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Abstract 

Cost-Effectiveness Analyses of Typhoid Interventions in Epidemic and Endemic Settings 

Maile Thayer Phillips 

2021 

Background: Typhoid fever is a major source of morbidity and mortality in developing 

countries, accounting for approximately 12-21 million infections, 119,000-269,000 deaths, and 

2-23 million disability-adjusted life years (DALYs) annually. Typhoid fever is caused by 

infection with the bacteria Salmonella enterica serovar Typhi, which is mainly transmitted 

through fecal contamination of food or water. Due to these modes of transmission, most cases 

occur in low- and middle-income countries (LMICs) where sanitary conditions are poor and 

access to clean water and sanitation is not common. However, the scale of disease incidence is 

uncertain. Studies suggest that facility-based laboratory-confirmed estimates, the numbers used 

for reporting and decision-making, are considerably lower than the actual numbers. As a result, 

typhoid likely has an even higher global burden than is reported. 

While typhoid remains a major cause of morbidity and mortality, it is preventable. 

Interventions against typhoid exist, with varying degrees of efficacy and costs. Investments in 

water and sewer systems in the early 20th century are thought to have been responsible for the 

decline of typhoid in many developed countries; however, no economic evaluations have 

quantified the costs and impact of improvements in sanitation. Additionally, a typhoid conjugate 

vaccine (TCV) has been approved, but research regarding its long-term efficacy and use in 

outbreak settings is limited. Cost-effectiveness evaluations of TCVs recommend their use in 

endemic settings, but modelling suggests that vaccination alone will not eliminate disease.   

 



 
 
 

Methods & Results: Before we can evaluate the impact of interventions, we need accurate 

estimates of baseline disease incidence. Therefore, in Chapter 1, we developed a Bayesian 

framework to combine multiple data sources to estimate the population-based typhoid incidence 

based on passive surveillance data from Blantyre, Malawi; Kathmandu, Nepal; and Dhaka, 

Bangladesh. The ratio of observed to adjusted incidence rates was 7.7 (95% credible interval 

(CrI): 6.0-12.4) in Malawi, 14.4 (95% CrI: 9.3-24.9) in Nepal, and 7.0 (95% CrI: 5.6-9.2) in 

Bangladesh. Adjusted incidence rates were within or below the seroincidence rate limits of 

typhoid infection. Estimates of blood-culture-confirmed typhoid fever without these adjustments 

results in considerable underestimation of the true incidence of typhoid fever. 

In Chapter 2, we evaluated the cost-effectiveness of typhoid conjugate vaccine use in 

response to outbreaks of typhoid fever. We fit a modified version of an existing dynamic 

compartmental model of typhoid fever to Malawi outbreak data and evaluated preventive and 

reactive vaccination strategies. We then conducted a cost-effectiveness analysis using the net-

benefits framework to compare no vaccination to routine vaccination at 9 months of age with and 

without a catch-up campaign up to 15 years old. We examined variations in outbreak definitions, 

delays in implementation of reactive vaccination, and the timing of preventive vaccination 

relative to the outbreak. We estimated that vaccination would prevent 15-60% of disability-

adjusted life-years (DALYs) in the outbreak scenarios. Some form of routine vaccination with a 

catch-up campaign was preferred over no vaccination for willingness-to-pay (WTP) values of at 

least $110 per DALY averted. Countries where outbreaks of typhoid fever due to introduction of 

antimicrobial resistant strains are likely to occur should consider TCV introduction. Reactive 

vaccination can be a cost-effective strategy, but only if delays in vaccine deployment are 



 
 
 

minimal; otherwise, introduction of preventive routine immunization with a catch-up campaign 

should be considered.   

Lastly, in Chapter 3, we quantified the relationship between investments in water and 

sanitation infrastructure and long-term typhoid transmission rates using historical data from 16 

U.S. cities. We fit two models for each city: (1) we modified a Time-series Susceptible-

Infectious-Recovered (TSIR) model and extracted long-term transmission rates, and (2) we 

measured the association between the transmission rates and financial variables using 

hierarchical regression models. Overall historical $1 per capita ($16.13 in 2017) investments in 

the water supply were associated with approximately 5% (95% confidence interval: 3-6%) 

decreases in typhoid transmission, while $1 increases in the overall sewer system investments 

were associated with estimated 6% (95% confidence interval: 4-9%) decreases. 

 

Conclusions: A combination of statistical and mathematical modeling permits us to evaluate the 

cost-effectiveness of typhoid interventions across settings. We are able to estimate the true 

population-based incidence of typhoid fever in Africa and Asia, weigh the costs and effects of 

vaccination strategies in an outbreak setting, and estimate the impact of water and sanitation 

investments in an endemic setting. These findings can help to inform decision-making regarding 

typhoid control and prevention. The results can play an essential role in making the case for 

improvements in water and sanitation and/or vaccination to reduce the global burden of typhoid 

fever. 
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Introduction 
 

The importance of accurate estimates of population-level typhoid fever incidence 

Typhoid fever is a major source of morbidity and mortality in developing countries. 

Approximately 12-21 million infections and 119,000-269,000 deaths are attributed to typhoid 

each year [1, 2], accounting for 2-23 million disability-adjusted life years (DALYs) [3]. Most 

cases occur in Asia and Africa, predominantly among children [4].  

Humans are the only hosts for the bacteria Salmonella enterica serovar Typhi [5], which 

causes typhoid fever. Once ingested through feces-contaminated food or water, S. Typhi has an 

incubation period of 7-14 days. Bacteria enter the gut mucosa, replicate, and travel to the liver, 

spleen, and gallbladder before entering the bloodstream, marking the onset of clinical symptoms 

[5]. Symptomatic cases generally present with fever, abdominal pain, malaise, and headache [6]. 

Symptoms can last 4-6 weeks if untreated. Following recovery from symptomatic illness, an 

estimated 1-5% of hosts become long-term carriers [5].  

Decisions for typhoid control are often based on crude estimates of incidence. These 

estimates depend on facility-based laboratory-confirmed cases, which are likely substantial 

underestimates of the actual incidence. Limits of using facility-based estimates alone—lack of 

specific clinical diagnostic criteria, poorly sensitive diagnostic tests, and scarcity of data—

contribute to difficulties in calculating population-level incidence of typhoid. 

Studies estimate that 60-90% of individuals with typhoid do not receive medical 

attention, likely because they either do not seek treatment, or they seek help through less 

traditional avenues[4, 7]. Even if a person seeks care, typhoid fever is often confused with other 

febrile illnesses [8]. Symptoms of typhoid, particularly fever onset, are also the main symptoms 

of other common diseases [8]. Furthermore, not all patients have a blood culture test performed, 
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usually because parents sometimes do not want their sick child to have blood drawn, or people 

are turned away due to lack of supplies or healthcare personnel [9]. Suboptimal diagnostic tests 

further contribute to underestimation of disease incidence. Blood culture is the mainstay of 

typhoid diagnosis and is highly specific, but its sensitivity ranges from 0.51-0.65 [10].  

Modeling is needed to estimate the true incidence of typhoid fever in order to establish 

the baseline disease burden against which to evaluate the need for potential interventions. 

Models must take into account the cases lost at each step of the reporting process to be accurate.  

 

Complications with treatment and antimicrobial resistance 

Typhoid can be effectively treated with antibiotics, given correct diagnosis and strain 

susceptibility [6]. However, due to the widespread availability of antimicrobials without a 

prescription in many parts of the world, antimicrobial resistance has been increasing in recent 

years [11-14]. The first reports of emerged before 1970, leading to outbreaks and resulting in the 

need for alternative treatments [15-17]. Resistance to ampicillin and trimethoprim-

sulfamethoxazole soon followed, such that multi-drug-resistant (MDR) strains (defined as 

resistance to all three antimicrobials) now pose a threat to typhoid control [18-20]. More 

recently, extensively drug-resistant (XDR) S. Typhi, which also exhibits non-susceptibility to 

fluoroquinolones and resistance to third-generation cephalosporins, were reported in 2017 in a 

large typhoid outbreak Pakistan [21-23]. Increasing rates of MDR and XDR have led to clinical 

treatment failures, the need for more expensive treatments, and a rise in complications and 

hospital admissions [11]. Alternative interventions are needed to reduce antibiotic use and limit 

the threat of MDR and XDR S. Typhi [11, 24, 25].  
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The existence of effective typhoid fever control interventions 

In many developed countries, typhoid incidence declined drastically in the early 20th 

century such that occurrences of the disease are now rare. This decline has been attributed to 

investments in water and sanitation, though the relationship has not been fully characterized. 

Prior studies estimate that investments in clean water technologies reduced typhoid mortality by 

25% and overall mortality by half in the early 20th century [26, 27]; however, these estimates do 

not take into account the disease transmission process.  

In 2018, the World Health Organization (WHO) recommended programmatic use of 

typhoid conjugate vaccines (TCV) in addition to other interventions in settings with high rates of 

typhoid [6]. In endemic settings, studies suggest that the most cost-effective strategy is either no 

vaccination or routine vaccination plus catchup campaigns, depending on the typhoid incidence 

rate [28, 29].  

The WHO also recommends the use of TCV in outbreak settings [6]. However, current 

data are limited on how and when it might be introduced, and vaccine stockpiles do not yet exist 

[11, 30]. While reactive vaccination can be effective, if implemented late or focused 

inappropriately, the number of cases averted will be small [31-33]. To ensure that the appropriate 

vaccine stockpiles, accurate estimates of disease incidence and knowledge of vaccine coverage 

requirements are also necessary.  

Research comparing typhoid interventions in endemic and epidemic settings is limited. 

With recent WHO recommendations for TCV use and pilot studies assessing efficacy and impact 

underway [6, 34], governments are looking to prioritize the allocation of resources to prevent 

typhoid. With recent typhoid epidemics across Africa [35-39] and high burdens in endemic 

countries, studies are needed to compare prevention strategies across different settings, including 
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the use of TCV in response to outbreaks and in comparison to water and sanitation investments. 

Typhoid control can be expensive; cost-effectiveness analyses are needed to inform decisions for 

the optimal allocation of funding.  
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Abstract 

Decisions about typhoid fever prevention and control are based on estimates of typhoid 

incidence and their uncertainty. Lack of specific clinical diagnostic criteria, poorly sensitive 

diagnostic tests, and scarcity of accurate and complete datasets contribute to difficulties in 

calculating age-specific population-level typhoid incidence. Using data from the Strategic 

Alliance across Africa & Asia (STRATAA) programme, we integrated demographic censuses, 

healthcare utilization surveys, facility-based surveillance, and serological surveillance from 

Malawi, Nepal, and Bangladesh to account for under-detection of cases. We developed a 

Bayesian approach that adjusts the count of reported blood-culture-positive cases for blood 

culture detection, blood culture collection, and healthcare seeking—and how these factors vary 

by age—while combining information from prior published studies. We validated the model 

using simulated data. The ratio of observed to adjusted incidence rates was 7.7 (95% credible 

interval (CrI): 6.0-12.4) in Malawi, 14.4 (95% CrI: 9.3-24.9) in Nepal, and 7.0 (95% CrI: 5.6-

9.2) in Bangladesh. The probability of blood culture collection led to the largest adjustment in 

Malawi, while the probability of seeking healthcare contributed the most in Nepal and 

Bangladesh; adjustment factors varied by age. Adjusted incidence rates were within the 

seroincidence rate limits of typhoid infection. Estimates of blood-culture-confirmed typhoid 

fever without these adjustments results in considerable underestimation of the true incidence of 

typhoid fever. Our approach allows each phase of the reporting process to be synthesized to 

estimate the adjusted incidence of typhoid fever while correctly characterizing uncertainty, 

which can inform decision-making for typhoid prevention and control. 
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Background 

Current estimates of typhoid fever incidence serve as a basis for decision-making around 

typhoid control. However, facility-based cases of blood-culture-confirmed typhoid fever are 

considerably lower than the true number of those with the disease [1] because the reported 

numbers do not account for individuals with typhoid fever who do not seek healthcare, fail to 

receive a diagnostic test, or falsely test negative for typhoid (Fig 1). Annually, typhoid fever is 

estimated to cause 11-18 million infections and 100,000-200,000 deaths [2, 3], but there is 

considerable uncertainty in these estimates. 

 Studies suggest that somewhere between 60-90% individuals with typhoid fever do not 

receive adequate medical attention, in part because they do not to seek formal treatment [4, 5]. 

Previous studies have found that healthcare utilization is correlated with the number of 

household members, distance to the healthcare facility, financial affordability, and trust in formal 

healthcare [6, 7]. Furthermore, typhoid fever is often misdiagnosed based on physical 

examinations alone [1]. Inconsistent clinical diagnoses arise because symptoms of typhoid, 

particularly prolonged fever, are also the main characteristics of other common infectious 

diseases in typhoid endemic settings [1, 8]. Even if a blood culture test is recommended and 

laboratory facilities are available, not all patients will consent. Diagnostic tests can be invasive, 

and parents or guardians of young children sometimes do not want their children to have large 

amounts of blood drawn when they are already ill. In resource-poor countries in particular, lack 

of supplies and personnel lead to long wait times for receiving healthcare, further adding to 

lower rates of confirmatory testing. Clinical opinion on the cause of fever can also affect the 

likelihood of blood being drawn for culture [9].  



 10 

Suboptimal diagnostic tests further contribute to underestimation of cases. Blood culture 

collection is the mainstay diagnostic test for typhoid fever [10], but it fails to capture 

approximately half of the true cases. The test sensitivity depends on the volume of blood drawn 

and whether a patient has recently received antibiotics [11]. Thus, even if an individual with 

typhoid receives a blood culture test, he or she may falsely test negative and not be included in 

the reported number of confirmed cases.  

The true incidence of typhoid fever cannot be directly assessed but can be estimated by 

accounting for steps in the reporting process. Methods to combine data from several sources to 

adjust for underestimation while accurately quantifying the uncertainty have been previously 

applied to estimate the incidence of HIV and influenza [12-16]. Bayesian methods are conducive 

to integrating multiple data sources in this way. In this work, we developed a Bayesian multiplier 

framework to estimate population-based incidence of typhoid fever based on data collected from 

study sites in Africa and Asia. 

 

Methods 

Study design & data. 

We developed a framework within the Bayesian setting to integrate data from multiple 

sources to estimate the population-based incidence of typhoid fever based on passive 

surveillance in Malawi, Nepal, and Bangladesh, three typhoid-endemic countries with different 

demographics, healthcare systems, and access to diagnostics [17]. Using this model, we sought 

to estimate the adjustment factors needed to calculate the “true” incidence of typhoid fever 

occurring in the population under surveillance, and to examine how these values varied by age 

across the three study sites, by combining information collected from the study population with 
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estimates from prior published studies. We also compared our final estimates to serosurveillance 

data collected from the same population catchment areas.   

Data came from the Strategic Typhoid Alliance across Africa & Asia (STRATAA) 

Programme, a prospective observational, population-based epidemiological study of typhoid 

incidence, transmission, and antibiotic resistance. From 2016-2018, the STRATAA investigators 

conducted demographic censuses, healthcare utilization surveys (HUS), passive surveillance, and 

serosurveys at each of three sites (Blantyre, Malawi; Kathmandu, Nepal; and Dhaka, 

Bangladesh). STRATAA’s study design and methods have been detailed elsewhere [17], and are 

briefly described below.  

Demographic census data.  

The demographic census was used to estimate the overall person-time contribution for 

incidence rate calculations. The survey documented household locations and individual 

characteristics for each geographically demarcated study area. The census provided information 

on each individual’s birthdate, sex, position in the household, marital status (if applicable), 

education level, and employment status (if applicable). Participants were surveyed and consented 

as households. Approximately 100,000 individuals were enrolled at each site, and census updates 

were carried out one to three times depending on the site. Over the two-year study period, this 

population amounted to 200,018 person-years of observation (pyo) in Malawi, 203,444 in Nepal, 

and 222,636 in Bangladesh. 

Passive surveillance.  

Clinical cases of culture-confirmed typhoid fever were identified through passive 

surveillance. Individuals living in the study areas who presented at partner facilities with a 

documented temperature of > 38.0°C or a history of fever lasting at least two days upon 
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presentation were eligible for enrollment. Healthcare workers collected clinical and demographic 

information from enrolled febrile individuals, as well as microbiological samples (urine, feces, 

and blood).  

Healthcare utilization survey.  

To estimate the proportion of cases captured by study facilities, we collected data from 

the head of household regarding actual and hypothetical usage of healthcare facilities for febrile 

episodes among household members from each of three age groups (<5 years, 5-14 years, >14 

years), if available. Approximately 735 households were randomly chosen at each site, with the 

requirement that all households have at least one child (14 years or younger). The HUS 

contained questions regarding household and individual health behavior; house and household 

characteristics; water, sanitation and hygiene practices; and healthcare utilization (actual and 

hypothetical).  

Serosurveillance.  

Serosurveys were conducted in the census population to assess the underlying rate of 

seroconversion to typhoid, and to identify potential chronic carriers, initially based on anti-Vi 

immunoglobulin G (IgG). Approximately 8,500 participants from each site were randomly 

selected in an age-stratified manner. Healthcare workers collected serum samples from each 

individual upon enrollment and again three months later. Seroconversion was defined as a > 2-

fold rise in anti-Vi IgG titre between the first and second sample drawn and an absolute titre >50 

EU/ml at the second time point to account for small variations above the lower limit of detection 

for the assay.  We estimated the seroincidence by dividing the number of seroconversions by the 

person-time contribution between serum samples in each age group; 95% binomial confidence 

intervals (CI) were estimated. 
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Approach and data analysis.  

We adjusted the reported number of blood-culture-positive cases of typhoid fever for 

each of the three phases of the reporting process: blood culture detection, blood culture 

collection, and healthcare seeking. We used information on healthcare seeking for fever and the 

proportion of fever cases who were enrolled and had blood taken for culture and combined this 

information with published data on risk factors for typhoid fever to reach our final adjusted 

numbers. We then examined whether our adjusted estimates were within the maximum range 

expected based on seroincidence estimates, which capture all clinical and sub-clinical cases. 

The estimation of typhoid fever incidence is complicated by the relationship between 

fever and typhoid fever. In each phase of the reporting process, we can observe whether a person 

has a fever, but not necessarily whether he/she has typhoid fever. Thus, the symptomatic typhoid 

fever pyramid is nested within a larger fever pyramid (Fig S1).  

We assumed that the observed number of blood-culture-positive individuals ("observed,$,%) 

follows a Poisson distribution given as  

																																																																	"observed,$,%~Poisson- ./0123425,6,7
89:;<=_?@A96,7

B                                               (1) 

where C<D;9:E9F,$,% is the observed incidence rate of typhoid fever, adjusted for pyo from the 

demographic census (person_time$,%) (Fig 1, Table 1). Subscript a represents age category, where 

L =

⎩⎪
⎨
⎪⎧
1	for	children < 5	years	old
2	for	children	5 − 9	years	old
3	for	children	10 − 14	years	old
4	for	individuals	15 − 29	years	old
5	for	individuals	 ≥ 30	years	old

, 

and subscript c represents the site, where 

e = f
1	for	Malawi
2	for	Nepal
3	for	Bangladesh

. 



 14 

 The incidence rate of reported cases can be rewritten as the product of the healthcare-seeking 

typhoid incidence rate and the probability of a case being captured at each of the three steps of 

the reporting process, 

																																																						C<D;9:E9F,$,% = C$lmnopql,$,% ∗ s$,%t ∗ s$,%u ∗ s$,%v ,                                        (2) 

where C$lmnopql,$,% is the final adjusted incidence of typhoid fever incidence, s$,%t  is blood culture 

sensitivity, s$,%u  is the probability of receiving a blood culture test, and s$,%v  is the probability of 

seeking healthcare for typhoid fever. Superscript S denotes that the parameter refers to the blood 

culture detection (i.e. sensitivity) phase of reporting, superscript B denotes that the parameter is 

referring to the blood culture collection (i.e. testing) phase of reporting, and superscript H 

denotes that the parameter is referring to the healthcare-seeking phase of reporting.  

All model input parameters, with their prior distributions and corresponding data sources, 

are listed in Table 1. The three steps in the adjustment process (blood culture detection, blood 

culture collection, and healthcare seeking), are detailed below.  

 
Adjustment for blood culture sensitivity (s$,%t ) 

For each individual who received a blood culture test, we inferred whether or not they 

were a “true” typhoid fever case by adjusting for the specificity and sensitivity of blood culture 

for typhoid diagnosis (Table S1). First, we assumed that the specificity of blood culture is 100%; 

thus, all individuals who tested positive for typhoid were assumed to be true cases of the disease. 

Second, we assumed that among those who tested negative, the probability of being an actual 

typhoid fever case depended on the volume of blood drawn and prior antimicrobial use, both of 

which were recorded in the passive surveillance data. Previous studies have shown that the 

sensitivity of blood culture for typhoid diagnosis is on average 59% (95% CI: 54-64%) but 

increases by 3% for each additional mL of blood drawn, and decreases by 34% with antibiotic 
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use in the past two weeks [11]. Thus, each individual who tested negative for typhoid had a 

probability 1-wi,v(i),u(i) of being a false negative and thus a true case of typhoid fever, where 

wi,v(i),u(i) is the blood culture sensitivity for individual i, v(i) is the volume of blood collected from 

individual i, and u(i)=1 if individual i reported prior antibiotic use in the previous two weeks and 

u(i)=0 otherwise. Blood culture sensitivity is defined as 

                    wx,y(x),n(x) = (|}~.ÄÅÇ~.~Åy(É)) ∗ (1 − 0.34Ñ(x)).	                                    (3) 

The use or non-use of antibiotics created a bimodal distribution for the sensitivity based 

on the observed individual-level data calculated using Equation 3 (Fig S2). Thus, we chose to 

model the distribution of sensitivity among the full population using a normal mixture model 

with a separate mean and standard deviation for the distribution of blood culture sensitivity with 

and without the use of antibiotics, varied over blood culture volume. This mixture model is 

denoted 

      s$,%t 	|Ü$,%~N(án,$,%, àn,$,%)                                       (4) 
Ü$,%	~Bernoulliâä$,%ã	                                                           

        
where s$,%t   is the blood culture sensitivity adjustment from Equation 2, ä$,%	is the proportion of 

individuals who took antibiotics in the past two weeks, and án,$,% and àn,$,%	represent the mean 

and standard deviation of the distribution of blood culture sensitivity after adjusting for blood 

culture volume among those who did (U=1) and did not (U=0) take antibiotics (from the 

distribution created using Equation 3), again estimated separately for each age category and site.  

Adjustment for the probability of receiving a blood culture test (s$,%u ) 

The probability of receiving a blood culture test was estimated differently for Malawi 

versus Nepal and Bangladesh due to data availability and differences in the primary reasons why 

individuals were not tested. In Malawi, the main reason why individuals meeting the fever 

criteria for enrollment did not receive a blood culture test was due to limited capacity and long 
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waiting times at the primary health facility. Individuals often arrived at the clinic early in the 

morning for clinical review. Once they had seen the government clinician, they were referred for 

study enrollment and blood-culture collection. If there was a delay in enrollment activities, 

individuals often left prior to blood cultures being collected. Thus, we assumed that data for 

those who did not receive a blood culture test were missing completely at random. We used the 

passive surveillance screening data to estimate the probability of receiving a blood culture test in 

Malawi, and assumed that the probability followed a beta distribution,  

s$,åu 	~ Beta(ç$,åxu , é$,åu 	),      (5a) 

where ç$,åu  was the number of eligible patients enrolled and é$,åu  was the number of eligible 

patients who were not enrolled.  

In Nepal and Bangladesh, the primary reason febrile individuals did not receive a blood 

culture test likely depended on factors associated with their probability of testing positive (e.g., 

age, number of days of fever, and clinical suspicion of the disease); furthermore, screening data 

for the passive surveillance were not available. Instead, we relied on published estimates of the 

relative risk of typhoid fever among those who did not have blood taken for culture and 

screening data from the Typhoid Vaccine Acceleration Consortium (TyVAC) [18]. As part of 

TyVAC, typhoid conjugate vaccine trials are being conducted in the same populations as 

STRATAA utilizing the same passive surveillance facilities. Baseline information on eligible 

patients presenting to fever surveillance facilities was recorded both for those who did and did 

not have blood drawn for culture. Based on the analysis of these data in the TyVAC population 

in Nepal, the relative risk of blood culture positivity (RS) was 1.87 times higher (95% CI: 0.9-

3.9) among those who received a blood culture test compared to those who did not [9]. Thus, the 
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overall probability of receiving a blood culture test, after taking into account variations in the 

risk of typhoid fever among those who are and are not tested, is  

s$,%u = 1− â1−è6,7ã
êë

			for	e = 2	íä	3,    (5b) 

where ì$,% is the probability of receiving a blood culture test prior to adjusting for the relative risk of 

blood culture positivity. Prior to adjusting for the relative risk, the probability of receiving a blood 

culture test was assumed to follow a beta distribution, ì$,%	~ Beta(ç$,%u , é$,%u 	), where ç$,%u  was the 

number of eligible patients in age category a in country c who were enrolled and é$,%u  was the 

number of eligible patients who were not enrolled during TyVAC (for e = 2	or	3). While the 

previous analysis focused only on Nepal, we used the same adjustment for the relative risk of 

blood culture positivity in Bangladesh, since the reasons for having or not having blood drawn 

were similar. 

Adjustment for healthcare-seeking behavior (s$,%v ) 

Previous multiplier methods assume that reported healthcare-seeking for a fever is the 

same as that for typhoid fever; however, this is not necessarily the case. Individuals with typhoid 

fever may be more or less likely to seek healthcare. In preliminary analyses, we found no 

difference in reported healthcare seeking by severity of a person’s reported fever, but other 

factors may explain differential healthcare seeking among those with typhoid fever versus fever 

due to other causes. To correct for this difference, we measured the probability of seeking care 

for a fever adjusted for a specified typhoid risk factor to estimate the probability of seeking care 

for typhoid fever (Fig S1), as described below.  

For this phase of reporting, we assumed that everyone in the population either had or did 

not have a typhoid risk factor, identified from the literature. For each site, we used a different 

risk factor, based on studies carried out in that specific site and variables for which data was 
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collected as part of STRATAA. The risk factor identified in Malawi was soap available after 

defecation [19]; in Nepal, it was unshared toilets [20], and in Bangladesh it was boiled drinking 

water [21].  

In Malawi, the odds ratio for having typhoid fever was 2.0 (95% CI: 1.3-2.5) comparing 

those who did not use soap after defecation to those who did [19]. In Nepal, the odds ratio for 

having typhoid fever was 5.7 (2.3-14.4) comparing those who used a household latrine to those 

who shared a community latrine [20]. In Bangladesh, the odds ratio for having typhoid was 7.6 

(2.2-26.5) comparing those who did not boil drinking water to those who did [21]. Since the 

overall prevalence of typhoid in the population is low, we used these odds ratio estimates from 

the literature to approximate relative risks for typhoid. We used the same relative risk estimates 

for all age groups. All other values for the healthcare-seeking adjustment were estimated 

separately by age and site, as noted below. 

