〈ψout, f(c)|bad(c)〉| ≤ 1− Λ(c). (3.20)

64

To obtain the inequality (3.20) we have used the fact that |Ω(c)〉 is normalized and

that 〈good(c)|bad(c)〉 = 0. The latter follows from the orthogonality of different initial

address states, 〈i|j〉A = 0 for i 6= j, and the fact that all subsequent operations,

including the Kraus operators, are unitary and thus preserve inner products (this

follows from our earlier restriction to mixed-unitary error channels; general channels

are covered by the proof in Ref. [77]). Plugging Eqs. (3.15), (3.19) and (3.20) into

the bound (3.17) and applying the reverse triangle inequality allows us to bound the

infidelity as a function of Λ(c),

F (c) ≥


(2Λ(c)− 1)2, Λ(c) ≥ 1/2,

0, Λ(c) < 1/2.

(3.21)

To proceed further, we compute the expected fraction of good branches, E(Λ),

where the expectation value is taken with respect to the distribution of error configu-

rations, i.e. E(f) =
∑

c p(c)f(c). This expectation value can be computed recursively

for trees of increasing depth. Let Ed(Λ) denote the expected fraction of good branches

for a depth-d tree. For a depth-1 tree, expected fraction is equivalent to the proba-

bility that the lone router never suffers an error, E1(Λ) = (1− ε)T . For deeper trees,

the expected fraction of error-free routers at each level is (1 − ε)T , so we have the

recursive rule

Ed+1(Λ) = (1− ε)TEd(Λ). (3.22)

Applying this rule to the initial condition E1(Λ), we obtain

ElogN(Λ) = (1− ε)T logN . (3.23)

65

We can now combine the above results to bound the infidelity. We have that

F = E(F) ≥ E(
√
F)2 (3.24)

≥ [2ElogN(Λ)− 1]2 (3.25)

=
[
2(1− ε)T logN − 1

]2
, (3.26)

where the second inequality follows from (3.21) under the assumption that E(ΛlogN) ≥

1/2. Applying Bernoulli’s inequality yields the desired result,

1− F ≤ 4εT logN, (3.27)

which holds for εT logN ≤ 1/4. This bound is our main result, and we stress that it

holds even when all N elements are queried in superposition, and that it was derived

under the assumption that all routers are susceptible to decoherence, regardless of

whether they are active or inactive.

We offer two additional remarks on the proof. First, we reiterate that while the

above proof holds only for mixed-unitary error channels, in fact the favorable infidelity

scaling holds for arbitrary error channels, which we prove in Ref. [77]. Second, the

favorable scaling can be interpreted as a consequence of the limited entanglement

among the routers, as discussed in Section 3.2.1. This limited entanglement manifests

in Eqs. (3.15) and (3.16). The fact that a router at level ` is active in only N2−`

of the N branches implies both that the router’s entanglement entropy decreases

exponentially with `, and that only N2−` branches are corrupted when it suffers an

error.

We conclude this section by describing four simple extensions of the proof that

cover other cases of interest:

1. Initialization errors. Suppose that each router has some probability ε of not

being initialized to |W 〉 prior to the query. Such errors can be viewed as router errors

66

of the form (3.8) that occur during the 0-th time step. As such, they are also covered

by the proof provided one replaces T → T+1 in the equations above. In Section 3.3.1,

we show that, in fact, one can make an even stronger statement: the infidelity scales

favorably even when the QRAM is initialized in an arbitrary state.

2. Gate errors. Faulty implementation of the routing operation can be described

without loss of generality as a composition D◦R, of some error channel D followed by

the ideal routing operation R. Provided that D’s Kraus operators are proportional

to unitaries, and that there is a no-error Kraus operator proportional to the identity,

then D can also be written in the form (3.9), and the proof proceeds as above. Note

that the propagation of errors is still constrained in the case of gate errors because

all routing gates in good branches are error-free by construction.

3. Alternate gate sets. We have defined the routing operation as a sequence of two

controlled-SWAP gates [Fig. 2.3], but this same operation could also be decomposed

into other types of gates, e.g. into Toffolis, or Clifford + T gates. The bound (3.27)

holds for any choice of gate decomposition. To see that the bound holds, consider

that any error that propagates non-trivially through a given routing operation can

be categorized as occurring either before or during that operation. The propagation

of errors that occur before the operation is determined solely by the conjugation of

the error with the entire routing operation (Fig. 3.3), which is unaffected by the

choice of decomposition. In contrast, the propagation of errors that occur during

the operation will generally depend on the choice of the decomposition. However,

such errors can equivalently be described as a faulty implementation of the routing

operation itself, so they do not spoil the favorable error scaling by the argument in

the previous paragraph.

4. Correlated errors. The noise resilience also persists in the presence of correlated

errors that afflict a constant number of adjacent routers in the tree. The proof assumes

that if any error (correlated or otherwise) occurs in a branch, then that branch does

67

not contribute to the fidelity. As such, whether an error afflicts only a given router r or

also some of r’s child routers lower in the tree is irrelevant to the proof. The effects of

correlated errors can thus be incorporated simply by augmenting ε to also include the

probability that a router is among those afflicted by a correlated error. For correlated

errors afflicting only a constant number of adjacent routers, the resulting increase in

ε is independent of N , so the query infidelity still scales only polylogarithmically with

N .

3.2.3 Classical simulation of noisy QRAM circuits

In this section, we verify the bound (3.27) through numerical simulation of noisy

QRAM circuits. While full state vector simulations require exp(N) memory and

quickly become intractable as the QRAM size grows, our simulations are enabled by

a novel classical algorithm with space and time complexity poly(N).

The main observation underlying the algorithm is that any quantum circuit con-

sisting of the following elements can be simulated efficiently classically: state prepa-

ration in the computational basis, and gates from the set {SWAP, controlled-SWAP}.

Such circuits are essentially classical—the system begins in a definite computational

basis state, and the SWAP-type gates act only as permutations so that the system

remains in a computational basis state through every step of the circuit. The simula-

tion proceeds simply by tracking the (classical) state of the system. Furthermore, for

initial states that are a superposition of polynomially-many different computational

basis states, it follows from linearity that the action of any circuit composed of these

SWAP-type gates can also be efficiently simulated. QRAM circuits can thus be effi-

ciently simulated because they consist of SWAP-type gates acting on O(N) qubits or

qutrits, and the system is initialized in a superposition of only O(N) computational

basis states (one for each address). In fact, QRAM circuits are examples of so-called

efficiently computable sparse (ECS) operations, whose efficient classical simulation is

68

described in Ref. [109].

For context, we note that this approach is similar in spirit to the Gottesman-Knill

theorem [110], which states that any Clifford circuit with preparation and measure-

ment in the computational basis can be simulated classically in polynomial time.

Because QRAM circuits necessarily employ non-Clifford gates (controlled-SWAP),

however, the theorem does not directly apply. Still, the similarities are apparent:

restricting the allowed gates and state preparations enables an efficient classical de-

scription of the system, making efficient simulation possible.

In addition, for a wide variety of error models, noisy QRAM circuits can be

simulated efficiently using Monte Carlo methods. To simulate noisy circuits, the

space of error configurations is randomly sampled according to the distribution p(c).

For each sampled configuration c from a set of samples S, we compute the final

system state |Ω(c)〉, and we obtain the fidelity by averaging F = 1
|S|
∑

c∈S F (c). This

sampling procedure is efficient provided that two criteria are satisfied: first, that the

state |Ω(c)〉 is efficiently computable, and second, that sampling from p(c) is efficient.

A sufficient condition for satisfying these two criteria is that the error channel maps

computational basis states to other computational states, i.e., the channel’s Kraus

operators Km satisfy

Km |i〉 ∝ |i′〉 , (3.28)

for all m, and where |i〉 , |i’〉 ∈ {|0〉 , |1〉 , |W 〉} are computational basis states. The first

criterion is satisfied because Eq. (3.28) guarantees that a QRAM circuit interspersed

with applications of the Kraus operators Km is still ECS. The second criterion is

satisfied because the distribution p(c) can be sampled efficiently by applying errors

independently to each router (with appropriate probability) at each time step as the

simulation proceeds. In detail, suppose that at time t the system is in a state |ψ(t)〉

69

10-2
10-1

10-3

10-4

1 105

Depolarizing

(a)

1 105

(b)
Bit-flip

Depth
1 105

(c)
Dephasing

1 105

(d)
Damping

1 105

(e)
Heating

Depth Depth Depth Depth

Figure 3.4: Favorable error scaling. For a variety of error channels, the query infidelity
(black dots) is calculated numerically and plotted as a function of the tree depth logN
(note the logarithmic scaling on both axes). The region defined by the upper bound (3.27)
is shown in gray in each plot. Plotted infidelities are averages over many randomly generated
binary data sets {x0, . . . xN−1}. Each such data set is generated by randomly choosing each
xi to be 0 or 1 with equal probability. Error bars are smaller than the dot size. The error
rate for all plots is ε = 10−4.

that is a superposition of polynomially-many computational basis states,

|ψ(t)〉 =
∑

{i1,...iN−1}∈C

αi |i1, i2, . . . , iN−1〉 , (3.29)

where |ir〉 denotes the state of router r, and the cardinality of the set C is O(polyN).

The probability that a Kraus operator Km is applied to router r is

Tr
[
K†mKmρr

]
, (3.30)

where ρr(t) = Trr̄(|ψ(t)〉 〈ψ(t)|) is the reduced density matrix of router r, with Trr̄

denoting the partial trace over the rest of the system. Eq. (3.28) guarantees that this

probability is efficiently computable, so sampling from the possible errors at time t

is also efficient. This sampling procedure is repeated at each time step in order to

sample from the full error configuration.

We apply this algorithm in order to compute the query infidelity for QRAM

circuits with routers subject to a variety of noise channels. The results (Fig. 3.4)

confirm that the QRAM query infidelity scales favorably in the presence of realistic

noise channels acting on all of the memory’s components. We stress that, for such

channels, the expected number of errors generally scales linearly with N . Results for

70

qutrit depolarizing, bit-flip, and dephasing channels are shown in panels (a), (b), and

(c), respectively. We define the qutrit depolarizing, bit-flip, and dephasing channels

as in Refs. [111], [16], and [112], respectively. In particular, we define the operators

A1 =


0 1 0

0 0 1

1 0 0

 , A2 =


1 0 0

0 ω 0

0 0 ω2

 , (3.31)

where the matrices are written in the {|W 〉 , |0〉 , |1〉} basis, and ω = ei2π/3. The Kraus

decompositions of the qutrit error channels are

Depolarizing =

{√
1− εI,

√
ε

8
A1,

√
ε

8
A2,

√
ε

8
A2

1,√
ε

8
A2

2,

√
ε

8
A1A2,

√
ε

8
A2

1A2,

√
ε

8
A1A

2
2,

√
ε

8
A2

1A
2
2

}
(3.32)

Bit-flip =
{√

1− εI,√ε (|0〉 〈1|+ |1〉 〈0|)
}

(3.33)

Dephasing =

{√
1− εI,

√
ε

2
A2,

√
ε

2
A2

2

}
(3.34)

Here, each channel is specified by a list of its Kraus operators {K0, K1, . . .}. These

channels are all of the form (3.9), so the query fidelity is subject to the bound (3.27).

The numerical results are all clearly consistent with this bound, and the expected

1−F ∝ log2N scaling is evident on the log-log scale. In panels (d) and (e), we show

numerical results for qutrit decay and heating channels,

Decay =

{
|W 〉 〈W |+

√
1− ε (|0〉 〈0|+ |1〉 〈1|) ,√ε |W 〉 〈0| ,√ε |W 〉 〈1|

}
(3.35)

Heating =

{
|0〉 〈0|+ |1〉 〈1|+

√
1− ε |W 〉 〈W | ,

√
ε

2
|0〉 〈W | ,

√
ε

2
|1〉 〈W |

}
. (3.36)

We find that the query fidelities for these channels also satisfy the bound (3.27).

Note, however, that the decay and heating channels are not mixed-unitary channels,

71

so the query fidelities are subject to the general bound derived in Ref. [77], rather

than Eq. (3.27).

3.3 Implications of QRAM’s noise resilience

In this section, we describe a number of important implications of the bucket-brigade

QRAM’s resilience to noise. We show that the use of three-level routers in the bucket-

brigade architecture is superfluous, that hybrid QRAM architectures (Section 2.2.4)

can also be made partially resilient to noise, and that the bucket-brigade’s noise

resilience persists when quantum error correction is used.

3.3.1 Noise resilience without inactive routers

In Section 3.2.2, we proved that the query infidelity of the bucket-brigade QRAM

scales favorably, even when inactive routers are subject to decoherence. It is thus

natural to ask whether distinguishing between active and inactive routers is useful,

and in fact whether the use of three-level routers is necessary in the first place. In this

section, we show that the answer is no—the query fidelity still scales only polylogar-

tihmically for QRAMs constructed from noisy two-level routers. As in Section 3.2.2,

the argument presented to justify this claim is based on a careful analysis of how

errors propagate. Furthermore, we show that this same argument also reveals that

noise resilience persists when the QRAM is initialized in an arbitrary state, and when

the routing circuit [Fig. 2.3(b)] is modified. Taken together, the results in this section

show that the noise resilience of the bucket-brigade scheme is a robust property that

is insensitive to implementation details. They also show that existing experimental

proposals [17, 99] employing two-level routers are noise-resilient.

Consider a QRAM constructed from routers with only two states: |0〉 (route left)

and |1〉 (route right). Routers are thus always active. For concreteness, we suppose

72

(a)

(b)

Incident

Router

Left

Right

Incident

Router

Left

Right

Figure 3.5: Error propagation with two-level routers. (a) A query to memory element
j ∈ g(c), with an error Km>0 applied to the red-outlined router. The circuit on the left
shows how the error propagates through the router indicated by the dashed box. In this
case, the error does not propagate into branch j. (b) A query to a different memory element
i ∈ g(c). In this case, the error propagates upward into branch j, in contrast to the situation
in (a).

that the routing operation is implemented using the circuit in Fig. 2.3(b), and that all

routers are initialized in |0〉, though these assumptions can be relaxed. Unfortunately,

the proof from Section 3.2.2 cannot be directly applied to show that the query fidelity

also scales favorably in this case. The proof fails in the case of two-level routers

because the propagation of errors is no longer so highly constrained. Recall that in

the case of three-level routers, errors do not propagate from bad branches into good

branches. More precisely, for any i, j ∈ g(c), errors do not propagate into branch

j when branch i is queried. This is not the case for two-level routers: while errors

do not propagate into branch i when branch i is queried, they can propagate into

other branches j, as illustrated in Fig. 3.5. Because of this difference, when multiple

memory elements i, j, . . . ∈ g(c) are queried in superposition, it is not guaranteed that

the address and bus registers will be disentangled from the routers at the end of the

query. Thus, Eqs. (3.15) and (3.16) no longer hold. Instead, the final state |Ω(c)〉 is

73

given by

|Ω(c)〉 =
∑
i∈g(c)

αi |i〉A |xi〉B |fi(c)〉R + |bad(c)〉 , (3.37)

where |fi(c)〉 denotes the now address-dependent final state of the routers, and |fi(c)〉 6=

|fj(c)〉 in general. As a result, the i, j ∈ g(c) terms are no longer guaranteed to be

in coherent superposition after tracing out the routers. Rather, the final state of the

address-bus system is liable to contain an incoherent mixture of these terms. That is,

the final density matrix can contain terms of the form |i, xi〉 〈i, xi| and |j, xj〉 〈j, xj|

without |i, xi〉 〈j, xj| or |j, xj〉 〈i, xi| terms. This loss of coherence reduces the fidelity.

We now proceed to estimate this reduction in fidelity. We find that the reduction

is mild, such that the infidelity still scales only polylogarithmically with the memory

size. Our approach is to isolate the subset of branches in g(c) for which the sort of

damaging error propagation described above does not occur. Explicitly, we define

the subset g̃(c) ⊆ g(c) as the largest subset such that for any i, j ∈ g̃(c) errors

do not propagate into branch j during a query to element i. We then have that

|fi(c)〉 = |fj(c)〉 by the same argument as given in Section 3.2.2. It follows that, if

multiple memory elements in g̃(c) are queried in superposition, the address and bus

registers will be disentangled from the routers at the end of the query.

Having defined g̃(c) as the subset of good branches without damaging error prop-

agation, we are free to define all other branches as bad and then proceed exactly as

in Section 3.2.2. In particular, we analogously define

Λ̃(c) =
∑
i∈g̃(c)

|αi|2 (3.38)

as the weighted fraction of good branches, and

F ≥ [2E(Λ̃)− 1]2, (3.39)

74

follows as the analog of Eq. (3.25). Because g̃(c) ⊆ g(c), we have that

E(Λ̃) = (1− δ)E(Λ), (3.40)

for some δ ∈ [0, 1] to be determined. Proceeding as in Section 3.2.2, it follows that

the infidelity satisfies the bound

1− F ≤ 4εT logN + 4δ (3.41)

assuming εT logN + δ ≤ 1/4.

We can estimate δ by computing the average probability that errors propagate

from bad branches into good branches. More specifically, we compute the probability

that an error propagates into a branch i ∈ g(c) when some other branch j ∈ g(c)

is queried. Suppose that a router r suffers an error at time step t, and let Pr→i(t)

denote the probability of this error propagating into branch i. Then to leading order

in ε,

δ = ε
∑
r,t

Pr→i(t) +O(ε2), (3.42)

which can be understood as the total probability that an error occurs and propagates

into branch i. To compute
∑

r,t Pr→i(t) to leading order, we observe that errors are

generally free to propagate from a router’s left output to its input, as illustrated in

Fig. 3.5(b). This is because, by default, all routers are initialized in |0〉, for which

the routing operation swaps the states at the incident and left ports. In contrast,

for an error to propagate upward from a router’s right output, an additional error

would be required to flip the router from |0〉 to |1〉. Thus, only the errors which can

reach branch i by propagating upward exclusively through the left outputs of routers

contribute to
∑

r,t Pr→i(t) to leading order in ε. A conservative overestimate is thus

obtained by first enumerating all routers r that are connected to i through the left

75

ports of other routers, then pessimistically taking Pr→i(t) = 1 for each. There are at

most log2N such routers, so

δ ≤ εT log2N +O(ε2). (3.43)

Substituting this expression into Eq. (3.41), we obtain

1− F . 4εT
(
logN + log2N

)
. (3.44)

Here we use the symbol. to contrast this bound with Eq. (3.27); we proved the bound

(3.27) rigorously, while we have obtained Eq. (3.44) through a scaling argument.

As such, it is appropriate to focus only on the scaling of Eq. (3.44). We see that

the infidelity still scales only polylogarithmically with the memory size, indicating

that a bucket-brigade QRAM constructed from noisy two-level routers also exhibits

noise resilience. Note, however, that the infidelity here scales with log3N [recall

T = O(logN)], as opposed to log2N in the case of three-level routers. Both scalings

are still favorable according to our definition, but the discrepancy indicates that

three-level routers impart better noise resilience than two-level routers.

We simulate noisy QRAM circuits with two-level routers in order to verify this

noise resilience. Simulation results are shown in Fig. 3.6. For all noise channels sim-

ulated, the query infidelity is observed to scale polylogarithmically with the memory

size, as expected. Moreover, the observed scaling exponents are ≤ 3 in all cases,

consistent with the pessimistic 1− F ∼ log3N scaling given above.

It is interesting to note that two-level routers are more resilient to certain noise

channels than others, as quantified by the observed differences in scaling exponents.

For example, the infidelity under the dephasing channel is observed to scale approxi-

mately as 1− F ∼ log2N . This relatively mild scaling can be explained as follows.

When the dephasing errors are propagated through the QRAM circuit, they may act

76

10-2
10-1

10-3

10-4

Bit-flip Dephasing Damping Heating

1 105

(a)

Depolarizing

slope = 2.42
1 105

(b)

1 105

(c)

1 105

(d)

1 105

(e)

slope = 2.57

Depth Depth Depth Depth Depth

slope = 1.97 slope = 1.86 slope = 2.68

Figure 3.6: Favorable error scaling with two-level routers. For a variety of error channels,
the query infidelity (black dots) is calculated numerically and plotted as a function of the tree
depth logN . Linear fits for each data set are shown as dashed lines, with the corresponding
slopes given on each plot. Fits are performed only on data points with logN ≥ 3 so that
the slopes are not skewed by finite-size effects at small logN . Slopes ≤ 3 are consistent
with the scaling argument in the text. The error rate for all plots is ε = 10−4.

non-trivially on the final state of the address and bus registers, but they act trivially

on the final state of the routers (the all-|0〉 state). As a result, the final state of the

routers is the same for every address: |fi(c)〉 = |fj(c)〉 for all i, j. Hence, g̃(c) = g(c),

and the bound from Section 3.2.2 applies. For the other channels, g̃(c) 6= g(c) in

general, consistent with observed scaling exponents > 2. The case of amplitude

damping is also interesting to consider: the expected number of errors for this chan-

nel is only εT logN because only logN excitations are injected into the tree. Because

T = O(logN), one expects the infidelity to scale with log2N . The observed slope of

1.86 is somewhat smaller owing to the fact that, in our simulations, excitations are

only susceptible to damping while they reside in the tree.

The scaling argument presented in this section also suffices to show that the noise

resilience persists in two other interesting situations: when the QRAM is initialized in

an arbitrary state, and when the routing circuit is modified. Regarding initialization,

observe that the above argument is straightforwardly modified to cover the case where

all routers are initialized in |1〉 rather than |0〉. Indeed, such an argument holds

regardless of whether a given router is initialized in |0〉 or |1〉. It follows that the

query infidelity scales favorably when the QRAM is initialized in an arbitrary state 3

3. This observation is distinct from the observation of Refs. [36, 84] that the ancillary qubits used
to perform a query can be “dirty.” See Appendix A

77

(though some additional care must be taken when copying data to the bus—see

Appendix A for details). This observation has great practical utility, as it means that

QRAM can be constructed even from physical components that cannot reliably be

initialized to a particular state.

Regarding modifications to the routing circuit, it is helpful to consider an ex-

ample. In Ref. [99] a modified routing circuit was proposed in which one of the

controlled-SWAP gates in Fig. 2.3(b) is replaced by a SWAP gate. This modification

has nontrivial effects on how errors propagate. With the modified circuit, errors can

propagate from bad branches into good branches even when three-level routers are

used. However, this is the same sort of damaging error propagation as is illustrated in

Fig. 3.5. Indeed, from the perspective of error propagation, the effect of this modifica-

tion to the routing circuit is equivalent to replacing three-level routers with two-level

routers. Accordingly, the argument above can be directly applied to show that the

favorable scaling persists with the modified circuit. This example demonstrates that

noise resilience is not a specific feature of the routing circuit in Fig. 2.3(b).

Taken together, the results from this section demonstrate that the noise resilience

of the bucket brigade architecture is a robust property that is insensitive to implemen-

tation details. This observation affords a great deal of freedom to experimentalists in

deciding how the routers and routing operations could be implemented in practice.

3.3.2 Noise resilience of hybrid architectures

In this section, we consider the effects of noise on hybrid QRAM architectures (Sec-

tion 2.2.4). Recall that these architectures are described by a tunable parameter,

M , that dictates the circuit width O(logN + N/M) and depth O(M logN). At the

extremes, the large-width and short-depth bucket-brigade QRAM circuits (Fig. 2.8)

correspond to M = 1, while the short-width and large-depth QROM circuits (Fig. 2.9)

correspond to M = N . Circuits with intermediate values of M are referred to as hy-

78

brid.

We first consider the effects of noise on QROM, then turn to the hybrid circuits.

One can easily observe that QROM does not possess any intrinsic noise resilience.

For example, when all memory elements are queried in equal superposition, a sin-

gle dephasing error at any location in the QROM circuit reduces the query fidelity

to 0. The effects of bit flips are similarly detrimental, assuming there is no con-

trived redundancy in the classical data. More generally, we can follow the approach

of Section 3.2.2 and express the QROM query fidelity as F =
∑

c p(c)F (c), where the

error configuration c specifies which Kraus operators are applied at each location in

the circuit, and F (c) is the final state fidelity of the address and bus registers given

configuration c. In the case of QROM, only the error configuration with no errors

is guaranteed to have unit or near-unit fidelity in general4. There are O(N log2N)

possible error locations, so it follows that the QROM query infidelity scales as

1− FQROM ∼ εN log2N, (3.45)

to leading order. Therefore, QROM is not noise resilient, since near-unit query fideli-

ties generally require ε� 1/N , neglecting logarithmic factors.

Similarly, the hybrid circuits do not exhibit noise resilience when the QRAM sub-

routines are implemented with the fanout architecture. Recall from Section 3.1 that

the fanout architecture is not noise resilient; only the fanout’s no-error configuration

is guaranteed to have high fidelity in general. Because neither QROM nor the fanout

QRAM are noise resilient, only the no-error configuration of the hybrid fanout circuit

is guaranteed to have high fidelity. Since the number of possible error locations is

4. Some other error configurations may have high fidelity for specific choices of the error channel,
the initial address state, or the classical data, but we ignore this possibility to keep the analysis
general and pessimistic.

79

O(M logN(logN +N/M)), the query fidelity scales as

1− Fhybrid,fanout ∼ ε(N logN +M log2N), (3.46)

to leading order. Here again, error rates ε � 1/N are required for near-unit query

fidelity, neglecting logarithmic factors.

In contrast, the hybrid circuits do exhibit partial noise resilience when the QRAM

subroutines are implemented with the bucket-brigade architecture. Because the

bucket-brigade QRAM is resilient to noise, error configurations with errors occurring

exclusively in the QRAM subroutines can still have high fidelities. We can obtain

a lower bound on the query fidelity by neglecting all other configurations. Doing so

allows us to bound the query fidelity by a product of two factors

Fhybrid,BB & (1− ε)O(M log2N) × (1− ε)O(M logN logN/M) (3.47)

The first factor is simply the probability that no errors occur outside the QRAM. The

second factor is the expected fraction of error-free branches within the QRAM (each

branch contains logN/M routers, and there are T = O(M logN) possible time steps

at which errors may occur). We have related this expected fraction to Fhybrid−BB by

the same argument as in Section 3.2.2. Thus, to leading order,

1− Fhybrid,BB . εM logN(logN + logN/M), (3.48)

∼ εM log2N. (3.49)

Note that we have not kept track of prefactors since we are only interested in how

the infidelity scales; a strict upper bound could be rigorously derived following the

approach of Section 3.2.2. Near-unit query fidelities only require error rates ε� 1/M ,

neglecting logarithmic factors (cf. the ε � 1/N requirement for the other cases).

80

Because M ≤ N , the infidelity of the hybrid bucket-brigade architecture scales more

favorably than both QROM and the hybrid fanout architecture. Of course, the extent

of the scaling advantage depends on M . For example, if one chooses M =
√
N , so

that the number of qubits and circuit depth are comparable, then the hybrid bucket-

brigade architecture yields a quadratic improvement in the infidelity scaling. Note

that we assume three-level routers above for simplicity; for two-level routers, one

should replace logN/M → log2N/M in the above expressions, in accordance with

the argument from Section 3.3.1.

3.3.3 Resilience to logical errors in error-corrected QRAM

In this section, we show that the benefits of the bucket brigade scheme persist when

quantum error correction is used. When the bucket-brigade QRAM is implemented

using error-corrected routers and fault-tolerant routing operations [21, 113], the logical

query infidelity scales only polylogarithmically with the memory size. Thus, error-

corrected implementations of the bucket-brigade scheme can offer improved fidelity or

reduced overhead relative to other implementations. In practice, these improvements

may be tempered by the overhead associated with the fault-tolerant implementation

of the routing operations, and we discuss the utility of the bucket-brigade architecture

in light of such considerations.

While we have shown that the query infidelity of the bucket-brigade scheme scales

favorably with the memory size, strategies to further suppress the infidelity are de-

sirable, and quantum error correction provides one possible approach. Indeed, error

correction may be required in cases where the physical error rate cannot be made

sufficiently small, or when many queries must be performed in sequence. For ex-

ample, Ref. [16] argued that error correction is likely to be needed for any algorithm

that requires a number of QRAM queries that scales superpolynomially in logN , e.g.,

Grover’s algorithm [28].

81

It is thus natural to ask whether an error-corrected bucket brigade QRAM offers

any advantages over other architectures. Indeed, this question was previously consid-

ered in Ref. [16], where the authors argue in the negative. Their argument is based

on the canonical attribution [14–17, 52, 53] of the bucket brigade’s noise resilience

to the limited number of active routers. Error-corrected routers must be considered

active, they argue, and so the number of active routers is the same in both the fanout

and bucket brigade schemes. Hence, the bucket brigade scheme was not believed to

provide any advantage if error correction were used.

As we have shown, however, the noise resilience of the bucket brigade scheme is

not a function of the number of active routers, but rather a function of the limited

entanglement among the routers. As a direct corollary of this result, we find that,

in fact, the benefits of the bucket brigade scheme do persist when error correction is

used. The proof from Section 3.2.2 is agnostic to whether the routers are composed

of uncorrected physical qubits or error-corrected logical qubits, provided that uncor-

rectable logical errors occur independently with some probability εL (which can be

guaranteed by implementing the routing operations fault tolerantly). Physical errors

occurring with probability ε can simply be replaced by logical errors occurring with

probability εL, and one obtains the corresponding bound

1− FL ≤ 4εLTL logN, (3.50)

where FL is the query fidelity of the logical QRAM circuit, and TL is the circuit

depth. Thus, when implemented fault-tolerantly, the logical bucket-brigade circuits

possess an intrinsic resilience to logical errors, in that the logical infidelity scales

only polylogarithmically with the the size of the memory (This scaling assumes TL =

O(logN); see further discussion at the end of this section).

To provide further exposition, we give a concrete example of an error-corrected

82

quantum router. Consider a quantum error correcting-code, with logical codewords

|0L〉 and |1L〉 satisfying the Knill-Laflamme conditions [21, 114],

PK†iKjP = hijP, (3.51)

where P is the projector onto the code space, the {Ki} are the set of correctable errors,

and h is a Hermitian matrix. A logical two-level quantum router then constitutes a

single logical qubit (similarly, a logical three-level quantum router can be constructed

from a pair of logical qubits, for example). Crucially, the logical routers comprising

the QRAM can be corrected without revealing any information about which memory

elements are being accessed. This is because the conditions (3.51) guarantee that

errors can be corrected without revealing any information about the encoded state.

Even when the logical router is in a superposition of different states, or entangled

with other routers, syndrome measurements do not reveal information about the

router state. Note that the conditions (3.51) also guarantee that information is not

leaked to the environment; the states |0L〉 and |1L〉 necessarily have equal probability

of suffering errors.

Because of the favorable logical error scaling Eq. (3.50), error-corrected implemen-

tations of the bucket-brigade scheme can offer improved fidelity or reduced overhead

relative to other implementations. For instance, if the same error-correcting code

is used in fault-tolerant implementations of the bucket-brigade and fanout QRAMs,

the logical infidelity of bucket brigade QRAM will be lower than the logical infidelity

of the fanout QRAM by a factor of ∼ 1/N in general. Alternatively, if a given

application requires that QRAM have a logical infidelity below some threshold, the

error-correction overhead required to realize such high-fidelity queries can be signifi-

cantly smaller for the bucket-brigade scheme relative to the fanout scheme. Indeed,

even if the reduction in error-correction overhead is fairly small for each router, the

83

total overhead reduction considering all N routers can be significant. Such reductions

could be of significant practical benefit. For context, we note that detailed overhead

estimates for fault-tolerant QRAM using the surface code were made in Ref. [18];

these overheads can potentially be improved by exploiting the bucket-brigade’s noise

resilience.

3.4 Conclusions and Outlook

We have shown that the bucket-brigade QRAM architecture possesses a remarkable

resilience to noise. Even when all O(N) components comprising the QRAM are

subject to arbitrary error channels, the query infidelity scales only polylogarithmically

with the memory size. As a result, the bucket-brigade architecture can be used to

perform high-fidelity queries of large memories without the need for quantum error

correction, provided physical error rates are low. Importantly, we prove that this

noise resilience holds for arbitrary error channels, demonstrating that a noise-resilient

QRAM can be implemented with realistically noisy devices.

In the near-term, this noise resilience could facilitate experimental demonstra-

tions and benchmarking of numerous quantum algorithms. We are presently in the

Noisy, Intermediate-Scale Quantum (NISQ) era [115], when making more qubits is

easier than making better qubits. The same is likely to be true even in the era of

early fault-tolerance. In these eras, the bucket-brigade architecture—with its larger

overhead and noise resilience—could actually prove to be more practical than alterna-

tives like QROM (see Section 3.3.2) that have a lower overhead but are less tolerant to

noise. The bucket-brigade architecture thus more readily enables small-scale, near-

term implementations of algorithms, and important practical insights are likely to

be gained from such demonstrations. Schemes to further suppress the query fidelity

without resorting to full error correction (chapter 4) could prove useful in this effort.

84

N exp(n) exp(n) poly(n)

Q exp(n) poly(n) poly(n)

Applicable
architectures

QRAM QRAM QRAM, QROM, Hybrid

QEC required? Yes Maybe not Maybe not

Paradigmatic
example

Searching an
unstructured
database [28]

Solving linear
systems of

equations [51]

Simulating local
Hamiltonians [116]

Table 3.2: Algorithm categorization. Algorithms are sorted based on how the size of the
classical memory, N , and the number of queries, Q, scale with the number of qubits, n.
When N = exp(n), QRAM is the only suitable architecture, assuming poly(n) query times
are required. When Q = poly(n) quantum error correction may not be required, depending
on the physical error rates. For the examples in the last two rows, Q also depends on the
particular algorithm used and the desired precision; we assume these are chosen such that
Q = poly(n). We omit the case of N = poly(n) and Q = exp(n), for which the query
complexity is exponential in the problem size.

