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Abstract

Computational Principles of Multiple-Task Learning in Humans and Artificial Neural

Networks

Daniel B. Ehrlich

2021

While humans can learn to perform many specific and highly specialized behaviors,
perhaps what is most unique about human cognitive capabilities is their capacity to gen-
eralize, to share information across contexts and adapt to the myriad problems that can
arise in complex environments. While it is possible to imagine agents who learn to deal
with each challenge they experience separately, humans instead integrate new situations
into the framework of the tasks they have experienced in their life, allowing them to reuse
insight and strategies across them. Yet the precise forms of shared representations across
tasks, as well as computational principles for how sharing of insight over learning multiple
tasks may impact behavior, remain uncertain.

The significant complexity in the problem of cognition capable of generalizing across
tasks has been both an inspiration and a significant impediment to building useful and
insightful models. The increasing utilization of artificial neural networks (ANN) as a
model for cortical computation provides a potent opportunity to identify mechanisms and
principles underlying multiple-task learning and performance in the brain. In this work we
use ANNSs in conjunction with human behavior to explore how a single agent may utilize
information across multiple tasks to create high performing and general representations.

First, we present a flexible framework to facilitate training recurrent neural networks
(RNN), increasing the ease of training models on tasks of interest. Second, we explore
how an ANN model can build shared representations to facilitate performance on a wide

variety of delay task problems, as well as how such a joint representation can explain



observed phenomena identified in the firing rates of prefrontal cortical neurons. Third,
we analyze human multiple-task learning in two tasks and use ANNs to provide insight
into how the structure of representations can give rise to the specific learning patterns and
generalization strategies observed in humans.

Overall, we provide computational insight into mechanisms of multiple-task learning
and generalization as well as use those findings in conjunction with observed human be-

havior to constrain possible computational mechanisms employed in cortical circuits.
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Chapter 1

Introduction

While cognitive and systems neuroscience research predominantly proceeds a single well
controlled task at a time, in the real world we must learn how to deal with varied situations
with experiences and training constantly being interleaved. For that reason it is vital that
we consider mechanisms of acquiring and solving multiple tasks in parallel that might
facilitate the observed capacity of humans to deal with these challenges. In this work, we
explore the ways in which task optimized artificial neural network models (ANNs) can be
used to provide insight into neural computations underlying learning and flexible cognition
across multiple tasks.

Despite the potential utility of ANNs as a model for neuro-biological computation,
there remain barriers to entry that prevent many neuroscience labs from being able to
utilize them efficiently. In Chapter 2 we describe a software package ("PsychRNN”) we
developed to facilitate research using continuous time recurrent neural network (RNN)
models[2]. In order to make training RNNs more accessible we abstracted away the deep
learning technicalities such that users can focus on task design and network parameter
selections. To increase the applicability to neuroscientific questions we included a wide
array of neuro-biologically motivated constraints not commonly available in off-the-shelf

neural network training platforms.



Using RNNs we then investigated the relationship between flexible cognition on delay
tasks and observed neural representations. Prior research recording single unit activity
in macaques performing individual delay tasks identified heterogeneous tuning profiles
for the same populations in prefrontal cortex[6, 4, 3]]. In Chapter 3, we describe a novel
paradigm capable of dissociating potential representations and a putative framework to
explain how a single unified representation can enable efficient computation. We find our
framework was consistent with measured human behavior as well as a solution identified
by our RNN. We further identify how the implementation of our RNN model gives rise to
phenomena long observed in prefrontal populations during delay tasks.

In contrast to the majority of studies which utilize fully optimized ANN models, we
wished to investigate the suitability of ANN models for explaining human rule learning be-
havior both across tasks learned independently and within multiple tasks learned contem-
poraneously. It has long been observed that humans can learn a wide variety of rules from
experience including those that require non-linear combinations of features[S]. Despite
this, efficient learning can benefit from information sharing across rules[/1]. We generate a
behavioral paradigm of deterministic rule learning, finding evidence of linear components
of learning in human behavior. While learning dynamics in a feedforward ANNs also
demonstrate a linear learning component, we find that it is incapable of correctly matching
between rule learning rate.

Taken together, we show how RNNs can provide a robust and insightful model for
the mechanisms underlying algorithmic level solutions to neuro-behavioral problems of

interest.
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Chapter 2

Background

2.1 Multi-Task Learning

While it may seem intuitive that being able to learn tasks in isolation from possible in-
terference and distraction is preferable, observed behavior tends to paint a more complex
picture. In humans, learning multiple tasks can both facilitate and inhibit accurate rule
learning[/l], with the direction and magnitude of the effect impacted by precise choices
regarding the task pair[30]. Humans in multi-task environments have been found to share
policies between contexts[29], enabling quick adaptation to novel task environments.
Research on learning multiple tasks contemporaneously has a long history in statistical
learning[4]], with multiple theories regarding how training an agent on more than one task
could potentially lead to quicker learning trajectories and more robust task performance.
First, learning a second related task can act as implicit data augmentation. The inclusion of
additional samples could provide a potential advantage where not enough data exists. Even
in cases with sufficient samples implicit data augmentation can increase data-efficiency, or
the speed at which learning progresses given a number of trials. Second, an auxiliary
task can act to regularize representations, incentivizing the agent to learn representations

that can be useful for multiple tasks[36]. This type of general representation can help an



agent deal with novel situations. Third, a model can benefit from “eavesdropping” on the
solution to an alternative problem. In cases where a given intermediate learned feature is
more easily acquired in one of the pair of tasks, it is possible for the other task to gain
advantage through enabling quicker acquisition of that feature than would be possible in
learning the task alone[26].

Neurobiological studies of multi-task behavior and learning can help us understand the
source and impact of the mechanisms underlying generalization across tasks. Conjunctive
representations similar to those one would expect if humans are forming short term re-
sponse maps have been identified using electroencephalography (EEG)[16]]. In functional
magnetic resonance imaging (fMRI) studies of humans performing multi-task experiments
have linked the adaptive control of multi-task environments to the prefrontal cortex (PFC)

as well as a more general network of frontal and parietal regions of cortex[6].

2.2 Executive Function and the Prefrontal Cortex

2.2.1 What is Executive Function?

Executive function is a term often used to describe a set of associated higher order cog-
nitive processes used to facilitate flexible and adaptive behavior[13]]. These include pro-
cesses related to adapting to novel environments such as learning [7]], but also to cognition
directed at enabling flexible contextual processing [24]]. For this reason executive func-
tion has often been associated with reasoned deliberative cognition, and contrasted with
reflexive behavior, but executive function need not be consciously applied.

The extent to which executive function, an admittedly broad psychological construct,
can be considered unified remains unclear. A factor analysis of individual differences

identified three main components underlying behavior on a battery of executive function



tasks (1) set shifting, (2) information monitoring and (3) response inhibition [20]. Despite
the identification of separable factors the authors also observed correlation between factors

leading to the possible that at least in part they share common mechanisms.

2.2.2 The Role of Prefrontal Cortex in Executive Function

The prefrontal cortex composes roughly 10% of the human cortex, resting in the rostral
frontal cortex. Notably, the prefrontal cortex is phylogenetically enlarged in both humans
and to a lesser extent our near non-human primate relatives.

One of the earliest associations of the prefrontal cortex with executive functions comes
from the famous lesion patient Phineas Gage. Gage suffered an accident in which his left
prefrontal cortex was largely destroyed. Despite a generally remarkable recovery it was
observed that Gage had sustained a broad array of behavioral deficits related to impulse
control and planning.

In more recent years, systematic loss of function studies of patients with cortical le-
sions have implicated a network of frontal parietal regions as central to enabling executive
function [1]].

Complimentary work in both humans and animal models, using multiple neural mea-
surements, has further explicated the association of prefrontal cortex and executive con-
trol. One productive line of research has been to explore evidence of the sub-components
of executive function, such as those used in decision making and working memory.

For example, converging lines of research from functional magentic resonance imaging
(fMRI) studies in humans have indicated the computation of values necessary for decision
making in prefrontal regions [19, 27, 38]. Further analysis has demonstrated not only that
PFC activity is modulated by reward components, but that rather that activity correlates
with a common and subjective valuation mechanism necessary to compare alternative op-

tions [14, [17].



Working memory implementation has been predominantly identified using in-vivo
recordings from primates conducting delay tasks. Multiple research groups have identified
task variable selective persistent activity in PFC individual neuron firing rates across a va-
riety of paradigms [11,22,131]. In humans, evidence of both persistent motor and stimulus

selective working memory has been observed in the BOLD response of PFC [9, 8].

2.3 Artificial Neural Networks in Neuroscience

Artificial neural networks (ANNs) form a class of distributed computational models orig-
inally based on the observed neuronal connections in the brain. Each model is made up of
many independent units, each performing an independent non-linear computation. Units
are connected by a set of weights that determine how much the output of one unit will
impact another.

Where early models in neuroscience were traditionally hand-designed to match either
a neurobiological or behavioral phenomena of interest, ANNSs are usually initialized with
random connections between units and then optimized to perform a given task. The most
common optimization protocols are all variants of what is called gradient descent, in which
the model is evaluated for its current set of weights and then each weight is updated a small
step in the direction that would have produced better behavior. Over many iterations of
this process the networks can eventual reach connection weights that accurately perform
many tasks.

Importantly this adds two important features to ANN models. First, ANN models
can be constructed without a prima facie hypothesis of the solution. This is extremely
important when you wish to investigate the sensitivity of solutions to task or to generate
a model for a task for which no known solution exists. Second, models learned by ANNs

are not constrained by the near linearity and low dimensionality in which human intuition,



and therefore past models, have predominantly operated.

2.3.1 Feedforward Neural Networks

The most common structure of ANNs are what are referred to as feedforward. Feed-
forward ANNSs are built such that weights between units cannot form a cycle, causing
information flow to only process in one direction through the model.

Due to the intrinsically hierarchical nature of processing in feedforward ANNs, they
have been used to represent hierarchical processing of sensory inputs across sensory re-
gions in cortex. The earliest and most influential work demonstrated that task optimized
feeforward neural netwokrs were capable of explaining more variance in the activity pat-
terns observed in higher order visual object recognition areas in temporal cortex than had
previous models hand built to simulate neural data [34} 35]. In addition the authors ob-
served that as models object recognition accuracy improved their fit to neural data did as
well, demonstrating an empirical coupling between task performance and match to neural
data.

Following this research other groups have expanded to additional sensory modalities
including auditory[[15]] and olfactory systems, indicating that the utility of task optimized

ANNSs can expand beyond the visual system.

2.3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs), in contrast to feedforward networks, do contain cycles
in their between unit connections such that the output from a unit at one time point can
impact activity of a different unit at a future time. For this reason they have been used
to investigate many behavioral paradigms that unfold across time. Further because of

the potential for reciprocal interactions between units, RNNs are capable of enormous



flexibility in their dynamics allowing researchers the ability to use RNN training as a
search through possible dynamic solutions to a given computational or cognitive problem.

While in most machine learning contexts RNNs proceed in discrete steps, in our work
we focus on what is referred to as continuous time RNNs (ctRNN). ctRNNs use a time
constant parameter, 7, to smoothly adapt the state of the network between time points

approximating a smooth dynamical system.

Ti = —x + W™ + Whu + b + 2.1)
r = f(z) = max(z,0) (2.2)
2z = WOy 4 pout (2.3)

This smoothness across time is one that is observed in cortical dynamics [[12} 21]] mak-
ing it a useful constraint for RNN models of neural circuits.

Despite recent advances in computational power, RNN modeling of neural and behav-
ioral phenomena has a long history[39]]. Recent increases in the size of trainable networks,
has led to an explosion in the types of tasks that researchers can successfully and efficiently
model using RNNss.

Researchers have used RNNs to study processes as varied as context dependence in
perception [18]], interval timing and movement production [23], model based learning [3].
Not only can an RNN learn a single task, but of significant relevance to this work, it has
been shown that the same RNN model can learn to perform multiple tasks using shared
representations to complete them [37].

Analysis of artificial neural network models has proceeded largely along two paths, (1)
attempts to find a unified approach that will reveal insight into an arbitrary model [28]] and

(2) analysis custom built to draw insight from a specific trained ANN [23} 5]].



The first method has generally proceeded through identification of common dynami-
cal features, such as fixed and slow points[28]] or through identified population level fea-
tures such as clustering in the recurrent population[10]. While this method has significant
promise, in our work we wish to identify more specific descriptions of the algorithmic
basis of our ANN models.

For that reason we predominantly use the second analysis framework using a more
empirical and custom tailored set of analyses to tease apart rival algorithmic and imple-
mentation hypotheses about a trained ANN. This may involve running a trained ANN in
a novel experimental setting, using lesions to parts of the ANN, doing direct analysis on
the weights or the activity states of units of the network using any of the statistical tools
common to empirical research such as clustering or classification.

In many ways this second approach mirrors the methods traditionally applied in sys-
tems neuroscience research, with analyses being custom designed to match the questions

being addressed by the project and the constraints of the system being evaluated.

2.4 Comparison to Prior Modeling

Modelling in prefrontal cortex has traditionally been isolated to a specific process of in-
terest, with only a few recent studies trying to tackle the question of a system capable of
performing multiple tasks[36]. Among these processes are learning (especially structure
learning), working memory and flexible cognition.

Traditionally, working memory modeling has been focused on the issue of stimulus
maintenance over delays. For this reason early models have focused on mechanisms
to form multi-stable circuits which are capable of maintaining states initiated earlier in
a trial [32, 33]. Such models can be expanded to encode both binary and continuous

variables[25], but the usage of such stored information is overwhelmingly considered a

10



separate computational problem and left exogenous of implemented models.

In RNN modeling of working memory there is no enforcement of modularity between
working memory and other cognitive processes including planning, the decision process
itself or cognitive control. In chapter 4 we explore how such a model actually combines
these processes into a single computation rather than attempting to coordinate modules
implementing each one separately.

Flexible cognition, or the ability to parse stimuli and states into many possible group-
ings, is another process associated with the PFC. One recent theory involves the random
and broadly mixed combination of features for potential further computation[24]]. Despite
this there has been recent doubt cast on the extent to which such a full and random mix is
optimal for cognition[2]. In chapter 4 we investigate a mixed but structured representation
for flexible computation in a specific delay task paradigm. In chapter 5 we use largely ran-
dom mixed models to investigate possible learning dynamics over different deterministic
rules, although we find the specific structure of mixing to be important for match to human

behavior.

11
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Chapter 3

PsychRNN: An Accessible and Flexible
Python Package for Training Recurrent

Neural Network Models on Cognitive
Tasks

Daniel Ehrlich*, Jasmine Stone*, David Brandfonbrener, Alex
Atanasov, John Murray
Ehrlich, D. B., Stone, J. T., Brandfonbrener, D., Atanasov, A., Murray, J. D. (2021).
PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural

Network Models on Cognitive Tasks. Eneuro, 8(1).

Abstract

Modeling using recurrent neural networks (RNNs) is quickly becoming a popular strat-
egy to probe the mechanisms behind cognitive tasks. RNNs are able to accomplish many
popular cognitive tasks and are highly experimentally tractable due to their observability
and manipulability. Modeling is a fast, inexpensive way to investigate the abilities and

limitations of proposed mechanisms behind cognitive tasks, and can lead to deeper under-
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standing of current proposed mechanisms and new mechanistic hypotheses. These insights
can in turn guide experimental focus to better distinguish between current proposals.

Here we introduce an accessible and extensible Python package for training RNNs on
a variety of cognitive tasks. Our package provides an accessible framework, requiring
only Python and NumPy to define cognitive tasks of interest. The deep learning details are
abstracted away so that researchers do not need a machine learning or TensorFlow (TF)
background to get started modeling RNNs. PsychRNN includes multiple initializations,
loss functions and regularizations as well as a framework to easily add more. We imple-
ment a variety of neurobiological motivated constraints in order to allow researchers to
build circuits more closely parallel to those in cortex. For projects that require additional
customization and researchers who have TF knowledge, the TF-based Backend is easily
extensible.

The design of PsychRNN further enables novel investigations. Task modularity makes
it easy to investigate how parametric variations in task demands affect network solutions.
This modularity means that with only one task definition it is easy to vary many differ-
ent task parameters iteratively, making such exploration more efficient. Modularity also
allowed us to implement task shaping, or curriculum learning, into PsychRNN, with train-
ing tasks being adjusted in closed loop based on performance. Experimentalists regularly
train animals using shaping tasks—PsychRNN allows investigation of how shaping trajec-
tory choice could affect the observed results.

Modularity also allowed us to implement task shaping, or curriculum learning, into
PsychRNN, with training tasks being adjusted in closed loop based on performance. Ex-
perimentalists regularly train animals to perform tasks by shaping tasks—PsychRNN al-

lows investigation of how shaping trajectory choice could affect the observed results.
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3.1 Introduction

Neural networks trained to perform a given cognitive task successfully simulate neurons
and predict neuronal responses in cortex for animal models performing the same task [22,
23]]. Multiple research groups have used RNNs in this way to model motor and sensory
cortex successfully—they have found that the network dynamics of the RNN align with
what we know of neuronal responses [8, [18]. By analyzing the structure of the RNN state
variables for a given task, researchers are able to better predict and explain previously
not-well-understood features of neuronal responses [8} [12]].

Unlike traditional hand-built models, RNNs are “trained” to perform a given task by
updating the weights of the network iteratively over large numbers of training examples.
As such they allow researchers to specify the constraints and problem of interest rather than
the final model form. The process of allowing the optimization process itself to determine
the best algorithmic solution for a given problem makes RNNs a great model for hypoth-
esis generation. Further because solutions are not pre-determined by human researchers,
RNNss are less prone to limitations such as near-linearity and low dimensionality that tend
to constrain human intuition.

[1]] formalized using reverse engineering of RNN solutions to inform our understand-
ing of the brain. Modeling cognitive tasks using RNNs is currently an area of intense
interest, as evidenced by the numerous papers concerning this subject [[11} 2, 21} 20].

While the basic logic of RNN optimization is straightforward, efficient implementa-
tions can be challenging. For this reason, a variety of machine learning frameworks have
been released to provide a high level language in which to specify network structure and
run optimization. Even with these frameworks, however, getting started with a neurosci-
entific RNN research program can be challenging. For experimental labs, getting started

with machine learning frameworks often requires a dedicated graduate student or postdoc



to learn and be in charge of projects relating to machine learning, a very time-intensive and
expensive commitment. Even for theory labs, building a framework for modeling cogni-
tive tasks is time intensive. And, if theorists choose to code each experiment separately
rather than developing a framework, significant code is duplicated, and the resulting code
files are often hard to understand for others. Further the most powerful and popular ma-
chine learning frameworks were designed for general use, and are not specifically tailored
to the use case of cognitive- and neuro-scientists.

We thus introduce a framework, PsychRNN, designed to be easy to use and flexible
for researchers with any level of deep learning expertise. PsychRNN reduces the time
and effort needed to start modeling cognitive tasks using RNNs and thus makes incor-
porating this research into normal research workflows very easy and convenient. Further
PsychRNN implements a variety of features, such as biological connectivity constraints,
that may be of special importance to the neuroscience community. Here we introduce
the features of PsychRNN, compare it to alternatives, and describe the overall package
structure.

PsychRNN is based on the TensorFlow framework and is compatible with both Ten-
sorFlow 1 and TensorFlow 2. Importantly TensorFlow is actively supported with features
being added on a continuing basis where previous RNN training frameworks for neurosci-

entists have been built on frameworks since retired [16]].

3.2 Results

PsychRNN helps users train continuous time recurrent neural networks (RNNs) on a vari-
ety of tasks of interest. We provide a machine learning Backend which converts tasks into
input acceptable for a machine learning model, defines such a model in the TensorFlow

deep learning framework, and optimizes the network weights using stochastic gradient



descent algorithms. This allows PsychRNN users to focus research resources on the ques-
tions of interest rather than the implementation details of an RNN training codebase. As an
example, we demonstrate how PsychRNN can specify an RNN model (fig[3.2E), train it to
perform a task of neuropsychological interest (here a perceptual discrimination task) (fig
[3.2]A,B), and return behavioral (the activity of output nodes) and representational outputs
(the activity of hidden states) (fig[3.2]C,D) with just 11 lines of code (including imports).

The PsychRNN Backend is complimented by the Task Object which enables users to
easily and flexibly specify tasks of interest without any pre-requisite knowledge of Ten-
sorFlow or machine learning (fig[3.ST)). The Task Object allows flexible input and output
structure, with tasks varying in not only the temporal features but also the number of input
and output channels. Further the object oriented structure of task definition in PsychRNN
facilitates tasks that can be quickly and easily varied along multiple dimensions. For ex-
ample in an implementation of the Delayed Discrimination task we can vary stimuli and
delay durations with a set of two parameters (fig [3.3B). Importantly not only can we vary
the inputs as they exist, but integration between the Task Object and Backend makes it
possible to vary the structure of the network from the Task Object. In our implementation
of the Delayed Match to Category task we can freely change the number of inputs (input
discretization) and the number of outputs (categories) (fig [3.3D). This flexibility allows
researchers to investigate how the network solution of trained RNNs may depend on task
or structural features.