 We can calculate the marginal probability of seeking care for a fever among those with 

typhoid fever (alternatively, the incidence of typhoid after adjusting for blood culture sensitivity 

and the probability of receiving a blood culture test) as:  

    C$,%t,u = C~,$,%âℎå,$,%êïñ,%ó$,% + ℎ~,$,%(1 − ó$,%)ã  (6) 

where pa,c is the probability of having the risk factor for typhoid fever among individuals in age 

group a in site c, C~,$,% is the incidence of typhoid fever among those without the risk factor, 

êïñ,% is the relative risk for typhoid among those with the risk factor (and hence êïñ,%C~,$,% is the 

incidence among those with the risk factor), and h1,a,c and h0,a,c are the probability of self-

reported healthcare seeking for a fever among those with and without the risk factor, 

respectively.  
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We can also estimate the overall adjusted incidence of typhoid as the weighted average of 

the population-based typhoid fever incidence (after adjusting for blood culture sensitivity, the 

probability of receiving a blood culture test, and healthcare-seeking) among those with or 

without the typhoid fever risk factor:  

                                                 Cadjusted,$,% = êïñ,%C~,$,%ó$,% + C~,$,%,â1 − ó$,%ã.                          (7) 

Combining Equations 6 and 7, we can estimate the standardized risk of seeking healthcare for 

typhoid fever (s$,%v ) as: 

            s$,%v = .6,7ô,ö
.adjusted,6,7

= õú,6,7ùûü,7†6,7Çõ°,6,7âå}†6,7ã
ùûü,7†6,7Çâå}†6,7ã

.          (8) 

The numbers of individuals with the risk factor and who sought healthcare for a fever were 

observed directly in a sample of the population in the HUS. We assumed that the probabilities 

for the occurrence of these numbers (p, h0, h1) followed an underlying beta distribution based on 

the observed values (Table 1).  

  

Model validation and sensitivity analyses 

The final adjusted incidence of symptomatic typhoid fever should be less than or equal to 

the seroincidence of typhoid infections captured in the serosurveillance data. In this study, 

seroconversion to typhoid was defined as a > 2-fold rise in anti-Vi IgG titre between the first and 

second sample drawn and an absolute titre >50 EU/ml at the second time point. The 

seroincidence was estimated as the quotient of the number of people who seroconverted between 

the first and second blood sample and person-time in years (the number of people sampled 

multiplied by the mean time between serological samples in age group a in country c). The final 

adjusted incidence should fall below the estimated seroincidence rates.  
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To ensure the model was correctly formulated, we simulated data with known 

probabilities and incidence rates and compared model estimates to the true values used to 

generate the data. We simulated high and low values for all of the parameters estimated in the 

model, starting with a “true” typhoid fever incidence of 1,000 infections per 100,000 pyo. We 

began by assuming there were 1,250 cases of typhoid fever among 25,000 individuals with a 

typhoid fever risk factor (Xi=1) and 750 cases among 75,000 individuals without the risk factor 

(Xi=0) over two years of surveillance, such that RTF=5. We then sampled from independent 

Bernoulli random variables, ¢x~Bernoulliâℎ£Éã, §x~Bernoulliâ•ïñÉã, and Üx~Bernoulli(Ñ), 

for the probability of seeking healthcare (H), the probability of having blood drawn for culturing 

(B), and the probability of antibiotic usage (U). We considered high and low values for each 

probability, which also varied depending on the risk-factor and typhoid fever status of individual 

i for h and b, respectively: 

ℎ£É¶å = ß 0.1	for low scenario
	0.5	for high scenario	, 		ℎ£É¶~ = ß 0.2	for low scenario

	0.7	for high scenario 

•ïñÉ¶å = ß 0.68	for low scenario
	0.95	for high scenario	, 		•ïñÉ¶~ = ß 0.4	for low scenario

	0.9	for high scenario 

Ñ = ß 0.2	for low scenario
	0.8	for high scenario. 

Among individuals with TFi=1 and antibiotic usage Ui, the probability of testing positive for 

typhoid fever (i.e., test sensitivity) was ëx~Bernoulli(´¨É), where 

´¨É¶å = ß 0.4	for low scenario
	0.5	for high scenario	, 		´¨É¶~ = ß 0.6	for low scenario

	0.75	for high scenario. 

Under both scenarios, the mean test sensitivity was ~55%. We assumed perfect test specificity, 

such that si=0 if TFi=0. The incidence of fever due to other causes was assumed to be 5% per 

year; we did not allow for multiple episodes of fever over the two-year period, such that 
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≠other,x~Bernoulli(0.10) 

Moreover, we assumed that the incidence of fever due to any cause was 

≠x = max	(Ø≠x, ≠other,x), 

i.e. all individuals could have at most one episode of fever, either due to typhoid fever or another 

cause. We then generated vectors for whether or not individuals who sought healthcare (HC), 

had blood drawn for culturing (BC), and tested positive for typhoid fever (Y) as:  

¢∞x = ≠x ∗ ¢x	, 

§∞x = ±¢∞x ∗ §x		if ¢∞x = 1
≤≥			otherwise

	, 

¥x = ±§∞x ∗ µx		if §∞x = 1
≤≥			otherwise

	. 

We simulated four scenarios using these probabilities: 1) low probability of seeking care, 

high probability of being tested, and low prior antibiotic usage; 2) low probability of seeking 

care, high probability of being tested, and high antibiotic usage; 3) high probability of seeking 

care, low probability of being tested, and low prior antibiotic usage; and 4) high probability of 

seeking care, low probability of being tested, and high prior antibiotic usage.  

To evaluate whether the final estimates were sensitive to the number of individuals 

sampled in the HUS, we compared estimates for models that sampled approximately the same 

number of individuals in each age category as the HUS (735) to models that sampled more 

individuals (1,000 and 2,000 individuals).  

We additionally compared the adjusted incidence estimates from our model to those from 

a simpler approach that assumed there was no variation in blood culture sensitivity due to prior 

antibiotic use (i.e., we used a normal distribution for s$,%t  instead of a normal mixture model) and 

no variation in typhoid incidence among those who were or were not tested (i.e. using the 
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simpler approach to estimate s$,%u  given in Equation 5a) and those who did or did not seek care 

(i.e. assuming s$,%v  is equal to the probability of seeking care for fever). This simpler approach is 

more commonly used in multiplier methods for adjustments; however, this approach often faces 

criticism since it inherently assumes that data are missing completely at random and that reported 

healthcare-seeking behavior for a fever is the same as that for typhoid fever.  

Model fitting 

To estimate the posterior distributions of the adjusted incidence rates, we collected 

100,000 posterior samples from the adjustment factors described above following a burn-in 

period of 10,000 iterations prior to convergence. Convergence was assessed using the Gelman-

Rubin diagnostic [22] for individual parameters. To ensure the model validation was done 

without knowledge of the true values, one person simulated the data and another person fit the 

model to the simulated data. Code for generating simulated data was written in MATLAB 

version 9.3.0 [23]. All other analyses were performed using JAGS version 4.3.0 [24] in R version 

3.4.0 [25]. Model code, including code for generating the simulated data, is provided at 

https://github.com/mailephillips/adjusted-typhoid-incidence [26]. 

 

Results 

The magnitude of the adjustment factors used to estimate the incidence of typhoid fever 

varied among the three sites (Table 2). In Nepal and Bangladesh, the probability of seeking 

healthcare was low (s%¶∂v =0.15, 95% credible interval (CrI): 0.09-0.22; and s%¶Åv =0.27, 95% 

CrI: 0.22-0.33, for all ages) and thus contributed the most to the adjustments, while the 

probability of receiving a blood culture test when eligible was high (s%¶∂u =0.84, 95% CrI: 0.67-

0.92; and s%¶Åu =0.96, 95% CrI: 0.92-0.98) and contributed the least to adjustments. However, in 
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Malawi, the probability of seeking healthcare was relatively high (s%¶åv =0.71, 95% CrI: 0.64-

0.77), while the probability of receiving a blood culture test was low (s%¶åu =0.35, 95% CrI: 0.34-

0.36). Blood culture sensitivity was fairly consistent across sites, with median estimates of 

s%t=0.54-0.55.  

The different adjustment factors also varied by age. Blood culture sensitivity was slightly 

higher in older age groups compared to younger age groups (median estimates of individuals >14 

years, s$∈(∏,π)t =0.56-0.58; compared to children ≤14 years, s$∈(å,∂,Å)t =0.53-0.54). While there 

was no consistent pattern in prior antibiotic use by age, the amount of blood drawn for a blood 

culture test generally increased with age. As a result, blood culture sensitivity slightly increased 

with age. Had we not adjusted for blood culture volume or prior antibiotic use, the estimate for 

blood culture sensitivity would have been higher for all ages and countries (Fig S5, in blue). 

The probability of receiving a blood culture test had different patterns across age groups 

depending on the country. In Malawi, the probability of receiving a blood culture test decreased 

with age (så,åu 	=0.40, 95% CrI: 0.38-0.41 for children <5 years versus sπ,åu =0.20, 95% CrI: 0.17-

0.23 for adults 30+ years), while in Nepal and Bangladesh, the probability increased (så,∂u 	=0.81, 

95% CrI: 0.61-0.91 and så,Åu 	=0.94, 95% CrI: 0.87-0.97 for children <5 years versus sπ,∂u =0.91, 

95% CrI: 0.71-0.98 and sπ,Åu =0.98, 95% CrI: 0.96-0.99 for adults 30+ years). If we had used a 

simpler approach (not adjusting for the variation in the risk of typhoid fever among those who 

were and were not tested) to adjust for the probability of receiving a blood culture test in Nepal 

and Bangladesh, we would have underestimated the probabilities and thus overestimated the 

contribution of this adjustment (Fig S5). In Nepal in particular, the simpler approach would have 

substantially underestimated the probability of receiving a blood culture test among younger age 
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groups. In Bangladesh, the unadjusted proportion of individuals receiving a blood culture test 

was already close to one, so the adjusted value did not increase the estimate considerably.  

The probability of seeking healthcare did not have a consistent pattern across age groups, 

likely due to the different components contributing to the final estimate. Malawi overall had the 

highest rates of healthcare seeking, with the lowest rates among children under 5 and the highest 

rates among children 5-14 (Table 2). Nepal had the lowest rates of healthcare seeking overall, 

with slightly higher rates among children under 5. Bangladesh also had low healthcare seeking 

rates, with the lowest rates among adults 15+ years of age (Table 2). In Malawi and Bangladesh, 

the proportion of those with the relevant typhoid risk factor did not differ by age group (Table 

S2). Healthcare seeking for a fever was higher among those with the typhoid risk factor in 

Malawi, but lower among those with the risk factor in Bangladesh and Nepal. When compared to 

the simpler approach to estimate the probability of healthcare seeking (using the unadjusted 

proportion of those who sought care for fever), the estimates were similar but slightly higher in 

most age groups in Malawi but slightly lower in Nepal and Bangladesh (Fig S5). 

The magnitude of the overall adjustment to estimate typhoid fever incidence 

ªCadjusted,$,%/Cobserved,$,%= âs$,%t s$,%u s$,%v ã}åº varied between countries and age groups. Nepal had 

the highest adjustment factors in every age group, with an overall adjustment factor of 14.4 (95% 

CrI: 9.3-24.9). Malawi and Bangladesh were similar, with adjustment factors of 7.7 (95% CrI: 

6.0-12.4) and 7.0 (95% CrI: 5.6-9.2), respectively (Table 3). The highest adjustment factor was 

for the 5-9-year age group in Nepal (19.7, 95% CrI: 9.0-54.9), while the lowest was for the 5-9- 

and 10-14-year age groups in Bangladesh (5.8, 95% CrI: 4.1-8.6; and 5.8, 95% CrI: 3.9-8.9, 

respectively). 
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Most of the final adjusted incidence estimates fell within or below the range of the 

estimated seroincidence of typhoid infection (Table 4). In Malawi, all of the upper bounds of the 

estimates were well below the seroincidence values. However, in Nepal and Bangladesh, the 

bounds of the adjusted incidence rates overlapped with the estimated seroincidence. In Nepal, the 

adjusted incidence among children 5-9 years of age was higher than the seroincidence; however, 

the confidence/credible intervals overlapped. Similarly, children 10-14 years of age in 

Bangladesh had higher adjusted incidence rates than seroincidence (which was the lowest across 

all age groups and sites), but again the confidence/credible intervals overlapped.  

When we evaluated the model against simulated data, the full model was able to reliably 

estimate both the “true” incidence of typhoid fever and the probabilities used to generate the 

simulated data for a range of values, while the simpler approach over- or under-estimated the 

true incidence in some scenarios (Figs 2 and S3). Estimates of blood culture sensitivity were 

similar to the true value, but incorporated additional uncertainty compared to the simpler 

approach, consistent with the different sensitivity of blood culture in those who reported prior 

antibiotic use compared to those that did not (Fig S3). The probability of receiving a blood 

culture test contributed most to the difference in accuracy between the two approaches. In every 

scenario, the full model reliably estimated the true value, while the simpler approach 

underestimated the true value (Fig S3). The adjustment for healthcare seeking in the full model 

again consistently captured the true value across levels of the probability as compared to the 

simpler approach, which generally had a narrower 95% CrI that did not always contain the true 

value (Fig S3). As expected, in both models, the uncertainty in the probability of seeking 

healthcare decreased as the sampling fraction for the hypothetical HUS increased. As a result, the 
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95% CrIs in the overall incidence estimates also narrowed as the sampling fraction increased 

(Fig 2). 

 

Discussion 

In order to make informed decisions regarding typhoid control and prevention, it is 

important to have accurate estimates of population-based typhoid fever incidence. Unreliable 

reports, inconsistent healthcare utilization, inconsistent clinical diagnoses, suboptimal diagnostic 

tests, and scarcity of accurate or full data contribute to difficulties in calculating the population-

based incidence of typhoid fever. We developed a new methodology within the Bayesian setting 

to estimate population-based incidence in a context where cases often go undetected and under-

reported. Through this approach, we were able to calculate the adjustment factors that can be 

applied to estimate the “true” incidence of typhoid fever in the STRATAA surveillance sites. 

These estimates suggested that the adjusted incidence of typhoid fever in Malawi, Nepal, and 

Bangladesh is 7- to 14-fold higher than the reported blood-culture-confirmed numbers.  

It is commonly accepted that cases of typhoid fever go unrecognized at each phase of the 

reporting process, but the degree to which each step contributes to the underestimation of and 

uncertainty in the population-based incidence is often not fully quantified. Each of the three 

intervening processes contributed differently to the underestimation in each country and age 

group. The probability of seeking healthcare was responsible for the largest portion of 

underestimation in Nepal and Bangladesh, while the probability of receiving a blood culture test 

was the biggest factor in Malawi. These results reflect differences in the healthcare systems and 

fever surveillance processes at the different sites. In Nepal and Bangladesh, antibiotics are 

widely available and individuals tend to seek care first at a pharmacy instead of a healthcare 
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facility [27]. In Nepal, a considerable proportion of people with fever neither seek healthcare nor 

visit a pharmacy possibly due to lack of funds. In Malawi, healthcare seeking is high, but the 

resources at healthcare facilities are limited. As a result, many people report to healthcare 

facilities with a fever, receive antibiotics, but do not remain in the facility long enough to receive 

an additional blood culture test due to prolonged wait times.  

 Other studies use different approaches to estimate the true incidence of typhoid fever. In 

many cases, studies simply double the reported cases to account for blood culture sensitivity 

[28]. Numerous studies make use of a simple multiplier method [29-32], which often do not 

accurately reflect the uncertainty associated with the reporting process. Previous studies have not 

attempted to integrate data sources to account for potential differences between the observed 

healthcare seeking and testing probabilities for fever versus the corresponding unobserved 

probabilities specific to typhoid fever, which our analysis suggests can impact the final 

adjustment factors. Our approach can be used to estimate typhoid fever incidence in other study 

populations. Moreover, some of the issues we encountered (e.g. under-detection due to poor test 

sensitivity that varies depending patient characteristics, preferential testing of individuals more 

likely to have the disease of interest, and potential differences in healthcare seeking for those 

who have the syndrome versus disease of interest) are common to other diseases as well.  

By utilizing a Bayesian approach, we were able to measure the contribution to 

underestimation at each phase of the reporting process while also properly quantifying the 

uncertainty for each of our estimates. When comparing our model to simulated data, we showed 

that having more data available (due to higher probabilities of seeking care and receiving a blood 

culture test) reduced uncertainty in the estimates. Furthermore, we showed that if more people 

had been sampled in the HUS, uncertainty would also have been reduced.  
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 Our analysis and approach had some limitations. We assumed that healthcare-seeking 

behavior for fever in households without children is the same as households with children, 

because the HUS only sampled households with children. Less than a third of households did not 

have children and were not included in this survey across sites. Studies suggest that households 

with children are more likely to seek healthcare [33], which means that if our estimates are 

biased, the adjusted incidence estimates are likely conservative. We also were not able to 

differentiate between febrile illnesses at different parts of the reporting process. We addressed 

this issue by adjusting for possible differences in healthcare seeking among those with typhoid 

fever compared to other febrile etiologies using weighted averages based on known risk factors 

for typhoid fever, but other factors may also lead to differences in healthcare seeking for fever 

versus for typhoid fever. By comparing our adjusted incidence estimates to estimates of 

seroincidence, we are able to provide some assurance that the adjusted incidence is within the 

range of plausible values. However, methods and immunological markers for estimating the 

seroincidence of typhoid fever are not well established, and the cut-off we used (a ³2-fold and 

absolute value of ³50 EU/mL in anti-Vi IgG) may not be a reliable indicator of acute typhoid 

infection across all individuals and immunological backgrounds. Another limitation of the 

approach is that it can very labor-intensive and time-consuming to collect the necessary data. 

Calculation of incidence based on data from passive surveillance of blood-culture-

confirmed typhoid fever results in considerable underestimation of the true incidence of typhoid 

fever in the population. Our model provides an approach for estimating typhoid fever incidence 

while accounting for different sources of information from the reporting process. Typhoid fever 

remains a major cause of morbidity and mortality in developing countries, so control and 

prevention are needed. To effectively prioritize, implement and evaluate interventions, estimates 
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of the number of cases should accurately reflect the uncertainty in the reporting process. This 

analysis provides a platform that can be updated with new or additional data as they become 

available and can be adapted to other contexts. This model framework could also be used to 

adjust for underreporting in other diseases. 
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Figures and tables. 
 

Figure 1. Flowchart of typhoid disease and observation process, and adjustment method to estimate 
the true number of cases. The pyramid (left) illustrates the different steps in the observation process for 
reporting typhoid incidence, with details on how parameters are estimated at each step. The flowchart 
(right) illustrates the corresponding Bayesian framework for each step of the observation process and 
which datasets and variables are used for adjustment. Adjustments for blood culture sensitivity are shown 
in purple, the probability of receiving a blood culture test is shown in red, and the probability of seeking 
healthcare is shown in blue. Variable definitions: C, typhoid incidence rate; s, a probability estimated in 
the model; S, sensitivity of blood culture; B, blood culture collection; H, healthcare seeking; a, age 
category; c, site. Abbreviations: BC, blood culture. 
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Figure 2. Estimated typhoid incidence based on simulated data: Full model vs. simplified 
approach. The typhoid incidence per 100,000 person-years of observation was estimated from 
simulated data based on a true incidence of 1,000 typhoid infections per 100,000 person-years 
(dashed horizontal black line). Data were simulated for low and high probabilities of seeking 
healthcare, receiving a blood culture diagnostic test, and antibiotic use. Scenarios were as 
follows: 1) low probability of seeking care, high probability of being tested, and low prior 
antibiotic usage; 2) low probability of seeking care, high probability of being tested, and high 
prior antibiotic usage; 3) high probability of seeking care, high probability of being tested, and 
low prior antibiotic usage; and 4) high probability of seeking care, high probability of being 
tested, and high prior antibiotic usage. Each simulation was performed sampling 735; 1,000; and 
2,000 individuals from the population for the hypothetical healthcare utilization survey. 
Estimated “true” values are shown for models that did (red) and did not (blue) account for 
variation in blood culture sensitivity and variation in typhoid incidence among those who did or 
did not seek care and were or were not tested. 
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Table 1. Model input parameters. Parameters used in the incidence adjustment model are 
described below, with their corresponding uncertainty distributions and data sources. The 
symbols appear in the table in the order that they appear in the text, organized by the steps in the 
reporting process (Main model, Adjustment for blood culture sensitivity, Adjustment for the 
probability of receiving a blood culture test, and Adjustment for healthcare-seeking). All 
parameters are both age- and country-specific, except for p and RTF, for which only a country-
level estimate was available. Note that some of parameters in the adjustment for the probability 
of receiving a blood culture test are specific to only some countries (su, çu, éu, ìu, and êt). 

Symbol Description Uncertainty distribution Data Source 
Main model (Equations 1-2) 

Cobserved Observed incidence rate of typhoid 
fever among febrile individuals who 
sought care 

"Ωæoqøyql~Poisson -
C<D;9:E9F

person_timeB 
See rest of table. 

"observed Number of blood-culture-positive 
individuals 

Observed directly STRATAA PS 

person_time Person-years of observation over the 
two year study period 

Observed directly STRATAA 
Demographic 
Census 

Cadjusted The incidence rate of typhoid fever 
after adjusting for all three phases of 
reporting (blood culture sensitivity, 
the probability of receiving a blood 
culture test, and the probability of 
seeking healthcare) 

C<D;9:E9F = C$lmnopql ∗ st ∗ su ∗ sv  See rest of table. 

Adjustment for blood culture sensitivity (Equations 3-4) 
st Blood culture sensitivity st|Ü~≤(án,àn) See rest of table. 
Ü An indicator variable for whether or 

not an individual took antibiotics in 
the past two weeks 

Ü	~Bernoulli(ä) See rest of table. 

ä The proportion of individuals who 
took antibiotics in the past two weeks 

Observed directly STRATAA PS 

án The mean blood culture sensitivity 
for those who did and did not take 
antibiotics the past two weeks. 

Calculated using observed data with adjustment 
from Antillon et al 

STRATAA PS, 
Antillon et al 
[11] 

àn The standard deviation of blood 
culture sensitivity for those who did 
and did not take antibiotics the past 
two weeks. 

Calculated using observed data with adjustment 
from Antillon et al 

STRATAA PS, 
Antillon et al 
[11] 

Adjustment for the probability of receiving a blood culture test (Equations 5a-b) 
su Malawi: Probability of receiving a 

blood culture test  
su~§|¿L(çu, éu) 

 
See rest of table. 

Nepal and Bangladesh: Probability 
of receiving a blood culture test after 
adjusting for variation in risk of 
typhoid fever among those who are 
and are not tested 

su = 1 + (1 − ì)êt
 

See rest of table. 
 

çu Malawi: number of people who 
presented to a STRATAA facility 
with fever, were enrolled, and 
received a blood culture test 

Observed directly STRATAA PS 

Nepal and Bangladesh: number of 
people who presented to a TyVAC 

Observed directly TyVAC [18] 
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facility with fever, were enrolled, and 
received a blood culture test 

éu Malawi: number of people who 
presented to a STRATAA facility 
with fever but were not enrolled 

Observed directly STRATAA PS 

Nepal and Bangladesh: number of 
people who presented to a TyVAC 
facility with fever but were not 
enrolled 

Observed directly TyVAC [18] 

ì Nepal and Bangladesh: probability 
of receiving a blood culture test prior 
to adjusting for the relative risk of 
blood culture positivity 

ì~§|¿L(çu, éu) See rest of table. 

êt Nepal and Bangladesh: Relative risk 
of blood culture positivity among 
those who received a blood culture 
test compared to those who did not  

log(êt)~≤(¡íç(1.87),0.37) 
 

[9] 

Adjustment for the probability of healthcare seeking (Equations 6-9) 
sv Probability of seeking healthcare sv = Ct,u

C$lmnopql
 

See rest of table. 

Ct,u  The incidence rate of typhoid fever 
after adjusting for blood culture 
sensitivity and the probability of 
receiving a blood culture test  

Ct,u = Cobservedsë ∗ s§  
See rest of table. 

C~ Incidence of typhoid fever among 
those without the risk factor C~ =

Ct,u
âℎåêïñó + ℎ~(1 − ó)ã	

 
See rest of table. 

êïñ Relative risk for typhoid fever among 
those with the risk factor compared 
to those without it 

log(êïñ)~≤(áïñ, àïñ) 
Malawi: mean	áïñ = log(0.5); 
standard	deviation	àïñ = 0.34 
Nepal:		áïñ = log(5.71); àïñ = 0.47 
Bangladesh: áïñ = log(7.6); àïñ = 0.64  

[19-21] 

ℎ~ Probability of self-reported 
healthcare seeking for a fever among 
those without the risk factor 

ℎ~~§|¿Lâ¡õ°, √õ°ã See rest of table. 

¡õ° Number of individuals who sought 
care out of those without the risk 
factor 

Observed directly STRATAA 
HUS 

√õ° Number of individuals who did not 
seek care out of those without the 
risk factor 

Observed directly STRATAA 
HUS 

ℎå Probability of self-reported 
healthcare seeking for a fever among 
those with the risk factor 

ëå~§|¿L(¡tú, √tú) See rest of table. 

¡õú Number of individuals who sought 
care out of those with the risk factor 

Observed directly STRATAA 
HUS 

√õú Number of individuals who did not 
seek care out of those with the risk 
factor 

Observed directly STRATAA 
HUS 

p Probability of having the self-
reported risk factor. In Malawi this 
was soap available after defecation, 
in Nepal this was unshared toilets, 
and in Bangladesh this was boiled 
drinking water. 

ó~§|¿Lâ¡†, √†ã See rest of table. 
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¡† Number of individuals with the 
identified typhoid fever risk factor 

Observed directly STRATAA 
HUS 

√† Number of individuals without the 
identified typhoid fever risk factor 

Observed directly STRATAA 
HUS 

PS = Passive Surveillance 
HUS = Healthcare Utilisation Survey 
 
Table 2. Posterior probability estimates for each adjustment factor by age and site. Each 
estimate (posterior mean) is shown with its 95% credible interval for the sensitivity of the blood 
culture (BC) given that healthcare (HC) was sought and a blood culture was taken (s$,%t ), the 
probability of receiving a blood culture test given that healthcare was sought (s$,%u ), and the 
probability of seeking healthcare (s$,%v ). Estimated adjustment factors are shown by age category 
(a) and country (c).  

Probability Country 
(c) Age category (a), in years 

    <5 5-9 10-14 15-29 30+ all 

Sensitivity of 
BC, given HC 

sought, BC 
taken (s$,%t ) 

Malawi 0.53 (0.48-0.57) 0.53 (0.51-0.55) 0.53 (0.50-0.56) 0.58 (0.55-0.62) 0.58 (0.54-0.62) 0.54 (0.35-0.60) 
Nepal 0.54 (0.51-0.57) 0.54 (0.51-0.57) 0.54 (0.51-0.58) 0.56 (0.54-0.58) 0.56 (0.55-0.57) 0.55 (0.51-0.58) 

Bangladesh 0.53 (0.52-0.53) 0.53 (0.53-0.53) 0.53 (0.53-0.53) 0.56 (0.54-0.58) 0.56 (0.56-0.56) 0.54 (0.51-0.57) 
Probability BC 

was drawn, 
given HC 

sought (s$,%u ) 

Malawi 0.40 (0.38-0.41) 0.38 (0.36-0.41) 0.33 (0.29-0.36) 0.21 (0.19-0.24) 0.20 (0.17-0.23) 0.35 (0.34-0.36) 
Nepal 0.81 (0.61-0.91) 0.87 (0.72-0.94) 0.87 (0.73-0.94) 0.91 (0.71-0.98) 0.91 (0.71-0.98) 0.84 (0.67-0.92) 

Bangladesh 0.94 (0.87-0.97) 0.97 (0.94-0.99) 0.97 (0.94-0.99) 0.98 (0.96-0.99) 0.98 (0.96-0.99) 0.96 (0.92-0.98) 

Probability of 
seeking HC 

(s$,%v ) 

Malawi 0.62 (0.52-0.72) 0.83 (0.74-0.90) 0.83 (0.74-0.90) 0.71 (0.60-0.81) 0.71 (0.60-0.81) 0.71 (0.64-0.77) 
Nepal 0.21 (0.11-0.34) 0.11 (0.04-0.22) 0.11 (0.04-0.22) 0.13 (0.05-0.25) 0.13 (0.05-0.25) 0.15 (0.09-0.22) 

Bangladesh 0.32 (0.21-0.45) 0.34 (0.24-0.45) 0.33 (0.24-0.45) 0.19 (0.11-0.27) 0.19 (0.11-0.27) 0.27 (0.22-0.33) 
 

Table 3. Estimated adjustment factors from final models. The ratio of the median estimate 
(95% credible interval) of adjusted-to-observed incidence rates is shown for each country and 
age category.  

