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Abstract 

Investigating the Effect of Allostery on Downstream Biology of the  

Epidermal Growth Factor Receptor 

Deepto Mozumdar 

2021 

 

The Epidermal Growth Factor Receptor (EGFR) is a member of the receptor tyrosine 

kinase (RTK) family of human proteins with a critical role in transducing diverse extracellular 

chemical information to initiate multiple cellular signaling cascade in the cell that are essential 

for normal cell development. Aberrant activation of this receptor via mutation or overexpression 

misregulates this flow of information and is implicated in a multiple human carcinoma. Thus, 

understanding the molecular mechanisms by which chemical information is encoded and 

decoded in EGFR is imperative both from a basic cell biology and therapeutic standpoint. 

In this thesis consisting of four chapters, I describe my graduate work studying the 

structure of a portion of EGFR called the juxtamembrane segment (JM) and investigating its 

role in modulating and controlling the downstream biology of the receptor.  

Chapter 1: This chapter provides an introduction, overview and in-depth discussion of 

the literature pertaining to the critical role of JM in modulating EGFR biology through its 

manifold functions in kinase activation, allosterically encoding structural changes in the various 

domains of EGFR, and its interactions with diverse intracellular components. 
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Chapter 2: In this chapter I describe my work utilizing a chemical biology tool called 

Bipartite Tetracysteine Display to study to the structure of the JM of a constitutively active 

variant of EGFR, namely EGFRvIII that is implicated in most cases of Glioblastoma Multiforme. 

Through my studies I illustrate how the assembly of unique structures within the JM segment 

of this oncogenic receptor supports the constitutive activity of this protein.  

Chapter 3: In this chapter I describe my work utilizing tools in chemical biology, 

biochemistry and cell biology to demonstrate that the assembly of discrete coiled coil 

structures within the JM segment of EGFR is necessary and sufficient for controlling the path 

of endocytic trafficking of the receptor and its intracellular lifetime. Furthermore, I demonstrate 

how the assembly of these discrete JM structures also predicts kinase-independent effects of 

oncogenic EGFR mutations (implicated in Non-Small Cell Lung Cancer) and clinically relevant 

tyrosine kinase inhibitors that promote efficient, lysosome-based EGFR degradation.  

Chapter 4: This chapter describes preliminary experiments that were performed on two 

projects that were initiated in the early and later parts of Ph.D. research. The first project seeks 

to investigate the role of receptor multimerization on the JM structure of EGFR.  The second 

ongoing project seeks to investigate the effect of JM structure on the interactome of WT and 

oncogenic EGFR using APEX2-based proximity labeling and mass spectrometry. For both 

projects, I discuss my rationale, experimental design and preliminary results and provide my 

thoughts for future directions.   
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Chapter 1. The juxtamembrane region of the epidermal growth factor receptor is a

critical modulatory element of growth factor dependent signaling.
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Chapter 1. The juxtamembrane region of the epidermal growth factor receptor is a

critical modulatory element of growth factor dependent signaling.

1.1. Introduction

The epidermal growth factor receptor [1,2] (EGFR; also referred to as ErbB1 [3]/ HER) is a

member of the receptor tyrosine kinase (RTK) family of human proteins [4,5], and functions as a

conduit for the flow of information across the cell membrane [6]. In normal physiology,

chemical information encoded by multiple extracellular growth factors [3,7,8] is allosterically

communicated through EGFR into the cell interior, to effect diverse signaling outcomes that

support cell growth and survival [4,6]. Misregulation of this information flow via mutation or

overexpression of EGFR, is associated with multiple human cancers and disease pathologies

[9–11]. Given its critical role both from a physiological and therapeutic standpoint, it has been a

long standing goal to decipher the molecular mechanisms by which chemical information is

encoded and decoded in EGFR.

EGFR is a 1186 amino acid long transmembrane protein consisting of five connected domains/

segments, namely the extracellular domain (ECD), the transmembrane (TM) and juxtamembrane

(JM) domains, the tyrosine kinase (TK) domain and the C-terminal tail (C-tail) [6] (Figure 1.1.A).

Upon binding EGFR specific growth factors [7], the ECD undergoes conformational

rearrangements [12–14] that are propagated through the membrane-embedded TM helix

[15–17] and adjacent cytosolic JM [17–21] region to induce assembly of the intracellular kinase

domain into a catalytically competent asymmetric dimer conformation [22,18,19] (Figure 1.1.B).

Thereafter, the catalytically active kinase auto-phosphorylates the C-tail at multiple tyrosine

residues [3,4,6] and these phosphorylated tyrosines recruit diverse adaptor proteins to initiate

multiple cellular signaling cascades in the cell [3,4,6] (Figure 1.1B,C). Our current
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understanding of how the different parts of EGFR function in the mechanism of growth factor

induced receptor activation, is based on high resolution structural studies of the isolated EGFR

domains (ECD [12–14,23], TM [15,24], JM [15,18,19], TK domains [18,22]), low resolution

electron microscopy of the near full length/ full-length EGFR protein [25,26] together with

computational analyses [16]. For detailed discussions of EGFR biochemical mechanisms and

structures that have been elucidated, we direct the reader to other extensive reviews on the

subject [4–6,27].

Complicating the analysis of information transfer by EGFR is the fact that the receptor ECD

binds seven different growth factors that activate EGFR in mammalian systems [7,8] – these are

namely, epidermal growth factor (EGF), transforming growth factor-alpha (TGF-ɑ), epigen (EPI),

epiregulin (ER), betacellulin (BC), heparin-binding EGF (HB-EGF), and amphiregulin (AR) (Figure

1.1.C). It is well known that the different EGFR specific growth factors upon binding EGFR

initiate diverse growth factor-dependent signals in the cell interior [14,28–30]. Lesser is known

about how the chemical information encoded by the diverse growth factors is decoded by

EGFR into distinct outcomes of signaling and cell state. Preliminary clues can be gleaned from

high resolution structures of the EGFR ECD bound to a subset of these growth factors (EGF

[13,26], TGF-ɑ [12,26], EPI [14] and ER [14]), that reveal that these diverse EGFR specific

growth factors induce distinct structures locally within the ECD. Understanding how growth

factor dependent differences in ECD structure are then (1) allosterically propagated through the

intervening segments of the EGFR protein and (2) decoded into distinct intracellular signals has

been a focus of research in the Schepartz lab [17,20,31,21].

At the centre of this focus is the juxtamembrane region of EGFR [18,19]– this intervening

segment (spanning ~ 37 amino acid residues) is right in the middle of the allosteric network that
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extends from the ECD to the tyrosine kinase domain and plays critical roles in multiple aspects

of EGFR signaling. In this section of my thesis, I will discuss the existing body of literature on

the EGFR JM, focusing on (i) the mechanistic roles of the JM in signal transduction, (ii) the

allosteric coupling of JM structure to the different EGFR domains and finally (iii) the interactions

of the JM with various intracellular components. Through this discussion, I hope to highlight the

fact that the JM region, through its various structures and interactions, acts as an essential

signal modulatory unit in the EGFR protein.

1.2. The juxtamembrane segment of the is necessary for EGFR kinase assembly and

activation. Several pieces of biochemical [18,19,32–35] and biophysical [18,19] evidence have

illustrated the indispensable role of the EGFR JM in receptor activation. Initial biochemical

analyses of EGFR kinase constructs with varying JM segment deletions revealed a clear

activatory role of the JM – As compared to EGFR kinase constructs where the complete JM

was present, constructs lacking the JM segment either in part or in entirety displayed (i)

reduced dimerization in vitro [18], (ii) reduced tyrosine kinase activity (~65-95% in vitro; 95% in

cellula) [33] and reduced catalytic efficiency (~10-70 fold reduction in kcat/ KM in vitro) [18].

Likewise, C-tail autophosphorylation activity was reduced in cellula for constructs lacking part

of/ the entire JM or where the entire JM is replaced by an unstructured (GGS)10 sequence, as

compared to the analogous intact full length/ intact intracellular domain constructs [32–34].

Biophysical analysis of the JM region either in conjunction with the kinase domain (using

crystallography) [18,19,22] or in isolation (using NMR) [18,36] have revealed finer structural

details of the individual elements of the JM that contribute to kinase assembly and activation.

The analysis of crystal structures of EGFR [19] and HER4 [18,37] kinase domains constructs

with their respective juxtamembrane segments revealed a conserved C-terminal portion of the
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JM (EGFR residues 664-682; dubbed JM-B) (Figure 1.2.A) that stabilizes the EGFR kinases in

the catalytically competent asymmetric dimer conformation [22]. In this conformation, the JM-B

of the ‘receiver’/ ‘acceptor’ kinase wraps tightly around/ cradles the C-lobe of the ‘activator’/

‘donor’ kinase to provide additional stabilizing interactions between the two kinase domains

thereby enhancing their dimerization in solution (Figure 1.2.B) [18,19]. This was further

corroborated by mutagenesis of either all of the JM-B residues (except T669) individually to

alanine [19] or the interacting kinase domain C-lobe residues to either alanine or to reverse

charge [18] in the full length receptor – both of which had the effect of drastically reducing

growth factor dependent auto-phosphorylation activity in cellula [19]. Interestingly, the surface

of the kinase domain bound by the JM-B (residues 664-668) in the active state [18,19] is

roughly equivalent to the surface used by a portion of the C-tail (residues 986-990) to bind the

kinase domain in its inactive state (as seen in the crystal structure of an inactive kinase dimer

[18]). The authors in the study [18] suggested that the binding of the C-tail to the kinase in the

inactive state sterically occludes JM-B binding to facilitate kinase autoinhibition when the

catalytically competent asymmetric dimer is not formed.

Notably however, the JM-B portion of the JM segment by itself is insufficient for complete

activation of the EGF receptor kinases – As compared to kinase constructs where the complete

JM was present, the constructs lacking most of/ the complete N-terminal portion of the JM

(residues 645-664; dubbed JM-A) (Figure 1.2.A) had (i) reduced kinase dimerization (~40 fold

increase in KD) [18] (ii) reduced tyrosine kinase activity (~65% in vitro; 95% in cellula) [33] and

reduced catalytic efficiency (observed as ~10 fold decrease in kcat/ KM in vitro) [18]. The isolated

JM-A forms an amphipathic helix as detected by NMR [18,36] and also observed in a crystal

structure of an EGFR kinase construct containing the complete JM [19]. Furthermore,
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mutagenesis of arginine residues in the JM-A 655LRRLL659 helix motif (R656, R657) to glycine,

that weakens ɑ-helicity [38] was found to abrogate phospho-EGFR activity in cellula [18]. NMR

experiments using a peptide containing two copies of the JM-A attached by a short flexible

linker [18] revealed that the JM-A helices in this polypeptide assemble into a stable antiparallel

coiled coil dimer in solution which the authors proposed was necessary for driving proper

kinase assembly and activity in vitro (Figure 1.2.B). The assembly of the JM-A helices into an

antiparallel coiled coil was also documented in subsequent NMR and molecular modeling

studies of a polypeptide consisting of the JM and the directly preceding Transmembrane

domain (TM) segment (residues 618-673) [15,16]. It was observed that the coiled coil assembly

of the JM-A helices is directly coupled to dimerization of TM helices at an N-terminal G-x-x-x-G

motif that occurs in response to growth factor induced rearrangements in the ECD [15,16]

providing a clear picture of the allosteric network extending from the ECD to the JM.

Taken together the biochemical and biophysical data discussed so far implicate both the JM-A

and JM-B as essential for driving proper kinase assembly and activation – The JM-A forms an

antiparallel coiled coil dimer (which is coupled to structural rearrangements in the ECD and TM

induced by EGF binding) to enhance kinase proximity and dimerization [15,16,18] while the

JM-B provides additional stabilizing interactions to support formation of the catalytically

competent asymmetric kinase dimer [18,19] (Figure 1.2.B). While it is clear that the JM is

essential for kinase activation, it is challenging to study the structure and dynamics of the JM

at a high resolution in the context of the full length receptor in the dynamic environment of a

mammalian cell prompting two important questions. First, is the assembly of the JM-A helices

into an antiparallel coiled coil structure (as observed by NMR) [15,18] also observed in the full

length receptor in cells as a conduit for relaying growth factor binding by the ECD to support
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intracellular kinase activation? Secondly, how does a single structure [15,16,18,19] support the

subtle differences in growth factor induced ECD arrangements [12–14] to elicit diverse signaling

outcomes [14,29,30] by the receptor? To answer both questions, additional lines of evidence

need to be considered.

1.3. Using chemical biology tools to reveal the role of the JM-A coiled coil structure in

allosterically communicating growth factor identity. In order to interrogate the JM structure

and its role in communicating growth factor identity in full-length EGFR in cellula, Schepartz

and colleagues made use of a chemical biology tool called Bipartite Tetracysteine Display

[39,40]. This tool reports on protein conformation and association by exploiting the

bis-arsenical dye ReAsH [41,42] as a fluorogenic sensor. ReAsH bound through arsenic to two

ethanedithiol ligands is non fluorescent [41,43] and lights up only when coordinated to four

cysteine (Cys) side chains in an encoded tetracysteine motif that is reconstituted when the

protein is predictably folded and assembled [39,40] (Figure 1.2.C). The strict spatial

requirement of the assembly of a proper tetracysteine ReAsH binding site in order to observe

ReAsH fluorescence [39,40] makes the assay uniquely suited to visualise predicted interactions

within the protein containing the encoded tetracysteine motif in the complex environment of a

mammalian cell [39,40].

In an initial study, starting from the NMR structure of the JM-A based peptide [18], Scheck and

colleagues designed a series of full length EGFR variants with rationally placed Cys-Cys pairs

in the JM region to test the hypothesis that the intracellular JM-A segment assembles into an

antiparallel coiled coil upon EGF binding in cellula [20]. Using this approach, the authors

observed that upon binding EGF, the JM-A of EGFR adopts an antiparallel coiled coil

conformation [20], analogous to the structure observed previously by NMR [18] (Figure 1.2.D).
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In this ‘EGF-type’ conformation the JM-A coiled coil dimer is characterized by a hydrophobic

mini-leucine zipper interface (formed by L655, L658 and L659) and decorated on the outside by

charged residues (K652, R656, R657, E661 and E663) [18,20]. Notably this particular assembly

of the JM-A was detected only when EGFR was bound to EGF (and HB-EGF) and not (i) when

EGFR was bound to TGF-ɑ or NRG, (ii) when JM-A helicity was interrupted by R656G/R657G

mutations and (iii) when assembly of the asymmetric kinase dimer was abrogated by a V924R

mutation [20]. Taken together the authors demonstrated the formation of an antiparallel coiled

coil structure in the JM-A of EGFR in cellula that uniquely encodes EGF (and HB-EGF) binding

by the ECD and supports the catalytically competent assembly of the kinase domain [20].

In a more comprehensive subsequent study, using a combination of molecular modeling of the

JM helices in silico and bipartite tetracysteine display in cellula, Doerner and colleagues

revealed the conformation of the JM-A when EGFR is bound to its seven different growth

factors [21]. Using RosettaDock [44] followed by iterative Monte Carlo randomization, the

authors observed in silico that the JM-A helices are able to stably assemble into several

classes of anti-parallel assemblies [21] (Figure 1.2.E). Some of these assemblies were found to

be consistent with the EGF-type structure predicted by NMR in vitro [18] and observed by

Bipartite Tetracysteine Display in cellula [20]. However, the in silico modeling also predicted a

completely separate class of antiparallel coiled coil assemblies that resembles an

‘‘inside-out’’version of the ‘EGF-type’ structure related by a 150 disrotatory rotation about each

helix axis [20]. Using Bipartite Tetracysteine Display, the authors observed that this JM-A coiled

coil conformation is adopted only when EGFR is bound to TGF-ɑ, EPI, ER and AR and not with

EGF or HB-EGF [20]. In this alternate ‘TGF-ɑ-type’ conformation the JM-A interface is

dominated by polar interactions at the antiparallel interface with the hydrophobic leucine
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residues pointing outwards [20]. The authors also found that when bound to BC, both the

EGF-type and TGF-ɑ-type were detected in the JM-A, which is supported by the assembly of

the JM-A into a third intermediate coiled coil interface predicted in silico [20]. Notably the type

of coiled coil structure adopted by the JM-A in response to growth factor binding by the ECD,

namely EGF-type (with EGF, HB-EGF) or TGF-ɑ-type (with TGF-ɑ, EPI, ER and AR) correlates

directly with cell state and downstream signaling outcomes elicited by these growth factors

[14,29,30]. Taken together, the assembly of discrete antiparallel coiled coil structures within the

JM-A not only links ligand-induced reorganization of the ECD to support kinase domain

activation but also uniquely specifies growth factor identity in context of the full length EGF

receptor in cells [20,21] (Figure 1.2.F). How do the alternate JM-A coiled coil structures tie into

the larger allosteric network of EGFR? For this additional lines of evidence need to be

considered.

1.4. Allosteric coupling of the JM-A coiled coil structures to the extracellular and TM

domains of EGFR. As discussed previously EGF binding by the ECD induces well documented

conformational rearrangements in the TM that are directly coupled to the formation of the

‘EGF-type’ coiled coil structure in the JM-A [15,16,18]. Much lesser is known in vitro about

what happens to the TM when the other growth factors (such as TGF-ɑ) are bound by the ECD.

Overlaying crystal structures of the EGFR ECD bound to EGF [13] and TGF-ɑ [12] reveal clear

differences in the arrangement of domain IV of the ECD [20] (that immediately precedes the

TM). How are these differences in ECD arrangement then transmitted through the TM to induce

the formation of the alternate JM-A coiled coil structures?

In order to test the hypothesis that differences in TM conformation propagate growth factor

induced rearrangements from the ECD to the JM-A, Sinclair and colleagues used a diverse set
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of chemical biology and computational tools to probe the TM structure [17]. First, the authors

used a series of EGFR variants harboring single Cys substitutions within the TM, to evaluate

growth factor dependent changes in the extent of inter-chain Cys-Cys crosslinking (Figure

1.3.A) [17] similar to an approach used previously by Springer and colleagues [45]. The authors

observed that the extent of inter-chain Cys-Cys crosslinking in the N-terminal segment of the

TM (particularly at residues 624-629) differed significantly depending on the growth factor

bound to the ECD (high with EGF, HB-EGF, BC; low with TGF-ɑ, AR) [17] suggesting growth

factor dependent differences in TM helix association. Next, starting from an NMR structure of

the TM-JM fragment [15] the authors used a combination of in silico molecular modeling

(RosettaMPDock) [44,46,47] and Monte Carlo simulations (MPRelax) [46–48] to identify helical

conformations in the TM that are consistent with the assembly of the JM-A into the two distinct

‘EGF-type’ and ‘TGF-ɑ-type’ coiled coil structures detected in cellula (Figure 1.3.A) [20,21].

The authors observed that in silico the TM helices assemble into discrete dimer populations

that differ in both cross-location and cross-angle to support assembly of the alternate JM-A

structures – TM helix dimers with smaller cross-angles at multiple cross locations support

assembly of the EGF-type coiled coil structure in the adjacent JM, whereas helix dimers with

larger cross-angles at fewer cross locations induce the TGF-ɑ-type coiled coil (Figure 1.3.A)

[17]. Finally using bipartite tetracysteine display the authors demonstrated that by rationally

altering the cross-angle in the TM via mutation, the assembly of the JM-A could be biased into

either the EGF-type or TGF-ɑ-type or coiled coil structure independent of growth factor identity

[17]. Overall the alternate coiled coil structures formed within the JM-A are directly coupled to

the assembly of the TM helices into distinct conformations specified by cross location and

cross angle (Figure 1.3.A) [17].
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1.5. Allosteric coupling of the JM-A coiled coil structures to the mutational/

pharmacological status of the EGFR kinase domains. It is well known that mutations in the

EGFR kinase domain are most frequently implicated in patients with non-small-cell lung cancer

(NSCLC) [49]. One common mutation (L834R) induces ligand-independent activation and

oncogenic signaling [50,51] that accounts for nearly 7−8% of all EGFR mutations found in

patient populations [52–54]. Patients whose tumors harbor L858R EGFR often respond to

first-generation tyrosine kinase inhibitors (TKIs) such as erlotinib (OSI-774) [55,56] and gefitinib

(ZD1839/Iressa) [57,58] that act by competing reversibly with ATP [59,60]. However these

patients frequently regress due to a second kinase domain mutation (T766M) that lowers

inhibitor potency [61,62]. This double mutant (L834R/ T766M EGFR) can be targeted by

second- and third-generation TKIs such as afatinib (BIBW-2992) [63,64], rociletinib (CO-1686)

[65,66] , WZ4002 [67] and osimertinib (AZD-9291) [68–70] that bind to the kinase of the mutant

EGFR by irreversibly alkylating a conserved active site cysteine side chain (C797).

Using bipartite tetracysteine display, Lowder and colleagues found that perturbations within the

intracellular kinase domain either due to oncogenic mutation or specific TKI binding are

propagated over long distances to allosterically modulate the coiled coil assembly of the JM-A

helices [31] – The authors found that the JM-A helices of EGFR bearing the oncogenic mutation

L834R constitutively assemble into the EGF type structure in cellula (Figure 1.3.B) [31]. In

contrast the JM-A helices in EGFR variants bearing the L834R/T766M double mutations

constitutively assemble into a TGF-ɑ-type coiled coil structure as detected in cellula (Figure

1.3.B) [31]. Furthermore when cells expressing the double mutant L834R/T766M EGFR are

treated with 2nd gen TKIs such as afatinib (BIBW-2992), the coiled coil structure remains

unaffected [31]. In contrast treatment with double mutant selective 3rd gen TKIs such as
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WZ-4002, CO-1686 (rociletinib) and AZD9291 (Tagrisso/ osimertinib) have the effect of entirely

flipping the coiled coil structure into the alternate ‘EGF-type’ structure [31] (Figure 1.3.B). While

the exact structural mechanism by which the transition of the JM-A from one coiled coil state to

another is mediated by oncogenic mutations/ 3rd gen TKI binding, remains a subject of

ongoing investigation, overall it is evident that the JM-A structure is allosterically linked to the

pharmacological status of the kinase domain (Figure 1.3.B) [31].