In the long-term, this noise resilience may prove useful in facilitating speedups

for certain quantum algorithms, but it is important that the required resources be

carefully assessed before a speedup via QRAM is claimed. Consider an oracle-based

algorithm that requires n qubits (not including ancillary qubits needed to implement

the oracle). As we show in Table 3.2, such algorithms can be conveniently classified

according to how the size of the classical memory being queried, N , and the total

number of queries, Q, scale with n. Assuming poly(n) query times are required, the

memory size N dictates whether QRAM (as opposed to QROM or a hybrid architec-

ture) is required to implement the oracle. The number of queries Q dictates whether

error correction is necessarily required [16]. The noise resilience of the bucket-brigade

has the biggest potential impact in case of N = exp(n) and Q = poly(n). In this

case, QRAM is required, and the noise-resilience of the bucket-brigade architecture,

together with the comparatively small number of queries, allows for the possibility

that the QRAM could be implemented without error correction. Of course, the noise

resilience can also be advantageous in the other cases, where hybrid architectures may

85

be employed (Section 3.3.2) or when error correction is used (Section 3.3.3).

Finally, it is worth emphasizing that the results in this chapter constitute general

statements about the bucket-brigade architecture, independent of its application to

particular algorithms. In fact, the architecture may prove useful in applications other

than facilitating algorithmic speedups. For example, Ref. [75] employs the bucket-

brigade architecture in a quantum cryptographic protocol. The architecture may sim-

ilarly prove useful for quantum communication or metrology. Exploring applications

of the bucket-brigade architecture—and the utility of its noise resilience—in these

other contexts represents an interesting direction for future research. In particular,

applications involving quantum queries of quantum data remain largely unexplored.

Our own preliminary work indicates that the bucket-brigade architecture may also

be useful for quantum communication, quantum compression, or efficient, distributed

quantum information processing, for example.

86

Chapter 4

Hardware-efficient error

suppression

In Chapter 3, we showed that the bucket-brigade QRAM is remarkably resilient to

noise, with a query infidelity that scales only polylogarithmically with the memory

size N . This favorable infidelity scaling is very encouraging for noisy implementa-

tions of QRAM. However, the query infidelity is ultimately still lowerbounded by the

physical error rate. This lower bound on the query infidelity can limit the poten-

tial applications of QRAM. Of course, in some applications, only a small number of

QRAM queries may be required, and it is conceivable that this residual infidelity may

not be problematic [16]. However, in applications requiring many queries, some form

of error correction or suppression will likely be required to further reduce the query

infidelity.

In this chapter, we present a hardware-efficient error suppression scheme. In

contrast to quantum error correction, which necessarily entails an additional O(N)

hardware overhead when applied to QRAM, the minimal additional hardware over-

head required by our scheme is independent of the size of the QRAM itself. The price

we pay for this improved hardware efficiency is that the extent of the error suppres-

87

sion is somewhat limited. For a base query infidelity of p, our scheme enables queries

with an effective query infidelity of

1− FM = p/M +O(p2), (4.1)

where M is a tunable parameter that dictates the time overhead associated with the

error-suppression scheme. Thus, our scheme can provide at most a quadratic reduc-

tion of the query infidelity (for M = 1/p). However, even a quadratic reduction in

error would have tremendous practical utility in near-term applications. Indeed, our

scheme is particularly well-suited for use in near-term devices, owing to its hardware

efficiency.

In Section 4.1, we motivate our scheme by describing the challenges that conven-

tional error correction approaches face when applied to QRAM, and we introduce

the basic ingredient of our suppression scheme: error symmetrization. Next, in Sec-

tion 4.2, we present our scheme, and analyze its error suppression capabilities when

applied to general noisy operations (not just QRAM). Finally, in Section 4.3, we apply

our general analysis to the particular case of QRAM, demonstrating that the query

infidelity can be suppressed in a hardware-efficient manner.

4.1 Motivation and background

In this section, we provide a detailed discussion of the practical challenges associ-

ated with the implementation of an error-corrected QRAM by conventional methods.

These challenges serve as a motivation for our own error-suppression scheme, which

is based on a fundamentally different approach. We also review the basic idea of error

symemtrization, as well as some of the shortcomings in the original error symmetriza-

tion proposal of Ref. [117] (our scheme remedies these shortcomings).

88

4.1.1 Practical challenges with error-corrected QRAM

Quantum error correction can be used to suppress the QRAM query infidelity. One

simply replaces each of the physical qubits comprising quantum routers with error-

corrected logical qubits. Further, to prevent the uncontrolled spread of errors, the

associated routing operations must be implemented in a fault-tolerant manner. There

is no fundamental obstacle that would prevent one from applying these techniques in

the context of QRAM. There are, however, a variety of practical concerns that could

make conventional approaches to error correction infeasible.

The first practical concern is the large error-correction overhead. Building a

large-scale QRAM requires a large hardware overhead, even without error correc-

tion. Without error correction, QRAM requires O(N) physical qubits to serve as

quantum routers in order to query a classical memory of size N . In big data or

machine learning applications, the relevant values of N could easily reach millions

or billions, and comparable numbers of physical qubits would be required to apply

QRAM-based quantum algorithms to such problems. Scaling to this many physical

qubits is already a daunting engineering challenge.

This challenge is only magnified when error correction is used, as now O(N) logical

qubits are required. Though error correction is formally efficient [20], in the sense

that exponential error suppression can be achieved with only a polynomial overhead,

the overheads involved can still be quite large. For example, the most common archi-

tecture for fault-tolerant quantum computing is the surface code [118], where current

estimates suggest that an overhead of ∼ 1000 physical qubits per logical qubit is likely

required to enable practical applications [119]. Thus, when applied in the context of

large-scale QRAM, surface code error correction could increase the required number

of physical qubits from millions or billions to billions or trillions. This crude estimate

is consistent with the more detailed analysis of Ref. [18], which found that a fault-

tolerant QRAM implementation using the surface code would require 1010 physical

89

qubits for N = 106, and 1013 physical qubits for N = 109. Whether quantum com-

puters will one day be scalable to such sizes remains an open question, but these large

overheads indicate that building a large, fault-tolerant QRAM will not be feasible in

the foreseeable future (at least, not with conventional surface code architectures—in

Chapter 5 we describe an alternative error-correction approach based on cat qubits

that is far more hardware efficient).

Another practical concern is the fact that quantum routing (Fig. 2.3) is a non-

Clifford operation. As a result, magic state distillation [86, 87] is required to im-

plement the routing fault-tolerantly in the usual Clifford+T fault-tolerance model.

In total, O(N) magic states are required to perform a query. If queries are to be

performed in time TL = O(logN), these magic states must be distilled in parallel,

so O(N) magic state factories are required. The additional overhead associated with

these factories could be prohibitive for large N , however, potentially limiting the

extent to which such parallelism can be exploited. That said, it should be noted

that though the routing operation is non-Clifford, it is also not universal for quan-

tum computing. An important open question concerning fault-tolerant QRAM is thus

whether fault-tolerant implementations of this specific operation can be designed that

are more efficient than generic fault-tolerant operations. Schemes for pieceable fault-

tolerance [120], flag qubits [121, 122], or noise-bias preserving gates [123–125] may

prove useful in this regard.

4.1.2 Error symmetrization

We now describe the error-suppression scheme of Ref. [117], which serves as the

motivation for our own error-suppression scheme.

90

The symmetric subspace

We begin by defining the symmetric subspace, S, and examining a few of its relevant

properties. We refer the interested reader to Ref. [126] for further details.

Consider a collection of M quantum systems, each described by a d-dimensional

Hilbert space H. We define the symmetric subspace, S, as the subspace of the joint

Hilbert space H⊗M that is invariant under permutations of the M systems,

S = {|ψ〉 ∈ H⊗M : P (π) |ψ〉 = |ψ〉 ∀ π ∈ SM}. (4.2)

Here, SM is the symmetric group over M symbols, π is an element of this group

(i.e. a permutation), and P (π) is the corresponding permutation operator on the

space H⊗M ,

P (π) =
d−1∑

i1,...,iM=0

|iπ−1(1), . . . , iπ−1(M)〉 〈i1, . . . , iM | . (4.3)

As examples, for the case of M = 3 and d = 2, the states |s0〉 = |000〉, |s3〉 = |111〉,

and

|s1〉 =
1√
3

(|100〉+ |010〉+ |001〉)

are all contained in S. In fact, the states

|st〉 ≡
√
t!(M − t)!

M !

∑
~i∈[t]

|i1, . . . , iM〉 , (4.4)

form a basis for S in the case of d = 2 (the basis states can be expressed in a similar

form for the case of general d [126]). Here, [t] denotes the set of all bit strings with

exactly t 1’s and (M − t) 0’s.

S can be equivalently defined as the smallest subspace of H⊗M that contains all

91

states of the form |ψ〉 |ψ〉 . . . |ψ〉, for arbitrary |ψ〉. That is,

S ′ = span{|ψ〉⊗M : |ψ〉 ∈ H}. (4.5)

One can prove that S ′ = S, and we sketch the basic idea of the proof. (For simplicity,

we consider the case of d = 2; the proof for general d is similar [126]). First observe

that P (π) |ψ〉⊗M = |ψ〉⊗M for arbitrary π, which shows that S ′ ⊆ S. To show

containment in the other direction, we consider a generic product state,

|p(x0, x1)〉 =

(
1∑
i=0

xi |i〉
)⊗M

, (4.6)

where clearly |p(x0, x1)〉 ∈ S ′ for all x0, x1. Expanding out this expression, the coef-

ficient of xt00 x
t1
1 is √(

M

t1

)
|st1〉 .

Now, the main observation of the proof is that |p(x0, x1)〉 ∈ S ′ for all x0, x1 implies

that |st1〉 ∈ S ′. To see this fact, notice that

∂t0

∂xt00

∂t1

∂xt11
|p(x0, x1)〉 ∈ S ′ (4.7)

because ∂ |p(x0, x1)〉 /∂xi can be expressed as linear combinations of |p(x0, x1)〉 for

different values of x0, x1. At the same time,

|st1〉 =
∂t0

∂xt00

∂t1

∂xt11
|p(x0, x1)〉

∣∣∣
x0,x1=0

, (4.8)

so |st1〉 ∈ S ′. Because the |st1〉 form a basis for S, we have that S ⊆ S ′, completing

the proof.

92

Another useful property of S is that the operator,

ΠS =
1

M !

∑
π∈SM

P (π) (4.9)

is the orthogonal projector onto S. This fact can be proven as follows. For any

π ∈ Sm, we have

P (π)ΠS =
1

M !

∑
π′∈SM

P (π)P (π′)

=
1

M !

∑
π′∈SM

P (ππ′)

=
1

M !

∑
(π−1π′)∈SM

P (π′)

= ΠS , (4.10)

and similarly ΠSP (π) = ΠS . It follows that Π†SΠS = ΠS , so ΠS is an orthogonal

projector. Now, Eq. (4.10) further implies that

P (π)ΠS |ψ〉 = ΠS |ψ〉 , (4.11)

for arbitrary |ψ〉 ∈ H⊗M . Thus, the image of ΠS is contained in S. To show contain-

ment in the other direction, we observe that

ΠS |ψ〉 =
1

M !

∑
π∈SM

P (π) |ψ〉 = |ψ〉 , (4.12)

for any |ψ〉 ∈ S. Thus, the image of ΠS is S, which completes the proof.

Error suppression via S projection

Having defined S, we may now describe the error-suppression scheme of Ref. [117],

which is illustrated schematically in Fig. 4.1. Suppose that we have a collection of

93

. . .

. . .

. . .

copies

Figure 4.1: Error-suppression scheme of Ref. [117]. A collection of M quantum computers
perform a the same computation in parallel (indicated by the blank boxes). The parallel
computations are interspersed by repeated projections onto S.

M quantum computers, all performing the same computation in parallel. Errors in

these computations can be suppressed by frequently and repeatedly projecting the

joint system into S. Conceptually, the idea is that under error-free operation, the

states of all the quantum computers will be identical throughout the computation,

so projecting the joint system onto S will have no effect. However, an error in one

of the quantum computers can give rise to a component of the joint state which lies

outside S. Successful projection onto S can eliminate this component, and ideally

this brings the joint system back to its error-free state.

Before analyzing the efficacy of this scheme, let us explain how a projection onto

S can be realized (see Fig. 4.2). One begins by preparing a register, A, of log(M !) =

O(M) ancillary qubits in |0〉⊗M . Then a unitary operation U is applied to this register

to prepare it in the equal superposition state,

U |0〉A =
1√
M !

M !−1∑
i=0

|i〉A . (4.13)

In the case where M ! is a power of 2, the operation U can be implemented by a single

layer of Hadamard gates, and otherwise it can be implemented using the quantum

Fourier transform. Next, a controlled-permutation operation is applied to the system,

94

 =

Figure 4.2: Quantum circuit for realizing a projection on the subspace S.

S, of M quantum computers

1√
M !

M !−1∑
i=0

|i〉A |ψ〉S → 1√
M !

M !−1∑
i=0

|i〉A P (πi) |ψ〉S . (4.14)

We note that Ref. [117] provides an explicit circuit for realizing this controlled-

permutation operation. Then, U † is applied to A,

(U † ⊗ I)
1√
M !

M !−1∑
i=0

|i〉A P (πi) |ψ〉S = |0〉A
(

1

M !

M !−1∑
i=0

P (πi)

)
|ψ〉S + . . .

= |0〉A ΠS |ψ〉S + . . . , (4.15)

where “. . .” denotes terms orthogonal to |0〉A. Postselecting on |0〉A and discarding

the A register thus yields

ΠS |ψ〉S , (4.16)

as desired. This procedure can be understood simply as a generalized Hadamard test

that projects the system onto the image of ΠS when passed.

Now let us quantify the error suppression associated with the successful projection

into S. Let |ψ〉 denote the ideal state of each of the M quantum computers. For

simplicity, we consider an error model where the computers are independently subject

to a channel E that maps |ψ〉 to some orthogonal state |ψ⊥〉 with probability p,

|ψ〉 → E(|ψ〉 〈ψ|) = (1− p) |ψ〉 〈ψ|+ p |ψ⊥〉 〈ψ⊥| . (4.17)

95

Under this model, the infidelity of any one of the M quantum computers is p, and

the goal of the error suppression procedure is to reduce this infidelity by projecting

the joint state onto S. After the error channel is applied to all quantum computers,

the joint state of the system is

E(|ψ〉 〈ψ|)⊗M = (1− p)M(|ψ〉 〈ψ|)⊗M

+ p(1− p)M−1

M∑
i=1

|ψ⊥(i)〉 〈ψ⊥(i)|+O(p2), (4.18)

where

|ψ⊥(i)〉 ≡ |ψ〉S1
|ψ〉S2

. . . |ψ⊥〉Si . . . |ψ〉SM (4.19)

denotes the state in which the i-th subsystem, Si, has suffered an error, but all other

subsystems are error free. Projecting onto S yields the (unnormalized) state,

ρ = ΠS
(
E(|ψ〉 〈ψ|)⊗M

)
ΠS

= (1− p)M(|ψ〉 〈ψ|)⊗M + p(1− p)M−1

M∑
i=1

ΠS |ψ⊥(i)〉 〈ψ⊥(i)|ΠS +O(p2)

= (1− p)M(|ψ〉 〈ψ|)⊗M +
1

M
p(1− p)M−1

M∑
i=1

|s(ψ)
1 〉 〈s(ψ)

1 |+O(p2),

= (1− p)M(|ψ〉 〈ψ|)⊗M + p(1− p)M−1 |s(ψ)
1 〉 〈s(ψ)

1 |+O(p2) (4.20)

where

|s(ψ)
1 〉 ≡

1√
M

M∑
i=1

|ψ⊥(i)〉 ∈ S (4.21)

is a symmetric superposition of single-error states |ψ⊥(i)〉.

We can now use Eq. (4.20) to compute the probability of successful postselection

and the fidelity of the postselected state to leading order. The probability of successful

96

postselection is

Tr[ρ] = (1− p)M + p(1− p)M−1 +O(p2)

= 1− (M − 1)p+O(p2). (4.22)

Note that this probability decreases with M . To compute fidelity of the postselected

state, we first trace out all but one of the subsystems. Which subsystem we choose

to retain is inconsequential; the joint state is symmetric, so the reduced states of all

subsystems are the same. For simplicity, we trace out all subsystems except for the

first,

TrS2,...,SM [ρ] = (1− p)M |ψ〉 〈ψ|+ p(1− p)MTrS2,...,SM

[
|s(ψ)

1 〉 〈s(ψ)
1 |
]

+O(p2)

= (1− p)M |ψ〉 〈ψ|+ p(1− p)M
[

1

M
|ψ⊥〉 〈ψ⊥|+ M − 1

M
|ψ〉 〈ψ|

]
+O(p2)

=

(
1−Mp+ p

M − 1

M

)
|ψ〉 〈ψ|+ p

M
|ψ⊥〉 〈ψ⊥|+O(p2)

≡ ρS1 (4.23)

Now, the infidelity can be expressed as

1− F = 1− 1

Tr[ρS1]
〈ψ|ρS1|ψ〉

=
1

Tr[ρS1]

(
Tr[ρS1]− Tr[Π|ψ〉ρS1]

)
= Tr

[
(1− Π|ψ〉)ρS1

]
+O(p2), (4.24)

where Π|ψ〉 ≡ |ψ〉 〈ψ|. To obtain the last line, we have used the fact that

Tr[ρS1] = Tr[ρ] = 1−O(p) (4.25)

97

together with the fact that

Tr
[
(1− Π|ψ〉)ρS1

]
= O(p). (4.26)

Inserting in Eq. (4.23) into Eq. (4.24) yields,

1− F =
p

M
+O(p2). (4.27)

Thus, to leading order, the infidelity decreases as 1/M .

Let us summarize the results of this analysis and discuss its implications (see Ta-

ble 4.1). The error suppression that this scheme realizes is embodied in the 1/M

dependence of the infidelity. As the number of copies M is increased, the infidelity

correspondingly decreases, allowing one to perform higher fidelity computations than

would be possible with a single noisy device. At best, the infidelity can be suppressed

to O(p2), which constitutes a quadratic improvement. Unfortunately, the failure prob-

ability and associated overhead pose practical challenges for this scheme. The failure

probability increases proportionately with M , so that greater error suppression also

implies an increased probability of failure. The only way to mitigate this failure prob-

ability is to apply the projections more frequently, so that the probability of error

in the time between projections (i.e. p) is reduced. Moreover, the O(M) overhead

could be practically prohibitive. This scheme requires M full copies of a quantum

computer all running the same algorithm in parallel. For large M , it is likely more

practical to use these resources to achieve exponential error suppression in a single

quantum computer via quantum error correction, rather than a 1/M suppression via

error symmetrization on an ensemble of noisy quantum computers.

In the next section, we present an error-suppression scheme that improves on

the scheme of Ref. [117] with respect to both the failure probability and hardware

overhead. As we discuss later in this chapter, these practical improvements makes

98

Infidelity Failure probability Overhead

p
M

+O(p2) (M − 1)p+O(p2) O(M)

Table 4.1: Summary of the error-suppression scheme of Ref. [117]. Though the infidelity
decreases with M , the failure probability and hardware overhead both increase linearly with
M .

the scheme suitable for suppressing the query infidelity of QRAM.

4.2 A general scheme for hardware-efficient error

suppression

In this section, we present a novel, hardware-efficient scheme for error suppression.

This scheme can be viewed as a fusion of the error symmetrization scheme of Ref. [117]

with QROM (Section 2.2.4).

Our scheme accomplishes the following task. One is given a quantum state |ψ〉

and access to a channel, U , which constitutes a noisy implementation of a target

unitary operation U . The goal is to prepare the state U |ψ〉 with as high fidelity as is

possible. Any procedure that uses these resources to prepare a state ρψ satisfying

〈ψ|U †ρψU |ψ〉 > 〈ψ|U †U(ψ)U |ψ〉 , (4.28)

will be referred to as an error-suppression scheme. Note that this task differs from

the one considered in Ref. [117] in that we only assume access to a single copy of the

state |ψ〉, as opposed to M copies. Having only one copy of |ψ〉 is a more restrictive

assumption, which means that the suppression scheme we develop is more widely

applicable. Indeed, our scheme only requires a single quantum computer, as opposed

to M quantum computers operating in parallel.

We emphasize that this error suppression task should not be confused with the

99

related but distinct task of error mitigation [127–129]. Error mitigation protocols

provide means of reducing the error in measured expectation values, a feat which

is particularly useful in the context of near-term variational quantum algorithms.

However, error mitigation protocols do not generally enable one to prepare quantum

states or implement quantum operations with higher fidelity. For this reason, error

mitigation protocols cannot be applied to improve the query fidelity of QRAM.

While we do not discuss error mitigation in this thesis, we note that a number

of recent error mitigation protocols exploit similar ideas [130–133]. These protocols,

termed virtual distillation, employ symmetrization in order to achieve an impressive

exponential suppression of errors in measured expectation values. Unfortunately,

they cannot directly be applied to prepare quantum states or implement quantum

operations with higher fidelity. As a result, these schemes cannot be directly compared

with our own.

4.2.1 A simple example

In order to provide a pedagogical introduction to our error-suppression scheme, we

begin by describing its simplest incarnation, illustrated in Fig. 4.3. The circuit in

the figure has three registers: a single-qubit register A (initialized in |0〉), an n-qubit

register B (containing the target state |ψ〉), and another n-qubit register C (initialized

in an arbitrary state |φ〉). At the end of the circuit, the register C is discarded, and

the qubit A is measured. We postselect on obtaining the outcome |0〉. After successful

postselection, the reduced state of register B, ρψ, constitutes the output. Note that

the circuit’s sequential iteration over the different computational basis states of A

is similar to QROM, while the postselected measurement turns out to enact a kind

of symmetrization reminiscent of Ref. [117]. For these reasons, this scheme can be

viewed as a fusion of QROM and error symmetrization.

The operation circuit in Fig. 4.3 can be understood as follows. The initial Hadamard

100

=

Figure 4.3: A minimal error-suppression circuit. The circuit uses M = 2 applications of the
channel U to suppress the infidelity of the output state ρψ by a factor of 1/2 (for applicable
channels).

prepares the A qubit in an equal superposition. Then, conditioned on the state of

this qubit, the channel U is applied to |ψ〉 and |φ〉 with different ordering. If the A

qubit is |0〉, the first pair of controlled-SWAP gates is triggered, resulting in U being

applied to |ψ〉 first. Then the next pair of controlled-SWAP gates is not triggered,

resulting in U being applied to |φ〉 second. On the other hand, if the A qubit is

|1〉, this ordering is reversed: U is applied to |φ〉 first then |ψ〉 second. Note that,

regardless of the state of the A qubit, the channel U is applied to |ψ〉 exactly once,

hence it is reasonable to expect that ρψ would be close to U |ψ〉. What is perhaps

less obvious is why ρψ should be closer to the desired state, U |ψ〉, than U(ψ). As we

show below, this is because the postselection enacts an effective “symmetrization” of

the channel applied to |ψ〉, such that the effects of errors are suppressed.

To analyze this scheme quantitatively, we adopt the following error model. We

express the channel U as a completely positive trace preserving map with Kraus

representation

U(ρ) =
∑
i

KiρK
†
i , (4.29)

and the fidelity of the channel with the target state U |ψ〉 is defined to be

〈ψ|U †U(ψ)U |ψ〉 =
∑
i

〈ψ|U †Ki|ψ〉 〈ψ|K†iU |ψ〉 ≡ 1− p. (4.30)

We stress that this is a Markovian error model and that we do not consider situations

101

where there could be temporal correlations in the noise from one application of U

to the next1. To encompass errors at points in the circuit other than U , we suppose

that all other operations (single- and multi-qubit gates, measurements, and idling)

are also each subject to error with some probability p′. Our scheme is effective at

suppressing errors when p′ � p. This hierarchy of error rates could be engineered in

a variety of ways. It may emerge naturally if, for example, the operation U requires

many ancillary qubits to implement, such that it is significantly noiser than the other

operations in the circuit. Alternatively, error correction and fault-tolerant gadgets

could be used to suppress errors during the non-U operations, while the operation U

could be implemented either without error correction or in a way that is not fault-

tolerant. (One could, for example, implement operation U by decoding the logical

information in register C, applying a transformation to the unencoded physical qubits,

then re-encoding the information. As discussed in Section 4.3, this approach could be

useful in the context of QRAM, which may be prohibitively expensive to implement in

a fault-tolerant manner.) For the purpose of our analysis, we do not concern ourselves

with the specifics of how this hierarchy of error rates is engineered. Instead, we simply

analyze the circuit of Fig. 4.3 under the assumption that p′ errors have a negligible

impact.

With this error model, we proceed to calculate the final state of the system,

from which we can ascertain effectiveness of the error suppression. Prior to the final

Hadamard gate, the state of the full A, B, C system is

1

2

∑
i1,i2

[
|0〉A (Ki1 |ψ〉BKi2 |φ〉C) + |1〉A (Ki2 |ψ〉BKi1 |φ〉C)

] [
H.c.

]
, (4.31)

where [H.c.] denotes the Hermitian conjugate of the state in the first set of brackets.

1. It is not difficult to see that our scheme would fail to suppress such errors. In effect, our scheme
works by correcting broken symmetries that can arise in the presence of Markovian errors (e.g., an
error occurs during one application of U but not the other). If the same error always occured during
applications of U , there is no broken symmetry to fix, and the error suppression fails.

102

After the last Hadamard and successful postselection, the resulting (unnormalized)

state of the B and C systems, which we denote ρBC , is

ρBC =
∑
i1,i2

[
1

2
(Ki1 ⊗Ki2 +Ki2 ⊗Ki1) |ψ〉B |φ〉C

] [
H.c.

]
=
∑
i1,i2

[
Si1,i2 |ψ〉B |φ〉C

][
H.c.

]
, (4.32)

where we have defined the symmetrized joint Kraus operators

Si1,i2 =
1

2
(Ki1 ⊗Ki2 +Ki2 ⊗Ki1) . (4.33)

We say that these joint Kraus operators are symmetrized because they are invariant

under permutations of the indices, i.e., Si1,i2 = Si2,i1 . Thus, one interpretation of the

circuit in Fig. 4.3 is that it uses two applications of the channel U to synthesize a more

symmetric joint channel that is described by the (subnormalized) Kraus operators

Si1,i2 . To proceed, it is useful to expand out the terms in ρBC , then group them into

two classes as follows,

ρBC =
1

2

∑
i1,i2

(
Ki1 |ψ〉 〈ψ|K†i1 ⊗Ki2 |φ〉 〈φ|K†i2

)
+

1

2

∑
i1,i2

(
Ki1 |ψ〉 〈ψ|K†i2 ⊗Ki2 |φ〉 〈φ|K†i1

)
. (4.34)

We refer to terms on the first line as the paired terms, and those on the second line

as the cross terms. This grouping is convenient because it allows us to separately

quantify the contributions of the different terms to the infidelity.

103

Infidelity

Let us calculate the infidelity of the state reduced state ρψ = TrC [ρBC]. Employ-

ing Eq. (4.24), we have that

1− F = Tr
[(

Π⊥U |ψ〉 ⊗ I
)
ρBC

]
+O(p2), (4.35)

where we have defined

Π⊥U |ψ〉 ≡ 1− ΠU |ψ〉. (4.36)

Next, we evaluate the contributions to the infidelity from the paired terms and cross

terms separately. Starting with the paired terms, we obtain

Tr

[
1

2

∑
i1,i2

(
Π⊥U |ψ〉Ki1 |ψ〉 〈ψ|K†i1 ⊗Ki2 |φ〉 〈φ|K†i2

)]

=
1

2
Tr

[∑
i1

(
Π⊥U |ψ〉Ki1 |ψ〉 〈ψ|K†i1

)]
Tr

[∑
i2

(
Ki2 |φ〉 〈φ|K†i2

)]

=
1

2
Tr
[
Π⊥U |ψ〉U(ψ)

]
Tr
[
U(φ)

]
= p/2. (4.37)

To obtain the last line we have used Eq. (4.30) and the fact that U is trace-preserving.

Similarly, we evaluate the contribution from the cross terms,

Tr

[
1

2

∑
i1,i2

(
Π⊥U |ψ〉Ki1 |ψ〉 〈ψ|K†i2 ⊗Ki2 |φ〉 〈φ|K†i1

)]

=
1

2

∑
i1,i2

〈ψ|K†i2Π⊥U |ψ〉Ki1|ψ〉 〈φ|K†i1Ki2|φ〉 . (4.38)

Combining these two contributions, we have

1− F =
p

2
+

1

2

∑
i1,i2

〈ψ|K†i2Π⊥U |ψ〉Ki1|ψ〉 〈φ|K†i1Ki2|φ〉+O(p2). (4.39)

104

From Eq. (4.39), we see that the circuit of Fig. 4.3 successfully suppresses errors

whenever the second term, that from the cross terms, is < p/2. In particular, we find

that the infidelity is maximally suppressed (i.e., reduced by a factor of 2) whenever

C2 ≡
1

2

∑
i1,i2

〈ψ|K†i2Π⊥U |ψ〉Ki1|ψ〉 〈φ|K†i1Ki2|φ〉 = O(p2), (4.40)

to leading order. We refer to Eq. (4.40) as the criterion for maximal suppression, and

we find that this criterion is satisfied for many channels of practical relevance. As an

example, consider the class of mixed-unitary channels for which

K0 =
√

1− pU, (4.41)

and the remaining Kraus operators Ki>0 are proportional to unitary operators. This

corresponds to the situation where the desired operation U is implemented with prob-

ability (1 − p) and some other operation is implemented with probability p. Such a

model can be used to describe quantum operations subject to bit-flip, dephasing,

or depolarizing errors, for example. Restricting our attention to channels of this

form, let us evaluate the contribution to the infidelity from the cross terms. We can

immediately leverage the fact that

Π⊥U |ψ〉K0 |ψ〉 = 0, (4.42)

to eliminate the terms where either i1 = 0 or i2 = 0. For the remaining terms, note

that the Kraus’ operator’s completeness relation implies,

p =
∑
i>0

K†iKi. (4.43)

Thus each Ki>0 is proportional to a unitary with a constant of proportionality that

105

is upper-bounded by
√
p. It follows that

C2 = 〈ψ|K†i2Π⊥U |ψ〉Ki1|ψ〉 〈φ|K†i1Ki2|φ〉 = O(p2) (4.44)

for all i1, i2 > 0. The maximal suppression criterion [Eq. (4.40)] is therefore satisfied,

and the infidelity of the output state is

1− F =
p

2
+O(p2). (4.45)

Let us provide a contrasting example—one where the maximal suppression crite-

rion is not satisfied. Consider the channel U defined by the single non-zero Kraus

operator,

K0 = RpU, (4.46)

where Rp is small coherent rotation in the plane containing |ψ〉 and some orthogonal

state |ψ⊥〉,

Rp |ψ〉 =
√

1− p |ψ〉+
√
p |ψ⊥〉 . (4.47)

This channel corresponds to an application of U followed by some deterministic co-

herent error, e.g., an over-rotation due to parameter miscalibration. Evaluating the

maximal suppression criterion [Eq. (4.40)] for this channel yields,

C2 =
1

2
〈ψ|(RpU)†Π⊥U |ψ〉(RpU)|ψ〉 〈φ|(RpU)†(RpU)|φ〉 =

p

2
, (4.48)

so that the infidelity of the final state is given by

1− F =
p

2
+
p

2
= p. (4.49)

For this sort of coherent error, the scheme does not yield any infidelity suppression.

This is to be expected, because in this case U is an entropy-non-increasing channel.

106

That is, S(ρ) = S(U(ρ)) for arbitrary ρ, where S = −Tr[ρ log ρ] is the von Neumann

entropy. For such channels, there is no inherent randomness, so repeated applications

of the channel never give rise to any asymmetries that could be removed by our post-

selection scheme. This example illustrates that our scheme is limited to suppressing

the infidelity associated with stochastic errors (those which can increase entropy).

To summarize, we have shown that the output state of the circuit in Fig. 4.3 has

an infidelity given by Eq. (4.39). Moreover, we find that for any channels which satisfy

the criterion Eq. (4.40), the infidelity is reduced by a factor of 2. (In Section 4.2.2,

we show how the scheme can be generalized to achieve greater error suppression.)

Failure probability

Before moving to our general error-suppression scheme, we calculate the failure prob-

ability of the simplified scheme of Fig. 4.3. The failure probability, Pfail, is the prob-

ability that the measurement does not yield |0〉, and is given by

Pfail = 1− Tr[ρBC]. (4.50)

We have

Pfail = 1− 1

2

∑
i1,i2

(
〈ψ|K†i1Ki1|ψ〉 〈φ|K†i2Ki2 |φ〉

)
−1

2

∑
i1,i2

(
〈ψ|K†i2Ki1|ψ〉 〈φ|K†i1Ki2 |φ〉

)
. (4.51)

We can simplify this expression by observing that the first line is equivalent to

1− 1

2
Tr
[
U(ψ)

]
Tr
[
U(φ)

]
=

1

2
, (4.52)

107

so we have

Pfail =
1

2
− 1

2

∑
i1,i2

〈ψ|K†i2Ki1|ψ〉 〈φ|K†i1Ki2|φ〉 . (4.53)

We see that the failure probability is dependent on the channel U , as well as the

states |ψ〉 and |φ〉. For mixed-unitary channels with K0 =
√

1− pU we can straight-

forwardly obtain an upper bound on this failure probability by including only the

i1 = 0, i2 = 0 term of the sum,

Pfail ≤
1

2
− 1

2
〈ψ|K†0K0|ψ〉 〈φ|K†0K0|φ〉

=
1

2
− 1

2
(1− p)2

= p+O(p2). (4.54)

We provide a more comprehensive analysis of the failure probability in the next

section.