Age (years) Malawi Nepal Bangladesh 
0-4 7.6 (4.8-11.6) 10.7 (4.3-26.8) 6.3 (4.2-10.2) 
5-9 5.9 (4.1-8.3) 19.7 (9.0-54.9) 5.8 (4.1-8.6) 

10-14 6.9 (4.3-10.4) 19.6 (8.6-55.2) 5.8 (3.9-8.9) 
15-29 11.4 (6.9-18.0) 15.8 (7.4-42.4) 9.8 (6.2-16.7) 
30+ 12.0 (6.0-21.7) 15.0 (4.6-48.8) 9.7 (5.5-17.9) 

All ages 7.7 (6.0-12.4) 14.4 (9.3-24.9) 7.0 (5.6-9.2) 
 
  



 35 

Table 4. Adjusted typhoid incidence estimates compared to seroincidence. The final adjusted 
typhoid incidence estimates from the models are shown with 95% credible intervals, as well as 
the seroincidence estimates with their 95% confidence intervals, by age and site.  

Age Malawi Nepal Bangladesh 

 Crude 
rates 

Adjusted 
rates Seroincidence Crude 

rates Adjusted rates Seroincidence Crude 
rates 

Adjusted 
rates Seroincidence 

0-4 
years 

83 
(53-124) 

632  
(398-965) 

2,868 
(1,153-5,911) 

72 
(33-136) 

764  
(307-1,921) 

7,813 
(2,537-18,232) 

417 
(337-511) 

2,625 
 (1,764-4,244) 

3,401 
(1,904-5,610) 

5-9 
years 

146 
(103-201) 

861  
(599-1,203) 

1,205 
(146-4,352) 

341 
(250-455) 

6,713 
 (3,085-18,730) 

5,217 
(1,915-11,356) 

554 
(456-666) 

3,228 
 (2,276-4,757) 

3,435 
(1,571-6,521) 

10-14 
years 

88 
(56-132) 602  

(377-915) 

3,061 
(631-8,946) 

191 
(128-275) 3,750 

 (1,653-10,559) 

8,910 
(4,075-16,916) 

268 
(203-348) 1,564  

(1,050-2,384) 

599 
(15-3,336) 

15-29 
years 

32 
(20-48) 361  

(219-567) 

3,774 
(1,384-8,213) 

92 
(71-119) 1,457 

 (684-3,918) 

10,169 
(5,255-17,764) 

98 
(76-124) 956  

(603-1,635) 

5,310 
(2,744-9,275) 

30+ 
years 

21 
(10-37) 

248  
(124-447) 

2,076 
(762-4,518) 

6 
(2-13) 

92  
(29,301) 

7,322 
(5,100-10,183) 29 (19-42) 279  

(157-514) 
2,988 

(1,672-4,928) 

All 
ages 

58 
(48-70) 444  

(347-717) 

2,505 
(1,605-3,728) 

74 
(62-87) 1,062 

 (683-1,839) 

7,631 
(5,914-9,691) 

161 
(145-179) 1,135  

(898-1,480) 

3,256 
(2,432-4,270) 

 
  



 36 

References 
 

1. Crump J, Youssef F, Luby S, Wasfy M, Rangel J, Taalat M. Estimating the incidence of typhoid fever and 
other febrile illnesses in developing countries. Emerging Infectious Diseases. 2003;9(5):539–44. doi: 
10.3201/eid0905.020428. 
2. Antillon M, Warren J, Crawford F, Weinberger D, Kurum E, Pitzer V. The burden of typhoid fever in low- 
and middle-income countries: A meta-regression approach. PLoS Negl Trop Dis. 2017;11(2). doi: 
10.1371/journal.pntd.0005376. 
3. Mogasale V, Maskery B, Ochiai RL, Lee JS, Mogasale VV, Ramani E, et al. Burden of typhoid fever in 
low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. The 
Lancet. 2014;2(10):e570-80. doi: 10.1016/S2214-109X(14)70301-8. 
4. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid Fever. New England Journal of Medicine. 
2002;347:1770-82. doi: 10.1056/NEJMra020201. 
5. Panzner U, Pak GD, Aaby P, Adu-Sarkodie Y, Ali M, Aseffa A, et al. Utilization of Healthcare in the 
Typhoid Fever Surveillance in Africa Program. Clinical infectious diseases : an official publication of the Infectious 
Diseases Society of America. 2016;62:S56-68. doi: 10.1093/cid/civ891. PubMed PMID: 26933023. 
6. Kassile T, Lokina R, Mujinja P, Mmbando BP. Determinants of delay in care seeking among children 
under five with fever in Dodoma region, central Tanzania: a cross-sectional study. Malaria journal. 2014;13(1):348. 
doi: doi:10.1186/1475-2875-13-348. 
7. Dillip A, Hetzel MW, Gosoniu D, Kessy F, Lengeler C, Mayumana I, et al. Socio-cultural factors 
explaining timely and appropriate use of health facilities for degedege in south-eastern Tanzania. Malaria journal. 
2009;8:144. Epub 2009/07/01. doi: 10.1186/1475-2875-8-144. PubMed PMID: 19563640; PubMed Central PMCID: 
PMCPMC2712476. 
8. Elven J, Dahal P, Ashley EA, Thomas NV, Shrestha P, Stepniewska K, et al. Non-malarial febrile illness: a 
systematic review of published aetiological studies and case reports from Africa, 1980–2015. BMC Med. 
2020;18(279). doi: 10.1186/s12916-020-01744-1. 
9. Voysey M, Pant D, Shakya M, Liu X, Colin-Jones R, Theiss-Nyland K, et al. Under-detection of blood 
culture-positive enteric fever cases: The impact of missing data and methods for adjusting incidence estimates. 
2020;14(1):e0007805. doi: 10.1371/journal.pntd.0007805. 
10. World Health Organization (WHO). Typhoid vaccines position paper. Weekly epidemiological record. 
2018;13(93):153–72. 
11. Antillon M, Saad NJ, Baker S, Pollard AJ, Pitzer VE. The Relationship Between Blood Sample Volume 
and Diagnostic Sensitivity of Blood Culture for Typhoid and Paratyphoid Fever: A Systematic Review and Meta-
Analysis. The Journal of Infectious Diseases. 2018:jiy471. doi: 10.1093/infdis/jiy471. 
12. Reed C, Angulo FJ, Swerdlow DL, Lipsitch M, Meltzler MI, Jernigan DB, et al. Estimates of the 
Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerging Infectious Diseases. 2009;15(13). 
13. Presanis AM, De Angelis D, Hagy A, Reed C, Riley S, Cooper BS, et al. The Severity of Pandemic H1N1 
Influenza in the United States, from April to July 2009: A Bayesian Analysis. PLoS Med. 2009;6(12). doi: 
10.1371/journal.pmed.1000207. PubMed PMID: 19997612. 
14. Health Protection Agency. HIV in the United Kingdom: 2008 Report. London, United Kingdom: 2008. 
15. Goubar A, Ades AE, De Angelis D, McGarrigle CA, Mercer CH, Tookey PA, et al. Estimates of Human 
Immunodeficiency Virus Prevalence and Proportion Diagnosed Based on Bayesian Multiparameter Synthesis of 
Surveillance Data [with Discussion]. Journal of the Royal Statistical Society Series A (Statistics in Society). 
2008;171(3):541-80. 
16. Presanis AM, De Angelis D, Spiegelhalter DJ, Seaman S, Goubar A, Ades AE. Conflicting Evidence in a 
Bayesian Synthesis of Surveillance Data to Estimate Human Immunodeficiency Virus Prevalence. Journal of the 
Royal Statistical Society Series A (Statistics in Society). 2008;171(4):915-37. 
17. Darton TC, Meiring JE, Tonks S, Khan MA, Khanam F, Shakya M, et al. The STRATAA study protocol: a 
programme to assess the burden of enteric fever in Bangladesh, Malawi and Nepal using prospective population 
census, passive surveillance, serological studies and healthcare utilisation surveys. 2017;7(6). doi: 
10.1136/bmjopen-2017-016283. 
18. Meiring J, Gibani M, The TyVAC Consortium Meeting Group. The Typhoid Vaccine Acceleration 
Consortium (TyVAC): Vaccine effectiveness study designs: Accelerating the introduction of typhoid conjugate 
vaccines and reducing the global burden of enteric fever. Report from a meeting held on 26–27 October 2016, 
Oxford, UK. Vaccine. 2017;35(38). doi: https://doi.org/10.1016/j.vaccine.2017.08.001. 



 37 

19. Gauld JS, Olgemoeller F, Nkhata R, Li C, Chirambo A, Morse T, et al. Domestic river water use and risk of 
typhoid fever: results from a case-control study in Blantyre, Malawi. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America. 2019. Epub 2019/05/31. doi: 10.1093/cid/ciz405. 
PubMed PMID: 31144715. 
20. Karkey A, Thompson CN, Tran Vu Thieu N, Dongol S, Le Thi Phuong T, Voong Vinh P, et al. Differential 
epidemiology of Salmonella Typhi and Paratyphi A in Kathmandu, Nepal: a matched case control investigation in a 
highly endemic enteric fever setting. PLoS Negl Trop Dis. 2013;7(8):e2391. Epub 2013/08/31. doi: 
10.1371/journal.pntd.0002391. PubMed PMID: 23991240; PubMed Central PMCID: PMCPMC3749961. 
21. Ram PK, Naheed A, Brooks WA, Hossain MA, Mintz ED, Breiman RF, et al. Risk factors for typhoid 
fever in a slum in Dhaka, Bangladesh. Epidemiol Infect. 2007;135(3):458-65. Epub 2006/08/09. doi: 
10.1017/s0950268806007114. PubMed PMID: 16893490; PubMed Central PMCID: PMCPMC2870597. 
22. Gelman A, Rubin D. Inference from iterative simulation using multiple sequences. Statistical Science. 
1992;7:457-72. 
23. MATLAB. version  9.3.0 (R2017b) ed. Natick, MA: The MathWorks Inc; 2017. 
24. Plummer M. rjags: Bayesian Graphical Models using MCMC. R package version 4-6 ed2016. 
25. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for 
Statistical Computing; 2017. 
26. Phillips MT. Adjusted Typhoid Incidence 2020 [January 13, 2020]. Available from: 
https://github.com/mailephillips/adjusted-typhoid-incidence. 
27. Ocan M, Obuku EA, Bwanga, Freddie, Akena D, Richard S, et al. Household antimicrobial self-
medication: a systematic review and meta-analysis of the burden, risk factors and outcomes in developing countries. 
BMC Public Health. 2015;15(742). doi: 10.1186/s12889-015-2109-3. 
28. Srikantiah P, Girgis F, Luby SP, Jennings G, Omar Wasfy M, Crump JA, et al. Population-based 
surveillance of typhoid fever in Europe. Am J Trop Med Hyg. 74(1):114-9. 
29. Andrews JR, Barkume C, Yu AT, Saha SK, Qamar FN, Garrett D, et al. Integrating Facility-Based 
Surveillance With Healthcare Utilization Surveys to Estimate Enteric Fever Incidence: Methods and Challenges. J 
Infect Dis. 2018. Epub 2018/09/06. doi: 10.1093/infdis/jiy494. PubMed PMID: 30184162. 
30. Carey ME, MacWright WR, Im J, Meiring JE, Gibani MM, Park SE, et al. The Surveillance for Enteric 
Fever in Asia Project (SEAP), Severe Typhoid Fever Surveillance in Africa (SETA), Surveillance of Enteric Fever 
in India (SEFI), and Strategic Typhoid Alliance Across Africa and Asia (STRATAA) Population-based Enteric 
Fever Studies: A Review of Methodological Similarities and Differences. CID. 2020;71. doi: 
doi.org/10.1093/cid/ciaa367. 
31. Marks F, von Kalckreuth V, Aaby P, Adu-Sarkodie Y, El Tayeb MA, Ali M, et al. Incidence of invasive 
salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Global Health. 
2019;5(3). doi: 10.1016/S2214-109X(17)30022-0. 
32. Breiman RF, Cosmas L, Njuguna H, Audi A, Olack B, Ochieng JB, et al. Population-Based Incidence of 
Typhoid Fever in an Urban Informal Settlement and a Rural Area in Kenya: Implications for Typhoid Vaccine Use 
in Africa. PLoS One. 2012;7(1):e29119. doi: 10.1371/journal.pone.0029119. 
33. Soni A, Fahey N, Phatak AG, Desai RG, Roman J, Nimbalkar SM, et al. Differential in Healthcare-Seeking 
Behavior of Mothers for Themselves versus Their Children in Rural India: Results of a Cross Sectional Survey. 
International Public Health Journal. 2014;6(1):57. 
 

 



 38 

Supplementary figures and tables. 
 
Fig S1. Typhoid fever pyramid and febrile pyramid. The typhoid pyramid (green) is nested within the 
fever pyramid (grey). Some fraction of symptomatic typhoid fever cases and febrile cases seek care 
(shaded regions, TF and F, respectively). The average probability of seeking care for fever is measured 
(h; dashed purple line), but this may vary for individuals with typhoid fever versus fever due to other 
causes. Within the typhoid fever and fever pyramids, individuals may (X=1) or may not (X=0) have a risk 
factor for typhoid fever; the probability of seeking healthcare varies for those with or without the risk 
factor, and the risk factor is more prevalent among those with typhoid fever. One can observe whether a 
person has a fever, but not whether they have typhoid fever.  
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Fig S2. Plots of prior antibiotic use, blood culture volume, and blood culture sensitivity. The average 
proportion of those with antibiotic use in the past two weeks (A) and the average blood culture volume 
(B) by country and age group is shown in plots A and B, respectively. In plot C, the distribution of overall 
(across all age groups) blood culture sensitivity after adjusting for prior antibiotic use and blood culture 
volume drawn is shown. 
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Fig S3. Estimated probabilities from simulated data. Data for the estimated typhoid incidence were 
simulated for low, medium and high probabilities of seeking healthcare (sv), receiving a blood culture 
diagnostic test (su), and blood culture sensitivity (st) (row panels); and each simulation was performed 
sampling 735; 1,000; and 2,000 individuals (column panels) from the population to be “observed” from 
the healthcare utilization portion. The true values used for simulation are shown in dashed horizontal 
black lines. The value for blood culture sensitivity without adjusting for prior antibiotic use is shown in 
dotted gray lines. Estimated values are shown for models that did (red) and did not (blue) account for 
variation in blood culture sensitivity and variation in typhoid incidence among those who did or did not 
seek care and were or were not tested. 
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Fig S4. Estimated STRATAA typhoid incidence with full model versus a simplified approach. The 
estimated typhoid incidence per 100,000 person-years of observation is shown for models that did (red) 
and did not (blue) take into account variation in blood culture sensitivity and variation in typhoid 
incidence among those who did or did not seek care and were or were not tested for each age group and 
country. Note that the upper bounds on children 5-9 and 10-14 in Nepal are not shown. 

 

  

Malawi Nepal Bangladesh

<5 5−9 10−14 15−29 >30 <5 5−9 10−14 15−29 >30 <5 5−9 10−14 15−29 >30

0

2000

4000

6000

Age Category

In
ci

de
nc

e 
pe

r 1
00

,0
00

 p
er

so
n−

ye
ar

s



 42 

Fig S5. Estimated STRATAA probabilities from full model versus a simplified approach. The 
estimated probabilities of seeking healthcare (svreceiving a blood culture diagnostic test  (su), and 
blood culture sensitivity (st) are shown for models that did (red) and did not (blue) take into account 
variation in blood culture sensitivity and variation in typhoid incidence among those who did or did not 
seek care and were or were not tested for each age group and country.  
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Table S1. Contingency table of an individual’s sensitivity and specificity for blood culture 
diagnostic test. In this study, we assumed that all individuals who tested positive for typhoid fever were 
true cases of typhoid. Among those who tested negative, an individual i’s probability of being a true case 
of typhoid (wi,v(i),u(i)) depended on the volume of blood drawn v and his or her reported prior antibiotic use 
u. 

 Typhoid No typhoid 
 

BC+ 
 

wi,v(i),u(i) 
 

 
0 

 
BC- 

 
1 - wi,v(i),u(i) 

 

 
1 

 
 
Table S2. Prevalence of typhoid fever risk factor, rates of reported febrile illness, and probability of 
healthcare seeking from the Healthcare Utilization Surveys. The prevalence (prev.) and numerator 
used to calculate the prevalence (N) of each factor used to estimate the probability of healthcare seeking 
by age and country are show in the table below. Values are shown for the probability of having the risk 
factor for typhoid fever (p), and the proportion of those who sought care at a STRATAA partner health 
facility among those with (h1) and without (h0) the risk factor are shown. 

    p h1 h0 RTF 

  Age prev. N prev. N prev. N Mean (95% CI) 

Nepal 

all ages 0.42 130 0.13 11 0.25 27 

5.7 (2.3-14.4) 
u5 0.37 28 0.18 5 0.32 15 

5-14 0.45 58 0.10 3 0.19 5 

15+ 0.42 44 0.12 3 0.20 7 

Bangladesh 

all ages 0.30 863 0.26 35 0.31 95 

7.6 (2.2-26.5) 
u5 0.29 146 0.29 10 0.41 31 

5-14 0.30 306 0.35 16 0.31 34 

15+ 0.30 411 0.17 9 0.24 30 

Malawi 

all ages 0.20 378 0.74 59 0.64 130 

2.0 (1.3-2.5) 
u5 0.20 126 0.72 23 0.55 42 

5-14 0.20 126 0.78 18 0.80 47 

15+ 0.20 126 0.72 18 0.62 41 
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Abstract 

Background. Several prolonged typhoid fever epidemics have been reported since 2010 

throughout eastern and southern Africa, thought to be caused by the spread of multidrug resistant 

Salmonella Typhi. The World Health Organization recommends the use of typhoid conjugate 

vaccines (TCVs) in outbreak settings; however, current data are limited on how and when TCVs 

might be introduced in an outbreak setting. While vaccination can be an effective public health 

intervention, if resources are implemented late or focused inappropriately, fewer infections will 

be averted. 

Methodology. We modified a dynamic transmission model of a typhoid fever outbreak in Malawi 

to evaluate preventative and reactive vaccination strategies. We then conducted a cost-

effectiveness analysis using the net-benefits framework to compare no vaccination to routine 

vaccination at 9 months of age with and without a catch-up campaign up to 15 years old. We 

considered a 10-year time horizon and compared reactive vaccination strategies to preventative 

strategies with randomized outbreak timing over the 10-year period. We also compared this 

analysis to the cost-effectiveness of TCV introduction given the pre-outbreak typhoid incidence 

(with no outbreak on the horizon) and one with post-outbreak incidence (10 years after the 

outbreak). We examined variations in outbreak definitions, delays in implementation of reactive 

vaccination, and the timing of preventive vaccination relative to the outbreak.  

Results. We estimated that vaccination would prevent 15-60% of disability-adjusted life-years 

(DALYs) in the outbreak scenarios. In the cost-effectiveness analyses, some form of routine 

vaccination with a catch-up campaign was preferred over no vaccination for WTP values of at 

least $110 per DALY averted. Reactive vaccination was the preferred strategy for WTP values of 

$110-430 per DALY averted, but became less optimal as delays in TCV deployment increased. 
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For WTP values >$430, introduction of preventative routine TCV immunization with a catch-up 

campaign was the preferred strategy assuming the outbreak occurred within 10 years. However, 

when no outbreak occurred and assuming the pre-outbreak incidence, no vaccination was the 

optimal strategy for WTP values <$980. For the current post-outbreak incidence, routine 

vaccination with a catch-up campaign is preferred for WTP values of $280 and above, consistent 

with previous analyses for Malawi.  

Conclusions. Countries where outbreaks of typhoid fever due to introduction of antimicrobial 

resistant strains are likely to occur should consider TCV introduction. Reactive vaccination can 

be a cost-effective strategy, but only if delays in vaccine deployment are minimal; otherwise, 

introduction of preventive routine immunization with a catch-up campaign should be considered.   

Keywords: typhoid fever; reactive vaccination; preventive vaccination; typhoid conjugate 

vaccines; economic evaluation 
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Introduction 

Typhoid fever is a major source of morbidity and mortality in developing countries. 

Approximately 12-21 million infections and 119,000-269,000 deaths are attributed to typhoid 

fever each year [1-3], accounting for 2-23 million disability-adjusted life years (DALYs) [4].  

Since 2010, there have been several prolonged typhoid outbreaks in eastern and southern Africa, 

which have imposed considerable costs to the populations impacted [5-8].  These outbreaks are 

thought to be caused by antimicrobial-resistant (AMR) strains and, as a result, more outbreaks 

are likely [5, 8, 9].  

Typhoid conjugate vaccines (TCVs) are an effective means of typhoid prevention and 

control. They have been approved and recommended by the World Health Organization (WHO) 

and Gavi, the Vaccine Alliance, has pledged support for introduction of TCVs in typhoid-

endemic countries. However, research regarding the vaccines’ long-term efficacy and use in 

outbreak settings is lacking. Current data is limited on how and when TCVs should be 

introduced, and vaccine stockpiles do not yet exist [10, 11].  

Reactive vaccination has become an important prevention measure for outbreaks of 

diseases such as cholera, influenza, and Ebola [12-19]. While reactive vaccination can be 

effective, if implemented late or focused inappropriately, the number of cases averted will be 

small [12, 16, 17]. While TCVs are recommended by the WHO for use in outbreak settings, there 

is no clear way of defining an outbreak of typhoid fever. Furthermore, policy makers are faced 

with inevitable delays in securing TCVs for outbreak response and applying for Gavi support to 

implement vaccination. Early introduction of TCVs may provide an effective means of 

preventing prolonged outbreaks of typhoid fever associated with introduction of AMR strains, 
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but the cost-effectiveness of preventative versus reactive vaccination strategies over different 

time horizons needs to be evaluated.   

Here, we use a dynamic transmission model fitted to data from a typhoid fever outbreak 

in Blantyre, Malawi to investigate the health impact and costs associated with alternative vaccine 

delivery strategies to inform the use of TCVs in an outbreak setting. We explored a range of 

preventative and reactive vaccination scenarios to allow for uncertainty in outbreak timing, 

outbreak identification, and delays in vaccine introduction. 

 

Methods 

Transmission model and outbreak threshold 

We developed an age-specific stochastic model to simulate typhoid fever transmission 

dynamics in Blantyre, Malawi from January 1995 to December 2031. Details of the model are 

provided in the Appendix. The model was parameterized based on the equivalent deterministic 

model fitted to routine blood-culture surveillance data from Queen Elizabeth Central Hospital 

(QECH) in Blantyre from January 1996 to February 2015 [9], which captures the multi-year 

outbreak of typhoid fever that occurred in Blantyre between 2011-2015. We assumed the 

outbreak was caused by an increase in the duration of infectiousness of Salmonella Typhi 

associated with the emergence of the multidrug-resistant H58 haplotype [9, 20]. We validated the 

model by comparing to blood-culture surveillance data from QECH for March 2015-December 

2016. To scale the number of blood-culture-confirmed cases at QECH to the population-based 

incidence of typhoid fever in Blantyre, we used data from the recently completed Strategic 

Typhoid Alliance across Africa and Asia (STRATAA) cohort study (S1.1.4 Text) [21].  
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The stochastic model incorporated uncertainty in the transmission dynamics using a 

Poisson process for each transition between states and a binomial observation process for the 

(under)reporting of cases over the duration of an individual’s infection. To simulate the impact 

of vaccination, we incorporated further uncertainty in vaccine efficacy at time 0, the waning of 

vaccine-induced immunity, and vaccine coverage during the catch-up campaign by sampling 

from the associated uncertainty distribution for each stochastic iteration (S1 Text). The dynamic 

model parameters, their estimates and uncertainty distributions, and sources are listed in Table 1. 

For each intervention strategy, we simulated the outbreak 1,000 times. 

Table 1. Dynamic model input parameters 
Characteristic Value Source 
Demographic parameters 

Birth rate (B) 31.3-55.0 live births per 1,000 per 
year 

[9] 

Mortality rate (includes 
migration) (ƒ) 

7.7-27.8 deaths per 1,000 per year [9] 

Disease parameters 
Duration of 
infectiousness (1 ≈⁄ ) 

4 weeks [9, 22]  
 

Seasonal offset parameter 
(timing of seasonal peak) 
(s) 

4.9 weeks [9] 

Fraction infected who 
become chronic carriers 
(«) 

0.003-0.101 depending on age [23] 
 

Disease-induced 
mortality (») 

0.001 [9, 24]  

Duration of temporary 
full immunity to infection 
(1 …⁄ ) 

104 weeks [9, 22]  

Basic reproductive 
number (R0) 

3.29 Refit parameters from modified 
Pitzer et al model [9] 

Amplitude of seasonal 
forcing (q) 

0.35 Refit parameters from modified 
Pitzer et al model [9] 

Relative infectiousness of 
chronic carriers (r) 

0.09 Refit parameters from modified 
Pitzer et al model [9] 

Outbreak parameters 
Beginning week of 
increase in duration of 
infectiousness (t1) 

April 10, 2011 Refit parameters from modified 
Pitzer et al model [9] 

End week of increase in 
duration of infectiousness 
(t2) 

November 23, 2014 Refit parameters from modified 
Pitzer et al model [9] 
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Magnitude of increase in 
duration of infetiousness 
(m) 

3.1954 Refit parameters from modified 
Pitzer et al model [9] 

Reporting process 
Underreporting 
adjustment factor (a) 

7.7 (95% CrI: 6.0-12.4) [21] 

Vaccine-related parameters 
Age groups vaccinated 

Routine 
Catch-up 
campaign 

 
9 months 
9 months to <15 years 

Based on WHO recommendation 

Initial efficacy of TCV 
( ~) 

0.89 (95% CrI: 0.78-0.98) Re-analysis based on Malawi 
TCV efficacy trial data from [25] 
and a previous estimate from [26] 

Waning of vaccine-
induced immunity  
(1/…y) (years) 

18.9 (95% CrI: 8.4-83.3) Re-analysis based on Malawi 
TCV efficacy trial data from [25] 
and a previous estimate from [26] 

Vaccine coverage 
Routine (Ãù) 
 
Catch-up 
campaign (ÃÕ) 

 
Increases from 0.85 to 0.95 over 
ten years 
 
Uniform(0.6,0.9) 

Gavi demand forecasts under 
assumption of unconstrained 
supply, and commonly assumed 
coverage during a catch-up 
campaign during an outbreak 

 

  Since there is no globally-defined threshold for a typhoid fever outbreak, we explored 

different definitions of the epidemic threshold. For the purposes of our analysis and to facilitate 

outbreak identification from passive hospital-based surveillance data across different populations 

and contexts, we specified the epidemic threshold in terms of the number of standard deviations 

(SD) above the mean monthly reported typhoid fever cases for the baseline period of 2000-2010. 

We examined thresholds ranging from 6-16 SD above the mean, and defined the “true” start of 

the outbreak as April 10, 2011, identified previously during model-fitting. Setting a threshold too 

low would trigger too many false positive identifications of the outbreak, while setting the 

threshold too high could fail to identify a true outbreak in a timely manner. To address this issue, 

we compared the sensitivity and specificity of each definition of outbreak definition. We defined 

the sensitivity of each threshold as the percentage of simulations in which the outbreak was 

identified within 18 months of April 2011, while the specificity was defined as the percentage of 

simulations in which the outbreak threshold was not exceeded prior to April 2011. Once the 
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outbreak threshold was crossed, all subsequent months were considered to be part of the 

outbreak. For our primary analysis, we used the outbreak identification threshold that yielded the 

highest sum of sensitivity and specificity. 