1.6. The juxtamembrane region is a hotspot for interactions with diverse intracellular

components that regulate EGFR biology. The JM region of EGFR is a hotspot of interactions

with diverse intracellular cellular components (membrane lipids and intracellular proteins), many

of which modulate EGFR signaling and downstream biology. One of these is the interaction of

the JM-A with the inner leaflet of the lipid bilayer of the cell membrane as revealed by detailed

biochemical [15,18] and computational analyses [16]. This interaction is twofold – Firstly, the

three leucine side chains within the 655LRRLL659 helical motif of the JM-A [18] are found to be

buried in the hydrophobic part of the lipid membrane [15,16]. Second, positively charged

residues within the juxtamembrane segmentv(in addition to those in the kinase domain) interact

electrostatically with negatively charged anionic phospholipids present in the inner leaflet of the

cell membrane [15,16,71]. This interaction provides an additional layer of receptor

auto-inhibition in the absence of growth factor activation, by reducing the proximity of JM-A

helices from adjacent monomers thereby preventing their dimerization and [15,16,18,72]. The

JM region has also been shown to interact with many intracellular proteins, such as Calmodulin

[32,72–76], Nck adaptor protein [77], GɑS [78], PKC [79–84], p38MAPK [85,86], PI4K [87], AP2

[88,89], TRAF4 [90], ARNO [91] and PKD[92]. Table 1.1 lists the details of the experiments

evaluating these interactions, the binding sites of these protein interactors and their observed/

proposed biological effects. Notably the JM sequence also contains multiple sites and cryptic

motifs that are recognized by intracellular machineries to elicit receptor upregulation (T669;
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phosphorylation by p38MAPK reduces the downregulation of EGFR [85,86]), receptor

downregulation (T654; phosphorylation by protein kinase C attenuates EGFR activity

[79,80,82,84]), a dileucine motif (L679, L680; recognized by AP-2 for clathrin mediated

endocytosis [88,89]), motifs for basolateral sorting [93,94] and nuclear translocation [95,96].

(Figure 1.4.)

1.7. Conclusion. In this chapter we have discussed the evidence in the literature that points to

the importance of the juxtamembrane region of EGFR in multiple aspects of growth factor

induced receptor activation. Within the juxtamembrane, both the JM-A and JM-B are essential

for driving proper kinase assembly and activation – During the course of growth factor activation

of EGFR, the JM-A forms an antiparallel coiled coil dimer to enhance kinase proximity and

dimerization [15,16,18] while the JM-B provides additional stabilizing interactions to support

formation of the catalytically competent asymmetric kinase dimer [18,19]. The JM-A is also

critical for communicating growth factor identity – the JM-A can assemble into discrete

antiparallel coiled coil structures to uniquely specify the identity of the ECD bound growth

factor in context of the full length EGF receptor in cells [20,21]. Furthermore, the JM-A structure

is allosterically controlled by the confirmation within the TM segment helices specified by cross

location and cross angle [17]. The JM-A structure is also allosterically coupled to the

mutational/ pharmacological status of the kinase domain [31]. Lastly, the JM is a hotspot for

interactions with diverse intracellular cellular lipid and protein components with potential roles in

modulating EGFR signaling and downstream biology. Overall, in this chapter, we discuss how

the JM segment of EGFR through its various structures and interactions, acts as an essential

signal modulatory unit in the EGFR protein and is not simply a passive connector of the

extracellular sensory (ECD) and intracellular effector (kinase) domains.
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Figure 1.1. The Epidermal growth factor receptor – structure, mechanism of activation

and intracellular signaling. (A) Schematics illustrating the distinct regions and domains of

EGFR. (B) Schematic illustrating the mechanism of EGF induced activation of EGFR. (C)

Schematic illustrating the diverse growth factor induced intracellular signaling of EGFR. EGFR

binds to seven different kinds of extracellular growth factor to initiate multiple intracellular

signaling cascades that are critical for diverse cellular functions.
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Figure 1.2. The juxtamembrane segment of EGFR is essential for kinase activation and

for allosterically encoding growth factor identity in cells. (A) Schematics illustrating the

domain location and sequence of the JM-A and JM-B portions of the juxtamembrane domain

of EGFR. (B) The JM-A and JM-B portions of the juxtamembrane segment are both essential

for catalytically competent assembly and activation of the EGFR kinase in vitro– the JM-A

assembles into an antiparallel coiled coil structure in vitro to increase proximity and

dimerization of kinase domains; the JM-B provides stabilizing interactions to the asymmetric

kinase dimer interface. (C) The fluorogenic dye ReAsH is quenched when bound to two

ethanedithiol ligands because of free rotation about the carbon-sulfur bond. When bound to

proteins containing four proximal Cys thiols in bipartite tetracysteine motif, rotation is inhibited

and the ReAsH fluoresces providing a readout on conformation. (D) Schematic summary of the

methodology used to apply bipartite tetracysteine display to probe the assembly of the JM-A

coiled coil structure of EGF activated EGFR in cells. (E) Schematic summary of the

computational methodology used to identify other stable antiparallel coiled coil structures that

can be adopted by the JM-A. (F) Alternate coiled coil structures formed within the JM-A of

EGFR are sufficient for allosterically encoding the identity of the growth factor bound to the

extracellular domain – schematic summary of the results of the bipartite tetracysteine display

experiments. Helical wheel diagrams showing axial views of inter-helix JM-A segment packing

in EGF- and TGF-α-type coiled coils.
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Figure 1.3. The JM-A coiled coil structure is allosterically connected to the structure of

the TM domain and pharmacological status of the kinase domain. (A) Schematic summary

of disulphide cross-linking experiments and in silico modeling of the TM-JM segment to

evaluate the allosteric coupling of the TM and JM segments. The JM-A coiled coil structure is

controlled by the cross angle and cross-location of the TM helices. (B) Oncogenic mutations

L834R and L834R/ T766M lock the JM-A into the EGF-type or TGF-ɑ-type coiled coil

structures respectively. Treatment with third generation tyrosine kinase inhibitors (TKIs) specific

for L834R/ T766M EGFR flip the coiled coil structure of L834R/ T766M EGFR from the

TGF-ɑ-type structure into the EGF-type structure.
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Figure 1.4. Sequence motifs and protein binding sites in the juxtamembrane region.

Schematic illustrating the location and sequence of known cryptic motifs and protein binding

sites in the juxtamembrane segment of EGFR. See also Table 1.1.
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Table 1.1. Protein interactions with the juxtamembrane domain of EGFR

Protein
interactor

Interaction
site in JM

Experimental Method and
Constructs used

Biological effect/ Experimental
summary

Ref.

Calmodulin
(CaM)

R645–Q660 Cross-linking/ CaM and
GST-JM peptide (645–660)

CaM binding to JM is dependent
on intracellular Ca2+

pT654 inhibit CaM binding (with
T654D, and PKC treatment)

[73]

R647, T654 SPR/CaM and immobilized
GST-JM peptide (644–688)

[32]

R645-Q660 Radioactive probe
conjugated to a JM peptide
(645–660)

Intracellular Ca2+/CaM induces
dissociation of JM from a PC/PS
membrane

[72]

R645-Q660 Fluorescence probe
conjugated JM (645–660)

[74]

R645-Q660 FRET/ EGFR TM-JM
peptide (R622–Q660)

Intracellular Ca2+/CaM induces
dissociation of JM from a POPC
membrane containing PIP2

[76]

R645-Q660 EGFR activation in cellula
and western blotting/
(CaM antagonist treatment/
CaM-KO cells/ chelation of
Ca2+/ mutagenesis of
CaM-binding domain)

Abrogating CaM binding/
depleting intracellular Ca2+

inhibits EGFR activation

[75]

Nck adaptor
protein

H648, I649,
R647-T654

13C-1H HSQC/ JM peptide
(645-672) or (644-674)
titrated with unlabeled
GB1-Nck1-2

The JM segment of EGFR
interacts with Nck.

[77]

GɑS R645-R657 IP and western blotting of
GɑS with JM peptides
(645-657) or (679-692)

Treatment with JM peptides
induces phosphorylation of GɑS

[78]

PI4K R645-E663 IP and western blotting of
of PI4K with EGFR JM
peptide (645-663)

Treatment with JM peptide
increases PI4P activity

[87]

Protein
kinase C
(PKC)

A431 cells/ P-32 labeling
phosphorylation assay

PKC is related to phosphorylation
of the EGFR

[80,81]

T654 A431 cells/ P-32 labeling
phosphorylation assay

PKC phosphorylates the JM of
EGFR at T654

[79,82]

T654 A432/ B82 cells transfected
with WT or T654A-EGFR/
I-125 EGF binding assay

EGF binding by WT EGFR is lost
for upon PKC activation (by
phorbol esters)

[83]

T654 CHO cells transfected with
WT or T654E-EGFR/
I-125 EGF binding assay

EGF binding by WT EGFR is lost
upon PKC activation; T654E-
EGFR has lower C-tail pY activity
compared to WT-EGFR upon
PKC activation.

[84]
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p38MAPK T669 A431 cells/ P-32 labeling
phosphorylation assay

p38MAPK phosphorylates the
EGFR JM at T669 and changes
its binding and kinase state.

[85]

T669 MDA-MB-468 or CHO-K1
cells transfected with WT
or T669A-EGFR/ Western
blotting & P-32 labeling
phosphorylation assay

p38MAPK phosphorylates the
EGFR JM at T669; T669
phosphorylation by p38MAPK
induces EGFR internalization.

[86]

AP-2 L679, L680 NR6 cells transfected with
WT or L679A,L680A-EGFR
Internalization/ recycling
assay with I-125 EGF;
radioactivity measurement,
Lamp-1 immunostaining
and confocal microscopy.

The dileucine motif in the EGFR
juxtamembrane formed by L679,
Leu680 is critical for the
post-endocytic endosomal
sorting of EGFR to lysosomes/
degradation pathway

[88,89]

TRAF4 G672-I682 HeLa cells with WT EGFR
or Δ672-682 EGFR; EGFR
phosphorylation assay by
immunoblotting; HSQC of
15N TRAF4 with EGFR
peptide (672-682)

TRAF4 binds to the EGFR JM-B
(672-682) and is essential for
EGF-induced activity of EGFR

[90]

ARNO R645-I682 Microscale thermophoresis
(MST) between EGFR-JM
and Sec7 domain of ARNO
1H, 15N-HSQC of EGFR-JM
titrated with ARNO-Sec7

ARNO binds to the JM region of
EGFR and competes with the
binding interaction of the JM with
CaM and anionic phospholipids

[91]

Protein

kinase D

(PKD)

T654, T669 CHO-K1 cells with eGFP-
EGFR for Raster image
correlation spectroscopy
(RICS) or T654/T669
phospho-mimetics or PKD1
mutant with kinase activity
abrogated (K612W)

PKD1 phosphorylates the EGFR
JM at T654/T669; T654/T669
phosphorylation by PKD shifts
the monomer-dimer equilibrium
of EGF-bound EGFR towards the
monomeric state.

[92]

20

https://www.zotero.org/google-docs/?anyDHI
https://www.zotero.org/google-docs/?QhbtJn
https://www.zotero.org/google-docs/?kWLv0N
https://www.zotero.org/google-docs/?8elIQx
https://www.zotero.org/google-docs/?uWC3PE
https://www.zotero.org/google-docs/?QcUCtj


Chapter 2. Discrete coiled coil rotamers form within the EGFRvIII juxtamembrane domain

Disclosure and authorship

This text of this chapter contains material adapted from a peer-reviewed publication:

“Discrete coiled coil rotamers form within the EGFRvIII juxtamembrane domain.”, Mozumdar,

D., Doerner, A., Zhang, J.Y., Rafizadeh, D.N., Schepartz, A., Biochemistry, 2020, 59, 3965-3972
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Chapter 2. Discrete coiled coil rotamers form within the EGFRvIII juxtamembrane domain

2.1. ABSTRACT

Mutations in the ECD of EGFR are implicated in the development of glioblastoma multiforme

(GBM), a highly aggressive form of brain cancer [97–100]. Most notable in GBM pathology is

the variant of EGFR known as EGFRvIII, that results from an in-frame deletion of exons 2-7,

which encode EGFR ECD residues 6-273 [101–103]. This deleted region includes an

auto-inhibitory tether [23], whose absence, alongside unique disulfide interactions [104] within

the truncated ECD, supports constitutive assembly of an active asymmetric kinase dimer

[22,97,100]. Previous studies have shown that growth factors binding to the ECD of wild type

(WT) EGFR leads to the formation of two distinct coiled coil dimers in the JM-A segment whose

identities correlate with downstream phenotype [17,20,21]. One coiled coil contains leucine

residues at the interhelix interface (EGF-type), whereas the other contains charged and polar

side chains (TGF-α-type) [17,20,21]. It has been proposed that growth factor-dependent

changes in the ECD structure and adjacent TM helix are transduced into distinct coiled coil

structures in the JM-A region [17,20,21]. Herein we demonstrate that in the absence of this

growth factor-induced signal, the JM-A of EGFRvIII is able to adopt both EGF-type and

TGF-α-type structures, providing direct evidence for this hypothesis [105]. These studies

confirm that the signals that define the identity of the JM-A coiled coil begin within the ECD,

and support a model in which growth factor-induced conformational changes are transmitted

from the ECD through the TM helices to favor different coiled coil isomers within the JM.

22

https://www.zotero.org/google-docs/?ubELQA
https://www.zotero.org/google-docs/?sUiAXz
https://www.zotero.org/google-docs/?E1rhOe
https://www.zotero.org/google-docs/?npoRQc
https://www.zotero.org/google-docs/?a2q8Bw
https://www.zotero.org/google-docs/?81J2jg
https://www.zotero.org/google-docs/?cizqVg
https://www.zotero.org/google-docs/?3rR25S
https://www.zotero.org/google-docs/?J2On3J


2.2. Introduction – EGFRvIII a prominent mutation in GBM is constitutively activated.

EGFRvIII is the most common EGFR mutation associated with glioblastoma multiforme (GBM)

[99,106–109], a high-grade brain tumor associated with exceptionally high fatality [110].

Multiple studies have correlated the EGFRvIII expression with poor survival [111,112]. Unlike

EGFR variants in NSCLC that bear mutations within the kinase domain [50,51,113–115] that

can be targeted selectively with TKIs [63,65,67,68,116,117], EGFRvIII contains a wild type (WT)

kinase domain, hindering the development of selective inhibitors [100,118–121].

EGFRvIII is generated by an in-frame deletion of 801 base pairs from exons 2-7 of the ECD

[100–103] (Figure 2.1.A). As a result, the receptor lacks residues 6-273, which include most of

ECD domains I and II. Included in this region is one of three residues (Y246) that interacts with

D563 and K585 on domain IV to hold the WT receptor in an autoinhibited conformation

[12,13,23,122] (Figure 2.1.B,D). The absence of the Y246 autoinhibitory latch causes EGFRvIII

to be constitutively activated [12,13,108,123] (Figure 2.1.B). EGFRvIII also lacks the domain II

dimerization arm that in WT EGFR is necessary for growth factor-induced ECD dimerization

[12,13] (Figure 2.1.C,D). Despite this absence EGFRvIII is able to dimerize via formation of

disulphide bonds between cysteine residues exposed as a result of ECD truncation [104]. This

disulfide-induced extracellular dimerization event, like growth factor-induced dimerization,

supports intracellular formation of an asymmetric kinase dimer that signals constitutively

through the MAPK and AKT pathways (among others) to initiate oncogenic activity in the cell

[98,106–108,124].

The EGFR ECD does more than simply bind growth factors and promote dimerization - it is an

essential component of an allosteric pathway linking growth factor binding to kinase activation

[6,27]. Previous studies have shown that growth factors binding by WT EGFR leads to the
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assembly of two distinct coiled coil structures in the EGFR JM-A [17,20,21]. One of these

structures dubbed the ‘EGF-type coiled coil’ is favored when WT EGFR is activated by

epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF), and is

distinguished by a hydrophobic, leucine-rich coiled coil interface observed by NMR [15,18].

The other coiled coil structure dubbed the ‘TGF-α-type coiled coil’ is favored when WT EGFR is

activated by transforming growth factor-α (TGF-α), epigen, epiregulin, and amphiregulin, and is

distinguished by electrostatic interactions at the helical interface with leucines decorating the

outside surface [21] (Figure 2.1.E). Formation of EGF- and TGF-α-type coiled coils within the

EGFR JM-A correlate with distinct intracellular phenotypes, including the direction of endocytic

trafficking, receptor lifetime, and the relative flux through alternative downstream signaling

pathways [21,29]. Given that EGFRvIII is activated constitutively (even in the absence of growth

factor induced ECD rearrangements), it provides a unique opportunity to interrogate the relative

stabilities of the EGFR JM-A segment in the absence of signals emanating from a WT ECD.

Here we utilize bipartite tetracysteine display [39,40] to demonstrate that in the absence of

growth factor-induced signals, the JM of EGFRvIII is able to constitutively adopt both EGF-type

and TGF-α-type structures [105]. Our studies provide further evidence for an allosteric pathway

that links growth factor-induced binding to the extracellular domain to JM coiled coil structure

and kinase activation.

2.3. Using bipartite tetracysteine display to probe the structure of the EGFRvIII JM-A.

Our initial experiments sought to probe the existence and structure of the coiled coil formed in

the JM-A region of intact EGFRvIII dimers in cellula. To do so, we made use of the chemical

biology tool bipartite tetracysteine display (Figure 2.1.F) [39,40]. This tool exploits the

bis-arsenical dye ReAsH [41] as a fluorogenic sensor that lights up only when bound to four
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cysteine (Cys) side chains in a discrete molecular array [43]. Our previous work identified a set

of CysCys-containing WT EGFR variants whose dimers bind ReAsH and fluoresce only when

the JM is assembled into either an EGF-type coiled coil (CCH-1) or the isomeric TGF-α-type

coiled coil (CCH-10) [17,20,21] (Figure 2.2.A). The resulting ReAsH fluorescence, detected

using TIRF microscopy (TIRF-M), provides an in-cell readout of JM structure within intact EGF

receptors [17,20,21]. Visualizing ReAsH fluorescence using TIRF-M restricts fluorophore

excitation and emission to a small (100−200 nm) cell surface plane and diminishes the signal

from non-specific cytosolic ReAsH staining [20].

To probe for formation of the EGF-type or the TGF-α-type coiled-coil within the JM of intact

EGFRvIII receptors, the CCH-1 or CCH-10 CysCys mutations were integrated into the EGFRvIII

sequence to generate vIII-CCH-1 and vIII-CCH-10, respectively (Figure 2.2.B). In control

experiments, we confirmed that vIII-CCH-1 and vIII-CCH-10 (each carrying an N-terminal

FLAG-tag) were expressed in CHO-K1 cells, localized to the cell surface, and underwent the

expected phosphorylation at C-tail residues Y1068 and Y1086 in the absence and presence of

saturating (16.7 nM) EGF or TGF-α (Figure 2.5.).

In the bipartite tetracysteine display experiments, CHO-K1 cells expressing vIII-CCH-1 or

vIII-CCH-10 were stimulated with growth factor (or not), incubated with ReAsH, washed, and

immuno-stained. Receptor expression was monitored using a fluorescently labeled antibody to

an N-terminal FLAG epitope. Using TIRF-M, the level of both cell surface ReAsH fluorescence

(red) and EGFR expression (green) was quantified across multiple cells (67 - 161) expressing

either EGFR or EGFRvIII variants. The cell-surface ReAsH fluorescence detected (over

background) was normalized to the surface EGFR-expression detected (over background) to

calculate the fold-increase in ReAsH fluorescence (Figure 2.3.A,B). Cells expressing WT-CCH-1
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or WT-CCH-10 displayed levels of normalized ReAsH fluorescence relative to background that

mirrored previous reports [17,20,21] (Figure 2.3.A,B). By contrast, cells expressing vIII-CCH-1 or

vIII-CCH-10 showed an almost 2-fold increase in normalized ReAsH fluorescence relative to

background both in the absence of any growth factor (1.86 ± 0.09 and 1.79 ± 0.09,

respectively) as well as when treated with EGF (1.81 ± 0.10  and 1.70 ± 0.08) or TGF-α (1.80 ±

0.08 and 1.84 ± 0.10) (Figure 2.3.A,B). The fold-increase in ReAsH fluorescence observed for

cells expressing vIII-CCH-1 or vIII-CCH-10 was comparable to that observed when WT-CCH-1 or

WT-CCH-10 are activated with EGF and TGF-α, respectively [17,20,21]. Previous work

examining the JM-A coiled coil status of WT EGFR activated with different growth factors

[17,20,21], or of constitutively active EGFR kinase domain mutants [31], has always revealed a

preference formation of a single JM-A coiled coil structure over the other. The absence of this

preference in the case of EGFRvIII is consistent with two fundamentally different scenarios: 

The first possible explanation is that the structure of the constitutively active EGFRvIII is a

mixture of dimers containing the EGF-type and TGF-α-type JM coiled coils (if not others). The

second possibility is that the JM of constitutively active EGFRvIII can easily assume multiple

different conformations including but not limited to the EGF-type and TGF-α-type JM coiled

coils; the associated increased flexibility could also support ReAsH binding and induced

fluorescence (Figure 2.2.C).

To differentiate between these two possibilities, we designed a third set of CysCys containing

EGFRvIII variant, namely vIII-CCH-4 (Figure 2.2.A,B). In vIII-CCH-4 the four Cys residues within

the JM are located too far apart to bind ReAsH in either the EGF-type or TGF-α-type

conformation [20]. In the EGF-type structure, the Cys residues are located at positions g and e

(as well as g’ and e’); in the TGF-α-type structure the Cys residues are located at positions g
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and b (as well as g’ and b’). If the JM-A of EGFRvIII adopts either the EGF-type or the

TGF-α-type antiparallel coiled coil, then cells expressing vIII-CCH-4 should show little or no

ReAsH fluorescence. Conversely, if the JM-A of EGFRvIII flexibly adopts multiple different

conformations, then cells expressing vIII-CCH-4 should show high ReAsH fluorescence. In

control experiments, we verified that vIII-CCH-4 was expressed in CHO-K1 cells and

constitutively phosphorylated at C-tail positions Y1068 and Y1086 (Figure 2.5.). 

Using bipartite tetracysteine display, the fold increase of ReAsH fluorescence of CHO-K1 cells

expressing variants WT-CCH-4 and vIII-CCH-4 was evaluated in the absence and presence of

EGF and TGF-α. As expected, with cells expressing WT-CCH-4, no significant fold increase in

ReAsH fluorescence is observed when the cells are activated with either EGF (1.09 ± 0.05) or

TGF-α (1.06 ± 0.06) or not stimulated with any growth factor (1.01 ± 0.04) [20] (Figure 2.3.A,B).

Interestingly, cells expressing vIII-CCH-4 also showed little or no ReAsH labeling and

fluorescence both without growth factor activation (1.19 ± 0.06) and when the cells were

stimulated with either EGF (1.17 ± 0.06) or TGF-α (1.19 ± 0.09). These results favor a model in

which the EGFRvIII JM assembles constitutively into a mixture of two different antiparallel

coiled coils of roughly equal stability. The data are less consistent with a model in which the JM

segment of EGFRvIII can easily assume multiple different conformations.

2.4. Conclusion.

WT EGFR interacts through its ECD with seven different growth factors [7,8]. These factors

induce different structures within the cytoplasmic juxtamembrane segment (JM) of the dimeric

receptor and propagate different growth factor-dependent signals to the cell interior [17,20,21].