4.2.2 General error-suppression scheme

The circuit in Fig. 4.3 uses 2 applications of the channel U to suppress the infidelity

of the output state by a factor of 1/2. Generalizing this scheme, the circuit in Fig. 4.4

uses M applications of the channel to suppress the infidelity of the output state by

a factor of 1/M (the generalized circuit reduces to that in Fig. 4.3 for M = 2).

The generalized circuit has three registers: a (logM)-qubit register A (initialized in

|0〉⊗ logM), an n-qubit register B (containing the target state |ψ〉), and another n-qubit

register C (initialized in an arbitrary state |φ〉). As before, at the end of the circuit,

register C is discarded, and register A is measured. We postselect on obtaining the

outcome |0〉⊗ logM . After successful postselection, the reduced state of register B, ρψ,

constitutes the output. Here again, the scheme can be viewed as a fusion of QROM

with the error symmetrization scheme of Ref. [117]: the circuit’s sequential iteration

108

...
=
=

=

Round 1 Round 2 Round M

Figure 4.4: General error suppression circuit. The circuit uses M applications of the channel
U to suppress the infidelity of the output state ρψ by a factor of 1/M (for applicable
channels).

over the different computational basis states of A is similar to QROM, while the

postselected measurement enacts a symmetrization reminiscent of Ref. [117].

To analyze this circuit, we adopt the same error model as before. We assume

that the channel U has a Kraus decomposition with Kraus operators Ki, and that

all operations in the circuit other than U are subject to a negligibly small error p′

(specifically, we now require p′ � p/M for p′ errors to be negligible).

With this error model, we proceed to calculate the final state of the system. Prior

to the final layer of Hadamard gates, the state of the full A, B, C system is

1

M

∑
i0,...,iM−1

[
M−1∑
j=0

|j〉AKij |ψ〉BKij |φ〉C
][

H.c.

]
, (4.55)

where we have defined

Kij =
∏
n6=j

Kin . (4.56)

This expression for the final state can be derived using a quantum trajectory picture.

At each round j, we replace the channel U with a corresponding Kraus operator Kij .

Together, these Kraus operators specify the quantum trajectory of the system, and

the final state can be calculated by incoherently adding all such trajectories (i.e., by

summing over i0, . . . iM−1 in the final density matrix). In this picture, when register

109

A is in state |j〉, the operator Kij is applied to |ψ〉, and all other Kraus operators are

applied to |φ〉. Now, after the last layer of Hadamards and successful postselection,

the resulting (unnormalized) state of the B and C systems is

ρBC =
∑

i0,...,iM−1

[
1

M

M−1∑
j=0

(
Kij ⊗Kij

)
|ψ〉B |φ〉C

][
H.c.

]

=
∑

i0,...,iM−1

[
Si0,...,iM−1

|ψ〉B |φ〉C
][

H.c.

]
, (4.57)

where we have defined the joint Kraus operators

Si0,...,iM−1
≡ 1

M

M−1∑
j=0

(
Kij ⊗Kij

)
. (4.58)

As examples, for the case of M = 2 we have

Si0,i1 =
1

2
(Ki0 ⊗Ki1 +Ki1 ⊗Ki0) , (4.59)

and for M = 3,

Si0,i1,i2 =
1

3
(Ki0 ⊗Ki2Ki1 +Ki1 ⊗Ki2Ki0 +Ki2 ⊗Ki1Ki0) . (4.60)

We note that Si0,i1 is symmetric under permutation of its indices and can thus properly

be called a symmetrized operator. In contrast, for M > 2, Si0,...,iM−1
is not technically

symmetrized according to this definition. Nevertheless, the the joint channel described

by the Kraus operators Si0,...,iM−1
can still suppress errors, as we show below.

To proceed, it is again useful to expand out the terms in ρBC ,

ρBC =
1

M2

∑
i0,...,iM

M−1∑
a,b=0

Kia |ψ〉 〈ψ|K†ib ⊗Kia |φ〉 〈φ|K
†
ib

(4.61)

110

then group them into two classes as follows,

ρBC =
∑

i0,...,iM

[
1

M2

M−1∑
a,b=0

(δa,b)
(
Kia |ψ〉 〈ψ|K†ib ⊗Kia |φ〉 〈φ|K

†
ib

)
+

1

M2

M−1∑
a,b=0

(1− δa,b)
(
Kia |ψ〉 〈ψ|K†ib ⊗Kia |φ〉 〈φ|K

†
ib

)]
, (4.62)

=
∑

i0,...,iM

[
1

M2

M−1∑
a=0

(
Kia |ψ〉 〈ψ|K†ia ⊗Kia |φ〉 〈φ|K

†
ia

)
+

1

M2

∑
a6=b

(
Kia |ψ〉 〈ψ|K†ib ⊗Kia |φ〉 〈φ|K

†
ib

)]
. (4.63)

We refer to terms on the first line of Eq. (4.63) as the paired terms, and those on the

second line as the cross terms. This grouping is convenient because it allows us to

separately quantify the contributions of the different terms to the infidelity.

Infidelity

Let us calculate the infidelity of the reduced state ρψ = TrC [ρBC]. As before, we have

that

1− F = Tr
[(

Π⊥U |ψ〉 ⊗ I
)
ρBC

]
+O(p2), (4.64)

The contribution to the infidelity from the paired terms is

Tr

 ∑
i0,...,iM−1

1

M2

M−1∑
a=0

(
Π⊥U |ψ〉Kia |ψ〉 〈ψ|K†ia ⊗Kia |φ〉 〈φ|K

†
ia

)
=

1

M2

M−1∑
a=0

Tr

[∑
ia

Π⊥U |ψ〉Kia |ψ〉 〈ψ|K†ia

]
Tr

∑
ib6=a

(∏
b 6=a

Kib

)
|φ〉 〈φ|

(∏
b6=a

Kib

)†
=

1

M2

M−1∑
a=0

Tr
[
Π⊥U |ψ〉U(ψ)

]
Tr
[
U (M−1)(φ)

]
=

p

M
, (4.65)

111

where in the second-to-last line we use U (M−1) to denote M−1 successive applications

of the channel U . Similarly, the contribution from the cross terms is,

Tr

 ∑
i0,...,iM−1

1

M2

∑
a6=b

(
Π⊥U |ψ〉Kia |ψ〉 〈ψ|K†ib ⊗Kia |φ〉 〈φ|K

†
ib

)
=

1

M2

∑
i1,i2

∑
a6=b

〈ψ|K†ibΠ
⊥
U |ψ〉Kia|ψ〉 〈φ|K

†
ib
Kia|φ〉 . (4.66)

Combining these two contributions, we have

1− F =
p

M
+

1

M2

∑
i1,i2

∑
a6=b

〈ψ|K†ibΠ
⊥
U |ψ〉Kia|ψ〉 〈φ|K

†
ib
Kia|φ〉+O(p2). (4.67)

From Eq. (4.67), we see that the infidelity is maximally suppressed whenever

CM ≡
1

M2

∑
i1,i2

∑
a6=b

〈ψ|K†ibΠ
⊥
U |ψ〉Kia|ψ〉 〈φ|K

†
ib
Kia |φ〉 = O(p2), (4.68)

to leading order. Thus Eq. (4.68) is criterion for maximal suppression for general

M . As before, we find that this criterion is satisfied for many channels of practical

relevance. For example, by the same argument as for the M = 2 case, we have

CM = O(p2) for the class of mixed-unitary channel with K0 =
√

1− pU . Interestingly,

in certain situations, we can also have CM = C2. This equivalence holds, for example,

if the Kraus operators are mutually commuting ([Ki, Kj] = 0 for all i, j), or if |φ〉

is stationary under the action of the channel (Ki |φ〉 ∝ |φ〉). In such cases, one

needs only to check the comparatively simpler criterion of Eq. (4.40), rather than the

general criterion of Eq. (4.68). This situation is relevant to the case of QRAM, for

which it is possible to choose a state |φ〉 that is invariant under the QRAM channel

(Section 4.3).

112

Failure probability

Let us calculate the failure probability,

Pfail = 1− Tr[ρBC], (4.69)

of the general scheme (Fig. 4.4). Inserting Eq. (4.61) into the above expression yields,

Pfail = 1− 1

M2

∑
i0,...,iM−1

M−1∑
a,b=0

〈ψ|K†ibKia|ψ〉 〈φ|K
†
ib
Kia |φ〉 . (4.70)

Unfortunately, this expression does not readily lend itself to additional simplification,

but it can be evaluated or bounded in specific cases of interest. For example, let

us return to the example of a mixed-unitary channel with K0 =
√

1− pU . For this

channel, a trivial upper bound on the failure probability is obtained by consider only

the terms in the sum for which i0, . . . , iM−1 = 0,

Pfail ≤ 1− 1

M2

M−1∑
a,b=0

〈ψ|K†0K0|ψ〉 〈φ|K†(M−1)
0 K

(M−1)
0 |φ〉

= 1− (1− p)M = Mp+O(p2). (4.71)

We note that this linear scaling with M matches the scaling of Ref. [117].

Remarkably, in some situations the failure probability of our scheme can be

bounded by a constant, i.e. Pfail does not increase with M . This is a highly desir-

able property, because it means that the infidelity can be significantly suppressed in

a near-deterministic manner. Indeed, a near-deterministic error-suppression scheme

could be used multiple times during the course of a quantum algorithm without sig-

nificantly degrading the algorithm’s overall success probability. Let us enumerate

some situations where this favorable bound can be obtained.

Commuting Kraus operators. Suppose that all of U ’s Kraus operators mutu-

113

ally commute, [Ki, Kj] = 0 for all i, j. Under this assumption we have that

Pfail = 1− 1

M2

∑
i0,...,iM−1

M−1∑
a,b=0

〈ψ|K†ibKia|ψ〉 〈φ|K†ia

(∏
n6=a,b

Kin

)†(∏
n6=a,b

Kin

)
Kib|φ〉

= 1− 1

M2

∑
ia,ib

M−1∑
a,b=0

〈ψ|K†ibKia|ψ〉 〈φ|K†iaKib|φ〉 , (4.72)

where we have used the Kraus operators’ completeness relation,
∑

iK
†
iKi = 1, to

obtain the second line. We proceed by breaking this expression into two parts,

Pfail = 1−
[

1

M

∑
ia

〈ψ|K†iaKia|ψ〉 〈φ|K†iaKia |φ〉

+
1

M2

∑
ia,ib

∑
a6=b

〈ψ|K†ibKia|ψ〉 〈φ|K†iaKib |φ〉
]

= 1−
[

1

M
+

1

M2

∑
ia,ib

∑
a6=b

〈ψ|K†ibKia|ψ〉 〈φ|K†iaKib|φ〉
]
. (4.73)

Now, let us further suppose that K0 =
√

1− pU , as before. Then we obtain the

bound

Pfail ≤ 1−
[

1

M
+

1

M2

M−1∑
a,b=0

〈ψ|K†0K0|ψ〉 〈φ|K†0K0|φ〉
]

= 1−
[

1

M
+
M(M − 1)

M2
(1− p)2

]
= 2p

(
1− 1

M

)
+O(p2). (4.74)

As M increases, this bound approaches a constant, 2p. In Section 4.2.3, we demon-

strate numerically that this bound is tight for some channels.

Stationary |φ〉. Suppose that the state |φ〉 is stationary under the channel U ,

that is, Ki |φ〉 ∝ |φ〉 for all i. This property implies that

KiKj |φ〉 = KjKi |φ〉 (4.75)

114

for all i, j. Equivalently,

[Ki, Kj] |φ〉 = 0 (4.76)

for all i, j. Notice that this is a weaker assumption than that considered in the

previous paragraph. Nevertheless, we can then employ the exact same argument to

show that

Pfail ≤ 2p

(
1− 1

M

)
+O(p2), (4.77)

for this case as well.

Bias-preserving circuits with infinite noise bias. Suppose that the operation

U is bias-preserving, meaning that it does not convert phase-flip errors to bit-flip

errors (we discuss bias-preserving operations at length in Section 5.3). More precisely,

we suppose

UZiU
† = PZ , (4.78)

for all i. Here, Zi is a phase-flip error acting on the i-th qubit, and PZ denotes an

arbitrary linear combination of n-qubit Pauli operators from the set {I, Z}⊗n. We say

that the channel U exhibits infinite noise bias if its Kraus operators can be expressed

as

Ki = P
(i)
Z U, (4.79)

where again P
(i)
Z denotes an arbitrary linear combination of phase-flip errors. That

is, U implements the ideal operation U followed by some combination of phase-flip

errors. For such channels, Pfail can be bounded by a constant for the specific choice

115

of |φ〉 = |0〉⊗n. The bound follows from the fact that,

KiKj |0〉⊗n = (P
(i)
Z U)(P

(j)
Z U) |0〉⊗n

= U2 |0〉⊗n

= (P
(j)
Z U)(P

(i)
Z U) |0〉⊗n

= KjKi |0〉⊗n , (4.80)

where, to obtain the second line, we have used the fact that U is bias-preserving

together with the observation that PZ |0〉⊗n = |0〉⊗n. Thus, we have

[Ki, Kj] |0〉⊗n = 0, (4.81)

so the arguments of the previous two paragraphs may be directly applied to obtain

Pfail ≤ 2p

(
1− 1

M

)
+O(p2), (4.82)

in this case as well.

4.2.3 Numerical demonstrations

To demonstrate our error-suppression scheme, we numerically simulate the circuit of

Fig. 4.4 for several simple single-qubit channels. Results are shown in Fig. 4.5. In

panel (a), we plot infidelity as a function of M , for bit-flip, phase-flip, and amplitude-

damping channels. These channels are defined by the Kraus operators,

bit flip = {
√

1− pI,√pX} (4.83)

phase flip = {
√

1− pI,√pZ} (4.84)

amplitude damping = {|0〉 〈0|+
√

1− p |1〉 〈1| ,√p |0〉 〈1|}. (4.85)

116

0 1 2 3 4 0 1 2 3 4

(a) Bit-flip Phase-flip

0 1 2 3 4

Amplitude-damping

(b)

1 2 3 4

0.010

0.012

0.014

0.016

0.018

0.020

1 2 3 4 1 2 3 4

Bit-flip Phase-flip Amplitude-damping

Figure 4.5: Infidelity (a) and failure probability (b) of the general error-suppression scheme
for various noise channels. Red dots indicate exact numerical results (performed by enu-
merating all possible quantum trajectories), while solid lines correspond to the analytical
expressions derived in Section 4.2.2. Note that logM = 0 (equivalently, M = 1) corresponds
to the case where no error suppression is used, for which 1− F = p and Pfail = 0.

The infidelity is observed to scale as p/M for all of these channels, which is to be

expected because they all satisfy the criterion for maximal suppression, CM = O(p2).

For the parameters in the plot, over an order-of-magnitude decrease in the infidelity

is observed as M is increased from M = 1 to M = 16. We note small deviations

from the p/M infidelity scaling are evident at the larger values of M . Such deviations

are to be expected, as the infidelity is only suppressed to leading order. Ultimately,

the infidelity is bounded from below by the next-order O(p2) contribution, which is

∼ 10−4 for the parameters shown in the plot.

In panel (b) of the figure, we plot the failure probability of the error-suppression

scheme for the same three channels. In all cases, we observe that Pfail closely follows

the bound derived in Section 4.2.2, namely Pfail ≤ 2p(1 − 1/M). Indeed, the failure

probability only increases mildly with M , approaching the constant value 2p, even

though the infidelity decreases by more than an order of magnitude. Recall that

117

this favorable bound does not hold in general, but rather only in specific situations

(e.g., when the Kraus operators commute, when |φ〉 is stationary under the channel,

or when the operation is bias-preserving). We have deliberately chosen two channels

(bit-flip and phase-flip) with commuting Kraus operators in order to demonstrate this

favorable error-probability scaling. The third channel, amplitude-damping, does not

satisfy any of the criteria for constant failure probability identified in Section 4.2.2.

Nevertheless, we observe that Pfail seems to obey the same bound for amplitude

damping as well. This observation demonstrates that our list of constant failure

probability examples is not exhaustive, and that there are other cases of practical

relevance with constant failure probability.

4.2.4 Comparison with error symmetrization

In Table 4.2, we summarize the analysis of our general error-suppression scheme

(Fig. 4.4), and we compare our scheme with that of Ref. [117]. Both schemes can

suppress the infidelity by a factor of 1/M to leading order, but the failure probabil-

ities and hardware overheads differ substantially. While in both schemes the failure

probability increases linearly with M in general, there are special cases where the fail-

ure probability of our scheme satisfies Pfail ≤ 2p. In such cases, the error suppression

can be performed near-deterministically, provided the initial infidelity p is small. The

ability to perform near-deterministic error suppression is one significant advantage of

our scheme.

Another significant advantage of our scheme is the exponential reduction in hard-

ware overhead with respect to the parameter M . The scheme of Ref. [117] requires

M identical quantum computers all operating in parallel, plus an additional O(M)

ancillary qubits, so the total hardware overhead is O(M). In contrast, our scheme

requires only logM ancillary qubits, plus a constant number of additional qubits

to hold the state |φ〉. Thus, the total hardware overhead is only O(logM). This

118

Infidelity Failure probability Overhead

Ref. [117] p/M +O(p2) (M − 1)p+O(p2) O(M)

Our scheme
(Fig. 4.4)

p/M +O(p2)
Mp+O(p2) (general case)

2p(1− 1/M) +O(p2) (special cases)
O(logM)

Table 4.2: Comparison of our error-suppression scheme with that of Ref. [117]. Both schemes
provide a 1/M suppression of the infidelity, but our scheme offers improvements in failure
probability and overhead.

dramatic improvement in hardware efficiency makes our scheme suitable for use in

near-term devices.

4.3 Hardware-efficient error suppression applied to

QRAM

In this section, we demonstrate how our hardware-efficient error-suppression scheme

can be applied to boost the query fidelity of QRAM. To do so, in Section 4.3.1

we begin by using the circuit-level noise model described in Chapter 3 to derive an

effective channel describing a noisy QRAM query. Then, in Section 4.3.2 we verify

that this effective channel satisfies the criterion for maximal suppression [Eq. (4.68)],

from which it follows that the query infidelity is suppressed by a factor of 1/M .

Next, in Section 4.3.3 we demonstrate that the failure probability can be bounded

by a constant in the case of QRAM, so that error suppression can be performed near

deterministically. Finally, we verify these results through numerical simulations in

Section 4.3.4.

119

4.3.1 Effective QRAM channel

We consider the situation where the target state is of the form

|ψ〉 =
N−1∑
i=0

αi |i〉A |0〉B , (4.86)

where A and B denote the address and bus registers. We wish to apply a data-lookup

operation (U = O
(DL)
x) to this state,

U |ψ〉 =
N−1∑
i=0

αi |i〉A |xi〉B . (4.87)

Instead of the ideal operation U , we are given access to a noisy approximation of the

operation, U , that is physically implemented using a noisy bucket-brigade QRAM.

In particular, we adopt the error model described in Chapter 3, where each router of

the QRAM is subject to some mixed-unitary error channel.

In order to study the applicability of our error-suppression scheme to QRAM, we

must first translate the circuit-level noise model of Chapter 3 into an effective channel

that acts only on the address and bus registers. That is, we must calculate an explicit

Kraus-operator representation for the channel U . Recall that the final state Ω of the

full system (address, bus, and routers) after a QRAM query can be written as

Ω =
∑
c

p(c) |Ω(c)〉 〈Ω(c)| , (4.88)

where c indexes different error configurations. Here,

|Ω(c)〉 = |good(c)〉+ |bad(c)〉 , (4.89)

120

where

|good(c)〉 =

∑
i∈g(c)

αi |i〉A |xi〉B
 |f(c)〉R , (4.90)

and |bad(c)〉 denotes the state of the full system with respect to the “bad” branches

(branches i 6∈ g(c), see Chapter 3 for details). The effective channel acting on only

the address-bus system is obtained by tracing out the routers,

U(ψ) = TrR [Ω] =
∑
c

p(c)TrR [|Ω(c)〉 〈Ω(c)|] (4.91)

To proceed, it is convenient to introduce an orthonormal basis for the routers’ Hilbert

space. We denote elements of this basis as |Rl(c)〉, where l indexes the different basis

states, and we define |R0(c)〉 ≡ |f(c)〉. We have

U(ψ) =
∑
c

p(c)

[
〈f(c)|Ω(c)〉 〈Ω(c)|f(c)〉+

∑
l>0

〈Rl(c)|Ω(c)〉 〈Ω(c)|Rl(c)〉
]

=
∑
c

p(c)

[(∑
i∈g(c)

αi |i〉A |xi〉B + 〈f(c)|bad(c)〉
)(

H.c.

)

+
∑
l>0

〈Rl(c)|bad(c)〉 〈bad(c)|Rl(c)〉
]

(4.92)

This channel can be equivalently written as,

U(ψ) =
∑
c,l

K(c, l) |ψ〉 〈ψ|K(c, l)†, (4.93)

where the operators K(c, l) constitute a Kraus representation of the channel U and

act as

K(c, l)
∑
i∈g(c)

αi |i〉A |0〉B =


√
p(c)

∑
i∈g(c) αi |i〉

A |xi〉B , for l = 0

0, for l 6= 0

(4.94)

121

and

K(c, l)
∑
i 6∈g(c)

αi |i〉A |0〉B =
√
p(c) 〈Rl(c)|bad(c)〉 , (4.95)

so that

K(c, 0) |ψ〉 =
√
p(c)

∑
i∈g(c)

αi |i〉A |xi〉B + 〈f(c)|bad(c)〉

 (4.96)

K(c, l > 0) |ψ〉 =
√
p(c) 〈Rl(c)|bad(c)〉 . (4.97)

Physically, K(c, l) corresponds to performing a noisy query with error configuration

c, projecting the routers onto the state |Rl(c)〉, then discarding the routers.

Thus far, we have calculated the action of the Kraus operators K(c, l) on the state

|ψ〉. To analyze our error-suppression scheme, we also need to specify another state

|φ〉 (of the same dimension as |ψ〉), and calculate the action of the Kraus operators on

this state. Recall that the choice of |φ〉 can affect both the infidelity and the failure

probability. To minimize both of these quantities, it is prudent to choose a state

|φ〉 = |ψ⊥〉 that is orthogonal to |ψ〉. With such a choice for |φ〉, the action of the

Kraus operators on this state can satisfy,

K(c, 0) |φ〉 =
√
p(c) |φ〉 (4.98)

K(c, l > 0) |φ〉 = 0. (4.99)

That the Kraus operators act on |φ〉 in this way is not immediately obvious and re-

mains to be justified. We provide further exposition below. Before doing so, however,

we remark that our choice of a state |φ〉 satisfying Eqs. (4.98) and (4.99) is crucial to

the minimization of both the infidelity and failure probability.

When |φ〉 is orthogonal to |ψ〉, these two states can be distinguished, and this

property can be exploited to ensure that Eqs. (4.98) and (4.99) hold. The idea is to

122

Address

Bus

Input

...
E

] [] [] []E EL EL E

E

= physical qubit = logical qubit [= encoding] = decoding

QRAM

operations

QRAM

operations

QRAM

operations

...
Q

R
AM

 a
nc

illa
s

Control

Figure 4.6: Queries with constrained error propagation. The circuit illustrates how the
address and bus qubits can be injected into the QRAM when the input state is |ψ〉, without
allowing errors to propagate back when the input state is |φ〉 = |ψ⊥〉. When the address
and bus registers are initialized in |ψ⊥〉, the first gate in the circuit flips the control qubit
from |1〉 to |0〉. All of the controlled-SWAP gates in the circuit then act trivially, so errors
from the QRAM cannot propagate back to the address and bus registers. An example error
and its subsequent propagation are illustrated by the red boxes labelled E. The address and
bus registers can be error corrected in order ensure that they are not themselves subject to
errors. Errors from the QRAM can then propagate to logical errors (denoted EL) on the
“input” rail, but these logical errors do not propagate to the other logical qubits provided
the controlled-SWAP gates are implemented fault tolerantly.

first check whether the QRAM is being queried with the state |ψ〉 or |φ〉, then only

inject the address and bus qubits into the tree if the input state is |ψ〉 and not |φ〉.

The procedure is illustrated in Fig. 4.6, which is a slightly modified version of the

usual bucket-brigade QRAM circuit (Fig. 2.8). The first gate of this circuit checks

whether the input state is |φ〉 = |ψ⊥〉, and if so a control qubit flipped from |1〉 to

|0〉. Then, the injection of the address and bus qubits into the QRAM is coherently

conditioned on the state of the control qubit. This way, the address and bus qubits

are not sent into the tree if the input state is |φ〉. As illustrated in the figure, it

follows that errors occurring within the QRAM cannot propagate back to the address

or bus registers when the QRAM is queried with |φ〉. This is another example of the

constrained error propagation that was crucial to our proof of QRAM’s noise resilience

in Chapter 3.

In this context, the constrained error propagation allows us to justify Eqs. (4.98)

123

and (4.99). When the QRAM is queried with |φ〉, the address and bus qubits are

not routed into the tree, so the query acts trivially. Moreover, because errors cannot

propagate back to the address and bus registers, it follows that |φ〉 is invariant under

the channel,

K(c, l) |φ〉 ∝ |φ〉 , for all c, l. (4.100)

Furthermore, because no qubits are routed into the tree, all routers remain in the

wait state in the absence of errors. As discussed in Chapter 3, errors propagate

identically through inactive routers (those in the wait state), and active routers that

lie in an error-free branch. Therefore, the final state of the routers is the same

whether the QRAM was queried with |φ〉 or with a good address (i.e., an address

|i〉A with i ∈ g(c)). The final state of the routers is |f(c)〉 in either case. Since

K(c, 0) corresponds to this final state, while K(c, l > 0) correspond to other final

sates, Eqs. (4.98) and (4.99) immediately follow.

Our justification of Eqs. (4.98) and (4.99) assumes that no errors occur in the

address and bus registers themselves. This assumption can be justified approximately

if the physical qubits comprising these register have a much lower error rate than those

comprising the QRAM. Alternatively, as illustrated in Fig. 4.6, errors in the address

and bus registers can be suppressed using error correction, while the QRAM itself

can be implemented without error correction. Repeated encoding and decoding is

then required to convert between logical qubits and physical qubits, but the error

propagation is sufficiently constrained regardless.

We have now specified a Kraus decomposition for the noisy QRAM channel

[Eq. (4.93)], and we have computed how these Kraus operators act on the rele-

vant states |ψ〉 [Eqs. (4.96) and (4.97)] and |φ〉 [Eqs. (4.98) and (4.99)]. With these

results, we proceed to show that the criterion of maximal suppression is satisfied

(Section 4.3.2) and that the failure probability can be bounded by a constant (Sec-

tion 4.3.3).

124

4.3.2 Infidelity of QRAM with error suppression

As shown in Section 4.2.2, the infidelity of our error-suppression scheme when applied

to a channel U is

1− F =
p

M
+ CM +O(p2), (4.101)

where p denotes the infidelity of the channel. In the case of the bucket-brigade QRAM,

we showed in Chapter 3 that

p = ε polylog(N), (4.102)

where ε denotes the physical error rate of the quantum routers, and N denotes the

size of the memory. Thus, when error suppression is applied to a QRAM query, the

infidelity scales as

1− F =
ε

M
polylog(N) +O[ε2polylog(N)], (4.103)

provided that the criterion for maximal suppression, CM = O(p2), is satisfied. In the

remainder of this section, we prove that this criterion is satisfied.

Recall from Section 4.2.2 that CM = C2 when |φ〉 is invariant under the channel

U . This is the case for QRAM, since K(c, l) |φ〉 ∝ |φ〉 for all c, l. Thus, it remains to

show that

C2 =
1

2

∑
c,c′

∑
l,l′

〈ψ|K(c′, l′)†Π⊥U |ψ〉K(c, l)|ψ〉 〈φ|K(c, l)†K(c′, l′)|φ〉 = O(p2). (4.104)

It follows from Eqs. (4.98) and (4.99) that

〈φ|K(c, l)†K(c′, l′)|φ〉 =
√
p(c)p(c′)δl,0δl′,0, (4.105)

125

so

C2 =
1

2

∑
c,c′

√
p(c)p(c′) 〈ψ|K(c′, 0)†Π⊥U |ψ〉K(c, 0)|ψ〉 . (4.106)

To proceed, we introduce some convenient shorthand notation,

|Ψ〉 ≡ U |ψ〉 =
N−1∑
i=0

αi |i〉 |xi〉 (4.107)

|gc〉 ≡
∑
i∈g(c)

αi |i〉 |xi〉 , (4.108)

|ḡc〉 ≡
∑
i 6∈g(c)

αi |i〉 |xi〉 , (4.109)

|γc〉 ≡ 〈f(c)|bad(c)〉 . (4.110)

From these definitions we have the following useful relations,

|Ψ〉 = |gc〉+ |ḡc〉 , (4.111)

and

〈gc|ḡc〉 = 0, (4.112)

and

K(c, 0) |ψ〉 =
√
p(c)(|gc〉+ |γc〉). (4.113)

Additionally, we note that

〈γc| (|i〉A |xi〉B) = 0, for all i ∈ g(c). (4.114)

This last statement follows from the fact that we assume the components of the

QRAM are subject to mixed-unitary error channels, which preserve orthogonality.

126

Inserting these definitions into Eq. (4.106) yields

C2 =
1

2

∑
c,c′

p(c)p(c′) (〈gc′|+ 〈γc′|) Π⊥|Ψ〉 (|gc〉+ |γc〉)

=
1

2

∑
c,c′

p(c)p(c′)

[
〈gc′|Π⊥|Ψ〉|gc〉+ 〈γc′ |Π⊥|Ψ〉|gc〉+ 〈gc′|Π⊥|Ψ〉|γc〉+ 〈γc′|Π⊥|Ψ〉|γc〉

]
.

(4.115)

We proceed to show that each of the four terms in the above expression is O(p2). For

easy reference, we define

Term1 ≡
1

2

∑
c,c′

p(c)p(c′) 〈gc′ |Π⊥|Ψ〉|gc〉 (4.116)

Term2 ≡
1

2

∑
c,c′

p(c)p(c′) 〈γc′|Π⊥|Ψ〉|gc〉 (4.117)

Term3 ≡
1

2

∑
c,c′

p(c)p(c′) 〈gc′ |Π⊥|Ψ〉|γc〉 (4.118)

Term4 ≡
1

2

∑
c,c′

p(c)p(c′) 〈γc′|Π⊥|Ψ〉|γc〉 . (4.119)

We being with the first term,

Term1 =
1

2

∑
c,c′

p(c)p(c′) 〈gc′|Π⊥|Ψ〉|gc〉

=
1

2

∑
c,c′

p(c)p(c′) (〈gc′|gc〉 − 〈gc′|Ψ〉 〈Ψ|gc〉)

=
1

2

∑
c,c′

p(c)p(c′) (〈gc′|gc〉 − 〈gc′|gc′〉 〈gc|gc〉) , (4.120)

where to obtain the last line we have used Eqs. (4.111) and (4.112). Then, using the

127

definition of |gc〉,

Term1 =
1

2

∑
c,c′

p(c)p(c′)

 ∑
i∈g(c)∩g(c′)

|αi|2 −
∑
i∈g(c)

|αi|2
∑
i∈g(c′)

|αi|2


=
1

2

∑
c,c′

∑
i∈g(c)∩g(c′)

p(c)p(c′)|αi|2 −
1

2

∑
c

∑
i∈g(c)

p(c)|αi|2
∑

c′

∑
i∈g(c′)

p(c′)|αi|2


=
1

2

∑
c,c′

∑
i∈g(c)∩g(c′)

p(c)p(c′)|αi|2 −
1

2

∑
c

∑
i∈g(c)

p(c)|αi|2
2

. (4.121)

The term in brackets on the last line can be simplified using the results from Chapter 3.

Recall that Λ(c) =
∑

i∈g(c) |αi|2 denotes the fraction of good branches, and that the

expected fraction of good branches is

∑
c

p(c)Λ(c) = 1− p (4.122)

The other contribution to Term1 can be simplified by introducing the function

I(i, c) ≡


1, i ∈ g(c),

0, i 6∈ g(c).