Vaccination scenarios 

We compared scenarios in which TCV introduction occurs before the outbreak 

(preventive, assuming an outbreak is likely) versus after the outbreak starts (reactive). We 

modeled the impact of routine vaccination with TCV at 9 months old with or without a catch-up 

campaign up to 15 years of age. We assumed an initial vaccine efficacy of approximately 89% 

(95% credible interval (CrI): 78-98%) and an average duration of protection of 18.9 years (95% 

CrI: 8.40-83.3 years); we updated prior distributions for these parameters by fitting to data from 

a phase 3, double-blind, randomized active-controlled clinical trial of single-dose Typbar TCV in 

Blantyre, Malawi [25, 26] (S1.1.2.2 Text). Routine vaccination coverage was assumed to 

increase from 85% to 95% over the first ten years of vaccination and then remain at 95% [26]. 

For catch-up campaign coverage, we assumed that the proportion vaccinated varied uniformly 

from 0.6-0.9.  

Since it is typically not known when an outbreak will occur, we randomized the timing of 

the start of the outbreak over a 10-year time horizon. The randomized timing followed a discrete 

uniform distribution over Years 0-10. We assumed only a single outbreak occurs. We simulated 

four alternative vaccination strategies: no vaccination, preventive routine TCV introduction at 9 

months of age (in Year 0), preventive routine vaccination plus a one-time catch-up to age 15, and 

reactive routine vaccination plus a catch-up campaign once the outbreak was identified (Table 

2[26]).  
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Table 2. Strategy comparisons for deploying typhoid conjugate vaccines to prevent or 
respond to an outbreak. Each of the scenarios examined compares four strategies: a base case 
(no vaccination), a preventive strategy with routine vaccination at 9 months of age (“routine”), a 
preventive strategy with routine vaccination and a catch-up campaign up to 15 years of age 
(“routine + catch-up”), and a reactive vaccination strategy with routine vaccination and a catch-
up campaign. 

Strategy type Vaccination strategies 
Base no vaccination 
Preventive routine at 9 months 
Preventive routine + catch-up to age 15 
Reactive routine + catch-up to age 15 

 

 We compared our results to two scenarios in which an outbreak does not occur over the 

10-year time horizon. These analyses are more comparable to previous cost-effectiveness 

analyses, and allow us to examine whether it would be beneficial to introduce TCV in an 

endemic setting when typhoid fever incidence is lower (pre-outbreak incidence) or higher (post-

outbreak incidence). For the pre-outbreak scenario, we assume typhoid fever incidence is 

comparable to that estimated for Blantyre for 1995-2005, whereas for the post-outbreak scenario, 

we assume it is comparable to that estimated for Blantyre for 2021-2031. 

Economic evaluation 

We used the stochastic transmission model to simulate the number of typhoid fever cases 

and vaccine doses administered under each strategy, then used the model output to calculate the 

disability-adjusted life-years (DALYs) due to typhoid, costs of treatment, and costs of vaccine 

delivery. Costs of vaccination programs are generally incurred by the government and donors in 

Malawi; hence, we considered the healthcare-payer perspective and only accounted for direct 

treatment and vaccination costs accrued by the healthcare system. Costs were converted to 2020 

USD, to convert to the most recent full year. We conducted the analysis in accordance with 

WHO guidelines and recommendations of the Bill and Melinda Gates Foundation’s reference 
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case [27-30]. All costs and effects were discounted at a rate of 3% per year. We followed the 

Consolidated Health Economic Evaluation Reporting Standards (CHEERS) [27] (S2.2.3). 

Consistent with WHO guidelines and recommendations of the Bill and Melinda Gates 

Foundation’s reference case [27-30], we evaluated the effectiveness of each strategy in terms of 

DALYs. DALYs represent the total years of life lost due to death (YLL) and lived with disability 

(YLD) due to the disease: Œ≥œ¥ = ¥œœ + ¥œŒ [31]. To estimate the YLLs due to typhoid fever, 

we multiplied the number of cases of typhoid fever by the probability of hospitalization and the 

probability of death for inpatients (S1.2.4 Text) [32, 33]. We then divided by the proportion of 

deaths occurring in hospital, which we assumed was uniformly distributed between 0.25-1 [26], 

to obtain an estimate of the total number of deaths, and subtracted the  average age of death from 

typhoid fever from Malawi’s life expectancy [34]. The YLDs were calculated based on the 

number of cases, duration of illness, and disability weights (S1.2.2 Text).  

To estimate the treatment costs for typhoid fever, we assumed 71% (95% CrI: 64-77%) 

of typhoid fever cases would seek medical care and 4% (95% CrI: 1-11%) would be 

hospitalized; we updated prior distributions for these parameters based on data from the 

STRATAA cohort study [21] (Table 3; S1.2.3-1.2.4 Texts). The number of outpatient cases was 

calculated by subtracting the number of hospitalized cases from the number of individuals 

seeking care. We assumed cases not seeking medical care would not incur treatment costs. As 

this cost-effectiveness analysis was carried out from the healthcare provider perspective, we 

included only direct medical costs. We estimated treatment costs for each individual with 

typhoid fever using WHO-CHOICE data [35]. 

  



 55 

Table 3. Input parameters for cost-effectiveness analysis. 
Characteristic Median value (95% CrI) Source 
Typhoid incidence and age distribution  

Annual number of 
symptomatic typhoid 
fever cases per 100,000 
people (without 
vaccination) 

26.1 (14.0-45.7) before outbreak;  
Up to 916 (823-1,543) during 
outbreak; 
224 (169-368) after outbreak 

Based on output from 
transmission dynamic model fit to 
incidence of typhoid  

Average age of patients 
with typhoid infection 
(without vaccination) 
(years) 

15.9 (13.8-19.3)  
 

Based on output from 
transmission dynamic model fit to 
incidence of typhoid 

Typhoid mortality  
Probability of death if 
patients are admitted to 
hospital for typhoid 
infection 

0.09 (0.02-0.28) [33, 36] [37] 

Proportion of deaths from 
typhoid infection 
occurring in patients not 
hospitalized  

0.38 (0.02-0.73) Assuming that on average about 
one of three deaths occur outside 
the hospital setting from [26] 

Average age at death 
from typhoid infection 

15.9 (13.8-19.3)  
 

Assuming age distribution of 
deaths is the same as the age 
distribution of patients with 
typhoid 

Antimicrobial resistance  
Proportion of patients 
with typhoid infection 
with an AMR strain 

0.001 (0.00-0.63) before 
outbreak; 
Up to 0.96 (0.86-1.00) during 
outbreak; 
0.65 (0.31-0.98) after outbreak 

[20, 37] 

Burden of AMR cases 
relative to antimicrobial-
sensitive cases 

2 (1-3) [26] 

Healthcare use  
Probability of infected 
patients seeking 
healthcare 

0.71 (0.64-0.77) [21] 

Probability that infected 
patients are admitted to 
hospital 

0.04 (0.01-0.11) [38] [37] 

Length of stay in hospital 
(days) 

6 (3-9) [26] 

Number of visits to 
medical doctors by 
inpatients and outpatients 

1 [26] 

Treatment costs  
Cost of inpatient 
treatment 

$34.00 ($9.00-107.00) [26] 

Cost out outpatient 
treatment 

$1.30 ($0.30-3.20) [26] 
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Cost of treatment for a 
patient not seeking 
professional medical care 

$0.81 (0.039-2.28) [26] 

Unit cost per bed-day for 
inpatients and unit cost 
per outpatient visit 

$3.36 (0.81-9.02) 
$0.85 (0.14-2.66) 

[26] 

Relative adjustment 
factor for overestimation 
of unit cost per outpatient 
visit 

0.63 (0.25-1.00) [26] 

Cost of drugs per 
inpatient 

$8.30 (0.30-50.8) [26] 

Costs of laboratory tests 
per inpatient 

$0.20 (0.00-60.00) [26] 

Cost of drugs per 
outpatient 

$0.81 (0.039-2.28) [26] 

Costs of laboratory tests 
per outpatient 

$0 [26] 

Vaccine-related costs 
Vaccine procurement See Bilcke et al for details [26]  
Injection and safety 
equipment 

$0.23 (0.21-0.24) [26] 

Routine vaccine delivery 
cost per dose 

$1.61 (0.36-4.23) [26] 

Number of years during 
which start-up costs of 
vaccine delivery program 
are incurred 

2 (1-3) [26] 

Routine vaccine delivery 
costs (%) 

64% (48-78) [26] 

Campaign vaccine 
delivery cost per dose 

$0.040 (0.23-0.62) [26] 

Disability-adjusted life-years 
Disability-weights from 0 
(perfect health) to 1 
(death) 

Severe illness, 0.21 (-.14-0.29); 
moderate illness, 0.052 (0.031-
0.079); mild illness, 0.005 (0.002-
0.011) 

[39] 

Relationship between 
disability weights for 
mild, moderate, and 
severe illness and 
outcomes on healthcare 
use 

See description in supplement [39] 

Duration of illness in 
inpatients and outpatients 
(days) 

16 (12-20) [26] 

Relative duration of 
illness for patients not 
seeking medical care (vs 
inpatients and 
outpatients) 

0.5 (0.02-0.98) [26] 

Life expectancy 62.7 [34] 
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Antimicrobial resistance is likely to affect the burden and costs associated with typhoid 

fever. In the absence of sufficient data to parameterize the relative burden and costs of AMR 

typhoid fever, we assumed the case fatality risk, years of life lived with disability, and treatment 

costs were twice as high on average (uniformly 1-3 times higher) for AMR cases. Since recent 

outbreaks are thought to be caused by new AMR strains of typhoid, we allowed the proportion of 

AMR typhoid cases to vary with time based on data from a longitudinal study in Blantyre (S1.2.5 

Text) [20]. 

For routine and campaign doses, we assumed a vaccine procurement cost of US$1.50 per 

dose and US$0.23 (95% confidence interval (CI): $0.21-0.24) per dose for injection and safety 

equipment, as in a previous study [26]. For routine doses, the delivery cost was assumed to be 

$1.76 (95% CI: 0.36-4.23) per dose based on the price of adding a new vaccine to routine 

vaccination across Gavi-eligible countries [26]; for campaign doses, we assumed the cost was 

$0.41 (95% CI: 0.23-0.62) based on a literature review that explored operational costs per 

vaccine doses for Supplementary Immunization Activities from 1992-2012 [40]. 

Sensitivity analyses 

To assess the robustness of our economic evaluation to the underlying parameter 

uncertainty, we conducted two types of sensitivity analyses: 1) probabilistic sensitivity analyses, 

in which we examined cost-effectiveness acceptability frontiers to assess how parameter 

uncertainty contributes to uncertainty in the optimal strategy; 2) value of information analysis to 

identify the most influential parameters, by estimating the expected value of partially perfect 

information (EVPPI) for each parameter. We randomly drew 5,000 independent samples from 

the uncertainty distributions of each input parameter in the economic evaluation (Table S2). Each 
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sample was combined with one of the samples from the stochastic transmission model (1,000 

simulations repeated five times to achieve a manageable computational burden) to estimate 5,000 

net monetary benefit (NMB) values for each strategy and for a range of willingness-to-pay 

(WTP) values from $0-$1,000 in increments of $10. The NMB framework is represented as 

≤–§ = ∆“ ∗”Øµ − ∆∞, where ∆“ is the averted DALYs through a strategy compared to the 

base case of no vaccination, ∆∞ is the incremental cost of the strategy compared to the base case, 

and WTP is the willingness-to-pay threshold. By calculating the proportion of samples for which 

a strategy yielded the highest NMB for each WTP, we quantified the uncertainty surrounding the 

optimal strategy. We also measured the contribution of parameter uncertainty to identifying the 

optimal vaccination strategy by calculating the EVPPI.  

Scenario analyses 

While countries have the option of introducing TCVs into the routine immunization 

program, to date no vaccine stockpile exists for TCV introduction in the event of an outbreak. 

To address this uncertainty, we account for varying delays in reactive vaccine deployment. For 

our primary analysis, we assumed an “idealized” scenario in which vaccination is introduced 

within 1 month of identifying the outbreak. In scenario analyses, we explored deployment delays 

of 6, 12, and 24 months after the epidemic threshold was exceeded.  

Similarly, while decision-makers typically do not know when an outbreak may occur, the 

optimal strategy may depend on how far away the outbreak will start. We simulated TCV 

introduction occurring exactly 10 years to 1 year before the epidemic threshold was crossed. For 

these comparisons, we assessed the burden of typhoid fever and costs of treatment and 

vaccination for the preventative and reactive vaccination scenarios over a 20-year time horizon 
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spanning from 2000 to 2020. For all other analyses, we used the same 10-year time horizon to 

match previous cost-effective analyses.  

The stochastic transmission model and economic model were implemented in R version 

3.4.0 [41]. The transmission model code is available on GitHub at 

https://github.com/mailephillips/typhoid-outbreak. 

 

Results 

The model accurately reproduced the number and age distribution of observed blood-

culture confirmed typhoid fever cases at QECH during both the fitting period (January 1996-

February 2015) and the validation period (March 2015-December 2016) (Fig S5-S6). Over the 

10-year simulation period with randomized outbreak timing in Blantyre, Malawi, we estimated a 

median of 7,019 (95% CrI: 742-12,380) cases and 63 (95% CrI: 3-517) deaths for a total of 1,389 

(95% CrI: 76-11,394) DALYs and $32,672 (95% CrI: 2,099-133,417) in treatment costs for 

typhoid fever under the strategy of no vaccination (Table S3).  

All vaccination strategies substantially reduced the expected number of typhoid fever 

cases, but did not completely prevent the outbreak from occurring. Preventive routine 

vaccination with a catch-up campaign delayed the start of the outbreak and reduced typhoid fever 

incidence substantially more than routine vaccination alone. When reactive vaccination was 

deployed within 1 to 6 months of the outbreak threshold being crossed, the epidemic was 

substantially smaller and delayed by 1-2 years (Fig S8). However, when reactive vaccination 

occurred 12 to 24 months after the outbreak was identified, it failed to prevent the peak in 

typhoid fever cases, although incidence was substantially reduced after vaccine deployment. The 
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number of typhoid fever cases, deaths, and DALYs averted by each vaccination strategy 

compared to no vaccination, as well as the associated costs, are detailed in Table S4.  

When we consider the cost-effectiveness of each strategy, our findings suggest that TCV 

introduction was optimal compared to no vaccination for WTP values greater than $100 (Table 4 

and Fig 1B). Reactive vaccination (with a 1-month delay in implementation) was preferred for a 

WTP range of $110-$430, whereas preventive routine vaccination with a catchup campaign was 

optimal for WTP values above $430. Routine vaccination including a catch-up campaign to 15 

years of age was always preferred over routine vaccination alone.  

Table 4. Expected cost-effectiveness of vaccination strategies. Expected total costs, total 
disability-adjusted life-years (DALYs), incremental costs, DALYs averted, and incremental cost-
effectiveness ratios (ICERs) are shown for each strategy in the scenarios in which (1) an 
outbreak is likely, (2) an outbreak is unlikely and the typhoid incidence is low (pre-oubreak 
incidence), and (3) an outbreak is unlikely and the typhoid incidence is high (post-outbreak 
incidence). Strategies are sorted from lowest to highest expected total costs. 

Strategy 
Expected 

Total 
Costs 

Expected 
Total 

DALYs 

Expected 
Incremental Costs 

Expected 
DALYs Averted ICER 

When an outbreak is likely 
base case 40,840 2,533 -- -- 16 
reactRC 153,858 1,421 113,018 1,112 102 
prevR 251,851 1,738 -- -- Dominated 

prevRC 262,712 1,172 108,854 249 437 
When an outbreak is unlikely (low incidence) 

base case 1,330 154 -- -- 9 
prevR 105,110 82 -- -- Dominated 

prevRC 112,190 40 110,860 114 972 
When an outbreak is unlikely (high incidence) 

base case 308,822 22,039 -- -- 14 
prevR 3,382,410 12,649 -- -- Dominated 

prevRC 3,654,473 10,102 3,345,651 11,937 280 
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Fig 1. Cost-effectiveness planes and acceptability frontiers. The cost-effectiveness planes 
(left) and cost-effectiveness acceptability frontiers (CEAFs; right) are plotted for randomized 
outbreak timing (A-B), no outbreak assuming the pre-outbreak incidence (C-D), and no outbreak 
assuming the post-outbreak incidence (E-F). In the cost-effectiveness planes, each dot represents 
the additional cost (in 2020 USD) and DALYs averted for one simulation when compared with 
the strategy of no vaccination. The bold Xs denote the expected additional cost and DALYs 
averted for one strategy with respect to the strategy of no vaccination. Strategies are indicated by 
the color of the dot or X (purple: preventive routine vaccination; green: preventive routine 
vaccination plus a catchup campaign up to 15 years; or orange: reactive routine vaccination plus 
a catchup campaign). In the CEAFs, the preferred strategy (i.e. the strategy that yielded the 
highest average net benefit) for each willingness-to-pay threshold ($0-1,000; x-axis, 2020 USD) 
is again indicated by the color of the line (black: no vaccination; and same strategy colors as 
other panels), while the proportion of samples in which that strategy yielded the highest net 
benefit is indicated by the value on the y-axis (which can be interpreted as our certainty in the 
optimal strategy).  
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In the absence of an outbreak, and assuming the lower pre-outbreak incidence from 1995-

2005, no vaccination is the preferred strategy for all WTP thresholds <$980 (Fig 1D). With the 

higher post-outbreak incidence, routine vaccination with a catch-up campaign is preferred for 

WTP values of $280 or higher (Fig. 1F). Again, routine vaccination alone is never the preferred 

strategy. The number of typhoid fever cases, deaths, and DALYs averted, as well as the costs for 

each scenario, are presented in Table S4.  

The range of WTP values for which reactive vaccination strategy was the optimal 

strategy decreased as the delay in TCV deployment increased. For a 6-month delay, reactive 

vaccination was the preferred strategy for WTP threshold between $110-330, while for a 12-

month delay, reactive vaccination was preferred at $130-200 (Fig 2). If the delay extended up to 

24 months, reactive vaccination was never preferred; preventative vaccination with a catch-up 

campaign was the optimal strategy when the WTP threshold was at least $180.  

 The optimal vaccination strategy did not vary substantially depending on how 

long before the outbreak preventive vaccination was implemented. Whether the outbreak 

occurred within 10 years or 1 year of vaccine introduction for the preventive strategies, the 

preferred strategy remained essentially the same for the different WTP values. When the delay in 

reactive vaccination was 12 months or less, no vaccination was preferred for WTP thresholds up 

to $100. Reactive vaccination was the optimal strategy for WTP values of approximately $200-

500 when the delay in reactive vaccination was 1 month, for WTP thresholds of approximately 

$200-400 for a 6-month delay, and for WTP thresholds of around $200-300 (10 years before) or 

$200 (1 year before) for a 12-month delay. Preventive routine vaccination with a catchup 

campaign was the preferred strategy for higher WTP thresholds, and for WTP thresholds >$200 

when there was 24-month delay in reactive vaccination (Fig 3).   
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Fig 2. Cost-effectiveness acceptability frontiers for randomized outbreak timing with 
varying delays in reactive vaccination. The cost-effectiveness acceptability frontiers for 
randomized outbreak timing are shown for a range of willingness-to-pay thresholds ($0-1,000; x-
axis, 2020 USD). The preferred strategy (i.e. the strategy that yielded the highest average net 
benefit) is indicated by the color of the line (black: no vaccination; purple: preventive routine 
vaccination; green: preventive routine vaccination plus a catchup campaign up to 15 years; or 
orange: reactive routine vaccination plus a catchup campaign), while the proportion of samples 
in which that strategy yielded the highest net benefit is indicated by the value on the y-axis 
(which can be interpreted as our certainty in the optimal strategy). Results are plotted for (A) a 6-
month delay in reactive vaccination after the outbreak threshold is exceeded, B) a 12-month 
delay in reactive vaccination after the outbreak threshold is exceeded, and C) a 24-month delay 
in reactive vaccination after the outbreak threshold is exceeded.  

 
 

  



 64 

Fig 3. Heatmap of optimal intervention strategy and its estimated uncertainty across a 
range of willingness to pay values for each strategy comparison and a range of deployment 
delays, and years before the outbreak. Each column in a single panel shows the preferred 
strategy (i.e. the strategy that yields the highest average net benefit) for one cost-effectiveness 
analysis comparing no vaccination (grey), preventive routine vaccination (purple), preventive 
routine vaccination with a catch-up campaign (green), and reactive vaccination with a catch-up 
campaign (orange) for delays of 1, 6, 12, or 24 months after the outbreak has been identified (x-
axis). The y-axis represents willingness-to-pay (WTP) values ranging from $0-$1000 (USD 
2020). The shading represents the probability that the preferred strategy yields the highest net 
benefit (lighter: lower probability; darker: higher probability). Results are plotted for whether 
preventive vaccination is introduced 10 years (top panel) or 1 year (bottom panel) before the 
outbreak. Note that preventive routine vaccination without a catchup campaign is never a 
preferred strategy, and as a result does not appear in the plots. 

 

The degree of uncertainty in the preferred strategy varied depending on the WTP 

threshold, the length of delay in the deployment of reactive vaccination, and (to a lesser extent) 

how many years before the outbreak preventive vaccination was introduced. The greatest 
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uncertainty in the preferred strategy occurred for WTP values of $100-$200. For WTP values of 

$0-$100, the probability that no vaccination would yield the highest net benefit was high 

(median probabilities of 0.60-0.95). The probability that reactive vaccination would yield the 

highest net benefit was generally lower, but was higher for shorter delays in deployment (median 

probabilities of 0.28-0.40 for a 1-month delay compared to 0.23-0.25 for a 12-month delay at 

WTP values between $100-500). The probability that preventive routine vaccination with a 

catch-up campaign would yield the highest net benefit increased as the delay in reactive 

vaccination deployment and WTP threshold increased (median probabilities of 0.27-0.64 for 

WTP values between $200-1,000).  

For all of the economic evaluations, uncertainty around the probability of death among 

inpatients was estimated to contribute most to uncertainty in the preferred strategy, followed by 

the probability of hospitalization, percentage of deaths occurring among hospitalized patients, 

and routine vaccine delivery costs (Figs S9-S11).  

Discussion 

The analyses in this study depend on the information available to decision-makers at the 

time of decision-making. In a country where prevalence of AMR is low and a prolonged 

outbreak of typhoid fever has not yet occurred, but where surrounding regions are experiencing 

outbreaks of drug-resistant typhoid fever, it is likely that AMR will spread, triggering an 

outbreak in that country as well. Our findings indicate that if an outbreak of typhoid fever is 

likely, TCV routine vaccination with a catch-up campaign is preferred over no vaccination above 

a WTP threshold of $100. At WTP thresholds of $110 to $430, it is generally more cost-effective 

to wait to vaccinate until the outbreak has started, as long as the delay in deployment is short. As 

the WTP threshold increases, it is generally better (in terms of cost-effectiveness) to preventively 
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introduce routine vaccination with a catch-up campaign. These findings hold true regardless of 

when the outbreak occurs, provided it occurs within 10 years. However, if no outbreak occurs 

and incidence is low, TCV introduction is unlikely to be cost-effective for WTP thresholds 

<$980. At the higher post-vaccination incidence currently estimated for Blantyre, routine 

vaccination with a catch-up campaign is the preferred strategy for WTP thresholds of $280 and 

above. Routine vaccination alone is never a preferred strategy.  

As TCV stockpiles do not yet exist, there is uncertainty in how long it will take to 

mobilize vaccine introduction once an outbreak is identified. The cost-effectiveness of reactive 

vaccination largely depends on the length of delay in vaccine deployment. We found that the 

range of WTP thresholds for which reactive vaccination is optimal decreases as the length of 

time for vaccine deployment increases. Decision-makers should try to determine how quickly 

they would be able to mobilize resources when considering reactive vaccination strategies and 

seek to minimize delays in vaccine deployment.  

There is currently no threshold for defining and identifying outbreaks of typhoid fever 

across different settings. In our analysis, we found that an increase in the monthly number of 

blood-culture-confirmed typhoid fever cases of more than 15 standard deviations above the mean 

accurately identified the start of the outbreak in Blantyre, Malawi. It is not yet clear whether this 

threshold may be applicable to other settings. However, the results of our analysis are unlikely to 

depend on the outbreak identification threshold used. While lower thresholds may falsely 

identify an outbreak before it occurs, a false positive in this case may not be as problematic as it 

can be with other diseases. If the outbreak is falsely identified too early, “reactively” vaccinating 

in response to the false outbreak is comparable to a preventative vaccination strategy, which in 

our analysis was still cost-effective for WTP thresholds above $100 provided an outbreak is 
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likely to occur within the next 10 years. These findings are encouraging as typhoid resources and 

surveillances systems are not always optimal in areas where typhoid is endemic. 

For scenarios in which an outbreak does not occur, our results are consistent with 

previous cost-effectiveness analyses. Before the outbreak in Blantyre, we estimate that typhoid 

fever incidence was approximately 26.1 cases (95% CrI: 14.0-45.7 cases) per 100,000 person-

years; we found that no vaccination is the preferred strategy for WTP thresholds up to $970. In 

general, previous analyses have found that TCV introduction is unlikely to be cost-effective 

when incidence is less than 30-50 cases per 100,000 person-years [26, 42, 43]. Similarly, we 

estimate that the post-outbreak incidence in Blantyre was approximately 224 typhoid fever cases 

(95% CrI: 169-368 cases) per 100,000 person-years, and routine vaccination with a catch-up 

campaign was preferred at WTP thresholds of $300 and above, similar to results of a previous 

economic analysis for Malawi [26].  

There is considerable uncertainty surrounding the incidence and burden of typhoid fever, 

which leads to uncertainty in the preferred vaccination strategy. Nevertheless, some of the 

uncertainty has been reduced in our analysis compared to previous cost-effectiveness analyses 

for Malawi. In Bilcke et al [26], lack of data surrounding the probability of hospitalization, the 

case fatality rate among inpatients, vaccine delivery costs, and typhoid incidence contributed 

substantially to uncertainty in the results. Since then, additional data have been collected in 

Malawi.  While the parameters contributing most to uncertainty in our analysis included 

parameters that were and were not updated with new data, the overall expected value of 

information for the parameters contributing the most to uncertainty was substantially lower 

compared to the previous cost-effectiveness analyses.  
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There are several important limitations to our analysis. We assume TCV reduces the 

burden of typhoid fever by reducing the number of infections and lowering transmission. 

However, we lack direct data on vaccination impact in this population. We used results from the 

recent TyVAC trial in Malawi to update our estimates of vaccine efficacy and duration of 

protection, but observations of vaccine impact following widespread implementation are not yet 

available. This analysis also uses parameters and data based on an outbreak in one location. 

Since the timing of a typhoid fever outbreak is unknown, it is difficult to plan for control. The 

peak and length of outbreaks, as well as treatment costs and severity of disease, may differ in 

other contexts. It can also be difficult to collect site-specific data, as typhoid fever surveillance is 

limited in many countries. We made every effort to incorporate additional uncertainty in the 

model parameters (which were not only Malawi-specific) and the outbreak itself (using a 

stochastic model that varied the peak and length of the outbreak). The framework we present 

may be generalizable to other settings where the introduction of drug-resistant strains may lead 

to prolonged outbreaks of typhoid fever.  