Previous work has defined a model to explain how EGFR supports growth factor-dependent

differences in intracellular signaling. This model begins with small but significant growth
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factor-dependent differences in the structure of the bound ECD, especially in domain IV as it

tracks into the TM helix [12,13,17,20]. These differences lead to TM helix dimers that differ in

both cross location and cross angle [17]. TM helix dimers characterized by smaller cross angles

at multiple cross locations induce the EGF-type coiled coil in the adjacent JM-A, whereas helix

dimers with larger cross angles at fewer cross locations induce the TGF-α -type coiled coil

(Figure 2.4.A) [17]. EGFRvIII provides a unique opportunity to test this model, as kinase

activation occurs constitutively in the absence of either growth factor binding or activating

kinase domain mutations. Here we make use of bipartite tetracysteine display to demonstrate

that in the absence of this growth factor-induced signal, the JM-A of EGFRvIII adopts both

EGF-type and TGF-α-type structures within the juxtamembrane segment [105]. We show that

in the absence of growth factor-induced ECD rearrangements, the JM-A adopts a well-ordered

configuration that appears to be a mixture of EGF-type and TGF-α-type structures [105]

(Figure 2.4.A). These results suggest that the EGF-type and TGF-α-type JM-A coiled coils

possess roughly equal stability in the context of the intact full-length receptor (Figure 2.4.B).

Overall, our work provides further evidence for an allosteric pathway linking structural changes

induced by growth factor-induced binding by the ECD to coiled coil assembly in the JM-A and

consequent kinase activation.
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2.5. Methods and Materials

Materials. Unlabeled recombinant human epidermal growth factor (EGF) (#CB40052) was

purchased from Corning. Unlabeled recombinant human transforming growth factor-α (TGF-α)

(#T7924) and mouse monoclonal (M2) anti-FLAG primary antibody (#F1804) were purchased

from Sigma. 2,3-dimercapto-1-propanol (BAL) (#AC115300250) was purchased from Acros

Organics. Rabbit monoclonal anti-phospho-EGF receptor Tyr1173 (53A5) (#4407), rabbit

polyclonal anti-phospho- EGF receptor Tyr1086 (#2220), rabbit polyclonal anti-phospho-EGF

receptor Tyr1068 (#2234), rabbit anti-α-tubulin (#2155) primary antibodies as well as goat

polyclonal anti-Rabbit, HRP-conjugated (#7074) and goat polyclonal anti-mouse,

HRP-conjugated (#7076) secondary antibodies were purchased from Cell Signaling

Technology. CHO-K1 cells were purchased from the American type Culture Collection (ATCC).

Dulbecco’s phosphate buffered saline (DPBS) (#14190), fetal bovine serum (FBS) (#26140079),

penicillin-streptomycin (10,000 U/mL) (#15140122), ReAsH-EDT2 (#T34562) and goat polyclonal

anti-mouse, AlexaFluor488-conjugated secondary antibodies (#A10667) were purchased from

ThermoFisher Scientific. EGFR UniProtKB accession ID: P00533.

Plasmids and Cloning. All plasmids used in bipartite tetracysteine display and related assays

are derived from a parent plasmid (pcDNA3.1), generously donated by the Kuriyan Group

(University of California, Berkeley), which contains the sequence of full-length WT EGFR with

an N-terminal FLAG tag [18,22]. Mutations and deletions were introduced into pcDNA3.1 using

Quikchange Lightning site-directed mutagenesis (Agilent) and primers (Integrated DNA

Technologies) listed in Table 2.1.

Cell Culture. CHO-K1 cells were purchased from ATCC and maintained at 37°C, 5% CO2, in

F12K Medium (Corning) supplemented with 10% fetal bovine serum and pen-strep (100
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I.U./mL penicillin and 100mg/mL streptomycin). Cell densities were determined with a

Cellometer Auto T4 automated counter. Transient transfection of CHO-K1 cells was performed

via use of the Transit-CHO Transfection Kit, according to the manufacturer’s instructions (Mirus

Bio LLC).

Bipartite Tetracysteine Display. ReAsH labeling was performed as described previously

[17,20,21], by treating CHO-K1 cells that were transiently transfected with plasmids containing

the appropriate EGFR variants in the presence of an endocytosis/ATP synthesis inhibition

cocktail in F12-K media (10 mM NaN3, 2 mM NaF, 5mM 2-deoxy-D-glucose), for 1hr at 37°C.

Cells were then stimulated without/with 100ng/mL of EGF (16.7nM) or TGF-α (16.7nM) for 30

min at 4°C prior to labeling. Cells were then washed once with endocytosis/ATP synthesis

inhibition cocktail in F12K media before incubation with ReAsH labeling solution (2mM ReAsH,

20mM BAL in F12K media) for 60 min at 37°C. Cells were then washed and incubated with

endocytosis inhibitor-containing F12K media supplemented with 100 mM BAL for 10 min at

37°C. The media was removed, and the cells were fixed using 4% paraformaldehyde for 25 min

at room temperature. Cells were then washed with DPBS and blocked with 10% BSA in DPBS

for 30 min at 37°C. Cells were then labeled with primary antibody (mouse anti-Flag, 1:1000

dilution in 10% BSA in DPBS) for 1hr at 37°C, washed three times with 10% BSA in DPBS,

then incubated with secondary antibody (AlexaFluor488-conjugated goat anti-mouse, 1:2000

dilution in 10% BSA in DPBS) for 1hr at 37°C. Cells were then washed two times with 10%

BSA in DPBS, washed once with DPBS, then nuclear stained with Hoechst-33342 (1.62mM in

DPBS) for 5 min at 37°C. Cells were then washed once with DPBS and stored in DPBS at 4°C

prior to imaging. Labeled cells were then analyzed via TIRF microscopy, conducted on a Leica

Microsystems AM TIRF MC DMI6000B fitted with an EM-CCD camera (Hamamatsu) with HCX
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PL APO 63x/1.47 oil corrective objectives, as described previously [17,20,21]. Images were

analyzed as described previously [17,20,21]. Briefly, raw data from TIRF microscopy were

analyzed using ImageJ 643. Fluorescence intensities of ReAsH and AlexaFluor 488 (EGFR

levels) were quantified, and the fold increase of ReAsH fluorescence relative to background

was normalized for EGFR expression levels. Normalized values of ReAsH fold-increases were

plotted using Prismv7.0 (for Mac, GraphPad Software, La Jolla California USA,

www.graphpad.com), where n represents number of cells quantified, and error bars represent

the standard error of the mean. One-way ANOVA followed by a Dunnett multiple comparisons

test was performed.

Autophosphorylation analysis. Western blot analysis of EGFR autophosphorylation in

transiently transfected CHO-K1 cells was performed as described previously [17,20,21].

CHO-K1 cells, transiently transfected with a plasmid encoding the appropriate EGFR variant,

were collected (5x105 cells), resuspended in 200 mL of serum free F12K media, stimulated with

100ng/mL of EGF (16.7nM) or TGF-α (16.7nM) for 5 min at 37°C (or not), pelleted, washed with

serum-free F12K media, pelleted again, then lysed in 100 mL of lysis buffer (50mM Tris, 150mM

NaCl, 1mM EDTA, 1mM NaF, 1% Triton X-100, pH 7.5, 1x complete protease inhibitor cocktail

(Roche), 1x PhosStop), on ice for 1hr. Clarified cell lysates were then subjected to reducing

10% polyacrylamide SDS-PAGE electrophoresis and transferred to immuno-blot PVDF

membranes. Membranes were blocked with 5% milk in TBS-T Buffer (50mM Tris, 150mM NaCl,

0.1% Tween, pH 7.4) for 1hr followed by an overnight incubation at 4°C with the indicated

primary (rabbit or mouse) antibodies. Blots were then washed with TBS-T and incubated with

either anti-rabbit or anti-mouse goat HRP-conjugate secondary antibodies (Cell Signaling

Technology) for 1hr at room temperature, then washed with TBS-T. Blots were then visualized
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using Clarity Western ECL reagents (BioRad). Displayed blot images have been adjusted for

brightness/contrast using ImageJ/ FIJI [125] and have been cropped to highlight band signals

for full-length EGFR (~170 kDa) or EGFRvIII (~145 kDa).

Table 2.1: Mutagenesis Primers*

S.No. Primer Name Sequence (5’-3’)

1. EGFRvIII, forward 5’-cgagccgtgatctgtcaccacataattTTTCTTTTCCTCCAGTCCGGA
GC-3’

2 EGFRvIII, reverse 5’-gacaagggctccggactggaggaaaagaaaAATTATGTGGTGACAG
ATCACGGCTC-3’

Mutagenesis primers for the insertion of cysteines to generate the CCH-1, CCH-4, and CCH-10

variants of EGFRvIII have been previously described [20,21].
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Figure 2.1. Comparison between wild type (WT) epidermal growth factor receptor (EGFR)

and EGFRvIII. (A) Schematics illustrating the distinct regions and domains of WT EGFR and

EGFRvIII. EGFRvIII lacks amino acid residues 6-273 of the extracellular domain (ECD) (dashed

line). (B) Surface model of the auto-inhibited conformation of the WT EGFR ECD (PDB ID:

1NQL). Subdomains are color-shaded for visualization (I, III: deep teal; II, IV: pale cyan). The

ECD is held in an auto-inhibited conformation by intramolecular interactions between residues

in domains II and IV. (C) Surface model of the WT EGFR ECD dimer bound to EGF (PDB ID:

3NJP). Domains are color-shaded as previously indicated to visualize subdomain movement

upon EGF binding. One of the dimeric partners is shaded light for clearer visualization. (D)

Surface model of the auto-inhibited EGFR ECD with the portions missing in EGFRvIII shaded

light. The ECD deletion prevents formation of auto-inhibitory intramolecular interaction between

domain II and IV.  (E) Helical wheel diagrams showing axial views of inter-helix juxtamembrane

segment packing in EGF- and TGF-α-type coiled coils. (F) The fluorogenic dye ReAsH is

quenched when bound to two ethanedithiol ligands because of free rotation about the

carbon-sulfur bond. When bound to proteins containing four proximal Cys thiols, rotation is

inhibited and the fluorescence is de-quenched.
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Figure 2.2. Probing EGFRvIII JM structure using bipartite tetracysteine display. (A)

Sequence of the juxtamembrane (JM) regions of vIII (WT EGFR numbering) alongside those of

vIII CCH-1, CCH-10 and CCH-4. JM residues in the vIII sequence that are mutated to Cys in

vIII-CCH-1, vIII-CCH-10 and vIII-CCH-4 are colored red. (B) Helical wheel diagrams illustrating

axial views of idealized inter-helix packing in EGF- and TGF-α-type coiled coils. The helical

diagrams shaded with red background indicate a conformation that is suitable for ReAsH

binding with the individual vIII variants. (C) Two models to account for ReAsH binding by both

vIII-CCH-1 and vIII-CCH-10.
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Figure 2.3. The juxtamembrane segment of EGFRvIII exists as a mixture of EGF- and

TGF-α-type coiled coils. (A) Representative TIRF-M images of CHO-K1 cells illustrating

ReAsH labeling (red fluorescence) and expression (green fluorescence) of FLAG-tagged CCH-1,

CCH-10 and CCH-4 variants of WT EGFR and EGFRvIII in the absence and presence of EGF or

TGF-α stimulation (16.7 nM). Scale bars represent 10 µm. (B) Bar Plots illustrating the

quantification of TIRF-M results from ‘n’ cells as a fold-increase in expression-corrected ReAsH

fluorescence over background. Error bars represent s.e.m., ****p<0.0001, ***p<0.001, **p<0.01,

*p<0.05 from one-way ANOVA with Dunnett’s post-analysis accounting comparison to the WT

control for each case without growth factor treatment. n.s., not significant. See also Figure 2.5.

38



Figure 2.4. (A) Cartoon illustrating the preferred conformation of the JM coiled-coil in WT

EGFR and EGFRvIII. In WT EGFR, the JM conformation is influenced by the identity of the

growth factor bound to the ECD. When bound to EGF, the JM adopts an antiparallel coiled coil

characterized by a leucine-rich, hydrophobic interface, when bound to TGF-α, the antiparallel

coiled coil is characterized by a polar interface. In the constitutively active EGFRvIII, in the

absence of growth factor-induced ECD rearrangements, both EGF-type and TGF-α coiled coil

conformations are adopted. (B) Hypothetical energy well diagrams illustrating the different

energy landscapes of the JM region in WT EGFR and EGFRvIII.
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Figure 2.5. CCH-1, CCH-10 and CCH-4 variants of WT EGFR and EGFRvIII are expressed

and phosphorylated as expected. Immunoblots comparing the relative expression and

activity (as judged by the level of receptor autophosphorylation at Y1068, Y1086) of CCH-1,

CCH-10 and CCH-4 variants of WT EGFR and EGFRvIII with the corresponding EGFR variant

lacking CysCys substitutions within the JM. In each case, transiently transfected CHO-K1 cells

were stimulated with 100ng/mL (16.7nM) EGF or TGF-α (or serum free media) for 5min at 37℃.
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Chapter 3. Investigating the role of the JM-A coiled coil structure on EGFR trafficking and

degradation.

Disclosure and authorship

This text of this chapter contains material adapted from a manuscript submitted to the

peer-reviewed journal eLife for review:

“Coiled coil control of growth factor and inhibitor-dependent EGFR trafficking and

degradation”, Mozumdar, D., Chang, S. H.-H., Quach, K., Doerner, A., Schepartz, A.
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Chapter 3. Investigating the role of the JM-A coiled coil structure on EGFR trafficking and

degradation.

3.1. ABSTRACT.

EGFR exhibits biased intracellular signaling – growth factor or mutation-dependent changes in

the conformation and/or dynamics of the receptor elicit distinct intracellular outcomes of EGFR

signaling, biology and cell fate. We report that a two-state coiled coil switch located within the

juxtamembrane segment (an essential component of the cytosolic dimer interface) controls

many outcomes associated with activated EGFR. The position of this allosteric switch (defined

by the identity of the JM-A coiled coil structure) controls the path of EGFR endocytic trafficking

and whether or not the receptor is degraded in lysosomes. The identity of the JM-A coiled coil

structure also predicts kinase-independent effects of oncogenic EGFR mutations (L834R/

T766M) and the ability of clinically relevant tyrosine kinase inhibitors (TKIs) to promote efficient,

lysosomal degradation of oncogenic EGFR. These findings provide a model for biased

intracellular signaling by EGFR, insights into kinase-independent activities of the receptor and

clinically relevant TKIs, and identify new strategies for modulating EGFR lifetime.

3.2. Introduction.

Receptor tyrosine kinases in the EGFR family play diverse and critical roles in cell proliferation,

differentiation, and migration [3,4,6]. Aberrant activation of EGFR family members, via

overexpression or mutation, is associated with many human cancers [10,11,126]. Although

much work on EGFR has focused on its activation by EGF [1], EGFR is activated by at least

seven different growth factors including TGF-α, EPI, ER, BC, HB-EGF, and AR [7,8], and

transmits these activation events into distinct intracellular phenotypes [28,29,127–129]. Growth

factor-dependent biased signaling through EGFR has been previously attributed to differences
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in the physical properties of the growth factors [28,127,129] or their receptor complexes

[128–130]. EGFR is also activated constitutively by mutations in the kinase domain, the

extracellular domain, or elsewhere [6,10,11,126]; these mutations are causally linked to many

human cancers [126].

Previous work has shown that the binding of most growth factors to the ECD of EGFR induces

the formation of one of two rotationally isomeric coiled coils within the juxtamembrane

segment (JM) [21], an essential element of the cytoplasmic dimer interface [18,19]. Binding of

EGF or HB-EGF induce a coiled coil in the JM-A defined by a leucine-rich inter-helix interface

(EGF-type) [20], whereas AR, EPI, ER, or TGF-α induce an isomeric structure whose interface is

charged and polar (TGF-α-type) [21]. JM coiled coil preference is also influenced allosterically,

by point mutations within one of the G-x-x-x-G motifs of the TM helix [17], oncogenic ECD

[105] and kinase domain mutations [31], and, in the case of drug-resistant L834R/T766M

EGFR, the pharmacologic status of its kinase domain [31].

While it is clear that the structure of the JM-A segment is coupled allosterically to the different

EGFR domains, this very coupling complicates strategies to investigate how and whether

distinct coiled coil structures in the JM-A influence outcomes associated with biased signaling.

To better understand the relationship between JM-A coiled coil structure and EGFR biology, we

designed a set of kinase-active EGFR mutants that effectively shift the equilibrium between JM

coiled coil isomers. These EGFR mutants assemble into dimers that favor one coiled coil or the

other in a manner that is independent of the activating growth factor. Using these and other

“decoupling” mutants, we demonstrate that coiled coil identity alone is necessary and sufficient

for defining the pathway of EGFR trafficking into degradative (Rab7+) or recycling (Rab11+)

endosomes and ultimately whether EGFR is degraded within lysosomes. The identity of the
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coiled coil in the JM-A also predicts the trafficking and lifetime of oncogenic EGFR mutants

and reveals kinase-independent effects of FDA-approved small molecule TKIs. These

discoveries increase our understanding of the molecular mechanism used for biased signaling

in ErbB-family receptors and suggest new strategies for purposefully controlling protein traffic

and lifetime along the endocytic pathway.

3.3. Results

3.3.1. Design of EGFR decoupling mutants via mutations in the JM structure. We initially

sought to identify and design a set of functional, full-length EGFR variants that could be used

to isolate the cellular role of the JM-A  by decoupling the coiled coil structure of the JM-A from

growth factor identity [21,17,20]. It is well known that salt bridges at the e and g positions of

model coiled coils influence stability and orientation [131], while changes at the a and d

positions influence oligomeric state [132]. These studies suggested that the relative stability of

the EGF- and TGF-α-type coiled coils formed within an intact EGFR dimer could be controlled

by the presence/ absence of salt-bridging residues for a specific coiled coil structure at

positions e and g (Figure. 3.1.A). We hypothesized that by rationally removing interactions that

stabilized a given JM-A coiled coil structure would raise its free energy relative to the other and

shift the equilibrium between the two structures (Figure 3.2.A). The result would be a set of

EGFR variants that favored only a single JM-A coiled coil structure, regardless of the identity of

the growth factor bound to the ECD. Such a design strategy would necessitate that two

interconverting coiled coil structures are equally favorable – indeed our previous work with

EGFRvIII revealed that the EGF- and TGF-α-type coiled coil structures are equally favorable

when no growth factor-dependent signal emerges from the extracellular domain [105].
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To test this hypothesis, a pair of EGFR variants (E661R and KRAA) were generated that

contained one or two amino acid substitutions to selectively disrupt salt bridges unique to

either the TGF-α- or EGF-type JM coiled coils (Figure. 3.1.A and Figure. 3.2.B). In E661R

EGFR, a single charge-reversing mutation is located at distal c and c’ positions of the heptad

repeat when the JM folds into an EGF-type coiled coil, but at proximal e and e’ positions when

it folds into a TGF-α-type structure. Thus the JM-A in E661R EGFR should favor the EGF-type

structure because it lacks a TGF-α-type-specific salt-bridge. By contrast, in KRAA EGFR, the

two charge-eliminating substitutions K652A/ R656A are located at distal c,g and c’,g’ positions

of the coiled coil repeat when the JM is assembled into the TGF-α-type structure, but at

proximal e, a positions when assembled into the EGF-type structure. Thus the JM-A in KRAA

EGFR should favor the TGF-α-type structure because it lacks two EGF-type-specific salt

bridges (Figure. 3.1.A). As a control for our experiments, we designed a T654D EGFR variant –

this mutation occupies the c or e position of a coiled coil repeat when the JM assembles into

the EGF- and TGF-α-type structures, respectively (Figure. 3.1.A) and should not affect coiled

coil stability. In control experiments, we verified that EGFR variants (containing mutations in the

JM) could be expressed in CHO-K1 cells (which express little or no endogenous EGFR [133]),

trafficked to the cell surface, and were phosphorylated at multiple tyrosine residues within the

C-tail when treated with saturating (16.7 nM) EGF or TGF-α (Figure. 3.2.C).

3.3.2. Validating EGFR decoupling mutants. With functional EGFR mutants in hand, we made

use of the bipartite tetracysteine display [20], to test the hypothesis that activated E661R and

KRAA EGFR dimers would favor an EGF-type or TGF-α-type coiled coil, respectively,

regardless of the identity of the activating growth factor. Bipartite tetracysteine display exploits

the pro-fluorescent bis-arsenical dye ReAsH [41], which lights up only when bound to four Cys
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side chains (two from each EGFR monomer) in a defined array [43]. Previous work identified a

CysCys-containing EGFR variant whose dimer binds ReAsH only when its JM-A is assembled

into an EGF-type type structure (CCH-1 EGFR); another CysCys-containing EGFR variant

(CCH-10 EGFR) forms dimers that induce binds ReAsH only when the TGF-α-type coiled coil is

formed [21]. For the bipartite tetracysteine display experiments, variants of CCH-1 and CCH-10

EGFR containing E661R or KRAA mutations were generated. In control experiments, we

verified that all CysCys containing JM mutants were phosphorylated at multiple tyrosine

residues within the C-terminal tail when treated with EGF or TGF-α; EGFR T654D was

somewhat less active (Figure. 3.2.D).

The three sets of EGFR CCH-1 and CCH-10 variants were expressed in CHO-K1 cells,

stimulated with EGF or TGF-α, incubated with ReAsH, and the level of ReAsH fluorescence

relative to EGFR-expression determined using TIRF microscopy (TIRF-M) (Figure 3.1.B,C).

TIRF-M excites fluorophores in an extremely thin axial region, typically within ~100 nm of the

cell surface, thus the measured fold-increases in ReAsH fluorescence provide a read-out of JM

coiled coil conformation within EGFR molecules at or near the plasma membrane. As expected

[21], a significant fold-increase in ReAsH fluorescence was observed when cells expressing WT

EGFR CCH-1 EGFR are treated with EGF (2.00 ± 0.06) but not TGF-α (1.26 ± 0.03), or when

cells expressing WT CCH-10 EGFR were treated with TGF-α (1.52 ± 0.05) and not EGF (0.97 ±

0.04).  By contrast, cells expressing E661R CCH-1 EGFR showed a significant fold-increase in

ReAsH fluorescence regardless of whether the cells were treated with EGF (2.66 ± 0.14) or

TGF-α (2.60 ± 0.12), suggesting that the EGF-type structure formed in both cases. Little or no

fold-increase in ReAsH fluorescence was observed when cells expressing E661R CCH-10

EGFR were treated with EGF (1.14 ± 0.08) or TGF-α (1.10 ± 0.07) (Figure 3.1.B,C).
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In a similar way, cells expressing KRAA CCH-10 EGFR displayed a significant fold-increase in

ReAsH fluorescence regardless of whether the cells were treated with EGF (1.40 ± 0.05) or

TGF-α (1.32 ± 0.05), and little increase was observed in cells expressing KRAA CCH-1 EGFR

(1.59 ± 0.19-fold (EGF); 1.21 ± 0.14-fold (TGF-α)) (Figure 3.1.B,C). Analogous variants

containing T654D mutations behaved like WT EGFR, as expected (Figure 3.2.E,F)) and no

fold-increase in ReAsH fluorescence was observed in the absence of added growth factor.