(4.123)

Using this function,

∑
c,c′

∑
i∈g(c)∩g(c′)

p(c)p(c′)|αi|2 =
N−1∑
i=0

|αi|2
∑
c,c′

p(c)p(c′)I(i, c)I(i, c′)

=
N−1∑
i=0

|αi|2
(∑

c

p(c)I(i, c)

)(∑
c′

p(c′)I(i, c′)

)

=
N−1∑
i=0

|αi|2
(∑

c

p(c)I(i, c)

)2

= (1− p)2. (4.124)

128

To obtain the last line, note that
∑

c p(c)I(i, c) is the probability that i ∈ g(c),

averaged over all error configurations. This is simply the expected fraction of good

branches, (1− p). Thus, we have

Term1 =
1

2

∑
c,c′

∑
i∈g(c)∩g(c′)

p(c)p(c′)|αi|2 −
1

2

∑
c

∑
i∈g(c)

p(c)|αi|2
2

=
1

2
(1− p)2 − 1

2
(1− p)2 = 0. (4.125)

Next, we consider Term2 and Term3. Note that these two terms are actually

equivalent to one another, so it suffices to consider only one of them,

Term2 =
1

2

∑
c,c′

p(c)p(c′) 〈γc′|Π⊥|Ψ〉|gc〉

=
1

2

∑
c,c′

p(c)p(c′) [〈γc′ |gc〉 − 〈γc′ |Ψ〉 〈Ψ|gc〉]

=
1

2

∑
c,c′

p(c)p(c′) [〈γc′ |gc〉 − (〈γc′ |gc〉+ 〈γc′ |bc〉) 〈gc|gc〉] . (4.126)

To proceed, we use the result from the previous paragraph that 〈gc|gc〉 = 1− p,

Term2 =
1

2

∑
c,c′

p(c)p(c′) [〈γc′ |gc〉 − (〈γc′ |gc〉+ 〈γc′|bc〉) (1− p)]

=
1

2

∑
c,c′

p(c)p(c′) [p 〈γc′|gc〉+ 〈γc′|bc〉 (1− p)] . (4.127)

Now, one can show that

∑
c,c′

p(c)p(c′) 〈γc′|gc〉 = O(p) (4.128)

∑
c,c′

p(c)p(c′) 〈γc′ |bc〉 = O(p2). (4.129)

For brevity, we only sketch the proof of the first statement; the second follows from

129

a similar calculation. We have

∣∣∣∣∣∑
c,c′

p(c)p(c′) 〈γc′ |gc〉
∣∣∣∣∣ =

∣∣∣∣∣∣
∑
c,c′

p(c)p(c′)
∑

i∈g(c),6∈g(c′)

αi 〈γc′| (|i〉 |xi〉)

∣∣∣∣∣∣
≤
∑
c,c′

p(c)p(c′)

∣∣∣∣∣∣
∑

i∈g(c), 6∈g(c′)

αi 〈γc′| (|i〉 |xi〉)

∣∣∣∣∣∣
≤
∑
c,c′

p(c)p(c′)

〈γc′|γc′〉 ∑
i∈g(c),6∈g(c′)

|αi|2
1/2

, (4.130)

where we have used Eq. (4.114) to obtain the first line, the triangle inequality to obtain

the second, and the Cauchy-Schwarz inequality to obtain the third. Continuing,

≤
∑
c,c′

p(c)p(c′)

 ∑
j 6∈g(c′)

|αj|2
∑

i∈g(c),6∈g(c′)

|αi|2
1/2

≤
∑
c,c′

p(c)p(c′)
∑
i 6∈g(c′)

|αi|2

≤
∑
i

|αi|2
∑
c′

p(c′)[1− I(i, c′)] = p, (4.131)

where we have used
∑

c p(c)I(i, c) = 1−p to obtain the final equality. This concludes

the proof of Eq. (4.128). The proof of Eq. (4.129) is similar. Inserting Eqs. (4.128)

and (4.129) into Eq. (4.127) yields the desired result,

Term2 = Term3 = O(p2). (4.132)

No new conceptual insights are required for the calculation of Term4, so we omit

this calculation for brevity. The result is similarly that Term4 = O(p2).

Combining these results together, we have

C2 = Term1 + Term2 + Term3 + Term4 = O(p2), (4.133)

130

so we see that QRAM does indeed satisfy the criterion for maximal error suppression.

We therefore have

1− F =
p

M
+ CM +O(p2) =

p

M
+O(p2)

=
ε

M
polylog(N) +O[ε2polylog(N)], (4.134)

and we see that our error-suppression scheme suppresses the query infidelity by a

factor of 1/M , to leading order.

4.3.3 Failure probability of QRAM error suppression

In this section, we compute the failure probability Pfail of QRAM error suppression.

We find that

Pfail = O(p), (4.135)

is independent of M . Therefore, near-deterministic error suppression is possible.

The failure probability can be computed from Eq. (4.70),

Pfail = 1− 1

M2

∑
c0,...cM−1

∑
l0,...lM−1

M−1∑
a,b=0

〈ψ|K(cb, lb)
†K(ca, la)|ψ〉 〈φ|K(cb, lb)

†K(ca, la)|φ〉 .

(4.136)

We can exploit Eqs. (4.98) and (4.99) to simplify this expression,

Pfail = 1− 1

M2

M−1∑
a,b=0

∑
ca,cb

√
p(ca)p(cb) 〈ψ|K(cb, 0)†K(ca, 0)|ψ〉

= 1−
∑
ca,cb

√
p(ca)p(cb) 〈ψ|K(cb, 0)†K(ca, 0)|ψ〉 . (4.137)

Note that this expression is already independent of M .

131

It remains to show that Pfail = O(p). Recall from the previous section that

K(c, 0) |ψ〉 =
√
p(c)(|gc〉+ |γc〉). (4.138)

Inserting this expression into Eq. (4.137) yields,

Pfail = 1−
∑
ca,cb

p(ca)p(cb) (〈gcb|gca〉+ 〈γcb|gca〉+ 〈gcb|γca〉+ 〈γcb|γca〉) . (4.139)

From the analysis in the previous section, we know that only the first term in the

sum yields a contribution which is O(1); the contributions from all the other terms

are O(p). Thus,

Pfail = 1−
∑
ca,cb

p(ca)p(cb) 〈gca |gcb〉+O(p). (4.140)

Note the sum in the above equation is equivalent to that in Eq. (4.124), which we

calculated to be (1− p)2. Inserting this expression yields the desired result,

Pfail = 1− (1− p)2 +O(p) = O(p). (4.141)

4.3.4 Numerical demonstrations

We numerically simulate the application of our error suppression scheme to QRAM,

with the QRAM subject to the the circuit-level noise model described in Chapter 3. To

do so, we adapt the efficient classical simulation algorithm described in that chapter.

Our simulation proceeds by first sampling from the set of possible error configurations

at each of the M rounds, then tracking the evolution of different computational basis

states through the noisy circuit (see Chapter 3 for further details). The simulation

cost scales polynomially in both N and M .

Simulation results are shown in Fig. 4.7. We simulate a bucket-brigade QRAM

with N = 8 memory locations, where each router is subject to either bit-flip, phase-

132

0 1 2 3 4

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 1 2 3 4

- 6

- 8

- 10 bit-flip
phase-flip
depolarizing

(a) (b)

bit-flip
phase-flip
depolarizing

Figure 4.7: Error suppression applied to QRAM. (a) Query infidelity. We plot log2(1− F)
as a function of log2(M), where F denotes effective QRAM query fidelity obtained via error
suppression. The solid lines indicate linear fits, and the fitted slopes of -1.00, -0.97, -1.00
demonstrating good agreement with the expected 1/M suppression. (b) Failure probability.
The failure probabilities for all channels appear to approach constants, consistent with the
expectation that Pfail = O(p) independent of M .

flip, or depolarizing errors at a rate of ε = 0.001. For these parameters, the infidelity

of a single query ranges from p ∼ 1% - 5%, depending on error channel and the

data being queried. With error suppression, we observe over an order-of-magnitude

decrease in the query infidelity as M is increased from 0 to 16, in good agreement with

the expected 1/M scaling. We also calculate the failure probability, and the results

are consistent with the expectation that Pfail approaches a constant of order p. These

results demonstrate that the QRAM query infidelity can be significantly suppressed

in a hardware-efficient and near-deterministic manner.

4.4 Conclusions and Outlook

In this chapter, we have proposed a hardware-efficient error-suppression scheme that

can reduce the infidelity of quantum operations. Our scheme uses M applications

of a channel to distill an effective channel whose infidelity is reduced by a factor

of 1/M . This scheme is hardware efficient, with the required hardware overhead

scaling only logarithmically with M . Moreover, in several situations of practical

interest, the failure probability can be shown to be independent of M , so that error

133

suppression can be performed near deterministically. The hardware efficiency and

near determinism of our scheme not only constitute significant improvements over

the error-symmetrization scheme of Ref. [117], but they are also important practical

benefits that make our scheme applicable to near-term devices. Indeed, our scheme is

best suited for noisy intermediate-scale devices, where both the number and quality of

qubits are limited. In this context, the ability to achieve even a quadratic suppression

of the infidelity [for M = 1/p we have p/M = O(p2)] could be extremely useful.

As an example of a practical use case, we have described the application of

our scheme to QRAM. While prohibitive overheads make large-scale, error-corrected

QRAM impractical (at least with conventional error-correction approaches), our error-

suppression scheme allows one to suppress the query infidelity without an additional

O(N) hardware overhead. Moreover, we have shown that this suppression succeeds

with probability 1−O(p), where p is the query infidelity. Thus, if the query infidelity

is already low (due to the noise resilience of the bucket-brigade architecture, for ex-

ample), then the error suppression can be performed near deterministically. As a

result, our scheme is suitable for use in algorithms that involve many QRAM queries.

For an algorithm with Q queries, the total success probability, 1−O(Qp), is of order

unity so long as Q� 1/p. If the base query infidelity is low, p� 1, then the number

of queries can be large. On the other hand, one downside of our scheme is that the

required time overhead for error suppression is proportional to M . Because QRAM

queries are already fast [T = O(logN)], however, this additional time overhead may

not be problematic in many situations.

One aspect of our scheme that requires further analysis is the effect of errors in

other parts of the circuit. We have assumed that these errors occur with some rate p′

that is sufficiently small so that these effects are negligible. To obtain a pessimistic

estimate of these effects, we can assume that any such error reduces the fidelity of

the final state to 0. Because there are O(M) different locations for such errors, a

134

pessimistic estimate for the infidelity is

1− F =
p

M
+ AMp′ +O(p2) +O(p′2), (4.142)

where A is some constant. The optimal choice of M is thus

M = min
{

(p/Ap′)1/2, O(1/M)
}
, (4.143)

and the minimal infidelity is

1− F = min
{

2(Ap′p)1/2, O(p2)
}
. (4.144)

An estimate of the parameter A is thus required to obtain a lower bound on the

achievable infidelity. While an upper bound on A can easily be obtained simply by

enumerating all possible error locations, it is unlikely that such a bound would be

tight. For example, many of the possible errors could be detected by the postselection,

so that they would increase the failure probability rather than the infidelity. A precise

estimate of A is the subject of ongoing work.

Another important direction for future work will be to develop a procedure for

determining which QRAM architecture minimizes the query infidelity as a function

of the available resources. That is, suppose that a particular application requires

that the query time must be less than Tmax, and that no more than Nmax qubits can

be used to perform the query. What architecture (QRAM, QROM, or hybrid) and

what means of error reduction (error suppression, quantum error correction, or both)

should be employed to minimize the query infidelity subject to these constraints?

For example, for certain Nmax and Tmax, it may be possible to use QRAM with

error suppression, QROM with error correction, or even a hybrid QRAM-QROM

architecture that employs both error suppression and error correction. Understanding

135

this optimization landscape is necessary if we are to fully exploit the limited resources

of near- and intermediate-term quantum devices.

136

Chapter 5

Quantum acoustic implementations

of QRAM

In the preceding chapters, we have shown that QRAM can be remarkably resilient to

noise, and we have presented a hardware-efficient scheme to further suppress errors

in QRAM queries. Now, in this chapter, we turn to the question of how a large-scale

QRAM can be constructed. Of course, QRAM’s only function is to implement the

unitary operation O
(DL)
x , and in principle any universal quantum computer could fulfill

this function. However, because QRAM is a highly-specialized architecture with a

very specific purpose, using a general-purpose quantum computer to emulate QRAM

is highly inefficient. For example, implementations of error-corrected QRAM using

the surface code—the code most commonly considered for universal fault-tolerant

quantum computing—incur massive overheads that make scaling unfeasible [18].

A more prudent approach to building a QRAM is to specifically tailor the un-

derlying hardware to the task at hand. In this spirit, in this chapter we propose

implementations of QRAM based on hybrid quantum acoustic hardware. As we show

below, quantum acoustic systems are naturally well-suited to the task of implement-

ing QRAM due to their compactness and high coherence. Because of the small size

137

of the acoustic components, quantum acoustic devices are highly scalable. At the

same time, the highly coherent nature of acoustic modes minimizes the amount of

error correction that is required to realize high-fidelity queries. We leverage these

appealing properties to propose experimental implementations of QRAM that are

hardware-efficient and scalable.

This chapter is organized as follows. In Section 5.1 we review the recent experi-

mental progress in the field of quantum acoustics that motivates our proposals. Next,

in Sections 5.2 and 5.3, we present two schemes for quantum computing with quan-

tum acoustics. The first scheme, in Section 5.2, is based on Hamiltonian engineering

in multimode acoustic systems, and the relative simplicity of this approach makes it

better suited for near-term experiments. The second scheme, in Section 5.3, is based

on stabilized cat qubits, and in the long term this scheme presents a viable path to-

ward hardware-efficient fault-tolerant quantum computing. Finally, in Section 5.4 we

describe how both both schemes can be used to realize a modular, hardware-efficient

QRAM.

The results in this chapter are primarily based on Ref. [99]: CTH et al., Hardware-

efficient quantum random access memory with hybrid quantum acoustic systems,

Phys. Rev. Lett. 123, 250501 (2019), and Ref. [125]: Chamberland et al. (including

CTH), Building a fault-tolerant quantum computer using concatenated cat codes,

arXiv:2012.04108.

5.1 Recent experimental progress in quantum acous-

tics

The coupling of superconducting qubits to microwave resonators, termed circuit quan-

tum electrodynamics (cQED) [134, 135], constitutes one of today’s most promising

quantum computing architectures. Microwave modes provide good quantum memo-

138

ries [136], while superconducting nonlinearities enable the initialization [137], manip-

ulation [138, 139], readout [140], and protection [141, 142] of quantum states encoded

in microwave photons. However, long microwave wavelengths pose a potential limita-

tion to the scalability of cQED systems. On-chip resonators face trade-offs between

compactness and quality factor [143, 144], and microwave modes with millisecond co-

herence or better have thus far only been demonstrated in large 3D cavities [136, 145].

Recently, coherent couplings between superconducting qubits and acoustic res-

onators have been demonstrated in a remarkable series of experiments [146–158].

These so-called circuit quantum acoustodynamic (cQAD) systems (Fig. 5.1) pos-

sess many of the advantageous properties of cQED systems, e.g., superconducting

qubits can be used to generate arbitrary superpositions of acoustic Fock states [150,

154], and phonon-number resolving measurements can be performed in the dispersive

regime [157, 158].

Relative to electromagnetic modes, acoustic modes can provide dramatic benefits

in terms of size and coherence times. The velocities of light and sound differ by

five orders of magnitude, and the correspondingly short acoustic wavelengths enable

the fabrication of ultra-compact phononic resonators [159]. Furthermore, acoustic

modes can be exceptionally well-isolated from their environments—quality factors

in excess of 1010 were recently demonstrated in GHz frequency phononic crystal

resonators [160]. A variety of applications for such platforms have been proposed,

including quantum transduction [161], entanglement generation [162, 163], and quan-

tum signal processing [164, 165]. Only recently has the direct use of cQAD systems

for quantum computing started to receive attention [99, 125, 166].

139

(a) (b) (c)

Figure 5.1: Multimode cQAD. A nonlinear superconducting circuit (red) is piezoelectrically
coupled to (a) a bulk acoustic wave resonator, (b) a surface acoustic wave resonator, or (c)
an array of phononic crystal resonators.

5.2 Quantum computing with acoustics, approach 1:

multimode Hamiltonian engineering

In this section, we propose a hardware-efficient and scalable quantum computing

architecture for multimode cQAD systems. Quantum information is stored in high-

quality acoustic modes, and interactions between modes are engineered by applying

off-resonant drives to an ancillary superconducting transmon qubit. During these

operations, the transmon is only virtually excited, so the effects of transmon decoher-

ence are mitigated. This is a crucial property, since the transmon’s decoherence rate

can exceed that of the phonons by orders of magnitude. In comparison to existing

proposals that involve directly exciting the transmon [103, 166], this virtual approach

can offer substantial improvement in gate fidelity for long-lived phonons. This scheme

is also directly applicable to multimode cQED [103].

In Section 5.2.1 we provide a broad overview of our scheme, and in the sections

that follow, we explore several practical aspects the scheme in further detail. In

Section 5.2.2, we describe how inter-mode couplings can be selectively engineered

in situations where the phonon mode frequencies are naturally evenly spaced. In

Section 5.2.3 we derive the expressions for the coupling rates and verify their accuracy

with numerical simulations. And finally in Section 5.2.4 we leverage these results to

estimate achievable gate fidelities.

140

5.2.1 Hamiltonian engineering in multimode cQAD

In multimode cQAD, a transmon qubit (or some other superconducting circuit) is

piezoelectrically coupled to a collection of acoustic modes. These modes can be sup-

ported in bulk acoustic wave (BAW) [149–151] or surface acoustic wave (SAW) [152–

157] resonators, or in an array of phononic crystal (PC) resonators [158] (Fig. 5.1).

Quality factors of ≈ 105, 108, and 1010 have been measured at GHz frequencies in

SAW [167, 168], BAW [169, 170], and PC resonators [160], respectively, and the trans-

mon can be simultaneously coupled to large numbers of high-Q modes on a single chip,

even hundreds at once [149]. These systems can be described by the Hamiltonian

H = ωqb
†b− α

2
b†b†bb+

∑
k

(
ωka

†
kak + gkb

†ak + g∗kba
†
k

)
+Hd, (5.1)

where we take ~ = 1 throughout this chapter to simplify notation. Here, b and ak

denote the annihilation operators for the transmon and phonon modes, respectively.

The transmon is modeled as an anharmonic oscillator with Kerr nonlinearity α and

is coupled to the k-th phonon mode with strength gk (typically a few MHz [152, 158,

171]). In combination with external drives on the transmon,

Hd =
∑
j

Ωjb
†e−iωjt + H.c., (5.2)

this coupling provides the basic tool to initialize, manipulate, and measure phononic

qubits [150, 154]. For example, itinerant photon-encoded qubits sent to the system

can be routed into a particular phonon mode via pitch-and-catch schemes [172–176].

Interactions between phonon modes can be engineered by applying off-resonant

drives to the transmon, and we use these interactions to implement a universal gate

set for phononic qubits. The main idea is that the transmon’s Kerr nonlinearity

enables it to act as a four-wave mixer [177–180], so phonons can be converted from

141

Gate Four-wave mixing Frequency space diagram

ωA ωBωq ω1 ω2

SWAP

CZ

ωA

ω2 ω1

ωB

ωA ωC

ω1 ωCωB ωA ωBωq ω1

Figure 5.2: Phonon-phonon gates. SWAP: Applying two drives with ω2 − ω1 = ωB − ωA
creates an effective coupling between modes A and B. CZ: Applying a single drive with
ω1 = ωA + ωB − ωC creates an effective three-mode coupling between modes A, B, and
C. Frequency shifts of strongly hybridized modes (dark blue) can enable selective coupling
when the modes are otherwise uniformly spaced (dashed lines denote uniform spacing). See
Section 5.2.2 for further details.

one frequency to another by driving the transmon. For example, phonons can be

converted from frequency ωA to ωB by applying two drive tones whose frequencies

ω1,2 satisfy the resonance condition

ω2 − ω1 = ωB − ωA, (5.3)

see Fig. 5.2. This driving gives rise to an effective Hamiltonian

H = g(1)
v aAa

†
B + H.c., (5.4)

where

g(1)
v = −2α

gA
δA

g∗B
δB

Ω∗1
δ1

Ω2

δ2

(1− β(1)) (5.5)

Here, δj ≡ ωj−ωq, and β(1) is a drive-dependent correction factor (See Section 5.2.3 for

a detailed discussion of the coupling rates). Evolution under this coupling for a time

π/2g
(1)
v implements a SWAP gate, which exchanges the states of modes mA and mB,

while evolution for a time π/4g
(1)
v implements a 50:50 beamsplitter operation [179].

142

Three-mode interactions can be similarly engineered (Fig. 5.2). Applying a single

drive tone with frequency

ω1 = ωA + ωB − ωC (5.6)

gives rise to the effective Hamiltonian

H = g(2)
v aAaBa

†
C + H.c., (5.7)

where

g(2)
v = −2α

gA
δA

gB
δB

g∗C
δC

Ω∗1
δ1

(1− β(2)). (5.8)

(See Section 5.2.3 for derivations of the coupling rates.) This three-mode interaction

can be used to implement a controlled-phase (CZ) gate for qubits encoded in the

|0, 1〉 phonon Fock states [181]. To perform a CZ gate between qubits in modes A

and B, mode C is used as an ancilla and initialized in |0〉. Evolving for a time

π/g
(2)
v then enacts the mapping |110〉ABC → |001〉 → − |110〉, while leaving all other

initial states unaffected. The state |11〉AB acquires a relative geometric phase, thereby

implementing the CZ gate.

A variety of other operations can be similarly implemented. Single- and two-mode

squeezing can be implemented by driving the transmon at appropriate frequencies,

and phase shifts can be implemented in software by tuning the drive phases. To-

gether, these two- and three-mode interactions are sufficient for universal quantum

computation [182]. In the remainder of this work, however, we focus on the beam-

splitter, SWAP, and CZ operations, as these are the only operations we require to

implement a QRAM.

143

Uniform mode spacing

frequency

(a) (c)

Nonuniform mode spacing
●

●
●

●
●

●

●

● ● ● ● ● ● ●

⌫

(b)

j

⌫ j
,j

+
1

j

⌫ j
,j

+
1

(d)

⇠ �⌫

Figure 5.3: Sets of (a) uniformly and (b) nonuniformly spaced modes. (c,d) The frequency
differences between successive modes are plotted to illustrate the behavior of νj,j+1. (c)
For uniformly spaced modes, νj,j+1 is constant. (d) For nonuniformly spaced modes, νj,j+1

varies on the scale of ∆ν.

5.2.2 Frequency selectivity

In BAW and SAW resonators, phonon mode frequencies are approximately uniformly

spaced, i.e. ωj+1 − ωj = ν, where ν is the free spectral range. This uniform spacing

can lead to problematic degeneracies in the resonance conditions above. Nonuniform

mode spacing is thus necessary in order to ensure that the resonance conditions are

nondegenerate, i.e. to ensure that a given pair or triple of modes can be selectively

coupled. In this Section, we formalize the meaning of nonuniform, then present sev-

eral schemes for engineering nonuniformity in BAW and SAW systems. For concrete-

ness, we also provide example schematics for BAW and SAW devices with engineered

nonuniformity. Note that phononic crystal resonators are not generally plagued by

such degeneracies, since mode frequencies can be controlled by engineering the geom-

etry of each individual phononic resonator.

As shown in Fig. 5.3, a set of modes is nonuniformly spaced if there exist mode

pairs {i, j} and {k, `} for which νij 6= νk`, where νij = |ωi − ωj| is the frequency

spacing between modes i and j. In the context of multimode coupling, it is useful

to quantify this nonuniformity as follows. Let S denote the set of all modes that are

used to store quantum information, and let P denote the set of all mode pairs that

144

one chooses to couple (we provide examples below). The connectivity of the system

is then described by a graph with vertices S and edges P . As a practically relevant

measure of the nonuniformity, we define the quantity

∆ν = min
{i,j}∈P

[
min

{k∈S,`}6={i,j}
|νij − νk`|

]
, (5.9)

which lowerbounds the frequency selectivity of two-mode couplings. Explicitly, the

beamsplitter resonance condition, ω2−ω1 = ωB −ωA for a pair of modes {A,B} ∈ P

is detuned from all other beamsplitter resonance conditions involving any mode in

S by at least ∆ν. Highly selective virtual couplings thus require gv/∆ν � 1. Note

that since ∆ν depends on the choices of S and P , there can exist a tradeoff between

selectivity and the effective size and connectivity of the system. The definition of ∆ν

can be straightforwardly generalized to the case of three-mode couplings.

Whether a given pair or triplet of modes can be selectively coupled depends on the

structure of the nonuniformity, and in this regard it is convenient to classify different

sorts of nonuniformity according to properties of νj,j+1. We study two such classes

in the examples below: point defect nonuniformities, for which νj,j+1 is constant

except in the vicinity of a single defect, and periodic nonuniformities, for which νj,j+1

is periodic. Of course, other classes exist, but we focus on these two classes since

instances can readily be engineered in cQAD systems.

External mode hybridization

A point defect nonuniformity can be created by coupling the phonons to some external

mode, such as a microwave resonator. As demonstrated in Ref. [171], and sketched

in Fig. 5.4(a,b), the resulting mode hybridization can significantly shift phonon mode

frequencies within some bandwidth D of the external mode. The nonuniformity ∆ν

is dictated by the magnitude of these frequency shifts. For example, frequency shifts

145

of order 1MHz were demonstrated in Ref. [171].

This class of nonuniformity can enable selective coupling: selective two-mode

coupling is possible if one or both involved modes lie in D, and selective three-mode

coupling is possible if two of the three involved modes lie in D. Hence, the set S

can include arbitrarily many modes, but the set P can only include mode pairs with

at least one mode in D. While modes outside of D cannot be directly coupled to

one another, information from these modes can instead be swapped into modes in D,

manipulated, and swapped back. Note that the coherence of the external mode should

be comparable to that of the phonons, lest the hybridization result in a significant

increase in effective decay rates, and in general there may exist a tradeoff between

increased nonuniformity and enhanced decay.

Two phonon mode families

Another approach is to create a periodic nonuniformity by simultaneously coupling

the transmon to two families of phonon modes [151] with different free spectral ranges

(FSRs). While modes within each family are uniformly spaced, the FSR differ-

ence causes the spacing between modes from different families to vary, as shown

in Fig. 5.4(c,d). This nonuniformity enables two modes from different families to be

selectively coupled. But because of the periodicity, selectivity is only guaranteed over

a finite bandwidth smaller than one period. With two mode families, a set S con-

taining ≈ ν/∆ν modes can be found wherein any two modes from different families

can be selectively coupled with ∆ν = |ν1 − ν2|, where ν1,2 are the FSRs of the two

families.

By itself, the use of two mode families does not enable selective three-mode cou-

pling1, but this limitation can be circumvented by coupling the transmon to one or

1. At least two modes out of any three come from the same family, and since the modes in each
family are uniformly spaced, there necessarily exists another set with the same resonance condition.

146

● ● ● ● ● ● ●

●

●
● ● ● ● ● ●

●
●●

●
●
●
●●

●
●
●●●

●
●
●●

●
●

j

ω
j+
1-

ω
j

Hybridization with external mode

frequency

(a) (b)

Composite resonator(e) (f)

BAC

Two mode families(c) (d)

⌫1
⌫2

A B C

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

j

ω
j+
1-

ω
j

A B C

D

S

S

j

⌫ j
,j

+
1

j

⌫ j
,j

+
1

j

⌫ j
,j

+
1

Figure 5.4: Nonuniform mode spacing. (a) External mode hybridization. The coupling
between phonons and an external mode causes strongly hybridized modes (dark blue) to
deviate from the otherwise uniform spacing (dashed lines). The arrows show examples of
how this nonuniformity gives rise to nondegenerate resonance conditions: modes A and B
can be coupled by the applying drives indicated by solid arrows, while modes A, B, and
C can be coupled by applying the drive indicated by the dashed arrow. (b) Frequency
differences shrink significantly within a bandwidth D of the external mode. (c) Two mode
families. Simultaneously coupling the transmon to two mode families (blue, green) enables
selective two-mode coupling between modes from different families. Selectivity is only guar-
anteed in a finite region S, and an example of such a region is highlighted in (d). The
use of an external mode C enables selective three-mode coupling. (e) Composite resonator.
Nonuniform mode spacing in composite resonators arises due to partial reflections at the
interface(s). For example, with a single interface, a simple transfer matrix treatment [183]
reveals that the FSR is periodically modulated, as in (f). Selective three-mode coupling can
be enabled by restricting the transmon phonon-coupling bandwidth (regions with negligible
coupling are shaded in gray), or by using an external mode as in (c).

147

more external modes. For example, the BAW devices of Refs [149, 150] are housed

in microwave cavities, and coupling the transmon to a high-Q cavity mode can en-

able selective three-mode coupling between the cavity and any pair of modes in S.

In a SAW device, the additional mode could come from another SAW resonator or

a microwave resonator. The transmon itself could even serve as the external mode,

but gate fidelities would then be directly limited by transmon coherence. Ideally, the

coherence of the external mode should be comparable to that of the phonons, lest it

limit gate fidelity.

Composite resonators

Yet another approach is to employ a composite acoustic resonator, in which phonons

propagate in media with different indices of refraction [Fig. 5.4(e,f)]. Reflections at

the interfaces can give rise to a periodic modulation of the FSR [183]. As in the

case of two mode families, this periodic nonuniformity can enable selective two-mode

coupling within a finite bandwidth S, though the magnitudes of both S and ∆ν

depend on the nature of the modulation.

Whether selective three-mode coupling within S is feasible depends on the of the

specific nature of the FSR modulation. In cases where it is not already possible,

selective three-mode coupling can be enabled by either coupling the transmon to

some external mode, as previously described, or alternatively by restricting the band-

width over which the transmon-phonon coupling is appreciable. For example, if the

transmon-phonon coupling is only appreciable within S, as in Fig. 5.4(e), then selec-

tive three-mode coupling is possible since the system contains an effectively finite num-

ber of nonuniformly spaced modes. In SAW systems, the coupling bandwidth can be

tuned by changing the number of fingers in the interdigitated transducer2 [152, 168].

2. Because SAW resonators have finite bandwidth, care should be taken to avoid coupling to
unconfined modes. This problem can be solved in general by engineering the transmon-phonon
coupling bandwidth to lie within the SAW resonator bandwidth. The size of both bands can be
tuned by varying the number of fingers in the respective interdigitated transducers [152, 168].

148

In BAW systems, the coupling bandwidth can be similarly tuned by changing the

electromechanical transducer’s geometry. For instance, in a transducer comprised of

alternating layers of piezoelectric and non-piezoelectric materials, the spacing, thick-

ness, and number of such layers could be chosen so that the coupling has a narrow

response centered at a particular frequency, as in a Bragg reflector.

Example schematics

CPW
microwave cavity

(c)(a)
transducers

frequency

(b) (d)

Figure 5.5: SAW and BAW devices with engineered nonuniformity. (a) The modes of a
SAW resonator are coupled to both a transmon and a coplanar waveguide (CPW) resonator.
Hybridization with the resonator mode creates nonuniformity. (b) Mode frequencies of the
device in (a). The CPW resonator mode and the phonon mode with which it most strongly
hybridizes are shown in dark blue. (c) A 3D transmon couples to both a microwave cavity
mode and to phonon modes from two BAW resonators with different FSRs (the difference
is engineered by reducing the thickness of the substrate under one of the transducers). (d)
Mode frequencies of the device in (c).

For concreteness, in Fig. 5.5 we provide example schematics for SAW and BAW

devices in which nonuniformity is engineered according to the strategies described

above. Fig. 5.5(a) shows a SAW device that exploits the external mode hybridization

strategy. A SAW resonator is fabricated on a piezoelectric substrate, and coupling

between the transmon and the phononic modes is enabled by an interdigitated capac-

itor. A superconducting coplanar waveguide resonator is also coupled to the phononic

modes, and the hybridization of the phononic modes with the resonator mode creates

the necessary nonuniformity.

Fig. 5.5(c) shows a BAW device that exploits the two mode families strategy. The

149

device is based on those demonstrated in Refs. [149, 150]; a three-dimensional (3D)

transmon is housed inside a microwave cavity, and thin disks of piezoelectric material

(transducers) fabricated in the transmon’s pads enable the transmon to couple to

BAW modes in the substrate. Two modifications have been made relative to the

devices in Refs. [149, 150]. First, an additional transducer has been added so that

the transmon simultaneously couples to two families of modes. Second, the thickness

of the substrate beneath one of the transducers has been reduced so that the two

families have different FSRs. The microwave cavity mode, which dispersively couples

to the transmon, provides the external mode necessary to enable selective three-mode

couplings. We note that other elements, e.g. a separate readout resonator for the

transmon, can be integrated into 3D architectures in such a way that the transmon

can be driven and measured without involving the cavity mode [184].

5.2.3 Estimates of achievable coupling rates

In this section, we study the virtual coupling rates

g(1)
v = −2αξ∗1ξ2λAλ

∗
B(1− β(1)), (5.10)

g(2)
v = −2αξ∗1λAλ

∗
BλC(1− β(2)). (5.11)

Below, we define the notation, derive these expressions, and discuss the importance

of the corrections β(1,2) for cQAD systems. Then, in order to verify the accuracy of

these expressions, we compare them to numerical results obtained using the Floquet

theory methods of Ref. [180].

Derivation of the virtual coupling rates

To derive the expressions (5.10) and (5.11), we begin with the multimode cQAD

Hamiltonian (Eq. (5.1)) and perform a unitary transformation defined by U1 =

150

exp iH0t, where H0 = ωqb
†b+

∑
k ωka

†
kak. Thus,

H =
∑
j

(
Ωjb

†e−iδjt + H.c.
)

+
∑
k

(
gkakb

†e−iδkt + H.c.
)
− α

2
b†b†bb, (5.12)

where δk = ωk − ωq is the detuning of the kth phonon mode, while δj = ωj − ωq

and Ωj are the detuning and the strength of the jth drive tone, respectively. In the

spirit of Ref. [185], we first perform unitary transformations to eliminate the qubit-

phonon couplings and drive terms then consider the effects of the anharmonicity. For

convenience of notation, we introduce the dimensionless parameters λk ≡ gk/δk and

ξj ≡ Ωj/δj. To leading order in λk � 1, the unitary that eliminates the couplings

is U2 = exp
∑

k(λ
∗
ka
†
kbe

iδkt − H.c), and that which eliminates the drives is U3 =

exp
∑

j(ξ
∗
j be

iδjt −H.c). The combined effect of these two transformations is to enact

the mapping

q → b+
∑
j

ξje
−iδjt +

∑
k

λkake
−iδkt ≡ Q, (5.13)

so that the Hamiltonian becomes

H = −α
2
Q†Q†QQ. (5.14)

Note that we have neglected linear terms of the form (Ω∗jλkake
i(δj−δk)t + H.c.). This

omission is justified in the RWA provided that |δj−δk| � λkΩj, i.e. that the drives are

sufficiently far detuned from any modes in which we are interested. For simplicity, we

also neglect frequency (Stark) shifts of the phononic eigenmodes—we describe their

effects in Ref. [99].