Research comparing typhoid vaccination strategies in epidemic settings is limited. With 

recent WHO recommendations for TCV use and pilot studies assessing efficacy and impact 

underway, governments are looking to prioritize the allocation of resources to prevent typhoid 

fever. With recent typhoid epidemics across Africa and high burdens in endemic countries, 

studies are needed to compare prevention strategies across different settings, including the use of 

TCV in response to outbreaks. Typhoid control can be expensive; cost-effectiveness analyses are 

needed to inform decisions for the optimal allocation of funding. Results from this research can 

inform policy- and decision-making regarding typhoid prevention and control strategies. 
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List of tables and figures 

Table 1. Dynamic model input parameters 
 
Table 2. Strategy comparisons for deploying typhoid conjugate vaccines to prevent or 
respond to an outbreak. Each of the scenarios examined compares four strategies: a base case 
(no vaccination), a preventive strategy with routine vaccination at 9 months of age (“routine”), a 
preventive strategy with routine vaccination and a catch-up campaign up to 15 years of age 
(“routine + catch-up”), and a reactive vaccination strategy with routine vaccination and a catch-
up campaign. 
 
Table 3. Input parameters for cost-effectiveness analysis. 
 
Table 4. Expected cost-effectiveness of vaccination strategies. Expected total costs, total 
disability-adjusted life-years (DALYs), incremental costs, DALYs averted, and incremental cost-
effectiveness ratios (ICERs) are shown for each strategy in the scenarios in which (1) an 
outbreak is likely, (2) an outbreak is unlikely and the typhoid incidence is low (pre-oubreak 
incidence), and (3) an outbreak is unlikely and the typhoid incidence is high (post-outbreak 
incidence). Note that preventative routine vaccination alone is dominated in every scenario, and 
as a result is not shown. 
 
Fig 1. Cost-effectiveness planes and acceptability frontiers. The cost-effectiveness planes 
(left) and cost-effectiveness acceptability frontiers (CEAFs; right) are plotted for randomized 
outbreak timing (A-B), no outbreak assuming the pre-outbreak incidence (C-D), and no outbreak 
assuming the post-outbreak incidence (E-F). In the cost-effectiveness planes, each dot represents 
the additional cost (in 2020 USD) and DALYs averted for one simulation when compared with 
the strategy of no vaccination. The bold Xs denote the expected additional cost and DALYs 
averted for one strategy with respect to the strategy of no vaccination. Strategies are indicated by 
the color of the dot or X (purple: preventive routine vaccination; green: preventive routine 
vaccination plus a catchup campaign up to 15 years; or orange: reactive routine vaccination plus 
a catchup campaign). In the CEAFs, the preferred strategy (i.e. the strategy that yielded the 
highest average net benefit) for each willingness-to-pay threshold ($0-1,000; x-axis, 2020 USD) 
is again indicated by the color of the line (black: no vaccination; and same strategy colors as 
other panels), while the proportion of samples in which that strategy yielded the highest net 
benefit is indicated by the value on the y-axis (which can be interpreted as our certainty in the 
optimal strategy).  
 
Fig 2. Cost-effectiveness acceptability frontiers for randomized outbreak timing with 
varying delays in reactive vaccination. The cost-effectiveness acceptability frontiers for 
randomized outbreak timing are shown for a range of willingness-to-pay thresholds ($0-1,000; x-
axis, 2020 USD). The preferred strategy (i.e. the strategy that yielded the highest average net 
benefit) is indicated by the color of the line (black: no vaccination; purple: preventive routine 
vaccination; green: preventive routine vaccination plus a catchup campaign up to 15 years; or 
orange: reactive routine vaccination plus a catchup campaign), while the proportion of samples 
in which that strategy yielded the highest net benefit is indicated by the value on the y-axis 
(which can be interpreted as our certainty in the optimal strategy). Results are plotted for (A) a 6-
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month delay in reactive vaccination after the outbreak threshold is exceeded, B) a 12-month 
delay in reactive vaccination after the outbreak threshold is exceeded, and C) a 24-month delay 
in reactive vaccination after the outbreak threshold is exceeded.  
 
Fig 3. Heatmap of optimal intervention strategy and its estimated uncertainty across a 
range of willingness to pay values for each strategy comparison and a range of deployment 
delays, and years before the outbreak. Each column in a single panel shows the preferred 
strategy (i.e. the strategy that yields the highest average net benefit) for one cost-effectiveness 
analysis comparing no vaccination (grey), preventive routine vaccination (purple), preventive 
routine vaccination with a catch-up campaign (green), and reactive vaccination with a catch-up 
campaign (orange) for delays of 1, 6, 12, or 24 months after the outbreak has been identified (x-
axis). The y-axis represents willingness-to-pay (WTP) values ranging from $0-$1000 (USD 
2020). The shading represents the probability that the preferred strategy yields the highest net 
benefit (lighter: lower probability; darker: higher probability). Results are plotted for whether 
preventive vaccination is introduced 10 years (top panel) or 1 year (bottom panel) before the 
outbreak. Note that preventive routine vaccination without a catchup campaign is never a 
preferred strategy, and as a result does not appear in the plots. 
 
Table S1. Options for disability weights assigned to different healthcare use groups. 
Disability weights presented for the two options are for infectious disease, acute, and for the 
specified level of typhoid episode (mild, moderate, or severe).  
 
Table S2. Input parameters for transmission model and cost-effectiveness analysis, with 
distributions. 
 
Table S3. Predicted disease and economic burden in the absence of vaccination. The median 
(95% credible interval) estimates for predicted cases, deaths, DALYs, and treatment costs are 
shown for each non-vaccination strategy. 
 
Table S4. Predicted vaccine impact with randomized outbreak timing, fixed outbreak 
timing, pre-outbreak incidence and post-outbreak incidence. The median (95% credible 
interval) estimates for averted cases, deaths, DALYs, treatment costs, costs of vaccinations and 
net costs are shown for each vaccination strategy compared to no vaccination for randomized 
outbreak timing (“randomized”), fixed outbreak timing (“fixed”), pre-outbreak incidence (“pre”), 
and post-outbreak incidence (“post”). Preventive routine vaccination strategies include routine 
vaccination at nine months of age in year 0 with or without a catchup campaign up to 15 years of 
age. Reactive routine vaccination strategies (with a catchup campaign) include delays of 1, 6, 12, 
and 24 months to deployment (“1m”, “6m”, “12m”, “24m”, respectively). In the fixed outbreak 
timing scenario, preventive strategy results are shown for 10, 5, 2, and 1 year(s) (“10y”, “5y”, 
“2y”, “1y”) before the outbreak starts. Results for the randomized and fixed outbreak timing 
strategies are shown using an outbreak identification definition of 15 standard deviations above 
the monthly mean number of typhoid cases. R=routine vaccination; RC=routine vaccination plus 
a catchup campaign. 
 
Fig S1. Ordinary differential equations and corresponding dynamic compartmental model 
for typhoid disease dynamics. Black compartments and text indicate the scenario in which there 
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is no vaccination, and blue compartments and text indicate the added scenario in which there is 
vaccination. Note that this model is also age-structured, though not shown.  
 
Fig S2. Sensitivity and specificity of outbreak identification threshold definitions. The 
sensitivity (purple) and specificity (green) are shown for each outbreak identification definition 
(x-axis; ranging from 6-16 standard deviations above the mean monthly reported typhoid fever 
cases).  
 
Fig S3. Estimated specificity of outbreak identification thresholds 6 to 16 standard 
deviations above the monthly mean reported typhoid fever cases. The median outbreak 
identification date (dot) and 95% credible interval (line) is shown for outbreak identification 
thresholds of 6-16 standard deviations above the monthly mean number of typhoid cases for 
1,000 simulations of the dynamic model. The black dashed line represents the “true” start date of 
the outbreak, and the shaded grey area represents 0-18 months after the outbreak started 
(sensitivity window).  
 
Fig S4. Observed and fitted proportion of typhoid infections that are resistant to 
antimicrobial treatment in Blantyre, Malawi from 1995-2025. Observed data points of the 
yearly proportion of antimicrobial resistant typhoid fever infections over time are shown in black 
dots, while the fitted estimates from the beta regression model are shown in the dashed blue line 
and the prediction intervals are shown in the turquoise dotted lines.  
 
Fig S5. Predicted and observed typhoid fever infections in the absence of vaccination. The 
1,000 stochastic realizations of weekly typhoid infections individuals in the absence of 
vaccination from the dynamic transmission model are show in purple. The observed (reported) 
typhoid incidence used to fit the dynamic model is represented by the bold black line, while the 
observed incidence collected after model fitting is represented by the dashed red line. 
 
Fig S6. Observed versus fitted age distribution of reported typhoid cases. The proportion of 
observed cases in each age group are denoted by light blue bars, while the fitted age distribution 
is shown in darker blue.  
 
Fig S7. Predicted typhoid fever cases per 100,000 individuals in preventive vaccination 
scenarios. The 1,000 stochastic realizations of weekly typhoid cases per 100,000 people are 
shown in purple, with the median of all simulations shown in orange for each preventive 
vaccination strategy. Eight situations are shown, representing each preventive routine 
vaccination timing strategy (10, 5, 2, and 1 year(s) before; routine vaccination at 9 months of 
age) with and without a catchup campaign up to 15 years of age. The median number of typhoid 
infections per 100,000 individuals in the absence of vaccination from 1,000 realizations is shown 
in black, and the date of vaccination deployment for each situation is denoted by the vertical 
dashed green line. 
 
Fig S8. Predicted typhoid infections per 100,000 individuals in reactive vaccination 
scenarios. The 1,000 simulated predictions for weekly typhoid infections per 100,000 people are 
shown in purple, with the median of all stochastic realizations shown in orange for each reactive 
vaccination strategy. Eight situations are shown, representing each of the outbreak identification 
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thresholds of 12 and15 standard deviations above the monthly mean (SD12 and SD15; columns) 
and the four different delays in timing to implement vaccination once the outbreak is identified 
(1, 6, 12, and 24 months; rows). The median typhoid infections per 100,000 individuals in the 
absence of vaccination from 1,000 realizations is shown in black, and the median date of 
vaccination deployment for each situation is denoted by the vertical dashed green line. 
 
Fig S9. Expected value of partially perfect information for differing delays in vaccination 
deployment for reactive strategies with randomized outbreak timing. The expected value of 
partial perfect information (EVPPI) for each parameter is shown for a range of willingness-to-
pay values. Results are shown for 5,000 parameter samples and 2020 $USD. Each panel shown 
represents the EVPPI for one cost-effectiveness analysis comparing 4 strategies: no vaccination 
(base case), preventive routine vaccination at 9 months, preventive routine vaccination with a 
catchup campaign up to 15 years, and reactive routine vaccination with a catchup campaign. 
Each panel shows the results for a cost-effectiveness analyses with the specified delay in months 
for the reactive strategy (1-, 6-, 12-, or 24-month delays). 
 
Fig S10. Expected value of partially perfect information for pre-outbreak (non-outbreak) 
incidence. The expected value of partial perfect information (EVPPI) for each parameter is 
shown for a range of willingness-to-pay values. Results are shown for 5,000 parameter samples 
and 2020 $USD.  
 
Fig S11. Expected value of partially perfect information for post-outbreak (non-outbreak) 
incidence. The expected value of partial perfect information (EVPPI) for each parameter is 
shown for a range of willingness-to-pay values. Results are shown for 5,000 parameter samples 
and 2020 $USD.  
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Transmission-dynamic model 

S1.1.1. Description of the dynamic model. We simulated the conditions under which an outbreak 

may occur using an existing dynamic transmission model. Briefly, in this model, individuals are 

born completely susceptible to typhoid, and they move through susceptible, infectious, chronic 

carrier, and immune compartments as specified through a system of differential equations (Fig 

S1). Individuals in the susceptible population (S1) become infected at rate C. Primary infections 

(Is) may be symptomatic and remain infectious for length of time å‘, after which they experience 

one of three options: a proportion die from typhoid (»), a fraction «$ become chronic carriers 

(∞), and the remaining 1 − «$ − » recover and are temporarily immune (ê). Since age (a) is a 

factor in the development of the chronic carrier state[1], «$ is age-dependent. Immune 

individuals lose immunity and become susceptible to reinfection (ë∂) at rate …. If an individual 

becomes re-infected, we assume the infection is subclinical (’÷). Subclinically infected people 

can become chronic carriers (at rate ≈«$) or recover (at rate ≈(1 − «$)). The same process of 

reinfection can occur. In all compartments, individuals die from non-typhoid causes at rate ƒ$.  

Symptomatic and subclinically infected individuals and chronic carriers all contribute to 

the force of infection, although chronic carriers contribute at a reduced rate (ä). The force of 

infection C$ is age-dependent (where a = 0 to <9 months; 9 months to <5 years; five-year-

interval age groups from 5 to <80 years; and 80 years and older) and is the product of the age-

dependent transmission rate (◊$) and the sum of all infectious states, divided by the total 

population N: C$ = 	 ÿ6Ÿ6 ∑ (’t,$ + ’÷,$ + ä∞$)All ages . 
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Fig S1. Ordinary differential equations and corresponding dynamic compartmental model 
for typhoid disease dynamics. Black compartments and text indicate the scenario in which there 
is no vaccination, and the blue compartments and text indicate the added scenarios in which 
vaccination is introduced. Note that this model is also age-structured, though not shown. 
 

Observed symptomatic cases are a fraction stsusv of the true number of cases (S1.1.4 

Text) [2]. The culture-confirmed cases are adjusted to account for the sensitivity of the blood 

culture test (st), the probability of receiving a blood culture test (su), and the probability of 

healthcare seeking (sv), which occurs sometime during the period å‘ of infection.  

To adjust for the outbreak and vaccination scenarios, we simulated the weekly number of 

symptomatic cases for the 18 age groups. We modelled the outbreak by allowing for an increase 

in multidrug-resistant typhoid by increasing the duration of infectiousness. We estimated the date 

it increased (April 10, 2011) and the date it ended (November 23, 2014). The magnitude of the 

increase m was estimated to be 3.1954.  

To stay consistent with recent estimates of the contribution of chronic carriers to 

transmission, we applied a prior distribution of •|¿L(6.34,19.4) on the range of values for r in 

the model-fitting process [3]. With these changes, we re-fit the dynamic model using the same 
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process to the same Malawi outbreak data to update the remaining parameters. This dynamic 

model and its model-fitting process are described in more detail elsewhere [4]. 

 

S1.1.2. Modeling vaccination.  

S1.1.2.1. Vaccination compartments. To simulate vaccination and measure the overall impact of 

each strategy (with vaccine coverage k), we added two vaccination compartments to the dynamic 

model (Fig S1, in blue). One compartment (V1) represents individuals who have never been 

infected and hence may be protected from symptomatic disease if they successfully mount a 

protective immunological response to the vaccine. The second compartment (V2) represents those 

who were previously infected and would only be protected against reinfection (and hence 

transmission), since they already have immunity to clinical disease. In both cases, vaccine-

induced immunity eventually wanes at rate …› (S1.1.2.2).  

S1.1.2.2. Vaccine efficacy and waning of vaccine-induced immunity 

Typbar TCV (Bharat Biotech International) is the first WHO-pre-qualified typhoid conjugate 

vaccine (TCV). This TCV was licensed based on improved immunogenicity data (compared to 

previous typhoid fever vaccines) and efficacy data from a human challenge study [5-7]. For this 

analysis, we used results up to 24 months of follow-up from the phase 3, double-blind, 

randomized active-controlled clinical trial of single-dose TCV in Blantyre, Malawi [8, 9]. These 

are the first vaccine efficacy and safety results from Africa. 

The TCV trial in Blantyre provided observed values for vaccine efficacy at 12 months, 18 

months, and 24 months of follow-up. Due to the waning efficacy over time, we assumed that the 

mean vaccine efficacy ƒ at time t followed an exponential decay pattern  

ƒ(¿) =  ~ ∗ |}(fifl∗p) 
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and that the observed response variable vaccine efficacy at time t ( (t)) was linked to ƒ with a 

normally distributed sampling error with standard deviation ‡: 

 (¿)~≤(ƒ(¿), ‡). 

We used an informative prior on duration of vaccine-induced immunity, based on data from 4 

years of follow-up for the Vi-rEPA TCV: åfifl ~·LááL(1.38,0.048) [3]. We used a 

noninformative uniform prior on the standard deviation of the normally distributed sampling 

error of vaccine efficacy at time t. These distributions resulted in an estimated initial TCV 

efficacy of 0.89 (95% CrI: 0.78-0.98) and an estimated duration of vaccine-induced immunity of 

18.87 (95% CrI: 8.40-83.33) years. 

 

S1.1.3. Outbreak threshold definitions. We explored a range of thresholds to identify the start of 

the outbreak. For the main analysis, we varied the number of standard deviations (6-16) above 

the monthly mean reported typhoid fever cases in the previous 10 years to define the outbreak 

start. We defined the sensitivity of each threshold as the percentage of simulations in which the 

outbreak was identified within 18 months of April 2011, while the specificity was defined as the 

percentage of simulations in which the outbreak threshold was not exceeded prior to April 2011. 

As the standard deviation used to define the outbreak threshold increased, the specificity also 

increased (Fig S2).  
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Fig S2. Sensitivity and specificity of outbreak identification threshold definitions. The 
sensitivity (purple) and specificity (green) are shown for each outbreak identification definition 
(x-axis; ranging from 6-16 standard deviations above the mean monthly reported typhoid fever 
cases).  

 

Across the different outbreak identification thresholds, the sensitivity remained high 

(76.3-100.0%) for the range of definitions we explored, while the specificity followed a sigmoid 

pattern (Fig S2). At a threshold of 16 standard deviations above the monthly mean number 

reported cases, the outbreak was identified within one and a half years of the pre-specified start 

date with a specificity of 96.5% and a sensitivity of 76.3% (out of 1,000 stochastic iterations); a 

threshold of 15 standard deviations identified the outbreak with a specificity 95.5% and 

sensitivity of 91.9%; while a threshold of 12 standard deviations identified it with a specificity of 

71.6% and sensitivity of 100%. Lower thresholds exhibited poor specificity and incorrectly 

identified the outbreak as occurring before April 2011 more than 50% of the time (Fig S3). 
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Fig S3. Estimated specificity of outbreak identification thresholds 6 to 16 standard 
deviations above the monthly mean reported typhoid fever cases. The median outbreak 
identification date (dot) and 95% credible interval (line) is shown for outbreak identification 
thresholds of 6-16 standard deviations above the monthly mean number of typhoid cases for 
1,000 simulations of the dynamic model. The black dashed line represents the “true” start date of 
the outbreak, and the shaded grey area represents 0-18 months after the outbreak started 
(sensitivity window).  

 

Apart from the 6-16 standard deviations above the mean monthly typhoid infections 

reported in the main analysis, we also explored other outbreak thresholds. We defined outbreaks 

by raw counts and incidence rates, but these definitions, while reliable in identifying the 

outbreak, would be less applicable across countries because of the variation in incidence and 

population denominators for passive hospital-based surveillance across settings. We also tried to 

account for variation in typhoid fever incidence due to seasonality by allowing each month of the 

year to have a standard deviation threshold above the mean; however, while this method 
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accounted for seasonality, the data were sparse and oftentimes the outbreak was never identified. 

We did not want to include more data (farther back than 10 years) because many typhoid-

endemic countries do not have long-established typhoid fever surveillance platforms.     

 

S1.1.4. Underreporting adjustment. To adjust for underreporting of observed typhoid cases, we 

used estimates from an analysis that adjusted for underreporting in Malawi, Nepal, and 

Bangladesh based on data from the STRATAA study [2]. We based our estimate of the 

adjustment factor for Malawi on the posterior distribution obtained by adjusting for blood culture 

sensitivity, the probability of receiving a blood culture diagnostic test, and healthcare seeking. In 

Malawi, this adjustment factor was estimated to be 7.7 (95% CrI: 6.0-12.4), i.e. for every blood-

culture confirmed case of typhoid fever presenting to healthcare facilities in Blantyre, there are 

an additional 6.7 undiagnosed cases of symptomatic typhoid fever occurring in the community. 

This underreporting adjustment was applied after model-fitting, which was fitted to the reported 

(unadjusted) number of cases. 

 

S1.1.5. Chronic Carriers. We explored the contribution of chronic carriers to transmission during 

the model-fitting process. In previous model-fitting, the parameter for the relative infectiousness 

of chronic carriers was unidentifiable. There is a tradeoff between this parameter and the 

reproductive number R0, which influences the prevalence of chronic carriers in the population. 

To explore this tradeoff, we fixed the relative infectiousness of chronic carriers r at different 

values (0.01, 0.10, 0.25, and 0.50) and refit the remaining parameters. We also tried a variation 

of model-fitting where we initialized the model with no chronic carriers.  
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The overall model fit (as measured by Akaike Information Criterion) tended to be poorer 

as r got farther away from the 0.1-0.5 range. This range is consistent with recent estimates of r 

(based on fitting to the observed overall and indirect effectiveness of vaccination with Vi-

polysaccharide vaccine in a cluster-randomized trial in Kolkata [10, 11]) and what was used in 

the final model. To stay consistent with recent estimates of the contribution of chronic carriers to 

transmission, we applied a prior distribution of §|¿L(6.34,19.4) on the range of values for r in 

the model-fitting process [3]. The mean of this prior distribution (0.25) is also within the range of 

our findings in the sensitivity analysis of the contribution of chronic carriers to transmission.   

 

S1.2. Input parameters for economic model 

S1.2.1. Cost conversion and inflation 

All costs were converted to 2020 USD. First, they were converted from their original 

amount to USD in the same reported year using WHO exchange rates [12]. Second, they were 

inflated to the year 2020 using the consumer price index [13].  

 

S1.2.2. Disability weights 

We used mild, moderate, and severe disability weights for acute infectious diseases from 

the 2010 Global Burden of Disease study to reflect the severity of typhoid fever compared to 

other diseases [14, 15]. We chose to use the 2010 study instead of the newer estimates due to the 

fact that newer disability weights are based on updated data from upper-income countries that do 

not reflect the populations in which typhoid fever is endemic. Disability weights for mild 

episodes were characterized as having “low fever and mild discomfort, but no difficulty with 

daily activities,” estimated to be 0.005 ± 0.002 [15]; for moderate episodes they were 
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characterized as having “a fever and aches and feels weak, which causes some difficulty with 

daily activities,” estimated to be 0.053 ± 0.012 [15]; and for severe episodes they were 

characterized as having “a high fever and pain, and feels very weak, which causes great 

difficulty with daily activities,” estimated to be 0.210 ± 0.040 [15]. These mild, moderate, and 

severe categorizations corresponded to inpatient, outpatient, and non-medical care episodes of 

typhoid fever in two different ways, resulting in different average disability weights, each with 

equal probability of occurring (Table S1). 

We assumed the duration of illness increases with the need for medical care. In this case, 

we used the distribution of duration of illness for inpatients and outpatients from a previous 

random effects model by Bilcke et al. that integrated multiple estimates [3]. Similar to the 

previous study, we also assumed that individuals with typhoid who did not seek medical care 

recovered from illness twice as fast as those who did.  

Table S1. Options for disability weights assigned to different healthcare use groups. 
Disability weights presented for the two options are for infectious disease, acute, and for the 
specified level of typhoid episode (mild, moderate, or severe).  
 Option 1 Option 2 
Inpatient Severe Severe 
Outpatient Moderate Severe  
Patient not seeking medical care Mild  Moderate  
Average disability weight 0.04 0.15 

 

S1.2.3. Probability of seeking professional medical care  

To calculate the probability of seeking medical care for typhoid fever, we again used 

estimates from the STRATAA study [2]. As part of STRATAA, healthcare utilization surveys 

were conducted in the Ndirande township of Blantyre to assess the probability of seeking care 

for fever [16]. Many methods assume that reported healthcare-seeking for a fever is the same as 

that for typhoid fever; however, this is not necessarily the case. Individuals with typhoid fever 
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may be more or less likely to seek healthcare. To correct for this difference, we measured the 

probability of seeking care for a fever adjusted for a specified typhoid risk factor to estimate the 

probability of seeking care for typhoid fever. In Malawi, this risk factor was soap available after 

defecation. After adjusting for this risk factor, the probability of seeking professional medical 

care in Malawi was approximately 0.71 (95% CrI: 0.64-0.77) [2]. 

 

S1.2.4. Probability of hospitalization 

During the STRATAA study, we observed 8 hospitalizations among 105 blood-culture-

confirmed typhoid infections. However, since the focus of this analysis is more broadly on 

Malawi as an example of a multi-year outbreak of typhoid fever associated with the emergence 

of AMR, we used the STRATAA data from Blantyre, Malawi to update a previous estimate of 

the probability of hospitalization among Gavi-eligible countries based on a meta-analysis by 

Abboud et al [3, 17].  

We modeled probability of hospitalization using a binomial distribution for the likelihood 

contribution, where yhosp was the observed number of “successes”, phosp was the probability of 

hospitalization among culture-confirmed typhoid infections, and nhosp was the number of “trials”,  

„õΩo†~§‰"íá‰L¡(óõΩo†, "õΩo†). 

In the previous analysis, the denominator (blood-culture-confirmed infections) was 

adjusted for differences in surveillance method according to the probability of seeking 

professional medical care. Using the same model for adjustment as Section 1.2.5, our 

denominator for the total number of typhoid fever cases in the community could be as large as 

429 (median estimate after adjusting for the probability of receiving a blood culture test and the 

probability of seeking healthcare). However, it is also possible that individuals who do not seek 
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care are less severe and unlikely to be hospitalized. Hence, we allowed the denominator "õΩo† to 

vary between 105 and 429 by giving it a discrete uniform prior distribution: 

"õΩo†~Ü"‰Âíäá(105,429). 

The previous meta-analysis estimated the probability of hospitalization to be 0.04 (95% 

prediction interval (PI): 0.00-0.25). We incorporated this estimate as a prior distribution on the 

probability of hospitalization using an inverse logit of a normal distribution with mean equal to 

the common estimate from the Abboud et al meta-analysis (ƒõΩo† = −3.25 on the logit scale), 

and standard error equal to the standard error based on the prediction interval around the 

common estimate (‡õΩo† = 1.20 on the logit scale) [17]: 

¡íç‰¿âóõΩo†ã~≤âƒõΩo†, ‡õΩo†ã. 

Combining the likelihood of the data with the probability of the prior distribution resulted in an 

estimated probability of hospitalization of 0.04 (95% PI: 0.01-0.11).  

   

S1.2.5. Probability of death if patients are admitted to hospital for typhoid infection 

In STRATAA, we observed 1 death among the 8 individuals hospitalized for typhoid 

fever in Malawi, and 1 death occurred in an individual who was not hospitalized. Similar to the 

probability of hospitalization, we combined the data with prior information from a previous 

meta-analysis to estimate the case fatality rate (CFR) among inpatients admitted for typhoid 

fever. We again modeled this estimate using a binomial distribution for the likelihood 

contribution, where yIP.CFR=1 was the observed number of “successes”, pIP.CFR was the 

probability of death among inpatients, and nIP.CFR=8 was the number of “trials”,  

„ÊÁ.Õñù~§‰"íá‰L¡(óÊÁ.Õñù, "ÊÁ.Õñù). 
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In this case, we wanted to update our prior to include not only the meta-analysis by 

Pieters et al [18] used in the previous analysis by Bilcke et al [3], but to also include estimates 

from a more recent meta-analysis that had been carried out for inpatient CFR estimates by 

Crump et al [19]. The original inpatient CFR from Pieters et al was estimated to be 0.04 (95% PI: 

0.01-0.20) based on 21 studies. Crump et al’s new meta-analysis had a lower pooled inpatient 

CFR estimate of 0.02 (95% PI: 0.01-0.03) overall (109 studies), or 0.05 (95% PI: 0.03-0.09) 

for studies based in Africa[19]. To supplement the meta-analysis by Pieters et al, we added 

studies from Crump et al’s meta-analysis that had the same inclusion criteria (no population 

subgroups, hospital-based studies only). This exclusion process identified 26 additional studies 

from Crump et al, 22 of which we were able to locate. Since multi-year typhoid outbreaks are 

primarily occurring in sub-Saharan Africa, we further limited the studies to only include those in 

sub-Saharan Africa. With this additional restriction, we included 12 additional studies and the 

estimated inpatient CFR was 0.07 (95% PI: 0.01-0.38).  