These data indicate that no matter which growth factor is bound to the EGFR ECD, E661R

EGFR assembles into an active dimer containing an EGF-type coiled coil, whereas KRAA EGFR

assembles into an active dimer containing a TGF-α-type coiled coil. These results confirm that

the mutations embodied by E661R and KRAA EGFR can effectively decouple growth factor

identity from coiled coil status. 

3.3.3. Trafficking of E661R and KRAA EGFR. A quintessential growth factor-dependent

characteristic of EGFR is its path of receptor trafficking following endocytosis [134].

Unactivated EGF receptors at the cell surface are internalized into Rab4-associated early

endosomes and recycled back to the cell surface where they accumulate. Activated receptors

are trafficked first to EEA1-positive (EEA1+) early endosomes [135]. The pathway then splits,

and receptors are sorted into vesicles defined by the presence of either Rab11 (Rab11+) or

Rab7 (Rab7+). Rab11+ vesicles deliver EGFR back to the cell surface (recycling pathway) [136]

whereas the Rab7+ vesicles deliver EGFR to late endosomes and lysosomes where the

receptors are ultimately degraded (degradative pathway) [137]. Trafficking from EEA1+ early

endosomes into recycling or degradative endosomes is known to be growth factor-dependent:

when stimulated with EGF, EGFR preferentially traffics into Rab7+ endosomes and is ultimately
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degraded [137]; when stimulated with TGF-α, EGFR preferentially traffics into Rab11+

endosomes and returns to the cell surface [30].

The dependence of the path of EGFR trafficking on growth factor identity post-endocytosis has

been previously attributed to differences in the pH-dependent ligand occupancy of receptors

following [28,127]. In particular, TGF-α dissociates from EGFR at higher pH than does EGF;

ligand dissociation at earlier points along the endocytic pathway is believed to lead ultimately

to receptor sorting. Although the pH-dependent model is simple, it is inconsistent with reports

that TGF-α-bound EGFR continues to signal within endosomes [30,138]. We thus asked

whether the coiled coil status of the JM-A could also control the pathway of EGFR trafficking. If

so, then EGFR mutations that favor the EGF-type (E661R) coiled coil in activated dimers would

bias trafficking into Rab7+ endosomes (degradative pathway), whereas those that favor the

TGF-α-type structure would bias trafficking into Rab11+ endosomes (recycling pathway).

We used confocal microscopy to trace the time-, mutation, and growth factor-dependent

pattern of EGFR trafficking and organelle co-localization following growth factor stimulation.

CHO-K1 cells expressing FLAG-tagged WT, E661R, KRAA or T654D EGFR were incubated first

on ice with EGF or TGF-α to allow growth factor binding and then at 37 oC in growth factor-free

media to initiate endocytosis and receptor trafficking. After 8 or 40 min, the cells were

immuno-stained to visualize EGFR and assess the extent of colocalization with EEA1, Rab7, or

Rab11. After 8 min, WT EGFR, E661R, KRAA, and T654D EGFR all co-localize with the early

endosome marker EEA1 (Figure 3.3.A,B) and not with Rab7 (Figure 3.3.C,D) or Rab11 (Figure

3.3.E,F), regardless of whether the cells were stimulated with EGF or TGF-α. After 40 min, the

colocalization of all activated receptors with EEA1 decreases to non-significant levels [29]

(Figure 3.5.A,B). These results confirm that the growth factor-dependent trafficking of all EGFR
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variants studied here proceeds initially through EEA1+ early endosomes regardless of JM

coiled coil status or growth factor identity.

We used the same workflow to evaluate the trafficking pattern of FLAG-tagged WT, E661R,

KRAA and T654D EGFR at 40 min post growth factor incubation. WT EGFR and T654D EGFR

both colocalized preferentially with Rab7 when activated with EGF (MCC = 0.78 ± 0.05 (WT)

and 0.71 ± 0.05 (T654D)) (Figure 3.4.A,C and Figure 3.5.C,D) and with Rab11 when activated

with TGF-α (MCC = 0.62 ± 0.06 (WT) and 0.60 ± 0.06 (T654D)) (Figure 3.4.B,C and Figure

3.5.C,D). In contrast, while E661R still colocalized significantly with Rab7 when activated with

EGF, it also colocalized significantly with Rab7 when activated with TGF-α (Figure 3.4.A-C).

The extent of EGFR colocalization with Rab7 upon TGF-α activation was low (MCC = 0.09 ±

0.02) for WT EGFR but moderate (MCC = 0.44 ± 0.07) for the E661R variant (Figure 3.4.A-C).

Similarly, the extent of colocalization with Rab11 upon TGF-α activation was high (MCC = 0.62

± 0.06) for WT EGFR but only moderate (MCC = 0.34 ± 0.10) for the E661R variant (Figure

3.4.A-C). Overall, these results indicate that the E661R mutation biases EGFR trafficking into

Rab7+ endosomes independent of whether EGF or TGF-α is used to activate the receptor.

The inverse set of results were obtained when the pathway of KRAA EGFR trafficking was

examined: KRAA EGFR colocalized significantly with Rab11 (and not Rab7) whether activated

with EGF or TGF-α (Figure 3.4.A-C). The extent of EGFR colocalization with Rab11 upon EGF

activation was low (MCC = 0.18 ± 0.03) for WT EGFR but moderate (MCC = 0.41 ± 0.08) for the

KRAA variant (Figure 3.4.A-C). Similarly, the extent of colocalization with Rab7 upon EGF

activation was high (MCC = 0.78 ± 0.05) for WT EGFR but only moderate (MCC = 0.29 ± 0.06)

for the KRAA variant (Figure 3.4.A-C). These results indicate that the KRAA mutation biases

EGFR trafficking into Rab11+ endosomes regardless of whether EGF or TGF-α is used to
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activate the receptor. Taken together, these results indicate that the pathway of EGFR

trafficking is influenced by the structure formed within the JM region that links the TM region to

the kinase domain. We note, however, that the biasing of EGFR trafficking is not a perfect

“on/off” switch: while the E661R substitution increases the fraction of EGFR that traffics into

Rab7+ endosomes in the presence of TGF-α, a small fraction of TGF-α-activated E661R EGFR

traffics into Rab11+ endosomes (Figure 3.4.A-C).  Indeed, the extent of phosphorylation at

C-tail residues Y1045, Y1068, and Y1173 did not obviously correlate with JM mutational state

(Figure 3.6.A-C).

3.3.4. Mutations within the EGFR transmembrane helix that allosterically influence JM

coiled coil status control the pathway of receptor trafficking. Mindful of the fact that E661R

and KRAA EGFR contain mutations within the JM coiled coil itself which could influence

functional intra- or intermolecular protein interactions, we turned to a new set of EGFR

decoupling variants in which JM coiled coil identity is controlled allosterically by point

mutations in the adjacent transmembrane segment (TM) [17]. Substitution of phenylalanine for

a single glycine (G628) at the final position of the N-terminal G-x-x-x-G motif of the EGFR TM

(G628F EGFR) generates a receptor dimer with an EGF-type JM coiled coil, regardless of

whether the receptor is activated by EGF or TGF-α–just like E661R EGFR [17]. Likewise,

substitution of the beta-branched valine residue at position 628 (G628V EGFR) generates a

receptor dimer with a TGF-α-type coiled coil, regardless of whether the receptor is activated by

EGF or TGF-α–just like KRAA EGFR [17]. Substitution of G628 with alanine (G628A EGFR)

generates a receptor that behaves like WT EGFR. Since these TM variants contain an unaltered

JM, their functional intra- or intermolecular protein interactions should be preserved. As a

result, the trafficking patterns they follow should provide an unadulterated view of the
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relationship between JM conformational status and EGFR trafficking. If JM coiled coil structure

is both necessary and sufficient to direct the pathway of EGFR trafficking, then G628F and

G628V EGFR should traffic into only Rab7+ or Rab11+ endosomes, respectively, regardless of

how they are activated, whereas G628A EGFR should behave like WT EGFR and traffic in a

growth factor-dependent manner. In control experiments we verified that G628F, G628V, and

G628A EGFR colocalize after 8 min with EEA1 (Figure 3.7.A,B) and not with Rab7 (Figure

3.7.C,D) or Rab11 (Figure 3.7.E,F); colocalization with EEA1 falls to expected levels after 40

min (Figure 3.7.G,H).

Indeed, after 40 minutes, although the extent of G628A EGFR co-localization with Rab7 and

Rab11 was growth factor-dependent, the localization of G628F and G628V EGFR were not

(Figure 3.8.). When stimulated with EGF, G628A EGFR co-localized preferentially with Rab7

(MCC = 0.38 ± 0.06) (Figure 3.8.A,C) and not Rab11 (MCC = 0.13 ± 0.03) (Figure 3.8.B,C);

when stimulated with TGF-α, G628A EGFR co-localized preferentially with Rab11 (MCC = 0.33

± 0.03) (Figure 3.8.B,C) and not Rab7 (MCC = 0.13 ± 0.03) (Figure 3.8.A,C). By contrast,

G628F EGFR colocalizes exclusively with Rab7 whether stimulated with EGF (MCC = 0.48 ±

0.05) or TGF-α (MCC = 0.37 ± 0.03) (Figure 3.8.A,C) and not with Rab11 (MCC = 0.11 ± 0.05

and 0.14 ± 0.04 for cells stimulated with EGF and TGF-α-, respectively) (Figure 3.8.B,C).

Conversely, G628V EGFR colocalizes exclusively with Rab11 whether stimulated with EGF

(MCC = 0.65 ± 0.03) or TGF-α (MCC = 0.65 ± 0.07) (Figure 3.8.B,C) and not with Rab7 (MCC

= 0.12 ± 0.02 and 0.16 ± 0.03 for cells stimulated with EGF and TGF-α-, respectively) (Figure

3.8.A,C). Here, when the coiled coil status of the JM-A is fixed by distal mutations, the switch

in trafficking pattern was observed to be complete: G628F EGFR, whose JM contains an

EGF-type coiled coil, trafficks along the degradative pathway whereas G628V EGFR, whose JM
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contains a TGF-type coiled coil, trafficks along the recycling pathway. Furthermore, in this case

the extent of phosphorylation at C-terminal tail residues Y1045,Y1068, and Y1173 correlates

with JM mutational state (Figure 3.9.A-C).

3.3.5. Coiled coil control of EGFR degradation. The differences in endocytic trafficking seen

with EGFR TM mutants that influence JM structure result in predictable changes in EGFR

lifetime (Figure 3.10.A,B). The lifetime of WT and G628A EGFR depends on growth factor

identity in the expected way [29,30]. Following EGF stimulation, WT and G628A EGFR levels

decrease rapidly and the fraction of intact receptor detected after 90 minutes is low (41-45%),

whereas the fraction of intact EGFR detected after 90 minutes is high when cells are stimulated

with TGF-α (94-92%)(Figure 3.10.A,B). By contrast, G628F EGFR is degraded rapidly

regardless of whether the receptor was activated with EGF or TGF-α, with 42% and 60% of the

intact receptor remaining after 90 min following EGF or TGF-α treatment, respectively (Figure

3.10.A,B). Conversely, G628V was degraded slowly following treatment with EGF or TGF-α,

with 92% and 95% of the intact receptor remaining after 90 min, respectively (Figure 3.10.A,B).

Control experiments using inhibitors of either lysosomal or proteasomal function confirmed that

EGFR degradation occurred within lysosomes (Figure 3.10.A,B). Thus, the presence of a single

point mutation in the TM segment and its long-range effect on JM conformation are necessary

and sufficient to dictate the pathway of intracellular trafficking (Figure 3.8) and the extent of

EGFR degradation in lysosomes (Figure 3.10.).

3.3.6. Tyrosine kinase inhibitors influence the trafficking path and lifetime of

L834R/T766M EGFR. The allosteric network coordinating information transfer between the

ECD, TM, and JM regions of EGFR also includes the cytoplasmic kinase domain and its

pharmacologic state [31,17,139]. Kinase domain mutations associated with drug-resistant
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non-small cell lung cancer (L834R/T766M) [50] generate constitutively active receptors whose

JM-A assemble preferentially into the TGF-α-type structure [31]. The structure of the JM coiled

coil shifts into the EGF-type structure when L834R/T766M EGFR is inhibited by selective

third-generation tyrosine kinase inhibitors (TKIs) such as WZ-4002 [67], CO-1686/ Rociletinib

[65], or the clinically approved AZD-9291/ Osimertinib/ Tagrisso [68]. Previous work has shown

that L834R/T766M EGFR is constitutively endocytosed and recycled in H1975 cells [140], as

predicted by the position of its JM coiled coil switch (preferential assembly into the TGF-α-type

JM-A structure). Here we asked whether this pattern of post-endocytic trafficking is also

observed in CHO-K1 cells expressing L834R/T766M EGFR, whether it is affected by

L834R/T766M EGFR-selective TKIs, and whether differences in trafficking lead to predictable

changes in L834R/T766M EGFR lifetime.

Using confocal microscopy, we evaluated the pattern of endocytic trafficking and sub-cellular

localization of L834R/T766M EGFR in CHO-K1 cells in the presence and absence of second-

(Afatinib), third- (AZD-9291, CO-1686, WZ-4002), and fourth-generation (EAI045) TKIs [117].

These small molecule EGFR inhibitors differ in mechanism of engagement (covalent vs.

non-covalent), EGFR specificity (WT vs. DM; monomer vs. dimer-specific), and binding site

(ATP vs. allosteric) (Figure 3.11.). All of these TKIs predictably decreased the levels of EGFR

auto-phosphorylation (Figure 3.12.A). As anticipated from data in H1975 cells [140], after 40

min uninhibited L834R/T766M EGFR colocalizes with Rab11 (MCC = 0.48 ± 0.03) (Figure

3.11.C,D) and not Rab7 (MCC = 0.17 ± 0.01) (Figure 3.11.A,B), favoring the recycling pathway

as expected for activated receptors that contain a TGF-α-type JM coiled coil [31].

Afatinib-inhibited L834R/T766M EGFR also colocalizes with Rab11 (MCC = 0.46 ± 0.04)

(Figure 3.11.C,D) and not Rab7 (MCC = 0.14 ± 0.02) (Figure 3.11.A,B) after 40 min, again
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favoring the recycling pathway expected for activated receptors that contain a TGF-α-type JM

coiled coil [31]. By contrast, when covalently inhibited by AZD-9291, CO-1686, or WZ-4002, all

third-generation TKIs that selectively and covalently inhibit L834R/T766M EGFR, the extent of

L834R/T766M EGFR colocalized with Rab7 increases and colocalization with Rab11 decreases

(Figure 3.11.B,D). Notably, these changes are not observed in cells expressing L834R/T766M

EGFR and treated with the fourth-generation inhibitor EAI045 (Figure 3.11.B,D), which binds

noncovalently in a pocket adjacent to that of AZD-9291 [117]. EAI045 differs from AZ-9291,

CO-1686, and WZ-4002 in both engagement mode and binding site within the EGFR kinase

domain, suggesting that the observed differences in receptor trafficking likely result from a

common allosteric change in EGFR structure induced by these three small molecules that

guides the receptor along the degradative arm of the endocytic pathway.

Finally we asked whether the change in endocytic trafficking induced by AZD-9291, CO-1686,

and WZ-4002 also resulted in L834R/T766M EGFR degradation. We observed that treatment of

L834R/T766M EGFR with AZD-9291, WZ-4002, and CO-1686 led to markedly (> 75%) reduced

receptor levels after 12 hours when compared to untreated samples (Figure 3.11.E and Figure

3.12.B). In contrast, uninhibited, Afatinib-treated, and EAI045-treated L834R/T766M EGFR

levels remained steady (Figure 3.11.E and Figure 3.12.B). The TKI-induced degradation of

L834R/T766M EGFR induced by AZD9291, CO-1686, and WZ-4002 was inhibited completely

by chloroquine, while lactacystin had no effect (Figure 3.11.E and Figure 3.12.B). Neither

chloroquine nor lactacystin affected the levels of L834R/T766M EGFR when mock-treated or in

the presence of TKIs that failed to induce L834R/T766M EGFR degradation (Figure 3.11.E and

Figure 3.12.B). For all cases inspected, predictable levels [141,65,68,117] of phosphorylated

L834R/T766M EGFR were detected at Y1045 (Figure 3.11.F and Figure 3.12.C) and Y1068
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(Figure 3.11.G and Figure 3.12.D). Thus, third-generation TKIs that engage the ATP-binding

pocket [141,65,68], allosterically induce an EGF-type structure within the JM segment [31], and

traffic the receptor into Rab7+ endolysosomes (Figure 3.11.A,B), also induce significant levels

of L834R/T766M EGFR degradation through a lysosomal, as opposed to proteasomal

mechanism (Figure 3.11.E and Figure 3.12.B).

3.3.7. Discussion. EGFR is an essential, membrane-embedded sensor that communicates and

integrates growth factor-dependent signals into diverse cellular phenotypes [6,142]. It is also

one of the most potent oncogenes in human cancers [11,126] and remains an insufficiently

addressed therapeutic target. EGFR is activated by growth factors that bind to the receptor

extracellular domain (ECD) and by diverse mutations [6]; in both cases the result is a dimeric

receptor with one of two coiled coils within the cytoplasmic juxtamembrane segment (JM)

[17,20,21,31] and a catalytically active asymmetric kinase dimer [22]. Despite its clear

therapeutic significance, the mechanism by which EGFR decodes growth factor identity and/or

mutational status into distinct and dynamic cellular signaling programs has remained elusive. In

part, this knowledge gap results from the absence of a high-resolution view of how the full

length EGFR acts as an allosteric unit to communicate information across multiple domains

and a complex lipid bilayer in cells. But a more complete understanding of EGFR function is

also precluded by allostery itself; how can one separate the activities of two or more protein

domains whose conformational landscapes are dynamic and themselves tightly coupled?

3.3.8. The JM coiled coil is a rotational toggle switch. In this work, we use structural,

biochemical, and chemical biology tools to decouple the conformational landscape of the JM

from both the extracellular domain and the kinase domain without loss of EGFR activity. Using

these mutants and tools, we identify the cytoplasmic juxtamembrane segment as an essential
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EGFR processing center. The JM-A receives inputs from both the TM helices and the kinase

domain and assembles into one of two rotationally isomeric coiled coils [17,20,21,31].

Together, these coiled coils contain all of the information necessary to specify both the

direction of trafficking along the endocytic pathway and EGFR lifetime. These results support a

model in which the pathway of endocytic trafficking following EGFR activation is determined by

JM coiled coil status and not by growth factor-dependent differences in the EGFR-ligand

complex stability as previously proposed [29,30,127]. The different effects of EGFR-selective

growth factors also do not correlate with receptor dimer strength [14], as EGF and TGF-α both

induce high affinity ECD dimers but traffic differently. Further corroborating these results are

recent findings [26] providing a high-resolution view of how the binding of EGF and TGF-α to

the extracellular domain alter the orientation of the dimeric receptor as it tracks into the

membrane-embedded transmembrane helix. As changes in transmembrane helix orientation

are known to bias JM conformation in cells [17], together these results provide a clear picture

of how conformation changes within the EGFR extracellular domain are transduced into

alternative JM conformations, and how alternative JM conformations are necessary and

sufficient to control fundamental EGFR biology.

The structures of the EGF- and TGF-α-type coiled coils differ not only in the residues that

mediate helix-helix interactions but also in the external surface available for intra- and

intermolecular interaction. In the EGF-type structure, the residues at the c, f, and b positions of

the coiled coil repeat are charged and polar [18], whereas these positions are hydrophobic (all

leucine) in the TGF-α-type structure (Figure 1a). A sophisticated molecular dynamics-derived

model of the active full-length receptor dimer [16] shows the receiver kinase JM in the

EGF-type structure with direct interactions between the receiver kinase JM latch (residues
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664-681) and the charged surface of the activator kinase C-lobe. The details of these

interactions and/or their dynamics would be different were the JM assembled into the

TGF-α-type structure, whose interaction surface is hydrophobic, not polar and charged. The

different interaction surfaces could interact differently with the kinase domain to alter the

position (and thus accessibility) of the C-terminal tail, which is believed to localize near the JM

[6,18,19] or alter the precise arrangement of acceptor and receiver kinase domains relative to

one another [16,22,143] and thereby influence their inherent substrate specificity. These

different interaction surfaces could also play a direct role by differentially recruiting known

JM-interacting factors such as, Nck adaptor protein [77], PKC [79], p38MAPK [86], AP2

[144,145] calmodulin [91] and ARNO [91], which in turn bias EGFR signaling and the

consequent trafficking route. The presence of a LeuLeu motif on the outside surface of the

TGF-α-type coiled coil is especially intriguing, as LeuLeu motifs elsewhere within EGFR

(notably the JM-B region and C-terminal tail) are docking sites for endosomal sorting factors

[144,145].

3.3.9. Altered trafficking and degradation as kinase-independent EGFR and TKI activities.

Small molecule EGFR inhibitors that bind near or within the ATP binding pocket and

monoclonal antibodies targeting the extracellular domain have produced impressive therapeutic

benefits to responsive cancers [146]. However, neither therapeutic modality offers sustained

patient benefits, in large part because of acquired and innate resistance mechanisms [147,148].

There is a growing realization that EGFR possesses kinase-independent pro-survival functions

in cancer cells [149,150] that are insufficiently inhibited by either monoclonal antibodies or

small molecules that inhibit kinase activity alone. Our results support a model in which

pro-survival kinase-independent EGFR functions are related to JM-dependent differences in
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trafficking that avoid lysosomal degradation and receptor downregulation. Indeed, both

EGFRvIII (implicated in glioblastoma multiforme) and L834R/T766M EGFR (implicated in

NSCLC) avoid Cbl binding, ubiquitination, and degradation [151,152]. In the case of

L834R/T766M EGFR, this kinase-independent activity is reversed by TKIs that shift the JM

coiled coil equilibrium to promote lysosomal trafficking and degradation. Identification of the

as-yet-unknown factors that mediate this trafficking could serve as a new strategy for targeted

protein degradation that complements both traditional PROTAC-like strategies and lysosomal

targeting strategies based on cell surface receptor engagement [153–155].
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3.3.10. Materials and Methods

Materials. Antibodies. Goat polyclonal anti-Rabbit, Horseradish Peroxidase (HRP)-conjugated

(#7074), Goat polyclonal anti-Mouse, HRP-conjugated (#7076), Rabbit monoclonal

anti-Phospho-EGF ReceptorTyr1173, (53A5) (#4407), Rabbit polyclonal anti-Phospho-EGF

Receptor Tyr1086 (#2220), Rabbit polyclonal anti-Phospho-EGF Receptor Tyr1068 (#2234),

Rabbit polyclonal anti-Phospho-EGF Receptor Tyr1045 (#2237), Rabbit monoclonal

anti-α-Tubulin (#2125), Rabbit monoclonal anti-vinculin (#13901), Rabbit monoclonal anti-EEA1

(C45B10) (#3288), Rabbit monoclonal anti-Rab7 (D95F2) XP (#9367), Rab11 (D4F5) XP Rabbit

mAb (#5589), Anti-mouse IgG (H+L) and F(ab')2 Fragment Alexa Fluor® 555-conjugate (#4409)

were purchased from Cell Signaling Technologies (CST). Mouse monoclonal (M2) anti-Flag

(#F1804), Anti-FLAG® M2 Affinity Gel (#A2220) were purchased from Millipore Sigma. Goat

anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488®-conjugate

(#A11001), IgG (H+L) Cross-Adsorbed Goat anti-Rabbit, Alexa Fluor™ 488 (#A11008), were

purchased from ThermoFisher Scientific.