While there are substantial efforts elsewhere to create frameworks to make training
artificial neural networks accessible, neuroscientific models often require biologically-
inspired constraints not common in general purpose RNN software. For this reason, in
PsychRNN we include a variety of easily implemented biologically motivated constraints.
It is commonly observed that biological neural networks do not adhere to the all-to-all con-

nectivity often used to initialize artificial RNNs. In PsychRNN we give users the option
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from psychrnn.tasks.perceptual_discrimination import PerceptualDiscrimination
from psychrnn.backend.models.basic import Basic
import tensorflow as tf

pdm = PerceptualDiscrimination(dt = 10, tau = 100, T = 2000, N_batch = 128)

network_params = pdm.get_task_params() # get the params passed in and defined in pdm
network_params['name'] = 'model' # name the model uniquely if running mult models in unison
network_params['N_rec'] = 50 # set the number of recurrent units in the model

model = Basic(network_params) # instantiate a basic vanilla RNN

model.train(pdm) # train model to perform pdm task

x,target_output,mask, trial_params = pdm.get_trial_batch() # get pdm task 1inputs and outputs
model_output, model_state = model.test(x) # run the model on input x

Figure 3.2: Example Task (Perceptual Discrimination) (A) The input and target output
as specified by the task are shown in the top two panels, and the network’s output for the
input in the top panel is shown in the bottom pannel. Because the output mask is zero
during the stimulus period, that is, the RNN is not penalized or rewarded for whatever
output occurs during that period, the network is unconstrained during that period. (B) Plot
of the percent of decisions the network makes towards towards direction zero at varying
coherence levels. Negative coherences levels indicate a task input of abs(coherence) in
direction one. A psychometric function is fit to the data (black) as commonly done with
data from animals trained on the Random Dot Motion (RDM) task. This plot validates
that the network successfully learned the task and that the simplified task representation
still capturing the essence of the task. (C) State variable traces output from trials at a given
coherence. The network outputs a state variable trace over time for each recurrent unit in
the network. In the network shown here, there are fifty units, and so fifty state variables.
These state variables can be thought of as neuronal populations. Only data from correct
trials is shown here. One thousand trials were performed at each coherence level—state
variable values were averaged across these one thousand trials at each coherence level.
Note that the teal and orange lines diverges most sharply in both extremes of coherence



Figure 3.2: (Previous page.) (D) Plot of the first two principle components of the state
variables shown in (C) at different coherences. PCA vectors were found by concatenating
the data shown in each subplot in (B) to make a big matrix that was [number of state
variables x [number of coherences * number of time steps in a trial]] and then demeaning
and performing PCA. (E) This code sample is a minimal example for using PsychRNN.
All relevant modules are imported (lines 1-4), a PerceptualDiscrimination Task Object is
initialized (lines 6-11), the basic RNN model is initialized, built, and trained (lines 13-15),
output and state variables are extracted (lines 17-18).

to limit autapses (self connections), apply regional connections between different neural
populations, constrain the sign of unit outputs to be strictly positive or negative, and to fix
sets of weights at a given value during training (fig [3.4). This enables users not only to
build models that more closely match biological circuits but also to explore how different
biological limitations impact computational solutions.

One important expansion included in PsychRNN, is a native implementation of cur-
riculum learning. Curriculum learning, sometimes referred to as task shaping in the an-
imal training literature, refers to structuring training examples such that the agent learns
easier trials or more basic subtasks first. Curriculum learning has been shown to improve
artificial neural network training both in training iterations to convergence and in the final
loss. In neuroscience, labs adopt a wide variety of different curricula to get animals to per-
form full experimental tasks. By including curriculum learning we enable researchers to
investigate how the curricula they use with animals may impact their behavioral and neural
results as well as identify new curricula that may accelerate animal training. Further, cur-
ricula can be used more broadly to investigate how learning may be influenced and biased
by the sets of tasks an agent has previously encountered. Lastly, curriculum learning can

be used to train networks on tasks that may be too complex to be learned without it.
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Figure 3.3: Modularity of Task Definition (A) Task modularity. This schematic illus-
trates the trial progression of one trial of a delay discrimination task. The task is modularly
defined such that stimulus and delay duration can be varied easily, simply by changing task
parameters (fig 3.S2). (B) One channel of input generated by a delay discrimination task
with varied stimulus and delay durations. Delay duration is varied across columns, and
stimulus duration is varied across rows. In PsychRNN, varying the parameters of the task
as illustrated above is easy (fig 3.S3). In previous packages for modeling of cognitive tasks
using recurrent neural networks, tasks were not nearly so modular, and varying parameters
as seen above would have been much more cumbersome. (C) Structural modularity. Tasks
can provide any number of inputs and outputs to train an RNN on (though the number of
inputs and outputs should be consistent for any one RNN). (D) Example of a match-to-
category task. The number of inputs (colored outer circles) is varied across columns, and
the number of output categories (cat) is varied across rows. The variation in number of
inputs and outputs was achieved through simple modular task parameters(fig 3.S3).
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Figure 3.4: Biologically Motivated Constraints. This figure illustrates trained recurrent
weight matrices and coherence under different biologically motivated constraints. The
recurrent weight matrices (A,C,E,G) illustrate the synaptic weights between each of the
50 units in the network. Blue indicates an inhibitory connection and red indicates an
excitatory connection. The coherence plots (B,D,F,H) show that the network successfully
trains with each of these constraints in place. The network shown in plots a and b is
constrained to have no autapses, that is no self connections, as illustrated by the diagonal
with weight=0. That shown in ¢ and d is constrained to have two densely connected
populations of units with sparse connection between the populations. This can be used to
simulate different brain regions. That shown in e and f has Dale’s law enforced — each
neuron either has entirely inhibitory or entirely excitatory outputs. That shown in g and h
has Dale’s law enforced and was trained with a subset of weight fixed. In this case, all E-I
connections are fixed and only E-E or I-I connections can vary.
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Figure 3.5: Curriculum Learning Since PsychRNN includes an easy-to-use implementa-
tion of curriculum learning (fig 3.S4), neuroscience researchers can now experiment with
curriculum learning with minimal startup costs. (A) In curriculum learning, the network
is trained on selections from the trial set, then tested on selections from that trial set. De-
pending on the performance when testing on the trial set, the trial set can then be updated.
This is is similar to the idea of task shaping used in animals — animals are first trained
on simpler versions of tasks, and when they get good at those, moved to harder tasks.
(B) Schematic of increasing difficulty of trial set (top) paired with performance over time
(bottom). The task difficulty is increased when performance reaches the performance
threshold. (C) Comparison of number of iterations needed to train a network to perform
the perceptual discrimination task at .1 coherence with 90% accuracy. 10 networks were
randomly initialized and each was trained both on a curriculum with decreasing coherence,
and without a curricula with fixed coherence. Networks trained without curriculum learn-
ing were trained solely on stimulus with coherence = .1. Networks trained with curriculum
learning were trained with the curriculum shown in fig 3.S4, with coherence decreasing
from .7 to .5 to .3 to .1 as performance improved. When the network reached 90 percent
accuracy on stimuli with coherence = .1, training was stopped. Networks trained with a
curricula reached 90% accuracy significantly faster (p < .01).



Figure 3.5: (Previous page.) (D) Difficulty (————), accuracy, and loss (mean squared er-

coherence
ror) across training iterations on identically initialized networks, one of which was trained

with curriculum learning, and one of which was trained without curriculum learning from

©).

3.3 Discussion

PsychRNN provides a robust and modular package for researchers with varying levels
of deep learning experience to train RNN models on tasks of interest. The separation
into a Python- and NumPy-based Task Object and a primarily TensorFlow-based Backend
expands access to RNN model training without reducing flexibility and power for users
who require more control over the precise setup of their networks. Further the modularity
of tasks and network elements enables easy investigation of how task and structure affect
learned solution in RNNSs. Lastly the modularization facilitates curriculum learning which
makes optimization more efficient and more directly comparable to animal learning.

PsychRNN’s commitment to modular task design makes investigating the relation-
ship between problem structure and computational solution more straightforward and ap-
proachable. By smoothly varying parameters of a task it is possible to gain detailed insight
into the way in which variables of interest may impact both low level features of the result-
ing networks as well as algorithmic or state space representation. Similarly, modularity
over networks facilitates exploration of how structural constraints may impact the family
of available solutions to a given task. The ability to easily toggle structural features on
and off in our RNN models, such as Dale’s Law, connectivity constraints and sparsity reg-
ularization, within identically defined task and learning frameworks, makes exploring the
impact of biological constraints on network solutions uncomplicated.

Modularity has opened the door to a straightforward implementation of curriculum

learning to facilitate experiments regarding learning dynamics and multi-task networks.



One common feature of animal model research is the use of task shaping, or the break-
ing down of tasks into smaller more easily learned sub-tasks, to train animals to complete
complex behavioral tasks. Due to the inefficiency of running multiple parallel shaping
strategies for the same experiment, the impact of specific choices made during animal
training is often overlooked. One potential use of curriculum learning in PsychRNN is for
investigators interested in identifying possible artifacts related to the task shaping strate-
gies used in prior research. By training tasks either on the task without any explicit shaping
or on multiple different shaping pipelines it will be possible to generate hypothesis regard-
ing sources of behavioral and neural results attributable to shaping protocol. This use of
curriculum to evaluate shaping strategies further could enable researchers to investigate
different shaping strategies in a prospective manner, prior to experiment onset. Shaping
could be evaluated in RNNs both in terms of ease of learning (fewer training examples nec-
essary to reach criterion behavior) or in terms of least artifactual impact on final trained
network. This could provide researchers with a principled basis on which to select between
different training schedules for their animal models.

Lastly, the PsychRNN package provides an easy to use framework that can be applied
and transferred between research groups to accelerate collaboration and enhance repro-
ducibility. Where in the current environment research groups need to transfer their entire
codebase in order to run a neural network model, in the PsychRNN framework they will
be able to transfer just a task or model file and other researchers will be able to build off of
it or combine it with their own code written in the PsychRNN framework. The ability to
test identically specified models across tasks in different groups, and identically specified
tasks across models makes comparing and contrasting results substantially more reliable.
Even more crucially, the many choices in defining exactly how an RNN will be set up and
trained make precise replication of prior published research difficult even in a field where

it should be trivial. The specification of PsychRNN task files and parameter dictionar-

10



ies that can be made public make reproduction of RNN experiments far easier and more
transparent.

PsychRNN was designed to reduce startup costs for neuroscience and cognitive sci-
ence research groups wishing to initiate lines of RNN research, and to extend access to
RNN modeling for groups who otherwise might have been dissuaded by technical limi-
tations. In service of this goal we have created a highly user-friendly, modular and clear
framework for task specification, while abstracting away much of the deep learning back-
ground necessary to train and run networks. While this modularity was intended primarily
as a way to ease access to deep learning methods, it simultaneously provides a new access
to research avenues, such as multi-task networks and curriculum learning, and generates
a reproducible framework that will aid the use of RNN models in neuroscientific research

forward in a cohesive and clear manner.

3.4 Methods

The goal of PsychRNN are (1) to facilitate research groups who may not have their own
expertise in deep learning to train RNN models on behavioral tasks of interest, (2) to
reduce the start up time for researchers who wish to extend our codebase with their own
network modules and (3) to aid labs in producing reproducible RNN experiments. To meet
these goals and to provide as much utility as possible to users with different programming
experience, we have divided the PsychRNN package into two main portions: the Task
Object and the Backend, as illustrated in Figure @

We anticipate that all PsychRNN users will want to be able to define novel tasks spe-
cific to their research domains and questions. The Task Object is therefore fully accessible
to users without any TensorFlow or deep learning background. Users familiar with Python

and NumPy will be able to fully customize novel tasks. Further such users will be able to
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customize their network structure (e.g. number of units, form of nonlinearity, connectivity)
through preset options built into the Backend.

For users with greater need for flexibility in network design, the Backend is approach-
able and customizable. Backend customization may, however, require knowledge of Ten-
sorFlow. For those with TensorFlow experience, a modular design to RNN model compo-
nents makes defining new models, regularizations, loss functions and initializations easy.
This modularity facilitates testing hypotheses regarding the impact of specific potential
structural constraints on RNN training without having to expend time and resources de-

signing a full RNN codebase.

Task

The Task Object is structured to allow users to define their own new task using Python and
NumPy (See Figure[3.6).

To specify a novel task a user will need to define two functions: generate trial params
and trial _function.

generate_trial params creates trial specific parameters for the task (e.g. co-
herence and correct decision direction for the Perceptual Discrimination task). It takes
two inputs: the batch number and the trial number. Neither of these variables are used
in the task definitions included with PsychRNN, but these variables can be used, for ex-
ample, to balance trials within a batch, or to modify the parameters generated by batch
number. generate_trial params returns a dictionary, params, containing all the
parameters necessary for inputto trial_function.

trial_function specifies the input, target output, and output mask at a given time

t given the parameters generated by generate_trial _params. An example task def-

inition is shown in fig
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Built In Tasks

PsychRNN comes set with three example tasks that are well researched by cognitive neu-
roscientists: perceptual discrimination, delayed discrimination, and match to category.
These tasks highlight possible schemas users can apply to specifying their own tasks and

provide tasks with which users can test the effect of differint structural network features.

Example Task: Perceptual Discrimination

The PD task is based on classic 2-alternative forced choice perceptual discrimination tasks
like the Random Dot Motion (RDM) task [4]. A noisy stimulus is presented to the agent
for a finite period, after which the agent must make a choice to one of two targets [4]. The
RDM task is a forced choice task — although dots can move in any direction, their are two
directions in which the movement of the coherent dots could be [4].

PsychRNN’s PD task implementation includes two channels, each representing evi-
dence towards one of the two choices. The float value of a given input channel at a each
time point represents the instantaneous coherence of the motion of dots in the direction
of represented by that channel. Since there is noise in the signal, integration over time is
required at low coherence levels to determine the direction of motion. After the stimulus
period is over, a decision is made—the channel of target output representing the correct
decision direction is set to one while the channel of target output representing the incorrect
decision remains at zero.

As with many behavioral experiments we can restrict output to specific period. In the
PsychRNN PD task definition we include an “output mask™ such that behavior prior to the
output period is not considered during training. Specification of an output mask in a task
definition enables users to control at which time points they would like behavior in their

task to be constrained and where the network can freely vary. The PD task inputs, target
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outputs, and mask can be seen in Figure[3.2/A.

During training, the weights of the RNN are optimized such that the network can
correctly produce output that matches the target output wherever the mask is nonzero.
This provides three core outputs for each trained network model: (1) The activity of output
nodes over time on each trial, (2) the activity of recurrent nodes over time on each trial,
and (3) the weights (or synapses) from input to recurrent nodes, between recurrent nodes
and from recurrent to output nodes.

The activity of output nodes corresponds with the behavior of the network (Figure
[3.2]A, bottom panel). This output can be used to determine the behavior on different con-
ditions, patterns of errors or the time course of behavior. In addition to analyzing behavior
on the trained task, PsychRNN makes it easy to test networks on trials for which they have
not been explicitly trained allowing finer grade insight into the underlying computation.

The activity of the recurrent nodes corresponds to the neural representations underlying
task behavior (see Figure [3.2C). Specifically the activity is the instantaneous state of the
specific unit prior to application nonlinearity. Analyses of the clustering, dimensionality
and geometry of the internal states of the RNN can provide insight into the algorithmic
implementation of the computation being performed by the RNN.

Lastly, the synaptic weight matrices enable researchers to investigate how structural
properties of different networks contribute to specific activity patterns and behavior, and

to identify how different tasks impact structural features of the resulting matrix.

Example Task: Delayed Discrimination

The use of a modular Task Object in PsychRNN aides researchers in investigating how
different task parameters may impact network results. Because task classes can be defined
such that each instance can be initialized with different parameters, it is easy to search

through task space.
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This task modularity is exemplified in the Delayed Discrimination (DD) task (see Fig-
ure [3.3]A for a schematic of the task). The DD task is based on the parametric working
memory task used by [15]]. In the Vibrotactile DD task, the animal feels a first frequency
stimulus and must store a trace of that frequency value for comparison [15]. Then, af-
ter a delay, the animal feels a second frequency stimulus and must indicate whether the
second stimulus frequency is higher or lower than the first [15]. In PsychRNN’s imple-
mentation during the stimulus epochs two input channels indicates the “frequency” using
the difference in input strength.

By passing different parameters to each task instance as described above, the stimulus
duration and delay duration can be varied individually (see Figure [3.3B) with very little
effort (see Code Sample[3.S2)). Researchers can also experiment with the two stimulus du-
rations separately, onset time, decision duration, or any other task parameters they decide

to include in their task definition.

Example Task: Delayed Match to Category

Modularity in task definitions can extend beyond varying the input timings and magni-
tudes. Task modularity allows varying the structure of inputs and outputs.

The Match to Category task is set up to allow such structural modularity. The Match
to Category (MTC) task is based off of tasks in which stimuli smoothly vary in some
parameter space and must be divided by some arbitrary boundary (Roy 2010). In the
PsychRNN MTC implementation, input is a gaussian bump in a particular direction on a
ring, and output is based on the slice of a circle that the mean of the gaussian was centered
at.

By passing a different /V_in parameter to each MTC instance we can vary the number
of input channels that define the input discretization. Similarly by varying the N out

parameter we can increase or decrease the number of output categories that the network
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must choose between to correctly perform the task (see Figure [3.3|C). Tasks can define as
many input and output channels as desired (see Figure [3.3IC), and the number of inputs

and outputs can be varied modularly with very little effort (see Code Sample [3.S3).

Backend

The Backend includes all of the neural network training and specification details. The
backend, while being accessible and customizable, was designed with pre-set defaults suf-
ficient to get started with PsychRNN. The TensorFlow details are abstracted away by the
Backend so that researchers are free to work with or without an understanding of Ten-
sorFlow. Additionally, since the Backend is internally modular, different components of
the Backend can be swapped in and out interchangeably. In this section, modular com-
ponents of the Backend are described so that researchers who want to get more in-depth
with PsychRNN know what tools are available to them. Step 2 of Figure 3.6|illustrates the

components of the Backend.

Models

Recurrent neural networks are a large class of neural network architectures that process
input over time. In the PsychRNN release, we include a basic RNN (what we’ve been
referring to as an RNN throughout the rest of this paper), and an LSTM model (See Figure

Step 2). The basic RNN model is governed by the following equations
Tdr = (—ZL’ + Wrecr + brec + Wmu)dt + OrecV 27’d§
r=f(z)

z = Woutr + bout
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Where u, x and z are the input, recurrent state and output respectively. W,,, W...
and W,,; are the input, recurrent and output synaptic weight matrices. b,.. and b,,; are
constant biases into the recurrent and output nodes. dt is the simulation time-step and 7 is
the intrinsic timescale of recurrent units. o, 1S a constant to scale recurrent unit noise and
d¢ is a gaussian noise process with mean 0 and standard deviation 1. f(z) is a nonlinear
transfer function (by default rectified linear).

We also include an implementation of an LSTM, a network that enables longer term
memory than is easily attainable with the basic RNN [9]. LSTMs use a separate “cell
state” to store information gated by sigmoidal units.

Other models can also be defined by users, but require a strong understanding of Ten-

sorFlow.

Initializations

The weights that define a neural network are typically initialized randomly. However,
with RNNs, large differences in performance, in training time and total asymptotic loss,
have been observed for different initializations [[19]]. Since initializations can be crucial in
ensuring the network trains consistently, we have included a few of the initializations cur-
rently used in the field [7]. By default, the recurrent weights are initialized with a gaussian
spectral radius of 1.1 [[177]. We also include an initialization called Alpha Identity (which
can be selected by passing that initializer into the network model when it is instantiated)
introduced in [[19] that initializes the recurrent weights as an identity matrix scaled by al-
pha. Each of these initializations make the network much more likely to learn a given task
successfully.

PsychRNN includes a WeightInitialization class that initializes all network

weights randomly, all biases as zero, and connectivity masks as all to all. Any new initial-
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izations must inherent this class and can override any variety of initializations defined in

the base class WeightInitialization.

Loss Functions

The RNN is optimized to minimize the loss, so the choice of loss function can be cru-
cial for determining exactly what the network learns. By default, the loss function is
mean_squared_error. Our Backend also includes an option for using binary _cross_entropy
as the loss function. Other loss functions can be easily defined with some TensorFlow
knowledge and added to the LossFunction class. Loss functions take in the network
output (predictions), the target output (y) and the output mask, and return a float

calculated using the TensorFlow graph.

Regularizers

Regularizers are penalties added to the loss function that may help prevent the network
from overfitting to the data. We include options for L1 regularization and L2 regularization
for the synaptic weights. These will tend to reduce the magnitude of weights, sparsifying
the resulting weight matrices. In addition we include L2 regularization on r, the post
nonlinearity recurrent unit activity.

Other regularizations can be added easily to the Regularizer class with Tensor-
Flow. By default, no regularizations are used. If nonzero values for the variables used by
a given regularization are set in the parameters used to instantiate a model, that regulariza-

tion will be applied.