We incorporated the updated estimate as a prior distribution using an inverse logit of a 

normal distribution with mean equal to the common estimate from the updated random-effects 

meta-analysis in sub-Saharan Africa (ƒÊÁ.Õñù = −2.52), and standard error equal to the standard 

error based on the prediction interval around the common estimate (‡ÊÁ.Õñù = 1.04; both on the 

logit scale): 

¡íç‰¿(óÊÁ.Õñù)~≤(ƒÊÁ.Õñù, ‡ÊÁ.Õñù). 

Combining the likelihood of the data with the probability of the prior distribution resulted in a 

final estimated inpatient CFR of 0.09 (95% PI: 0.02-0.28). 

 

S1.2.6. Time-varying proportion of typhoid infections that are resistant to antimicrobial 
treatment 



 90 

 
Since the recent typhoid outbreaks are thought to be caused by antimicrobial resistant 

(AMR) strains, the proportion of typhoid infections resistant to antimicrobial treatment is 

assumed to be time-varying. A recent study from Feasey et al documented the annual proportion 

of AMR infections at Queen Elizabeth Central Hospital in Blantyre from 1998-2014 [20]. We 

supplemented these data points with estimates from Blantyre in the community-based 

STRATAA Programme in 2017-2018. With change point analysis, we identified that the AMR 

increase began in 2010, consistent with when we estimated the outbreak to begin using our 

transmission model. We fit a beta regression model with the logit-transformed proportion of 

AMR infections as the outcome and third-degree polynomial terms of time (year) as the 

independent variables. The beta regression model ensured that the proportions of AMR stayed in 

the interval (0,1). We compared commonly used links for the outcome variable (identity, log, 

log-log, and logit) and differing degrees of polynomial terms for time and chose the model with 

the lowest Akaike Information Criteria (AIC) value. This model provided time-varying estimates 

with prediction intervals for 1995-2018. We assumed that after 2018, the proportion AMR stayed 

the same; we doubled the standard deviations for the prediction intervals to allow for additional 

uncertainty in our future extrapolation (Fig S4). 
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Fig S4. Observed and fitted proportion of typhoid infections that are resistant to 
antimicrobial treatment in Blantyre, Malawi from 1995-2025. Observed data points of the 
yearly proportion of antimicrobial resistant typhoid fever infections over time are shown in black 
dots, while the fitted estimates from the beta regression model are shown in the dashed blue line 
and the prediction intervals are shown in the turquoise dotted lines.  

 
 
S1.2.9. All other parameters 

All other parameters not mentioned above that were used in the cost-effectiveness 

analysis (Table 3) have been described in detail elsewhere [3].  

Table S2. Input parameters for transmission model and cost-effectiveness analysis, with 
distributions. 

Characteristic Uncertainty distribution Page location 
Typhoid incidence and age distribution  

Annual number of 
symptomatic typhoid 
fever cases per 100,000 
people (without 
vaccination) 

Estimated from dynamic 
transmission model 

Based on output from 
transmission dynamic model fit to 
incidence of typhoid  

Average age of patients 
with typhoid infection 
(without vaccination) 
(years) 

Estimated from dynamic 
transmission model 
 

Based on output from 
transmission dynamic model fit to 
incidence of typhoid 

Typhoid mortality  
Probability of death if 
patients are admitted to 
hospital for typhoid 
infection 

Binomial likelihood (1 success, 8 
trials), inverse-logit-normal prior 
(mean=-2.52; standard 
deviation=1.04) 

Page 11 

Proportion of deaths from 
typhoid infection 

Uniform from 0.25 to 1 [3] 
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occurring in patients not 
hospitalized  
Average age at death 
from typhoid infection 

Estimated from dynamic 
transmission model 
 

Assuming age distribution of 
deaths is the same as the age 
distribution of patients with 
typhoid 

Antimicrobial resistance  
Proportion of patients 
with typhoid infection 
with an AMR strain 

Change point analysis; beta 
regression 

[16, 20] 

Burden of AMR cases 
relative to antimicrobial-
sensitive cases 

Uniform from 1 to 3 [3] 

Healthcare use  
Probability of infected 
patients seeking 
healthcare 

Based on posterior distribution 
obtained by adjusting population-
based incidence of typhoid 

[2]; Page 9 

Probability that infected 
patients are admitted to 
hospital 

Binomial likelihood (8 successes, 
number of trials follow uniform 
distribution from 104 to 429), 
inverse-logit-normal prior 
(mean=-3.25; standard 
deviation=1.20) 

Page 10 

Length of stay in hospital 
(days) 

Gamma distribution based on 
meta-analysis 

[3] 

Treatment, vaccine-related costs  
All treatment and 
vaccine-related costs 

Varied [3] 

Disability-adjusted life-years 
Disability-weights from 0 
(perfect health) to 1 
(death) 

Equal probability based on two 
scenarios 

[15]; page 8 

Relationship between 
disability weights for 
mild, moderate, and 
severe illness and 
outcomes on healthcare 
use 

See description in supplement [15]; page 8 

Duration of illness in 
inpatients and outpatients 
(days) 

Based on meta-analyses [3] 

Relative duration of 
illness for patients not 
seeking medical care (vs 
inpatients and 
outpatients) 

Uniform from 0 to 1 [3] 

Life expectancy Fixed [21] 
 

 
  



 93 

S1.3. Cost-effectiveness analysis. Determining the optimal strategy for each scenario. 

We calculated the associated costs and disability-adjusted life-years (DALYs) for each 

strategy (preventive routine vaccination, preventive routine vaccination with a catchup 

campaign, and reactive routine vaccination with a catchup campaign) and compared to no 

vaccination using the net monetary benefit (NMB) framework, where ≤–§ = ∆“ ∗”Øµ − ∆∞ 

(where ∆“ is the averted DALYs through a strategy compared to the base case of no vaccination, 

∆∞ is the incremental cost of the strategy compared to the base case, and WTP is the willingness-

to-pay threshold). Our measure of cost-effectiveness is the incremental net monetary benefit as 

opposed to the incremental cost-effectiveness ratio (ICER), because calculating the preferred 

strategy for more than two strategies is not always straightforward when using ICERs.  

Since there is no standard WTP threshold to define whether an intervention is “cost-

effective,” we identified the optimal strategy (the highest average NMB) for a range of WTP 

values ranging from $0-$1,000 per DALY averted. For comparison, Malawi’s 2019 gross 

domestic product (GDP) per capita was $411.55 [22], within the range of these WTP values.  

 

S1.3.1. Uncertainty surrounding the optimal strategy in each analysis 

We randomly drew 5,000 independent samples from the uncertainty distributions of each 

input parameter in the economic evaluation and combined each sample with one of the samples 

from the stochastic transmission model to estimate 5,000 net monetary benefit values for each 

strategy and for a range of WTP values from $0-$1,000 in increments of $10. The proportion of 

the 5,000 samples for which a strategy has the highest net monetary benefit among all strategies 

reflects our certainty regarding that strategy as the preferred one, presented as a cost-

effectiveness acceptability frontier (CEAF). For example, in the non-outbreak scenario with low 
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incidence (pre-outbreak), the preferred strategy is no vaccination for all WTP values less than 

$980. However, the probability that no vaccination results in the highest net benefit decreases 

from 1.00 at $0 WTP to 0.66 at $970 WTP (Fig 1d). The optimal strategy is then routine 

vaccination with a catch-up campaign with increasing probability from 0.31 at $980 WTP to 0.32 

at $1000 WTP.  In the non-outbreak scenario with high incidence (post-outbreak), the probability 

that no vaccination is the optimal strategy decreases from 1.00 at $0 WTP to 0.63 at WTP $280. 

Then, our certainty that routine vaccination with a catchup campaign is preferred increases from 

0.27 at a WTP of $290 to 0.56 at a WTP of $1000 (Fig 1f).   

 

S1.4.1. Identifying the main drivers of uncertainty.  

The expected value of partially perfect information (EVPPI) is the maximum willingness to pay 

for additional research regarding a specified parameter. Parameters with the highest EVPPI 

numbers contribute the most to uncertainty for a particular scenario and across a range of WTP 

values [23]. For each cost-effectiveness analysis and each uncertainty parameter, we estimated 

the EVPPI (Fig S9-S11).  
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Fig S5. Predicted and observed typhoid fever infections in the absence of vaccination. The 
1,000 stochastic realizations of weekly typhoid infections individuals in the absence of 
vaccination from the dynamic transmission model are show in purple. The observed (reported) 
typhoid incidence used to fit the dynamic model is represented by the bold black line, while the 
observed incidence collected after model fitting is represented by the dashed red line. 
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Fig S6. Observed versus fitted age distribution of reported typhoid cases. The proportion of 
observed cases in each age group are denoted by light blue bars, while the model-predicted age 
distribution is shown in darker blue.  

 
 
 
Fig S7. Predicted typhoid fever cases per 100,000 individuals in preventive vaccination 
scenarios. The 1,000 stochastic realizations of weekly typhoid cases per 100,000 people are 
shown in purple, with the median of all simulations shown in orange for each preventive 
vaccination strategy. Eight situations are shown, representing each preventive routine 
vaccination timing strategy (10, 5, 2, and 1 year(s) before; routine vaccination at 9 months of 
age) with and without a catchup campaign up to 15 years of age. The median number of typhoid 
infections per 100,000 individuals in the absence of vaccination from 1,000 realizations is shown 
in black, and the date of vaccination deployment for each situation is denoted by the vertical 
dashed green line. 
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Fig S8. Predicted typhoid infections per 100,000 individuals in reactive vaccination 
scenarios. The 1,000 simulated predictions for weekly typhoid infections per 100,000 people are 
shown in purple, with the median of all stochastic realizations shown in orange for each reactive 
vaccination strategy. Four situations are shown, representing the four different delays in timing 
to implement vaccination once the outbreak is identified (1, 6, 12, and 24 months). The median 
typhoid infections per 100,000 individuals in the absence of vaccination from 1,000 realizations 
is shown in black, and the median date of vaccination deployment for each situation is denoted 
by the vertical dashed green line.  
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Table S3. Predicted disease and economic burden in the absence of vaccination. The median 
(95% credible interval) estimates for predicted cases, deaths, DALYs, and treatment costs are 
shown for each non-vaccination strategy. 

Scenario Cases Deaths  DALYs Treatment Costs 
Randomized 

outbreak timing 
(starts year 0-10) 

7,019 (742-12,380) 63 (3-517) 1,389 (76-11,394) 32,672 (2,099-133,417) 

Fixed outbreak 
timing (starts year 

10) 
24,084 (18,201-39,943) 274 (33-1,832) 4,929 (742-31,596) 126,470 (35,688-446,186) 

Non-outbreak: pre-
outbreak incidence 528 (259-882) 4 (0-27) 92 (13-645) 1,014 (264-4177) 

Non-outbreak: post-
outbreak incidence 55,107 (41,594-87,417) 523 (65-3,405) 13,379 (1,996-83,772) 249,766 (70,140-882,877) 
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Abstract 

Investments in water and sanitation systems are believed to have led to the decline in typhoid 

fever in developed countries, such that most cases now occur in regions lacking adequate clean 

water and sanitation. Exploring seasonal and long-term patterns in historical typhoid mortality in 

the United States can offer deeper understanding of disease drivers. We fit modified Time-series 

Susceptible-Infectious-Recovered models to city-level weekly mortality counts to estimate 

seasonal and long-term typhoid transmission. We examined seasonal transmission separately by 

city and aggregated by water source. Typhoid transmission peaked in late summer/early fall. 

Seasonality varied by water source, with the greatest variation occurring in cities with reservoirs. 

We then fit hierarchical regression models to measure associations between long-term 

transmission and annual financial investments in water and sewer systems. Overall historical $1 

per capita ($16.13 in 2017) investments in the water supply were associated with approximately 

5% (95% confidence interval: 3-6%) decreases in typhoid transmission, while $1 increases in the 

overall sewer system investments were associated with estimated 6% (95% confidence interval: 

4-9%) decreases. Our findings aid in the understanding of typhoid transmission dynamics and 

potential impacts of water and sanitation improvements, and can inform cost-effectiveness 

analyses of interventions to reduce the typhoid burden.  
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Author summary 
 

Typhoid fever remains a major source of morbidity and mortality in low- and middle-

income countries. Historical investments in water and sanitation systems are thought to have led 

to the decline in typhoid fever in developed countries, such that most of the global burden of 

disease now occurs in regions with poor sanitary conditions and inadequate access to clean water 

and sanitation. However, there is limited empirical evidence to quantify the impact of 

investments in water and sanitation on typhoid fever incidence. We developed a mathematical 

model to examine trends in weekly typhoid mortality data from 1889-1931 in 16 U.S. cities. 

Through this analysis, we were able to examine how seasonal patterns of typhoid transmission 

varied geographically and historically depending on the water supply and treatment, and quantify 

the relationship between investments in water and sanitation infrastructures and long-term 

typhoid transmission rates. Our findings have important implications for the understanding of 

typhoid transmission dynamics and potential impact of improvements in water and sanitation 

infrastructure. Resource-poor countries must prioritize spending on public health issues, 

weighing the costs and benefits of interventions. Our results can help to inform comparative 

cost-effectiveness analyses of different interventions to reduce the global burden of typhoid 

fever. 
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Introduction 

Typhoid fever is caused by infection with the bacteria Salmonella enterica serovar Typhi, 

which is mainly transmitted through fecal contamination of food or water [1]. In many developed 

countries, including the United States (U.S.), investments in water and sewer infrastructures led 

to the decline in typhoid incidence in the beginning of the 20th century, such that the majority of 

the global burden now occurs in countries where sanitary conditions are poor and access to clean 

water and sanitation is lacking [1-3].   

Examining short- and long-term trends in typhoid incidence can provide insights into 

factors driving transmission [4]. In many countries, typhoid fever follows a seasonal pattern, 

with peak incidence occurring around the same time every year [5, 6].  Seasonality in typhoid 

exhibits distinct patterns by region and latitude, and can be influenced by rainfall, temperature, 

and other climatic factors [6]. However, drivers of seasonal patterns in typhoid are not yet fully 

understood.  

Long-term patterns in typhoid cases have also been investigated, particularly in countries 

where cases have declined to almost zero [4]. In the U.S., the number of typhoid deaths 

decreased from a reported 35,000 in 1900 to three from 1999-2006 despite a 4.3-fold population 

increase [7-10]. While it is commonly accepted that investments in water and sanitation are 

responsible for the decline in typhoid fever, there is limited empirical evidence to support this 

claim. In one study, Cutler and Miller found that the introduction of clean water technologies 

was responsible for almost half of the mortality reduction in major cities at the beginning of the 

20th century; however, they did not consider complexities of the disease transmission process 

[11].  
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In this study, we developed mathematical and statistical models to examine seasonal and 

long-term trends in typhoid transmission from 1889-1931 in 16 U.S. cities. Our objectives were 

two-fold: (1) to examine how seasonal patterns of typhoid transmission varied geographically 

and historically depending on the water supply and treatment; and (2) to quantify the relationship 

between investments in water and sanitation infrastructures and long-term typhoid transmission 

rates. 

 

Methods 

Study Design, Data, and Variables 

We extracted reported weekly typhoid mortality from 1889 to 1931 at the city level from 

the Project Tycho database [12, 13]. Cities were chosen based on two criteria: (1) at least 1,000 

typhoid deaths were reported during the study period, and (2) less than 25% of weekly data was 

missing. These exclusion criteria resulted in data for 16 U.S. cities (S1 Fig). While errors in 

disease diagnosis and missing data make underreporting likely, the consistency of reporting over 

time allows for our analysis [13, 14].  

Yearly population estimates were obtained from the U.S. Census Bureau [15]. The 

population <1 year of age was used as a proxy for births, since birth rate data was not available 

and typhoid is rare in <1-year-olds [16]. New York City population estimates were adjusted for 

the consolidation of the five boroughs (including Brooklyn) in 1898 [17]. We also accounted for 

this change by multiplying the number of reported typhoid deaths in Brooklyn by a factor of 1.28 

(i.e. the relative population size of the other boroughs, for which we did not have separate 

mortality data) and adding this to typhoid mortality data from New York City (previously only 
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Manhattan).  For all cities, cubic splines were used to extrapolate weekly population estimates 

(S2 Fig).  

Financial data on water supply and sewer systems for each city were extracted from U.S. 

Census Bureau yearly reports [15]. We obtained data on water and sewer systems across five 

categories: “receipts,” “expenses,” “outlays,” “value,” and “funded debt”, and used the first three 

to estimate the “overall investment” (Table 1). The main financial variable of interest, “overall 

investment”, represents the cumulative per capita investment in water supply and sewer systems. 

It was calculated as the sum of the annual acquisition/construction costs (cumulative outlays) and 

maintenance/operation costs (expenses) after subtracting yearly receipts (Table 1). All variables 

were adjusted yearly for inflation to 1931 dollars using the Bureau of Labor Statistics’ Consumer 

Price Index [18], then divided by the yearly city population to generate per capita estimates. Data 

on specific water supply interventions for each city were extracted from a variety of sources (S1 

Table) [19].  

Table 1. Definitions of financial variables. Each of the six categories of financial variables 
used in this study are described, as defined by the U.S. Census Bureau in its annual 
“Financial Statistics” series (the source of these variables).  
 
  Description 
Maintenance and operation 

Receipts Receipts for payments for governmental costs. These receipts usually take 
the form of money, bills receivable, land, and services. All city revenue 
receipts were recorded in the city books for municipally-operated water 
supply and sewer systems for the public or city (excluding interest from 
current deposits). 

Expenses City government costs, other than interest, of (1) services employed, 
property rented, and materials consumed in connection with maintenance 
and operation; (2) losses from deflation, bank failures, and related causes; 
and (3) depreciation of permanent properties and public improvements. 

Acquisition and construction 
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Outlays Total annual amounts paid by the city for the acquisition or construction of 
permanent lands, properties and public improvements. These include 
payments for additions made to previously acquired or constructed 
properties. 

Value and debt 
Value Total estimated value of the public properties (including depreciation), 

including both the business value and the physical value of the building and 
equipment. This amount is estimated separately by city officials, and is 
acknowledged to not be estimated uniformly across cities. 

Funded debt Long-term debts or debt liabilities in the form of bonds or certificates of 
indebtedness that the city government is under obligation to pay. 

Cumulative investment  
Overall investment Overall investment in the water supply or sewer systems, defined as the 

cumulative sum of the amount spent each year on acquisition/construction 
(outlays) and maintenance/operation (expenses minus receipts) of water or 
sewer infrastructure.  

 
All cities had missing data on weekly typhoid mortality, due to the nature of the historical 

data. In many cases, missing mortality counts were instances of zero cases, because cities 

frequently only reported during weeks when deaths occurred. To account for both true zero 

counts and missing data, mortality data were coded as zeroes if there were fewer than 13 

consecutive weeks of missing death counts, and imputed as missing data if there were 13 or more 

consecutive weeks. We imputed missing data using the package “imputeTS” in R[20], 

performing Kalman smoothing (function na_kalman) to preserve the seasonality and overall 

trends of the time series (S3 Fig). This package and algorithm are commonly used for univariate 

time series imputation. We conducted a sensitivity analysis to assess how this arbitrary 13-week 

cut-off could impact our results (S2 Text).  

After imputation, weekly typhoid mortality counts and population estimates were 

aggregated into four-week periods to approximate the generation interval of typhoid [21, 22]. 

The generation interval can be defined as the time between when an infector is infected and 

when an individual is infected by that the infector [22, 23]. In this study, the generation interval 



 115 

was based on data from the natural history of typhoid infection, derived from human challenge 

studies. Other studies suggest that TSIR models are not overly sensitive to having a precise 

estimate for the generation interval [24]. Since the mortality data were later log-transformed, we 

added one to every four-week data point before adjusting for underreporting and before fitting 

the model; a sensitivity analysis was again performed to assess the impact of adding different 

values.  

Statistical Methods 

We conducted preliminary analyses to describe differences in typhoid mortality trends 

between cities and pre- to post-intervention. First, we fit generalized linear models (GLMs) with 

linear time trends and one-year and six-month harmonics to the pre- and post-intervention time 

series (defined as two years after the first water supply intervention) for each city. The “first” 

intervention is defined as the initial occurrence of a municipally-reported method or process that 

aimed to improve the water quality in a city’s main water source, and was used only in the 

preliminary analyses to define the pre- and post- intervention period. The six- and 12-month 

harmonics allow for an overall annual variation plus additional fluctuations, if any; these were 

identified using Fourier and wavelet analyses.  We compared intercepts, slopes, and six-month 

and one-year amplitudes for the pre- and post- periods in the GLMs, and plotted the overall six- 

and 12-month amplitudes on a map of the U.S. to examine spatial patterns.  

We then fit Time-series Susceptible-Infectious-Recovered (TSIR) models [25] to each 

city’s pre- and post-intervention time series to investigate seasonal and long-terms trends in 

typhoid transmission rates. TSIR models are a well-established approach to examine associations 

between external variables and infectious disease transmission rates by conditioning on the 

susceptible population and exposure to a pathogen to extract rates of infectiousness inferred from 
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the time series [26]. These models estimate the disease transmission rate by reconstructing the 

underlying susceptible and infectious populations. This method explicitly attributes 

autocorrelation in the data to the interaction between susceptible and infectious individuals. 

In general, new infections at time t+1 (It+1) arise from transmission from infectious (It) to 

susceptible (St) individuals at time t:  

’pÇå = ◊p’pÈëp            (1) 

where ◊p is the disease transmission rate at time t. The exponent » allows for heterogeneous 

population mixing and corrects for discretization of the continuous-time infection process [27].  

We modified Equation 1 to account for the unique features of typhoid epidemiology, 

including the contribution of chronic carriers (C) to the prevalence of infection. Furthermore, we 

separated the transmission parameter ◊p into seasonal and long-term components (◊oq$o  and ◊Íp, 

respectively). Thus, the TSIR model for typhoid is as follows:  

’pÇå = ◊Íp◊oq$o,m(’p + ∞)Èëp           (2) 

where ◊oq$o,m  reflects the annual seasonally varying transmission parameter (j = 1,2,…13 for the 

number of distinct four-week generation intervals in one year), and ◊Íp (558 distinct values for 

the number of generation intervals over the 43-year period, minus 1 for the reconstruction of 

’pÇå) captures trends and any seasonal variation lasting longer than one year. We fixed ◊oq$o,åÅ =

1 and estimated the remaining j = 1,2,…,12 seasonal transmission parameter in comparison to 

the thirteenth month. We estimated ◊Íp using a semi-parametric method described below and in 

more detail in the S1 Text. 

Equation 2 can then be log-transformed: 

¡íç(’pÇå) = ¡íç(◊Íp) + ¡íçâ◊oq$o,mã + » ¡íç(’p + ∞) + log(ëp).              (3) 
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The TSIR equation is now on the additive scale, and can be incorporated into regression 

frameworks (S1 Text). This method has been explained in detail elsewhere [25]. 

With the goal of extracting the seasonal and long-term transmission rates (◊Íp and 

◊oq$o,m), we needed to first reconstruct the susceptible, infectious, and chronic carrier 

populations. We estimated some of these terms differently for our exploratory and main 

analyses, but both analyses utilized regression and maximum likelihood estimation to infer these 

terms from the disease and census data.  

The susceptible population at time t is equal to the previous susceptible population plus 

new births minus new infections, summarized as follows: 

        ëp = ë̅ + Œ~ + ∑ •èp}å
è¶~ − ∑ ’èp}å

è¶~ 	          (4) 

where ë̅ is the mean susceptible population over the study period, Œ~ is the deviation of the 

susceptible population from the mean at time zero,  ∑ •èp}å
è¶~  is the sum of births up to time t, 

∑ ’èp}å
è¶~  is the sum of “true” infections up to (but not including) time t, and k denotes the time 

point ranging from the beginning of the study up until just before time t. The number of “true” 

infections at time t (It) is estimated from the observed deaths at time t (Yt) divided by the 

underreporting fraction (Ï),  which in this case also accounts for the case fatality rate. Equation 4 

can be rearranged as 

  ∑ •è = ªåÌº∑ ¥èp
è¶~ − Œ~ + Œpp

è¶~                        (5) 

to estimate the underreporting fraction (slope), deviation at time zero (intercept), and model 

residuals (Œp = ëp − ë̅) using linear regression. We used only the first ten years of typhoid 

mortality and census data (prior to the introduction of water and sanitation interventions) [24, 25] 

to estimate the rate of underreporting of infectious individuals, and assumed that r remained 

constant over the entire 43-year study period.  
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To estimate C and St (= Œp + ë̅) in the preliminary analysis, we maximized the likelihood 

of the fitted regression (Equation 5) over different values of C and ë̅, each ranging from 0 to the 

maximum population size over the time period. For the preliminary analysis, we then fit 

Equation 3 using ordinary least squares regression.  

For our main analysis, we used the same estimates for the infectious population (adjusted 

for underreporting) and chronic carriers from the preliminary analysis, but modified the 

calculation for the susceptible population to include waning of immunity. Instead of using the 

residuals from Equation 5, we modelled the susceptible population at time t as a function of the 

total population at time t minus the previously infectious and recovered individuals:  

                                                            ëp = ≤p − ∑ ’p}xÃxÓ
x¶~             (6) 

where Ãx	is the degree of immunity i generation intervals after infection.  

 Once we had estimates for the susceptible, infectious, and chronic carrier components of 

Equation 3, we fit the model via weighted least squares regression using a range of values for 

smoothing and spline penalty parameters. For the final model, we chose the one with the 

smoothing and spline penalty parameters that resulted in the lowest sum of squared differences 

between each point and its out-of-sample prediction over all points.  

The model-fitting process is described in detail in the S1 Text; additional details about 

TSIR models can be found elsewhere [25, 28, 29]. We performed sensitivity analyses on the 

various components of the model, as described in the S2 Text.  

Examining predictors of seasonal and long-terms trends in transmission 

Once we fit the optimal TSIR model for each city, we extracted the seasonal and long-

term transmission rates. Seasonal transmission parameters were plotted separately for each city 

and aggregated by water source type. We calculated the mean estimate (among all cities and 
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across water source types) in each month. Months were considered to have significantly low or 

high seasonal transmission if their confidence intervals were entirely below or above one, 

respectively. The percentage of cities with seasonal transmission significantly below or above 

one in each month were calculated overall and by water source type. 

To examine associations between long-term typhoid transmission and financial 

investments in water and sewer systems, we fit hierarchical regression models for each financial 

variable separately. We fit several variable transformations and model formulations and chose a 

linear model with a log-transformed outcome following exploratory analyses. The final approach 

has fixed and varying city-level intercepts and slopes: 

                                           logâ◊Íp,x,pã = (à~ + ≈~,x) + (àå+≈å,x)Ôx,p                                          (7) 

where fixed intercept d0 is the average log-transmission rate of typhoid across cities with no 

investments in water and sanitation, random intercept ≈~,x represents the deviation from the fixed 

intercept for city i, fixed slope d1 is the average change in log-transformed typhoid transmission 

across cities for a $1 per capita increase in the financial variable, random slope ≈x is the deviation 

from the fixed slope for city i, and Xi,t is the financial investment for city i in year t.  