Chemicals and Recombinant Proteins. F-12K Medium (#10-025-CV), Dulbecco’s Phosphate

Buffered Saline (DPBS) (#14190), Fetal Bovine Serum (FBS)–Heat Inactivated (#11082147),

Penicillin/Streptomycin (#1514012), Non-enzymatic Cell Dissociation Solution (#13151014),

RestoreTM Western Blot Stripping Buffer (#21059), Hoechst 33342, Trihydrochloride, Trihydrate

- 10 mg/mL Solution in Water (#H3570), iBlot PVDF membranes (# IB401031) were purchased

from ThermoFisher Scientific. FugeneHD transfection reagent (E2311) was purchased from

(Promega). Fetal Bovine Serum (FBS)–Heat Inactivated (#F4135), Bovine Serum Albumin

(#9048-46-8), Fibronectin (#F1141) were purchased from Millipore Sigma. cOmplete, Mini

Protease Inhibitor Tablets (#11836170001), PhosSTOP Phosphatase Inhibitor Cocktail Tablets
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(#04906837001) were purchased from Roche Applied Science. Recombinant Human EGF

Protein (#236-EG), Recombinant Human TGF-a Protein (#293-A) were purchased from R&D

Systems. Mini-PROTEAN® TGXTM Precast Gels (10% polyacrylamide) (#456-1036), ClarityTM

Western ECL reagents (#1705060) were purchased from Bio-Rad Laboratories, Inc.

Lactacystin, proteasome inhibitor (#ab141411) and Chloroquine diphosphate, apoptosis and

autophagy inhibitor (#ab142116) were purchased from AbCam. Tyrosine Kinase Inhibitors (TKIs)

Erlotinib HCl (OSI-744) (#S1023), Afatinib (BIBW2992) (#S1011), Osimertinib (AZD-9291)

(#S7297), Rociletinib (CO-1686) (#S7284), WZ4002 (#S1173), EAI045 (#S8242) were purchased

from Selleck Chemicals.

Cell culture. CHO-K1 cells (ATCC) were cultured in F12K Medium supplemented with 10%

FBS and Pen-Strep (100 I.U./mL penicillin and 100 mg/mL streptomycin) at 37°C in a CO2/air

(5%/95%) incubator. Cells were transfected using the TransIT-CHO Transfection Kit (Mirus Bio

LLC) (CHO-K1) or using FugeneHD (Promega), according to the manufacturer’s instructions.

Cell densities for all mammalian cell lines were determined with a Cellometer® Auto T4

automated counter. All cells were bona fide lines and periodically tested for mycoplasma with

DNA methods

Cloning and Mutagenesis. All EGFR DNA variants were cloned from a pcDNA3.1 plasmid,

generously donated by the Kuriyan Group (University of California, Berkeley), containing the

sequence of the full-length EGFR with an N-terminal FLAG tag [18,22]. Mutations were

introduced into the wild-type, CCH-1 and CCH-10 EGFR sequences using Quikchange

Lightning site-directed mutagenesis kit (Agilent Technologies), according to the manufacturer’s

instructions, with primers (purchased from Integrated DNA Technologies) listed in Table 3.1. All

DNA variants were amplified with XL-10 Gold Ultracompetent cells (Agilent Technologies).
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Bipartite Tetracysteine Display Assay i.e. Surface ReAsH Labeling Studies and Total

Internal Resonance Fluorescence (TIRF) Microscopy. ReAsH labeling was accomplished as

described previously [21,17] by treating CHO-K1 cells expressing EGFR variants with an

endocytosis inhibition cocktail (10 mM NaN3, 2 mM NaF, 5 mM 2-deoxy-D-glucose in F12-K

media) for 1 hr at 37oC. Cells were stimulated without/with 100 ng/mL of EGF (16.7 nM)) and

TGF-α (16.7 nM) prior to labeling. Cells were washed once with endocytosis

inhibitor-containing media before incubation with ReAsH labeling solution (2 mM ReAsH

(ThermoFisher Scientific), 20 mM BAL (Acros Organics) in F12K media) for 1 hr at 37oC. Cells

were washed and incubated with endocytosis inhibitor-containing F12K media supplemented

with 100 mM BAL for 10 min at 37oC. The media was removed, and cells fixed using 4%

paraformaldehyde (PFA) in DPBS for 25 min at room temperature. Fixed cells were washed with

DPBS and blocked with 10% BSA in DPBS for 30 min at 37oC. Cells were then labeled with

primary antibody (mouse monoclonal mouse M2 anti-FLAG, 1:1000 dilution in 10% BSA in

DPBS) for 1 hr at 37oC, washed thrice with 10% BSA in DPBS, then incubated with secondary

antibody (AlexaFluor488- conjugated goat anti-mouse, 1:2000 dilution in 10% BSA in DPBS)

for 1 hr at 37oC. Cells were then washed twice with 10% BSA in DPBS, washed once with

DPBS, then nuclear-stained with Hoescht 33342 (1.62 mM in DPBS) for 5 min at 37oC. Cells

were then washed once with DPBS and stored in DPBS at 4oC, prior to imaging. Labeled cells

were monitored via TIRF microscopy, conducted on a Leica microsystems AM TIRF MC

DMI6000B fitted with an EM-CCD camera (Hamamatsu) with HCX PL APO 63x/1.47 oil

corrective objectives, as described previously[17,21]. Images were analyzed with ImageJ (FIJI)

as described previously[17,21].
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Immunofluorescent labeling, confocal microscopy and Image analysis.

Immunofluorescent labeling and confocal microscopy to assess localization of EGFR variants

expressed in CHO-K1 cells was carried out as described previously[30] with slight modification.

CHO-K1 cells expressing FLAG-tagged EGFR variants were incubated without/with 100 ng/mL

of EGF (16.7 nM) or TGF-α (16.7 nM) for 1 hr at 4oC to allow growth factor binding. For

experiments with TKIs, instead of growth factor treatment, cells were incubated with 10uM TKI

(as indicated) in F12K medium at 4oC to allow TKI binding. Cells were then washed with DPBS

and incubated with serum free media at 37oC for 8 or 40 minutes as indicated to allow

endocytosis. Cells were then fixed using 4% PFA in DPBS for 25 min at room temperature.

Cells were washed with DPBS and incubated with blocking buffer (5% normal goat serum

(CST), 0.3% Triton X-100 in DPBS) for 1 hr at 37oC. Cells were then labeled with indicated

primary antibodies overnight (~12 hrs) at 4oC (mouse M2 anti-Flag, 1:1000 dilution and rabbit

anti-Rab7, 1:1000 dilution or rabbit anti-EEA1, 1:1000 dilution or rabbit anti-Rab11, 1:1000

dilution in antibody dilution buffer (1% BSA, 0.3 % Triton X-100 in DPBS)). Cells were then

washed thrice with DPBS and incubated with secondary antibody (AlexaFluor488- conjugated

goat anti-rabbit, 1:500 dilution or AlexaFluor555- conjugated goat anti-mouse, 1:500 dilution in

antibody dilution buffer) for 2 hr at room temperature. Cells were then washed twice with DPBS

and nuclear-stained with Hoescht 33342 (1.62 mM in DPBS) for 5 min at room temperature.

Cells were then washed once with DPBS and stored in DPBS at 4oC, prior to imaging.

Laser-scanning confocal microscopy experiments of labeled immunofluorescent samples were

performed at room temperature on an inverted Zeiss LSM 880 laser-scanning confocal

microscope equipped with a Plan-Apochromat ×63/1.4 numerical aperture oil immersion lens

and a diode 405 nm laser, an Argon 458, 488, 514 nm laser, a diode pumped solid-state 561
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nm laser and a 633 nm HeNe laser with standard settings. DAPI and Alexa-488, Alexa Fluor

555, and Alexa Fluor 647 dyes were excited with 405-, 488-, 546-, and 633-nm laser lines, and

emitted light was collected through band pass filters transmitting wavelengths of 420–480 nm,

505–530 nm and 560–615 nm and a long-pass filter transmitting 615 nm, respectively. The

pinhole size was set to 1 airy unit. Images were acquired at a nuclear section with fixed

thresholds. Image acquisition was performed with ZEN software (Carl Zeiss). Raw images were

exported as .lsm files. Images were analyzed using ImageJ software[125]. Colocalization of

EGFR with indicated endocytic marker (Rab7, Rab11, EEA1) was evaluated as Manders’

Colocalization Coefficient (MCC)[156] which represents the sum of intensities of green pixels

(due to Rab11 or Rab7 or EEA1) that also contain red (due to FLAG-tagged EGFR) divided by

the total sum of green intensities. Colocalization was evaluated using JACoP (Just Another

Colocalization Plugin)[157] in ImageJ. MCC values for each condition obtained from multiple

cells collected over at least 2 biological replicates were pooled and represented as Mean with

S.E.M using Prism 8.4.3

Western Blot Analysis of EGFR Expression and Autophosphorylation. Western blot analysis

of EGFR expression and autophosphorylation in transfected CHO-K1 cells was accomplished

as described previously with slight modification [17,21]. CHO-K1 cells expressing FLAG-tagged

EGFR variants were serum starved overnight (~12 hours). 48 hr post seeding cells were

stimulated without/with 100 ng/mL of EGF (16.7 nM) or TGF-α (16.7 nM) for 5 min at 37oC,

washed with serum free F12K media, and lysed in 100 mL of lysis buffer (50 mM Tris,150 mM

NaCl, 1 mM EDTA, 1 mM NaF, 1% Triton X-100, pH 7.5, 1x cOmplete protease inhibitor

cocktail, 1x Phos-Stop) for 1 hr. For experiments investigating the time dependent changes in

intracellular EGFR levels, CHO-K1 cells were incubated without/with 100 ng/mL of EGF (16.7
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nM) or TGF-α (16.7 nM) for 15 min following which, growth factor solution was washed with

DPBS and cells were incubated at 37oC with serum free media for 0-90 minutes and cell lysis

was carried out as described previously. For experiments investigating the time dependent

changes in EGFR phosphorylation, CHO-K1 cells were incubated without/with 100 ng/mL of

EGF (16.7 nM) or TGF-α (16.7 nM) for 15 min following which, growth factor solution was

washed with DPBS and cells were incubated at 37oC with serum free media for 0-8 minutes

and cell lysis was carried out as described previously. Clarified cell lysates were subjected to

reducing 4-15% polyacrylamide SDS-PAGE electrophoresis and transferred to immuno-blot

PVDF membranes. Membranes were blocked with 5% milk in TBS-T Buffer (50 mM Tris, 150

mM NaCl, 0.1% Tween, pH 7.4) for 1 hr followed by an overnight incubation at 4oC of indicated

primary (rabbit or mouse) antibodies. Blots were washed with TBS-T and incubated with either

anti-rabbit or anti-mouse goat horseradish peroxidase conjugate secondary antibodies for 1 hr

at room temperature, then washed with TBS-T. Blots were then visualized using Clarity Western

ECL reagents on a ChemiDoc XRS+/ ChemiDocMP instrument, and intensities of

immuno-stained bands measured with ImageJ 64[125]. When assessing phosphorylation of

EGFR/ gel loading at multiple positions using the same samples, the blots obtained with a

given phospho-EGFR antibody were stripped with Restore Western Blot Stripping Buffer/ and

antibody stripping buffer (Tris-HCl (62.5 mM), SDS (2%w/v), 2-mercaptoethanol (0.7%v/v)) and

re-probed with a different phospho-EGFR antibody. For experiments investigating the time

dependent changes in intracellular EGFR levels, the FLAG signal (total EGFR) was normalized

to the vinculin loading control and normalized signal for the condition without any growth

factor/ inhibitor treatment. For experiments investigating the time dependent changes in EGFR

phosphorylation, the phospho-EGFR signal (pY1045, pY1068, pY1173) was normalized to the
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total EGFR (FLAG signal) and vinculin/ tubulin was used as a loading control. For western blot

experiments with the tyrosine kinase inhibitors (TKI), CHO-K1 cells expressing L834R/ T766M

EGFR were pre-treated with serum free F12K medium containing 10uM of TKI at 37oC for 30

minutes, washed once with DPBS followed by incubation with serum free DMEM for 12 hrs,

prior to cell lysis. FLAG, pY1045 and pY1068 signal was normalized to the vinculin loading

control and corresponding signal detected at 12 hours without inhibitor/ TKI treatment. For all

experiments with proteasomal/ lysosomal inhibitors, the experiments were carried out with

CHO-K1 cells as described before in the methods, involving a pretreatment with 10uM

Lactacystin or 100uM Chloroquine for 1 hr at 37oC prior to growth factor or TKI treatment.

Table 3.1. List of mutagenesis primers used to design JM decoupling mutants

EGFR Target Mutation Primer sequence (5’-3’)

E661R forward: 5’- ggaggctgctgcagaggagggagcttgtgg -3’
reverse: 5’- ccacaagctccctcctctgcagcagcctcc -3’

K652A/ R656A (or KRAA) forward: 5’- cacatcgttcgggcgcgcacgctggcgaggctgctgca -3’
reverse: 5’- tgcagcagcctcgccagcgtgcgcgcccgaacgatgtg -3’

T654D forward: 5’- gcagcagcctccgcagatcgcgcttccgaacgatg -3’
reverse: 5’- catcgttcggaagcgcgatctgcggaggctgctgc -3’
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Figure. 3.1. Design of E661R and KRAA EGFR decoupling mutants. (A) Helical wheel

diagrams illustrating relative positions of residues within the N-terminal region of the EGFR JM

segment of WT, E661R, and KRAA EGFR when assembled into an EGF-type (left) or

TGF-α-type (right) coiled-coil. Bold red lines identify potential salt bridge interactions referred to

in the text. (B) Representative TIRF-M images of CHO-K1 cells illustrating ReAsH labeling (red

fluorescence) and expression (green fluorescence) of FLAG-tagged CCH-1 and CCH-10 variants

of WT, E661R, or KRAA EGFR with or without EGF or TGF-α stimulation (16.7 nM). Scale bars =

10 µm. (C) Bar plots illustrating the fold increase in expression-corrected ReAsH fluorescence

over background. n = # of cells. Error bars = s.e.m. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.1

from one-way ANOVA with Bonferroni post-analysis accounting for multiple comparisons. n.s.,

not significant.
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Figure 3.2.: Design of EGFR decoupling mutants (KRAA, E661R) and controls (T654D) and

TIRF microscopy images and western blots related to Bipartite tetracysteine display

experiments. (A) Influencing coiled coil preferences by design. In WT EGFR, both coiled coil

conformations are energetically accessible, and the identity of the bound growth factor

influences which conformation is adopted. In Mutant 1, the EGF-type coiled coil is destabilized

and the TGF-α-type structure is favored; in Mutant 2, the TGF-α-type coiled coil is destabilized

and the EGF-type structure is favored. (B) Domain diagram of FLAG-tagged EGFR illustrating

sequences of WT EGFR as well as E661R and KRAA decoupling mutants that favor the

EGF-type or TGF-α-type coiled coil, respectively; T654D EGFR also contains a mutation within

the JM but at a location predicted to not affect relative coiled coil stability (light blue box).

E661R, KRAA, and T654D EGFR respond like WT EGFR to growth factor stimulation.

Representative western blots illustrating expression and extent of Y1173, Y1086, and Y1068

phosphorylation of (C) FLAG-tagged WT, E661R, KRAA, and T654D EGFR and (D)

FLAG-tagged CCH-1 and CCH-10 variants of WT, E661R, KRAA, and T654D EGFR in CHO-K1

cells stimulated continuously without/with EGF and TGF-α (16.7 nM) for 5 minutes 37oC.

Alpha-tubulin is used as loading control. (E) Representative TIRF-M images of CHO-K1 cells

illustrating ReAsH labeling (red fluorescence) and expression (green fluorescence) of

FLAG-tagged CCH-1 and CCH-10 variants of T654D without/ with EGF/ TGF-α stimulation (16.7

nM). Scale bars = 10 µm. (F) Bar plots illustrating the quantification of TIRF-M results from ‘n’

cells expressing FLAG-tagged T654D EGFR as fold increase in expression-corrected ReAsH

fluorescence over background. Error bars = s.e.m. ****p<0.0001, n.s. p>0.05 from one-way

ANOVA with Dunnett’s post-analysis accounting for comparisons within individual mutants to

no growth factor treated control. n.s., not significant. Scale bars = 10 µm.
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Figure 3.3. FLAG-tagged WT, E661R, and KRAA EGFR colocalize with EEA1 and not with

Rab7 or Rab11 respectively, 8 minutes after stimulation with EGF or TGF-α. (A, C, E)

Representative confocal microscopy images of CHO-K1 cells expressing FLAG-tagged WT,

E661R, KRAA and T654D EGFR (false-colored red) 8 minutes after stimulation with EGF or

TGF-α (16.7 nM). (A) Early endosomes (false-colored green) are identified using anti-EEA1

antibody. (C) Degradative endosomes (false-colored green) are identified using an anti-Rab7

antibody. (E) Recycling endosomes (false-colored green) are identified using an anti-Rab11

antibody. (A, C, E) Scale bars = 10 µm. Bar plots illustrating the quantified Mander’s

co-localization coefficient (MCC) values of FLAG-tagged WT, E661R, KRAA and T654D EGFR

with (B) EEA1 (D) Rab7 (F) Rab11 8 minutes after stimulation with EGF/ TGF-α (16.7 nM) for ‘n’

cells. Error bars, s.e.m., n.s. not-significant from one-way ANOVA with Tukey’s multiple

comparison test.
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Figure 3.4. The path of EGFR trafficking in CHO-K1 cells is controlled by JM coiled coil

identity. Confocal microscopy of CHO-K1 cells expressing FLAG-tagged WT, E661R, or KRAA

EGFR (false colored red), immuno-labeled with (A) Rab7 (false colored green) as a marker for

degradative endosomes or (B) Rab11 (false colored green) as a marker for recycling

endosomes, 40 minutes after stimulation with EGF (E) or TGF-α (T). Scale bars = 10 µm. (C)

Bar plots illustrating the Manders colocalization coefficient (MCC) of FLAG-tagged WT, E661R

and KRAA EGFR with either Rab7 or Rab11 40 minutes after stimulation with EGF/TGF-α. n = #

of cells. Error bars = s.e.m. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.1, n.s. not significant, from

one-way ANOVA with Tukey’s multiple comparison test.
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Figure 3.5. Co-localization of FLAG-tagged WT, E661R, KRAA and T654D EGFR with

EEA1, 40 minutes after stimulation with EGF/TGF-α and co-localization of FLAG-tagged

T654D EGFR with Rab7, Rab11, 40 minutes after stimulation with EGF/TGF-α. (A)

Representative confocal microscopy images of CHO-K1 cells expressing FLAG-tagged WT,

E661R, KRAA and T654D EGFR (false colored red) 40 minutes after stimulation with EGF or

TGF-α (16.7 nM). Early endosomes (false colored green) are identified using an anti-EEA1

antibody. Scale bars = 10 µm. (B) Bar plots illustrating the quantified MCC values of

FLAG-tagged WT, E661R, KRAA and T654D EGFR with EEA1 40 minutes after stimulation with

EGF or TGF-α (16.7 nM) for ‘n’ cells. Error bars, s.e.m., n.s. not significant from one-way

ANOVA with Tukey’s multiple comparison test. (C, D) Confocal microscopy of CHO-K1 cells

expressing FLAG-tagged T654D EGFR (false-colored red) 40 minutes after stimulation with

EGF/ TGF-α. (C) Degradative endosomes are identified using an anti-Rab7 antibody

(false-colored green). (D) Recycling endosomes are identified using an anti-Rab11 antibody

(false-colored green). Scale bars = 10 µm. Bar plots illustrating the quantified MCC values of

FLAG-tagged T654D (green) with either (C) Rab7 or (D) Rab11 40 minutes after stimulation with

EGF or TGF-α (16.7 nM) for ‘n’ cells. Error bars, s.e.m. ****p<0.0001, *p<0.1, from t-test.
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Figure 3.6. Time dependent decay in phosphorylation of FLAG-tagged WT, E661R, KRAA

and T654D EGFR at Y1045, Y1068, Y1173. Immunoblots illustrating the time-dependent

change in (A) pY1045; (B) pY1068; and (C) pY1173 0-8 minutes after stimulation with EGF or

TGF-α (16.7 nM). FLAG blot indicates levels of total EGFR. Vinculin is used as a loading control.

Blots represent data pooled from at least 3 biological replicates and densitometric

quantification of signal pYEGFR/ FLAG (Mean and S.E.M.) is included below the immunoblots.
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Figure 3.7. Co-localization of FLAG-tagged G628A, G628F, and G628V EGFR with EEA1 (8

and 40 min) and Rab7 or Rab11 (8 min) after stimulation with EGF or TGF-α.