Biologically Motivated Constraints

The default RNN network has all to all connectivity, and allows units to have both ex-

citatory and inhibitory connections. However, this does not reflect the biology we know.
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PsychRNN includes a framework for easily specifying biological constraints on the model.
Biological constraints affect the dynamics of the resulting system and the state variables
that we see, and so are of direct interest both to experimentalists (especially those inter-
ested in specific biological constraints, or features that arise from the structural constraints
of the brain) and to theorists, many of whom are interested in the dynamics of the brain.

But the brain is not fully connected. Neurons are not generally thought to have many
self-connections, and there are different regions which are densely connected within a
given region, and sparsely connected across areas. We include a framework for specifying
the connectivity matrix for the input, output, and recurrent layers, allowing researchers to
specify which connections can exist (have nonzero weights) and which cannot. Networks
with block-like connectivity matrices can be used to model separate brain regions. Con-
nectivity constraints are implemented as part of the initialization. Weights matrices are
multiplied element wise with the connectivity matrices. The connectivity matrices are by
default all ones, allowing all-to-all connectivity. Defining alternate connectivity matrices
forces sparser, structured connectivity in the network (see Figure 3.4]A-D).

Dale’s Principle states that a neuron releases the same set of neurotransmitters at each
of its synapses [6]. Since neurotransmitters tend to be either excitatory or inhibitory, theo-
rists have taken this to mean that each neuron has exclusively either excitatory or inhibitory
synapses [[16,[14]. We thus include an optional parameter to be passed to the RNN model
when it is initialized called dale’s ratio. When dale’s ratio is passed into the
network, that ratio of recurrent units are made to have only positive synapses, or con-
nections, with other neurons or recurrent units and one minus that ratio of the recurrent
units are made to have only negative synapses, or connections with other neurons or recur-
rent units (see Figure [3.4E-F). This allows researchers to investigate how the constraints
of neurons affect the dynamics of the network. Additionally, researchers who study, for

example, inhibitory interneurons, would otherwise see no relevant correlate in the RNN
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for what they are studying. With the implementation of Dale’s law, the role of inhibitory
populations can be easily investigated using PsychRNN.

Some synaptic connections may be held fixed while learning a task, while others vary.
In PsychRNN, we include an optional parameter specifying weights to fix, and weights
to allow to train. By default, all weights are allowed to train. See Figure [3.4G-H for an
example of fixing some weights during training.

We can represent most cognitive tasks using a variety of different neural networks,
so, for many researchers, the interesting question is [1]]: What network architectures and
biological constraints lead to network states that most closely match what we record from
neurons in animals? And what insight can we glean from differences we observe between
biology and neural networks? Thus, the ability to enforce biological constraints is essential

to make this package relevant and useful for researchers, and is a current topic of interest

[11].
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Curriculum Learning

Curriculum learning—the presentation of training examples structured into discrete blocks
sorted by difficulty—is motivated by the observation that people learn best in stages. For
example, children first learn to count, then to add numbers that each fit onto one hand, and
finally to add larger numbers. Full-fledged addition would be much harder to learn without
these initial training steps. In neuroscience, the animal models that experimentalists use
are similarly taught in stages. The animal model is first taught an easy version of the task
before progressively learning harder versions, eventually learning the goal task (see Figure
[3.5A-B for schematics of training using curriculum learning).[3] showed that machines
also learn best in stages this way. Neural networks trained in stages are trained faster, with
fewer training iterations. Additionally, neural networks trained this way can also reach
more optimal solutions [3, 10, [13]]. Since curriculum learning can result in faster training
(see Figure [3.5[C), some tasks that were previously computationally intractable are now
feasible [3]].

Because PsychRNN tasks are modular and object oriented, as described in Section 3.4
we were able to design an intuitive framework for curriculum learning that is easy to use
even without TensorFlow. Curriculum learning is implemented by passing a curriculum
object to the RNN model when training is executed. Although very flexible and customiz-
able, the simplest form of the curriculum object can be instantiated solely with the list of
tasks that one wants to train on sequentially (fig [3.S4] which corresponds to the curricula
used in Figure [3.5[C-D).

Little computational neuroscience research exists to test the importance of curriculum
learning. PsychRNN includes an easy-to-use implementation of curriculum learning (fig
[3.S4), so researchers can utilize and experiment with curriculum learning with minimal

startup cost.
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Step 1: Define New Task Step 3: Train Network

Task
Input-Output
Deseription
Trial > TPa ngg?:’;'t PsychRNN PsychRNN
Parameters ! Network Object Network Object
(initialized) (trained)
A
Accuracy
Function
(optional)
Training
_ﬂ Parameters Synaptic
All three components customizable with NumPy ) Weights
- Learning Rate
- Training Iterations
. : - Optimi
Step 2: Define Network - Output
Constraints (readout units)
State
Basic RNN  |— Network Variables
Parameters
- Number of Units
- Regularizer Trainin: (
Select - Initialization Curi cult?m '7 Select one
LSTM l? one - Loss Function
= - Connectivity
Constraints
- Dale’s Ratio
User Defined || PsychRNN
Network PsychRNN Task Object
Network Object
initialized
Customizable ( )

with TensorFlow

Figure 3.6: Package Structure and Network Equations (Step 1) Defining a new task
requires defining two Python functions with Numpy. One, trial_function describes
the task input and output. The other, generate _trial params defines the parameters
for a given trial. Optionally, one can also define an accuracy function describing how
to calculate if a trial was successful. (Step 2) The Backend. First, the model, or network
architecture, is selected. Currently, versions of a normal RNN and LSTM are implemented
— more models or architectures can be defined using TensorFlow. Then, that model is
instantiated with a dictionary of parameters. That dictionary of parameters must include
the number of recurrent units, but it may also include specifications of loss functions,
initializations, regularizations, or biological constraints. When the network is trained,
training specifications, such as the optimizer or curriculum can be specified. This creates a
trained neural network, parameterized as one chooses. If any parameter is not set, a default
is used. (Step 3) When a network is trained, measures of performance indicate the speed
at which the network is learning at regular epochs (time points or iterations) throughout
training. We include two measures of performance: loss and accuracy. Loss is a metric
defined by the loss function chosen (by default, loss is the mean squared error over the
target output and network output). Loss is a typical metric used in machine learning, and
a lower loss value corresponds to better performance.
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Figure 3.6: (Previous page.) Optimization of the network weights is performed on the
loss. Accuracy is an optional metric that is defined in the task definition. We use accuracy
as a more biologically relevant measure of performance. On a given trial, the accuracy
value is either one (success) or zero (failure). In contrast, loss on a given trial is a positive
real-numbered value. Accuracy is calculated over multiple trials to obtain a ratio of trials
correct to trials incorrect. As discussed in Section [3.4] once the network is trained, the
synaptic weight matrix can be saved out, and state variables and network output can be
generated for any given trial.

Curriculum learning is perhaps especially interesting to our main audience as a way
to generate principles hypothesis regarding the efficiency of their own animal training
protocols, and how training protocols could potentially reveal task factorizations useful
for animal training.

The curriculum class included in PsychRNN is very flexible and allows for extensive
customization. By default, accuracy, as defined within a task, is used to measure the per-
formance of the task. When the performance surpasses .9, the network starts training with
the next task. However, it is possible that one might want to advance the training stage
at a different threshold than .9, or advance the stage at different thresholds depending at
which stage the network is at within the curriculum. The curriculum object thus includes
an optional input array, thresholds for specifying the cutoff for the performance. Ad-
ditionally, there are many reasonable ways to determine when to advance the curriculum
stage other than accuracy, for example using loss, number of iterations, or some other
measure. We include an optional met ric function that can be passed into the curriculum
class to define a custom measure of performance.

The implementation of curriculum learning included in PsychRNN is easy to use and
customizable. Customizing the Curriculum as described above requires only knowledge

of Python and NumPy.

23



NumPy Simulation

One limitation of specifying RNN networks in the TensorFlow language is that in order to
run a network the inputs, outputs, and computation need to take place within the Tensor-
Flow framework. This limits researchers unversed in TensorFlow in their ability to design
and implement experiments on their trained PsychRNN models.

To mitigate this, we have included a NumPy simulator which takes in a PsychRNN
model object and Task Object and runs the network in NumPy. Using this simulator, re-
searchers can explore how their network may respond to a variety of inputs. Further, of
increasing interest in neuroscience, and thereby in computational neuroscience, is the im-
pact of perturbation experiments on neural computation. By providing a NumPy simulator
we hope that research groups will be able to modify it such that they can generate and pro-
duce virtually any network or state space perturbation they might require for their research

question.

Comparison to Other Frameworks

PsychRNN was designed to facilitate the growing use of RNNs as a model for neural com-
putation. As such it provides several advantages over alternative high level frameworks.
Most similar to PsychRNN is the PyCog package ([16]), another python package for
training RNNs designed for neuroscientists. In comparison to PyCog, PsychRNN prevents
several key advantages. First PyCog was built off of a framework which is no longer
supported. Second PyCog has no native implementation of curriculum learning. Third
task definitions in PyCog are not themselves modular making the types of experiments
trivial in PsychRNN more laborious and cumbersome. Lastly, PyCog utilizes a built in

vanilla stochastic gradient descent algorithm, while PsychRNN allows users to select any
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Table 3.1: Comparison to Existing Packages and Other Alternatives.

Implemented Features

PsychRNN

PyCog [16]

Keras [5]

Key Advantage

Language

Backend (currently
supported?)

Biological Constraints
Supported

Curriculum learning
supported?

Modular task
definition?

Object Oriented
Framework?

LST™M

Optimizer

GPU support

Supports PyTorch

Curriculum learning, modular task
and network, supported Backend

Python

TensorFlow 1 (maintenance mode
only) and 2 (yes)

Dale’s Principle, Connectivity
Patterns, Fixed Weight Training

yes

yes

RNN, Task

Built in support

TensorFlow built in options with
implemented regularizers

Yes
No

Biological Constraints on RNNs

Python

Theano (no)

Dale’s Principle, Connectivity
Patterns, Fixed Weight Training

no

no

RNN

Not supported

SGD with implemented regularizers

Yes
No

optimizer available in the TensorFlow package.

Works with multiple Backends

Python

TensorFlow 1 (maintenance mode
only), TensorFlow 2 (yes), Theano
(no), CNTK (yes)

Not supported

N/A

N/A

Network Layers

Built in support

Built in options

Yes
No

Outside of PyCog the other main option for research groups is to use a high level wrap-

per of TensorFlow, such as Keras, not specifically designed for neuroscientific research.

Importantly, these frameworks do not come with any substantial ability to implement bio-

logical constraints. Users interested in testing the impact of such constraints would need

to modify the native Keras layer objects themselves, a non trivial task. In addition Keras

does not provide a frameworks for modular task definition, requiring the user to do the job

of translating inputs and outputs into a form compatible with the model.

PsychRNN by close integration with the TensorFlow framework manages to maintain-

ing much of the power and flexibility of traditional machine learning frameworks while

also providing custom built utilities specifically intended for the challenges of a RNN

neuroscience research program.
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Code Availability

The PsychRNN software described in the paper is freely available online at github.com/murraylab/PsychR?
All data and figures included were produced on a MacBook Pro (Retina, 13-inch, Early
2015) with 8 GB of RAM and 2.7 GHz running macOS Catalina 10.15.5 in an Anaconda

environment with Python 3.6.9, NumPy 1.17.2, and TensorFlow 1.14.0.
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Supplementary Figures

class SimplePD (Task) :
def __init__ (self, dt, tau, T, N_batch):
super (SimplePD, self).__init__ (2, 2, dt, tau, T, N_batch)
def generate_trial_params (self, batch, trial):

[

) Ul ok W

9 params = dict ()
10 params [’ coherence’] = np.random.exponential (scale=1/5)
11 params ['direction’] = np.random.choice ([0, 17])

13 return params

15 def trial_function(self, t, params):
16 stim_noise = 0.1

17 onset = self.T/4.0

18 stim_dur = self.T/2.0

# Initialize with noise

Xx_t = np.sgrt (2*self.alpha*stim_noise*stim_noise) *np.random.randn (self.N_in)

24 y_t = np.zeros(self.N_out)
25 mask_t = np.ones (self.N_out)

7 #

28 # Retrieve parameters

29 o e e
30 coh = params|[’'coherence’]

31 direction = params|[’'direction’]

34 # Compute values

35 # ———
36 if onset < t < onset 4+ stim_dur:

37 Xx_t[direction] 4= 1 4+ coh

38 x_t[(direction + 1) % 2] += 1

40 if t > onset 4+ stim_dur + 20:
11 y_t[direction] = 1.

43 if t < onset + stim_dur:
14 mask_t = np.zeros (self.N_out)

16 return x_t, y_t, mask_t
Figure 3.S1: Example Task Definition The Code Sample above defines a simple PD task.
generate_trial params selects the coherence and direction on a trial by trial basis.

trial_function sets the input, target output and output mask depending on the time
in the trial and the parameters passed in.
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1
2
3
4
5

>

from psychrnn.tasks.delayed_discrim import DelayedDiscrimination

for i in range (3) :
for j in range (3) :

dd = DelayedDiscrimination(dt = 10, # simulation time step
tau = 100, # unit time constant
T = 2000, # trial length
N_batch = 1, # number of trials per update
delay_duration = (j+1) * 250, # delay length
decision_duration = 250, # decision length
onset_time = 125, # first stimulus onset time
stim_duration_1 = (i+1)/3 * 500, # stim 1 length
stim_duration_2 = (i+1l)/3 * 500) # stim 2 length

x, target_output, mask, trial_params= dd.get_trial_batch () # get task

Figure 3.S2: Task Modularity: Task Structure The code sample above produces all of
the data shown in Figure [3.3B. Although each plot shown in Figure [3.3] .b has a slightly
different task specification, we can iterate through all of them easily using the object-

oriented modular task definitions enabled by PsychRNN. This produces clean, easy-to-
read and -understand code compared to non-modular alternatives.
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from psychrnn.tasks.match_to_category import MatchToCategory

for i in range (3) :
for j in range (3):

mc = MatchToCategory (dt=10, # simulation time step
tau = 100, # unit time constant
T = 2000, # trial length
N_batch = 1, # number of trials per training update
N_in=(i+1) *4, # number of network inputs
N_out =(j +1)*2) # number of network outputs

x, target_output, mask, trial_params = mc.get_trial_batch () # get task

Figure 3.S3: Task Modularity: Inputs & Outputs The code sample above produces all
of the data shown in Figure [3.3D. Although each plot shown in Figure [3.3D has different
numbers of inputs and outputs, we can iterate through all of them easily using the object-

oriented modular task definitions enabled by PsychRNN. This produces clean, easy-to-
read and -understand code compared to non-modular alternatives.
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from psychrnn.tasks.perceptual_discrimination import PerceptualDiscrimination
from psychrnn.Backend.curriculum import Curriculum

coherences = [.7, .5, .3, .1]
task_list = [PerceptualDiscrimination (dt=10, # simulation time step
tau = 100, # unit time constant
T = 2000, # trial length
N_batch = 128, # number of trials per update
coherence = coh # coherence of trials
) for coh in coherences]
curriculum = Curriculum(task_list, # 1list of tasks that make up the curriculum
output_file="./accuracies", # path to save metric value

metric_epoch= 5 # interval to check the metric

)

train_params = {

"save_weights_path": "./weights.npz", # path to save trained network weights

"training_iters": 100000, # maximum number of training iterations
"loss_epoch": 5, # how often to calculate loss
"curriculum": curriculum # Curriculum object

}

# curriculum-training specific wrapper of the train function
losses , training_time, initialization_time = model.train_curric (
train_params # training parameters

)

Figure 3.S4: Curriculum Learning Code The code sample above trains an RNN on a
sequence of perceptual discrimination tasks with decreasing coherence. The network starts
by learning to perform the task with high coherence. Once the network reaches 90 percent
accuracy on a given task, the network initiates training on the next task. This continues
until the network has reached 90 percent accuracy on the final task—in this case, the
lowest coherence perceptual discrimination task. Curriculum learning is done by making
a list of tasks that form the curriculum (line 4-10), and then passing that list in to the
Curriculum class to form a curriculum object (line 11-14). That curriculum object is then
included in the training parameters dictionary (line 15-20), and when the network is passed
those training parameters for training, the network will be trained using the curriculum, or
sequence of tasks defined in lines 4-10.
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Chapter 4

Geometry of neural computation unifies
working memory and planning

Daniel Ehrlich, John Murray

Ehrlich, D. B., Murray, J. D. (2021). Geometry of neural computation unifies working

memory and planning. bioRxiv.

Abstract

Real-world tasks require coordination of working memory, decision making, and planning,
yet these cognitive functions have disproportionately been studied as independent modu-
lar processes in the brain. Here, we propose that contingency representations, defined as
mappings for how future behaviors depend on upcoming events, can unify working mem-
ory and planning computations. We designed a task capable of disambiguating distinct
types of representations. Our experiments revealed that human behavior is consistent with
contingency representations, and not with traditional sensory models of working memory.
In task-trained recurrent neural networks we investigated possible circuit mechanisms for
contingency representations and found that these representations can explain neurophys-

iological observations from prefrontal cortex during working memory tasks. Finally, we
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generated falsifiable predictions for neural data to identify contingency representations in
neural data and to dissociate different models of working memory. Our findings char-
acterize a neural representational strategy that can unify working memory, planning, and

context-dependent decision making.

4.1 Introduction

In time-varying environments, flexible cognition requires the ability to store and com-
bine information across time to appropriately guide behavior. In commonly used delay
task paradigms, a transient sensory stimulus provides information which the agent must
maintain internally across a seconds-long mnemonic delay to guide a future response
[16, 137, 152]. Working memory is a core cognitive function for the active maintenance
and manipulation of task-relevant information for subsequent use. To guide flexible be-
havior, contents of working memory must interface with other cognitive functions such
as planning and context-dependent decision making. Yet within neuroscience, these func-
tions have been studied largely independently, and it remains poorly understood how the
brain coordinates these processes in the service of goal-directed behavior.

Internal representations related to cognitive states can be revealed through recording
neural activity during delay tasks in animals and humans. Neurons in the prefrontal cortex
exhibit content-selective activity patterns during mnemonic delays of working memory
tasks[20, [12]. Selective delay activity during working memory is most commonly inter-
preted as representing features of sensory stimuli which can be processed to guide a later
response. In the dominant conceptual framework, the proposed cognitive strategy thereby
uses working memory representations that are fundamentally sensory in nature[20, [12].
The sensory strategy for working memory has been challenged by observations of pre-

frontal delay activity that better correlate with diverse task variables, including actions,
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expected stimuli, and rules[37, 38, 152]. Furthermore, a growing literature characterizes
substantial nonlinear mixed selectivity of features in prefrontal cortex, which can in prin-
ciple support context-dependent behavior[41, 26, [7]. These diverse observations suggests
a more unified framework is needed to account for the computational roles of working
memory, planning, and context-dependent decision making.

Computational modeling has been fruitfully applied to examine potential neural cir-
cuit mechanisms supporting cognitive functions, including working memory and decision
making([54]. Working memory functions are commonly modeled with distinct modular
circuits, which do not account for mixed selectivity in prefrontal cortex and assume that
working memory maintains sensory representations[8}, 54]. A complementary modeling
approach utilizes artificial neural network models which are trained to performed cogni-
tive tasks[24]. In contrast to hand-designed models, task-trained recurrent neural network
(RNN) models can perform delay tasks without requiring assumptions about structured
circuit architectures or the form of working memory representations[3]]. This approach
is therefore well suited to examine computational mechanisms through which working
memory representations can support flexible computations[40, 130, 56, [13]].

In this study, we investigate the implications of a cognitive strategy in which inter-
nal states represent plans, rather than perceptions or actions. Specifically, our theoretical
framework defines contingency states based on how future behaviors depend on upcom-
ing events. We designed a task paradigm to dissociate contingency-based strategies from
sensory- or action-based strategies for working memory and found that contingency strat-
egy better explained human behavior in this task. RNN models trained on the task develop
contingency-based solutions, and their internal representations capture diverse phenomena
of neural activity during working memory. Lastly, we provide falsifiable predictions for
neural activity to distinguish contingency representations from alternative computational

schemes. Taken together, our study presents a theoretical framework for how working
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memory supports planning for temporally extended cognition and flexible behavior, which

explains disparate behavioral and neural observations and is experimentally testable.

4.2 Results

Conditional delayed logic task

In many commonly used delay tasks, there are correlations among sensory stimuli, re-
sponses, computational demands or rules which prevent dissociable attribution of neural
activity to specific cognitive task variables[16} [31]. We therefore sought a task that in-
volves (i) computation on informational inputs separated by a delay, (ii) exact intermediate
computational states which re-occur frequently, (iii) trials for which the correct response
can be predicted during the delay on some trials and not on others, and (iv) decorrelation
of action, sensory, rule and computational state information.