Missing financial variable data were assumed to be missing completely at random and 

were omitted from analyses. Due to multicollinearity between most of the financial variables, it 

was not possible to fit regression models with multiple predictors. However, the main variables 

of interest, overall investments in the water supply and sewer systems, provide a representation 

of cumulative financial investments as a whole over the time period.  

Model Validation 

 To validate the TSIR models and assess their predictive ability, we went back and fit each 

TSIR model to the first 38 years of data (1889-1926). Using the fitted model parameters, we 



 120 

projected forward for the last five years (1927-1931) and compared the observed and predicted 

typhoid mortality. To predict the long-term typhoid transmission rate, we used the relationship 

with overall investment in the water supply identified by the hierarchical regression analysis. 

This variable had the highest marginal and conditional R2 among the financial variables. 

All analyses were performed using R version 3.4.0 [30]. 

 

Results 

Data description and preliminary analyses 

 From 1889-1931, there were 86,023 typhoid deaths across all cities (median: 3,382 

deaths per city). S3 Fig shows the weekly time series of typhoid mortality in each city. Of the 16 

cities, four used reservoirs or lakes as their water source, three drew water from the Great Lakes, 

and nine accessed water from rivers (Table 2; additional details in S2 Table). Most cities 

introduced water chlorination or filtration during the study period, but some cities implemented 

other interventions. Boston’s Metropolitan Water District completed a new reservoir in 1908, 

while New York built several additional reservoirs between 1905-1915.  The Sanitary District of 

Chicago changed the direction of flow of the Chicago River so sewage from the city would no 

longer be discharged into Lake Michigan, the city’s water source. To address flooding problems 

from periodic hurricanes and its location below sea level, the New Orleans Drainage 

Commission began to periodically drain the water supply in 1900. San Francisco had no water 

supply interventions that we could identify; however, a major earthquake in 1906 resulted in 

severe infrastructure damage and changes to the water supply system, and was included as a 

proxy intervention in our analysis. 
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Table 2. Descriptive statistics of cities and their water supplies. "Total Deaths" are the 
number reported after imputation for missing data. Missing data numbers represent 
estimates after correcting for “true zeros” in the datasets, and before imputation.  
 

City State 

Total 
Deaths   
1889-
1931 

% (Number) 
Weekly 
Missing 

Mortality 
Data 

Population 
in 1888 

Water 
Source 
Type 

Year of (1st) 
Intervention 

Type of Water 
Supply 

Intervention(s) 
1889-1931 

Baltimore MD 5,198 4.5% (100) 431,000 Reservoirs 1910 Chlorination; 
Filtration 

Boston MA 3,412 5.4% (117) 414,000 Lakes/ 
Reservoirs 1908 New reservoir 

Chicago IL 13,161 6.8% (150) 981,000 Great Lake 1900 Changed river flow; 
Chlorination 

Cincinnati OH 3,292 7.5% (167) 289,000 River 1908 Chlorination; 
Filtration 

Cleveland OH 3,622 5.1% (115) 241,000 Great Lake 1913 Chlorination; 
Filtration 

Milwaukee WI 1,912 16.0% (358) 187,000 Great Lake 1910 Chlorination 

Nashville TN 1,535 10.2% (227) 69,594 River 1908 Chlorination; 
Filtration 

New Orleans LA 3,352 2.0% (45) 237,000 River 1900 Drainage; Filtration 

New York NY 16,991 3.5% (79) 2,370,000 Reservoirs 1903 
New Reservoirs; 

Chlorination; 
Filtration 

Philadelphia PA 13,927 16.3% (364) 1,010,000 River 1902 Chlorination; 
Filtration 

Pittsburgh PA 7,864 17.3% (386) 322,000 River 1908 Chlorination; 
Filtration 

Providence RI 1,106 13.1% (294) 127,000 River 1902 Filtration 

Saint Louis MO 3,271 21.9% (490) 432,000 River 1904 Chlorination; 
Filtration 

San Francisco CA 2,348 17.6% (393) 286,000 Lakes/ 
Reservoirs 1906 Earthquake* 

Toledo OH 1,381 22.8% (510) 75,167 River 1910 Chlorination; 
Filtration 

Washington DC 3,651 5.1% (113) 214,000 River 1903 Chlorination; 
Filtration 

*No interventions were identified for San Francisco, but the 1906 earthquake was used as a proxy due to the necessary 
infrastructure improvements that followed. 
 

In the preliminary harmonic regression analysis, fluctuations in typhoid mortality 

generally became less extreme from pre- to post-intervention periods. The six-month amplitude 

in typhoid mortality decreased in all but two cities (Milwaukee and Nashville), while the one-

year seasonal amplitude decreased in all cities but New Orleans post-intervention (S4-S5 Fig, S3 

Table). In the two cities where the six-month amplitude increased, the amplitude was already 



 122 

extremely low in the pre-intervention period and did not increase by much in the post-

intervention period.  In every city, typhoid mortality significantly decreased with time in the 

post-intervention period. The pre-intervention time trend was less consistent across cities.  

While the harmonic regression analyses suggested changes in the seasonality of typhoid 

mortality following interventions, there was little to no difference in seasonality of typhoid 

transmission pre- versus post-intervention estimated using TSIR models upon visual inspection 

(S6 Fig). Thus, we estimated the seasonal transmission rate for the entire 43-year study period in 

subsequent analyses. The similarity between pre- and post-intervention seasonality in the TSIR 

models but not in the harmonic regression models in the preliminary analyses suggests the need 

for using models that incorporate disease dynamics as opposed to simpler analyses that do not 

take disease dynamics into account (S4, S6 Fig). 

Variations in seasonal patterns 

Based on the full TSIR model (including waning of immunity), seasonal typhoid 

transmission increased at the beginning of the year and peaked around late summer or early fall 

in most cities (months 8-10; Fig 1, S4 Table). This trend varied somewhat across cities. In New 

Orleans, peak transmission occurred earlier (months 7), while in San Francisco the peak occurred 

later (months 10-11). In several cities, there were additional peaks in the winter (months 1-3).  
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Fig 1. Annual seasonal typhoid transmission estimated from Time-Series Susceptible-
Infectious-Recovered models. The estimated seasonal transmission rate in each 4-week period 
is plotted for each city (color-coded by water source type; solid lines are the mean estimates and 
dashed lines are the 95% confidence intervals). The second-to-last panel shows the mean 
seasonal transmission across all cities in bold black. The last panel shows the mean seasonal 
transmission rate for cities with a particular water source type, with reservoirs in blue, rivers in 
green, and Great Lakes in purple. Seasons are shown in the background in shades of grey 
(medium-light grey for winter, light grey for spring, dark grey for summer, and medium-dark 
grey for fall). 

 

Seasonality in typhoid transmission also varied by water source type. While the seasonal 

trend was similar across different water source types, the magnitude of the peaks in transmission 

differed (bottom-right panel of Fig 1, S4 Table). Cities that relied on reservoirs had the highest 

amplitude of seasonal typhoid transmission, while cities that drew water from the Great Lakes 

had the least variability.   

Long-term typhoid transmission and investments in water and sanitation  

After the 1900s, long-term typhoid transmission began to decrease almost monotonically 

in every city (Fig 2). Conversely, overall investments in water and sewer systems increased over 
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time (Fig 2). Overall investments in both the water supply and sewer system were significantly 

associated with long-term typhoid transmission. Each $1 (in 1931) per capita increase in overall 

cumulative investment in water and sewer systems was associated with an estimated average 5% 

(95% confidence interval: 3-6%) and 6% (95% confidence interval: 4-9%) decrease in typhoid 

transmission, respectively (Table 3). Overall investments in both the water supply and sewer 

system were also significantly inversely associated (i.e. confidence interval entirely below one) 

with city-level transmission in 15 of the 16 cities (Table 3). The proportion of variability in long-

term typhoid transmission explained by the both the fixed effects and random effects for overall 

investments was 98% for both variables, while average overall investments (i.e. fixed effects 

alone) explained 33% and 28% of the variability in typhoid transmission for the water supply 

and sewer system, respectively (S5 Table).   

Fig 2. Long-term typhoid transmission rate by city estimated from Time-series Susceptible-
Infectious-Recovered models. The estimated long-term transmission rate (blt, solid black line) 
is plotted for each city, by four-week generation interval. Overall per capita investments in the 
water supply (blue circles) and sewer system (green pluses) in 1931 US dollars are also shown 
for each city from 1902 – 1931. 
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Table 3. Results of hierarchical regression analyses for overall investment variables: 
Random and fixed effects for yearly average long-term typhoid transmission vs. overall 
investments in water and sewer systems.  Each estimate shows the associated multiplicative 
change in the estimated long-term typhoid transmission rate for each $1 per capita increase in 
overall investment for the water supply and sewer system (in 1931 US dollars). Both random and 
fixed effects are shown, with their 95% confidence intervals. 
    Estimate 
   Water Supply Sewer System 

Random + Fixed 

Baltimore 0.95 (0.93-0.96) 0.97 (0.95-0.99) 
Boston 0.94 (0.93-0.96) 0.93 (0.91-0.96) 
Chicago 0.91 (0.90-0.93) 0.95 (0.92-0.97) 

Cincinnati 0.95 (0.94-0.97) 0.95 (0.92-0.97) 
Cleveland 0.97 (0.95-0.98) 0.94 (0.92-0.97) 
Milwaukee 0.93 (0.91-0.94) 0.98 (0.96-1.00) 
Nashville 0.91 (0.90-0.93) 0.82 (0.79-0.85) 

New Orleans 0.97 (0.95-0.99) 0.98 (0.96-1.01) 
New York 0.98 (0.97-1.00) 0.93 (0.90-0.96) 

Philadelphia 0.93 (0.91-0.95) 0.93 (0.91-0.96) 
Pittsburgh 0.94 (0.92-0.95) 0.85 (0.82-0.88) 
Providence 0.98 (0.97-1.00) 0.95 (0.92-0.98) 
Saint Louis 0.99 (0.98-1.00) 0.94 (0.92-0.97) 

San Francisco 0.98 (0.96-0.99) 0.97 (0.94-0.99) 
Toledo 0.96 (0.95-0.98) 0.95 (0.93-0.98) 

Washington, D.C. 0.98 (0.97-0.99) 0.94 (0.92-0.97) 
Fixed  - 0.95 (0.94-0.97) 0.94 (0.91-0.96) 

 
 When considering the other financial variables, the associations were not as consistent 

across cities. Annual investments in maintenance or operation (receipts or expenses) had more 

city-level associations as compared to acquisition or construction variables (outlays) (S6 Table). 

In some instances, the relationship between the individual investment variables and typhoid 

transmission was positive (S6 Table, S7-16 Figs).  

TSIR model fit 

In general, the TSIR models fit to the full 43-year time series provided an adequate fit to 

the data. The full TSIR models (including waning of immunity) explained approximately 66% 

(range: 45-90%) of the variability in typhoid mortality counts over the study period (S7 Table). 

When we validated the models by fitting to the data through 1926 then using the fitted models to 
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predict the last five years of typhoid mortality, in most cases the overall predicted trend and 

seasonal peaks in typhoid mortality were captured, but the model could not explain some of the 

mortality spikes (S17-S20 figs). Nevertheless, the models generally provided a good fit to the 

data, with small out-of-sample mean squared prediction errors (S5 Table).  

Our results were not sensitive to methods of handling missing data and zeros or variations 

in model structure (S2 Text, S8-S10 Tables). Seasonal transmission patterns remained the same, 

and long-term trends retained their general shape (S2 Text, S21-36 Figs). Our results were also 

not sensitive to the threshold for the maximum duration of immunity (S8-S9 Tables). All cities 

had different patterns and functions of immunity decay, but the shapes of the seasonal and long-

term transmission rates of typhoid were mostly preserved when the models were fit assuming the 

maximum duration of immunity (173 generation intervals, or approximately 13 years) or no 

waning of immunity.  

 

Discussion 

The decline in typhoid mortality in the early 20th century U.S. has been attributed to 

investments in water and sewer systems. Our analysis strengthens this hypothesis. Furthermore, 

we characterized seasonal and long-terms trends in typhoid transmission and quantified the 

relationship between overall infrastructure investments and declines in transmission rates.  

Historically, typhoid fever cases peaked during late summer/early fall in the U.S. [5, 31]. 

Yearly peaks of typhoid transmission coincide with warmer temperatures, similar to global 

trends [6, 32-34]. This pattern may be related to the enhanced growth of the bacteria at warmer 

temperatures, seasonal changes in diet (i.e. increased consumption of uncooked fruit and 

vegetables in summer and fall), or the increased abundance of flies that may serve as mechanical 
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vectors of the bacteria [5, 6, 35, 36]. Additional fluctuations in typhoid transmission seen in 

some cities might be explained by seasonal variation in rainfall, which typically peaks in spring 

and summer in the eastern U.S. and winter on the west coast, and can impact the water supply to 

a city [33, 34, 37].  

The overall amplitudes in typhoid seasonality did not appear to cluster geographically (S5 

Fig), which led us to the hypothesis that the differences between cities may be due to differences 

in water source type. Variations due to water source type have a number of possible 

explanations. Cities relying on the Great Lakes for water had the least seasonal variability in 

transmission. Large bodies of water tend to be less impacted by seasonal changes in temperature 

and rainfall [38, 39]. The Great Lakes have a moderating effect on climate, absorbing heat and 

cooling the air in the summer, yet radiating heat and protecting from frost in the fall [40, 41]. 

Flowing water can slow down the movement of microbes [42], which may explain the lower 

seasonal variability in typhoid transmission among cities that draw water from rivers. Reservoirs 

and lakes are mostly smaller stagnant water sources, and may be more sensitive to seasonal 

changes in climate.  

Differences in water source type may help to explain why some nearby cities exhibited 

different seasonal patterns. For example, New York and Philadelphia, though less than 100 miles 

apart, had different patterns of seasonal typhoid mortality and transmission (Fig 1, S3-S5 Figs). 

From 1890-1910, the typhoid mortality rate in New York was considerably lower than in 

Philadelphia (22.4 versus 43.1 deaths per 100,000 people per year, respectively). However, 

typhoid transmission was more seasonal in New York (which relied on rural reservoirs) 

compared to Philadelphia (which drew its water from rivers running through the city). While 

typhoid transmission consistently peaked in the late summer/early fall in New York, Philadelphia 
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had only small seasonal variations in the transmission rate. It is possible that these differences 

reflect differences in the predominant route of typhoid transmission (i.e. food- versus water-

borne) in the two cities. Strong seasonality in typhoid incidence was also noted in Santiago, 

Chile in the 1970-80s, and was linked to seasonal irrigation of crops with contaminated 

wastewater; typhoid incidence declined sharply once this practice was ended [4, 43, 44]. A better 

understanding of the drivers underlying seasonal patterns of typhoid transmission, and the 

differences noted among the various water sources, can aid typhoid control efforts. 

Overall investments in the water supply and sewer system were inversely associated with 

long-term typhoid transmission in every city. These two predictors explained most of the 

variability in long-term typhoid transmission when taking into account city-level random effects. 

These findings demonstrate the strong influence of investments in water and sanitation on 

typhoid transmission over time. However, other factors may also contribute. Associations also 

varied across cities, perhaps reflecting differences in water source types, public versus private 

ownership of water supplies, and rates of migration and poverty in the different cities.  

A previous study by Cutler and Miller had similar findings [11]. They estimated that on 

average, filtration and chlorination reduced typhoid fever mortality by 25% from 1900 to 1936. 

They claimed that clean water technologies explained almost all of the decline in typhoid 

mortality, estimating that the cost of clean water technologies per person-year saved was $500 in 

2003 ($666 in 2017), suggesting it was highly cost-effective. However, their analysis did not 

consider the complexities of typhoid transmission, such as chronic carriers, host immunity, and 

interactions between susceptible and infectious individuals, which makes it difficult to 

extrapolate their findings to better understand the impact of water and sanitation investments on 

typhoid transmission in modern contexts.  
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In the early 20th century, William Sedgwick studied what he referred to as the “Mills-

Reincke Phenomenon”, in which the introduction of sanitation and subsequent decrease in 

typhoid deaths was also associated with decreases in mortality from other diseases [45]. In the 

first half of the 20th century, all-cause mortality fell by 40% [11]. Typhoid fever and other 

waterborne diseases were not the only diseases to decline during this period; many non-enteric 

diseases were also reduced by 1931 [7].  

It has thus far been difficult to evaluate the benefits of water and sanitation infrastructure 

investments compared to the deployment of new typhoid conjugate vaccines without data to 

quantify the costs and impact of the former [46]. With the recent World Health Organization 

recommendation for typhoid conjugate vaccine use and pilot studies underway [47, 48], 

governments are looking to prioritize the allocation of resources to yield the greatest decrease in 

typhoid burden. While long-term investments in water and sanitation systems are associated with 

decreased typhoid transmission, they also have benefits that extend beyond typhoid. 

Nevertheless, future studies should focus on comparing the cost-effectiveness and budget impact 

of the two interventions, bearing in mind the context and feasibility of deployment.  

This study had some limitations. The weekly mortality counts likely suffer from lack of 

sensitivity and specificity in the diagnosis of typhoid fever. Additionally, we implicitly account 

for case fatality rates in our analysis. These issues are unlikely to bias our results provided the 

under- or over-reporting of typhoid mortality (and case fatality rate) was consistent over the 

study period. The cities chosen for our analysis were also limited by data availability. As a result, 

all of the cities were primarily in the northeastern U.S. All cities also had missing data, which 

had to be imputed. Furthermore, the roles of chronic carriers and immunity to typhoid are not 

fully understood. Our inclusion of carriers in the model matches the natural history of typhoid, 
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but we did not examine whether it was necessary to model carriers separately. Patterns in the 

decay of immunity to typhoid varied widely across cities. Nevertheless, transmission rate 

estimates were not sensitive to the way we modelled immunity to infection. Finally, due to high 

levels of correlation between the financial variables, we were not able to estimate the combined 

effect of water supply and sewer system variables. Some of the overall decline in transmission 

may have been attributable to other interventions such as economic and nutritional gains, and 

behavior-change campaigns targeting hand and food washing [11, 49-51].  

Our results aid in the understanding of the dynamics of typhoid transmission and 

potential impact of improvements in water and sanitation infrastructure, which is still lacking in 

many parts of the world. Before improvements in water and sanitation systems in the U.S., 

typhoid fever and other water-borne diseases were common. In 1900, infectious diseases (and 

typhoid in particular) accounted for 44% (2.4%) of deaths in major cities in the U.S. [7], 

compared to 30-51% (0.3-0.7%) in current day low- and middle-income countries [52-54]. 

Worldwide, approximately 1.1 billion people lack access to clean water, and roughly 2.5 billion 

people lack adequate sanitation [55]. Water and sanitation technologies can have substantial 

health returns; however, the continued operation and maintenance of these systems can be costly. 

Resource-poor countries must prioritize spending on public health issues, bearing in mind the 

cost-effectiveness and affordability of implementing and maintaining interventions. Our results 

can help to inform comparative cost-effectiveness analyses of different interventions to reduce 

the global burden of typhoid fever. 
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Supporting Information 

S1 Text: Model-fitting process. 
We fit Time-series Susceptible-Infectious-Recovered (TSIR) models to each city’s time 

series to investigate seasonal and long-terms trends in typhoid transmission rates. In general, new 

infections at time t+1 (It+1) arise from transmission from infectious (It) to susceptible (St) 

individuals at time t:  

’pÇå = ◊p’pÈëp          (S1) 

where ◊p is the disease transmission rate at time t and » is a scaling factor that adjusts for 

heterogeneous mixing in the population (a=1 corresponds to homogeneous mixing, a=0 

corresponds to no auto-correlation in the time series).   

After modifying Equation S1 to account for the unique features of typhoid epidemiology 

(Equation 2 main text) and log-transforming the model, the equation is as follows:  

log	(’pÇå) = log	(◊Íp) + log	â◊oq$o,mã + » log	(’p + ∞) + log(ëp).            (S2) 

We reconstructed the infectious and chronic carrier populations via maximum likelihood 

estimation using Equation 5 (main text) and adjusting for underreporting. We then we modelled 

the susceptible population at time t as a function of the total population at time t minus the 

previously infectious and recovered individuals:  

                                                            ëp = ≤p − ∑ ’p}xÃxÓ
x¶~           (S3) 

where Ãx	is the degree of immunity i generation intervals after infection (determined by a decay 

of immunity function). We initially approximated St using a log-transformation and first-degree 

Taylor series expansion around the average susceptible population size: 

log(ëp) ≈ Òlog(ëÓq$Ú) + ŸÛ
tÙı6ˆ

− 1˜ − ∑ ÊÛ¯É˘É
tÙı6ˆ

Ó
x¶~ .       (S4) 
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Penalized cubic splines on Ã were used to account for non-linearity in the duration and decay 

patterns in immunity. Equation S2 can then be rewritten as:  

          log	(’pÇå) = log	(◊Íp) + log	â◊oq$o,mã + » log	(’p + ∞) 

−∑ ÊÛ¯É˘É
tÙı6ˆ

Ó
x¶~ + Òlog(ëÓq$Ú) + ŸÛ

tÙı6ˆ
− 1˜	           (S5) 

Note that the waning of immunity affects the number of susceptible individuals at time t, thereby 

indirectly affecting the number of new infections at time t+1. Since the duration of immunity to 

typhoid infection and disease is not well understood, we performed sensitivity analyses exploring 

different durations of immunity (S2 Text). 

We used Equation S5 and the semi-parametric method described by Koelle and Pascual 

[1, 2] to estimate the variation in ◊Íp over the full 43-year study period from 1889-1931. One 

value of ◊Íp was estimated for each four-week period from 1889-1931 (except for the first, to be 

able to calculate ’pÇå), resulting in 558 estimations. We also estimated 13 values of ◊oq$o,m 

corresponding to transmission during the same four-week period each year. This parameter was 

estimated as a categorical variable with 13 values, where the first 12 four-week months were 

estimated in comparison to the last month (◊oq$o,åÅ = 1). 

To fit the model, we used a back-fitting algorithm comprised of repeated penalized cubic 

splines on Ã, recursive first-order Taylor series expansion approximations on the log	(ëp) term, 

and weighted least squares regressions on iterations of Equation S5. The iterative process was 

necessary to allow for the more accurate approximation of the Taylor series expansion and the 

cubic splines to converge. For the weighted least squares regressions, the weights were 

calculated as I-W, where I was the identity matrix of the same dimension, and W was the 

truncated Gaussian kernel weight matrix calculated from the spline penalty weights.  
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 After the above algorithm converged, we used the same truncated Gaussian kernel weight 

matrix W to smooth the residuals of the model fit with all other parameters estimated. The 

smoothed residuals were then used to estimate the nonparametric variation in the long-term 

transmission rate (◊Íp). The final long-term transmission rate was multiplied by the population at 

each time point to calculate per capita estimates. 

The smoothing parameter and spline penalty weights were selected using cross-validation 

and testing across a range of values. Each city was fit using all possible values of the smoothing 

parameter from 1 to 35 in one-unit increments and spline penalty values from -2 to 30 in one-unit 

increments. If the parameters chosen were at the ends of the respective ranges, the intervals were 

extended until the optimal values fell within the values tested. To identify the optimal model, we 

used leave-one-out validation, in which we dropped one data point at a time (for all data points), 

fit the model to the remaining data, and then used the fitted model to predict the out-of-sample 

data point. We calculated the sum of squared differences between each point and its out-of-

sample prediction over all points, and stored this as the cross-validated (CV) value for each 

model fit. The optimal model for each city was the one with the smallest CV value.  

S2 Text. Sensitivity analyses. 
Description of different components of the model that were tested 

We performed several sensitivity analyses to test the robustness of our model 

assumptions. We examined different components of the model, including our method of 

imputing missing data, the addition of small values to the reported death counts prior to log-

transformation (to avoid taking the log of zero), the duration (or inclusion) of waning immunity, 

and the inclusion of chronic carriers in our TSIR models. We determined the impact of these 

assumptions on the seasonal and long-term transmission parameters, the relationship with the 

overall investment variables identified by the hierarchical regression models, and estimates of 
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the heterogeneous mixing parameter (a). The results of these sensitivity analyses can be found in 

S21-36 Figs and S8-10 tables. 

Missing data 

To address the issue of missing data, we had to make some decisions about what the 

meaning of the missing values might be. In many instances, cities only reported typhoid deaths if 

there were any; however, we had to differentiate between these zero counts and truly missing 

data points. For the primary analysis, we used a cut-off of 13 consecutive weeks to differentiate 

between when missing values represented zeros versus missing data. If there were fewer than 13 

weeks of missing death counts, the data points were coded as zeroes, and if there were more, we 

used Kalman smoothing to impute the missing values based on the previous observation and the 

“filter,” updated at each time point [3, 4]. Since this 13-week cut-off was arbitrarily chosen, we 

also fit the TSIR models using an 8-week and 26-week cut-off and compared the results. 

Log-transformation 

Some of the death counts were zero, which posed a problem for the logarithmic 

transformation in our main TSIR model equation. In our main analysis, we added one to every 

data point to preserve the shape of the distribution. As a sensitivity analysis, we re-ran all of the 

models instead adding 0.5 to every data point to compare the impact of this assumption. 

Duration of immunity 

Waning of immunity against typhoid infection is poorly understood. While 

epidemiological studies and human challenge studies indicate that individuals can be re-infected 

with typhoid after approximately one year, mathematical models of typhoid infection 

consistently estimate that immunity to typhoid disease is long-lived in order to explain why the 

incidence tends to decline with age, particularly in high incidence settings. We assessed the 
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assumption of waning immunity in our model, fitting additional models assuming only one year 

of immunity following infection and models with no waning of immunity (i.e. lifelong immunity 

following infection). 

Chronic carriers 

In fitting the TSIR models, we noted that the heterogeneous mixing parameter (») was 

lower than estimated for other pathogens (e.g. measles) using TSIR models [5]. We hypothesized 

that this was likely due to the contribution of long-cycle transmission in the epidemiology of 

typhoid, i.e. transmission from chronic carriers and the environmental reservoir. To test this, we 

compared the a values estimated for TSIR models without waning immunity, without chronic 

carriers, or without either, and in the simple TSIR model (Equation S1). 

Results of sensitivity analyses 

The results of the analyses in this study were generally robust to the changes in the 

assumptions examined. The seasonal transmission rates remained almost unchanged, regardless 

of variations in missing data imputation, addition of small amounts to the reported death counts, 

and duration or exclusion of waning immunity (S21-36 Figs, top half of panels). 

The long-term transmission rates mostly retained their overall shape, but the scale of the 

transmission rate changed in some instances (S21-36 Figs, bottom half of the panels). However, 

the results of the hierarchical regression models with the overall financial variables were all quite 

similar, and results were mostly within 2% of the original estimates (S8-9 Tables).  