When two drive tones are applied whose frequencies satisfy the resonance condition

ω2 − ω1 = ωB − ωA, the Hamiltonian (5.14) contains a resonant beamsplitter-type

151

coupling, g
(1)
v aAa

†
B + H.c., where

g(1)
v = −2αξ∗1ξ2λAλ

∗
B. (5.15)

Similarly, when a single drive tone is applied with frequency3 ω1 = ωA +ωC−ωB, the

Hamiltonian contains a resonant three-mode coupling g
(2)
v aAa

†
BaC + H.c., where

g(2)
v = −2αξ∗1λAλ

∗
BλC . (5.16)

Corrections to the virtual coupling rates

The Hamiltonian (5.14) contains many terms beyond just the resonant terms dis-

cussed above (see Table 5.1). Most of these terms are rapidly-rotating and can be

neglected in the RWA assuming dispersive coupling (λ� 1) and weak drives (ξ � 1).

However, other terms can produce corrections β(1,2) to the coupling rates. In this sec-

tion, we first calculate these corrections to leading order in λ and ξ. Then, we derive

nonperturbative contributions associated with the AC Stark shift.

Table 5.1: Catalog of terms in the Hamiltonian (5.14). Summations run over all drives and
all modes, including the transmon mode q, for which λq = 1 and δq = 0.

Term Description

α
2

∑
i,j,k,l ξ

∗
i ξ
∗
j ξkλlale

i(δi+δj−δk−δl)t + H.c. Drive

α
2

∑
i,j,k,l ξ

∗
i ξjλ

∗
kλla

†
kale

i(δi−δj+δk−δl)t + H.c. Beamsplitter

α
2

∑
i,j,k,l ξ

∗
i ξ
∗
jλkλlakale

i(δi+δj−δk−δl)t + H.c. Two-mode squeezing

α
2

∑
i,j,k,l ξ

∗
i λ
∗
jλkλla

†
jakale

i(δi+δj−δk−δl)t + H.c. χ(2) nonlinearity

α
2

∑
i,j,k,l λ

∗
iλ
∗
jλkλla

†
ia
†
jakale

i(δi+δj−δk−δl)t + H.c. χ(3) nonlinearity

The leading order contribution to β(1,2) is zeroth order in both λ and ξ. The only

terms in the Hamiltonian (5.14) which contribute to β(1) and β(2) at this order are,

3. In this section we consider the case ωA < ωB < ω1 < ωC , which nicely highlights the similarities

between g
(1)
v and g

(2)
v . The derivations proceed analogously for other cases, such as the case of

ωC < ωA < ωB < ω1 shown in Fig. 2 of the main text.

152

respectively,

[
−α(b†2ξ2λAaA + b†2ξ1λBaB)e−i(δB+δ1)t + H.c.

]
, (5.17)[

−α(b†2λAaAλCaC + b†2ξ1λBaB)e−i(δB+δ1)t + H.c.
]
. (5.18)

The corrections from these terms can be calculated via standard perturbation theory,

β(1,2) =
α

δB + δ1 + α
.

For the SWAP operation, where the drives are far-detuned, this correction is typically

negligible. However, for the CZ operation, this correction can significantly reduce the

coupling rate since δ1, δB can be comparable to α. We note that the expression for

β(1) matches the leading order expression derived in Ref. [180].

Contributions to β(1,2) at higher orders in λ can be neglected since we have as-

sumed the dispersive regime, λ � 1. Contributions at higher orders in ξ can be

systematically calculated with perturbation theory in principle, but such calculations

quickly become tedious. Here, we employ an alternative approach. We consider the

AC Stark shift type terms, −2α
∑

j |ξj|2Q†Q, and compute their contributions to

β(1,2) nonperturbatively by working in a rotating frame.

Let S denote the qubit’s AC Stark shift. In the frame where the qubit mode

rotates at its Stark-shifted frequency, ω̃q = ωq + S, the system Hamiltonian is

H = −Sb†b+
∑
j

[
Ωjb

†e−iδ̃jt + H.c.
]

+
∑
k

[
gkakb

†e−iδ̃kt + H.c.
]
− α

2
b†b†bb (5.19)

where δ̃ = ω − ω̃q. Performing unitary transformations analogous to those above

eliminates the coupling and drive terms so that H = −SQ̃†Q̃ − α
2
Q̃†Q̃†Q̃Q̃, where

Q̃ = q +
∑

j ξ̃je
−iδ̃jt +

∑
k λ̃kake

−iδ̃kt. Here, ξ̃j = Ωj/δ̃j and λ̃k = gk/δ̃k. The Stark

153

shift terms can then be cancelled by setting4 S = −2α
∑

j |ξ̃j|2. In the frame where

the Stark shift terms are eliminated, one finds modified expressions for the corrections,

β(1) = 1− δ1δ2δAδB

δ̃1δ̃2δ̃Aδ̃B

δ̃B + δ̃1

δ̃B + δ̃1 + α
(5.20)

β(2) = 1− δ1δAδBδC

δ̃1δ̃Aδ̃B δ̃C

δ̃B + δ̃1

δ̃B + δ̃1 + α
. (5.21)

Hence, the coupling rates are

g(1)
v = −2αξ̃∗1 ξ̃2λ̃Aλ̃

∗
B

δ̃B + δ̃1

δ̃B + δ̃1 + α
(5.22)

g(2)
v = −2αξ̃∗1 λ̃Aλ̃

∗
Bλ̃C

δ̃B + δ̃1

δ̃B + δ̃1 + α
. (5.23)

These expressions have the same form as above, but with the replacements δ → δ̃,

i.e. detunings are now defined relative to the qubit’s Stark-shifted frequency. It follows

that there also exists a Stark shift correction β(γ) to the inverse-Purcell enhancement

κγ = κ+ γ(g/δ)2(1 + β(γ)), (5.24)

where β(γ) = (δ/δ̃)2−1, i.e. κγ = κ+γ(g/δ̃)2. These corrections are important when-

ever the drives are strong enough that the qubit’s Stark shift becomes comparable

to the drive or mode detunings. Expressions (5.22), (5.23), and (5.24) are used to

produce the plots in this chapter.

4. This equation determines S implicitly; to leading order in the drives, S = −2α
∑
j |Ωj |2/δ2j .

However, the Hamiltonian (5.14) contains the terms (αξ1,2q
†2qe−iδ1,2t + H.c.), which also contribute

to S at this order. Employing perturbation theory, one finds S = −2α
∑
j |Ωj |2/δj(δj + α), which

matches the leading order calculation in Ref. [180]. This latter expression is used in the numerics
throughout this work.

154

Comparison with numerical Floquet calculation

To assess the accuracy of the expressions (5.22) and (5.23), we compare with numerical

calculations of the coupling rates using the methods developed in Ref. [180]. First,

we briefly summarize the main results of that work. The authors consider the process

of engineering a bilinear interaction between two microwave cavity modes that are

mutually coupled to a transmon qubit. Treating the couplings as a perturbation, they

calculate the linear response of the driven transmon. This perturbative treatment is

justified in the dispersive regime. They show that g
(1)
v can be calculated in terms of

a susceptibility matrix χ(1)(ωA, ωB;ω1, ω2), that describes the response of the driven

transmon at frequency ωA to a weak probe field at ωB, when subject to drives at

ω1 and ω2. The susceptibility can then be computed numerically to all orders in the

drive amplitudes using Floquet theory. The authors find good quantitative agreement

between their theoretical predictions and experimental results, even for strong drives

(ξ > 1).

This approach can be directly applied to calculate g
(1)
v . To calculate g

(2)
v , we anal-

ogously define a higher-order susceptibility matrix χ(2)(ωA, ωB, ωC ;ω1) that captures

the response of the transmon at frequency ωA to weak probes at ωB and ωC , when

subject to a drive at ω1. Rather than computing χ(2) directly, which can be numeri-

cally tedious, we note that χ(2) can be computed in terms of χ(1). In the calculation of

χ(1,2), the drives and probes are treated identically at the Hamiltonian level; both the

drive and probe terms are of the form H = fj b
†e−iωjt + H.c.. For the drives, fj = Ωj,

while for the probes, fj = gaj. Since the susceptibility is calculated to all orders

in the drive fields but only to leading order in the weak probe fields, going beyond

leading order does not change the result in the limit where the field fj is weak. Weak

probes and weak drives are thus interchangable, the only difference being a matter of

155

interpretation. It follows that

χ(2)(ωA, ωB, ωC ;ω1) = χ(1)(ωA, ωB;ω1, ωC). (5.25)

This equivalence holds for gC � δC , which is the same limit that was already assumed

to justify the perturbative treatment. Thus, the numerical procedure for calculation

of g
(1)
v can also be straightforwardly applied to calculate g

(2)
v .

In Figs. 5.6(a) and (b), we calculate g
(1,2)
v numerically as described above, and we

compare the results with the analytical expressions (5.22) and (5.23). Good agree-

ment is observed for weak drives (ξ . 0.4 for the parameters used in the plots).

Discrepancies emerge at stronger drives, but this is expected because the corrections

are obtained perturbatively. In Fig. 5.6 (c), (d), the coupling rates are plotted as a

function of δA to make apparent the importance of the AC Stark shift corrections. Due

to the Stark shift, the corrected expressions and numerics are both red-shifted relative

to the uncorrected expressions. Were the corrections not included, this relative shift

would result in a systematic overestimation of the coupling rates for blue-detuned

phonon modes.

The AC Stark shift is responsible for the interesting non-monotonic behavior of

expressions (5.22) and (5.23) with ξ. Intuitively, this behavior is explained by the

fact that the Stark shift causes the qubit to move away from the phonon modes in

frequency space. This reduces the participation of the phonons in the qubit mode,

therby reducing the coupling rate. When optimizing gv so as to minimize the SWAP

or CZ infidelity, the non-monotonicity effectively restricts the drive amplitudes to

the range ξ ≤ ξcrit., where ξcrit. is the value of ξ for which gv is maximal. For the

parameters consider in Fig. 5.6, the virtual couplings rates are thus restricted to

|g(1)
v |/2π < 100 kHz and |g(2)

v |/2π < 25 kHz. Good agreement between the analytics

and numerics is observed for ξ . ξcrit., validating the use of expressions (5.22) and

156

⇠
(1)
crit.

 (a) (b)

 (c) (d)

⇠
(2)
crit.

Figure 5.6: Comparison of the coupling rate expressions with numerical Floquet calcula-

tions. (a), (b) Coupling rates g
(1,2)
v plotted as a function of drive strength. (c), (d) Coupling

rates plotted as a function of the phonon mode detuning δA. The uncorrected coupling rates
exhibit two resonant peaks, at δA = 0 and δA + ν = δB = 0, corresponding to resonant pro-
cesses where phononic excitations in modes A or B are converted to transmon excitations.
Because of the AC Stark shift, these peaks are red-shifted in both the numerical Floquet
calculation and the corrected expressions. The additional resonant peaks in the numerical
calculation correspond to multiphoton resonances where phononic excitations are converted
to transmon excitations by exchanging an integer number of photons between the two drive
fields [180]. It is important to carefully avoid these peaks in the experiments. Parameters
for all plots: gk/2π = 10MHz, δA/2π = 100MHz, ν/2π = 10MHz, ∆ν = ν/10. In order to
account for the AC Stark shift, we also specify α/2π = 150MHz, and we take δ1/2π = 1GHz

in the calculation of g
(1)
v . In (c), ξ1,2 = 0.17, and in (d) ξ1 = 0.27.

157

(5.23).

This comparison illustrates the importance of the corrections derived above and

confirms that the virtual coupling rates are well-described by expressions (5.22) and

(5.23) for the drive strengths considered in this chapter.

5.2.4 Estimates of gate fidelities

During the gates described in Section 5.2.1, the transmon is never directly excited;

instead, it is only virtually excited, so infidelity attributable to transmon decoherence

is suppressed. These virtual gates can thus provide great advantage in cQAD systems,

where transmon decoherence is likely to be the limiting factor. This is in contrast

to existing proposals [103, 166], in which gates between resonator mode qubits are

implemented by swapping information directly into the transmon using resonant in-

teractions of the form gd(b
†a + ba†), which can be engineered, e.g., by modulating

the transmon’s frequency. In the following, we compare the predicted fidelities of the

virtual gates proposed here and the direct gates considered in Refs. [103, 166].

In a multimode architecture, there exists a fundamental tradeoff between deco-

herence and spectral crowding. Slower gates are more prone to decoherence, while

faster gates have reduced frequency resolution and can disrupt other modes. We can

quantify these effects as follows. Let κ and γ denote the bare phonon and transmon

decoherence rates, respectively. Similarly, let κjγ = κ + γ(gj/δj)
2(1 + β(γ)) denote

the dressed decay rate of phonon mode j, which includes a contribution from the

inverse Purcell effect [136, 180] and a drive-dependent correction β(γ) as described

in Section 5.2.3. The contributions to the direct and virtual gate infidelities from

decoherence are, respectively,

(κ+ γ)td and κ̄γtv.

158

Here, td = (cdπ/2gd) and tv = (cvπ/2gv) are the total gate times, where cd,v are

gate-dependent constants. (cv = 1 for SWAP, and cv = 2 for CZ, as these gates have

durations π/2gv and π/gv respectively. As discussed in Ref. [103], cd = 5 for SWAP

and cd = 4 for CZ.) To estimate the gate infidelity, we have multiplied these gate times

by the corresponding total decoherence rates. During direct gates, information spends

roughly equal time in the phonon and transmon modes, so the total decoherence rate

is κ + γ (we assume the inverse Purcell enhancement to κ is negligible relative to

γ). During virtual gates, the total decoherence rate κ̄γ depends on whether the gate

is implemented using a two- or three-mode coupling. For two-mode couplings, the

total decoherence rate is κ̄γ = κAγ + κBγ , while for three-mode couplings the rate is

κ̄γ = (κAγ + κBγ + κCγ)/2. The factor of 1/2 in the latter expression results from

averaging over the gate duration; when there is a phonon each in modes A and B,

the rate is κAγ + κBγ , but once these two phonons have been converted into a single

phonon in mode C the rate is κCγ .

The presence of other modes also contributes to the infidelity, regardless of whether

these other modes are used to store quantum information. When performing a gate,

transitions between the modes involved in the gate and the other modes are driven off-

resonantly, and we approximate the spectral crowding infidelity as the probability that

one of these unwanted transitions occurs. This probability is computed in Ref. [166]

for direct gates: assuming a set of uniformly spaced modes with free spectral range

ν, the infidelity is approximately5

∑
n

(
gd
δn

)2

≈
(gd
ν

)2

,

where the sum on the left runs over all unwanted transmon-mode transitions, each

5. Following Ref. [166], we neglect a constant prefactor of order 1 on the right hand side, with the
justification that (gd/ν)2 is actually a pessimistic upper bound; the spectral crowding infidelity can
be reduced by smoothly ramping up the drives.

159

detuned by successive multiples of ν, i.e. δn = {±ν,±2ν, . . .}. Importantly, this

infidelity is independent of the total number of modes in the system. Similarly, for

virtual gates the spectral crowding infidelity is approximately

∑
n

(
gv
δ′n

)2

≈
(gv

∆ν

)2

,

where the sum runs over all unwanted virtual couplings that affect modes involved in

the gate. More precisely, n indexes all unwanted two-mode (three-mode) couplings

which involve at least one mode from the set {A,B} ({A,B,C}), and δ′n is the

resonance condition detuning between the n-th unwanted coupling and the desired

coupling. For example, in the two-mode case, these detunings are of the form δ′n =

(ωB − ωA) − (ωi − ωj), with either i or j ∈ {A,B}. In performing the sum we

have assumed that unwanted couplings are detuned by successive multiples of ∆ν,

i.e. δ′n = {±∆ν,±2∆ν, . . .}. In general the δ′n depend on the specific structure of the

nonuniformity, but the scaling (gv/∆ν)2 holds regardless.

Summing the contributions from decoherence and spectral crowding yields esti-

mates for the infidelity of direct and virtual gates,

1−Fd ≈ (γ + κγ)

[
cdπ

2gd

]
+
(gd
ν

)2

, (5.26)

1−Fv ≈ κ̄γ

[
cvπ

2gv

]
+
(gv

∆ν

)2

. (5.27)

Evidently, the competition between decoherence and spectral crowding results in an

optimal coupling rate [166]. By adjusting the drive strengths, gd,v can be tuned to

their respective optima. The optimal infidelities are

1−Fd ≈
3

2

[
cdπ(κ+ γ)√

2ν

]2/3

, (5.28)

1−Fv ≈
3

2

[
cvπκ̄γ√

2∆ν

]2/3

. (5.29)

160

/2⇡ (Hz)

�
/2
⇡

(H
z)

SWAP CZ

(d) Direct

(e) Virtual(b) Virtual

(a) Direct

-1

-0.5

103
104
105
106

log10(1 � F)

0
−1
−2
−3-3

-2

-1

0

Improved
future devices

(c) Comparison N
⌅ F

• ⌥

(f) Comparison

Improved
future devices

log10

1 � Fv

1 � Fd

0
−1

1

1061031
103
104
105
106

1061031

103
104
105
106

N
⌅ F

• ⌥

-1.5

-1
-0.5

-1.5

-2

-2.5

-1

-0.5

-1.5

-1
-0.5

-1.5
-2

-2.5

-1.0

-0.5

0

0.5

1.0

Figure 5.7: Comparison of direct and virtual operations. (a,b) log10(1 − F) for the direct
and virtual SWAP operations, respectively. The couplings are optimized subject to con-
straints (gd ∈ [0, g], constraints on gv are discussed in Section 5.2.3). (c) Comparison of
direct and virtual SWAP operations. The log ratio of the infidelities is plotted, with the
virtual operations attaining higher fidelities in the blue region. (d,e) Log10 infidelity for
the direct and virtual CZ operations. (f) Comparison of CZ operations. For reference, the
symbols { ,�,N,�,F} respectively denote the decoherence rates κ (phonon) and γ (trans-
mon) measured in Refs. [150], [152], [158], [154], and [155]. Note, however, that the plots
are generated using typical parameter values, not specific values from any one experiment.
Parameters: g/2π = 10MHz, δ/2π = 100MHz, ν/2π = 10MHz, and ∆ν/2π = 1MHz.

While transmon and phonon decoherence contribute equally to 1 − Fd, transmon

decoherence only makes a small contribution to 1−Fv via the inverse Purcell effect,

wherein γ is suppressed by a factor of (g/δ)2 � 1. The virtual gates can thus

be expected to attain higher fidelities when there is a large disparity between γ

and κ, i.e. for sufficiently long-lived phonon modes. Indeed, Fv > Fd whenever

κγ . (κ+ γ)∆ν/ν, provided the optimal coupling rates can be reached.

In Fig. 5.7, we plot the optimal infidelities of direct and virtual gates as a function

of κ and γ for realistic experimental parameters. The comparison reveals that virtual

gates can be performed with high fidelity (>99%) given long-lived phonons, and that

virtual gates attain higher fidelities than direct gates in the same regime. Indeed,

realistic improvements in phonon coherence are likely to bring near-term devices into

161

this Fv � Fd regime (Fig. 5.7c,f).

We briefly note other factors relevant to the comparison of direct and virtual gates.

Multi-phonon encodings: Direct gates require that qubits be encoded in the |0, 1〉

Fock states, while virtual operations are compatible with multi-phonon encodings,

including some bosonic quantum error-correcting codes [182, 186]. Parallelism: Direct

gates must be executed serially, while virtual gates can be executed in parallel by

simultaneously applying the requisite drives (though care must be taken to ensure

that the additional drives do not bring spurious couplings on resonance). Speed:

Virtual gates are inherently slower than direct gates, with realistically attainable

virtual coupling rates on the order of gv/2π ∼ 10− 100 kHz (see Section 5.2.3).

5.3 Quantum computing with acoustics, approach

2: stabilized cat qubits

In this section, we propose a quantum computing architecture for multimode cQAD

systems based on dissipatively stabilized cat qubits. As in the previous section (Sec-

tion 5.2), the use of acoustic systems naturally affords our architecture improved

hardware efficiency and scalability. The use of cat qubits further improves scalabil-

ity; cat qubits’ biased noise can be exploited to reduce error correction overheads

and improve code thresholds. In order to scale up this cat-qubit architecture, it is

crucial to stabilize and couple multiple cat qubits in a way that both maximizes

connectivity and minimizes crosstalk. To this end, we show how multiple cat qubits

can be simultaneously stabilized by a single, shared nonlinear element, enabling in-

creased connectivity and hardware efficiency. Further, we enumerate the sources of

crosstalk in such architectures and show how the dominant sources can be effectively

suppressed via filtering. We note that, though we tailor our analysis specifically to

acoustic systems, these results are also applicable to multimode cQED systems.

162

In Section 5.3.1 we provide a brief review of cat qubits, stabilization methods, and

bias-preserving gates. Then, in Section 5.3.2 we give a broad overview of our proposed

architecture. In the sections that follow, we explore several practical aspects of the

proposal in further detail. In Section 5.3.3, we describe our multiplexed stabilization

scheme, and in Section 5.3.4 we enumerate the associated sources of crosstalk. Finally

in Sections 5.3.5 and 5.3.6 we present two strategies for mitigating crosstalk that,

when used in conjunction, enable one to suppress all dominant sources of crosstalk in

the architecture.

5.3.1 Review of cat qubits

Cat qubits [141, 187–189] are examples of so-called bosonic qubits [190, 191], where a

qubit is encoded within some two-level subspace of a bosonic mode’s infinite dimen-

sional Hilbert space. In the particular case of two-component cat qubits, we define

the |+〉 and |−〉 logical states of the cat qubit to be superpositions of coherent states,

|±〉 ≡ |C±α 〉 ≡ N±(|α〉 ± |−α〉), (5.30)

where |α〉 denotes a coherent state with complex amplitude α, and

N± = 1/
√

2(1± e−2|α|2). (5.31)

The |0, 1〉 logical states of the cat qubit are given by

|0〉 =
1√
2

(|+〉+ |−〉) = |+α〉+O(e−2|α|2) |−α〉 (5.32)

|1〉 =
1√
2

(|+〉 − |−〉) = |−α〉+O(e−2|α|2) |+α〉 . (5.33)

These states become orthogonal in the limit of |α|2 � 1, approaching |+α〉 and |−α〉

respectively.

163

Cat qubits are particularly interesting because they can exhibit biased noise,

meaning that the rates of bit-flip and phase-flip errors differ. Physically, the rea-

son for this discrepancy in error rates is that realistic errors in bosonic modes, such

as excitation loss and dephasing, tend to act locally in phase space. As such, the

probability that an error maps the system from |0〉 ≈ |+α〉 all the way to |1〉 ≈ |−α〉

or vice versa (i.e., a bit flip) is highly suppressed as |α|2 increases. On the other hand,

the probability that an error maps |+〉 to |−〉 or vice versa (i.e., a phase flip) is not

suppressed, because these two states remain close to one another in phase space as

|α|2 increases. For example, consider excitation loss errors, which correspond to the

application of the bosonic mode’s annihilation operator a. Within the cat qubit code

space, this error operator can be expressed as

a = α

[N+

N−
|C−α 〉 〈C+

α |+
N−
N+

|C+
α 〉 〈C−α |

]
= α

[
1

2

(N−
N+

+
N+

N−

)
Z +

1

2

(N−
N+

− N+

N−

)
iY

]
= α

[
Z +O(e−2|α|2)iY

]
, (5.34)

where Z and Y are the usual Pauli matrices. If excitation losses occur at a rate κ,

the associated bit-flip and phase-flip rates in the cat qubit will scale as

Γbit-flip ∼ κ|α|2e−4|α|2 , (5.35)

Γphase-flip ∼ κ|α|2. (5.36)

Thus, provided that the system remains in the cat-qubit code space, the rate of bit-flip

errors is exponentially suppressed relative to the rate of phase-flip errors.

Biased noise can be extremely useful in the context of quantum error correction.

To further suppress errors, cat qubits can be concatenated with other quantum error

correcting codes. If bit-flip errors are already adequately suppressed, the outer code

164

needs only to correct phase-flip errors. A simple repetition code is already sufficient for

this purpose. If some residual bit-flip errors remain to be corrected, more hardware-

efficient variants of the surface code can be employed [125, 192, 193], and biased noise

can lead to greatly improved error correction thresholds for such codes [192–194].

As a result, cat qubits provide a practical path towards low-overhead fault-tolerant

quantum computation [123–125, 193, 195].

These appealing features can only be exploited, however, if two additional criteria

are met. First, the system must remain stabilized in the cat-qubit code space even in

the presence of errors or other external perturbations. The exponential suppression of

bit-flip errors is only guaranteed within the code space, so if some perturbation pushes

the system outside of the code space, the noise bias is liable to disappear. Second,

the gates performed on cat qubits must preserve the noise bias. The cat qubit’s noise

channel can become unbiased if gates are applied that can convert phase-flip errors

to bit-flip errors, thus bias-preserving gates are required. We describe how these two

criteria can be satisfied below.

Stabilization of cat qubits

One way to stabilize a bosonic mode within the cat-qubit code space is through the

use of engineered dissipation. Suppose that a bosonic mode can be engineered to

undergo evolution according to the master equation

ρ̇ = κ2D[a2 − α2](ρ), (5.37)

where ρ̇ = dρ/dt, and

D[L]ρ ≡ LρL† − 1

2
(L†Lρ+ ρL†L). (5.38)

165

Because a2 |ψ〉 = α2 |ψ〉 for any state |ψ〉 in the cat code subspace, this code space is

a steady state of the above dissipative dynamics. Indeed, if errors push the system

outside of the code space, the dissipation D[a2 − α2] will bring the system back,

thereby stabilizing the cat qubit.

Physically, the dissipator D[a2−α2] corresponds to a situation where the bosonic

mode is subject to a two-photon drive and two-photon losses,

D[a2 − α2](ρ) = −i[ε2a†2 + ε∗2a
2, ρ] + κ2D[a2]ρ, (5.39)

where ε2 ≡ iα2κ2/2. One convenient way [178, 189, 196, 197] to realize such two-

photon processes is to engineer a nonlinear interaction of the form (g∗2a2b
† + H.c.).

This interaction converts two excitations from the “storage” mode a into a single

excitation in an ancillary “buffer” mode b. Let us suppose that this buffer mode is

strongly coupled to its environment, such that it experiences single-excitation losses

at a rate κb � g2. In this case, the buffer mode can be adiabatically eliminated (see

Appendix B), and the system behaves as if the storage mode loses pairs of excitations

directly. More precisely, in the presence of strong loss in the buffer mode, unitary

dynamics generated by the Hamiltonian

H = g2a
2b† + εdb

† + H.c.

induce effective dissipative dynamics for the storage mode of the form

κ2D[a2 − α2], (5.40)

where κ2 ≈ 4|g2|2/κb and α2 = −εd/g2 (we provide more detailed derivations below).

Note that the above Hamiltonian contains a linear drive on the buffer mode with

amplitude εd; this drive results in the effective two-excitation drive on the storage

166

mode, owing to the nonlinear coupling between the two. A number of recent exper-

iments have successfully demonstrated the stabilization of cat qubits following this

approach [178, 196, 197], with Ref. [197] observing the resultant exponential suppres-

sion of bit-flip errors.

An alternate paradigm for cat-qubit stabilization involves using a strong Kerr non-

linearity in conjunction with two-excitation driving. In this “Kerr cat” approach [124,

193, 198–200], one engineers a Hamiltonian of the form

H = −Ka†2a2 + ε2a
†2 + ε∗2a

2

= −K(a†2 − α∗2)(a2 − α2) +
|ε2|2
K

, (5.41)

where α =
√
ε2/K in this case. The coherent states |±α〉 are degenerate eigenstates

of this Hamiltonian, and these states are separated from the rest of Hilbert space by

an energy gap ∝ 4K|α|2. This large energy gap prevents resonant transitions from the

degenerate cat subspace to the rest of Hilbert space, thereby stabilizing the cat qubit.

While in this thesis we focus on the aforementioned “dissipative cat” approach rather

than the Kerr cat approach, we note that both approaches constitute promising paths

towards low-overhead fault-tolerant quantum computation [125, 193, 195].

Bias-preserving gates

As previously mentioned, it is crucial that the gates performed on cat qubits be bias-

preserving. That is, the implementation of the gate must not convert phase-flip errors

into bit-flip errors or vice versa. Otherwise, the application of gates would un-bias

the noise channel. There are some operations which are trivially bias preserving. For

example, Z rotations or controlled-Z rotations are trivially bias preserving because

these operations commute with phase-flip errors (i.e., Pauli Z errors). State prepara-

tions and measurements in the X basis are also bias preserving because bit-flip errors

167

(i.e. Pauli X errors) act trivially on these operations.

Unfortunately, though, these are the only bias-preserving operations that exist

for qubits supported in physical two-level systems. Naively, one might expect that

some other operations, such as CNOT, can also be implemented in a bias-preserving

manner. After all, phase-flip errors are only mapped to other phase-flip errors under

conjugation by CNOT. In practice, however, any non-trivial unitary operation such as

CNOT must be implemented via evolution under some Hamiltonian for a finite time,

and phase errors which occur during this operation are liable to propagate into bit-flip

errors [201]. For example, a phase-flip error which occurs during a rotation about a

qubit’s X axis generally propagates to a combination of bit-flip and phase-flip errors.

In fact, there is a no-go theorem which states that, for physical two-level systems,

a CNOT gate cannot be obtained via finite-time Hamiltonian evolution in a bias-

preserving manner [123]. The same is true for the Toffoli gate. Such limitations on the

allowed set of bias-preserving gates potentially undermine the promise of hardware-

efficient fault tolerance because additional concatenation schemes are then required

to build a universal gate set [201, 202].

Remarkably, when biased noise qubits are implemented using the infinite-dimensional

Hilbert space of a bosonic mode, as opposed to some physical two-level system, it is

possible to circumvent this no-go theorem. Indeed, with cat qubits, it is possible to

perform a bias-preserving CNOT and Toffoli gates [123, 124, 199]. The existence of

a bias-preserving CNOT and Toffoli at the physical level allows one to greatly re-

duce the required overhead for error correction. For example, Ref. [124] shows how

a bias-preserving CNOT enables one to greatly simplify the fault-tolerant gadgets

used in the concatenated schemes of Refs. [201, 202]. Similarly, Ref. [123] shows that

bias-preserving CNOTs and Toffolis enable a universal gate set to be obtained at the

level of a repetition code [123], i.e. without additional concatenation. These addi-

tional bias-preserving gates are thus crucial to reducing the overhead of fault-tolerant

168

computation.

Let us describe how a bias-preserving CNOT gate can be implemented within

the paradigm of dissipative cat qubits [123]. (Note that Ref. [124] describes how to

implement a bias-preserving CNOT for Kerr cats.) The idea is to engineer a two-mode

system which evolves according to the master equation

ρ̇ = D[L1](ρ) +D[L2(t)](ρ), (5.42)

where the jump operators are given by

L1 = a2
1 − α2 (5.43)

L2(t) = a2
2 −

1

2
α(a1 + α) +

1

2
αe2i π

T
t(a1 − α). (5.44)

We can see that these dissipative dynamics enact a CNOT operation as follows. First,

note that L1 simply serves to stabilize mode 1 into a cat state, while the non-trivial

dynamics are induced by L2(t). Consider the case where mode 1 is prepared in the

state |+α〉. For this initial state, we can replace the operators

(a1 + α)→ 2α (5.45)

(a1 + α)→ 0 (5.46)

so that

L2(t)→ a2
2 − α2. (5.47)

Thus, when mode 1 is prepared in |+α〉, the jump operator L2(t) simply serves to

stabilize mode 2 into a cat state but otherwise does nothing. In contrast, if mode 1

169

is prepared in |−α〉 we can make the replacements

(a1 + α)→ 0 (5.48)

(a1 + α)→ −2α (5.49)

so that

L2(t)→ a2
2 − α2e2i π

T
t. (5.50)

This dissipator acts non-trivially on mode 2. The dissipation

D[a2
2 − α2e2i π

T
t]

stabilizes mode 2 to one of the instantaneous steady states, |±αei πT t〉. In the limit of

large T , these dynamics will adiabatically drag the initial states |±α〉 along to these

instantaneous steady states. In particular, after a time t = T , the system will evolve

from |±α〉 to |∓α〉, which constitutes a bit flip. Therefore, the dissipative dynamics

generated by D[L1] and D[L2(t)] does indeed enact a CNOT gate. Crucially, this is

a bias-preserving implementation because the instantaneous steady states |±αei πT t〉

always remain well-separated from one another in phase space during the course of

the gate. As a result, the probability of population transfer between the two states

(i.e. of a bit-flip error), remains exponentially suppressed. A bias-preserving Toffoli

gate can be implemented using a similar approach.