To meet these demands we designed the conditional delayed logic (CDL) task, which
applies a binary classification to two binary stimuli separated by a delay (Fig. d.1a). We
refer to the pre-delay and post-delay stimuli as "Cue A” and "Cue B”, respectively. The
rules can be defined as Boolean logical operations, and one rule is presented tonically
throughout each trial’s duration. On each trial, the agent is presented with a task rule,
Cue A and Cue B and must generate an associated response. For example, in the OR
rule the agent’s response should be 717 if either cue is equal to ”1”. From 16 possible
two-bit binary classifications, we will focus on 10 rules (Fig.[d.1Ib) for which the response
is dependent on cues but independent of cue order. Rule, Cue A and Cue B are varied

randomly across trials.
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Figure 4.1: Conditional Delayed Logic (CDL) task and contingency states. (a) Time
course of events in the CDL task. (b) The contingency table of responses by rule and (Cue
A,Cue B) pair. Color indicates the contingency of that condition. (¢) A schematic example
of task closure and collapse between tasks and conditions. Top, tree structure of an OR
trial, Bottom, tree structure of AND trial. The magenta lines indicates a condition (OR,
Cue A=1) in which the trial is termed “closed” due to the fact that the correct response
is independent of Cue B. The cyan lines indicate two conditions (OR, Cue A=0; AND,
Cue A=1) which “collapse” during the delay. This is because after Cue A, their response
patterns to Cue B becomes identical: in both cases if B=0 the correct response is 0, and
if B=1 the correct response is 1. Color of responses indicate associated contingency. (d)
Example solutions of the CDL task through contingency states. Solid lines represent a Cue
of 0, and dashed lines represent a Cue of 1. All three tasks (AND, Cue A=0; XOR, Cue
A=1; OR, Cue A=1) have a [0-1] contingency and therefore can be solved together after
the delay.

Contingency representations

To perform the CDL task, the agent must maintain a representation of task information

across the delay. One might expect the agedfto maintain the stimulus identity of Cue A,



which would be sufficient to solve all trials. In this ‘sensory strategy’, which is commonly
assumed in models of working memory, the task-relevant information is maintain across
the delay to guide a response in conjunction with information in Cue B and rule[20, |53]].
An alternative ‘action strategy’ is possible for trial conditions in which the response can
be preplanned during the delay[[17, 137]. Furthermore, the agent may represent the rule
identity which is presented during the delay[52]]. These representations are not exclusive.

In contrast to sensory, action or rule representations, an alternative strategy for the CDL
task, and other working memory tasks, uses what we call ‘contingency representations’.
Contingencies are defined by mappings from the upcoming cues to responses (Fig. 4.1p).
For example, if the rule is OR and Cue A is ”0”, then the contingency state during the
delay is the mapping from Cue B being ”0” or 1" to the correct response being ”0” or 17,
respectively. Throughout this paper we will refer to contingency using the notation [R,-
R;] where R and R; are the response targets for Cue B being ”0” and 17, respectively.
We would therefore say the above trial has a [0-1] contingency state, which could be
represented in working memory.

The CDL task provides two important features that can be utilized by contingency
representations: task ‘closure’, which gives insight into conditional computational de-
mands; and task ‘collapse’, which enables identification of specific computationally rele-
vant states. Closure describes the extent to which all information necessary to perform the
next step of the task is already presented. In the CDL task, closure is defined as a condition
in which the correct response can be decided from the rule and Cue A alone, and therefore
the response can be pre-planned during the delay before Cue B. For example, if the rule
is OR and Cue A is 17, then regardless of Cue B the correct response will always be 717
(Fig.[d.1c). This enables the agent to plan the response directly following Cue A.

Collapse describes the condition in which the agent reaches the same computational

branch point in a multi-stage problem independent of the prior path. In the CDL task,
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collapse describes when two different rule and Cue A conditions have the same contin-
gency state with regard to Cue B. One example of this is in the OR and AND tasks: The
[0-1] contingency state is reached both by the OR rule with Cue A of 707, and by the
AND rule with Cue A of ”1” (Fig |.Ik). In this way two trials that share neither rule
nor Cue A can share a contingency state, demonstrating functional collapse. As described
later, this property will be crucial in dissociating contingency representations from sensory

representations in neural delay activity.

Computing through contingency representations

We found that one advantage of the contingency representation is that it reduces the overall
classifier complexity problem of the task. The sensory representation requires 12 classifier
hyperplanes to implement the ten rules, while the contingency representation requires only
two (Fig. 4.1e,f). The contingency representation acts as a modular solution to the CDL
task in which dynamics and representations are re-used in order to solve multiple condi-
tions (Fig.[d.1}g). Contingency representations solve the CDL task in two steps, a first step
mapping from rule and Cue A to a contingency state and a second step mapping from con-
tingency and Cue B to response. This decomposition turns a single complex classification
problem into two simple ones. Interestingly, this complexity reduction can be formalized
using a straightforward linear matrix decomposition between pre-delay features (rule and
Cue A) and post delay features (Cue B and target) (Supplementary Fig. 4.51)), which

results in the contingency basis as described above (Fig. 4.1f).

Human behavior matches contingency strategy

While there are theoretical advantages to computing with contingency representations

compared to sensory representations, it is unclear whether humans would use contingency
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as a strategy to solve the CDL task. To identify whether contingency is present in human
behavior, we investigated the impact that closure and collapse had on response times (RT's)
in a five-rule variant of the CDL task (Fig.[d.2a). We hypothesized that ‘closed’ trial con-
ditions with task closure would elicit shorter RTs than ‘open’ conditions without closure,
because on closed trials participants can pre-plan their motor response during the delay,
whereas on open trials they must wait for Cue B to form their response.

We tested 17 human participants on the CDL task, measuring accuracies and RTs.
Participants learned to perform the task with a high mean accuracy (97£1%) across all
rules (Fig [@.S2). To investigate cognitive and computational strategies underlying per-
formance of the CDL task, we measured and compared RTs across task conditions both
between rules and between Cue As (Fig. 4.2b). We found that RTs varied strongly across
trial conditions and broadly sort into two groups according to closed vs. open conditions,
with closed trials having a significantly shorter mean RT than open trials ({ = —12.04,
p=10"7).

Crucially, the OR and AND subtasks, which vary on their closure status on a trial-
by-trial basis, indicate that this RT difference between closed and open trials is not due
to rule or cue differences. Within OR and AND, there remained a significant difference
in RT between open and closed trials (OR; ¢t = —6.4, p = 5 x 1075, AND; t = —7.1,
p = 2 x 107°) (Fig. ). Within-individual analysis found that only for OR and AND
was there a significant effect of Cue A on RT for the majority of participants (Fig. 4.2),
which would be expected if closure was driving RT. We observed that the closure effect, the
impact of closure on RT, grew over the course of the session (OR: p = 0.018, AND: p =
0.009) (Figs. [4.2d,[4.S2d), which suggests that the effect of closure can be learned through
experience and be enhanced through training. The difference in RT between closed vs.
open trials implies that they were capable of flexible updating of plans within a trial as

they processed information from the rule and Cue A. This conditionally variant RT pattern
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Figure 4.2: Human behavior on CDL task supports contingency-based strategies. (A)
Top: The procession of stimuli shown to participants during an example trial (Only (XOR),
(Cue A=0, Cue B=1)). Bottom: The table of responses by rule and (Cue A,Cue B) pair.
Color indicates the contingency of that condition. (B) Mean response time by Cue A and
rule. Error bars represent standard error of the mean across participants. Magenta bars
are open trial conditions and orange bars are closed trial conditions. Logical rule names
in parenthesis below labels. (C) Percent of participants with a significant (p < 0.05)
difference in mean RT between Cue A=0 and Cue A=1 within a given rule. (D) The
difference in closure effect, defined as the difference between the mean RT of the open
condition and closed condition, between early trials (first two blocks of the task) and late
trials (the last two blocks). Plotted separately for the OR and AND rules. (E) The percent
of participants for whom contingency explained more RT variance than would be expected
by chance for the linear model permutations. Dashed lines represent chance level, and stars
indicate p < 0.05 (one-sided t-test).

is opposed to sensory strategies for which subtasks of similar complexity ought to take
similar times to complete independent of how Cue A interacts with the rule (Fig. d.1).

While the analysis above indicates evidence against a sensory strategy for working
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memory, it does not specifically address whether participants use contingency representa-
tions with collapse across task conditions. To investigate the extent to which contingency
is an explanatory task variable for human behavior, we used a linear modeling approach to
measure the proportions of variance in RTs explainable by contingency, while controlling
for effects of closure, response target, rule, and congruency between Cue B and response
(see Methods). We utilized a permutation method to measure individual-level significance
(Fig.[d.2e). We found that 53% of our participants (9 of 17) had significant explainable RT
variance attributable to contingency, and that such a proportion was substantially higher
than would be expected by chance (p = 3 x 10~%) (Fig. . Collectively, our behavioral
findings provide support that in the CDL task humans use contingency-based strategies

and not sensory working memory strategies.

Task-trained RNNs utilize contingency representations

To explore how contingency-based computations may be realized in a distributed recurrent
circuit, we trained recurrent neural network (RNN) models to perform the full CDL task
(Fig. 4.3a). Our trained RNN model reached high accuracy across all subtasks (99.3%
average accuracy, with all >95%). In order to identify the structure of contingency in-
formation in our trained RNNs, we used a simple subspace identification procedure [28]].
Using the network state vector from the late-delay epoch (just before Cue B onset) we iden-
tified two contingency-coding axes maximally capturing variance in neural states across
units in the RNN explained by the target response conditioned on each Cue B stimulus (see
Methods). We then projected the late-delay state from each trial into this two-dimensional
contingency subspace. This representation was found to cleanly and linearly separate be-
tween the four possible contingency conditions (Fig. [4.3p).

To test the importance of the contingency subspace, we measured the amount of trial-

wise variance in late delay state vector captured by the contingency subspace and found
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greater than five times as much variance compared to random two-dimensional subspaces
(Fig. 4.3c,d). We tested the functional relevance of the subspace for task performance
through a perturbation approach. Just prior to Cue B onset, we shifted the state of the net-
work by a given magnitude in a random direction which was either within the contingency
subspace or orthogonal to the subspace. We found that RNNs suffered greater perfor-
mance deficits from perturbations within the contingency plane, indicating the functional
relevance of the subspace for the CDL task (Fig. 4.3g).

One advantage of the contingency representation is that it organizes delay representa-
tions such that they are already separable by mappings from Cue B to response. A single
selection vector can therefore separate all states into the correct response (Fig. d.3f). We
analyzed the average displacement for trials in each of the contingencies during Cue B and
found that they closely correspond to a theoretically optimal selection vector (Fig. 4.3).
The state-space dynamics following Cue B offset follows a nonlinear trajectory consoli-
dating trials to the appropriate response state (Fig.[4.3h), revealing that while the decision
problem itself is linearized by contingency representations, task computation in the RNN
relies on nonlinear dynamics.

Control analyses training artificial network models on CDL task variants investigated
the computational properties leading to contingency representations. First, we trained an
RNN on a task variant in which the rule is not presented until the Cue B epoch (Supplementary
Fig.[4.S4). This RNN perform this late-rule task with high accuracy, but it did not develop
any contingency representations during the delay. This demonstrates that RNNs can solve
the CDL task using a sensory strategy and that contingency representations are not an arti-
fact of our analysis method. Second, we trained a three-layer feedforward network, in con-
trast to an RNN, providing task inputs into different layers of the network (Supplementary
Fig.4.S5). Contingency coding only emerged as a dominant middle-layer representation

when Cue A and rule inputs were provided upstream and Cue B downstream, which is the
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Figure 4.3: Functional contingency subspace in CDL-trained RNNs. (A) Schematic of
RNN model structure. (B) We defined a contingency subspace through a linear regression
of unit states during the late delay epoch to define two axes along which ‘Response to
B=0’ and ‘Response to B=1" were projected. The contingency subspace was identified on
a train set of trials and we used held-out test trials for plots and analysis, for an example
RNN. (C) A permutation test comparing the amount of variance in the contingency sub-
space compared to random alternative subspaces. (D) Analysis in B is replicated for 20
RNNs over random initializations and plotted is the distribution of variance captured by
the contingency subspace compared to the mean variance of random subspaces of equal
dimension. (E) Mean CDL performance (accuracy) across replicates for a perturbation
analysis in which the RNN state was perturbed at the time point prior to Cue B onset
by a random vector of a given norm either within the contingency subspace (cyan line)
or orthogonal to the subspace (grey line). The perturbation magnitude, norm of the per-
turbation, was sequentially increased. Shaded regions represent the standard error of the
mean across replicate RNNs. Red dashed line represents chance behavior. (F) Theoretical
schematic of CDL response selection utilizing a contingency representation. Solid arrows
represent trajectories caused by Cue B=0 and dashed arrows represent trajectories caused
by Cue B=1. The grey separatrix boundary divides regions of state space in which the
network will relax to a response of 0 and 1; (G) Mean contingency subspace trajectories
of the example RNN model from onset to offset of Cue B. Trajectories divided by contin-
gency and Cue B. (H) Three-dimensional mean RNN state-space trajectories from Cue B
onset to trial end. X- and Y-axes represent the contingency subspace while the Z-axis is
the output axis of the example RNN model (i.e., the difference between the magnitude of
the two output units).
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feedforward analogue of the temporal structure in the CDL task. These analyses suggest
that computational stages of information processing, not specific choice of model archi-
tecture, robustly determine whether a contingency representation is formed by task-trained

network training.

Model neural activity captures neurophysiological findings

While at the population level our trained RNNss can be structurally and functionally identi-
fied to be utilizing a contingency-based solution, it is unclear how that is instantiated at the
level of individual units and therefore how it might relate to the findings in single-neuron
recordings from animals performing working memory tasks. We profiled the selectivity
properties of our unit activity vector (Fig.[d.4a). While the Cue A averaged traces showed
substantial tuning within a rule, we found that between rules the apparent Cue A tuning
would invert. For many units, however, this inversion across rules could be substantially
explained by contingency. Using a linear model we identified the percent of variance
explained in unit state by Cue A, rule and contingency. While we found that most units
predominantly encoded Cue A during the stimulus epoch, by the late delay this pattern had
changed to primarily encode contingency (Fig. d.4b). Nonlinear dimensionality reduction
via UMAP recapitulated the transition from sensory to contingency representations, and
showed that contingency and sensory tuning are dominant factors driving unit states in the
late vs. early delay epoch, respectively (Supplementary Fig.[4.S3).

This transition in information coding during the delay matches prior analyses of single-
neuron recordings from prefrontal cortex in monkeys performing working memory tasks.
Rainer and colleagues analyzed neurons from alternating match-to-sample and paired-
associate working memory tasks, and tested whether prefrontal neurons could better be
understood as retrospectively tuned, wherein neuronal activity is tuned to sensory stimuli,

or prospectively, wherein activity is tuned to expected future stimuli[38]. They found
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Figure 4.4: Contingency tuning captures neurophysiological responses in prefrontal
cortex. (a) An example RNN unit with traces representing mean activity in trials divided
by Cue A identity and rule. 32% of unit activity variance was explained by a binary
predictor of whether it was a [0,1] contingency trial. Shaded grey region indicates the time
of Cue A presentation. Traces plotted from trial onset through delay. (b) Mean percent of
unit variance explained by rule, Cue A and contingency over time. Solid lines represent
mean and shaded regions represent the standard error of the mean across replicate RNNs.
(¢) Fraction variance explained by prospective and sensory information for the sample
(time point prior to Cue A offset) and delay (time point prior to Cue B onset) epochs
in the example RNN model averaged across units. (d) Number of recorded neurons from
monkey dorsolateral prefrontal cortex (PFC) significantly tuned to prospective and sensory
information in the sample and delay epochs[38]]. (e) Analysis of tuning dynamics across
time. Activity in the example RNN was averaged within each condition and then PCA
was used to identify the dominant axis of condition tuning. The angle between these axes
were measured across each pair of time points. Gray shaded indicate Cue A and Cue B
epochs. (f) A linear decoder was trained to read out Cue A identity from sample epoch
RNN activity and tested throughout the delay epoch. This was compared to a ”dynamic”
decoder trained and tested on data from the same time point. Plotted is cross-validated
accuracy for each decoder.
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a transition from predominantly sensory coding during the cue epoch to predominantly
prospective coding during the delay epoch. Our RNN units exhibit a matching transition
from retrospective representation, tuned to Cue A, in the cue epoch to a fundamentally
prospective representation, tuned to contingency, during the delay epoch (Fig. d.4c,d).
This type of dynamic activity in persistent populations has drawn considerable interest
in recent years, with many studies identifying a dynamic decoding axis of perceptual infor-
mation from sample to delay epochs[44, 49, 9]. The contingency representation provides
one possible explanation for this phenomenon. As during the delay the network shifts
from a purely sensory to contingency representation if one were to only examine a single
task it would appear that the axis along which Cue A is encoded has shifted. We used
two analyses to detect dynamic working memory activity. In the first we evaluate change
in the principal tuning axis over time using principal component analysis[9] and in the
second we train static and dynamic decoders showing a shift in the separatrix necessary
to correctly classify the response from trial state vectors (Fig. d.4e,f). In both cases our

network matches phenomena previously interpreted as dynamic memory.

Contingency subspace explains heterogenous neuronal tuning results

One question that arises from the above results is how contingency representations would
be reflected in typical analyses which measure tuning of neural activity for task variables
such as stimulus or rule identity. In the CDL task, tuning for Cue A or rule can be observed
in contingency representations when the subtasks generate correlations between cue or rule
information and contingency states. These correlations can exist even when Cue A, Cue B
and responses are all independent. We examined this in CDL variants with only two rules.
For example, the rule pair of Memory and XOR are such that contingency representations
yield neural tuning to Cue A but not to rule, due to averaging over contingency states for

those subtasks (Fig. d.5a).
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Figure 4.5: Contingency explains interactions of sensory and rule tuning for pairs
of tasks. (a) Schematic of cue and rule tuning for an example pair of rules (MEM and
XOR) utilizing a contingency representation. Task names are followed by a ”0” or ’1”
indicating the Cue A on that trial and are placed in the appropriate contingency for that
rule and Cue A pair. Left: X marks denote Cue A averages, with purple for Cue A=0 and
blue for Cue A=1. Right: Square marks denote rule averages, with purple for MEM and
blue for XOR. The dotted line in cue tuning indicates the difference between average cue
states and therefor cue tuning. In contrast the overlap of rule averages indicates this task
pair will show little or no rule tuning. (b) Cue-rule tuning ratio for three example pairs of
rules. Bars show the measured tuning in the RNN when just that rule pair was analyzed.
Dashed line represents equal cue and rule tuning. (¢) Left: Contingency based predictions
for cue-rule tuning ratio for each pair of rules in the CDL family defined as the Euclidean
distance between cue averages and rule averages. A value greater than 1 indicates more
cue tuning, A value less than 1 indicates more rule tuning and a value of 1 represents equal
tuning. Right: Tuning ratio between Euclidean distances of cue and rule averages of state
space representations of RNNs when analyzed for each pair of rules. Distances averaged
across replicate RNNs. Inset: The Spearman correlation of (off-diagonal) predicted and
measured tunings (rs = 0.54).

The nonlinear mapping from Cue A and rule to contingency can cause the same unit
to be identified as rule- or cue-tuned depending on precisely which task the agent is per-
forming (Fig. d.5a,b). To demonstrate this we analyzed our network units separately for
each possible rule pair in the CDL task, forming 100 possible pairs of rules. For each
task pair, we could use the expected contingency states to determine theoretical predic-

tion for cue and rule tuning (Supplementary Fig. d.S6a,b). We found that the theoretical

contingency-predicted cue:rule tuning ratio significantly correlated with the ratio of tuning
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measured from the full CDL-trained RNN model in the late delay epoch (Fig. 4.5c).
Together these results show how linear analyses for neural tuning of contingency-
coding units can yield apparent tuning to cues and rules. While in any real system, this
simplified model of only contingency tuning will not fully explain all sources of variance,
the extent to which even a simple model captures between condition tuning variance in our
trained high-dimensional and nonlinear RNN demonstrates the robustness of the predic-
tions made by contingency representations. Further, since tuning predictions can be made
with small subsets of the CDL task it opens the door to experiments in animals for which

it may not be feasible to train on a larger set of rules.

Population coding reflects contingency in model network

To gain insight into how our theory of contingency representations differs from prior the-
ories, and how they may be tested experimentally, we compared against two alternative
models. The first is a pure sensory encoding model, in which states uniquely identify dif-
ferent sensory cues presented during the first stimulus epoch and the tonic rule input. The
second is a randomly connected network (RCN) model, which generates high-dimensional
linearly separable representations of rule and Cue A in order to do arbitrary classification
problems[41} 4]. These alternative model classes represent two ends of a continuum from
most input structured representation (Inputs) to least structured (RCN). Further, they act
as important controls because both models have been used to represent prefrontal compu-
tations in the literature [|55} 141} 26].