Representative confocal microscopy images of CHO-K1 cells expressing FLAG-tagged WT,

G628A, G628F, and G628V EGFR (false colored red) stimulated for (A, C, E) 8 minutes; and (G)

40 minutes with EGF/ TGF-α (16.7 nM). (A, G) Early endosomes (false-colored green) are

identified using an anti-EEA1 antibody. (C) Degradative endosomes (false-colored green) are

identified using an anti-Rab7 antibody. (E) Recycling endosomes (false-colored green) are

identified using an anti-Rab11 antibody. (A, C, E, G) Scale bars = 10 µm. Bar plots illustrating

the quantified MCC values of FLAG-tagged WT, G628A, G628F, G628V EGFR with (B) EEA1 or

(D) Rab7 or (F) Rab11, 8 min or (H) EEA1, 40 min; after stimulation with EGF/ TGF-α (16.7 nM)

for ‘n’ cells. Error bars, s.e.m., n.s. not significant from one-way ANOVA with Tukey’s multiple

comparison test.
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Figure 3.8. Point mutations within the EGFR transmembrane helix allosterically influence

the pathway of receptor trafficking. Confocal microscopy of CHO-K1 cells expressing

FLAG-tagged G628A, G628F and G628V EGFR (false colored red) and immuno-labeled with (A)

Rab7 (false colored green) as a marker for degradative endosomes or (B) Rab11 (false colored

green) as a marker for recycling endosomes, 40 minutes after stimulation with EGF (E) or TGF-α

(T). Scale bars = 10 µm. (C) Bar Plots illustrating colocalization of FLAG-tagged G628A, G628F

and G628V EGFR with either Rab7 or Rab11-GFP 40 minutes after stimulation with EGF/TGF-α

(16.7 nM). n = # of cells. Error bars = s.e.m.. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.1, n.s.

not significant from one-way ANOVA with Tukey’s multiple comparison test.
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Figure 3.9. Time dependent decay in phosphorylation of FLAG-tagged WT, G628A, G628F

and G628V EGFR at Y1045, Y1068, Y1173. Immunoblots illustrating the time-dependent

change in (a) pY1045; (b) pY1068; and (c) pY1173 for FLAG-tagged WT EGFR, G628A, G628F

and G628V 0-8 minutes after stimulation with EGF or TGF-α (16.7 nM). FLAG blot indicates

levels of total EGFR. Vinculin/ Alpha-Tubulin is used as a loading control. Blots represent data

pooled from at least 3 biological replicates and densitometric quantification of pYEGFR/FLAG

signal (Mean and S.E.M.) is included below the immunoblots.
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Figure 3.10.. Coiled coil control of EGFR degradation. (A) Immunoblots illustrating the level

of FLAG-tagged WT, G628A, G628F, and G628V EGFR detected in CHO-K1 cells 90 minutes

after stimulation with or without EGF/TGF-α (16.7 nM) and without/with pre-incubation with the

lysosomal inhibitor chloroquine, C (100 µM) [158] or the proteasomal inhibitor lactacystin, L (10

µM)[159] for 1 hour at 37 oC. (B) Plot illustrating the normalized percent of intact FLAG-tagged

WT, G628A, G628F, and G628V EGFR as shown in 3.10.A. Vinculin is used as loading control.

Error bars = s.e.m.. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.1, n.s. not significant from

one-way ANOVA with Dunnett’s multiple comparison test.
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Figure 3.11. Clinically relevant, third-generation tyrosine kinase inhibitors influence

L834R/T766M EGFR trafficking and induce EGFR degradation. Confocal microscopy of

CHO-K1 cells expressing FLAG-tagged L834R/T766M EGFR (false colored red) and and

immuno-labeled with (A) Rab7 (false colored green) as a marker for degradative endosomes or

(C) Rab11 (false colored green) as a marker for recycling endosomes, 30 minutes after

pre-incubation without/with 10 μM of indicated TKI. Scale bars = 10 µm. Bar plots illustrating

the MCC value representing the colocalization of FLAG-tagged L834R/T766M EGFR with (B)

Rab7 or (D) Rab11 without/with the indicated TKI. n = # of cells. Error bars = s.e.m.

****p<0.0001, ***p<0.001, **p<0.01, *p<0.1, n.s. not significant, from one-way ANOVA with

Tukey’s multiple comparison test. (E) Normalized loss of FLAG-tagged L834R/T766M EGFR in

CHO-K1 cells 12 hours following pre-incubation without/with 100 µM chloroquine (C) or

lactacystin (L) (10 µM) and/or 10 µM Erlotinib (Er), afatinib (Af), AZD9291 (AZ), CO-1686 (CO),

WZ-4002 (WZ), or EAI045 (EA). Phosphorylation of L834R/T766M EGFR at (F) Y1045; and (G)

Y1068 in CHO-K1 cell lysates prepared as described in 3.11.E. In 3.11. E, F, G, Error bars =

s.e.m.. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.1, n.s. not significant from one-way ANOVA

with Dunnett’s multiple comparison test.
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Figure 3.12. Immunoblots illustrating the intracellular levels of FLAG-tagged and

phosphorylated EGFR detected at various time points post treatment with EGFR TKIs (A)

Immunoblots illustrating the cellular expression (FLAG) and dose-dependent phosphorylation of

FLAG-tagged L858R/T790M EGFR at Y1045, detected in CHO-K1 cells 30 minutes following

pre-incubation without/ with 10, 1.0, 0.1 and 0.01 uM of TKIs erlotinib (+Er), afatinib, AZD9291,

CO-1686, WZ-4002 and EAI045. Alpha-tubulin is used as loading control. (B) Immunoblots

illustrating the loss of FLAG-tagged L834R/T766M EGFR detected in CHO-K1 cells lysed 12

hours following pre-incubation without/with 100 µM chloroquine, C or lactacystin, L (10 µM) for

1 hour followed by pre-incubation without/with 10 µM erlotinib, afatinib, AZD9291, CO-1686,

WZ-4002, or EAI045. Immunoblots illustrating the phosphorylation of L834R/T766M EGFR at

(C) Y1045; and (D) Y1068 in CHO-K1 cell lysates prepared as described in 3.12.C. Vinculin is

used as loading control.
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Chapter 4. Summary and Analysis of partially completed projects and future directions

This chapter describes preliminary experiments that were performed on two projects that were

initiated in the early and later parts of Ph.D. research. The aim of the first project was to

investigate the role of receptor multimerization on the JM structure of EGFR. This work was

performed with Dr. Amy E. Doerner. The aim of the second ongoing project is to investigate the

effect of JM structure on the interactome of WT and oncogenic EGFR using APEX2-based

proximity labeling and mass spectrometry. This work has been performed with Sol H.-H. Chang.
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Chapter 4. Summary and Analysis of partially completed projects and future directions.

4.1. Investigating the role of receptor multimerization on the JM structure of EGFR. In the

canonical view of growth factor induced EGFR activation, the receptor transitions from an

equilibrium between an inactive monomeric structure and inactive dimeric structure to active

dimeric structure [6,160]. High resolution structures of the ECD [12,13,23,45,122], TM [15,18],

JM [15,18] and Kinase [22] domains reveal that in its active dimeric structure, dimerization of

the monomeric units is mediated by interactions arising from all four of these domains. In

addition to forming active dimeric structures, there is also evidence that EGFR can assemble

into catalytically competent higher order oligomers in cells [161–163]. More recently, two

independent studies from the Kuriyan [164] and Shaw/ Fernandez [165] research groups have

illuminated structural details for the mechanisms by which receptor oligomerization may occur.

In the study from the Kuriyan lab, Huang and colleagues used single molecule imaging

combined with photobleaching experiments in Xenopus oocytes to observe clustering of

fluorescently labeled particles of EGFR [164]. In their studies they found that following

treatment with EGF, fluorescently labeled EGFR particles appear as clusters on the surface of

Xenopus cells [164]. To characterize the number of particles present in individual clusters, the

authors used photobleaching experiments to sequentially bleach out fluorescence arising from

individual fluorescently labeled EGFR particles within a cluster in a field of view. The authors

observed that for nearly 50% of these clusters complete photobleaching would occur following

a multi-step photobleaching procedure, which the authors suggested was on account of

receptor oligomerization (as opposed to photobleaching in a single step (25%) observed for

monomers or in two steps (25%) for dimers) [164]. To characterize the surface of EGFR used

for the assembly of these oligomers the authors used a combination of structural modeling and
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mutagenesis studies in combination with these single molecule photobleaching experiments.

From their studies, the authors determined that oligomerization is primarily mediated by

interactions arising from the domain IV of the EGFR ECD [164]. The authors identified multiple

combinations of domain IV mutations that were demonstrated via single molecule

photobleaching experiments to inhibit multimerization of EGFR – (i) I544K/ I556K/ I562R/ V592E

dubbed IIIV/KKRE; (ii) V526E/ E527R/ N528R dubbed VEN/ERR; (iii) T548N/ N554R – and a

domain IV control mutant mutant I544A/ I556A/ I562R/ V592E dubbed IIIV/AARE that did not

inhibit multimerization [164].

In the Schepartz lab, the focus of research has been to study how chemical information

encoded by diverse growth factors is communicated through the allosteric network of EGFR to

mediate diverse signaling outcomes [17,20,21]. The focus of this research has been the JM

region that plays a critical role in diverse aspects of EGFR biology. Work in the Schepartz lab

has demonstrated that upon activation by growth factors, the JM-A of EGFR can assemble into

distinct coiled coil conformations that allosterically encode growth factor identity and are

necessary and sufficient for modulating intracellular EGFR biology [17,20,21]. In this particular

project, my efforts were focused towards exploring whether inhibiting EGFR multimerization

had any effect on altering the allosteric network that communicates growth factor identity in

terms of affecting the JM-A coiled coil structure.

To investigate the effect of inhibiting multimerization [164] on the JM-A structure of growth

factor activated EGFR, we made use of bipartite tetracysteine display [39,40]. For our

experiments, we cloned CysCys containing (CCH-1 and CCH-10) versions of the EGFR variants

that were reported to inhibit multimerization (IIIV/KKRE, VEN/ERR, TN/RR) or not (IIIV/AARE);

CCH-1 and CCH-10 variants probe for the assembly of EGF-type or TGF-ɑ-type JM-A coiled
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coil respectively [17,20,21]. In control experiments I was able to verify that all the CCH-1

variants namely IIIV/KKRE-CCH-1, VEN/ERR-CCH-1, TN/RR-CCH-1 and IIIV/AARE-CCH-1 were

all expressed in CHO-K1 cells and responded to treatment with saturating concentrations

(16.7nM) of EGF/ TGF-ɑ (phosphorylation at Y1173/ Y1068 and Erk phosphorylation) analogous

to the WT-CCH-1 variant (Figure 4.1. C).

In the bipartite tetracysteine display experiments, CHO-K1 cells expressing IIIV/KKRE-CCH-1,

VEN/ERR-CCH-1, TN/RR-CCH-1 and IIIV/AARE-CCH-1 or WT-CCH-1 were stimulated with

growth factor (or not), incubated with ReAsH, washed, and immuno-stained. Receptor

expression was monitored using a fluorescently labeled antibody to an N-terminal FLAG

epitope. Using TIRF microscopy, the level of both cell surface ReAsH fluorescence (red) and

EGFR expression (green) was quantified across multiple cells (40-109) expressing either EGFR

or EGFRvIII variants. The cell-surface ReAsH fluorescence detected (over background) was

normalized to the surface EGFR-expression detected (over background) to calculate the

fold-increase in ReAsH fluorescence [17,20,21] (Figure 4.1.A,B). Cells expressing WT-CCH-1

displayed levels of normalized ReAsH fluorescence relative to background that mirrored

previous reports (1.76 ± 0.13 with EGF treatment; 1.21 ± 0.05 with TGF-ɑ) [17,20,21] (Figure

4.1.A,B). In an analogous manner the other four EGFR variants also showed an almost 2-fold

increase in normalized ReAsH fluorescence relative to background only when treated with EGF

(IIIV/AARE-CCH-1: 1.80 ± 0.14; IIIV/KKRE-CCH-1: 2.10 ± 0.13; VEN/ERR-CCH-1: 2.30 ± 0.19;

TN/RR-CCH-1: 2.33 ± 0.13) and not with TGF-α (IIIV/AARE-CCH-1: 1.20 ± 0.11;

IIIV/KKRE-CCH-1: 1.25 ± 0.09; VEN/ERR-CCH-1: 1.45 ± 0.11; TN/RR-CCH-1: 1.26 ± 0.09)

(Figure 4.1.A,B). The results of my initial experiments suggest that inhibiting multimerization

does not have any obvious effect on assembly of the EGF-type structure. Future experiments
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would need to evaluate (i) whether or not inhibiting multimerization affects the TGF-α-type

structure and (ii) that the multimerization phenotype of the variants IIIV/AARE, IIIV/KKRE,

VEN/ERR, TN/RR is not affected by the incorporation of cysteine residues to generate the

CCH-1/ CCH-10 versions of these constructs.

4.2. Efforts towards understanding the effect of JM structure on the interactome of EGFR

using APEX2-based proximity labeling and mass spectrometry.

Rationale: A research direction that directly follows from my work discussed in Chapter 3 is to

elucidate the mechanism by which alternate JM-A coiled coil structures modulate EGFR

biology. In chapter 3 we hypothesized that differences in EGFR biology may result partly from

the altered patterns of EGFR C-tail phosphorylation that is responsible for recruiting diverse

intracellular down regulatory mechanisms (Figure 4.2.A). While this hypothesis can explain the

observed biological effects with WT EGFR, they are insufficient for explaining the observations

with oncogenic L834R/ T766M EGFR treated with different classes of TKI. In this latter case,

we observed that treatment with the different classes of TKI lead to differences in the biology of

L834R/ T766M EGFR in a manner that is independent of C-tail phosphorylation but correlates

directly with JM-A coiled coil structure. This suggests that additional down-regulatory

mechanisms that are dependent on JM-A structure may be involved. It is possible that the

assembly of the alternate JM-A coiled coil structures can directly alter the interactome of EGFR

between the two states (Figure 4.2.B). In order to probe those differences in interactome, we

would need to use a robust methodology to isolate and reliably characterize the protein

partners of EGFR in the different coiled coil states using mass spectroscopy. Mass

spectrometric methods have been previously used to characterize the interacting partners

EGFR following activation with growth factors EGF and TGF-α [30,166,167]. Proximity labeling
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using the engineered peroxidase APEX2 and mass spectrometric characterization is a robust

methodology for detecting protein protein interactions and spatiotemporally resolving

interaction networks in mammalian cells [168–171]. Here we propose to use a an

APEX2-based proximity labeling followed mass spectrometric characterization strategy to

isolate and identify the interacting partners of (i) WT EGFR and G628F-EGFR or G628V EGFR

that fix the JM-A coiled coil structure into the EGF-type or TGF-α-structure respectively and (ii)

L834R/ T766M EGFR treated with different TKIs classes (Figure 4.2.C).

Approach and preliminary results: For our proximity labeling/ MS experiment workflow, we

first generated fusions of the engineered peroxidase APEX2 with (i) WT EGFR (ii) JM decoupling

mutants: G628A-EGFR, G628F-EGFR and G628V-EGFR (iii) L834R/ T766M EGFR. Mammalian

cells expressing these fusion constructs would be treated with biotin-phenol followed by either

(i) activation with EGFR specific growth factors EGF or TGF-α or (ii) inhibition with L834R/

T766M EGFR-specific TKIs. Thereafter the cells would be treated with H2O2 to initiate the rapid

biotinylation reaction after specific periods of time (0-8 min: to identify for early interactors;

40-90min: to identify to later interactors). Cells would be subsequently lysed and the

biotinylated proteins (by virtue of their interaction to EGFR and thus APEX2) will be purified and

enriched for using streptavidin pulldown. Thereafter, the isolated proteins would be identified

using LC-MS/MS and mapping onto the mammalian cell proteome.

In this section I describe my efforts in preliminary experiments to ensure that EGFR-APEX2 (i)

was expressed in CHO-K1 mammalian cells (ii) had growth factor dependent auto-

phosphorylation activity comparable to WT EGFR (that did not bear an APEX2 fusion) (iii) had

APEX-2 enzymatic activity comparable to APEX2 (that was not fused to EGFR). The proximity

labeling/ MS experiments will be carried out by fellow graduate student Sol Chang. For these
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initial experiments in addition to WT EGFR, EGFR-APEX2 and APEX2, we designed two

additional control constructs K721M-EGFR (where EGFR kinase activity is abrogated) and

D208N APEX2 (where APEX2 peroxidase activity is abrogated) (Figure 4.3.A). We first sought

to evaluate the expression and activity of EGFR-APEX2 in CHO-K1 cells. CHO-K1 cells were

transiently transfected with FLAG-tagged WT-EGFR, EGFR-APEX2, APEX-2, K721M-EGFR and

D208N APEX2. Using western blot assays we probed for the expression of the FLAG-tagged

variants using an anti-FLAG antibody. We observed that all FLAG-tagged variants were

expressed in CHO-K1 cells (Figure 4.3.B-D). We next sought to evaluate the growth factor

dependent auto-phosphorylation activity of WT EGFR-APEX2. CHO-K1 cells expressing

FLAG-tagged WT EGFR, EGFR-APEX2 and a negative control K721M-EGFR were treated with

saturating amounts (16.7 nM) of EGF/ TGF-α). Using western blot analysis we evaluated the

auto-phosphorylation activity of the FLAG-tagged EGFR variants at C-tail tyrosine residues

Y1045 and Y1068 (Figure 4.3. C-F). As expected, WT EGFR was robustly phosphorylated at

both Y1045 (Figure 4.3. C,E) and Y1068 (Figure 4.3. D,F) following treatment with either EGF

or TGF-α (and not in the absence of growth factor treatment). In an analogous fashion

EGFR-APEX2 was phosphorylated at both Y1045 (Figure 4.3. C,E) and Y1068 (Figure 4.3. D,F)

following treatment with both EGF or TGF-α at levels comparable to WT EGFR. With K721M

EGFR no auto-phosphorylation activity was detected at either tyrosine residues both in the

absence and presence of EGF or TGF-α. Overall we observed that the fusion of APEX2 to WT

EGFR did not significantly affect its growth factor dependent phosphorylation at C-tail residues

Y1045 and Y1068 (Figure 4.3. C-F). We next sought to evaluate the peroxidase activity of

EGFR-APEX2. For this we used a fluorescence based assay that makes use of the peroxidase

mediated conversion of Amplex red to Resorufin [168]. Amplex red that is ambiently non
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fluorescent, upon treatment with H2O2 and peroxidase (in this case APEX2) is spontaneously

converted to brightly fluorescent dye resorufin. The time dependent change in fluorescence

provides a robust and instantaneous readout of the enzymatic activity of the peroxidase

enzyme (APEX2) (Figure 4.3.G). Clarified cellular lysates from CHO-K1 cells expressing

APEX-2, EGFR-APEX2 and a negative control D208N APEX2 were diluted in DPBS and treated

individually with H2O2 and Amplex Red. Immediately following H2O2 and Amplex Red addition,

the resulting fluorescence of the reaction mixture was recorded at regular time intervals. From

the time dependent changes in fluorescence, the activity of the APEX2 constructs was

evaluated. From our experiments, we observed that both APEX2 and EGFR-APEX2 were

active, albeit the activity of EGFR-APEX2 was both slightly lesser and slightly slower as

compared to APEX2 (Figure 4.3.H). No detectable peroxidase activity was observed with the

negative control D208N APEX2 (where peroxidase activity is abrogated) (Figure 4.3.H). Overall

we observe that although APEX2 fused to EGFR with a flexible GGS linker retains considerable

enzymatic activity, its extent and velocity is slightly reduced (Figure 4.3.H). Given that the

proper enzymatic activity of APEX2 in the fusion construct is critical for the subsequent

proximity labeling experiments, it may be worthwhile to investigate if extending the flexible

linker between EGFR and APEX2 restores the enzymatic activity of APEX2 to level comparable

to APEX2. Nonetheless, it is encouraging that the EGFR-APEX2 fusion is expressed in

mammalian cells and retains enzymatic activity both in the EGFR and APEX2 parts. I am

excited to see how this project develops in the future and what all we learn about the

interactome of EGFR when its JM is fixed either by mutations in the TM or treatment with TKIs.

96



4.3. Materials and Methods

Materials. Antibodies. Goat polyclonal anti-Rabbit, Horseradish Peroxidase (HRP)-conjugated

(#7074), Goat polyclonal anti-Mouse, HRP-conjugated (#7076), Rabbit monoclonal

anti-Phospho-EGF ReceptorTyr1173, (53A5) (#4407), Rabbit polyclonal anti-Phospho-EGF

Receptor Tyr1086 (#2220), Rabbit polyclonal anti-Phospho-EGF Receptor Tyr1068 (#2234),

Rabbit polyclonal anti-Phospho-EGF Receptor Tyr1045 (#2237), Rabbit monoclonal

anti-α-Tubulin (#2125) were purchased from Cell Signaling Technologies (CST). Mouse

monoclonal (M2) anti-Flag (#F1804), was purchased from Millipore Sigma. Goat anti-Mouse IgG

(H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488®-conjugate (#A11001), was

purchased from ThermoFisher Scientific.

Chemicals and Recombinant Proteins. F-12K Medium (#10-025-CV), Dulbecco’s Phosphate

Buffered Saline (DPBS) (#14190), Fetal Bovine Serum (FBS)–Heat Inactivated (#11082147),

Penicillin/Streptomycin (#1514012), Non-enzymatic Cell Dissociation Solution (#13151014),

RestoreTM Western Blot Stripping Buffer (#21059), Hoechst 33342, Trihydrochloride, Trihydrate

10 mg/mL Solution in Water (#H3570), iBlot PVDF membranes (# IB401031), Amplex Red

Hydrogen Peroxide/Peroxidase Assay Kit (A22188) were purchased from ThermoFisher

Scientific. TransIT-CHO transfection kit was purchased from Mirus Bio LLC. Fetal Bovine Serum

(FBS)–Heat Inactivated (#F4135), Bovine Serum Albumin (#9048-46-8), Fibronectin (#F1141)

were purchased from Millipore Sigma. cOmplete, Mini Protease Inhibitor Tablets

(#11836170001), PhosSTOP Phosphatase Inhibitor Cocktail Tablets (#04906837001) were

purchased from Roche Applied Science. Recombinant Human EGF Protein (#236-EG),

Recombinant Human TGF-a Protein (#293-A) were purchased from R&D Systems.

Mini-PROTEAN® TGX Precast Gels (10% polyacrylamide) (#456-1036), Clarity Western ECL

97



reagents (#1705060) were purchased from Bio-Rad Laboratories, Inc.

Cell culture. CHO-K1 cells (ATCC) were cultured in F12K Medium supplemented with 10%

FBS and Pen-Strep (100 I.U./mL penicillin and 100 mg/mL streptomycin) at 37°C in a CO2/air

(5%/95%) incubator. Cells were transfected using the TransIT-CHO Transfection Kit (Mirus Bio

LLC) (CHO-K1), according to the manufacturer’s instructions. Cell densities for all mammalian

cell lines were determined with a Cellometer® Auto T4 automated counter. All cells were bona

fide lines and periodically tested for mycoplasma with DNA methods

Cloning and Mutagenesis. All EGFR DNA variants were cloned from a pcDNA3.1 plasmid,

generously donated by the Kuriyan Group (University of California, Berkeley), containing the

sequence of the full-length EGFR with an N-terminal FLAG tag [18,22]. Mutations were

introduced into the wild-type, CCH-1 and CCH-10 EGFR sequences using Quikchange

Lightning site-directed mutagenesis kit (Agilent Technologies)/ Gibson assembly (NEB) of

G-Blocks and linearized backbone fragments according to the manufacturer’s instructions, with

primers (purchased from Integrated DNA Technologies) listed in Table 4.1. All DNA variants

were amplified with XL-10 Gold Ultracompetent cells (Agilent Technologies).