5.3.2 Stabilized cat qubits in multimode cQAD

Our proposal [125] for a multimode cQAD cat-qubit architecture is illustrated in

Fig. 5.8. Phononic resonators6 constitute the storage modes that support the cat

6. We consider phononic resonators, as opposed to BAW or SAW resonators, to avoid the challenges
described in Section 5.2.2 and because of phononic resonators’ long lifetimes.

170

WaveguideFilter

Buffer mode

ATS

Storage modes Reservoir(a)

(c)(b)

Figure 5.8: Multimode cQAD cat-qubit architecture (adapted from Ref. [125]). (a) Unit
cell. A collection of phononic resonators couples to a reservoir that consists of a nonlinear
buffer mode, filter, and waveguide. This single unit cell may be represented schematically
as in (b) and tiled in one or two dimensions as in (c) in order to scale.

qubits. A collection of phononic resonators is coupled to a reservoir, which is respon-

sible for stabilizing the phononic modes into cat states. The reservoir itself consists

of three components: a nonlinear buffer mode, a filter, and a waveguide.

The buffer mode consists of a nonlinear circuit element called an Asymmetrically

Threaded Squid (ATS) shunted by a capacitor, following the approach of Ref. [197].

With appropriate flux bias, the potential energy of the ATS is approximately

− 2EJε(t) sin(φ), (5.51)

where EJ is the Josephson energy, ε(t) is a flux pump, and φ is the superconducting

phase across the ATS. This phase contains contributions from both the buffer and

storage modes,

φ = ϕbb+
∑
n

ϕana+ H.c., (5.52)

171

where the vacuum fluctuation amplitudes ϕb,an quantify the respective contributions

of the buffer and storage modes to the total phase across the ATS. The sin(φ) non-

linearity contains the requisite (a2
nb
† + H.c.) interactions, and these interactions may

be brought on resonance by pumping the system at specific frequencies (we describe

this process in detail in Section 5.3.3). We note that, in comparison to the EJ cos(φ)

potential energy of a single junction (as in a transmon), the EJ sin(φ) potential of the

ATS is advantageous in this context because it does not contain deleterious cross-Kerr

terms (e.g., a†ab†b) that can limit the stabilization [196, 203].

The buffer mode, in turn, is coupled to a waveguide through a bandpass filter.

The coupling to the waveguide serves to imbue the buffer mode with a large single-

excitation loss rate κb, as is required for the dissipative stabilization scheme described

above. The bandpass filter plays a dual role: it not only serves to shield the storage

modes from direct single-excitation losses into the waveguide, but it also suppresses

crosstalk among the storage modes, as described further in Section 5.3.5.

In our architecture, each reservoir is responsible for stabilizing a small collection of

storage modes into cat states. Ultimately, the number of modes that can be stabilized

by a single reservoir is limited by crosstalk, so the number of reservoirs must be

increased as the architecture is scaled. Fig. 5.8(b,c) illustrates how the architecture

can be scaled up by taking a single unit cell—one reservoir and its associated storage

modes—and tiling this cell in a one- or two-dimensional grid. The cat qubits can

then be concatenated into a repetition or surface code. (We note that the use of a

five-mode unit cell—as opposed to a four-mode unit cell—enables a more convenient

readout scheme for the cat qubits, as described in Ref. [125]. The additional mode

does not need to be stabilized in a cat state to facilitate readout.)

In the remainder of this section, we highlight two features of this architecture

that are crucial to its scalability. The first is multiplexed stabilization, i.e. the abil-

ity to stabilize multiple storage modes into cat states using only a single nonlinear

172

element. This multiplexed stabilization simultaneously reduces hardware complexity

and improves connectivity. The second feature is crosstalk mitigation. We find that

all dominant sources of crosstalk in the architecture can be suppressed through a

careful combination of filtering and phonon mode frequency optimization. We pro-

vide high-level summaries of these two features below, with more detailed technical

analyses given in Sections 5.3.3 to 5.3.6.

Summary: Multiplexed stabilization

In our architecture, each reservoir is responsible for stabilizing multiple storage modes

simultaneously. This multimode stabilization can be implemented via a simple ex-

tension of the single-mode stabilization scheme demonstrated in Ref. [197]. The

main idea is to use frequency-division multiplexing to stabilize different modes inde-

pendently. Here, multiplexing refers to the fact that different regions of the filter

passband are allocated to the stabilization of different modes. When the bandwidth

allocated to each stabilization process is sufficiently large, multiple modes can be

stabilized simultaneously and independently, as we now show.

To stabilize the n-th mode coupled to a given reservoir, we apply a pump frequency

ω
(n)
p = 2ωa − ωb + ∆n, and drive the buffer mode at frequency ω

(n)
d = ωb −∆n, where

∆n denotes a detuning. Analogously to the single-mode stabilization case, due to

the nonlinear mixing of the ATS these pumps and drives give rise to an interaction

Hamiltonian of the form

H =
∑
n

g2

(
a2
n − α2

)
b†ei∆nt + H.c. (5.53)

See Section 5.3.3 for a derivation of Eq. (5.53) as well as Eqs. (5.54) and (5.55) below.

The sum does not run over all modes coupled to the ATS, but rather only over the

modes stabilized by that ATS. In our architecture, though five modes couple to each

173

ATS, only two must be stabilized simultaneously, so the sum contains only two terms.

[The other modes are stabilized by adjacent ATS’s, see Fig. 5.8(c).] By adiabatically

eliminating the lossy buffer mode, one obtains an effective master equation describing

the evolution of the storage modes

dρ

dt
≈ D

[∑
n

√
κ2,n(a2

n − α2)ei∆nt

]
ρ(t), (5.54)

where κ2,n ≈ 4|g2|2/κb if the corresponding detuning falls inside the filter passband

(|∆n| < 2J), and κ2,n ≈ 0 otherwise, see Section 5.3.3. If the detunings are chosen

such that |∆n −∆m| � 4|α|2κ2 for all m 6= n, then Eq. (5.54) can be approximated

by

dρ

dt
≈
∑
n

κ2,nD
[
a2
n − α2

]
ρ(t), (5.55)

which is obtained by neglecting the fast-rotating terms in (5.54) via a rotating-wave

approximation. The dynamics (5.55) stabilize cat states in different modes indepen-

dently and simultaneously. Thus, by simply applying additional pumps and drives

with appropriately chosen detunings, multiple modes can be simultaneously stabilized

by a single ATS.

The efficacy of this multiplexed stabilization scheme can be understood intuitively

by considering the frequencies of photons that leak from the buffer mode to the filtered

bath. In the case of ∆n = 0, a pump applied at frequency 2ωa − ωb facilitates the

conversion of two phonons of frequency ωa to a single photon of frequency ωb. As a

result, photons that leak from the buffer to the bath have frequency ωb. If instead the

pump is detuned by an amount ∆n 6= 0, it follows from energy conservation that the

corresponding emitted photons have frequency ωb+∆n. When the differences in these

emitted photon frequencies, ∆n−∆m, are chosen to be much larger than the emitted

photon linewidths, 4|α|2κ2, emitted photons associated with different storage modes

are spectrally resolvable by the environment. Therefore, when the stabilization of

174

mode n causes a photon to leak to the environment, there is no back-action on modes

m 6= n. These ideas are illustrated pictorially in Fig. 5.9(a). The figure emphasizes

an important additional point: the emitted photon frequencies must lie inside the

filter bandwidth, lest the engineered dissipation be suppressed by the filter.

Emitted photon detunings (2π x MHz)

(b)

frequency

(a)

... ...

Phonon mode frequencies
0 200 400 600 800 1000

(2π x MHz)

(c)

Figure 5.9: Multiplexed stabilization and crosstalk mitigation. (a) Frequency multiplexing.
Because the desired couplings (g2a

2
nb
†ei∆it+H.c.) are detuned by different amounts, photons

lost to the environment via the buffer have different frequencies. When the corresponding
emitted photons (green lines) are spectrally well resolved, |∆n−∆m| � 4|α|2κ2, the modes
are stabilized independently. Dissipation associated with photon emissions at frequencies
inside the filter passband (yellow box) is strong, while dissipation associated with emission
at frequencies outside the passband is suppressed. (b),(c) Crosstalk suppression. Red
lines in (b) denote photon emission frequencies associated with various correlated errors,
calculated for the specific phonon mode frequencies plotted in (c). The mode frequencies
are deliberately chosen so that all emissions associated with correlated errors occur at
frequencies outside the filter passband (no red lines fall in the yellow box). In other words,
Eqs. (5.61) and (5.62) are simultaneously satisfied for any choices of the indices that lead
to nontrivial errors in the cat qubits. See Section 5.3.3 for further details.

175

Summary: crosstalk mitigation

In acting as a nonlinear mixing element, the ATS not only mediates the desired

(g2a
2
nb
†+H.c.) interactions, but it also mediates spurious interactions between different

storage modes. We now describe how such interactions can give rise to crosstalk

among the cat qubits, and subsequently how this crosstalk can be mitigated through

a combination of filtering and phonon-mode frequency optimization.

While most spurious interactions mediated by the ATS are far detuned and can be

safely neglected in the rotating-wave approximation, there are others which cannot

be neglected. Most concerning among these are interactions of the form

g2ajakb
†eiδijkt + H.c., (5.56)

for j 6= k, where δijk = ω
(i)
p −ωj−ωk+ωb. This interaction converts two phonons from

different modes, j and k, into a single buffer mode photon, facilitated by the pump

that stabilizes mode i. These interactions cannot be neglected in general because

they have the same coupling strength as the desired interactions (5.53), and they can

potentially be resonant or near-resonant, depending on the frequencies of the phonon

modes involved.

There are three different mechanisms through which the interactions (5.56) can

induce crosstalk among the cat qubits. These mechanisms are described in detail

in Section 5.3.4, and we summarize them here. First, analogously to how the desired

interactions (5.53) lead to two-phonon losses, the undesired interactions (5.56) lead

to correlated, single-phonon losses

κeffD[ajak]→ κeff |α|4D[ZjZk] (5.57)

where the rate κeff will be discussed shortly. The arrow denotes projection onto the

176

code space, illustrating that these correlated losses manifest as stochastic, correlated

phase errors in the cat qubits.

Second, the interplay between different interactions of the form (5.56) gives rise

to new effective dynamics [204–206] generated by Hamiltonians of the form

Heff =χa†ia
†
jamane

i(δ`mn−δijk)t + H.c., (5.58)

→χ|α|4ZiZjZkZlei(δ`mn−δijk)t + H.c., (5.59)

where the coupling rate χ is defined in Section 5.3.4. The projection onto the code

space in the second line reveals that Heff can induce undesired, coherent evolution

within the code space.

Third, Heff can also evolve the system out of the code space, changing the phonon-

number parity of one or more modes in the process. Though the engineered dissipation

subsequently returns the system to the code space, it does not correct changes to the

phonon-number parity. The net result is that Heff also induces stochastic, correlated

phase errors in the cat qubits,

γeffD[ZiZjZkZ`], (5.60)

where the rate γeff will be discussed shortly.

Remarkably, all of these types of crosstalk can be suppressed through a combina-

tion of filtering and phonon-mode frequency optimization. In Section 5.3.5, we show

that both κeff ≈ 0 and γeff ≈ 0, provided

|δijk| > 2J, (5.61)

|δijk − δ`mn| > 2J, (5.62)

respectively. This suppression can be understood as follows. The decoherence asso-

177

ciated with κeff and γeff results from the emission of photons at frequencies ωb + δijk

and ωb ± (δijk − δ`mn), respectively. When the frequencies of these emitted photons

lie outside the filter passband, their emission (and the associated decoherence) is sup-

pressed. Crucially, we can arrange for all such errors to be suppressed simultaneously

by carefully choosing the frequencies of the phonon modes, as shown in Fig. 5.9(b,c).

The configuration of mode frequencies in Fig. 5.9(c) was found via a numerical op-

timization procedure described in Section 5.3.6. The optimization also accounts for

the undesired coherent evolution (5.59): the detunings δijk − δ`mn are maximized so

that Heff is rapidly rotating and its damaging effects are mitigated (this suppression

is quantified in Section 5.3.6). Additionally, we note that in Fig. 5.9(b) all emitted

photon frequencies associated with crosstalk lie at least 10 MHz outside of the filter

passband. As a result, the crosstalk suppression is robust to variations in the phonon

mode frequencies of the same order. Larger variations in the phonon mode frequencies

can be accommodated by reducing the filter bandwidth.

We have demonstrated that crosstalk can be largely suppressed within the five-

mode unit cells of our architecture. It is tempting to consider whether more modes

could be added to each unit cell to improve hardware efficiency or connectivity, but

we find that crosstalk is a limiting factor in this regard. As more modes are added,

the number of undesired terms (5.56) grows combinatorially, increasing the total

number of constraints, Eqs. (5.61) and (5.62). At the same time, the filter bandwidth

must be increased to accommodate the stabilization of additional modes, making

each constraint more challenging to satisfy. Thus, it rapidly becomes difficult or

impossible to satisfy all constraints, and crosstalk can become significant. We have

accordingly chosen five modes per unit cell because this is the maximum number

consistent with our 2D square grid layout for which all crosstalk constraints can be

satisfied. While frequency crowding and bandwidth constraints are characteristic of

multimode architectures generally [99, 103, 166], resonators with additional terminals,

178

or tunable couplers [207, 208], could be employed in future designs to further suppress

crosstalk and increase the number of modes per unit cell.

5.3.3 Multiplexed stabilization of cat qubits

In this section, we provide a detailed analysis of our multiplexed stabilization scheme.

We note that we frequently employ adiabatic elimination as a tool to analyze dissipa-

tive dynamics throughout this section. We perform this adiabatic elimination using

the effective operator approach of Ref. [206], which is summarized in Appendix B.

We consider a collection of N storage modes mutually coupled to a common

reservoir. For the moment, we take reservoir to be a capacitively-shunted ATS (buffer

resonator) with a large decay rate. The Hamiltonian of the system is

H = Hd + ωbb
†b+

N∑
n=1

ωna
†
nan − 2EJεp(t) sin

(
φb +

N∑
n=1

φn

)
,

where Hd is a driving term (defined below), an (b) is the annihilation operator for the

n-th storage mode (buffer mode) with frequency ωn (ωb), and φn = ϕn(an+a†n) is the

phase across the ATS due to mode n, with vacuum fluctuation amplitudes ϕn. To

stabilize multiple storage modes simultaneously, we apply separate pump and drive

tones for each mode. Explicitly,

εp(t) =
∑
n

ε(n)
p cos

(
ω(n)
p t
)
, (5.63)

and

Hd =
∑
n

(
ε

(n)
d b eiω

(n)
d t + H.c.

)
. (5.64)

179

Mode 1

Mode 2 Mode 2

Mode 1

(a) (b)

Figure 5.10: Multiplexed stabilization. (a) Comparison of stabilization for ∆n = 0 and
|∆n −∆m| � 4|α|2κ2. Wigner plots are shown of two storage modes after evolution under
the master equation ρ̇ = −i[H, ρ] + κbD[b], with H given by (5.68). The storage modes
are initialized in a product state |β1〉 |β2〉 that does not lie in the code space but which is
a steady state of (5.73). Thus, when ∆n = 0 (left plots), the evolution is (approximately)
trivial. The left two plots thus also serve as Wigner plots of the initial state |β1〉 |β2〉. How-
ever, when |∆1−∆2| � 4|α|2κ2 (right plots), the system evolves to the code space, defined
here by α =

√
2. (b) Validity of approximating Eq. (5.73) by Eq. (5.75). Master equations

(5.73,5.75) are simulated (with decoherence added to each mode via the dissipators κ1D[a]
and κ1D[a†a]), and the expectation value of 1−Pc is computed once the system reaches its
steady state. Here Pc denotes the projector onto the cat code space, and the subscripts “ac-
tual” and “ideal” denote expectation with respect to the steady states of (5.73) and (5.75),
respectively. The ratio of expectations, plotted on the vertical axis, quantifies the relative
increase in population outside the code space. A ratio ∼ 1 indicates the approximation
works well. Parameters are chosen from the ranges |α|2 ∈ [1, 4] and |∆1−∆2|/κ2 ∈ [5, 100].

We choose the frequencies of the n-th pump and drive tones, respectively, as

ω(n)
p = 2ωn − ωb + ∆n, (5.65)

ω
(n)
d = ωb −∆n, (5.66)

where ∆n denote detunings whose importance will be made clear shortly.

To proceed, we expand the sine to third order and move to the frame where each

180

mode rotates at its respective frequency. The resultant Hamiltonian is

H ≈
∑
n

(
ε

(n)
d b e−i∆nt + H.c.

)
− 2EJεp(t)

[
ϕbb e

−iωbt +
∑
n

ϕnan e
−iωnt + H.c.

]

+
EJ
3
εp(t)

[
ϕbb e

−iωbt +
∑
n

ϕnan e
−iωnt + H.c.

]3

(5.67)

This Hamiltonian contains terms that lead to the required two-photon dissipators for

each storage mode, ∑
n

[
g2,n

(
a2
n − α2

n

)
b†ei∆nt + H.c.

]
, (5.68)

with

g2,n = EJε
(n)
p ϕ2

nϕb/2, (5.69)

α2
n = −

(
ε

(n)
d

)∗
/g2,n. (5.70)

However, the Hamiltonian (5.67) contains numerous other terms. While many of

these other terms are fast-rotating and can be neglected in the rotating wave ap-

proximation (RWA), others can have non-trivial effects. For example, the interplay

between the terms in the second and third lines of (5.67) gives rise to effective fre-

quency shifts (a.c. Stark shifts) of the buffer and storage modes, which modify the

resonance conditions (5.65) and (5.66). One can calculate the magnitudes of these

shifts (and hence compensate for them) by applying the effective operator approach

of Refs. [204, 205], in which case the Stark shifts are given by the coefficients of the

b†b and a†a terms that arise in the effective Hamiltonian. Alternatively, the shifts can

be calculated by moving to a displaced frame with respect to the linear terms on the

second line of (5.67), as is done in Ref. [197]. The Hamiltonian (5.67) also contains

terms which lead to crosstalk, but we defer the discussion of these terms to the next

181

section. For now, we keep only the desired terms (5.68).

We proceed by adiabatically eliminating the lossy buffer mode b, following the

approach described in Appendix B. Specifically, we designate the the ground subspace

as the subspace where the buffer mode is in the vacuum state, and the excited subspace

as the subspace where the buffer mode contains at least one excitation. We find that

the effective dynamics of the storage modes within the ground subspace are described

by the master equation

ρ̇ = −i[Heff , ρ] +D
[∑

n

g2,n

∆n − iκb/2
(
a2
n − α2

n

)
ei∆nt

]
(ρ), (5.71)

where

Heff = −1

2

∑
m,n

{
g∗2,ng2,m(a2

n − α2
n)†(a2

m − α2
m)

×
[

1

∆m − iκb/2
+

1

∆n + iκb/2

]
ei(∆m−∆n)t

}
. (5.72)

To understand these dynamics, let us first consider the simple case where ∆n = 0.

The above master equation reduces to

ρ̇ = κ2D

[∑
n

(
a2
n − α2

n

)]
(ρ), (5.73)

where κ2 = 4|g2|2/κb. Any product of coherent states

|β1〉 ⊗ |β2〉 ⊗ . . .⊗ |βN〉 (5.74)

that satisfies
∑

n β
2
n =

∑
n α

2
n is a steady state of (5.73). The subspace of steady

states includes states in the code space, for which β2
n = α2

n, but it also includes states

outside of the code space. Because a strictly larger space is stabilized, when noise

pushes the system outside of the code space, the stabilization is not guaranteed to

182

return the system to the code space. The coherent dissipation in Eq. (5.73) is thus

not sufficient for our purposes.

Consider instead the case where the detunings are chosen to be distinct, satisfying

|∆n−∆m| � 4|α|2κ2. In this limit, we can drop the now fast-rotating cross terms in

the dissipator in Eq. (5.71), and the effective master equation becomes

ρ̇ =
∑
n

κ2,nD
[
a2
n − α2

n

]
(ρ), (5.75)

where

κ2,n =
κb|g2,n|2

∆2
n + κ2

b/4
. (5.76)

The incoherent dissipator eq. (5.75) stabilizes cat states in each mode, as desired.

Thus, by simply detuning the pumps and drives used to stabilize each mode, multiple

modes can be stabilized simultaneously and independently by a single ATS.

Two remarks about the approximation of Eq. (5.73) by Eq. (5.75) are necessary.

First, the condition |∆n−∆m| � 4|α|2κ2 can be derived by expressing the operators in

Eq. (5.73) in the displaced Fock basis [125]. Roughly speaking, the condition dictates

that |∆n − ∆m| be much larger than the rate at which photons are lost from the

stabilized modes. Second, we have neglected Heff ; the rotating terms in Heff can be

dropped in the RWA in the considered limit, and the non-rotating terms provide an

additional source of stabilization [198] that we neglect for simplicity. It is also worth

noting that the two-photon dissipation rate, κ2,n, decreases monotonically with ∆n.

To avoid significant suppression of this engineered dissipation, one can choose ∆n . κb

so that κ2,n remains comparable to κ2, or alternatively one can exploit the filtering

procedure described in Section 5.3.5 which enables strong effective dissipation even

for ∆n > κb.

We demonstrate our scheme for multiplexed stabilization numerically in Fig. 5.10.

Through master equation simulations, we observe good stabilization for |∆1−∆2| �

183

4|α|2κ2, but not ∆1,2 = 0, as expected. Moreover, we also quantify the validity of

approximating Eq. (5.73) by Eq. (5.75). Strictly speaking, the approximation is valid

only in the regime |∆n−∆m| � 4|α|2κ2, but we find that even for |∆n−∆m| ∼ 4|α|2κ2

the stabilization works reasonably well, by which we mean that the population that

leaks out of the code space is comparable for the two dissipators (5.73) and (5.75),

see Fig. 5.10(b). The approximation breaks down beyond this point, and accounting

for the additional terms in Eq. (5.73) becomes increasingly important.

We conclude this section by providing some physical intuition as to why detun-

ing the pumps and drives allows one to stabilize multiple cat qubits simultaneously.

When ∆n = 0, photons lost from different storage modes via the buffer cannot be

distinguished by the environment. As a result, we obtain a single coherent dissipator

L ∝ ∑
n(a2

n − α2
n). When distinct detunings are chosen for each mode, however,

photons lost from different modes via the buffer are emitted at different frequencies.

When these photons are spectrally resolvable, the environment can distinguish them,

resulting in a collection of independent, incoherent dissipators Ln ∝ (a2
n−α2

n) instead.

The emitted photon linewidth is 4|α|2κ2, which can be seen by expressing κ2D[a2−α2]

in the displaced Fock basis, as described in Ref. [125]. Thus, the emitted photons are

well-resolved when |∆n−∆m| � 4|α|2κ2, which is the same condition assumed in the

derivation of (5.75).

5.3.4 Sources of crosstalk

In this Section we describe how undesired terms in the Hamiltonian (5.67) lead to

crosstalk among modes coupled to the same ATS. In particular, we show that these

undesired terms lead to effective dissipators and effective Hamiltonians that can cause

correlated phase errors in the cat qubits.

The dominant sources of crosstalk are undesired terms in the Hamiltonian (5.67)

184

of the form

g2 aiajb
†eiδijkt + H.c., (5.77)

where

δijk = ω
(p)
k − ωi − ωj + ωb, (5.78)

and we have neglected the dependence of g2 on the indices i, j for simplicity. In

contrast to the other undesired terms in (5.67), these terms have the potential to

induce large crosstalk errors because they both (i) have coupling strengths comparable

to the desired terms (5.68), and (ii) can be resonant or near-resonant. In particular,

the undesired term is resonant (δijk = 0) for 2ωk + ∆k = ωi + ωj. This resonance

condition can be satisfied, for example, when the storage modes have near uniformly-

spaced frequencies.

These unwanted terms may not be exactly resonant in practice, but we cannot

generally guarantee that they will be rotating fast enough to be neglected in the

RWA either. In contrast, all other undesired terms in (5.67) are detuned by at least

minn |ωn − ωb|, which is on the order of ∼ 2π × 1 GHz for the parameters considered

in this work. We therefore focus on crosstalk errors induced by the terms (5.77).

The terms (5.77) can lead to three different types of correlated errors:

• Type I: Stochastic errors induced by effective dissipators

• Type II: Stochastic errors induced by effective Hamiltonians

• Type III: Coherent errors induced by effective Hamiltonians

We describe each type of error in turn. Without mitigation (see Section 5.3.5), these

correlated phase errors could be a significant impediment to performing high-fidelity

operations.

185

Type I: stochastic errors induced by effective dissipators

The terms (5.77) can lead to correlated photon losses at rates comparable to κ2,

resulting in significant correlated phase errors in the cat qubits. These deleterious

effects manifest when one adiabatically eliminates the buffer mode. Explicitly, we

apply the effective operator formalism described in Appendix B to the operators

H(1) = g2 aiajb
†eiδijkt + H.c., (5.79)

L(1) =
√
κb b (5.80)

and obtain the effective operators

H
(1)
eff = − |g2|2δijk

δ2
ijk + κ2

b/4
(aiaj)

†(aiaj) + H.c., (5.81)

L
(1)
eff =

g2
√
κb

δijk − iκb/2
aiaje

iδijkt. (5.82)

The effective Hamiltonian preserves phonon-number parity and thus does not induce

phase flips. The effective jump operator Leff describes correlated single-phonon losses

in modes i and j at a rate

κeff =
κb|g2|2

δ2
ijk + κ2

b/4
(5.83)

which is comparable to κ2 for δijk . κb. These correlated single photon losses induce

correlated phase flips in the cat qubits, which can be seen by projecting Leff into the

code space,

L
(1)
eff →

√
κeff α

2ZiZje
iδijkt. (5.84)

186

Type II: stochastic errors induced by effective Hamiltonians

The interplay between different terms of the form (5.77) can lead to further correlated

errors. As an example, consider the operators

H(2) = g2 aiajb
†eiδijkt + g2 a`amb

†eiδ`mnt + H.c., (5.85)

L(2) =
√
κb b. (5.86)

Adiabatically eliminating the buffer mode yields,

H
(2)
eff =

[
χ(aiaj)

†(a`am)ei(δ`mn−δijk)t + H.c.
]

+ . . . , (5.87)

L
(2)
eff =

g2
√
κb

δijk − iκb/2
aiaje

iδijkt +
g2
√
κb

δ`mn − iκb/2
a`ame

iδ`mnt.

where

χ = −|g2|2
2

[
1

δijk − iκb/2
+

1

δ`mn + iκb/2

]
and “. . .” denotes additional terms in the effective Hamiltonian that preserve phonon-

number parity. Note that the effective dissipator L
(2)
eff leads to Type I correlated phase

errors. Indeed, for sufficiently large |δijk−δ`mn|, the action of L
(2)
eff can be approximated

by replacing it with two independent dissipators of the form (5.82).

What is different about this example is that the effective Hamiltonian H
(2)
eff con-

tains terms ∝ (aiaj)
†(a`am) that generally do not preserve phonon-number parity.

Such terms can unitarily evolve the system out of the code space, changing the parity

in the process. In turn, the engineered dissipation returns the system to the code

space, but it does so without changing the parity. Therefore, the net effect of such

excursions out of the code space and back is to induce stochastic parity-flips in the

storage modes, which manifest as correlated phase errors on the cat qubits. The er-

rors are stochastic even though the evolution generated by H
(2)
eff is unitary because the

stabilization itself is stochastic. Specifically, the errors are of the form D[ZiZjZ`Zm],

187

which one can show by adiabatically eliminating the excited states of the storage

modes (see Ref. [125] for details).

Type III: coherent errors induced by effective Hamiltonians

The parity-non-preserving effective HamiltonianH
(2)
eff also induces non-trivial coherent

evolution within the code space. This can be seen by projecting H
(2)
eff into the code

space

H
(2)
eff → (|α|4χZiZjZ`Zmei(δ`mn−δijk)t + H.c.). (5.88)

This undesired evolution does not decohere the system but can nevertheless degrade

the fidelity of operations. See further discussion in Section 5.3.5.

5.3.5 Crosstalk mitigation: filtering

In this subsection, we show how Type I and Type II crosstalk errors can be suppressed

by placing a bandpass filter at the output port of the buffer mode. The purpose of

the filter is to allow photons of only certain frequencies to leak out of the buffer,

such that the desired engineered dissipation remains strong but spurious dissipative

processes are suppressed. A crucial requirement of this approach is that the desired

dissipative processes be spectrally resolvable from the undesired ones, and we show

that adequate spectral resolution is achievable in the next section (Section 5.3.6).

We begin by providing a quantum mechanical model of a bandpass filter [209, 210].

While a detailed classical analysis of the filter is given in [125], here we employ a

complementary quantum model. The quantum model not only allows us to study the

filter’s effects numerically via master equation simulations, but it is also sufficiently

simple so as to enable a straightforward analytical treatment via the effective operator

formalism described in Appendix B.

Motivated by the filter designs described in Refs. [125, 210], we employ a tight-

188

(a) (b)

Figure 5.11: Suppression of Type I errors. (a) Plots of κeff(M) as a function of the de-
tuning, δ, of the unwanted term. (b) Master equation simulations. The system is initial-
ized with a single excitation in the storage mode and evolved according to the dynamics
ρ̇ = −i[(g2ab

†eiδt + H.c.) + Hbuffer+filter, ρ] + D[L(3)](ρ). These dynamics are analogous to
those generated by H(3) and L(3); in both cases the unwanted term induces losses at rates
κeff(M). Simulation results are indicated by open circles, and the analytical expressions
for κeff(M) are plotted as solid lines. Parameters: α =

√
2, κc/g2 = 10, J/g2 = 5. For (b),

δ = 4J , as indicated by the dashed line in (a).

binding model where the filter consists of a linear chain of M bosonic modes with

annihilation operators ci, and each with the same frequency ωb. Modes in the chain

are resonantly coupled to their nearest neighbors with strength J . The first mode

in the chain couples to the buffer mode b, which is no longer coupled directly to the

open waveguide. Instead, the M -th mode is now the one which couples strongly to

the waveguide, such that its single-photon loss rate is given by κc. The buffer-filter

system is described by the Hamiltonian (in the rotating frame)

Hbuffer+filter = J(c†1b+ c1b
†) +

M−1∑
i=1

J(c†i+1ci + ci+1c
†
i), (5.89)

together with the dissipator κcD[cM]. We show below that these additional modes act

as a bandpass filter, with center frequency ωb and bandwidth 4J , and they suppresses

the emission of photons with frequencies outside of this passband.

189

Suppression of Type I errors

To illustrate the suppression of Type I errors, we consider the operators

H(3) =
(
g2 aiajb

†eiδijkt + H.c.
)

+Hbuffer+filter, (5.90)

L(3) =
√
κc cM (5.91)

where the first term in H(3) is the same as the unwanted term H(1) from Section 5.3.4.

We adiabatically eliminate both the buffer and filter modes in order to obtain an ef-

fective dynamics for only the storage modes. We note that adiabatically eliminating

the buffer and filter modes together is not fundamentally different from adiabati-

cally eliminating the buffer; both calculations are straightforward applications of the

methods in Appendix B. We obtain the effective dissipator

L
(3)
eff =

√
κeff(M) aiaje

iδijkt (5.92)

where the rates for the first few values of M are

κeff(0) =
κc|g2|2

δ2
ijk + κ2

c/4
≈ κc

|g2|2
δ2
ijk

(5.93)

κeff(1) =
κc|g2|2J2

(J2 − δ2
ijk)

2 + δ2
ijkκ

2
c/4
≈ κeff(0)

(
J

δijk

)2

(5.94)

κeff(2) =
κc|g2|2J4

(2J2δijk − δ3
ijk)

2 + (J2 − δ2
ijk)

2κ2
c/4
≈ κeff(0)

(
J

δijk

)4

, (5.95)

where the approximations assume that δijk � J, κc. In this regime, κeff(M) is expo-

nentially suppressed with increasing M via the factor (J/δijk)
2M .

We plot these rates as a function of δijk in Fig. 5.11(a), where the exponential

suppression of the decoherence rates outside the filter band is evident. Fig. 5.11(b)

shows the results of analogous master equation simulations; good quantitative agree-

ment with the analytical expressions is observed. Thus we conclude that Type I errors

190

are indeed suppressed by the filter, provided |δijk| > 2J .

Suppression of Type II errors

To illustrate the suppression of Type II errors, we construct a simple toy model that

both captures the relevant physics and is easy to study numerically. Consider the

operators

H(4) =
(
g ab†eiδ1t + g b†eiδ2t + H.c.

)
+
[
g2(a2 − α2)b† + H.c.

]
+Hbuffer+filter (5.96)

L(4) =
√
κc cM . (5.97)

where a is the annihilation operator for the single storage mode that we consider in

this model. In this toy model, the terms in parentheses inH(4) should be understood as

analogous to H(2). Indeed we obtain the former from the latter by replacing aiaj → a

and a`am → 1.

Adiabatically eliminating the buffer and filter modes yields the effective operators

H
(4)
eff =

[
χeff(M) a ei(δ1−δ2)t + H.c.

]
+ . . . (5.98)

L
(4)
eff =

√
κ

(δ1)
eff (M) a eiδ1t +

√
κ

(0)
eff (M)(a2 − α2). (5.99)

Here, “. . .” denotes a parity-preserving term (∝ a†a) that we neglect, κ
(δ)
eff (M) denotes

the effective loss rate [eqs. (5.93) to (5.95)] with the replacement δijk → δ, and

χeff(M) ≈ −|g|
2

2

(
1

δ1

+
1

δ2

)
(5.100)

is independent of M in the limit δ1,2 � J, κb. The first term in L
(4)
eff gives rise to

the Type I errors that are suppressed by the filter, as already discussed. Our present

interest is the Type II errors induced by the interplay of H
(4)
eff , the stabilization, and

the filter.