Due to our focus on between-condition representational structure, one useful analysis
is representational similarity analysis (RSA)[25]. RSA enables the abstraction of high
dimensional data into a set of comparisons between conditions called a representational
similarity matrix (RSM). We use Cue A, rule and contingency as theoretical inter-condition

templates, e.g. in the Cue A template all conditions with the same Cue A should be similar
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(Fig.[d.6k). The correlation between RSMs and theoretical templates measures the extent
to which activity is structured by those features [25, 22].

The Inputs model by definition only contains input along the Cue A and rule dimen-
sions, but we calculated RSMs for the task-trained RNN and the RCN model (Fig [4.6a,b).
We then compared these observed similarity matrices to our candidate expected similarity
structures constructed by Cue A, rule, and contingency (Fig. d.6c). For the RCN model,
Cue A predicts the most between-condition similarity, with rule explaining a lesser fraction
and a small negative correlation with contingency. In contrast, the RNN model has inter-
condition correlation best explained by contingency (Fig. d.6d). These model predictions
for population-level analyses were recapitulated in single-unit analyses by examining the
amount of late-delay activity variance captured by a linear model including Cue A, rule,
and contingency regressors (Fig. [4.6f).

To generate single-neuron predictions we fit a linear model for Cue A, rule and con-
tingency to each unit’s activity in the late memory epoch to determine what fraction of
variance in activity each regressor explains. The sensory model, by definition has single
unit tuning towards Cue A and rule. The RCN model has a majority of units tuned to rule
followed by Cue A with few units having substantial variance explained by contingency.
The RNN model has the most variance explained by contingency followed by rule and
Cue A (Fig.[d.6).

The dimensionality of model state representations provides a complementary view into
their geometric structure[ 1, [15, 2]. We found that the three models make starkly different
predictions regarding the dimensionality of the delay representations. The sensory model
has dimensionality governed by the inputs directly, and the RCN substantially expands
that dimensionality. In contrast, the RNN contracts representations into a lower effec-
tive dimensionality which is only slightly higher than the theoretical minimal number of

dimensions required by the task (Fig. [4.6f).
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Figure 4.6: Model comparison and predictions. (a, b) Representational similarity ma-
trices (RSMs) for (a) our example RNN model and for (b) a randomly connected network
(RCN) model capable of performing the CDL task. Model similarity was calculated as
the Euclidean distance between averaged late-delay epoch unit activity across conditions
for the RNN model and mixed-layer activity for the RCN model. (¢) Candidate RSMs for
representational schemas organized by Cue A, rule and contingency. (d) Spearman corre-
lation between the lower triangular portions of the candidate matrices and the RNN and
RCN RSMs for each of our 20 replicate networks. (e) Mean fraction of variance explained
by Cue A, rule and contingency across unit states during the late delay epoch, for the RNN
and RCN. Plotted are the distribution of averages across replicate networks. (f) Dimen-
sionality of late-delay activity of the RNN model, the RCN model and a ”’pure” model
in which the network represents the Cue A and rule information orthogonally. Error bars
represent s.e.m. across replicate networks. (G) Distribution of cross-context generaliza-
tion (CCG) measured across replicate network for our RNN and RCN models. CCG was
defined using a contingency subspace classifier. The contingency subspace (Fig. d.3p) was
fit as described above with one task condition held out. Then that condition was projected
into the subspace and trials were classified based on the quadrant they fell in. Red dashed
line represents chance classification.
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While the RCN model is designed for information to be generically decodable for a
diversity of possible tasks, its high-dimensional representations are relatively unstructured
and therefore will not generalize across conditions. We utilized a cross-conditional gen-
eralization (CCG) analysis[6] to measure the extent to which the geometry across rule by
Cue A pairs was preserved in both our RNN and RCN models. We first fit a contingency
subspace, with all trials of a given task condition (rule x Cue A pair) held out. We then
projected the held-out trials into the subspace, and defined a correct classification as a trial
falling within the correct subspace quadrant. We found that our RNN models had a mean
CCG of 86%, substantially higher than chance (p = 7 x 107?, one-sided t-test), whereas

our RCN models had a mean CCG score of 17% which does not exceed the chance level

of 25% (Fig. d.6).

Testing contingency coding in neural data

The analyses above are sufficient to characterize contingency encoding data generated
for a known model class. We next examined how to statistically test for the presence
of contingency coding in neural data in which we cannot know the process by which
representations are generated. To avoid distributional assumptions about a neural dataset,
we devised a non-parametric partitioned variance approach to test whether a given dataset
has more contingency-based structure than would be expected based on the amount of
other similar nonlinear structure captured in that data (Fig. 4.7p).

The analyses above are sufficient to characterize contingency encoding data generated
for a known model class. We next examined how to statistically test for the presence of
contingency coding in neural data in which we cannot know the process by which repre-
sentations are generated, e.g. in experimental datasets of neural recordings. Contingency
coding generated by a specific form of nonlinear interaction between task variables (e.g.,

rule and cue). To avoid distributional assumptions about a neural dataset, we devised a
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non-parametric partitioned variance approach to test whether a given dataset has more
contingency-based nonlinear structure than would be expected based on the amount of
other nonlinear structure in the data (Fig. 4.7a).

By shuffling contingency mappings across conditions (here, rule-cue pairs) into ’psuedo-
contingencies” and testing their ability to explain mean unit state variance, we can build a
null hypothesis for how well we would expect a nonlinear interaction similar in structure,
but different in specific conditions, to contingency would explain the data. Comparing
random permutations to the measured quantity from the actual contingency mappings test
whether the dataset is better explained by contingency than would be expected by chance
independent of the general nonlinearity, feature mixing, or noise structure in the repre-
sentation. We validated this approach with our RNN and RCN models, finding that our
RNN model was better explained by contingency than chance (p<0.001) while our RCN
model was not (Fig. 4.7p,c). Each replicate RNN model exhibited at least twice as much
mean unit variance explained by contingency than the mean of its pseudo-contingency null
distribution (Fig. 4.7d).

By shuffling contingency mappings into ’psuedo contingencies” and testing their abil-
ity to explain mean unit state variance we can build a null hypothesis for how well we
would expect a non-linear interaction similar in structure but different in specific condi-
tions to contingency would explain the data. By comparing our random permutations to
the measured quantity from our actual contingency mappings we can then test whether our
data is better explained by contingency than would be expected by chance independent of
the general non-linearity, feature mixing or noise structure in the representation. Validat-
ing this approach, we found that our RNN model was better explained by contingency than
chance (p<0.001) while our implementation of the RCN model was not (Fig.4.7p,c). Each
of our RNN models demonstrated at least twice as much mean unit variance explained by

contingency than by the mean pseudo-contingency set (Fig. 4.7d).
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Figure 4.7: Partitioned variance analysis to test contingency coding. (a) Schematic of
structure preserving contingency shuffling method. We construct pseudo contingencies of
equal size to our actual contingencies but with random conditions. (b,c) Reshuffling test
for proportion of contingency explained compared to shuffled pseudo-contingencies from
(a). The red line represents the mean variance explained by contingency for unit states in
the RNN(RCN) model, while the grey bars represent the same measure for pseudo contin-
gency replications. The RNN had significantly more variance explained by contingency
than would be expected by chance while the RCN model did not. (d) Ratio of variance ex-
plained by contingency compared to mean pseudo-contingency shuffling, over 20 replicate
RNNs. Dashed line represents chance level.

4.3 Discussion

In this study we defined a representational schema for delay tasks in which network states
encode the mapping between expected stimuli and actions termed the contingency repre-

sentation. We developed a novel task, the conditional delayed logic (CDL) task, capable of
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dissociating contingency representations from stimulus or response representations. Hu-
man participants performing the CDL task demonstrated inter-conditional RT variance
consistent with a contingency based strategy, and largely inconsistent with a stimulus
memory strategy. In a trained recurrent neural network (RNN) we identified contingency
representations and validated the functional role of contingency in the task. The structure
of contingency representations in the model naturally captures experimentally observed
phenomena including context-dependent tuning, mixed selectivity and dynamic coding
for working memory. Lastly we generated falsifiable predictions for neural recordings of
animals or humans performing the CDL task and compared results to alternative models.

Contingency representations can potentially unify memory, planning and cognitive
control in a manner that does not require an external system to control the interactions
between these subprocesses. In delay tasks where cues have a one-to-one correspondence
with contingencies, the contingency representation is essentially indistinguishable from a
sensory representation. In tasks where responses can be directly inferred from pre-delay
cues, contingency states divide along future motor responses. Interestingly, tasks such
as the CDL can exhibit both of the above cases. This directly links working memory
to cognitive control through representational structure rather than positing an exogenous
controller of inputs as in prior modeling[11]. Our behavioral data shows that humans can
update their internal plans on the fly, between conditions of open contingency and closed
contingency.

One intriguing property of contingency representations is that they can help to unify
differing interpretations of neural activity in working memory delay tasks. Prior stud-
ies using neuronal recordings from primate association cortex have sought to dissociate
retrospective sensory and more prospective signals for upcoming responses or expected
stimuli[[17, 37, 138]], and found tuning for task rules[37/]. Using our RNN model, and top-

down theory generated from the contingency subspace of the CDL task, we offer a putative
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explanation for some of the diversity of signals observed. By analyzing the network as it
performed pairs of tasks with different geometric relationships in the contingency sub-
space, we found that units can appear tuned to rule, stimulus or action. This is due to the
fact that the nonlinear transformation from rules and Cue A leads to different forms of
collinearity in the contingency subspace.

The hypothesis that contingency could explain these results is bolstered by our behav-
ioral results indicating that response times in our delay task are well explained by con-
tingency. Response times have been shown to reflect cognitive processes[39]], including
difference in preparation and intention[43]. RT measurements have been related closely to
neural activity across cortex[10, 46]. The observation that RT was strongly modulated by
condition (closed vs. open) and that idiosyncratic RT variance could be explained by con-
tingency in the CDL task provides evidence that participants utilized contingency during
performance of the task.

Empirical analysis of unbiased samples of neurons have found that substantial popu-
lations are tuned to multiple features in a task. This phenomena has been termed mixed
selectivity, with one hypothesis being that mixed selectivity generates a high dimensional
and mostly unstructured basis to facilitate flexible computation [41, 4]. Here we find that
since many nonlinear combinations of rule and stimuli can lead to the same contingency
state, units tuned to contingency can appear mixed. While we do find some units in our
RNN are tuned to the Cue A and rule, units are consistently better tuned to contingency
and therefore would appear as mixed to traditional linear analysis methods. This contin-
gency tuning, however, is highly structured. Our finding is therefore better matched to
recent research exploring the trade-off between generalization and flexibility as a function
of between-condition structure [6].

Recent studies have indicated there is substantial temporal dynamics in the pattern of

activity seen during cue onset and early delay compared to late delay [S0, 33} 149,134]. One
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hypothesis is that the mechanisms of neural persistence are intrinsically dynamic [5]. In
our RNN, representations demonstrate what appears to be dynamics as the network moves
from a stimulus dominant representation in the cue epoch to a contingency representation
by the late delay epoch. In many experimental contexts contingencies are correlated with
stimuli. In such cases the stimuli to contingency dynamics may appear as a change or
rotation in stimulus coding (Fig. 4.3).

One important advantage to utilizing task-trainedRNN modeling in this study is that we
do not impose any specific solution, thus allowing for emergent phenomena constrained by
the task itself [3}156]. This strongly contrasts with most of prior working memory model-
ing in which the structure of delay states is pre-specified by the researchers [8}27]. Further
observability and controllability over the RNN during information processing enabled us
to implement precise perturbations to measure the causal role of contingency representa-
tions in behavior. These features enabled us to expand on recent work identifying shared
modules in a trained multi-task network performing many tasks previously identified with
prefrontal activity [56]. In complement to the heuristic modularity they observed, the pre-
cision of the CDL task in sharing common computational intermediate stages allowed us
to produce a top down theory of modularity that we could then use to guide investigation
and measure exact modular overlap in our RNN.

Our study opens substantial theoretical and experimental questions for future research.
One important question is whether differences in task demands would lead to alternative
strategies to contingency being preferred. For tasks like CDL in which stimulus dimen-
sionality is higher than response dimensionality, the overall complexity of the problem can
be reduced by computing through contingencies rather than stimuli. For tasks with higher
response dimensionality than stimulus dimensionality, however, it is unclear whether con-
tingency representations would be advantageous. Furthermore, contingency is not always

invertible, and therefore may be unsuitable in contexts in which it is often necessary to
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return to the previous cue. Of note, while contingency does reduce the CDL problem com-
plexity, it does not reduce the amount of information stored mnemonically. To study these
issues, the CDL task could be generalized to arbitrary dimensionalities of cue and action
spaces, to systematically examine how capacity in both memory and problem complex-
ity impacts strategies in human participants and in task-trained artificial neural network
models.

Future experiments can record neural activity patterns from human participants or an-
imals performing CDL tasks, to test whether internal representations are governed by
contingency[21} 25, 48, 32]. Such an experiment could also help localize representational
heterogeneity among cortical regions during the CDL task. Lastly, experiments could ex-
plore how changes in information flow between sensory, frontal and motor areas accom-
pany the differential information routing for which we found behavioral evidence[435]. In
turn, future modeling can incorporate aspects of known neurobiology which are potentially
important for neural circuit computation, to extend beyond the relatively simple architec-
ture used here. Neurobiologically motivated properties such as Dale’s principle[47, [14],
short-term synaptic plasticity[29]], multi-regional connectivity constraints[36]], or atten-
tional mechanisms could be explored for their effects on the emergence or structure of
contingency representations.

In conclusion, we introduced a representational schema, contingency representations,
capable of unifying working memory and planning without use of an external controller.
We found evidence of these representations in human behavior. In a task-trained neu-
ral network model we identified ways in which this representation can explain results on
tuning from neurophysiological experiments on working memory, as well as provide new

testable hypotheses for future studies of neural activity during cognitive tasks.
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4.4 Methods

Behavioral task description

On each trial of the behavioral CDL task, the participant is shown two transient binary
stimuli separated by a delay in addition to a rule cue on throughout the entirety of the trial.
The participant is tasked with using the rule and stimuli to determine and report the correct
response (Figs.[d.2p).

To increase statistical power and reduce training difficulty, five rules were selected
from the ten original CDL rules (Fig.[4.2a): OR, AND, XOR, Memory (MEM) and Anti-
Report (AREP). The OR, AND and XOR subtasks follow the stated Boolean logical opera-
tions. For the MEM subtask, the participant reports the identity of the first stimulus, Cue A
(i.e., the stimulus that appears before the delay). For the AREP subtask, participants report
the opposite of the second stimuli, Cue B (i.e., the stimulus that appears after the delay).
For ease of understanding, and to reduce effects of differences in familiarity with logical
operations, we displayed the five rules to participants as “Either” (OR), "Both” (AND),
”Only” (XOR), "Memory” (MEM), and "Reverse” (AREP) rather than their logical labels
(Fig. 4.2n).

The five rules selected for the behavioral task were chosen such that there were 2 con-
ditions each of [0-0] and [1-1] contingency, and 3 each of [0-1] and [1-0] contingency. This
helped ensure no imbalance in the proportions of trials between the two closed contingen-
cies nor between the two open contingencies. Further, since there was one more condition
for each of the open contingencies the shorter response time for open trials could not be
explained by frequency.

Preceding Cue A was a foreperiod of 800 ms in which the participant was shown only

the rule cue in the upper center of the screen. The rule cue would then remain on the
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screen throughout the entire trial until feedback. Following the foreperiod, the participant
was shown Cue A, as either a ”’0” or ”’1”, in the center of the screen below the rule cue, for
500 ms. After Cue A was removed, only the rule was visible during a delay of 2000 m:s.
Cue B was then shown, as either a ”’0” or 17, in the same location as used to display Cue
A. The participant was able to respond by key stroke, with either a "’left arrow” for ”0” or a
’right arrow” for 17, at any point following Cue B onset. If the participant failed to make
a choice within 2000 ms after Cue B onset, the trial would end and the participant would
see a message telling them they timed-out, for a duration of 3000 ms. If the participant
responded they would see either a ”Error” or ”Correct” feedback on the screen for 500 ms
before the next trial begins. For each trial, rule, Cue A, and Cue B were selected randomly
and independently.

The response time (RT) was calculated as the time between Cue B onset and key stroke
response. Prior to the task, participants were instructed to respond as “’quickly and accu-
rately” as possible, and that they could respond as soon as the second stimulus (Cue B) ap-
peared on screen. In order to control for any bias either in response speed for “’left arrow”
vs. ’right arrow” or bias in response to ”0” and 1" stimuli, participants were randomly
assigned a binary “key mapping variable” which would either run the task as described
above, or swap response mappings (i.e., left vs. right arrows to report responses) as well
as ’0” and ”’1” stimuli mappings.

Each participant completed 6 blocks of 64 trials each. The task was implemented

through the PsychoPy package[35] in Python, and run on a Macbook Pro laptop.

Behavioral collection

18 participants were recruited from the general population between the ages of 18 and 35
in the New Haven, CT area. All participants completed and signed an informed consent

approved by the Yale Institutional Review Board (IRB) and were paid for their participa-
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tion. We used flyers and online advertising as our main recruitment methods. Of our 18
participants, 11 were female. The mean age was 24.3 years (standard deviation 4.2 years).
Participants on average had 17.4 years of education (standard deviation 2.6 years).

Participants who contacted the lab were given a brief phone screening for eligibility.
Participants with psychiatric diagnosis or history were excluded from the sample, as well
as participants who had substantially impaired and uncorrected eyesight and participants
with less than a Sth-grade reading level.

Eligible participants were invited into laboratory testing room, asked to read and sign
an experimental consent form and then a brief demographic survey prior to task training.
Following this they were shown a brief task description that explained the task, including
the order of events, the goal, and the task. Participants were informed that their reward
would be a function of accuracy and response time but were not told an exact calculation
for reward.

Participants were then given a training block of 40 randomly selected trials of the CDL
task. Participants who failed to get greater than 90% accuracy were required to repeat the
training block. If the training block was failed three times the participant was paid the base
compensation and excluded from the study. Only one participant was excluded this way.

Participants then performed 6 blocks of 64 trials, after each block the participant was
able to take a self timed break. At the end of the task, their bonus reward was calculated

based on their RTs and accuracy according to:

. 15 ) 15
Reward = min (round <1 R ey )) + min (round (1 T ei0 e 09 >)

where n.,, represents the total number of errors and f,, represents the average RT (in

seconds) for correct trials. Reward was paid in US dollars at the end of the experiment,

following a brief demographic survey.
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Behavioral analysis

To test the differences between closed and open trials, we averaged each participant’s RTs
by closure, averaging all open trials and all closed trials, and then conducted a paired
two-sided ¢-test across participants. Similarly, to test the significance of closure on condi-
tionally closed trials, we averaged the RTs of each condition (Cue A X rule combination)
separately. Then we ran a two-sided paired ¢-test between mean Cue A=0 RTs and Cue
A=1 RTs across participants within each task. We tested the individual-participant sig-
nificance by using a two-sample ¢-test to directly test the significance of the difference
between Cue A=0 and Cue A=l trials, for each rule independently, for each participant
(Fig. 4.2c).

To examine learning effects, we averaged a given participant’s RT by condition (Cue
A X rule) for the first two blocks which we termed “early” trials, and the last two blocks
which we termed late” trials. We determined the closure effect for OR and AND trials
as the difference, for that participant, in mean RT in the open condition and the closed
condition of those tasks. We termed this difference the closure effect. Then we calculated
a two-sided paired ¢-test to measure whether this closure effect had increased from early
to late trials, across the group (Fig. [4.2d).

To examine the effect of contingency on behavior, we measured the variance in trial-
wise RT that is explainable by contingency. For each participant, we fit a linear model
on correct trials, with RT as the predicted variable and the predictors being contingency,
closure, rule, target, and congruency. Contingency was the contingency that would be
applicable during that trial, based on the rule and Cue A. Rule is either XOR, OR, AND,
Memory or Reverse (Anti-Report) depending on trial. Target was the correct response for
that trial. Lastly, congruency is a binary variable representing whether Cue B was the same

as the target. Congruency was used to control for possible effects of pro-/anti-match bias
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in RTs. Then we fit a second linear model with all the predictors above except contingency.
Each predictor was encoded as a one-hot and models were fit with an L2 regularization
penalty of 0.01.

Using these models we then calculated the percent of RT variance explained by each
model. The difference between the full model and the model lacking a contingency pre-
dictor we termed the "AEV”, representing the amount of additional variance explained by
accounting for contingency.

We tested for statistical significance using a permutation analysis, in which we shuf-
fled trial contingency labels 1000 times and recalculated AEV, forming a null distribution
against which we conducted hypothesis testing. 53% of participants (9 of 17) had a AEV
greater than 95% of permuted samples. We then used a binomial test to identify the signifi-
cance of the proportion of participants for whom contingency was found to be a significant
predictor (Fig. 4.2e).