Bipartite Tetracysteine Display Assay i.e. Surface ReAsH Labeling Studies and Total

Internal Resonance Fluorescence (TIRF) Microscopy. ReAsH labeling was accomplished as

described previously [21,17] by treating CHO-K1 cells expressing EGFR variants with an

endocytosis inhibition cocktail (10 mM NaN3, 2 mM NaF, 5 mM 2-deoxy-D-glucose in F12-K

media) for 1 hr at 37oC. Cells were stimulated without/with 100 ng/mL of EGF (16.7 nM)) and

TGF-α (16.7 nM) prior to labeling. Cells were washed once with endocytosis

inhibitor-containing media before incubation with ReAsH labeling solution (2 mM ReAsH
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(ThermoFisher Scientific), 20 mM BAL (Acros Organics) in F12K media) for 1 hr at 37oC. Cells

were washed and incubated with endocytosis inhibitor-containing F12K media supplemented

with 100 mM BAL for 10 min at 37oC. The media was removed, and cells fixed using 4%

paraformaldehyde (PFA) in DPBS for 25 min at room temperature. Fixed cells were washed with

DPBS and blocked with 10% BSA in DPBS for 30 min at 37oC. Cells were then labeled with

primary antibody (mouse monoclonal mouse M2 anti-FLAG, 1:1000 dilution in 10% BSA in

DPBS) for 1 hr at 37oC, washed thrice with 10% BSA in DPBS, then incubated with secondary

antibody (AlexaFluor488-conjugated goat anti-mouse, 1:2000 dilution in 10% BSA in DPBS) for

1 hr at 37oC. Cells were then washed twice with 10% BSA in DPBS, washed once with DPBS,

then nuclear-stained with Hoescht 33342 (1.62 mM in DPBS) for 5 min at 37oC. Cells were then

washed once with DPBS and stored in DPBS at 4oC, prior to imaging. Labeled cells were

monitored via TIRF microscopy, conducted on a Leica microsystems AM TIRF MC DMI6000B

fitted with an EM-CCD camera (Hamamatsu) with HCX PL APO 63x/1.47 oil corrective

objectives, as described previously[17,21]. Images were analyzed with ImageJ (FIJI) as

described previously[17,21].

Western Blot Analysis of EGFR Expression and Autophosphorylation. Western blot analysis

of EGFR expression and autophosphorylation in transfected CHO-K1 cells was accomplished

as described previously with slight modification [17,21]. CHO-K1 cells expressing FLAG-tagged

EGFR variants were serum starved overnight (~12 hours). 48 hr post seeding cells were

stimulated without/with 100 ng/mL of EGF (16.7 nM) or TGF-α (16.7 nM) for 5 min at 37oC,

washed with serum free F12K media, and lysed in 100 uL of lysis buffer (50 mM Tris,150 mM

NaCl, 1 mM EDTA, 1 mM NaF, 1% Triton X-100, pH 7.5, 1x cOmplete protease inhibitor

cocktail, 1x Phos-Stop) for 1 hr. Clarified cell lysates were subjected to reducing 4-15%
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polyacrylamide SDS-PAGE electrophoresis and transferred to immuno-blot PVDF membranes.

Membranes were blocked with 5% milk in TBS-T Buffer (50 mM Tris, 150 mM NaCl, 0.1%

Tween, pH 7.4) for 1 hr followed by an overnight incubation at 4oC of indicated primary (rabbit

or mouse) antibodies. Blots were washed with TBS-T and incubated with either anti-rabbit or

anti-mouse goat horseradish peroxidase conjugate secondary antibodies for 1 hr at room

temperature, then washed with TBS-T. Blots were then visualized using Clarity Western ECL

reagents on a ChemiDoc XRS+/ ChemiDocMP instrument, and intensities of immuno-stained

bands measured with ImageJ 64[125]. When assessing phosphorylation of EGFR/ gel loading

at multiple positions using the same samples, the blots obtained with a given phospho-EGFR

antibody were stripped with Restore Western Blot Stripping Buffer/ and antibody stripping

buffer (Tris-HCl (62.5 mM), SDS (2%w/v), 2-mercaptoethanol (0.7%v/v)) and re-probed with a

different phospho-EGFR antibody.

Amplex red assay to detect peroxidase activity. Cellular lysates from CHO-K1 cells

expressing FLAg tagged variants were prepared as described for western blot analyses.

Clarified cell lysates were quantified for total protein content using Pierce™ 660nm Protein

Assay Reagent according to the manufacturer’s instructions. 20ug of the clarified cellular lysate

from each sample was diluted in 100 uL of DPBS pH 7.4 and was set up in Corning 96-Well x

360µL clear flat bottom assay microplate, non-treated black polystyrene. A 2X reaction mixture

was prepared by mixing 25 uL of 10mM Amplex UltraRed stock (50 uM final conc.), 11.4 uL of

3% H2O2 (1mM final conc.) and 2.5 mL of DPBS pH 7.4. Using a multichannel pipette, 100 uL

of reaction mixture was added to a 100 uL cell lysate solution and the fluorescence at 530/590

nm ex/em was recorded at regular intervals of 5 min for 1 hour on a Synergy HTX microplate

plate reader.
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Table 4.1. List of mutagenesis primers/ G-blocks used for cloning in Chapter 4

S.No. Name Primer/ G-block sequence

Project 1: Investigating the role of multimerization on JM structure

1. VEN/ERR forward
(V562E, E527R,
N528R)

5'-gtggcactgtatgcactcagacctcctctcaaactcccttggctcaccct-3'

2. VEN/ERR reverse
(V562E, E527R,
N528R)

5'-agggtgagccaagggagtttgagaggaggtctgagtgcatacagtgccac-3'

3. I562R forward 5'-ccagtgtgcccactacagggacggcccccac-3'

4. I562R reverse 5'-gtgggggccgtccctgtagtgggcacactgg-3'

5. V592E forward 5'-cacaggtggcactcatggccggcgt-3'

6. V592E reverse 5'-acgccggccatgagtgccacctgtg-3'

7. I545A forward 5'-cgtcctgtgcaggtggcgttcatggcctgagg-3'

8. I545A reverse 5'-cctcaggccatgaacgccacctgcacaggacg-3'

9. I556A forward 5'-gggcacactgggcacagttgtctggtccccgtcc-3'

10. I556A reverse 5'-ggacggggaccagacaactgtgcccagtgtgccc-3'

11. I545K forward 5'-cctgtgcaggtcttgttcatggcctgaggcag-3'

12. I545K reverse 5'-ctgcctcaggccatgaacaagacctgcacagg-3'

13. I556K forward 5'-tgggcacactgcttacagttgtctggtccccgt-3'

14. I556K reverse 5'-acggggaccagacaactgtaagcagtgtgccca-3'

15. T548R forward 5'-tccccgtcctctgcaggtgatgttcatgg-3'

16. T548R reverse 5'-ccatgaacatcacctgcagaggacgggga-3'

17. N554R forward 5'-gcacactggatacacctgtctggtccccgtcctg-3'

18. N554R reverse 5'-caggacggggaccagacaggtgtatccagtgtgc-3'

19. EGFR lin. forward 5’-GGCCTGAGGCAGGCACTCT-3’

20. EGFR lin. reverse 5’-CTGTGCCATCCAAACTGCACC-3’
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21. G-Block (AARE)
I545A/ I556A/
I562R/ V592E

5’-AGAGTGCCTGCCTCAGGCCatgaacgcaacctgcacaggacggggaccagac
aactgtgcacagtgtgcccactacagagacggcccccactgcgtcaagacctgcccggcag
gagtcatgggagaaaacaacaccctggtctggaagtacgcagacgccggccatgagtgcca
cCTGTGCCATCCAAACTGCACC-3’

22. G-Block (KKRE)
I545K/ I556K/
I562R/ V592E

5’-AGAGTGCCTGCCTCAGGCCatgaacaagacctgcacaggacggggaccagac
aactgtaagcagtgtgcccactacagagacggcccccactgcgtcaagacctgcccggcag
gagtcatgggagaaaacaacaccctggtctggaagtacgcagacgccggccatgagtgcca
cCTGTGCCATCCAAACTGCACC-3’

23. G-Block (RR)
(T548R, N554R)

5’-AGAGTGCCTGCCTCAGGCCatgaacatcacctgcagaggacggggaccagac
agatgtatccagtgtgcccactacattgacggcccccactgcgtcaagacctgcccggcagg
agtcatgggagaaaacaacaccctggtctggaagtacgcagacgccggccatgtgtgccac
CTGTGCCATCCAAACTGCACC-3’

Project 2: Evaluating the interactome of EGFR using APEX2 proximity labeling and MS

1. APEX2 lin. fwd 5’-ATGTATATCTCCTTCTTAAAGTTAAACAAAATTATT-3’

2. APEX2 lin. revs 5’-taacaaagcccgaaaggaag-3’

3. EGFR lin. fwd 5’-GTCTAGAGGGCCCGTTTAAACCCG-3’

4. EGFR lin. revs 5’-GCTCCAATAAATTCACTGCTTTGTGGCG-3’

5. EGFR-APEX2
forward

5’-GCGCCACAAAGCAGTGAATTTATTGGAGCAGGCTCGGGCgg
aaagtcttacccaactgtgagtgctgat-3'

6. EGFR-APEX2
reverse

5’-TGATCAGCGGGTTTAAACGGGCCCTCTAGACTAggcatcagcaa
acccaagctcggaaagctt-3’

7. D208N-APEX2 (f) 5’-CTTCAGCTACCTTCTaacAAGGCTCTTTTGTC-3’

8. D208N-APEX2 (r) 5’-GACAAAAGAGCCTTgttAGAAGGTAGCTGAAG-3’

9. G628A-EGFR (f) 5’-ACTGGGATGGTGgccGCCCTCCTCTTG-3’

10. G628A-EGFR (r) 5’-CAAGAGGAGGGCggcCACCATCCCAGT-3’

11. G628F-EGFR (f) 5’-GCCACTGGGATGGTGttcGCCCTCCTCTTGCTG-3’

12. G628F-EGFR (r) 5’-CAGCAAGAGGAGGGCgaaCACCATCCCAGTGGC-3’

13. G628V-EGFR (f) 5’-ACTGGGATGGTGgtgGCCCTCCTCTTG-3’

14. G628V-EGFR (r) 5’-CAAGAGGAGGGCcacCACCATCCCAGT-3’

15. K721M-EGFR (f) 5’-GTTAAAATTCCCGTCGCTATCgctGAATTAAGA-3’

16. K721M-EGFR (r) 5’-CTCTTAATTCagcGATAGCGACGGGAATTTTAAC-3’
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Figure 4.1. Inhibiting EGFR multimerization does not affect the EGF-type JM-A coiled coil

structure (A) Representative TIRF-M images of CHO-K1 cells illustrating ReAsH labeling (red

fluorescence) and expression (green fluorescence) of FLAG-tagged CCH-1 variants of WT

EGFR, IIIV/AARE, IIIV/KKRE, VEN/ERR, TN/RR in the absence and presence of EGF or TGF-α

stimulation (16.7 nM). Scale bars represent 10 µm. (B) Bar Plots illustrating the quantification of

TIRF-M results from ‘n’ cells as a fold-increase in expression-corrected ReAsH fluorescence

over background. Error bars represent s.e.m., ****p<0.0001, ***p<0.001, from one-way ANOVA

with Dunnett’s post-analysis accounting comparison to the control for each case without

growth factor treatment. n.s., not significant. (C) Representative western blots illustrating

expression (FLAG) and extent of Y1173, Y1068 and Erk phosphorylation of FLAG-tagged

CCH-1 variants of WT EGFR, IIIV/AARE, IIIV/KKRE, VEN/ERR, TN/RR in the absence and

presence of EGF or TGF-α stimulation (16.7 nM). Tubulin was used as a loading control.
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Figure 4.2. Mechanism of coiled coil mediated control of EGFR biology and methods to

dissect the EGFR interactome. The alternate JM-A coiled coil structures can regulate EGFR

biology by two possible mechanisms. (A) The two JM-A structures can alter the JM-A surface

that interacts with the EGFR kinase thereby altering kinase positioning and activity thereby

affecting the recruitment of diverse intracellular adaptors and down regulatory proteins. (B)

Alternately the two JM-A surface can directly alter the interactome of EGFR. (C) The coiled coil

dependent interactome of EGFR can be dissected using proximity labeling methodology

(utilizing the engineered peroxidase APEX2) followed by identification and characterization with

mass spectrometry.
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Figure 4.3. EGFR-APEX2 fusion retains enzymatic activity in both EGFR and APEX2 parts.

(A) Domain diagram of FLAG-tagged EGFR/ APEX constructs illustrating sequences of

EGFR-APEX2, WT EGFR, K721M-EGFR (whose EGFR kinase activity is abrogated), APEX2 and

D208N-APEX2 (whose peroxidase activity is abrogated). EGFR is fused to APEX2 with a short

flexible GGS linker. Location of K721M or D208N mutations is indicated in the domain diagram

with a yellow oval. (B) Representative western blot illustrating the expression of FLAG-tagged

APEX2, EGFR-APEX2 and D208N-APEX2 as detected with an anti-FLAG antibody. Tubulin was

used as a loading control. Representative western blots illustrating the expression (FLAG) and

autophosphorylation activity of WT EGFR, EGFR-APEX2 and K721M-EGFR (negative control)

at C-tail tyrosine residues (C) Y1045 and (D) Y1068. Tubulin was used as a loading control. Bar

plots illustrating the normalized percent of (E) pY1045/ FLAG or (F) pY1068/ FLAG for western

blots shown in (C) or (D) respectively. In each case, pY-EGFR/ FLAG signal is normalized to the

signal for WT EGFR treated with EGF. Error bars represent S.E.M. ****p<0.0001, ***p<0.001,

from one-way ANOVA with Dunnett’s post-analysis accounting comparison to no growth factor

treated control for each mutant case (black symbols) and comparison among variants to WT

EGFR treated with EGF (orange symbols) or WT EGFR treated with TGF-ɑ (yellow symbols)

n.s., not significant. (G) Reaction schematic illustrating the peroxidase (APEX2) mediated

conversion of Amplex Red (non-fluorescent) to Resorufin (fluorescent) in the presence of

hydrogen peroxide. (H) Results of amplex red assay illustrating the time dependent change in

fluorescence intensity detected from reaction of Amplex Red and H2O2 with cellular lysate from

CHO-K1 cells expressing APEX2 (pink), EGFR-APEX2 (without/ with 16.7 nM EGF /TGF-ɑ

treatment; represented by grey, orange and yellow lines respectively), D208N-APEX2 (purple;

negative control).

108



References

1 Carpenter, G. and Cohen, S. (1979) Epidermal Growth Factor. Annu. Rev. Biochem. 48,
193–216

2 Kawamoto, T. et al. (1983) Growth stimulation of A431 cells by epidermal growth factor:
identification of high-affinity receptors for epidermal growth factor by an anti-receptor
monoclonal antibody. Proc. Natl. Acad. Sci. 80, 1337–1341

3 Yarden, Y. and Sliwkowski, M.X. (2001) Untangling the ErbB signalling network. Nat. Rev.
Mol. Cell Biol. 2, 127–137

4 Lemmon, M.A. and Schlessinger, J. (2010) Cell signaling by receptor tyrosine kinases. Cell
141, 1117–34

5 Lemmon, M.A. et al. (2014) The EGFR Family: Not So Prototypical Receptor Tyrosine
Kinases. Cold Spring Harb. Perspect. Biol. 6,

6 Kovacs, E. et al. (2015) A structural perspective on the regulation of the epidermal growth
factor receptor. Annu Rev Biochem 84, 739–64

7 Harris, R.C. et al. (2003) EGF receptor ligands. Exp Cell Res 284, 2–13

8 Kochupurakkal, B.S. et al. (2005) Epigen, the Last Ligand of ErbB Receptors, Reveals
Intricate Relationships between Affinity and Mitogenicity*. J. Biol. Chem. 280, 8503–8512

9 da Cunha Santos, G. et al. (2011) EGFR Mutations and Lung Cancer. Annu. Rev. Pathol.
Mech. Dis. 6, 49–69

10 Yarden, Y. and Pines, G. (2012) The ERBB network: at last, cancer therapy meets systems
biology. Nat. Rev. Cancer 12, 553–563

11 Sigismund, S. et al. (2018) Emerging functions of the EGFR in cancer. Mol. Oncol. 12,
3–20

12 Garrett, T.P.J. et al. (2002) Crystal Structure of a Truncated Epidermal Growth Factor
Receptor Extracellular Domain Bound to Transforming Growth Factor α. Cell 110, 763–773

13 Ogiso, H. et al. (2002) Crystal Structure of the Complex of Human Epidermal Growth
Factor and Receptor Extracellular Domains. Cell 110, 775–787

14 Freed, D.M. et al. (2017) EGFR Ligands Differentially Stabilize Receptor Dimers to Specify
Signaling Kinetics. Cell 171, 683-695 e18

15 Endres, N.F. et al. (2013) Conformational coupling across the plasma membrane in
activation of the EGF receptor. Cell 152, 543–56

16 Arkhipov, A. et al. (2013) Architecture and membrane interactions of the EGF receptor. Cell
152, 557–69

17 Sinclair, J.K.L. et al. (2018) Mechanism of Allosteric Coupling into and through the Plasma
Membrane by EGFR. Cell Chem Biol 25, 857-870 e7

18 Jura, N. et al. (2009) Mechanism for activation of the EGF receptor catalytic domain by the

109

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


juxtamembrane segment. Cell 137, 1293–307

19 Brewer, M.R. et al. (2009) The Juxtamembrane Region of the EGF Receptor Functions as
an Activation Domain. Mol. Cell 34, 641–651

20 Scheck, R.A. et al. (2012) Bipartite tetracysteine display reveals allosteric control of
ligand-specific EGFR activation. ACS Chem Biol 7, 1367–76

21 Doerner, A. et al. (2015) Growth Factor Identity Is Encoded by Discrete Coiled-Coil
Rotamers in the EGFR Juxtamembrane Region. Chem Biol 22, 776–84

22 Zhang, X. et al. (2006) An Allosteric Mechanism for Activation of the Kinase Domain of
Epidermal Growth Factor Receptor. Cell 125, 1137–1149

23 Ferguson, K.M. et al. (2003) EGF Activates Its Receptor by Removing Interactions that
Autoinhibit Ectodomain Dimerization. Mol. Cell 11, 507–517

24 Bocharov, E.V. et al. (2018) Structural basis of the signal transduction via transmembrane
domain of the human growth hormone receptor. Biochim Biophys Acta Gen Subj 1862,
1410–1420

25 Mi, L.-Z. et al. (2011) Simultaneous visualization of the extracellular and cytoplasmic
domains of the epidermal growth factor receptor. Nat. Struct. Mol. Biol. 18, 984–989

26 Huang, Y. et al. (2020) A structural mechanism for the generation of biased agonism in the
epidermal growth factor receptor,

27 Ferguson, K.M. (2008) Structure-Based View of Epidermal Growth Factor Receptor
Regulation. Annu. Rev. Biophys. 37, 353–373

28 French, A.R. et al. (1995) Intracellular trafficking of epidermal growth factor family ligands
is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem
270, 4334–40

29 Roepstorff, K. et al. (2009) Differential effects of EGFR ligands on endocytic sorting of the
receptor. Traffic 10, 1115–27

30 Francavilla, C. et al. (2016) Multilayered proteomics reveals molecular switches dictating
ligand-dependent EGFR trafficking. Nat Struct Mol Biol 23, 608–18

31 Lowder, M.A. et al. (2015) Structural Differences between Wild-Type and Double Mutant
EGFR Modulated by Third-Generation Kinase Inhibitors. J Am Chem Soc 137, 6456–9

32 Aifa, S. et al. (2005) A basic peptide within the juxtamembrane region is required for EGF
receptor dimerization. Exp. Cell Res. 302, 108–114

33 Thiel, K.W. and Carpenter, G. (2007) Epidermal growth factor receptor juxtamembrane
region regulates allosteric tyrosine kinase activation. Proc. Natl. Acad. Sci. 104,
19238–19243

34 He, L. and Hristova, K. (2012) Consequences of replacing EGFR juxtamembrane domain
with an unstructured sequence. Sci. Rep. 2, 854

35 Macdonald-Obermann, J.L. and Pike, L.J. (2009) The Intracellular Juxtamembrane Domain

110

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


of the Epidermal Growth Factor (EGF) Receptor Is Responsible for the Allosteric
Regulation of EGF Binding*♦. J. Biol. Chem. 284, 13570–13576

36 Choowongkomon, K. et al. (2005) A Structural Model for the Membrane-bound Form of the
Juxtamembrane Domain of the Epidermal Growth Factor Receptor. J. Biol. Chem. 280,
24043–24052

37 Wood, E.R. et al. (2008) 6-Ethynylthieno[3,2-d]- and
6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases.
Proc. Natl. Acad. Sci. 105, 2773–2778

38 Nick Pace, C. and Martin Scholtz, J. (1998) A Helix Propensity Scale Based on
Experimental Studies of Peptides and Proteins. Biophys. J. 75, 422–427

39 Luedtke, N.W. et al. (2007) Surveying polypeptide and protein domain conformation and
association with FlAsH and ReAsH. Nat Chem Biol 3, 779–84

40 Scheck, R.A. and Schepartz, A. (2011) Surveying protein structure and function using
bis-arsenical small molecules. Acc Chem Res 44, 654–65

41 Adams, S.R. et al. (2002) New biarsenical ligands and tetracysteine motifs for protein
labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124,
6063–76

42 Griffin, B.A. et al. (1998) Specific covalent labeling of recombinant protein molecules inside
live cells. Science 281, 269–272

43 Walker, A.S. et al. (2016) Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH. J.
Am. Chem. Soc. 138, 7143–7150

44 Gray, J.J. et al. (2003) Protein–Protein Docking with Simultaneous Optimization of
Rigid-body Displacement and Side-chain Conformations. J. Mol. Biol. 331, 281–299

45 Lu, C. et al. (2010) Structural Evidence for Loose Linkage between Ligand Binding and
Kinase Activation in the Epidermal Growth Factor Receptor. Mol. Cell. Biol. 30, 5432–5443

46 Barth, P. et al. (2007) Toward high-resolution prediction and design of transmembrane
helical protein structures. Proc. Natl. Acad. Sci. 104, 15682–15687

47 Alford, R.F. et al. (2015) An Integrated Framework Advancing Membrane Protein Modeling
and Design. PLOS Comput. Biol. 11, e1004398

48 Yarov-Yarovoy, V. et al. (2006) Multipass membrane protein structure prediction using
Rosetta. Proteins 62, 1010–1025

49 Rotow, J. and Bivona, T.G. (2017) Understanding and targeting resistance mechanisms in
NSCLC. Nat. Rev. Cancer 17, 637–658

50 Lynch, T.J. et al. (2004) Activating Mutations in the Epidermal Growth Factor Receptor
Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med.