191

Unfortunately, the effective operators H
(4)
eff and L

(4)
eff do not properly capture this

interplay. In particular, it follows from energy conservation that Type II errors in-

duced by H
(4)
eff result in photon emissions at frequency ωb + δ2 − δ1. Intuitively, such

emissions should be exponentially suppressed when this frequency lies outside the

filter band. However, this suppression is not apparent in the operators H
(4)
eff , L

(4)
eff be-

cause, in the course of deriving H
(4)
eff , we already eliminated the filter. After adiabatic

elimination the only vestige of the filter is the term

√
κ

(0)
eff (M)(a2 − α2), which em-

bodies the behavior of the filter at frequency ωb, but not at frequency ωb + δ2− δ1. As

such, proceeding to calculate the Type II error rate from these operators is not valid,

and an alternate approach is required.

In order to properly capture the subtle interplay between the effective Hamilto-

nian, the stabilization, and filter, we defer adiabatic elimination and instead begin by

calculating an effective Hamiltonian that describes the time-averaged dynamics gen-

erated by H(4). We restrict our attention to a regime where the terms in parentheses

in Eq. (5.96) are rapidly rotating, so that evolution generated by H(4) is well approx-

imated by its time average. We calculate the time-averaged effective Hamiltonian

H̄(4) following the approach described in Refs. [204, 205],

H̄(4) =
[
g2(a2 − α2)b† + H.c.

]
+Hbuffer+filter

− |g|
2

2

(
1

δ1

+
1

δ2

)(
2b†b+ 1

) (
aei(δ1−δ2)t + H.c.

)
(5.101)

where we have neglected a parity-preserving term (∝ a†a), and terms rotating at the

fast frequencies δ1,2. Notice that

H̄(4) ≈
[
g2(a2 − α2)b† + H.c.

]
+Hbuffer+filter +H

(4)
eff , (5.102)

where the approximation is obtained by preemptively replacing b†b with its expected

value of 0. Doing so reveals that H
(4)
eff can be understood as arising from the time-

192

averaged dynamics of the the unwanted terms in H(4) in the limit of large δ1,2. In

effect, time averaging provides a way of introducing H
(4)
eff into the dynamics without

having to eliminate the filter, thereby allowing us to study the interplay of the filter

and effective Hamiltoninan.

We proceed by taking the operators H̄(4) and L(4) and adiabatically eliminating

the buffer, the filter, and all excited states of the storage mode, i.e. all states that do

not lie in the code space. Adiabatically eliminating the storage mode excited states

is valid in the regime where the engineered dissipation is strong relative to couplings

that excite the storage mode (H
(4)
eff in this case), such that these excited states are

barely populated. We obtain

H̄
(4)
eff = χeff(M)αZ ei(δ1−δ2)t + H.c., (5.103)

L̄
(4)
eff =

√
γeff(M)Z. (5.104)

The rates for the first few values of M are

γeff(0) =
4κc|2g2αχeff(0)|2

4 (|2g2α|2 − δ2
12)

2
+ δ2

12κ
2
c

, (5.105)

γeff(1) =
4J2κc|2g2αχeff(1)|2

4δ2
12 (J2 + |2g2α|2 − δ2

12)
2

+ (|2g2α|2 − δ2
12)

2
κ2
c

≈ γeff(0)

(
J

δ12

)2

, (5.106)

γeff(2) =
4J4κc|2g2αχeff(2)|2

4 (|2g2α|2(J − δ12)(J + δ12) + δ4
12 − 2J2δ2

12)
2

+ δ2
12 (|2g2α|2 + J2 − δ2

12)
2
κ2
c

≈ γeff(0)

(
J

δ12

)4

, (5.107)

where we have used the shorthand δ12 ≡ δ1 − δ2 to simplify the expressions, and the

approximations are obtained in the in the limit of large |δ1 − δ2|. In this limit, we

193

(a) (b)

Figure 5.12: Suppression of Type II errors. (a) Plots of γeff(M) as a function of the
detuning, δ1−δ2, of the effective Hamiltonian. (b) Master equation simulations. The storage
mode is initialized in the even parity cat state and evolved according to the dynamics ρ̇ =
−i[H̄(4), ρ] +D[L(4)](ρ). Simulation results are indicated by open circles, and the analytical
expressions for γeff(M) are plotted as solid lines. Parameters: α =

√
2, κc/g2 = 10, J/g2 = 5.

Rather than specify values for g and δ1,2, we simply fix χeff(M)/g2 = 0.2. For (b), δ = 3J ,
as indicated by the dashed line in (a).

find that the phase flip rate is exponentially suppressed by the filter,

γeff(M) ≈ γeff(0)

(
J

δ1 − δ2

)2M

, (5.108)

as expected.

We plot the rates γeff(M) as a function of δ1− δ2 in Fig. 5.12(a), where the expo-

nential suppression of the decoherence rates outside the filter band is again evident.

Fig. 5.12(b) shows the results of corresponding master equation simulations. Good

quantitative agreement with the analytical expressions is observed. (Note that the

small parity oscillations in the simulation results are Type III errors—coherent micro-

oscillations due to evolution generated by the effective Hamiltonian within the code

space. These errors are not suppressed by the filter.) Thus we find that Type II

errors are also suppressed by the filter, provided the effective Hamiltonian detuning

lies outside the filter passband.

194

5.3.6 Crosstalk mitigation: mode frequency optimization

We have shown that stochastic correlated phase errors (Types I and II) can be sup-

pressed by a filter if the corresponding emitted photons have frequencies outside the

filter passband. We now show that it is possible to suppress all such errors simul-

taneously by carefully choosing the frequencies of the phonon modes. In doing so,

the effects of Type III errors can also be simultaneously minimized, but the specifics

of this minimization will depend on other architectural choices, such as whether the

cat qubits are concatenated with a repetition or surface code. For the sake of brevity

and simplicity, we thus focus only on the suppression of Type I and II errors, and we

refer the interested reader to Ref. [125] for further details on the suppression of Type

III errors.

To minimize the effects of Type I and II errors, we define a binary cost function, C,

that quantifies these errors as a function of the phonon mode frequencies ωn and the

pump detunings ∆n. Intuitively, C should be large if any emitted photons associated

with Type I and II errors lie inside the filter’s bandwidth 4J . We thus take C = 1 if

any of the following conditions are met:

• |δijk| < 2J (Type I errors not suppressed)

• |δijk − δ`mn| < 2J (Type II errors not suppressed)

• |δiii| > 2J (desired dissipation suppressed)

In other words, we set C = 1 if any Type I or II errors are not suppressed by the filter,

or if any of the desired engineered dissipation is suppressed by the filter. Otherwise,

in the ideal situation where all crosstalk errors are suppressed by the filter but the

desired engineered dissipation is not, we take C = 0.

It is important to note that this cost function depends both on how many modes

are coupled to an ATS, and on how many modes are stabilized by that ATS. This is

because the total number of different photon emission frequencies depends on both

195

the total number of phonon modes and on the number of pump tones applied to the

ATS. In particular, if out of the N phonon modes coupled to an ATS, only M < N

need to be stabilized, then only M pump tones are needed. Fig. 5.8(c) provides an

example of a situation where only a subset of the modes coupled to an ATS need to

be stabilized. The figure shows how our architecture can be scaled by tiling multiple

unit cells in a two-dimensional grid layout, where each unit cell consists of an ATS

and five phonon modes to which the ATS couples. In this layout, each phonon mode is

simultaneously coupled to two ATS’s. However, only one ATS is required to stabilize

any given phonon mode. Thus, the responsibility for stabilizing the phonon modes

can be shared among the different ATS’s, such that each ATS need only stabilize at

most two out of the five modes to which it couples (see Ref. [125] for further details).

In accordance with this example, we assume that only two out of the five phonon

modes need to be stabilized by the ATS in the optimization below.

Having defined the cost function C, we perform a numerical search for the values

of the mode frequencies and pump detunings which minimize the cost. In performing

this optimization, we place two additional restrictions on allowed frequencies and

detunings. First, we restrict the mode frequencies to lie within a 1 GHz bandwidth.

This is done because the modes are supported by phononic crystal resonators, and

as such all mode frequencies must lie within the phononic bandgap. These bandgaps

are typically not more than 1 GHz wide for the devices we consider [158]. Second, we

restrict the values of the detunings to ∆ = ±J . This is done to maximize use of the

filter bandwidth; emitted photons are detuned from one another by 2J and from the

nearest band edge by J .

The optimization results are illustrated in Fig. 5.13. We find that C = 0 for the

optimal configuration, indicating that all Type I and Type II errors are simultaneously

suppressed by the filter. Additionally, all emitted photon frequencies associated with

Type I or II errors lie at least 10 MHz outside the filter passband. As a result, the

196

(a)

(b)

Phonon mode frequencies
0 200 400 600 800 1000

Emitted photon detunings (2π x MHz)

... ...

(2π x MHz)

Figure 5.13: Optimized mode frequencies. (a) Plot of the optimized frequencies of the five
phonon modes. (b) Emitted photon detunings. Red dashed (solid) lines indicate photons
emitted via parity-non-preserving Type I (Type II) processes. The yellow box covers the
region [−50, 50] (2π ×MHz), representing a bandpass filter with center frequency ωb and a
4J = 2π× 100 MHz passband. The fact that no red lines lie inside the yellow box indicates
that all Type I and II processes are sufficiently far detuned so as to be suppressed by the
filter.

optimized configuration is robust to deviations in the mode frequencies of the same

order, and larger deviations can be tolerated by decreasing the filter bandwidth.

Moreover, as described in Ref. [125], Type III errors area also strongly suppressed

in these configurations. Therefore, all dominant sources of crosstalk are strongly

suppressed.

5.4 Hardware-efficient QRAM architectures with

quantum acoustics

In this section, we describe how a QRAM can be constructed using the cQAD archi-

tectures described in Sections 5.2 and 5.3. The resulting QRAM implementations are

naturally hardware efficient and scalable, thanks to the compact size and long lifetime

of the acoustic modes. Furthermore, the proposed implementations are well-suited

for near-term experiments. Indeed, per our proposals, a small-scale QRAM could

197

BS BS-1=

Figure 5.14: A controlled-SWAP gate can be implemented using a combination of beam-
splitter and phase-shift operations [211].

already be implemented on a single chip.

First, in Section 5.4.1, we describe how the architectures from Sections 5.2 and 5.3

can be used to implement quantum routers. Then, in Section 5.4.2, we describe how

these routers can be integrated to build a QRAM.

5.4.1 Constructing quantum routers from acoustic modes

As described in Chapter 2, the fundamental gate operation required to implement a

quantum router is a controlled-SWAP gate. Below, we describe how this operation

can be implemented in the architectures of Sections 5.2 and 5.3.

We begin with the architecture of Section 5.2. For this architecture, the native

operations are beamsplitters (generated by Hamiltonians of the form H ∝ a1a
†
2+H.c.)

and CZ gates (generated by Hamiltonians of the form H ∝ a1a2a
†
3 + H.c.). These

operations can be combined to implement a controlled-SWAP gate [211], as illustrated

in Fig. 5.14. The behavior of the circuit can be understood as follows. The initial

50-50 beam-splitter maps the modes a1 and a2 to the linear combinations

a1

a2

→ U †

a1

a2

U =


1√
2
(a1 + ia2)

1√
2
(a2 + ia1),

 (5.109)

where U = exp[iπ/4(a†1a2+a†2a1)] is the beamsplitter unitary. If the control mode is in

the vaccum state, the CZ gate acts trivially, and the subsequent inverse beamsplitter

198

acts as 
1√
2
(a1 + ia2)

1√
2
(a2 + ia1),

→ U


1√
2
(a1 + ia2)

1√
2
(a2 + ia1),

U † =

a1

a2

 (5.110)

so the gate acts trivially when the control is |0〉. In contrast, if the control is |1〉, the

CZ gate applies a −1 phase to the a1 mode before the second beamsplitter operation.

Incorporating this phase, the final state of the system is,


1√
2
(−a1 + ia2)

1√
2
(a2 − ia1),

→ U


1√
2
(−a1 + ia2)

1√
2
(a2 − ia1),

U † =

 ia2

−ia1

 (5.111)

so the modes a1 and a2 are swapped (up to local phases).

The implementation of Fig. 5.14 is not precisely equivalent to a controlled-SWAP

gate, but in the context of QRAM the differences are inconsequential. For example,

the ±i phases that arise when the swap occurs are subsequently cancelled by a corre-

sponding inverse operation that occurs later on in the QRAM circuit. Similarly, the

controlled-SWAP implementation of Fig. 5.14 only performs the correct operation in

the subspace with < 2 excitations in the modes to be swapped. This is because our CZ

gate implementation only works properly within the single excitation subspace, and

the system can leave this subspace if both modes to be swapped are excited. Indeed,

the initial beamsplitter operation can place the two excitations in the same mode,

as in the Hong-Ou-Mandel effect [212] (note that this fact clearly demonstrates that

the 50-50 beamsplitter operation is not simply equivalent to a
√

SWAP gate acting

on the single-excitation subspaces of the two modes). However, in our QRAM imple-

mentation, one of the input modes is always in the vaccuum state, so this subtlety is

irrelevant.

Next, we describe how a controlled-SWAP gate can be implemented in the cat-

199

Incident qubit

Routing qubit

Left output
qubit

Right output
qubit

Incident

Router

Left

Right

(b)(a)

Incident

Router

Left

Right

(c)

Figure 5.15: A cQAD quantum router. The router consists of four acoustic qubits, illus-
trated schematically in (a). These qubits are equipped with a quantum routing operation,
which can be implemented using either of the circuits in (b) or (c). The circuit in (c) uses
one fewer controlled-SWAP gate, which may be advantageous for near-term demonstrations.

qubit architecture of Section 5.3. As described in that section, cat qubits enable

the implementation of both CNOT and Toffoli gates in a bias-preserving manner.

Combining these operations, a controlled-SWAP gate can be implemented as

•
=

•
× •
× • •

(5.112)

If the CNOT and Toffoli gates in this circuit are physical bias-preserving gates, then

we have a bias-preserving implementation of controlled-SWAP at the physical level.

Alternatively, if error correction is used, the same circuit can be implemented at

the logical level. In this context, implementing the non-Clifford Toffoli gate fault-

tolerantly requires magic state injection (or some other equivalent fault-tolerant con-

struction). Magic state distillation can be done in a relatively hardware-efficient

manner with cat qubits [125].

Assuming access to controlled-SWAP gates, a quantum router can be constructed

from acoustic qubits as shown in Fig. Fig. 5.15. We use the term acoustic qubits

to encompass the various different qubit implementations described in Sections 5.2

and 5.3. An acoustic qubit could be a single phononic mode with information encoded

in the single-phonon subspace (Section 5.2); a single phononic mode with information

encoded in the cat-qubit code space (Section 5.3); or a logical qubit comprised of many

200

(a) (b)
Incident qutrit

Routing qutrit

Left output
qutrit

Right output
qutrit

Incident

Router

Left

Right

Figure 5.16: A qutrit-based cQAD quantum router. The router consists of four acoustic
qutrits, each composed of two acoustic qubits, as illustrated schematically in (a). The
routing operation can be implemented with the circuit shown in (b).

physical phononic modes, each encoding a cat qubit (Section 5.3). In its simplest

incarnation, the router consists of four acoustic qubits, one of which controls the

routing direction, while the other three serve as the router’s input and output modes.

The routing operation is realized by performing controlled-SWAP gates among these

qubits.

As discussed in Chapter 3, QRAM is resilient to noise regardless of whether the

routers are implemented using qubits or qutrits. However, the error scaling is some-

what more favorable when qutrits are used. Accordingly, we also propose a qutrit-

based cQAD quantum router in Fig. 5.16. Each qutrit consists of two acoustic qubits,

with the encoding

wait = |00〉 (5.113)

route left = |10〉 (5.114)

route right = |01〉 . (5.115)

This specific encoding of a qutrit into the two-qubit Hilbert space enables a straight-

forward implementation of the routing operation, as shown in Fig. 5.16(b). In compar-

ison to the qubit-based router of Fig. 5.15, the qutrit-based router has more favorable

error propagation properties but a larger hardware overhead.

201

Figure 5.17: A cQAD QRAM. Each box denotes a single quantum router, with the outputs
of routers at one level of the tree acting as inputs to the routers at the next level down.

5.4.2 A cQAD QRAM implementation

The quantum routers described in the previous section can be assembled together to

build a QRAM, as shown in Fig. 5.17. A collection of routers is arranged in a binary

tree with the output qubits of routers at one level acting as the input qubits for routers

at the next level down. For small- to medium-size QRAMs, the acoustic modes com-

prising QRAM could all be implemented on a single chip. Alternatively, the QRAM

could be constructed out of several physically distinct modules, with each module con-

taining one or more quantum routers. If qubits are encoded within the single-phonon

subspaces of phononic resonators, as in Section 5.2, connections between modules

could be implemented using pitch-and-catch schemes [172–174, 176, 213]. More gen-

erally, connections between modules could be implemented using teleportation [21],

such that connected modules need not be physically adjacent to one another. In-

dependent of the implementation details, the proposed cQAD QRAM inherits the

appealing properties of high coherence, scalability, and hardware efficiency from the

underlying acoustic hardware.

202

5.5 Conclusions and Outlook

We have proposed quantum computing architectures for multimode cQAD and demon-

strated how they can be used to implement a QRAM. The proposed implementations

are naturally hardware efficient, owing to the compactness of multimode cQAD sys-

tems that is enabled by small acoustic wavelengths. We emphasize that hardware

efficiency is not only crucial for scaling to large system sizes, but that it is also

particularly advantageous for near-term experiments. Indeed, a small-scale QRAM

can even be implemented even with just a single multimode resonator. In the long

term, the use of bosonic quantum error correcting codes, and cat codes in particular,

provides a promising path towards a QRAM implementation that is simultaneously

hardware efficient and fault-tolerant.

An important direction for future work will be to precisely quantify the hard-

ware cost of the proposed QRAM architecture, especially in the fault-tolerant regime.

That is, what is the hardware cost required to query a memory of size N with a log-

ical query infidelity below some threshold value? It is not unreasonable to expect

that the noise resilience of the bucket-brigade QRAM (Chapter 3), together with

the low-overhead fault tolerance implementations based on cat qubits, could lead

to orders-of-magnitude reduction in hardware cost relative to standard surface code

implementations [18]. Despite these significant hardware efficiency improvements,

building a QRAM that can address millions or billions of different memory elements

is not likely feasible in the foreseeable future. Thus, another important direction for

future work will be to identify applications where small- to medium-sized QRAMs can

already be useful (e.g. algorithms for simulating local Hamiltonians) and to perform

tailored resource estimates for these applications.

203

Appendix A

Copying classical data to the bus

In this Appendix, we explicitly describe various ways in which classical data can be

copied into the state of the bus during a QRAM query. Slightly different procedures

are required depending on whether the QRAM is implemented with two-level or

three-level systems, and whether the QRAM is initialized in a known state or in some

arbitrary state.

We begin with the case where the QRAM is implemented with two-level routers,

as described in Section 3.3.1. Each router’s incident and output modes are also taken

to be physical two-level systems. All routers and their respective modes are initialized

to |0〉. For reasons that will become apparent shortly, we suppose that the bus qubit

is initialized to |0〉, but then immediately mapped to |+〉 ≡ (|0〉 + |1〉)/
√

2 using

a Hadamard gate (see the circuit diagram in Fig. 2.8). During the query, this bus

qubit is routed down the tree, to an output mode of some router at the bottom level.

At this point, classical data is encoded into the state of the bus qubit by applying

classically controlled Z gates, as illustrated in Fig. A.1(a). If the memory element

being queried is 1, a Z gate is applied, and the state of the bus is flipped from |+〉

to |−〉 ≡ (|0〉 − |1〉)/
√

2. If the memory element queried is 0, no Z gate is applied,

and the bus remains in |+〉. In this way, the classical bit is encoded in the |±〉 basis

204

Output

Data

Output

Data

(a) (b)

QRAM QRAM
Add.

Bus

(c)

Figure A.1: Circuits for copying classical data. (a) Two-level circuit. The bus qubit is
encoded within a physical two-level system and initialized in |+〉. A Z gate flips the bus
to |−〉 conditioned on the classical data. (b) Three-level circuit. The bus qubit is encoded
within a two-level subspace of a physical three-level system and initialized in |0〉. The X̃
gate (see text) flips the bus to |1〉 conditioned on the classical data. (c) Query circuit for
QRAM initialized in an arbitrary state. The circuits assumes three-level routers, so the bus
is initialized in |0〉 and circuit (b) is employed within each QRAM block to copy data to the
bus. An analogous circuit can be constructed for two-level routers. The ancillary qubits
comprising the QRAM’s routers (not shown) can be initialized in an arbitrary state.

of the bus qubit. Note, however, that because the location of the bus is not known,

classically controlled Z gates must be applied to the output modes of all routers at

the bottom level of the tree.

This data copying operation has a crucial property, which we call no extra copying :

in the absence of errors, the copying operation acts trivially on all modes that do not

contain the bus qubit. In the above case, all modes that do not contain the bus

are in |0〉, so they are unaffected by the Z gates, hence why we use the |±〉 basis

for the bus. The no extra copying property is crucial because it guarantees that the

final state of the tree is the same across all good (error-free) branches, as required

by the noise-resilience arguments in Chapter 3. Were this property not to hold, the

final state of the tree would depend on which element was queried, so the bus would

remain entangled with the routers after the query, even in the absence of errors.

Now let us consider the case where the QRAM is implemented with three-level

routers, as described in Section 3.2.2. Each router’s incident and output modes are

205

taken to be physical three-level systems, whose basis states we also label as |0〉, |1〉,

and |W 〉. The address and bus qubits are encoded within the |0, 1〉 subspace of such

three-level systems. Prior to the query, all routers, as well as their incident and output

modes, are initialized to |W 〉, and the bus is initialized to |0〉. During the query, the

bus is routed to an output mode of some router at the bottom level of the tree. Data

is copied into the bus by applying classically controlled X̃ gates to the output modes

[Fig. A.1(b)], where

X̃ = |1〉 〈0|+ |0〉 〈1|+ |W 〉 〈W | . (A.1)

If the memory element being queried is 1, the X̃ gate is applied, and the state of the

bus is flipped from |0〉 to |1〉. If the memory element queried is 0, no X̃ gate is applied,

and the bus remains in |0〉. In this way, the classical bit is encoded in the |0, 1〉 basis

of the bus qubit (one could also choose to encode the information in the |±〉 basis

by constructing an analogous Z̃ gate). Here again, the classically controlled gates

must be applied to the output modes of all routers at the bottom of the tree. This

operation satisfies the no extra copying property because, in the absence of errors, all

modes not containing the bus are in |W 〉, on which X̃ acts trivially.

In order to enforce the no extra copying property, both of the above data copying

operations rely on the fact that the routers, as well as their input and output modes,

are initialized to some known state. When the QRAM is initialized in an arbitrary

state (see Section 3.3.1), however, additional care must be taken to ensure this prop-

erty still holds. The challenge is that the mode that actually contains the bus must

somehow be distinguished from all the other modes, which may have been initialized

in the same state as the bus. This problem is solved by the circuit in Fig. A.1(c).

The QRAM is queried twice, and the no extra copying property is guaranteed by

the fact that the entire QRAM unitary operation is involutory. In particular, even

if the process of copying data during the first query acts non-trivially on modes not

containing the bus, these modes are always reset to their initial states by the second

206

query. In fact, even the bus is reset to its initial state by the second query. Thus,

the information stored in the bus is copied to an ancillary qubit in between the two

queries, then swapped back into the bus after the second query. We emphasize that

the query fidelity of this circuit scales favorably, which can be shown by simply re-

placing T → 2T in the scaling argument from Section 3.2.2 to account for the fact

that the QRAM is called twice.

As an aside, let us distinguish between our observation that QRAM is resilient to

noise even when initialized in an arbitrary state (Section 3.3.1), and the observation

of Refs. [36, 84] that the ancillary qubits used to perform a query can be “dirty.”

The latter states that circuits can be designed such that, in the absence of errors,

any ancillary qubits used during the query are returned to their initial state after the

query, regardless of what the initial state was (note the circuit in Fig. A.1(c) has this

property). In contrast, our observation concerns what happens when errors occur

during the query: the query infidelity of the circuit Fig. A.1(c) scales favorably even

when the QRAM is initialized in an arbitrary state.

207

Appendix B

Effective operator formalism

In Chapter 5, we frequently use adiabatic elimination as a tool to extract the effective

dynamics of an open quantum system within some stable subspace. The purpose of

this Appendix is to describe the effective operator formalism that we employ in order

to perform this adiabatic elimination. While adiabatic elimination has been described

in a variety of prior works (see, e.g., [206, 214, 215]), we privilege the treatment in

Ref. [206] due to its simplicity and ease of application. We briefly review the relevant

results.

Consider an open quantum system evolving according to the master equation

˙̂ρ = −i[Ĥ, ρ̂] +
∑
i

D[L̂i](ρ̂), (B.1)

with Hamiltonian Ĥ, jump operators L̂i, and whereD[L̂](ρ̂) = L̂ρ̂L̂†−1
2

(
L̂†L̂ρ̂+ ρ̂L̂†L̂

)
.

We suppose that the system can be divided into two subspaces: a stable ground sub-

space, and a rapidly-decaying excited subspace, defined by the projectors P̂g and P̂e,

respectively. The Hamiltonian can be written in block form with respect to these

208

subspaces as

Ĥ =

Ĥg V̂−

V̂+ Ĥe

 (B.2)

where Ĥg,e = P̂g,eĤP̂g,e, and V̂+,− = P̂e,gĤP̂g,e. We also suppose that the jump

operators take the system from the excited to the ground subspace, i.e., L̂i = P̂gL̂iP̂e,

and we define the non-Hermitian Hamiltonian

ĤNH = Ĥe −
i

2

∑
i

L̂†i L̂i. (B.3)

ĤNH describes the evolution within the excited subspace; unitary evolution is gener-

ated by Ĥe, while the remaining term describes the non-unitary, deterministic “no

jump” evolution induced by the dissipators D[L̂i].

The authors of Ref. [206] consider the case where the evolution between the sub-

spaces induced by V̂+,− is perturbatively weak relative to the evolution induced by

Ĥ0 ≡ Ĥg + ĤNH. Because the excited subspace is barely populated due to the rapid

decays, the dynamics of the system are well-approximated by those within the ground

subspace, governed by the effective master equation

˙̂ρ = −i[Ĥeff , ρ̂] +
∑
i

D[L̂eff,i](ρ̂), (B.4)

where

Ĥeff = −1

2
V̂−

[
Ĥ−1

NH +
(
Ĥ−1

NH

)†]
V̂+ + Ĥg, (B.5)

and

L̂eff,i = L̂iĤ
−1
NHV̂+. (B.6)

These expressions apply for time-independent Hamiltonians. However, we will also

be interested in situations where the perturbations V̂+,− are time-dependent and take

209

the form

V̂+(t) =
∑
n

V̂+,ne
iδnt, (B.7)

V̂−(t) =
∑
n

V̂−,ne
−iδnt. (B.8)

In this case, the effective Hamiltonian and jump operators are given by

Ĥeff = Ĥg

− 1

2

∑
m,n

V̂−,n

[
Ĥ−1

NH,m +
(
Ĥ−1

NH,n

)†]
V̂+,me

i(δm−δn)t, (B.9)

and

L̂eff,i = L̂i
∑
n

Ĥ−1
NH,nV̂+,ne

iδnt, (B.10)

where ĤNH,n = ĤNH + δn.

210

Bibliography

[1] P. W. Shor, in Proceedings 35th Annual Symposium on Foundations of Com-

puter Science (1994) pp. 124–134.

[2] R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).

[3] D. J. Bernstein, in Post-Quantum Cryptography , edited by D. J. Bernstein,

J. Buchmann, and E. Dahmen (Springer, Berlin, Heidelberg, 2009) pp. 1–14.

[4] S. Lloyd, Science 273, 1073 (1996).

[5] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, Chemical Reviews 120,

12685 (2020).

[6] A. Montanaro, Npj Quantum Inf. 2, 15023 (2016).

[7] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R. Soc. Lond. A

454, 339 (1998).

[8] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).

[9] A. Aspuru-Guzik, Science 309, 1704 (2005).

[10] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,

Nature 549, 195 (2017).

[11] R. Cleve, arXiv:quant-ph/9906111 .

211

http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1007/978-3-540-88702-7_1
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1103/PhysRevLett.83.5162
http://dx.doi.org/10.1126/science.1113479
http://dx.doi.org/ 10.1038/nature23474
http://arxiv.org/abs/quant-ph/9906111

[12] A. Ambainis, in Classical and New Paradigms of Computation and Their Com-

plexity Hierarchies (Springer, Dordrecht, 2004) pp. 15–32.

[13] M. Mosca, arXiv:0808.0369 .

[14] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 160501 (2008).

[15] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. A 78, 052310 (2008).

[16] S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V.

Srinivasan, New J. Phys. 17, 123010 (2015).

[17] F.-Y. Hong, Y. Xiang, Z.-Y. Zhu, L.-z. Jiang, and L.-n. Wu, Phys. Rev. A 86,

010306 (2012).

[18] O. Di Matteo, V. Gheorghiu, and M. Mosca, IEEE Trans. Quantum Eng. 1, 1

(2020).

[19] A. Paler, O. Oumarou, and R. Basmadjian, Phys. Rev. A 102, 032608 (2020).

[20] B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015).

[21] M. A. Nielsen and I. L. Chuang, Quantum Information and Quantum Compu-

tation: 10th Anniversary Edition (Cambridge University Press, 2000).

[22] S. M. Girvin, in Quantum Machines: Measurement and Control of Engineered

Quantum Systems , edited by M. Devoret, B. Huard, R. Schoelkopf, and L. F.

Cugliandolo (Oxford University Press, 2014) pp. 113–256.

[23] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, arXiv:2005.12667 .

[24] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, SIAM J. Comput. 26,

1510 (1997).

[25] A. Ambainis, arXiv:quant-ph/0002066 .

212

http://arxiv.org/abs/0808.0369
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1103/PhysRevA.78.052310
http://dx.doi.org/10.1088/1367-2630/17/12/123010
http://dx.doi.org/ 10.1103/PhysRevA.86.010306
http://dx.doi.org/ 10.1103/PhysRevA.86.010306
http://dx.doi.org/10.1109/TQE.2020.2965803
http://dx.doi.org/10.1109/TQE.2020.2965803
http://dx.doi.org/10.1103/PhysRevA.102.032608
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1093/acprof:oso/9780199681181.003.0003
http://dx.doi.org/10.1093/acprof:oso/9780199681181.003.0003
http://arxiv.org/abs/2005.12667
http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1137/S0097539796300933
http://arxiv.org/abs/quant-ph/0002066

[26] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, arXiv:quant-

ph/9802049 .

[27] P. Hoyer and R. Spalek, arXiv:quant-ph/0509153 .

[28] L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM Symposium

on Theory of Computing , STOC ’96 (ACM, New York, NY, USA, 1996) pp.

212–219.

[29] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Phys.

Rev. Lett. 114, 090502 (2015).

[30] S. Aaronson, Nat. Phys. 11, 291 (2015).

[31] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, arXiv:quant-ph/0005055 .

[32] L. K. Grover, Phys. Rev. Lett. 85, 1334 (2000).

[33] S. Aaronson, arXiv:1607.05256 .

[34] I. Kerenidis and A. Prakash, arXiv:1603.08675 .

[35] S. Chakraborty, A. Gilyén, and S. Jeffery, ArXiv180401973 Quant-Ph , 14

pages (2019), arXiv:1804.01973 [quant-ph] .

[36] G. H. Low, V. Kliuchnikov, and L. Schaeffer, arXiv:1812.00954 .

[37] L. Grover and T. Rudolph, arXiv:quant-ph/0208112 .

[38] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Phys. Rev. Lett. 73,

58 (1994).

[39] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,

T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

[40] V. V. Shende, I. L. Markov, and S. S. Bullock, Phys. Rev. A 69, 062321 (2004).

213

http://arxiv.org/abs/quant-ph/9802049
http://arxiv.org/abs/quant-ph/9802049
http://arxiv.org/abs/quant-ph/0509153
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/ 10.1103/PhysRevLett.114.090502
http://dx.doi.org/ 10.1103/PhysRevLett.114.090502
http://dx.doi.org/10.1038/nphys3272
http://arxiv.org/abs/quant-ph/0005055
http://dx.doi.org/10.1103/PhysRevLett.85.1334
http://arxiv.org/abs/1607.05256
http://arxiv.org/abs/1603.08675
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.33
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.33
http://arxiv.org/abs/1804.01973
http://arxiv.org/abs/1812.00954
http://arxiv.org/abs/quant-ph/0208112
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1103/PhysRevA.69.062321

[41] J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, Phys. Rev. Lett. 92,

177902 (2004).

[42] S. Bullock, D. O’Leary, and G. Brennen, Phys. Rev. Lett. 94, 230502 (2005).

[43] E. Knill, arXiv:quant-ph/9508006 .

[44] A. W. Harrow, B. Recht, and I. L. Chuang, Journal of Mathematical Physics

43, 4445 (2002).

[45] P. A. Ivanov, E. S. Kyoseva, and N. V. Vitanov, Phys. Rev. A 74, 022323

(2006).

[46] D. W. Berry and A. M. Childs, QIC 12 (2012), 10.26421/QIC12.1-2,

arXiv:0910.4157 .