We calculated the variance attributable to contingency using the models below. Model

1 includes contingency as a predictor, and is specified by:

_ Clos Cont Rule Targ Cong
RTy; = wo+wcios 0; 4 E We 51-,6 + E Wy 5i,r +WTarg 0;  ~+Wcong 0
c€{contingencies} re{rules}

4.1)
where RT; is the response time on trial ¢, and regression dummy variables are defined
as Kronecker delta functions for the match of conditions in trial . d;2™ is 1 when the

contingency of trial 4 matches contingency ¢ and 0 otherwise. 0 is 1 or 0 when the

rule
i,r

trial’s closure condition is closed or open, respectively. ;¢ is 1 when the rule of trial ¢

matches rule 7. ;"% is 1 or 0 when the trial’s target condition is 1 or 0, respectively. 6,

is 1 or O when the trial’s congruency condition is congruent or incongruent, respectively.
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Model 2 includes all predictors from Model 1 except for contingency:

RTQ,Z‘ = Wp + WClos 5Z‘CIOS + Z Wy 557}11(3 + WTarg 6;I‘arg + WCong 5iCong (42)
re{rules}
Here Model 1 has 12 parameters (1 constant, 4 for contingency, 1 for closure, 5 for rule, 1
for target, and 1 for congruency), and Model 2 has 8 parameters.

We quantified the sum of squared errors (SSE) for each model:

SSE, = > (RE - RATLZ)Q 4.3)

%

SSE, = Y (BT - RATQJ-)2 (4.4)

%

where the sum is over trials, and RAT,M» is the predicted RT for trial ¢ from model m. The

proportion of explained variance (EV) is given by:

SSE,
BV, =1- <o (4.5)
SSE,
EV,=1— 4.
Vs ST (4.6)

where SST is the total sum of squares (variance) of RT across trials. Then the amount of

extra explained variance from including contingency regressors is AEV = EV; — EV,,.

RNN model architecture

All RNN experiments were performed on continuous-time recurrent neural networks dis-
cretized to a 10-ms time step. RNNs contained 200 recurrently connected rectified-linear
units (ReLU) in the hidden layer. Recurrent units received input as a linear combination

of network inputs. Outputs were linear readouts of rectified recurrent unit activity. The
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network was governed by the following equations:

Ti = —x + W™ + WPy + b + p 4.7)
r = f(z) = max(z,0) 4.8)
5 = Woutr + bout (49)

where W, is the recurrent weight matrix, W, is the input weight matrix, and W, is the
output weight matrix. x is the unit state vector, r is the unit activity vector, u is the vector
of inputs at a given time, and z is the output vector. b, and b, are constant biases into
the recurrent and output nodes respectively. 7 = 100 ms is the internal time constant of
units and 7 is gaussian noise added to the recurrent layer. Lastly, f(x) is the ReLU positive
linear rectification function.

All inputs and outputs were represented using one-hot encodings. The network re-
ceived cue input from 4 input channels, with the first two being assigned to represent a
binary input during the first stimulus epoch, Cue A, and the latter two representing binary
input in the second stimulus epoch, Cue B. The network received rule input through 10
channels with each channel associated with the instructed subtask being on and all others
off[28, 56]]. The network response was recorded from two output nodes, each represent-
ing one of the two responses. Final response was determined by the output node with the

greatest activity at the final time-point.

RNN task description

On each trial the network received as inputs two binary cues and was tasked with choosing
the correct response, as designated by a context cue presented tonically through the task.
The X(N)OR, (N)OR, and (N)AND tasks followed the logic of their rules as applied to

binary stimuli. For the Memory (MEM) and Anti-Memory (AMEM) tasks the network had
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to respond with the first cue or the opposite of the first cue, respectively. Similarly, for the
Report (REP) and Anti-Report (AREP) tasks the network had to respond with the second
cue or the opposite of the second cue, respectively. All context-cue pair contingencies are
detailed in Fig. 4.1p.

Preceding Cue A was a foreperiod of 200 ms in which only the rule input was on. The
rule input is presented throughout the trial. Following the foreperiod, one of two Cue A
channels was set to 1 for 100 ms. Next both Cue A channels were returned to O for a delay
period of 2000 ms. After the delay one of the two Cue B channels was set to 1 for 100
ms. Following Cue B onset the network was instructed to produce a steady output of 1 in
the output channel corresponding to the correct response for that trial. Output was masked
until 100 ms following Cue B, such that output magnitudes prior to that time were not

considered in the loss function (and therefore unconstrained).

RNN training

The RNN’s hidden (recurrent) weights were initialized as a random gaussian matrix with
spectral radius equal to 1.1, and the initial input and output weights were initialized with
the Xavier method[19]]. RNNs were trained using an Adam optimizer[23]] as implemented
in TensorFlow 1.11.0, and with regularization on weights and unit activity[31, 56]]. Input,
recurrent, and output weight matrices were regularized with L1 penalties of 0.01, and unit

activity was regularized with an L2 penalty of 1. The overall loss function is thereby given

by:
Loss = |2arg — 27 + | f(2)[* + 0.01 [W™| + 0.01 [W™| 4 0.01 [W°*| (4.10)

where 2., 1s the target output.

The task was trained and tested with noise injected into input channels and recurrent
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units. Gaussian noise (4 = 0, 0 = 0.01) inserted into each stimulus channel, and into each
recurrent unit (x = 0, 0 = 0.1), at each time point.

Networks were trained with a curriculum learning regime in which the memory delay
duration was progressively extended over training[14]. Initially the network was trained
for 2,000,000 trials with a delay duration of 400 ms. This was followed by training the
network for 200,000 trials on increasing delays of 200 ms greater than the previous iter-
ation. When the delay length reached 2000 ms the network was trained again for a final
2,000,000 trials. Training proceeded with batches of 128 trials.

To test for robustness of results in RNNs across initial conditions and training his-
tories, 20 replicates of the network were trained, each starting from a different random

initialization.

RNN Analysis

Explained variance analysis. We utilized a linear model with binary coded contingency
as predictors to identify the proportion of across-trial state variance explained by each

contingency for each unit j in our network:

rp=wd+ Yy wi o (4.11)
ce{contingencies}

where, as in the empirical analysis, 679" is 1 when the contingency of trial 7 matches
contingency c and 0 otherwise. This regression model thereby uses 5 parameters per unit
(1 baseline and 4 contingency). The proportion of explained variance can be calculated

per unit j: EV; =1 — SSE;/SST;.
We defined the late delay epoch state as the dynamic state variable of each unit at the
time step prior to onset of Cue B. For demonstration of an example unit, Fig. 4.4a plots

the mean rectified state variable, averaged across trials for each rule and Cue A condition,
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for the recurrent unit that had the most [0-1] contingency variance.

In order to measure differences in sample and delay tuning we utilized linear models
to calculate, separately for each unit, the amount of state variance across trials explained
by Cue A identity and contingency. For Fig. 4.4, variance explained was calculated at
two time points: the final time point before Cue A offset (Sample) and the time point prior
to Cue B onset (Delay). Explained variance was calculated as below, and plotted is the
average variance explained across units for each feature and time point.

Model 1 used contingencies (Eq. 4.11)). Model 2 used Cue A identities:

rp=wl+ > wi ot (4.12)

a€{Cue A stimuli}

The explained variance for given feature f (contingency or Cue A) is given by:

SSE/

EVi=1—
v SSTf

(4.13)

These regression models and calculation of explained variance can be performed in a time-
resolved manner to characterize the time course of coding in the network (Fig. 4.4b,c).
For comparison to the experimental results from Rainer et al. (1999)[38]], we utilized
the WebPlotDigitizer[42] to replicate plotted data values (Fig. [4.4d).
Dynamic coding axis. For Fig. .4, at each time point, and separately for each rule,
we calculated the first principal component (PC) of network states across trials, following
prior experimental studies[33), 44, 34]. We then measured the angle between first PCs
from each pair of time points identifying the degree to which the dominant coding axis
had shifted between time points[44]. We then plotted the angular similarity between time
points averaged across rules.

Dynamic decoding. For Fig. 4.4f, we first separated the data into two equal halves of 500
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trials as train and test sets. We trained a linear kernel support vector machine (SVM), for
each rule to classify Cue A on the stimulus epoch activity of the train set (sample decoder
in Fig. [@.4f), and then tested it on each time point throughout the task on the test set.
Next we trained a separate linear SVM to classify Cue A at each time point on the train
set, testing it on the test set trials from the corresponding time point (dynamic decoder in
Fig. 4.4f). This analysis is analogous to dynamic decoding analyses in prior experimental
studies examining cross-temporal generalization of working memory representations in
prefrontal cortex[50, 49, 9]. Plotted is mean SVM accuracy averaged across rules.
Contingency subspace. We determined the first axis of the contingency subspace via a
linear regression to identify an axis which could decode the expected response to an up-
coming Cue B=0, based on the Cue A and rule on that trial, using the late delay epoch unit
activation. We similarly identified the second axis through a regression for the expected
response to an upcoming Cue B=1. While axes were determined independently, we found
they were always nearly orthogonal over 20 replicate RNNs with a mean between axis
angle of 92.6 degrees (sd 4.7 degrees). Further the regression method caused a modest
rescaling of the original space with a mean axis norm of 1.4 (sd 0.17).

To get the contingency representation we projected the state vector from individual
trials into the plane identified. To avoid any issues with overfitting, we fit the regression
on half our data which we used as a training set, and utilized the held-out half of our data
for figures and analysis.

Variance captured by subspaces. In order to test the hypothesis that more condition-
wise variance is explained by the contingency subspace than would be expected by chance,
we examined whether random two dimensional subspaces would contain equal variance
(Fig.=[4.3c). First we generated random orthogonal planes using Gram-Schmidt orthog-
onalization and rescaling, normalized such that the axes were equal in norm to the con-

tingency subspace axes. We then orthogonalized the two contingency subspace axes and
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measured the sum of the state variance in the contingency plane (the red vertical line). We
compared the variance in the contingency subspace to the state variance across the 20,000
randomly sampled orthogonal planes (Fig. 4.3c). We then ran this analysis over our 20
replicate networks and calculated a normalized variance measure, defined as the variance
in the contingency subspace divided by the mean of the variance across random orthogonal
planes (Fig.[4.3d).

Perturbation analysis. To functionally identify the relevance of the contingency subspace
for behavior we applied a state-space perturbation analysis. A random vector was added to
the state of the network at the time point immediately preceding Cue B onset. This pertur-
bation was either linearly dependent on the axes of the contingency subspace and therefore
lie within the subspace, or orthogonal to the subspace. We tested random perturbations of
increasing vector norm (magnitude) and measured the resulting decrease in accuracy. We
repeated this analysis for our 20 replicate RNNs. Plotted are lines for the mean accuracy
across replicates for a given perturbation either in the subspace or out of the subspace with

the band representing the 90% confidence interval (Fig. 4.3, Supplementary Fig. 4.S4).

Singular value decomposition (SVD) analysis of CDL task

First we divide the CDL task into (i) pre-delay features, i.e., features known to the agent
prior to the delay, and (ii) post-delay features. Pre-delay features include the rule and
Cue A, while post-delay features include the Cue B and response. We represent each
feature as a one-hot encoding. Then we can build an interaction matrix for Cue A X
Rule and a separate interaction matrix for Cue B x response. Finally we construct the
correlation matrix between our two interaction matrices, and factorize it with a singular
value decomposition (SVD). This results in a U matrix which represents loadings for our

task conditions, a V' matrix that represents loadings onto our contingencies, and a > matrix
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that represents the weighting of those loadings.

Fore = Cue A x Rule. 4.14)
Foost = Cue B x Response 4.15)
M = p(Fpres Fyost) (4.16)
M=U-S5-V (4.17)

Results of this SVD analysis are shown in Supplementary Fig. 4.S1]

Task pair analysis

To identify Cue A tuning in the contingency subspace we first mapped each Cue A X
Rule condition of a given pair of tasks to its associated contingency state. Here we use an
idealized set of orthonormal contingency coding axes which provide the only tuning in the
system, with the first axis encoding the response if Cue B=0, and a second axis encoding
the response if Cue B=1 (Fig. 4.5p).

Each task pair is represented four possible states, 2 Cue A states x 2 rule states. For
each pair we first averaged states across rules . We took the measured Euclidean distance
between Cue A=0 mean and the Cue A=1 mean as our theoretical prediction of cue tuning.
Similarly, to identify rule tuning we averaged across Cue A states. The Euclidean distance
between the means for the two rules in the contingency subspace was taken as our theo-
retical prediction of rule tuning. We repeated this procedure through all 100 possible pairs
of rules (including each rule paired with itself) to generate the full matrix of predictions.
We then defined a theoretical cue:rule tuning ratio as the ratio of our predicted cue tuning
over predicted rule tuning (Fig. 4.5p).

In each of 20 replicate RNNs trained on the CDL task, we isolated trials belonging to

a pair of tasks. We then averaged the state vectors by condition (Cue A x Rule pairs). As
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above we then averaged the state of the network and measured the Euclidean distance in
state space across rule to get cue tuning and across cue to get rule tuning. We repeated this
procedure for all task pairs as above. We then divided our measured cue tuning by rule
tuning to get a RNN rule to cue tuning ratio. Finally we averaged across our 20 replicates.
To compare the RNNs to theoretical predictions, we used a Spearman rank correlation test
to identify similarities in the pattern of the lower triangular matrices of both the predicted

and measured cue to rule tuning ratios (Fig. 4.5¢).

Comparison models

RCN model. We implemented a randomly connected network (RCN) model[4, 26] to
investigate differential predictions between unstructured-high dimensional nonlinear rep-
resentations and our task-trained RNN models. To generate internal representations for
RCN models, we generated one-hot representations of rule, Cue A, and Cue B for each
trial, which we term w;,s of dimensionality 1000 x 14. Then we multiply these repre-
sentations by a matrix, W;,,q, of dimension 14 x 200, the number of input variables by
the maximal dimensionality of the 200 recurrent units of the RNN. Elements of W,,,q
were drawn from a random normal distribution. A threshold variable 6 for each element
drawn uniformly from the interval [—1, 1] were then subtracted. Finally we transform the

representation with a sign operation such that values are represented by +1.

RCN = sign(ting; - Wiand — 0) (4.18)

For the inputs model we took the one-hot representations of rule, Cue A and Cue B, s,
and simply ran analysis directly on these representations.
Representational similarity analysis (RSA). To compare our trained RNN to the RCN

model in representational structure, we applied a representational similarity analysis to
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both networks[25]. For the RNN we took the activity vector at the time point prior to Cue
B onset. We generated representational similarity matrices by averaging activity across
trials for each Cue A X rule condition, and then taking the pairwise Pearson correlation
between the averaged activity vectors (Fig. d.6a,b).

We then compared these matrices to three binarized candidate representational matri-
ces: (i) Cue, with two conditions being similar if they had the same Cue A; (ii) rule, with
two conditions being similar if they shared a rule; and (ii1) contingency, with two condi-
tions being similar if they share a contingency (Fig.[d.6fc). We repeated this analysis for 20
randomly constructed RCNs and our 20 replicate RNNs. Plotted is the distributions over
these replicates separated for cue, rule and contingency, respectively (Fig. d.6d).
Variance explained. In order to identify the proportion of variance explained by Cue A,
rule, and contingency in each model, we fit a linear model for each feature to each unit
states across trials using a regularized least squares (A = 0.1). For the RNN, we used the
state at the time step prior to Cue B onset. We then calculated the proportion of variance
explained as 1 — SSE/SST. We then conducted this analysis for each unit, taking the
average over a given network. Shown is the distribution of mean unit variance explained
by that feature over 20 RCN replicates and 20 RNN replicates (Fig. 4.6e).
Dimensionality. To measure effective dimensionality of states in our models, we used
the participation ratio[ 18, [15] calculated as (Ei):,?) _1, where \; = \ /XA and {\;} are
the eigenvalues of the covariance matrix. We applied this measure to the RNN states
at time step prior to Cue B onset. We also used this analysis to measure the effective
dimensionality of the RCN activity and of the input data itself as comparisons (Fig. 4.6f).
Cross-context generalization. We utilized a cross-condition generalization (CCG) analysis[6]
to test the extent to which the geometry of the contingency subspace represented common
information between different trial conditions with the same contingency state. We fit the

contingency subspace, as described above, except we held out all trials with a given rule—
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Cue A condition. We then projected the held-out trials into the subspace and used the four
quadrants of the contingency subspace as a classifier, with each trial being classified as the
contingency state of the appropriate quadrant. We repeated this analysis for our 20 RNN
replicates, as well as for our 20 RCN replicates. Plotted is the distribution of accuracies

for the CCG classifier across networks (Fig. 4.6g).

Partitioned variance analysis

To measure the extent to which contingency was over-represented in our RNN model com-
pared to statistically matched nonlinear structure, we implemented a permutation test and
identified mean unit state variance explained. Then we permuted contingencies between
Cue A X rule pairs to generate pseudo-contingencies (e.g. all Cue A=0, Rule=AND trials
were assigned the same new random contingency) (Fig. d.7a). We regressed out linear
effects of Cue A and rule, fitting a linear model and taking the residual for further anal-

ysis. Then we used our pseudo-contingency labels to fit a linear model using regularized

SSEcont

least squares (A = 0.1). Finally we calculated variance explained as =%z

. We compared

the actual contingency variance explained to 1000 randomly sampled pseudo-contingency

sets (Fig. 4.7p).

Specifically, we perform the following regression model:

r=w’+ Y wt st D w, o (4.19)
a€{Cue A stimuli} re&{rules}
We define the residuals of this regression model:

res=r—7r (4.20)

where 7 is the predicted activity for each trial. We next perform a second regression on the
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residual:

res = w’ + Z w 67 4.21)

ce{(pseudo-)contingencies }
using either the true contingencies, or the shuffled pseudo-contingencies to generate the
null distribution.

We repeated this analysis for the RCN data, as well as all replicates of the RNN
(Fig.d.7p,c). We calculated normalized variance as the mean variance explained by con-
tingency labels over the mean variance explained by pseudo-contingency permutations.

Shown is the distribution across RNN replicates (Fig. 4.7d).
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4.5 Appendix

Supplementary Figures
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Figure 4.S1: Singular value decomposition (SVD) analysis of CDL task. (a) Left: Cue
A by Rule interaction matrix (20 x 40), representing the interaction of all trial information
provided prior to the delay, Middle: Cue B by Action interaction matrix (40 x 4), the
trial information delivered post delay, Right: the Pearson correlation between pre-delay
and post-delay features. (b) SVD of the correlation matrix in A, into a diagonal matrix
2], and two orthogonal matrices U and V, representing a basis in pre-delay and post-delay
features respectively. The bar graph represents the fraction of variance explained by each
mode of the decomposition, (¢) A projection of U values colored by the contingency of the
associated trial condition. SVD of the CDL problem naturally divides along contingency
into a two-dimensional subspace.
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A B Errors by task
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Figure 4.S2: Individual participant behavior on CDL task. (a) All participant data
plotted as in Fig. 4.2b with mean reaction time averaged across Cue A and rule pairs.
(b) Mean errors per task averaged across participants. (C) Overall accuracy presented for
each participant (D) Individual participant data for change in closure effect. Each line
represents a single participant, with bars covering the mean early (first two blocks) and
late (last two blocks) session closure effect. Black line represents the average change from
early to late. (E) Mean accuracy by condition, averaged across participants, divided by
rule, Cue A and Cue B combination.
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Figure 4.S3: UMAP analysis of RNN representations. (Caption on next page.)
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Figure 4.S3: (Previous page.) (a) Left: UMAP (Uniform Manifold Approximation and
Projection) performed on states of the network in the late delay epoch (time point prior to
Cue B onset) colored by contingency. Right: Quantification of embedding distance. For
each feature first we averaged the embedding values for all trials by condition across that
feature (e.g. Cue A=0 and Cue A=1 for Cue A). Then we calculated the mean Euclidean
distance from each trial embedding to the its associated centroid. UMAP embeddings in
the late delay epoch clustered more substantially by contingency than by Cue A (one-way
anova, pj0.001) or rule (p;0.001). Dashed line represents chance embedding distance,
generated through an analysis of distance to centroids of randomly partitioned trials. (b)
Analysis as in (a) with activity states from the early delay epoch (200 ms after Cue A off-
set). We found that in the early delay epoch, Cue A centroids significantly outperformed
rule (p;j0.001) and contingency (p;0.001) organization. (c¢) Analysis as in (a) with activity
states from the fore epoch (50 ms before Cue A onset). In the foreperiod UMAP embed-
dings were more highly organized by rule than Cue A (p;0.001) and contingency (p;0.005).
Despite this there remains significant contingency organization during the foreperiod, with
lower contingency embedding distance than Cue A (p;0.001).
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Figure 4.S4: Late rule task. (a) A schematic of the late rule task. All events in the
trial proceed as described for the original task, with the exception that rule input only
onsets at the start of Cue B onset rather than being tonically on throughout the trial. This
makes calculating contingency during the delay impossible. b) The contingency subspace
as calculated in Fig. [4.3p for the late delay network shows no substantial organization
by contingency. (c) The contingency subspace in (b) shows no preferential variance as
compared to randomly chosen subspaces. (d) Despite showing no contingency subspace,
performance of the network is high with near 100% accuracy in the unperturbed model.
Further validating that a contingency solution is not being utilized by this network, the
late rule network shows no preferential vulnerability to perturbations in the contingency
subspace as opposed to orthogonal to it, for any perturbation magnitude.
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Figure 4.S5: Feedforward neural networks and stepwise computation. A feedforward
model of the CDL task using a 3 layer fully connected neural network with ReLLU non-
linearities. Left: Schematic of input regime. Inputs were represented as in the RNN by
one hot vectors, with dimensionality 2 for Cue A and Cue B and dimensionality 10 for the
rule input. Each hidden layer was composed of 200 ReL.Us. All weights were initialized
with Glorot initialization. Networks were trained for 20,000 iterations using the Adam
optimizer (learning rate=0.001) on a mean squared error loss function with L2 regulariza-
tion (A=1) on hidden unit activity. Right: The mean unit state variance explained across
trials by each feature (Cue A, rule, contingency and target) for layers 1 and layers 2 of the
model. (a) As in the CDL task, Cue A and rule are input into the first layer and Cue B is
input into the third layer. Information processing of the first layer roughly approximates
the early delay, while the second layer represents the late delay and third layer the post de-
lay epochs. Units in the layer 2 (late delay) but not layer 1 (early delay) are best explained
by contingency as in the recurrent network. (b) As in the late rule network, only Cue A is
input into the first layer, with both rule and Cue B being input into layer 3. The network as
in the recurrent network demonstrates only Cue A variance in both layers 1 and 2. (¢) All
input, rule, Cue A and Cue B, enters at the first layer. In no layer does contingency best
explain unit variance.
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Figure 4.56: Task pair tuning analysis. (Caption on next page.)