51 Pao, W. et al. (2004) EGF receptor gene mutations are common in lung cancers from
“never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib.
Proc. Natl. Acad. Sci. 101, 13306–13311

111

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


52 COSMIC (2020) Catalogue of Somatic Mutations in Cancer, release version 92. at
<https://cancer.sanger.ac.uk/cosmic>

53 Graham, R.P. et al. (2017) Worldwide Frequency of Commonly Detected EGFR Mutations.
Arch. Pathol. Lab. Med. 142, 163–167

54 Sharma, S.V. et al. (2007) Epidermal growth factor receptor mutations in lung cancer. Nat.
Rev. Cancer 7, 169–181

55 Hidalgo, M. et al. (2001) Phase I and Pharmacologic Study of OSI-774, an Epidermal
Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients With Advanced Solid
Malignancies. J. Clin. Oncol. 19, 3267–3279

56 Rosell, R. et al. (2012) Erlotinib versus standard chemotherapy as first-line treatment for
European patients with advanced EGFR mutation-positive non-small-cell lung cancer
(EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13,
239–246

57 Wakeling, A.E. et al. (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth
factor signaling with potential for cancer therapy. Cancer Res. 62, 5749–5754

58 Maemondo, M. et al. (2010) Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer
with Mutated EGFR. N. Engl. J. Med. 362, 2380–2388

59 Ferguson, F.M. and Gray, N.S. (2018) Kinase inhibitors: the road ahead. Nat. Rev. Drug
Discov. 17, 353–377

60 Eck, M.J. and Yun, C. (2010) Structural and Mechanistic Underpinnings of the Differential
Drug Sensitivity of EGFR Mutations in Non-Small Cell Lung Cancer. Biochim. Biophys.
Acta 1804, 559–566

61 Kosaka, T. et al. (2006) Analysis of Epidermal Growth Factor Receptor Gene Mutation in
Patients with Non–Small Cell Lung Cancer and Acquired Resistance to Gefitinib. Clin.
Cancer Res. 12, 5764–5769

62 Yun, C.-H. et al. (2008) The T790M mutation in EGFR kinase causes drug resistance by
increasing the affinity for ATP. Proc. Natl. Acad. Sci. U. S. A. 105, 2070–2075

63 Li, D. et al. (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in
preclinical lung cancer models. Oncogene 27, 4702–4711

64 Sequist, L.V. et al. (2013) Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in
Patients With Metastatic Lung Adenocarcinoma With EGFR Mutations. J. Clin. Oncol. 31,
3327–3334

65 Walter, A.O. et al. (2013) Discovery of a Mutant-Selective Covalent Inhibitor of EGFR that
Overcomes T790M-Mediated Resistance in NSCLC. Cancer Discov. 3, 1404–1415

66 Sequist, L.V. et al. (2015) Rociletinib in EGFR-Mutated Non–Small-Cell Lung Cancer. N.
Engl. J. Med. 372, 1700–1709

67 Zhou, W. et al. (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR
T790M. Nature 462, 1070–1074

112

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


68 Cross, D.A.E. et al. (2014) AZD9291, an Irreversible EGFR TKI, Overcomes
T790M-Mediated Resistance to EGFR Inhibitors in Lung Cancer. Cancer Discov. 4,
1046–1061

69 Soria, J.-C. et al. (2017) Osimertinib in Untreated EGFR-Mutated Advanced
Non–Small-Cell Lung Cancer. N. Engl. J. Med. DOI: 10.1056/NEJMoa1713137

70 Ramalingam, S.S. et al. (2020) Overall Survival with Osimertinib in Untreated,
EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 382, 41–50

71 Hedger, G. et al. (2015) The juxtamembrane regions of human receptor tyrosine kinases
exhibit conserved interaction sites with anionic lipids. Sci. Rep. 5, 9198

72 McLaughlin, S. et al. (2005) An Electrostatic Engine Model for Autoinhibition and Activation
of the Epidermal Growth Factor Receptor (EGFR/ErbB) Family. J. Gen. Physiol. 126,
41–53

73 Martín-Nieto, J. and Villalobo, A. (1998) The Human Epidermal Growth Factor Receptor
Contains a Juxtamembrane Calmodulin-Binding Site †. Biochemistry 37, 227–236

74 Sengupta, P. et al. (2009) EGFR Juxtamembrane Domain, Membranes, and Calmodulin:
Kinetics of Their Interaction. Biophys. J. 96, 4887–4895

75 Li, H. et al. (2012) Regulation of the Ligand-dependent Activation of the Epidermal Growth
Factor Receptor by Calmodulin*. J. Biol. Chem. 287, 3273–3281

76 Sato, T. et al. (2006) Structure of the Membrane Reconstituted
Transmembrane−Juxtamembrane Peptide EGFR(622−660) and Its Interaction with
Ca2+/Calmodulin. Biochemistry 45, 12704–12714

77 Hake, M.J. et al. (2008) Specificity Determinants of a Novel Nck Interaction with the
Juxtamembrane Domain of the Epidermal Growth Factor Receptor † , ‡. Biochemistry 47,
3096–3108

78 Poppleton, H.M. et al. (2000) The Juxtamembrane Region of the Epidermal Growth Factor
Receptor Is Required for Phosphorylation of GαS. Arch. Biochem. Biophys. 383, 309–317

79 Hunter, T. et al. (1984) Protein kinase C phosphorylation of the EGF receptor at a
threonine residue close to the cytoplasmic face of the plasma membrane. Nature 311,
480–483

80 Cochet, C. et al. (1984) C-kinase phosphorylates the epidermal growth factor receptor and
reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol.
Chem. 259, 2553–2558

81 Friedman, B. et al. (1984) Tumor promoters block tyrosine-specific phosphorylation of the
epidermal growth factor receptor. Proc. Natl. Acad. Sci. U. S. A. 81, 3034–3038

82 Davis, R.J. and Czech, M.P. (1985) Tumor-promoting phorbol diesters cause the
phosphorylation of epidermal growth factor receptors in normal human fibroblasts at
threonine-654. Proc. Natl. Acad. Sci. 82, 1974–1978

83 Lin, C.R. et al. (1986) Protein kinase C phosphorylation at Thr 654 of the unoccupied EGF
receptor and EGF binding regulate functional receptor loss by independent mechanisms.

113

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


Cell 44, 839–848

84 Morrison, P. et al. (1993) Role of threonine residues in regulation of the epidermal growth
factor receptor by protein kinase C and mitogen-activated protein kinase. J. Biol. Chem.
268, 15536–15543

85 Takishima, K. et al. (1988) Thapsigargin, a novel promoter, phosphorylates the epidermal
growth factor receptor at threonine 669. Biochem. Biophys. Res. Commun. 157, 740–746

86 Winograd-Katz, S.E. and Levitzki, A. (2006) Cisplatin induces PKB/Akt activation and p38
MAPK phosphorylation of the EGF receptor. Oncogene 25, 7381–7390

87 Cochet, C. et al. (1991) Interaction between the epidermal growth factor receptor and
phosphoinositide kinases. J. Biol. Chem. 266, 637–644

88 Kil, S.J. et al. (1999) A Leucine-based Determinant in the Epidermal Growth Factor
Receptor Juxtamembrane Domain Is Required for the Efficient Transport of
Ligand-Receptor Complexes to Lysosomes. J. Biol. Chem. 274, 3141–3150

89 Kil, S.J. and Carlin, C. (2000) EGF receptor residues Leu679, Leu680 mediate selective
sorting of ligand-receptor complexes in early endosomal compartments. J. Cell. Physiol.
185, 47–60

90 Cai, G. et al. (2018) TRAF4 binds to the juxtamembrane region of EGFR directly and
promotes kinase activation. Proc. Natl. Acad. Sci. 115, 11531–11536

91 Viegas, A. et al. (2020) Molecular Architecture of a Network of Potential Intracellular EGFR
Modulators: ARNO, CaM, Phospholipids, and the Juxtamembrane Segment. Structure 28,
54-62.e5

92 Kluba, M. et al. (2015) Inhibition of Receptor Dimerization as a Novel Negative Feedback
Mechanism of EGFR Signaling. PLOS ONE 10, e0139971

93 He, C. et al. (2002) The epidermal growth factor receptor juxtamembrane domain has
multiple basolateral plasma membrane localization determinants, including a dominant
signal with a polyproline core. J. Biol. Chem. 277, 38284–38293

94 Cotton, C.U. et al. (2013) Basolateral EGF receptor sorting regulated by functionally
distinct mechanisms in renal epithelial cells. Traffic Cph. Den. 14, 337–354

95 Hsu, S.-C. and Hung, M.-C. (2007) Characterization of a novel tripartite nuclear localization
sequence in the EGFR family. J. Biol. Chem. 282, 10432–10440

96 Lin, S.Y. et al. (2001) Nuclear localization of EGF receptor and its potential new role as a
transcription factor. Nat. Cell Biol. 3, 802–808

97 Gan, H.K. et al. (2009) The EGFRvIII variant in glioblastoma multiforme. J. Clin. Neurosci.
16, 748–754

98 Gan, H.K. et al. (2013) The epidermal growth factor receptor variant III (EGFRvIII): where
wild things are altered. FEBS J. 280, 5350–5370

99 Brennan, C.W. et al. (2013) The Somatic Genomic Landscape of Glioblastoma. Cell 155,
462–477

114

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


100 An, Z. et al. (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma:
signaling pathways and targeted therapies. Oncogene 37, 1561–1575

101 Yamazaki, H. et al. (1988) Amplification of the structurally and functionally altered
epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol. Cell. Biol. 8,
1816–1820

102 Sugawa, N. et al. (1990) Identical splicing of aberrant epidermal growth factor receptor
transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl. Acad. Sci.
87, 8602–8606

103 Ekstrand, A.J. et al. (1992) Amplified and rearranged epidermal growth factor receptor
genes in human glioblastomas reveal deletions of sequences encoding portions of the N-
and/or C-terminal tails. Proc. Natl. Acad. Sci. 89, 4309–4313

104 Ymer, S.I. et al. (2011) Glioma Specific Extracellular Missense Mutations in the First
Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand
Independent Activation. Cancers 3, 2032–2049

105 Mozumdar, D. et al. (2020) Discrete Coiled Coil Rotamers Form within the EGFRvIII
Juxtamembrane Domain. Biochemistry 59, 3965–3972

106 Nishikawa, R. et al. (1994) A mutant epidermal growth factor receptor common in human
glioma confers enhanced tumorigenicity. Proc. Natl. Acad. Sci. 91, 7727–7731

107 Nagane, M. et al. (1996) A Common Mutant Epidermal Growth Factor Receptor Confers
Enhanced Tumorigenicity on Human Glioblastoma Cells by Increasing Proliferation and
Reducing Apoptosis. Cancer Res. 56, 5079–5086

108 Huang, H.-J.S. et al. (1997) The Enhanced Tumorigenic Activity of a Mutant Epidermal
Growth Factor Receptor Common in Human Cancers Is Mediated by Threshold Levels of
Constitutive Tyrosine Phosphorylation and Unattenuated Signaling. J. Biol. Chem. 272,
2927–2935

109 Frederick, L. et al. (2000) Diversity and Frequency of Epidermal Growth Factor Receptor
Mutations in Human Glioblastomas. Cancer Res. 60, 1383–1387

110 Hanif, F. et al. (2017) Glioblastoma Multiforme: A Review of its Epidemiology and
Pathogenesis through Clinical Presentation and Treatment. Asian Pac. J. Cancer Prev.
APJCP 18, 3–9

111 Shinojima, N. et al. (2003) Prognostic Value of Epidermal Growth Factor Receptor in
Patients with Glioblastoma Multiforme. Cancer Res. 63, 6962–6970

112 Heimberger, A.B. et al. (2005) Prognostic Effect of Epidermal Growth Factor Receptor and
EGFRvIII in Glioblastoma Multiforme Patients. Clin. Cancer Res. 11, 1462–1466

113 Paez, J.G. et al. (2004) EGFR Mutations in Lung Cancer: Correlation with Clinical
Response to Gefitinib Therapy. Science 304, 1497–1500

114 Kobayashi, S. et al. (2005) EGFR Mutation and Resistance of Non–Small-Cell Lung
Cancer to Gefitinib. N. Engl. J. Med. 352, 786–792

115 Pao, W. et al. (2005) Acquired Resistance of Lung Adenocarcinomas to Gefitinib or

115

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain. PLOS Med. 2,
e73

116 Moyer, J.D. et al. (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an
inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838–4848

117 Jia, Y. et al. (2016) Overcoming EGFR(T790M) and EGFR(C797S) resistance with
mutant-selective allosteric inhibitors. Nature 534, 129–132

118 Brandes, A.A. et al. (2008) Epidermal Growth Factor Receptor Inhibitors in
Neuro-oncology: Hopes and Disappointments. Clin. Cancer Res. 14, 957–960

119 van den Bent, M.J. et al. (2009) Randomized Phase II Trial of Erlotinib Versus
Temozolomide or Carmustine in Recurrent Glioblastoma: EORTC Brain Tumor Group
Study 26034. J. Clin. Oncol. 27, 1268–1274

120 Peereboom, D.M. et al. (2010) Phase II trial of erlotinib with temozolomide and radiation in
patients with newly diagnosed glioblastoma multiforme. J. Neurooncol. 98, 93–99

121 Reardon, D.A. et al. (2015) Phase I/randomized phase II study of afatinib, an irreversible
ErbB family blocker, with or without protracted temozolomide in adults with recurrent
glioblastoma. Neuro-Oncol. 17, 430–439

122 Dawson, J.P. et al. (2005) Epidermal Growth Factor Receptor Dimerization and Activation
Require Ligand-Induced Conformational Changes in the Dimer Interface. Mol. Cell. Biol.
25, 7734–7742

123 Moscatello, D.K. et al. (1996) Transformational and altered signal transduction by a
naturally occurring mutant EGF receptor. Oncogene 13, 85–96

124 Okamoto, I. et al. (2003) Expression of constitutively activated EGFRvlll in non-small cell
lung cancer. Cancer Sci. 94, 50–56

125 Schneider, C.A. et al. (2012) NIH Image to ImageJ: 25 years of Image Analysis. Nat.
Methods 9, 671–675

126 Pines, G. et al. (2010) Oncogenic mutant forms of EGFR: lessons in signal transduction
and targets for cancer therapy. FEBS Lett. 584, 2699–2706

127 Ebner, R. and Derynck, R. (1991) Epidermal growth factor and transforming growth
factor-alpha: differential intracellular routing and processing of ligand-receptor complexes.
Cell Regul 2, 599–612

128 Ronan, T. et al. (2016) Different Epidermal Growth Factor Receptor (EGFR) Agonists
Produce Unique Signatures for the Recruitment of Downstream Signaling Proteins. J Biol
Chem 291, 5528–40

129 Freed, D.M. et al. (2017) EGFR Ligands Differentially Stabilize Receptor Dimers to Specify
Signaling Kinetics. Cell 171, 683-695 e18

130 Macdonald-Obermann, J.L. and Pike, L.J. (2014) Different epidermal growth factor (EGF)
receptor ligands show distinct kinetics and biased or partial agonism for homodimer and
heterodimer formation. J Biol Chem 289, 26178–88

116

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


131 O’Shea, E.K. et al. (1993) Peptide “Velcro”: design of a heterodimeric coiled coil. Curr Biol
3, 658–67

132 Harbury, P.B. et al. (1993) A switch between two-, three-, and four-stranded coiled coils in
GCN4 leucine zipper mutants. Science 262, 1401–7

133 Krug, A.W. et al. (2003) Aldosterone Stimulates Epidermal Growth Factor Receptor
Expression *. J. Biol. Chem. 278, 43060–43066

134 Bakker, J. et al. (2017) The EGFR odyssey - from activation to destruction in space and
time. J Cell Sci 130, 4087–4096

135 Mu, F.T. et al. (1995) EEA1, an early endosome-associated protein. EEA1 is a conserved
alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a
calmodulin-binding IQ motif. J Biol Chem 270, 13503–11

136 Ullrich, O. et al. (1996) Rab11 regulates recycling through the pericentriolar recycling
endosome. J Cell Biol 135, 913–24

137 Ceresa, B.P. and Bahr, S.J. (2006) rab7 activity affects epidermal growth factor:epidermal
growth factor receptor degradation by regulating endocytic trafficking from the late
endosome. J Biol Chem 281, 1099–106

138 Fortian, A. and Sorkin, A. (2014) Live-cell fluorescence imaging reveals high stoichiometry
of Grb2 binding to the EGF receptor sustained during endocytosis. J. Cell Sci. 127,
432–444

139 Macdonald-Obermann, J.L. and Pike, L.J. (2018) Allosteric regulation of epidermal growth
factor (EGF) receptor ligand binding by tyrosine kinase inhibitors. J. Biol. Chem. 293,
13401–13414

140 Chung, B.M. et al. (2009) Aberrant trafficking of NSCLC-associated EGFR mutants
through the endocytic recycling pathway promotes interaction with Src@. BMC Cell Biol.
10, 84

141 Zhou, W. et al. (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR
T790M. Nature 462, 1070–1074

142 Lemmon, M.A. and Schlessinger, J. (2010) Cell signaling by receptor tyrosine kinases. Cell
141, 1117–34

143 Wilson, K.J. et al. (2009) Functional selectivity of EGF family peptide growth factors:
implications for cancer. Pharmacol Ther 122, 1–8

144 Kil, S.J. et al. (1999) A Leucine-based Determinant in the Epidermal Growth Factor
Receptor Juxtamembrane Domain Is Required for the Efficient Transport of
Ligand-Receptor Complexes to Lysosomes. J. Biol. Chem. 274, 3141–3150

145 Huang, F. et al. (2003) Tyrosine Phosphorylation of the β2 Subunit of Clathrin Adaptor
Complex AP-2 Reveals the Role of a Di-leucine Motif in the Epidermal Growth Factor
Receptor Trafficking. J. Biol. Chem. 278, 43411–43417

146 Yuan, M. et al. (2019) The emerging treatment landscape of targeted therapy in
non-small-cell lung cancer. Signal Transduct. Target. Ther. 4, 1–14

117

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


147 Thress, K.S. et al. (2015) Acquired EGFR C797S mutation mediates resistance to
AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562

148 Westover, D. et al. (2018) Mechanisms of acquired resistance to first- and
second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 29, i10–i19

149 Liu, Q. et al. (2018) EGFR-TKIs resistance via EGFR-independent signaling pathways.
Mol. Cancer 17, 53

150 Thomas, R. and Weihua, Z. (2019) Rethink of EGFR in Cancer With Its Kinase
Independent Function on Board. Front. Oncol. 9,

151 Grandal, M.V. et al. (2007) EGFRvIII escapes down-regulation due to impaired
internalization and sorting to lysosomes. Carcinogenesis 28, 1408–1417

152 Shtiegman, K. et al. (2007) Defective ubiquitinylation of EGFR mutants of lung cancer
confers prolonged signaling. Oncogene 26, 6968–6978

153 Banik, S.M. et al. (2020) Lysosome-targeting chimaeras for degradation of extracellular
proteins. Nature 584, 291–297

154 Ahn, G. et al. (2021) LYTACs that engage the asialoglycoprotein receptor for targeted
protein degradation. Nat. Chem. Biol. DOI: 10.1038/s41589-021-00770-1

155 Cotton, A.D. et al. (2021) Development of Antibody-Based PROTACs for the Degradation
of the Cell-Surface Immune Checkpoint Protein PD-L1. J. Am. Chem. Soc. 143, 593–598

156 Bolte, S. and Cordelières, F.P. (2006) A guided tour into subcellular colocalization analysis
in light microscopy. J. Microsc. 224, 213–232

157 Dunn, K.W. et al. (2011) A practical guide to evaluating colocalization in biological
microscopy. Am. J. Physiol. - Cell Physiol. 300, C723–C742

158 Homewood, C.A. et al. (1972) Lysosomes, p H and the Anti-malarial Action of Chloroquine.
Nature 235, 50–52

159 Fenteany, G. et al. (1995) Inhibition of proteasome activities and subunit-specific
amino-terminal threonine modification by lactacystin. Science 268, 726–731

160 Schlessinger, J. (2002) Ligand-Induced, Receptor-Mediated Dimerization and Activation of
EGF Receptor. Cell 110, 669–672

161 Yarden, Y. and Schlessinger, J. (1987) Epidermal growth factor induces rapid, reversible
aggregation of the purified epidermal growth factor receptor. Biochemistry 26, 1443–1451

162 Clayton, A.H.A. et al. (2005) Ligand-induced dimer-tetramer transition during the activation
of the cell surface epidermal growth factor receptor-A multidimensional microscopy
analysis. J. Biol. Chem. 280, 30392–30399

163 Kozer, N. et al. (2013) Exploring higher-order EGFR oligomerisation and
phosphorylation—a combined experimental and theoretical approach. Mol. Biosyst. 9,
1849–1863

164 Huang, Y. et al. (2016) Molecular basis for multimerization in the activation of the

118

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f


epidermal growth factor receptor. eLife 5, e14107

165 Needham, S.R. et al. (2016) EGFR oligomerization organizes kinase-active dimers into
competent signalling platforms. Nat. Commun. 7, 13307

166 Tong, J. et al. (2014) Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR)
Interactome and Post-translational Modifications Associated with Receptor Endocytosis in
Response to EGF and Stress. Mol. Cell. Proteomics MCP 13, 1644–1658

167 Chen, Y. et al. (2019) A Cross-Linking-Aided Immunoprecipitation/Mass Spectrometry
Workflow Reveals Extensive Intracellular Trafficking in Time-Resolved, Signal-Dependent
Epidermal Growth Factor Receptor Proteome. J. Proteome Res. 18, 3715–3730

168 Lam, S.S. et al. (2015) Directed evolution of APEX2 for electron microscopy and proximity
labeling. Nat. Methods 12, 51–54

169 Hung, V. et al. (2016) Spatially resolved proteomic mapping in living cells with the
engineered peroxidase APEX2. Nat. Protoc. 11, 456–475

170 Hung, V. et al. (2017) Proteomic mapping of cytosol-facing outer mitochondrial and ER
membranes in living human cells by proximity biotinylation. eLife 6, e24463

171 Lobingier, B.T. et al. (2017) An Approach to Spatiotemporally Resolve Protein Interaction
Networks in Living Cells. Cell 169, 350-360.e12

119

https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f
https://www.zotero.org/google-docs/?pBGJ4f

	Investigating the Effect of Allostery on Downstream Biology of the Epidermal Growth Factor Receptor
	Recommended Citation

	20210913 Cover for thesis
	Mozumdar Dissertation 2021