[47] V. Kliuchnikov, arXiv:1306.3200 .

[48] G. H. Low and I. L. Chuang, Phys. Rev. Lett. 118, 010501 (2017).

[49] A. S. Householder, J. ACM 5, 339 (1958).

[50] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, arXiv:2105.02859 .

[51] A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009).

[52] J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short,

S. Pallister, A. Price, and S. Stanisic, arXiv:1512.02900 .

[53] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini,

and L. Wossnig, Proc. R. Soc. A 474, 20170551 (2018).

[54] R. Schützhold, Phys. Rev. A 67, 062311 (2003).

[55] G. Schaller and R. Schützhold, Phys. Rev. A 74, 012303 (2006).

214

http://dx.doi.org/10.1103/PhysRevLett.92.177902
http://dx.doi.org/10.1103/PhysRevLett.92.177902
http://dx.doi.org/10.1103/PhysRevLett.94.230502
http://arxiv.org/abs/quant-ph/9508006
http://dx.doi.org/10.1063/1.1495899
http://dx.doi.org/10.1063/1.1495899
http://dx.doi.org/10.1103/PhysRevA.74.022323
http://dx.doi.org/10.1103/PhysRevA.74.022323
http://dx.doi.org/10.26421/QIC12.1-2
http://arxiv.org/abs/0910.4157
http://arxiv.org/abs/1306.3200
http://dx.doi.org/10.1103/PhysRevLett.118.010501
http://dx.doi.org/10.1145/320941.320947
http://arxiv.org/abs/2105.02859
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://arxiv.org/abs/1512.02900
http://dx.doi.org/ 10.1098/rspa.2017.0551
http://dx.doi.org/10.1103/PhysRevA.67.062311
http://dx.doi.org/10.1103/PhysRevA.74.012303

[56] A. M. Childs, B. W. Reichardt, R. Spalek, and S. Zhang, arXiv:quant-

ph/0703015 .

[57] N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett. 109, 050505 (2012).

[58] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv:1307.0411 .

[59] N. Wiebe, A. Kapoor, and K. M. Svore, (), arXiv:1412.3489 .

[60] N. Wiebe, A. Kapoor, and K. Svore, (), arXiv:1401.2142 .

[61] S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014).

[62] P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014).

[63] S. Lloyd, S. Garnerone, and P. Zanardi, Nat. Commun. 7 (2016),

10.1038/ncomms10138.

[64] F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu,

arXiv:1710.02581 .

[65] A. M. Childs and J.-P. Liu, ArXiv190100961 Quant-Ph (2019),

arXiv:1901.00961 [quant-ph] .

[66] I. Kerenidis and A. Prakash, Phys. Rev. A 101, 022316 (2020).

[67] R. P. Feynman, Optics News, ON 11, 11 (1985).

[68] A. M. Childs and N. Wiebe, Quantum Info. Comput. 12, 901 (2012).

[69] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Proc. 46th

Annu. ACM Symp. Theory Comput. - STOC 14 , 283 (2014), arXiv:1312.1414

.

[70] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019), arXiv:1610.06546 .

215

http://arxiv.org/abs/quant-ph/0703015
http://arxiv.org/abs/quant-ph/0703015
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://arxiv.org/abs/1307.0411
http://arxiv.org/abs/1412.3489
http://arxiv.org/abs/1401.2142
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.1038/ncomms10138
http://dx.doi.org/10.1038/ncomms10138
http://arxiv.org/abs/1710.02581
http://arxiv.org/abs/1901.00961
http://dx.doi.org/10.1103/PhysRevA.101.022316
http://dx.doi.org/10.1364/ON.11.2.000011
http://dx.doi.org/ 10.1145/2591796.2591854
http://dx.doi.org/ 10.1145/2591796.2591854
http://arxiv.org/abs/1312.1414
http://dx.doi.org/10.22331/q-2019-07-12-163
http://arxiv.org/abs/1610.06546

[71] P. Wittek, Quantum Machine Learning: What Quantum Computing Means to

Data Mining (Academic Press, 2014).

[72] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová,

I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and

A. Aspuru-Guzik, Chem. Rev. 119, 10856 (2019).

[73] B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, arXiv:2001.03685 .

[74] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spiel-

man, Proc. Thirty-Fifth ACM Symp. Theory Comput. - STOC 03 , 59 (2003),

arXiv:quant-ph/0209131 .

[75] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100, 230502 (2008).

[76] N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett. 109 (2012), 10.1103/Phys-

RevLett.109.050505.

[77] C. T. Hann, G. Lee, S. Girvin, and L. Jiang, PRX Quantum 2, 020311 (2021).

[78] R. Asaka, K. Sakai, and R. Yahagi, Quantum Sci. Technol. 6, 035004 (2021).

[79] A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

[80] D. W. Berry, A. M. Childs, and R. Kothari, in 2015 IEEE 56th Annual Sym-

posium on Foundations of Computer Science (2015) pp. 792–809.

[81] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler,

A. Fowler, and H. Neven, Phys. Rev. X 8, 041015 (2018).

[82] D. K. Park, F. Petruccione, and J.-K. K. Rhee, Sci Rep 9, 1 (2019).

[83] T. M. L. de Veras, I. C. S. de Araujo, D. K. Park, and A. J. da Silva,

arXiv:2011.07977 .

216

http://dx.doi.org/10.1021/acs.chemrev.8b00803
http://arxiv.org/abs/2001.03685
http://dx.doi.org/ 10.1145/780542.780552
http://arxiv.org/abs/quant-ph/0209131
http://dx.doi.org/10.1103/PhysRevLett.100.230502
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://dx.doi.org/ 10.1103/PRXQuantum.2.020311
http://dx.doi.org/10.1088/2058-9565/abf484
http://dx.doi.org/10.1126/science.1229957
http://dx.doi.org/10.1109/FOCS.2015.54
http://dx.doi.org/10.1109/FOCS.2015.54
http://dx.doi.org/10.1103/PhysRevX.8.041015
http://dx.doi.org/10.1038/s41598-019-40439-3
http://arxiv.org/abs/2011.07977

[84] D. W. Berry, C. Gidney, M. Motta, J. R. McClean, and R. Babbush, Quantum

3, 208 (2019).

[85] M. Saeedi and M. Pedram, Phys. Rev. A 87, 062318 (2013).

[86] A. G. Fowler, S. J. Devitt, and C. Jones, Sci. Rep. 3 (2013), 10.1038/srep01939.

[87] J. O’Gorman and E. T. Campbell, Phys. Rev. A 95, 032338 (2017).

[88] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

[89] M. Saffman, J. Phys. B: At. Mol. Opt. Phys. 49, 202001 (2016).

[90] L. Jiang, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, Phys. Rev. A 76,

062323 (2007).

[91] H. J. Kimble, Nature 453, 1023 (2008).

[92] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan,

and J. Kim, Phys. Rev. A 89, 022317 (2014).

[93] C. R. Monroe, R. J. Schoelkopf, and M. D. Lukin, Sci. Am. 314, 50 (2016).

[94] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y.

Gao, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, Nature 561,

368 (2018).

[95] D. Steiger, “Racing in parallel: Quantum versus Classical,” (2016).

[96] E. Tang, (), arXiv:1807.04271 .

[97] E. Tang, (), arXiv:1811.00414 .

[98] A. Gilyén, S. Lloyd, and E. Tang, arXiv:1811.04909 .

[99] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M. Girvin, and

L. Jiang, Phys. Rev. Lett. 123, 250501 (2019).

217

http://dx.doi.org/ 10.22331/q-2019-12-02-208
http://dx.doi.org/ 10.22331/q-2019-12-02-208
http://dx.doi.org/10.1103/PhysRevA.87.062318
http://dx.doi.org/10.1038/srep01939
http://dx.doi.org/10.1103/PhysRevA.95.032338
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1088/0953-4075/49/20/202001
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1103/PhysRevA.76.062323
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1038/s41586-018-0470-y
http://dx.doi.org/10.1038/s41586-018-0470-y
http://arxiv.org/abs/1807.04271
http://arxiv.org/abs/1811.00414
http://arxiv.org/abs/1811.04909
http://dx.doi.org/ 10.1103/PhysRevLett.123.250501

[100] T. H. Kyaw, S. Felicetti, G. Romero, E. Solano, and L.-C. Kwek, Sci. Rep. 5,

8621 (2015).

[101] A. Cadellans, A Transmon-Based Quantum Switch for a Quantum Random

Access Memory, Ph.D. thesis, Leiden University (2015).

[102] K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and D. Englund,

arXiv:2103.07623 .

[103] R. K. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest, D. C.

McKay, J. Koch, and D. I. Schuster, Nat. Commun. 8, 1904 (2017).

[104] N. Jiang, Y.-F. Pu, W. Chang, C. Li, S. Zhang, and L.-M. Duan, Npj Quantum

Inf. 5, 28 (2019).

[105] S. Langenfeld, O. Morin, M. Körber, and G. Rempe, Npj Quantum Inf. 6, 1

(2020).

[106] O. Vy, X. Wang, and K. Jacobs, New J. Phys. 15, 053002 (2013).

[107] E. Kapit, Phys. Rev. Lett. 120, 050503 (2018).

[108] W.-L. Ma, M. Zhang, Y. Wong, K. Noh, S. Rosenblum, P. Reinhold, R. J.

Schoelkopf, and L. Jiang, Phys. Rev. Lett. 125, 110503 (2020).

[109] M. V. den Nest, arXiv:0911.1624 .

[110] D. Gottesman, (), arXiv:quant-ph/9807006 .

[111] M. Ramzan and M. K. Khan, Quantum Inf Process 11, 443 (2012).

[112] H.-R. Wei, B.-C. Ren, and F.-G. Deng, Quantum Inf Process 12, 1109 (2013).

[113] D. Gottesman, (), arXiv:0904.2557 .

[114] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).

218

http://dx.doi.org/ 10.1038/srep08621
http://dx.doi.org/ 10.1038/srep08621
http://arxiv.org/abs/2103.07623
http://dx.doi.org/10.1038/s41467-017-02046-6
http://dx.doi.org/ 10.1038/s41534-019-0144-0
http://dx.doi.org/ 10.1038/s41534-019-0144-0
http://dx.doi.org/10.1038/s41534-020-00316-8
http://dx.doi.org/10.1038/s41534-020-00316-8
http://dx.doi.org/10.1088/1367-2630/15/5/053002
http://dx.doi.org/10.1103/PhysRevLett.120.050503
http://dx.doi.org/10.1103/PhysRevLett.125.110503
http://arxiv.org/abs/0911.1624
http://arxiv.org/abs/quant-ph/9807006
http://dx.doi.org/10.1007/s11128-011-0257-7
http://dx.doi.org/10.1007/s11128-012-0458-8
http://arxiv.org/abs/0904.2557
http://dx.doi.org/10.1103/PhysRevA.55.900

[115] J. Preskill, Quantum 2, 79 (2018).

[116] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, PNAS 115, 9456

(2018).

[117] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchi-

avello, SIAM J. Comput. 26, 1541 (1997).

[118] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev.

A 86, 032324 (2012).

[119] C. Gidney and M. Eker̊a, arXiv:1905.09749 .

[120] T. J. Yoder, R. Takagi, and I. L. Chuang, Phys. Rev. X 6, 031039 (2016).

[121] R. Chao and B. W. Reichardt, Phys. Rev. Lett. 121, 050502 (2018).

[122] C. Chamberland and K. Noh, npj Quantum Inf 6, 91 (2020).

[123] J. Guillaud and M. Mirrahimi, Phys. Rev. X 9, 041053 (2019).

[124] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini, P. S. Iyer, A. Krishna,

S. Touzard, L. Jiang, A. Blais, S. T. Flammia, and S. M. Girvin, Sci. Adv. 6,

eaay5901 (2020).

[125] C. Chamberland, K. Noh, P. Arrangoiz-Arriola, E. T. Campbell, C. T. Hann,

J. Iverson, H. Putterman, T. C. Bohdanowicz, S. T. Flammia, A. Keller, G. Re-

fael, J. Preskill, L. Jiang, A. H. Safavi-Naeini, O. Painter, and F. G. S. L.

Brandão, arXiv:2012.04108 .

[126] A. W. Harrow, arXiv:1308.6595 .

[127] K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett. 119, 180509

(2017).

219

http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/ 10.1073/pnas.1801723115
http://dx.doi.org/ 10.1073/pnas.1801723115
http://dx.doi.org/ 10.1137/S0097539796302452
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://arxiv.org/abs/1905.09749
http://dx.doi.org/10.1103/PhysRevX.6.031039
http://dx.doi.org/10.1103/PhysRevLett.121.050502
http://dx.doi.org/10.1038/s41534-020-00319-5
http://dx.doi.org/10.1103/PhysRevX.9.041053
http://dx.doi.org/10.1126/sciadv.aay5901
http://dx.doi.org/10.1126/sciadv.aay5901
http://arxiv.org/abs/2012.04108
http://arxiv.org/abs/1308.6595
http://dx.doi.org/10.1103/PhysRevLett.119.180509
http://dx.doi.org/10.1103/PhysRevLett.119.180509

[128] S. Endo, S. C. Benjamin, and Y. Li, Phys. Rev. X 8, 031027 (2018).

[129] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M.

Gambetta, Nature 567, 491 (2019).

[130] B. Koczor, (), arXiv:2011.05942 .

[131] W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C. Rubin, S. Boixo, K. B.

Whaley, R. Babbush, and J. R. McClean, arXiv:2011.07064 .

[132] P. Czarnik, A. Arrasmith, L. Cincio, and P. J. Coles, arXiv:2102.06056 .

[133] B. Koczor, (), arXiv:2104.00608 .

[134] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret,

and R. J. Schoelkopf, Phys. Rev. A 75, 032329 (2007).

[135] R. J. Schoelkopf and S. M. Girvin, Nature 451, 664 (2008).

[136] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland,

C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret,

L. Jiang, and R. J. Schoelkopf, Phys. Rev. B 94, 014506 (2016).

[137] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley,

A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Nature 454,

310 (2008).

[138] S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis,

R. J. Schoelkopf, and L. Jiang, Phys. Rev. A 92, 040303 (2015).

[139] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and

R. J. Schoelkopf, Nat. Commun. 8, 94 (2017).

220

http://dx.doi.org/10.1103/PhysRevX.8.031027
http://dx.doi.org/ 10.1038/s41586-019-1040-7
http://arxiv.org/abs/2011.05942
http://arxiv.org/abs/2011.07064
http://arxiv.org/abs/2102.06056
http://arxiv.org/abs/2104.00608
http://dx.doi.org/ 10.1103/PhysRevA.75.032329
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/ 10.1103/PhysRevB.94.014506
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/10.1038/nature07136
http://dx.doi.org/ 10.1103/PhysRevA.92.040303
http://dx.doi.org/10.1038/s41467-017-00045-1

[140] L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. M. Sliwa,

A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. H.

Devoret, and R. J. Schoelkopf, Nature 511, 444 (2014).

[141] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu,

L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J.

Schoelkopf, Nature 536, 441 (2016).

[142] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song,

C.-L. Zou, S. M. Girvin, L.-M. Duan, and L. Sun, Nat. Phys. 15, 503 (2019).

[143] K. Geerlings, S. Shankar, E. Edwards, L. Frunzio, R. J. Schoelkopf, and M. H.

Devoret, Appl. Phys. Lett. 100, 192601 (2012).

[144] J. Wenner, R. Barends, R. C. Bialczak, Y. Chen, J. Kelly, E. Lucero,

M. Mariantoni, A. Megrant, P. J. J. O’Malley, D. Sank, A. Vainsencher,

H. Wang, T. C. White, Y. Yin, J. Zhao, A. N. Cleland, and J. M. Marti-

nis, Appl. Phys. Lett. 99, 113513 (2011).

[145] A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Posen, and

A. Grassellino, arXiv:1810.03703 .

[146] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,

E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis,

and A. N. Cleland, Nature 464, 697 (2010).

[147] J.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hakonen, and M. A.

Sillanpää, Nature 494, 211 (2013).

[148] M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and

P. Delsing, Science 346, 207 (2014).

221

http://dx.doi.org/10.1038/nature13436
http://dx.doi.org/ 10.1038/nature18949
http://dx.doi.org/10.1038/s41567-018-0414-3
http://dx.doi.org/ 10.1063/1.4710520
http://dx.doi.org/10.1063/1.3637047
http://arxiv.org/abs/1810.03703
http://dx.doi.org/ 10.1038/nature08967
http://dx.doi.org/ 10.1038/nature11821
http://dx.doi.org/ 10.1126/science.1257219

[149] Y. Chu, P. Kharel, W. H. Renninger, L. D. Burkhart, L. Frunzio, P. T. Rakich,

and R. J. Schoelkopf, Science 358, 199 (2017).

[150] Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf,

Nature 563, 666 (2018).

[151] M. Kervinen, I. Rissanen, and M. Sillanpää, Phys. Rev. B 97, 205443 (2018).

[152] R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi,

F. Nori, and P. J. Leek, Nat. Commun. 8, 975 (2017).

[153] A. Noguchi, R. Yamazaki, Y. Tabuchi, and Y. Nakamura, Phys. Rev. Lett.

119, 180505 (2017).

[154] K. J. Satzinger, Y. P. Zhong, H.-S. Chang, G. A. Peairs, A. Bienfait, M.-H.

Chou, A. Y. Cleland, C. R. Conner, É. Dumur, J. Grebel, I. Gutierrez, B. H.

November, R. G. Povey, S. J. Whiteley, D. D. Awschalom, D. I. Schuster, and

A. N. Cleland, Nature 563, 661 (2018).

[155] B. A. Moores, L. R. Sletten, J. J. Viennot, and K. W. Lehnert, Phys. Rev.

Lett. 120, 227701 (2018).

[156] A. N. Bolgar, J. I. Zotova, D. D. Kirichenko, I. S. Besedin, A. V. Semenov,

R. S. Shaikhaidarov, and O. V. Astafiev, Phys. Rev. Lett. 120, 223603 (2018).

[157] L. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, Phys. Rev. X

9, 021056 (2019).

[158] P. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P.

McKenna, J. D. Witmer, and A. H. Safavi-Naeini, Nature 571, 537 (2019).

[159] A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, Optica 6,

213 (2019).

222

http://dx.doi.org/ 10.1126/science.aao1511
http://dx.doi.org/ 10.1038/s41586-018-0717-7
http://dx.doi.org/10.1103/PhysRevB.97.205443
http://dx.doi.org/10.1038/s41467-017-01063-9
http://dx.doi.org/10.1103/PhysRevLett.119.180505
http://dx.doi.org/10.1103/PhysRevLett.119.180505
http://dx.doi.org/10.1038/s41586-018-0719-5
http://dx.doi.org/10.1103/PhysRevLett.120.227701
http://dx.doi.org/10.1103/PhysRevLett.120.227701
http://dx.doi.org/ 10.1103/PhysRevLett.120.223603
http://dx.doi.org/10.1103/PhysRevX.9.021056
http://dx.doi.org/10.1103/PhysRevX.9.021056
http://dx.doi.org/ 10.1038/s41586-019-1386-x
http://dx.doi.org/10.1364/OPTICA.6.000213
http://dx.doi.org/10.1364/OPTICA.6.000213

[160] G. S. MacCabe, H. Ren, J. Luo, J. D. Cohen, H. Zhou, A. Sipahigil, M. Mirhos-

seini, and O. Painter, Science 370, 840 (2020).

[161] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D.

Lukin, and J. I. Cirac, Phys. Rev. X 5, 031031 (2015).

[162] A. N. Cleland and M. R. Geller, Phys. Rev. Lett. 93, 070501 (2004).

[163] A. Bienfait, K. J. Satzinger, Y. P. Zhong, H.-S. Chang, M.-H. Chou, C. R.

Conner, É. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, and A. N. Cleland,

Science 364, 368 (2019).

[164] L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G. Johansson, Phys.

Rev. A 95, 053821 (2017).

[165] G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing, arXiv:1812.01302 .

[166] M. Pechal, P. Arrangoiz-Arriola, and A. H. Safavi-Naeini, Quantum Sci. Tech-

nol. 4, 015006 (2018).

[167] R. Manenti, M. J. Peterer, A. Nersisyan, E. B. Magnusson, A. Patterson, and

P. J. Leek, Phys. Rev. B 93, 041411 (2016).

[168] T. Aref, P. Delsing, M. K. Ekström, A. F. Kockum, M. V. Gustafsson, G. Jo-

hansson, P. J. Leek, E. Magnusson, and R. Manenti, in Superconducting De-

vices in Quantum Optics , edited by R. H. Hadfield and G. Johansson (Springer

International Publishing, Cham, 2016) pp. 217–244.

[169] W. H. Renninger, P. Kharel, R. O. Behunin, and P. T. Rakich, Nat. Phys. 14,

601 (2018).

[170] P. Kharel, Y. Chu, M. Power, W. H. Renninger, R. J. Schoelkopf, and P. T.

Rakich, APL Photonics 3, 066101 (2018).

223

http://dx.doi.org/10.1126/science.abc7312
http://dx.doi.org/10.1103/PhysRevX.5.031031
http://dx.doi.org/10.1103/PhysRevLett.93.070501
http://dx.doi.org/10.1126/science.aaw8415
http://dx.doi.org/ 10.1103/PhysRevA.95.053821
http://dx.doi.org/ 10.1103/PhysRevA.95.053821
http://arxiv.org/abs/1812.01302
http://dx.doi.org/10.1088/2058-9565/aadc6c
http://dx.doi.org/10.1088/2058-9565/aadc6c
http://dx.doi.org/ 10.1103/PhysRevB.93.041411
http://dx.doi.org/ 10.1007/978-3-319-24091-6_9
http://dx.doi.org/ 10.1007/978-3-319-24091-6_9
http://dx.doi.org/10.1038/s41567-018-0090-3
http://dx.doi.org/10.1038/s41567-018-0090-3
http://dx.doi.org/ 10.1063/1.5026798

[171] X. Han, C.-L. Zou, and H. X. Tang, Phys. Rev. Lett. 117, 123603 (2016).

[172] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W.

Lehnert, Nature 495, 210 (2013).

[173] M. Pechal, L. Huthmacher, C. Eichler, S. Zeytinoğlu, A. A. Abdumalikov,

S. Berger, A. Wallraff, and S. Filipp, Phys. Rev. X 4, 041010 (2014).

[174] S. J. Srinivasan, N. M. Sundaresan, D. Sadri, Y. Liu, J. M. Gambetta, T. Yu,

S. M. Girvin, and A. A. Houck, Phys. Rev. A 89, 033857 (2014).

[175] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-

Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and

R. J. Schoelkopf, Nat. Phys. 14, 705 (2018).

[176] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo,

Y. Salathé, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and

A. Wallraff, Nature 558, 264 (2018).

[177] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann,

Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill,

P. J. J. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay,

A. N. Cleland, and J. M. Martinis, Appl Phys Lett 103, 122602 (2013).

[178] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. M.

Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J.

Schoelkopf, M. Mirrahimi, and M. H. Devoret, Science 347, 853 (2015).

[179] Y. Y. Gao, B. J. Lester, Y. Zhang, C. Wang, S. Rosenblum, L. Frunzio, L. Jiang,

S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. X 8, 021073 (2018).

[180] Y. Zhang, B. J. Lester, Y. Y. Gao, L. Jiang, R. J. Schoelkopf, and S. M. Girvin,

Phys. Rev. A 99, 012314 (2019).

224

http://dx.doi.org/10.1103/PhysRevLett.117.123603
http://dx.doi.org/10.1038/nature11915
http://dx.doi.org/ 10.1103/PhysRevX.4.041010
http://dx.doi.org/10.1103/PhysRevA.89.033857
http://dx.doi.org/10.1038/s41567-018-0115-y
http://dx.doi.org/ 10.1038/s41586-018-0195-y
http://dx.doi.org/10.1126/science.aaa2085
http://dx.doi.org/10.1103/PhysRevX.8.021073
http://dx.doi.org/ 10.1103/PhysRevA.99.012314

[181] N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and

A. Zeilinger, Nature 478, 360 (2011).

[182] M. Y. Niu, I. L. Chuang, and J. H. Shapiro, Phys. Rev. Lett. 120, 160502

(2018).

[183] P. Kharel, G. I. Harris, E. A. Kittlaus, W. H. Renninger, N. T. Otterstrom,

J. G. E. Harris, and P. T. Rakich, arXiv:1809.04020 .

[184] C. Axline, M. Reagor, R. Heeres, P. Reinhold, C. Wang, K. Shain, W. Pfaff,

Y. Chu, L. Frunzio, and R. J. Schoelkopf, Appl. Phys. Lett. 109, 042601 (2016).

[185] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L. Frunzio, M. H.

Devoret, R. J. Schoelkopf, and S. M. Girvin, Phys. Rev. Lett. 108, 240502

(2012).

[186] M. Y. Niu, I. L. Chuang, and J. H. Shapiro, Phys. Rev. A 97, 032323 (2018).

[187] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Phys. Rev. A 59, 2631

(1999).

[188] H. Jeong and M. S. Kim, Phys. Rev. A 65, 042305 (2002).

[189] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang,

and M. H. Devoret, New J. Phys. 16, 045014 (2014).

[190] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Rein-

hold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang,

Phys. Rev. A 97, 032346 (2018).

[191] A. Joshi, K. Noh, and Y. Y. Gao, Quantum Sci. Technol. 6, 033001 (2021).

[192] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J.

Brown, Nat. Commun. 12, 2172 (2021).

225

http://dx.doi.org/ 10.1038/nature10463
http://dx.doi.org/10.1103/PhysRevLett.120.160502
http://dx.doi.org/10.1103/PhysRevLett.120.160502
http://arxiv.org/abs/1809.04020
http://dx.doi.org/10.1063/1.4959241
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1103/PhysRevA.97.032323
http://dx.doi.org/10.1103/PhysRevA.59.2631
http://dx.doi.org/10.1103/PhysRevA.59.2631
http://dx.doi.org/10.1103/PhysRevA.65.042305
http://dx.doi.org/ 10.1088/1367-2630/16/4/045014
http://dx.doi.org/10.1103/PhysRevA.97.032346
http://dx.doi.org/10.1088/2058-9565/abe989
http://dx.doi.org/10.1038/s41467-021-22274-1

[193] A. S. Darmawan, B. J. Brown, A. L. Grimsmo, D. K. Tuckett, and S. Puri,

arXiv:2104.09539 .

[194] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, Phys. Rev. Lett. 120, 050505

(2018).

[195] J. Guillaud and M. Mirrahimi, arXiv:2009.10756 .

[196] S. Touzard, A. Grimm, Z. Leghtas, S. O. Mundhada, P. Reinhold, C. Axline,

M. Reagor, K. Chou, J. Blumoff, K. M. Sliwa, S. Shankar, L. Frunzio, R. J.

Schoelkopf, M. Mirrahimi, and M. H. Devoret, Phys. Rev. X 8, 021005 (2018).

[197] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq, B. Huard,

T. Kontos, M. Mirrahimi, and Z. Leghtas, Nat. Phys. 16, 509 (2020).

[198] S. Puri, S. Boutin, and A. Blais, Npj Quantum Inf. 3, 18 (2017).

[199] S. Puri, A. Grimm, P. Campagne-Ibarcq, A. Eickbusch, K. Noh, G. Roberts,

L. Jiang, M. Mirrahimi, M. H. Devoret, and S. M. Girvin, Phys. Rev. X 9,

041009 (2019).

[200] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi,

S. M. Girvin, S. Shankar, and M. H. Devoret, Nature 584, 205 (2020).

[201] P. Aliferis and J. Preskill, Phys. Rev. A 78, 052331 (2008).

[202] P. Webster, S. D. Bartlett, and D. Poulin, Phys. Rev. A 92, 062309 (2015).

[203] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. Schoelkopf, M. Devoret, and M. Mir-

rahimi, Phys. Rev. Lett. 111, 120501 (2013).

[204] D. F. V. James and J. Jerke, Can. J. Phys. 85, 625 (2007).

[205] O. Gamel and D. F. V. James, Phys. Rev. A 82, 052106 (2010).

226

http://arxiv.org/abs/2104.09539
http://dx.doi.org/10.1103/PhysRevLett.120.050505
http://dx.doi.org/10.1103/PhysRevLett.120.050505
http://arxiv.org/abs/2009.10756
http://dx.doi.org/ 10.1103/PhysRevX.8.021005
http://dx.doi.org/10.1038/s41567-020-0824-x
http://dx.doi.org/10.1038/s41534-017-0019-1
http://dx.doi.org/10.1103/PhysRevX.9.041009
http://dx.doi.org/10.1103/PhysRevX.9.041009
http://dx.doi.org/10.1038/s41586-020-2587-z
http://dx.doi.org/10.1103/PhysRevA.78.052331
http://dx.doi.org/10.1103/PhysRevA.92.062309
http://dx.doi.org/ 10.1103/PhysRevLett.111.120501
http://dx.doi.org/10.1139/P07-060
http://dx.doi.org/10.1103/PhysRevA.82.052106

[206] F. Reiter and A. S. Sørensen, Phys. Rev. A 85, 032111 (2012).

[207] P. Mundada, G. Zhang, T. Hazard, and A. Houck, Phys. Rev. Appl. 12, 054023

(2019).

[208] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,

B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y.

Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner,

T. C. White, M. R. Geller, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett.

113, 220502 (2014).

[209] E. A. Sete, J. M. Martinis, and A. N. Korotkov, Phys. Rev. A 92, 012325

(2015).

[210] V. S. Ferreira, J. Banker, A. Sipahigil, M. H. Matheny, A. J. Keller, E. Kim,

M. Mirhosseini, and O. Painter, arXiv:2001.03240 .

[211] Y. Y. Gao, B. J. Lester, K. S. Chou, L. Frunzio, M. H. Devoret, L. Jiang, S. M.

Girvin, and R. J. Schoelkopf, Nature 566, 509 (2019).

[212] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

[213] C. J. Axline, L. D. Burkhart, W. Pfaff, M. Zhang, K. Chou, P. Campagne-

Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and

R. J. Schoelkopf, Nat. Phys. 14, 705 (2018).

[214] R. Azouit, A. Sarlette, and P. Rouchon, arXiv:1603.04630 .

[215] R. Azouit, F. Chittaro, A. Sarlette, and P. Rouchon, Quantum Sci. Technol.

2, 044011 (2017).

227

http://dx.doi.org/10.1103/PhysRevA.85.032111
http://dx.doi.org/ 10.1103/PhysRevApplied.12.054023
http://dx.doi.org/ 10.1103/PhysRevApplied.12.054023
http://dx.doi.org/10.1103/PhysRevLett.113.220502
http://dx.doi.org/10.1103/PhysRevLett.113.220502
http://dx.doi.org/10.1103/PhysRevA.92.012325
http://dx.doi.org/10.1103/PhysRevA.92.012325
http://arxiv.org/abs/2001.03240
http://dx.doi.org/ 10.1038/s41586-019-0970-4
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1038/s41567-018-0115-y
http://arxiv.org/abs/1603.04630
http://dx.doi.org/10.1088/2058-9565/aa7f3f
http://dx.doi.org/10.1088/2058-9565/aa7f3f

	Practicality of Quantum Random Access Memory
	Recommended Citation

	Introduction
	Quantum computing
	The data-input bottleneck
	Quantum random access memory (focus of this thesis)
	Summary of main results and thesis organization

	Quantum random access memory
	Quantum oracles
	The query model
	The versatility of data-lookup oracles
	Oracles in context: use in quantum algorithms

	QRAM: an architecture for implementing quantum oracles
	Quantum routers
	Fanout QRAM
	Bucket-brigade QRAM
	QROM and hybrid architectures

	Practical challenges
	High quantum hardware cost
	Decoherence, error correction, and fault tolerance
	Long-range interactions
	Fair comparisons with classical hardware

	Noise resilience of the bucket-brigade QRAM
	Prior studies of noise in QRAM
	Effects of noise on the fanout QRAM
	Effects of noise on the bucket-brigade QRAM

	Noise resilience of the bucket-brigade QRAM
	Intuition
	Proof of noise resilience
	Classical simulation of noisy QRAM circuits

	Implications of QRAM's noise resilience
	Noise resilience without inactive routers
	Noise resilience of hybrid architectures
	Resilience to logical errors in error-corrected QRAM

	Conclusions and Outlook

	Hardware-efficient error suppression
	Motivation and background
	Practical challenges with error-corrected QRAM
	Error symmetrization

	A general scheme for hardware-efficient error suppression
	A simple example
	General error-suppression scheme
	Numerical demonstrations
	Comparison with error symmetrization

	Hardware-efficient error suppression applied to QRAM
	Effective QRAM channel
	Infidelity of QRAM with error suppression
	Failure probability of QRAM error suppression
	Numerical demonstrations

	Conclusions and Outlook

	Quantum acoustic implementations of QRAM
	Recent experimental progress in quantum acoustics
	Quantum computing with acoustics, approach 1: multimode Hamiltonian engineering
	Hamiltonian engineering in multimode cQAD
	Frequency selectivity
	Estimates of achievable coupling rates
	Estimates of gate fidelities

	Quantum computing with acoustics, approach 2: stabilized cat qubits
	Review of cat qubits
	Stabilized cat qubits in multimode cQAD
	Multiplexed stabilization of cat qubits
	Sources of crosstalk
	Crosstalk mitigation: filtering
	Crosstalk mitigation: mode frequency optimization

	Hardware-efficient QRAM architectures with quantum acoustics
	Constructing quantum routers from acoustic modes
	A cQAD QRAM implementation

	Conclusions and Outlook

	Copying classical data to the bus
	Effective operator formalism