Figure 4.S6: (Previous page.) (a) Representation for all 55 task pairs of predicted the-
oretical contingency induced tuning for rule and Cue A. Circles, colored by contin-
gency, represent the centroid for trials of each contingency in the contingency subspace.
Cyan(Black) Xs represent the location of trials averaged across rules for Cue A=0(Cue
A=1). Cyan(Black) Xs represent the location of trials averaged across rules for Cue
A=0(Cue A=1). Cyan(Black) squares represent the location of trials averaged across cues
for Rule A(Rule B), with Rule A on the x-axis and Rule B on the y-axis. Green lines
represent the direction and magnitude of cue tuning induced by representation in the con-
tingency subspace. Magenta lines represent the magnitude and direction of rule tuning
induced by representation in the contingency subspace. (b) Measured and theoretical tun-
ing for Cue A and rule. Measured tuning represents the Euclidean distance between the
trial averaged recurrent unit states from the late delay epoch. Theoretical tuning is the Eu-
clidean distance between representations averaged, within Cue A or rule for cue tuning and
rule tuning respectively, in the contingency subspace. (¢) Spearman correlation calculated
across 20 replicate RNNs between theoretical and measured Cue A and rule tuning. Cor-
relation was measured between lower triangular elements between RNN tuning matrices
and contingency theory matrices separately for cue and rule tuning.
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Chapter 5

Neural tangent kernel model of human
deterministic rule learning

Daniel B. Ehrlich, Sam Zheng, John D. Murray

Abstract

While it is crucial that we learn how to generalize between contexts such that we can apply
insight learned in one condition to another, in adverse contexts inappropriate generaliza-
tion can lead to destructive interference and inhibit learning. Deciding when information
should be generalized is therefore a vital concern for learning efficiently, incentivizing the
careful construction of priors over what information should be shared. Here we utilize two
deterministic logical tasks to investigate across-rule and across-condition learning patterns
in human subjects. We use a statistical learning model, a neural tangent kernel (NTK), to
decompose the learning process in both tasks into discrete modes. We explore the trade-
off between linear modes that utilize low level feature generalization and non-linear modes
that can partially correct for failures caused by the limitations of linear feature learning.
We find that an intermediate regime of linear and conjunctive representations is capable of

explaining learning in both data-sets.
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5.1 Introduction

Humans are capable of learning a wide array of behavioral rules to guide their interac-
tions with their environments, from simple stimulus-response reflexes[[13} 7] all the way
to reasoned plans over abstract concepts[12]. How humans learn rules has been an is-
sue of significant debate. Rule learning can take on different demands depending on the
probabilistic or deterministic structure of the environment. In probabilistic environments
humans must sample state-action pairs collectively to gain increasingly confident approx-
imations of the optimal rule[23] 4]. In deterministic environments, however, in theory
agents should be able to use even just a single instances of each state-action pair to ex-
actly identify rules. Despite this it has long been observed that even in deterministic
environments agents rarely can achieve such exact performance and that there are wide
variance in the observed alacrity with which different rules over the same stimulus space
are learned[22].

The observation that humans do not appear to learn by simply memorizing all the state-
action mappings has given rise to a wide set of frameworks regarding how humans learn
in such environments[2]. One traditional debate has contrasted prototypes where the agent
learns a prototypical model of each category, against exemplar models where the agent
stores all examples and matches to the closest one[1]. Further models have instead posited
a hierarchical hypothesis testing in which agents first search over simplistic rules and when
unsuccessful begin to iteratively search over more complex rules[14]. Lastly groups have
suggested that rule learning may be a combination of these phenomena, such as a pro-
posal where predominantly rule learning follows a prototype model but also searches for
exceptions[ 16, [18].

In recent years, the vast increase in the capability of artificial neural network (ANN)

models to learn a variety of rules has demonstrated the suitability of less structured learn-
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ing processes of acquiring rule respecting behavior[24, [3]. Instead of learning iteratively
across different types of representations or using an active hypothesis testing method,
ANNSs are initialized with large mixed representations and the model, especially as the
network increases in width[[15], predominantly learns statistically from the structure of the
representations available[/11} 6].

Here we apply an explicitly statistical learning model, a neural tangent kernel (NTK)[11]
approximation to a feedforward ANN, to two deterministic rule learning tasks and observe
evidence consistent with human performance over two separate case studies. In contrast
to a full feedforward network where we would have to directly simulate weight updates
the NTK has two major advantages. First, the reduction of the learning process to a linear
dynamical system in the NTK vastly accelerates learning trajectory generation across a va-
riety of conditions. Second, the dependence of the NTK model on a linear kernel enables
us to decompose and analyze separable learning modes efficiently and exactly.

In the first study we explore how the order of condition acquisition depends on the
overall task structure. As mentioned above, in cases where state-action pairs are memo-
rized they should be independent and only the order of presentation should impact learn-
ing, however in alternative learning theories that may not be the case. We constructed a
task with two shared rules and a third group-specific rule, to test how inclusion of a rule
with different structure could affect learning in the common rules. In the second study we
utilized data from the rule learning benchmark task of Shepard and colleagues[22]], where
they had subjects learn 6 rules over the same stimulus set and observed the differences in
average difficulty of acquisition.

Using the NTK model, and analyzing learning contributions from linear feature rep-
resentation as well as non-linear conjunctions we identify putative explanations for con-
ditional and rule acquisition arising from a purely statistical homogeneous learning pro-

cess. We identify how weighting higher order feature conjunctions more prominently in
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the learning process can impact the order of rule and condition acquisition. Further we
demonstrate that by balancing both linear features and conjunctive features correctly we
can explain human learning patterns in both tasks in the framework of a simple statistical

learning model.

5.2 Results

Study 1: Cross Talk Task

On each trial the participant was first shown a square of one of three colors representing a
Rule Cue to be applied during that trial. After 300 ms two binary cues (0 or 1) appeared
flanking the rule stimulus. We will refer to the left cue as Cue A, and the right cue as
Cue B. The participants could respond either left or right with a button press. After their
response they were shown a response screen indicating whether their choice was correct
for that trial.

Participants were divided into two groups, with both groups learning two shared rules
and each group learning one of two group-specific rules. Participants were not instructed
on the correct response for each rule but were tasked to learn the rules from experience
and feedback. Both groups learned the XOR and Report B rules. In the XOR rule partic-
ipants needed to respond right if Cue A and Cue B did not match. In the Report B rule,
participants needed to respond right if Cue B was 1 and left if Cue B was 0. In addition to
these rules, participants in the AND-group also learned the AND rule, where they needed
to respond right if both Cues were equal to 1, and left otherwise. In contrast, participants
in the NAND-group learned the NAND rule, where they responded left if both Cues were
equal to 1, and right otherwise (Fig[5.1).

Since both NAND and AND are symmetric up to a remapping of the outputs, partici-
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Shared XOR 0 0
[
Rules REPB 0 0
Group- AND 0 0 0
Specific
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Figure 5.1: AND vs NAND Rule Sets (top) Shared Rules: The condition-response table
for the two rules taught to every participant, XOR and Report B (REPB). (bottom) Group-
Specific Rules: Condition-response table for the group unique rules. Each participant
learned one of the two group-specific rules, AND or NAND, in addition to both shared
rules.

pants learning rules independently should show no behavioral effect based on their group-
ing. If participants are using information across rules to inform their learning, the change
in correlation across rules could cause constructive or destructive interference and impact
their behavior. We quantify this potential relationship across conditions imbalance, de-
fined as the proportion of conditions that share a given feature that lead to the same output
(Fig[5.2). Therefore a condition with a positive imbalance in the rule set will benefit from
generalization across the feature and learning for a condition with negative imbalance will
be impeded.

The same condition could be benefited by condition-wise imbalance across rules in
one rule set, but handicapped by imbalance in the other. For example in the case of REP,
A=1, B=1, in the AND set it is positively impacted by A-B imbalance as it shares the same
output with other conditions with A=1 and B=1 (Fig left). In the NAND set however it
now is opposed to the majority of the A=1, B=1 conditions giving it a negative imbalance
within the rule set (Fig[5.2] right).

Participants were able to learn to perform both tasks to relatively high accuracy (Fig
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20+170

Figure 5.2: Imbalance Between Rule Sets (left) Geometric representation of the AND
rule set. Each dot represents a specific trial condition (Cue A, Cue B and Rule). Blue dots
represent a trial for which the correct response is left, while orange dots represent trials for
which the correct response is right. Outlined are all trials for which Cue A =1 and Cue
B = 1. Equations represent the computation for imbalance (here Cue A x B imbalance).
(right) Geometric representation for the NAND rule set. All conventions as described for
the AND rule set. Notably the equation for imbalance for the highlighted trial changes
sign between the sets.
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Figure 5.3: Accuracy Across Conditions and Rule Sets (a) Mean accuracy across sub-
jects for the AND and NAND rule sets. Accuracy is computed using a 10 trial sliding
window approach. (b) Mean condition accuracy for each of the twelve conditions in the
AND (left) and NAND (right) rule sets. Trials were separated by condition, ordered in
terms of presentation and then smoothed using a 5 trial sliding window. (c¢) Difference
between average condition accuracy for the NAND and AND rule sets (b).

[5.3k). Despite having nearly identical over-all learning trajectories, participants in the
NAND group tended to first learn a different set of conditions than did participants in
the AND group (Fig[5.3p). To investigate the extent to which imbalance could explain

the order of conditions learned, we calculated the correlation between condition accuracy
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averaged across subjects and imbalance. We found that while condition accuracy was
correlated to Cue A, Cue B and Rule imbalances, it was most highly correlated to the Cue

A x B imbalance, or the imbalance across all other conditions with the same A and B cues

in the rule set (Fig[5.ST).
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Figure 5.4: Conditional Accuracy Matches Imbalance (a) Mean accuracy across time
and participants for the AND and NAND rule sets for each of the conditions in the shared
rules. (b) Imbalance template for AND and NAND rule sets each condition in the shared
rules. (c) Pearson correlation calculated for the each of the four possible template-behavior
comparisons. Significance test performed using permutation test across conditions.

To quantify the effect of Cue A x B imbalance on learning rate accuracy we formed
imbalance templates (Fig[5.4b) that measure the imbalance for each condition in the AND
and NAND rule sets. We then used a two proportion z-test to evaluate the proportion
of correct trials of a condition across subjects in the AND set verses in the NAND set,
deriving a z-score for each condition. The z-score should be negative if for that condition
AND is more accurate than NAND, and positive in the opposed case. The z-score matched
the direction of the difference between AND and NAND imbalance template for every
condition, and was significant for 6 of 8 conditions common to both rule sets (Fig[5.4).

As a control we wanted to insure that the observed pattern in learning could not be
attributed to features general to both rule sets. To do so we calculated the correlation
between the condition-wise accuracy averages and the templates, both within a given rule

set (e.g. AND template and AND behavior) and across rule sets (e.g. AND template and
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NAND behavior). We found that while the correct template explained learning patterns

well, the alternative template was a poor match in both directions (Fig [5.3[d).

A Neural Tangent Kernel Model Replicates Set Effects

An NTK is an analytical approximation to a neural network of a given structure. It was
observed that as a model grows in width, the extent to which each weight changes dimin-
ishes. For this reason at an infinitely wide network it can be assumed that the initial weight
matrix is approximately fixed. With this assumption in place we can then simulate out the
expected learning trajectories of such an infinitely wide ANN model as a linear dynamical
system, with learning governed by a between condition kernel[11]. This allows us both
to simulate learning trajectories without computing the actual weight updates for an ANN
model, but also to directly analyze the structure of learning through the identified kernel.

Given that we utilize the initial weight matrices in the calculation of the NTK, the
resulting model is a representation of the inductive biases of the initialized ANN. The
basic structure of the population code (e.g. the extent of mixing between features and non
linearity in representation of those features) induced by that ANN structure will be passed
on to an NTK approximation. As such the structure of the ANN we are approximating
using this method will effect both the NTK and thereby the learning dynamics. In this
study we used an NTK model to simulate learning for an idealized single layer infinite
width ANN model with a rectified linear (ReLLU) activation function.

We found that the NTK was able to learn both the AND and NAND task sets and
reach high performance across all conditions. As in our human sample(Fig[5.3)), there was
no difference in mean accuracy trajectories across the two sets (Fig[5.5p). Nevertheless
between rule sets, there was substantial deviation between the order in which conditions
were learned (Fig[5.3pb).

To characterize how well the patterns of learned conditions in our NTK model matched
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Figure 5.5: Rule Set Effects in the Neural Tangent Kernel Model (a) Mean across rule
accuracy for the AND and NAND NTK models. (b) Across by condition for the (left)
AND NTK model and (right) NAND NTK model. (¢) Difference between the AND and
NAND set accuracy for each condition.

the human behavior we took the average accuracy across training for both the NTK and the
Human behavior for each condition and calculated the correlation both within rule sets and
across rule sets. We found that the NTK trained on the AND task was strongly correlated

with the AND human data but not the NAND human data, while the opposite was true for

the NTK model trained on the NAND task (Fig|[5.6).
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Figure 5.6: NTK Learning Matches Human Behavior Pearson correlation calculated
between the mean accuracy across human subjects and the mean accuracy across time
for the NTK models. Each of the four possible human behavior-NTK models pairs were
calculated.
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Decomposing Learning Modes From the NTK

The NTK learning dynamics are driven by a kernel which is a linear approximation of the
derivative of the output with respect to a change in the weights. We can use an eigen-
decomposition of this kernel to identify unique orthogonal modes contributing to learning.
This decomposition identified both linear modes that represented the input features, e.g.
the Cue and Rule combinations, as well as non-linear modes representing combinations of
features [5.7p). In our model we found that the magnitude of non-linear modes tended to
be substantially smaller than linear modes [5.7p).

By recombining subsets of the modes into a new kernel [5.7d,f,h) and running the NTK
model forward we can analyze the impact of each mode on the order and rate of condition
acquisition. Primarily we will be using two subsets of modes, (1) the linear modes which
include the constant mode, the rule modes and the cue modes; and (2) the nonlinear modes
which include the constant mode and the non-linear conjunctive modes.

We find that while the linear kernel learns more quickly, it cannot asymptotically solve
all of the tasks ). In contrast, the non-linear kernel learns more slowly than the full
NTK model but does reach full performance if given sufficient data[5.7¢). Perhaps most
intriguingly while the linear and full NTK models share the same order of condition acqui-
sition the non-linear model does not indicating the role of linear modes in driving between

condition learning rate phenomena.

Study 2: Shepard Task

In brief, each subject was shown a stimulus with binary attributes across three dimensions,
size, shape and color. They were tasked with responding either left or right to each stim-
ulus, receiving feedback and learning from experience. The rule applied was randomly

drawn from a set of 6 possible rules representing different levels of task complexity (Fig
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Figure 5.7: NTK Kernel Decomposition (a) Accuracy trajectories for partial kernels with
only the linear (orange), non-linear (purple) and full kernel (blue) maintained. (b) Percent
variance explained for each mode of the kernel as well as the mode of across condition
variance explained by that kernel. (¢) Conditional learning trajectories for the linear partial
kernel. Color for (c,e,g) indicates asymptotic accuracy for the linear kernel. (d) The
recomputed partial linear kernel. (e) Conditional learning trajectories for the non-linear
partial kernel. (f) The recomputed partial non-linear kernel. (g) Conditional learning
trajectories for the full kernel. (h) The full kernel.

[5.8). Rule I was governed by a single feature, shape. Rule II represented an XOR conjunc-
tion of shape and size. Each of Rule III-V were rules governed by a single feature, with
one sample of each group swapped. Finally Rule VI was fully conjunctive, having no low

level description simpler than the full stimulus-output map itself.

Shepard and colleagues[22], as well as replication studies[[17]], have demonstrated a
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Figure 5.8: Shepard Task Rules Representation of the 6 rules utilized in the Shepard task.
On each trial the agent saw one of eight possible stimuli with binary variance across three
features (shape, size and color). They were tasked with making a binary classification and
were shown feedback regarding the accuracy of their choice.

highly consistent order of rule acquisition. Rule I was by far the quickest acquired, fol-
lowed by rule II, with rules III-V coming next. Rule VI was learned significantly more
slowly than were the other rules.

Intriguingly our default NTK model did not closely match this same rule ordering.
Notably, in contrast to the human participants rule II was learned second to last only be-
ing more quickly acquired than rule IV. Further rules III, IV and V showed significant
discrepancy in their learning trajectories. To explore the potential cause of this deviation
we decomposed our NTK model into independent learning modes as in the analysis above
using a eigendecomposition.

While our default NTK model is a single possible architecture, there is enormous het-
erogeneity in architectural designs for feedforward networks both at the unit level (e.g.
activation function) and at the network level (e.g. number of layers). For this reason we
wanted to test the extent to which the form of representations, especially with regard to the
composition of linear and non-linear conjunctions, in our one layer feedforward network

might explain the deviation between the human and NTK learning results. To do so we
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Figure 5.9: Human vs NTK Rule Learning Trajectories (left) Human data for the first
ten blocks of a replication of the Shepard task. Lines represent average error rate across
participants for each of the 6 task rules. (right) NTK accuracy data for feedforward net-
work model learning the same task set.

recomputed a new kernel with different ratios of linear and non-linear kernel elements and
re-ran the learning trajectory. We found that at a 1:11 ratio we had the best fit to human

data (p = .79). This indicates that humans in the Shephard task are relying on nonlinear

conjunctive modes more heavily than does our default NTK model.

5.3 Discussion

Here we use NTK models of a one layer ANN to analyze two phenomena regarding the
facility with which humans learn rules. First, in a task well structured to test for the impact
of shared feature representations between rules we find that an NTK model of a one layer
artificial neural network is a strong match to the order of condition acquisition in human
subjects learning the same task. In a decomposition analysis we can link this phenomena to
the strong impact of linear feature representation in the learning process. Second, we find
the same model does poorly in fitting the order of rule acquisition across rules of different
complexity in a traditional benchmark task[22]. However, by modulating the influence of
linear and conjunctive modes of learning directly we find an that a network re-balanced to
assign greater weight to conjunctive representations fits both condition learning and rule

learning well.
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Figure 5.10: Re-balancing Nonlinearity in Kernel to Match Human Behavior (a) Val-
ues of fit to human behavior measured as across condition correlation in mean accuracy for
the human and NTK data. We generated re-balanced kernels, by decomposing the kernel
into linear and non-linear learning modes. We then multiplied the non-linear modes by a
scaling factor (keeping the linear modes constant), recomposed the kernel and generated
new learning trajectories. We found that the best fit was at a scaling factor of 11 (red
dashed line). (b) The learning trajectories for our best fit model. (¢) Accuracy for each
rule for humans performing the fourth learning block in the Shepard task[[17] compared to
accuracy for the NTK at the 200th weight update.

In contrast to the NTK approach which fundamentally regards the information as a
pattern, learning both linear and conjunctive elements in parallel, several early models of
rule learning utilized active hypothesis testing to check for the feasibility of simple rules

that align with a small number of features. For example the RULEX model attempted to

iteratively search over one dimensional rules, then simple rules with minimal exceptions,
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followed only last by full pattern recognition[18]. Other related approaches sought to use
low level category representations, only forming more complex conjunctive representa-
tions if met with low accuracy rates[14]. In contrast to these approaches we used a model
that learned from all levels of representation simultaneously. Intriguingly we found that
the seemingly ordered behavior could be well explained by weighting different complexity
representations appropriately.

One commonly observed issue in deep learning is the data inefficiency of many cur-
rent state of the art methods in deep learning[10]. In contrast to human learners who can
acquire tasks with a small number of representative samples, deep learning models of-
ten require extremely large datasets with enormous numbers of iterations to reach equal
performance[21]]. Here we observe an example of efficient data use in both our human and
NTK learning. While stimulus information across rules is neither necessary nor sufficient
to solve the task, relying on only each trial condition independently requires many more
samples to reach high performance than to share information across conditions[20, 5].

This increase in data efficiency through implicit data augmentation[20] is a core ad-
vantage of multi-task learning, or learning a task simultaneously with an auxiliary task.
One potential issue however is that where tasks diverge the use of data from one task may
cause artifacts in the other task. This divergence can be thought of more broadly, but in our
cross-talk task maps neatly to the idea of imbalance potentially explaining why imbalance
templates can explain learning patterns so closely.

As a deterministic task, one strategy an agent could in theory use is to simply mem-
orize each mapping. In this case an agent should reach 100% performance following the
first twelve trials. Despite this, we don’t find this behavior in either our human or NTK
model. In the NTK model, learning is by definition incremental so it is unsurprising, but
less so in the human data. There are several reason humans may not adopt this strategy.

First, we did not explicitly tell our participants the task is deterministic or that conditions
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exclusively mapped to one output. They may decide to sample either output for the same
condition to determine the task meta-structure themselves. Second, it may not be possible
for participants to separately memorize each condition directly[8]]. A limit on working
memory could force subjects into a less deliberative, and more gradual, learning regime.
Third, subjects may attempt to directly memorize but their memory may be corrupted by
trials with shared features[19]. A trial could potentially be acting as a “distractor” for
future trials leading to the incorrect choice.

An early issue for artificial neural networks was the inability for early systems to learn
certain non-linear problems (e.g. the XOR problem)[9]. These issues have been solved
with the rise to popularity of highly non-linear deep networks capable of dissociating
complex representations. In this study we find that learning in both humans and a relatively
simple, but potentially highly non-linear model, were surprisingly linear. Instead of non-
linearity providing the dominant role in learning, it played an accessory role, working to
counterbalance the directions in which linearity may inhibit learning, and the comparison
to human learning patterns began to break down as non-linearity began to dominate.

In conclusion, we observed participants learning deterministic rules integrated infor-
mation both linearly across conditions as well as through higher order nonlinear conjunc-
tions. We observed a close correspondence to the order of condition acquisition seen in
human participants using an NTK model of a single layer feedforward network. By de-
composing the modes involved in learning in the NTK model, we isolated a regime of
balance between linear and nonlinear learning components that could explain differences
in learning rate between rules requiring different nonlinear complexity. This research in-
dicates the sufficiency of a largely unstructured learning processes, assuming the correct
inductive biases over information shared across conditions, to explain human learning pat-

terns.
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5.4 Methods

Imbalance

Imbalance for a condition was defined as:

) J
I, = N, (5.1)
1 if fi = f;
-1 it fi # f;

where [; is the imbalance for condition 4, /Ny is the number of conditions that share
the same feature as condition 7, m;; is an indicator variable to indicate whether condition
1 and j share the same response. f indexes for the feature imbalance is being calculated

acCross.

Task Descriptions

Cross Talk Task

Participants were recruited on the MTurk platform. Task structure was explained and
participants were shown an example stimulus.

We recruited a total of 50 participants (ages: 21-69, 44% male). All participants were
shown and accepted an online informed consent document approved by the Yale Institu-
tional Review Board (IRB) and were paid for their participation.

Participants were excluded from analysis if their overall accuracy across rules was less

than 65%. 16 of 31 total participants were excluded from the NAND group, while 7 of
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19 total were excluded from the AND group, leaving us with 15 NAND and 12 AND
participants in the final analysis.

Participants maintained anonymity and were paid through the MTurk platform.

Following training participants were shown 480 trials in a pseudo randomized order
(40 of each Rule x Cue A x Cue B condition) broken up into blocks. On each trial the
participant were first shown a square of one of three colors representing a Rule Cue to
be applied during that trial. After 300 ms two binary cues (0 or 1) appeared flanking the
rule stimulus. We will refer to the left cue as Cue A, and the right cue as Cue B. The
participants could respond either left or right with a button press. After their response they
were shown a feedback screen for 800ms indicating whether their choice was correct for
that trial.

Participants were divided into two groups, with both groups learning two shared rules,
and each group learning one of two group-specific rules. Both groups learned the XOR
and Report B rules. In the XOR rule participants needed to respond right if Cue A and
Cue B did not match. In the Report B rule, participants needed to respond right if Cue B
was 1 and left if Cue B was 0. In addition to these rules, participants in the AND-group
also learned the AND rule, where they needed to respond right if both Cues were equal
to 1, and left otherwise. In contrast, participants in the NAND-group learned the NAND
rule, where they responded left if both Cues were equal to 1, and right otherwise.

We collected 11 participants for the AND set and 14 participants for the NAND set.

Shepard Task

For this task we used the first ten blocks of learning data from the implementation in the
replication study performed by Nosofsky and colleagues[l17]. On each trial a participant
was shown a stimuli that varied along 3 dimensions (shape, size and color) and registered

their response with a key press. For each rule, each participant was first shown two blocks
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each of 8 trials where each stimulus was shown once in random order. The following
blocks were each of 16 trials, with each stimuli occurring twice. After each trial, the
participant was instructed as to whether they had made the correct choice.

Each participant learned two rules. Participants were explicitly instructed that the rules

were independent and the order and rule pairs were counterbalanced across participants.

Behavioral Analysis

Accuracy across time was evaluated on a moving window basis of 10 trials (Fig[5.3p).

Condition specific accuracy was calculated based on the number of trials of that con-
dition the participant had already seen, (e.g the third time the participant saw XOR, A=0,
B=1 was the third trial of that condition). Accuracy per condition was calculated with a 5
trial smoothing window (Fig[5.3p).

For each rule set, we first calculated the AB imbalance for each condition forming
an imbalance template. We averaged accuracy across time to get a single scalar value
for accuracy through the task for each condition. We then used Spearman correlation to
measure the match between accuracy and imbalance. We used a leave one subject out
method to estimate error bars.

To measure the rule set effect within each condition we measured the number of correct
and total choices for each condition and each group. We then used a two-proportion z-test
to measure the direction, magnitude and significance of the effect. We found that all
difference in accuracy between rule sets matched the direction of the imbalance difference

between rule sets with six of eight reaching significance (p;.05).
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NTK Model

Our NTK model approximates an infinite width 1 layer feedforward ANN with ReLLU

activation functions. The feedforward pass is governed by the equations:

p = sigmoid(o) (5.5)
Nconditions
L=— Z y'logp’ + (1 — y")log(1 — p") (5.6)

i=1

X and y are the network input and output respectively. W_in are the weights from the
input to the hidden layer. W_out are the weights from the hidden layer to the output. o is
the output of the network, and p is the output passed through a sigmoidal nonlinearity. H
is the hidden layer activity.

Traditional neural network training utilizes back-propagation of error gradients to in-
struct weight updates, here we use the same update equations to derive the expected update

for the output predictions p.
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VplL = —(5 - ﬂ) (5.7)
Vwp(W) = Vywo(W) - Vop(o) (5.8)
= Vwo(W) - diag(p — p°) (5.9)

W = —V,L(W) (5.10)

= —Vup(W) V,L (5.11)
=—Vwo(W) - (p—vy) (5.12)

To approximate V,0(W ) we concatenate all W_in and W _out into a 1D vector. Specif-

ically:

% = aln, 1] x (Hln, 7] > 0) X Wour /] (5.13)
doln] .
Wouli] — Hin,j (5.14)

This can be considered a feature map: ¢(X) = Vy,0(W), which will be used to define
the kernel: K = ¢”'¢. The kernel is parameterized by W, which changes during training.
The goal is to define equations that allow us to approximate the update to p directly
without having to update the weights of our network. By utilizing the fact that weight
update magnitudes decrease as the size of the network increases we can use the initial

values of W to approximate the kernel throughout training.
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p(W) = V,p(W)" - W (5.15)

= —diag(p — p?) - Vw0l (W)Vw0o' (W) - (p —y) (5.16)
= —diag(p — p°) - K(W) - (p —y) (5.17)
~ —diag(p — p*) - K(Wo) - (p —¥) (5.18)

NTK Simulation

Cross-Talk task: input was presented with the rule and stimuli indicated by separate one-
hot encodings. Output of the NTK was determined as a one-hot encoding determined by
the rule-set being simulated. We simulated the networks forward using Euler integration
for 1000 trials with a learning rate of 0.01 for each of the two rule sets.

Shepard task: input was presented with one-hot encodings separated by feature(shape,
color and size). Output of the NTK was determined as a one-hot encoding determined by
the rule being simulated. We simulated the networks forward using Euler integration for

10000 trials with a learning rate of 0.001, for each of the 6 rules.

NTK Analysis

We decomposed the NTK kernel (Fig. using an eigen-decomposition into orthonormal

condition modes and associated scalar eigenvalues.

K(Wo) = QAQ™! (5.19)

We generated lesioned kernels by recombining a subset of modes from the eigen-
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decomposition. For the linear kernel, we used just the first 6 modes of our decomposition.
For the non-linear kernel we used the first mode, constant mode of the kernel, as well as

the non-linear modes 7-12.

K(WO)lin - Q:6A:6Q%1 (5.20)

K(Wo)n = QurM7n.Q1r, (5.21)

We simulated the NTK as above, with the exception of the use of a lesioned kernel,
instead of the full NTK kernel.

For the linear-nonlinear analysis (Fig. [5.10), we followed a similar procedure except
instead of recalculating a kernel using only a subset of modes we recalculated it with
non-linear modes all multiplied by a scalar factor. We searched over factors of different
magnitudes. We simulated out the learning process with these re-weighted kernels and
calculated the correlation between the human and NTK across rule accuracy, with the

weights with greatest correlation being determined as the best fit.
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5.5 Appendix

Supplementary Figures
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Figure 5.S1: Imbalances by Accuracy for Each Task Feature We calculated the imbal-
ance for each feature (Cue A, Cue B, Rule and Cue A x B interaction). We then took the
average across subject accuracy for each condition for the AND and NAND set separately
(plotted in blue and orange respectively).
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Figure 5.S2: Nonlinear Scaling in the Cross Talk Task Values of fit to human behavior
in the Cross-Talk task measured as across condition correlation in mean accuracy for the
human and NTK data. We generated re-balanced kernels, by decomposing the kernel
into linear and non-linear learning modes. We then multiplied the non-linear modes by a
scaling factor (keeping the linear modes constant), recomposed the kernel and generated
new learning trajectories. We separately compared for each scale factor the AND/NAND
NTK to both the corresponding and alternative rule set.
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Chapter 6

Discussion

6.1 Conclusions and Perspectives

The three discrete research projects included in this dissertation, each complete in an-
swering a specific set of targeted questions, collectively add new insight more broadly
regarding basic cognitive processes as well as methodological considerations for work in
ANN models.

As mentioned above, one common theme between projects presented in this disser-
tation is the specific challenges and demands regarding dealing with learning and imple-
menting multiple rules in conjunction. In Chapter 3 we discuss our RNN training software
PsychRNN which was specifically built to enable the expression of complex multifaceted
task environments. In Chapter 4 we explicitly use a task that is built off of ten possible
rules, examining the ways in which rules can be combined and re-used to more efficiently
solve them. Finally in Chapter 5 we explore how interference between rules impacts learn-
ing and thereby behavior.

The emergence of either constructive and destructive interference in human behavior,
as was observed in the CDL and Cross-Talk tasks, acts in many ways as a a constraint on

the possible algorithms that are being utilized[39]]. In the CDL task we see evidence of
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“representation bias”’[33]] whereby the inclusion of multiple tasks incentivizes the agent
to identify representations efficient across the presented tasks. In the Cross-Talk task in
contrast we see evidence of “implicit data augmentation”[33]], or the ability of an agent
to use information from one task to at least partially learn a different task. In the case of
the study presented we can see how such a strategy while aiding in increasing the data
efficiency of the task (and thereby decreasing training time) imparts biases due to the
partial overlap between tasks.

While the models used to describe multi-rule task learning in Chapter 5 do not have
precise and specific task structure, the “meta-structure” or proportions of different levels of
conjunction and non-linearity are both free parameters in the design of system and relevant
to how well the models fit to human behavior.

An issue of recent interest to the field of systems neuroscience, and relevant to the work
presented in this dissertation, is skepticism regarding the utility of trying to map neural
states to “representations”[3]. While early sensory neuroscientists were able to directly
link the firing rates of neurons to external states [[17, 27, 19], more recently the firing rates
of neurons have been less easily tied to a comprehensible unified and externally definable
value[31]. In addition, observations in ANN models have shown that network without
units assigned to specific values can do many cognitive tasks of interest[38|]. While we
utilize the language of representations in our explanation of units being variant in their
activity as a function of contingency on that trial, it would be equally valid to neglect rep-
resentation entirely and frame that variance through the lens of computational bottlenecks.
While this debate is in many ways primarily semantic, the inclusion of computational sub-
routines, even where they are substantially more abstract than contingency, as a possible
organizing pattern behind unit variance may provide more insight than trying to explain
neural firing through specific external variables.

One important question as neuroscience as a field matures in its use of ANN models
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is how to design tasks that can provide the most insight[4, |30]. Currently tasks tend to
be designed with respect to human, primate or rodent equivalents[24, [26]. This strategy,
based on the goal of eventually comparing results between the model and collected data is
a reasonable starting point, but it neglects many of the greatest strengths of ANN models.
Tasks trained in actual human or non-human agents tend to be constrained to a relative
simplicity as in human experiments you rarely have more than a few hours of sessions to
not only fully teach the task but also to collect data. In animals, the cognitive capacity of
the model organism being used acts as an upper-bound on task complexity.

ANN models however need not be bound to few task conditions and can learn a large
number of simultaneous tasks or conditions[39]. Including greater variety of trials in a
single task greatly facilitates reverse engineering algorithmic level solutions from trained
ANN models. Meanwhile, by embedding tasks from human or animal experiments as
’sub-components” of the overall trained task you can still use the model as a comparison
to collected experimental data.

As important as choosing the right task is utilizing analyses methods well suited to
ANN models. While there are many examples of papers using custom-designed analy-
sis to reverse engineer their networks[29, 24]], and there are a few attempts to generalize
solutions to the problem of going from trained network to algorithm[13}, 37] it is hard to
design analyses that will be useful in all studies. Instead, it may be more productive to
think of types of analyses that have special utility or feasibility in ANN models. Notably
methods that benefit from precision, full observability and between task comparisons can
be implemented much more readily in ANN models than in humans or animal models.

With the popularization of optogenetics[8]] and its application in a variety of model
organisms[23, [14] has demonstrated the potential utility of perturbation experiments to
unraveling circuit function. Several limitations to such methods in animal models are

diminished or removed entirely in ANN models. In ANN models perturbation can be
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exact in their targets only impacting specific sets of units, they can be precisely reproduced
multiple times, and they can be restricted to arbitrarily precise time points. Further the
removal of total trial number limitations means that this precision can be used to great
effect in testing the temporal role of different potentially overlapping subsets of units.
This property of near unlimited trial numbers further assists in out of sample task
testing, or exploring behavior and circuit behavior in an environment different from the one
the agent was trained on. This type of analysis has several problems in human and animal
research. First, humans and animals continually learn so after the emergence of a new
task they begin to adapt immediately making only the first few trials truly reflective of the
baseline strategy([11]]. In ANN models the weights can be fixed after training, so in a novel
environment you can be free to run as many trials as you need to get sufficient analytical
power. Second, human and animal agents are time limited in their ability to continue
performing variants of a task forcing a trade-off between power on one task verses multiple
tasks. Due to the effectively unlimited trial numbers for modeling generally ANNs can be
put through dozens of out of sample tests to precisely define the task features required to

allow the network to perform accurately.

6.2 Future Directions

While the work presented above provides insight and clarity with regards to long present
questions in the fields of prefrontal cortical neurobiology, working memory and rule learn-
ing, there remain many open areas of research which can benefit from additional investi-
gation.

Computational psychiatry uses theory and tools taken from computational neuroscience
and applies it to understanding psychiatric illness[1, 21]. As many psychiatric diseases

have heterogeneous symptoms that rarely are constrained to a single cognitive process[33]],
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our work understanding how different processes may be implemented conjointly could
provide insight as to the source of neurocognitive dysfunction.

Common tasks found to be deferentially impacted in patients with schizophrenia sit
at the nexus of cognitive control, memory and decision making[18]]. Traditionally these
deficits have been interpreted as a working memory failure[34)], however in recent years
a primate model has raised questions about the neurobiological source of deficits[6, 13]].
Through using the methods described above, training an RNN model to perform tasks of
clinical interest in schizophrenia research[10] we can gain insight into the possible mech-
anisms that subserve behavior in healthy models. Then by implementing perturbations
to the trained network in ways that mimic observed neural phenomena in schizophrenia
we may get insight into the failure modes that lead to disease symptomology. Specif-
ically impacts to excitatory-inhibitory tone, which is strongly altered in patients with
schizophrenia[20) 36], we can identify possible connections between cellular level deficits
and their resulting impact on circuit, algorithmic and cognitive processing.

The work presented here predominantly uses basic and flexible artificial neural net-
work models. In human and animal neural circuits there exists substantial constraints
on the connections within and between regions. As we demonstrate in chapter 3, the
PsychRNN toolbox is capable of implementing RNNs with a variety of connectivity con-
straints, for example Dale’s law and sparse connectivity. Using these methods we can
analyze how distributed networks of multiple regional sub-networks with different input-
output connectivity may develop separate functional specializations as well as coordinate
to facilitate cognitive computation.

While in this work we focus specifically on computations believed to be subserved by
neuronal populations in the PFC, abstracting away activity in other areas of the brain[/12],
in reality the PFC works as a component of multiple functional networks distributed across

cortical and subcortical areas [25, 2, [7]. While there are likely many other differentiating
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factors between these areas[28]], one key difference is their organization with respect to
primary sensory cortices. By generating a modular model with each region receiving dif-
ferent input modalities it is possible to simultaneously investigate the mechanisms underly-
ing regional specialization in working memory as well as possibly explain the coordination
between regions.

As specific extension of the work presented in this thesis, circuits in the thalamus
have been identified to help coordinate task related activity in PFC during multi-rule tasks
[L5)132]. In addition to this specific structural specialization of the thalamus and reticu-
lar nucleus provide intriguing constraints on their computational role [22, [16]. Using the
connectivity parameters implemented in PsychRNN it would be possible to implement a
circuit matching the known neurobiological structure of PFC-thalamic loops, and investi-
gate the emergent rise of functional specialization as well as inter-areal coordination in a
trained model.

Lastly while the PFC has long been a locus for research regarding working memory,
complementary research in other regions of cortex have identified persistent task related
neural states. Intriguingly, while PFC seems to most generally be recruited during many
types of working memory tasks other regions appear to be more domain specific[9]].

In a related direction, we can investigate how unit-specialization constrains different
solutions. Enforcing Dale’s law, or constraining each unit to have exclusively excitatory or
inhibitory post-synaptic connections, can provide insight into how neurons with excitatory
and inhibitory primary neurotransmitters may be contributing to brain function.

One area of tension that remains from our CDL and NTK projects is the extent to
which we believe representations in the prefrontal cortex as well as elsewhere in the brain
can be conceptualized as largely unstructured. In the CDL project we identify a spe-
cific and highly structured underlying representation. In contrast, for the NTK project we

specifically use a model incapable of fundamentally transforming the logic of the initial

127



representation, leaving learning dynamics as a function of the initial unstructured connec-
tivity.

A possible explanation for why we see human behavior as consistent with a structured
model in one task and consistent with an unstructured model in another is that humans
are capable of using multiple systems in different contexts. For this reason a potentially
useful direction would be to explore experimental designs that share different features
with either the CDL task or the NTK task in terms of design or training. For example we
can explore how different types of training (instructed vs experiential), different types of
stimuli (verbal or shapes) or different types of designs (delay or immediate) may impact
the adoption of structured or unstructured representational strategies.

Lastly, while this work explores two novel behavioral paradigms using modeling to
infer possible neurocomputational underpinnings it is important to directly investigate the
neural signals during task performance to disqualify alternative possible mechanisms. For
the CDL task we make specific and thorough predictions of both the signal and the struc-
ture of neural representations consistent with contingency coding. In humans fMRI anal-
ysis of activity across cortex, but especially localized to PFC regions can provide a direct
measure of the extent to which macroscale activity patterns match these predictions.

While our tasks was specifically built to probe human behavior, another profitable
route could be to re-develop the tasks for an animal model. A primate or rodent model
would allow us to directly measure neural activity at the cellular or even sub-cellular level
in animals performing the task. In the CDL task, we can then identify how the coordinated
action of units gives rise to the emergent circuit, regional and behavioral phenomena ob-
served. In the Cross-Talk task we would be able to explore how features such as stimulus
tuning change as the task proceeds at the individual neuron level. Intriguingly our NTK
modeling makes the hypothesis that few if any changes to tuning are necessary to generate

the patterns of human behavior.
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