The heterogeneous mixing parameter varied slightly between the different models, but 

mostly kept their order between cities (S10 Table). New Orleans, New York, Philadelphia, and 

Pittsburgh typically had the highest estimated a values regardless of the model formulation. The 

highest a values were estimated for the model with no immunity, suggesting that there may be 
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some identifiability issues between the duration of immunity and the heterogeneous mixing 

parameter. Nevertheless, our results were robust to different durations of immunity, as noted 

above. Removing chronic carriers from the model generally led to estimated a values closer to 

zero, as expected, suggesting typhoid incidence is less dependent on acute cases in the previous 

generation. This suggests that long-cycle transmission of typhoid, which does not occur in direct 

proportion to cases in the previous generation, can help to explain some of the lack of 

autocorrelation in the data. Long-cycle transmission may be related to cases occurring two to 

three generations prior (since evidence suggests typhoid bacteria is not long-lived in the 

environment [6]) and/or cases residing in surrounding populations that could contaminate water 

catchment areas, which would not be captured by our model. 
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S1 Fig. Map of 16 cities with water supply types. Each city included in the analysis is denoted 
by a different color in its geographical location in the United States. Squares denote cities with 
reservoirs, triangles denote those using the Great Lakes, and circles denote those with rivers as 
their main water source. The underlying map is adapted from the United States Geological 
Survey LandsatLook  < https://landlook.usgs.gov/viewer.html#>.  
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S2 Fig. Yearly reported population, extrapolated monthly population, and estimated  
susceptible population over study period. The yearly U.S. Census Bureau reported population 
(red Xs), monthly population extrapolated using cubic splines (solid black line), and susceptible 
population (dashed black line) estimated from the main TSIR models are shown for each city 
over the study period. Note that in some cities, the susceptible and total population are very close 
and cannot be differentiated in the plots. 
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S3 Fig. Weekly time-series of reported typhoid mortality in each city. The observed (including imputation, in blue) time series of 
weekly deaths reportedly due to typhoid (black lines) and the yearly typhoid deaths per 100,000 people (red Xs) is shown for each city 
from 1889-1931. 
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S4 Fig. Pre- -and post-intervention sinusoid curves from preliminary harmonic regression 
analyses. The pre- (blue) and post-intervention (red) six- and 12-month sinusoid curves fitted to 
the typhoid mortality data are shown for each city, along with the seasonal transmission rate 
estimated by the main TSIR model (dashed black line).  
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S5 Fig. Map of 12- and 6-month amplitudes of typhoid mortality counts, from preliminary 
harmonic regression analyses. The average 12- and 6-month amplitudes of seasonal variation 
in reported typhoid mortality estimated from the harmonic regression analyses are shown 
separately according to the color scale and plotted by geographic location.  
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S6 Fig. Seasonal transmission rate for pre- and post- water supply intervention periods. 
The estimated four-week seasonal transmission rates extracted from each city’s simple TSIR 
model (not including waning of immunity) are shown for each pre- (blue) and post- (red) water 
supply intervention period.  
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S7-16 Figs. Financial variable time series. The yearly time series of each of the ten financial 
water supply or sewer system variables is plotted over the study period in per capita increments. 
Dollar amounts are adjusted for inflation to 1931 US$. 
S7 Fig. Annual per capita water supply receipts. Annual water supply receipts from 1902-
1931 are shown for each city in per capita increments (US$ per person).  
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S8 Fig. Annual per capita water supply expenses. Annual spending on water supply expenses 
from 1902-1931 is shown for each city in per capita increments (US$ per person). 
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S9 Fig. Annual per capita sewer system expenses. Annual spending on sewer system expenses 
from 1902-1931 is shown for each city in per capita increments (US$ per person).  
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S10 Fig. Annual per capita water supply outlays. Annual spending on water supply outlays 
from 1902-1931 is shown for each city (green dots) in per capita increments (US$ per person). 
The year in which interventions were introduced are represented by the dashed lines for filtration 
(red), chlorination (blue), or other interventions (purple). The inclusion of intervention dates is 
for illustrative purposes. Outliers not seen: In 1930, water supply outlays from San Francisco 
totalled $70.97 per capita; this was the year in which the city purchased the water supply 
previously owned and operated by the Spring Valley Water Company. Chicago and New Orleans 
introduced water supply interventions in 1900, prior to the time period shown. 
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S11 Fig. Annual per capita sewer system outlays. Annual spending on sewer system outlays 
from 1902-1931 is shown for each city in per capita increments (US$ per person). 
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S12 Fig. Annual per capita value of the water supply system. The overall annual value of the 
water supply system from 1902-1931 is shown for each city in per capita increments (US$ per 
person). Outliers not seen: In 1897, the value of the water supply system totalled $508.55 per 
capita in Washington, D.C. 
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S13 Fig. Annual per capita funded debt of the water supply system. The overall annual 
accrued debt and/or funded loans for the water supply system from 1902-1931 is shown for each 
city in per capita increments (US$ per person). Note: Data were not available for this variable in 
Washington, D.C.  
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S14 Fig. Annual per capita funded debt of the sewer system. The overall annual accrued debt 
and/or funded loans for the sewer system from 1902-1931 are shown for each city in per capita 
increments (US$ per person). Note: Data were not available for this variable in Washington, 
D.C.  
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S15 Fig. Overall investment in the water supply system. The overall cumulative investments 
in the water supply system from 1902-1931 are shown for each city in per capita increments 
(US$ per person). This was calculated as the cumulative sum of annual expenses and annual 
outlays minus annual receipts for the water supply system. 
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S16 Fig. Overall investment in the sewer system. The overall cumulative investments in the 
sewer system from 1902-1931 are shown for each city in per capita increments (US$ per person). 
This was calculated as the cumulative sum of annual expenses and annual outlays for the sewer 
system. 
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S17-S20 Figs. TSIR model predictions. For each city, the TSIR model is fit using the first 38 years of data, then used to predict the 
last 5 years of data. In each plot, the observed data is shown in black, the model fit to the first 38 years is shown in blue, and the 
predicted last 5 years is shown in red. 
S17 Fig. TSIR model predictions for Baltimore, Boston, Chicago, and Cincinnati. 
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S18 Fig. TSIR model predictions for Cleveland, Milwaukee, Nashville, and New Orleans.  
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S19 Fig. TSIR model predictions for New York, Philadelphia, Pittsburgh, and Providence.  
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S20 Fig. TSIR model predictions for St. Louis, San Francisco, Toledo, and Washington, D.C.  
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S21-S36 Figs. Plots of seasonal and long-term transmission from sensitivity analyses for 
imputation, log-transformation, and duration of immunity. The plot of seasonal and long-
term transmission is shown for each city separately. Plots are shown for imputation of missing 
data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in the solid 
line in every panel; +0.5 shown in the dashed line in the second panel); and duration of immunity 
(13-year, 1-year, and no waning of immunity). Instances of outliers are noted, and are sometimes 
not entirely shown in the plot. 
S21 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Baltimore. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Baltimore data. 
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S22 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Boston. Plots are shown for imputation of missing 
data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in the solid 
line in every panel; +0.5 shown in the dashed line in the second panel); and duration of immunity 
(13-year, 1-year, and no waning of immunity) in the Boston data. 
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S23 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Chicago. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Chicago data. 
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S24 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Cincinnati. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Cincinnati data. 
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S25 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Cleveland. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Cleveland data. Note that the 26-
week imputation plot is not shown entirely in the plot due to its outlier. 
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S26 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Milwaukee. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Milwaukee data. 
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S27 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Nashville. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Nashville data. 

 



 168 

S28 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: New Orleans. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the New Orleans data. 
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S29 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: New York. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the New York data. 
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S30 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Philadelphia. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Philadelphia data. 
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S31 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Pittsburgh. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Pittsburgh data. Note that the 
imputed 13-week algorithm (+0.5) and the imputed 26-week algorithm (+1) are not shown 
entirely in the plots due to outliers 
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S32 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Providence. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Providence data. 
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S33 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Saint Louis. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the Saint Louis data. 
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S34 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: San Francisco. Plots are shown for imputation of 
missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in 
the solid line in every panel; +0.5 shown in the dashed line in the second panel); and duration of 
immunity (13-year, 1-year, and no waning of immunity) in the San Francisco data. 
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S35 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Toledo. Plots are shown for imputation of missing 
data (8-, 13-, and 26-week algorithm); addition to all weekly death counts (+1 shown in the solid 
line in every panel; +0.5 shown in the dashed line in the second panel); and duration of immunity 
(13-year, 1-year, and no waning of immunity) in the Toledo data. 
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S36 Fig. Plots of seasonal transmission from sensitivity analyses for imputation, log-
transformation, and duration of immunity: Washington, D.C.. Plots are shown for 
imputation of missing data (8-, 13-, and 26-week algorithm); addition to all weekly death counts 
(+1 shown in the solid line in every panel; +0.5 shown in the dashed line in the second panel); 
and duration of immunity (13-year, 1-year, and no waning of immunity) in the Washington, D.C. 
data. 
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S1 Table. References for water supply source, interventions and dates. Information on water supply interventions and water 
sources were extracted from a variety of references, noted below. Most cities had data available from the U.S. Census Bureau in 
addition to individual municipal sources, noted in the table as “U.S. Census Bureau (Yes/No)”. 
City State Water Source U.S. Census Bureau (Yes/No) Additional Sources 

Baltimore MD Jones Falls reservoir, Lake Roland/Lake 
Hampden/Mount Royal reservoirs (1862), 
Druid Hill reservoir (1873), Loch Raven 
reservoir and Lake Montebello (1881); 
chlorination 1910, filtration 1915 

Yes (Filtration, Chlorination) http://cityservices.baltimorecity.gov/dpw/waterwas
tewater02/waterquality3.html     
http://www.baltimorecity.gov/Government/Agenci
esDepartments/PublicWorks/BureauofWaterWaste
water/FactSheet.aspx  

Boston MA Long Pond (Lake Cochituate) via Cochituate 
aqueduct and Brookline Reservoir; several 
reservoirs, aqueducts built between 1864 and 
1900; Wachusett Reservoir/Dam/aqueduct 
completed in 1908 

Yes (Filtration) http://www.bwsc.org/ABOUT_BWSC/systems/wat
er/Water_history.asp  

Chicago IL Lake Michigan; flow direction of Chicago 
River reversed in 1900 to prevent waste water 
from entering lake 

Yes (Filtration, Chlorination) http://encyclopedia.chicagohistory.org/pages/1325.
html  

Cincinnati OH Ohio River (with subsiding, storage, & 
filtering reservoirs, e.g. Eden Park) 

Yes (Filtration, Chlorination) http://books.google.com/books?id=6vzVAAAAM
AAJ&pg=PA42&lpg=PA42&dq=cincinnati+water
+works+history&source=bl&ots=Qe82LaTBvG&s
ig=zGhGv6VH7yZ2LwXvdLySJ7B8OnI&hl=en&
sa=X&ei=um7rTuCUPIT30gGDgpXQCQ&ved=0
CGIQ6AEwBw#v=onepage&q=cincinnati%20wat
er%20works%20history&f=false  

Cleveland OH Lake Erie west of the Cuyahoga River; off-
shore intake (Kinsman Reservoir) began 
operation in 1885; further off-shore intakes 
created 1890-1916; chlorination began in 
1911, daily testing 1913, filtration 1917 

Yes (Filtration, Chlorination) http://www.clevelandwater.com/about_us/history.a
spx 
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Milwaukee WI Lake Michigan via Kilbourne Reservoir; 
second pumping station at Milwaukee River 
in 1924 

Yes (Chlorination) http://city.milwaukee.gov/water/customer/FAQs/ad
ditionalinfo#4  

Nashville TN Cumberland River via reservoirs used for 
settling and storage; pumping station 
relocated upstream of Brown's Creek in 1889; 
treatment with hypochlorite in 1908, liquid 
chlorine in 1920, filtration in 1928 

Yes (Filtration, Chlorination) http://www.nashville.gov/water/docs/other/water_h
istory_additional_information.pdf  

New Orleans LA Rainwater cisterns, Mississippi River, artesian 
wells; city subject to regular flooding at late 
as mid-1880s; drainage plan initiated in 1896; 
water treatment authorized/built in 1899 

Yes (Filtration) http://www.swbno.org/history_history.asp 

New York NY Old Croton Reservoir (via Old Croton 
aqueduct, since 1842); distribution reservoirs 
at 42nd St, Central Park, Boyds Corner, 
Middle Branch; additional reservoirs in 
Catskills in 1905-1915 

Yes (Filtration, Chlorination) http://www.nyc.gov/html/dep/html/drinking_water/
history.shtml  

Philadelphia PA Schuylkill River, Delaware River, Leigh 
River, various creeks 

Yes (Filtration, Chlorination) http://www.phillyh2o.org/      
http://www.phila.gov/water/PWD_Historical.html 

Pittsburgh PA Allegheny River (with holding reservoirs); 
filtration began in 1909 (Southside) and 1914 
(Northside); chlorination began in 1911; City 
of Pittsburgh merged with City of Allegheny 
(Northside) in 1907 

Yes (Filtration, Chlorination) http://www.pgh2o.com/history02.htm  

Providence RI Pawtuxet River (at Cranston); filtration began 
1906; filtered water stored in 3 open 
reservoirs; shortages during dry weather; 
Scituate Reservoir and treatment plant 
constructed in 1926 (by damming river) 

Yes (Filtration) http://www.provwater.com/history.htm  

Saint Louis MO Mississippi River (via High Service pumping 
station at Bissels Point since 1871, also via 
Low Service Chain of Rocks plant since 
1894); filtration plant dedicated in 1915 

Yes (Filtration, Chlorination) http://www.stlwater.com/history2.php  
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San 
Francisco 

CA Arroyo de la Laguna, Alameda Creek, 
artesian wells in Pleasanton (Hetch Hetchy 
reservoir in Yosemite since 1923); 
owned/operated by private company -- Spring 
Valley Water Co 

No http://www.sfmuseum.org/hist3/perry.html  

Toledo OH Maumee River; filtration plant upstream of 
Broadway Pumping Station began operation 
in 1910; source changed to Lake Erie in 
1940s 

Yes (Filtration, Chlorination) http://www.ci.toledo.oh.us/Departments/PublicUtil
ities/DivisionofWaterTreatment/HistoryofWaterTr
eatmentinToledo/tabid/375/Default.aspx  

Washington, 
D.C. 

- Potomac River via Washington Aqueduct; 
McMillan Reservoir and Bryant Street high-
lift pump after 1905 

Yes (Filtration, Chlorination) https://www.dcwater.com/history-water-system  
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S2 Table. Initial and estimated values for main TSIR models. Initial parameters (median susceptible population, median overall 
population, infectious, susceptible, and newborn populations) and values estimated from the TSIR models (chronic carriers, 
underreporting factors, and heterogeneous mixing parameters) are shown for each city.  

 Median values Initial Values (at time 0) Estimated from model 
 Median 

susceptible 
population 
over time 

period 

Median 
population 
over time 

period 

Infectious 
Population 

(after 
adjusting for 
underreportin

g) 

Susceptible 
population 

Births Number of 
chronic 
carriers 

Underreporti
ng factor (r) 

Heterogeneo
us mixing 
parameter 

(a) 

Baltimore 84000 672000 908 443653 670 87.4 0.017 0.25 
Boston 70125 561000 597 425614 725 173.9 0.014 -0.27 

Chicago 273750 2190000 214 973056 2147 19.9 0.023 0.18 
Cincinnati 45500 364000 412 281345 517 112.8 0.022 0.11 
Cleveland 70563 564500 747 266174 476 5.1 0.017 0.07 
Milwaukee 46875 375000 419 180566 432 3.8 0.01 0.04 
Nashville 13750 110000 158 66245 112 78.1 0.025 -0.4 

New Orleans 42500 340000 140 227335 393 204 0.014 0.59 
New York 597500 4780000 7335 3006890 8059 43.5 0.005 0.39 

Philadelphia 193750 1550000 1803 1024268 1738 170.5 0.021 0.41 
Pittsburgh 66875 535000 602 190287 658 58.9 0.022 0.31 
Providence 28125 225000 249 118344 190 0 0.016 0.09 
Saint Louis 86000 688000 684 431141 802 213.3 0.012 0.29 

San 
Francisco 

52250 418000 469 277260 368 46 0.017 -0.1 

Toledo 21250 170000 76 85298 144 0 0.013 0.04 
Washington, 

D.C. 
41625 333000 157 244920 340 0 0.038 0.25 
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S3 Table. Harmonic regression analyses of typhoid mortality data pre- and post- water supply intervention. Time trends and 
seasonal amplitudes were estimated for each city pre- and post- intervention in preliminary analyses with harmonic regression. 
Values shown in grey were not statistically significant at the 0.05-level, while values in black had p-values<0.05. In the last column, 
the ratio (post-/pre- water supply intervention) was calculated from the six-month and one-year amplitudes estimated from the 
regression models. 

 Pre-Intervention   Post-Intervention    Ratio (Post/Pre) 

 Time trend  Seasonal Amplitude Time trend  Seasonal 
Amplitude 

 of Seasonal Amplitude 

 intercept slope 6-mo. 1-yr. intercept slope 6-mo. 1-yr . 6-mo. 1-yr. 

Baltimore -3.35 0 0.15 0.62 76.94 -0.04 0.08 0.24  0.49 0.39 
Boston 27.1 -0.01 0.22 0.55 25.75 -0.01 0.04 0.07  0.19 0.13 

Chicago 27.78 -0.01 0.14 0.26 141.03 -0.07 0.04 0.18  0.32 0.68 
Cincinnati -18.04 0.01 0.15 0.18 4.85 0 0 0.02  0.03 0.1 
Cleveland 41.5 -0.02 0.15 0.08 17.29 -0.01 0.04 0.06  0.25 0.67 

Milwaukee 2.28 0 0.02 0.07 27.95 -0.01 0.04 0.06  1.91 0.81 
Nashville -11.36 0.01 0.06 0.17 12.44 -0.01 0.07 0.14  1.16 0.83 

New Orleans -151.79 0.08 0.14 0.13 43.97 -0.02 0.14 0.2  0.97 1.51 
New York -23.7 0.01 0.12 0.74 162.4 -0.08 0.11 0.47  0.88 0.64 

Philadelphia 27.96 -0.01 0.17 0.16 199.33 -0.1 0.05 0.04  0.32 0.24 
Pittsburgh -154.97 0.08 0.14 0.23 64.03 -0.03 0.04 0.11  0.31 0.49 
Providence 12.81 -0.01 0.03 0.12 7.48 0 0.01 0.03  0.43 0.26 
Saint Louis 31.39 -0.02 0.21 0.47 43.31 -0.02 0.09 0.24  0.43 0.51 

San 
Francisco 

16.32 -0.01 0.08 0.21 20.84 -0.01 0.02 0.04  0.26 0.18 

Toledo -25.43 0.01 0.06 0.12 26.07 -0.01 0.03 0.08  0.5 0.66 
Washington, 

D.C. 
15.94 -0.01 0.07 0.64 53.81 -0.03 0.05 0.17  0.77 0.26 
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S4 Table. Estimates of seasonal transmission from TSIR models, with confidence intervals. Results of the seasonal transmission 
parameters estimated from the TSIR models are shown. In the top half of the table, the estimated values for each four-week month's 
typhoid transmission compared to the 13th month are shown with their 95% confidence intervals, by city. Estimates with confidence 
intervals that are entirely below one are shown in red, and those with confidence intervals entirely above one are shown in blue. In 
the bottom half of the table, the percentage of each water type with confidence intervals entirely below or above one are shown for 
each month, highlighted from lighter to darker red or blue indicating the magnitude of the percentage. 

City 
Month 

1 2 3 4 5 6 7 8 9 10 11 12 Water 
Type 

Baltimore Reservoir 
0.78 0.82 1.01 1.03 0.78 1.16 1.34 1.63 1.77 1.68 1.38 0.95 

(0.63-0.97) (0.66-1.02) (0.81-1.26) (0.83-1.27) (0.63-0.97) (0.94-1.44) (1.08-1.66) (1.31-2.02) (1.42-2.20) (1.35-2.10) (1.11-1.72) (0.76-1.17) 

Boston Reservoir 
0.97 1.03 1.03 1.03 0.98 0.98 1.1 1.52 1.57 1.56 1.01 1.02 

(0.76-1.24) (0.80-1.32) (0.80-1.33) (0.80-1.32) (0.76-1.26) (0.76-1.26) (0.86-1.42) (1.18-1.95) (1.22-2.03) (1.21-2.02) (0.78-1.30) (0.79-1.31) 

Chicago Great Lake 
0.75 0.9 0.58 0.77 0.75 0.88 1.06 1.34 1.07 1.15 0.92 1.13 

(0.61-0.93) (0.73-1.12) (0.47-0.72) (0.62-0.95) (0.61-0.93) (0.71-1.09) (0.86-1.31) (1.08-1.65) (0.87-1.32) (0.94-1.42) (0.74-1.13) (0.92-1.39) 

Cincinnati River 
1.04 0.93 1 0.99 0.94 1.01 1.38 1.09 1.17 1.14 1.05 1.25 

(0.84-1.28) (0.75-1.15) (0.81-1.24) (0.80-1.22) (0.76-1.17) (0.82-1.25) (1.12-1.71) (0.88-1.35) (0.94-1.44) (0.92-1.41) (0.85-1.30) (1.01-1.55) 

Cleveland Great Lake 
0.83 1.05 0.91 0.94 1.16 0.8 1.14 1.62 1.66 1.4 0.88 1.15 

(0.67-1.02) (0.85-1.30) (0.73-1.12) (0.76-1.15) (0.94-1.43) (0.65-0.99) (0.93-1.41) (1.31-1.99) (1.34-2.04) (1.13-1.74) (0.71-1.10) (0.93-1.42) 

Milwaukee Great Lake 
0.81 1.05 0.94 0.98 0.87 0.84 0.93 1.04 0.97 0.9 0.89 0.81 

(0.65-0.99) (0.86-1.30) (0.77-1.16) (0.80-1.21) (0.71-1.08) (0.68-1.04) (0.75-1.15) (0.85-1.29) (0.78-1.19) (0.73-1.11) (0.73-1.10) (0.66-1.00) 

Nashville River 
0.81 0.69 0.69 0.78 0.74 1.43 2.16 2.53 1.92 2.01 1.54 1.06 

(0.65-0.99) (0.56-0.85) (0.56-0.85) (0.63-0.96) (0.60-0.91) (1.16-1.77) (1.74-2.68) (2.01-3.17) (1.53-2.41) (1.63-2.49) (1.24-1.91) (0.86-1.31) 

New 
Orleans River 

0.63 0.68 0.78 0.72 1.01 1.07 1.44 1.17 0.73 0.73 0.95 1.2 

(0.49-0.80) (0.53-0.87) (0.61-1.00) (0.56-0.92) (0.79-1.30) (0.84-1.37) (1.12-1.84) (0.92-1.50) (0.57-0.93) (0.57-0.94) (0.75-1.22) (0.94-1.54) 

New York Reservoir 
1.07 1.14 1.13 1.13 1.19 1.56 2.31 2.91 2.36 1.93 1.5 1.51 

(0.91-1.27) (0.96-1.35) (0.95-1.34) (0.95-1.34) (1.00-1.40) (1.32-1.84) (1.96-2.72) (2.47-3.44) (1.99-2.79) (1.63-2.29) (1.27-1.77) (1.28-1.77) 

Philadelphia River 
0.83 0.81 0.88 0.95 1 0.86 1.07 1.16 1.28 0.95 1.07 0.87 

(0.70-0.98) (0.68-0.95) (0.75-1.04) (0.81-1.13) (0.85-1.19) (0.72-1.01) (0.91-1.27) (0.98-1.37) (1.09-1.52) (0.80-1.12) (0.90-1.26) (0.74-1.03) 

Pittsburgh River 0.88 0.7 0.63 0.65 0.78 0.84 1.19 1.26 1.22 1.34 1.22 0.85 
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(0.71-1.10) (0.57-0.88) (0.50-0.78) (0.52-0.81) (0.63-0.98) (0.67-1.04) (0.95-1.48) (1.01-1.58) (0.98-1.52) (1.07-1.67) (0.97-1.52) (0.68-1.05) 

Providence River 
0.77 0.96 0.85 0.87 0.78 0.67 0.96 0.89 0.94 0.94 0.96 1.1 

(0.63-0.95) (0.78-1.18) (0.69-1.04) (0.70-1.07) (0.64-0.96) (0.54-0.82) (0.77-1.18) (0.72-1.09) (0.76-1.16) (0.77-1.16) (0.78-1.18) (0.90-1.36) 

Saint Louis River 
1.04 1.51 1.58 1.61 1.39 1.66 2.09 2.47 2.07 1.92 1.81 1.17 

(0.84-1.29) (1.21-1.87) (1.27-1.96) (1.30-2.00) (1.12-1.73) (1.33-2.06) (1.69-2.60) (1.98-3.09) (1.65-2.61) (1.53-2.41) (1.46-2.25) (0.94-1.46) 

San 
Francisco Reservoir 

0.94 1.19 1.14 1.35 1.48 1.25 1.15 1.17 1.37 1.53 1.54 1.42 

(0.75-1.17) (0.95-1.49) (0.91-1.43) (1.08-1.69) (1.18-1.85) (1.00-1.57) (0.92-1.44) (0.94-1.47) (1.10-1.71) (1.22-1.91) (1.23-1.92) (1.14-1.77) 

Toledo River 
0.97 1.35 1.16 1.06 0.79 0.89 1.16 1.46 2.02 1.74 1.15 1.21 

(0.79-1.18) (1.10-1.65) (0.95-1.42) (0.87-1.30) (0.65-0.97) (0.72-1.09) (0.95-1.41) (1.20-1.78) (1.66-2.46) (1.43-2.12) (0.94-1.40) (0.99-1.47) 

Washington, 
D.C. River 

0.92 0.89 0.97 0.91 0.93 0.89 1.08 1.05 1.04 1.07 0.87 0.95 

(0.73-1.16) (0.71-1.12) (0.77-1.22) (0.72-1.14) (0.74-1.17) (0.71-1.11) (0.86-1.35) (0.83-1.32) (0.82-1.30) (0.85-1.34) (0.69-1.09) (0.76-1.19) 

% of 
confidence 
intervals 
below 1 

% of (4) 
Reservoirs 25% 0% 0% 0% 25% 0% 0% 0% 0% 0% 0% 0% 

% of (3) 
Great Lakes 67% 0% 33% 33% 33% 33% 0% 0% 0% 0% 0% 0% 

% of (9) 
Rivers 44% 44% 33% 33% 44% 11% 0% 0% 11% 11% 0% 0% 

% of (16) All 44% 25% 25% 25% 38% 13% 0% 0% 6% 6% 0% 0% 

% of 
confidence 
intervals 
above 1 

% of 
(4)Reservoirs 0% 0% 0% 25% 50% 50% 25% 75% 100% 100% 75% 75% 

% of (3) 
Great Lakes 0% 0% 0% 0% 0% 0% 0% 67% 33% 33% 0% 0% 

% of (9) 
Rivers 0% 22% 11% 11% 11% 22% 44% 44% 44% 44% 22% 11% 

% of (16) All 0% 13% 6% 13% 19% 25% 31% 56% 56% 56% 31% 19% 
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S5 Table. Variability in long-term typhoid transmission explained by financial water 
supply and sewer system variables. Values shown are the conditional and marginal R2 from the 
hierarchical linear regression analyses for each financial variable. 

 Marginal R2 Conditional R2 

Receipts: Water supply 0.00 0.85 
Expenses: Water supply 0.01 0.86 
Expenses: Sewer system 0.01 0.84 

Outlays: Water supply 0.01 0.87 
Outlays: Sewer system 0.01 0.88 

Value: Water supply 0.00 0.91 
Funded debt: Water supply 0.01 0.93 
Funded debt: Sewer system 0.04 0.93 

Overall investment: Water supply 0.33 0.98 
Overall investment: Sewer system 0.28 0.98 
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S6 Table. Random and fixed effects for associations between yearly average long-term typhoid transmission and investments in water 
and sewer systems for individual financial variables. Each estimate shows the associated change (and 95% confidence interval) in typhoid 
transmission for each $1 (1931 US$) per capita increase in the financial variable for the water supply (WS) and sewer system (SS) for fixed 
and random effects. No data were available for Washington, D.C. for the variables Funded Debt of the Water Supply System or Funded Debt 
of the Sewer System.  
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Baltimore 0.57 (0.38-0.86) 0.76 (0.45-1.33) 1.05 (0.72-1.55) 0.94 (0.81-1.08) 1.05 (0.87-1.26) 0.98 (0.96-1.00) 0.99 (0.95-1.04) 0.98 (0.93-1.02) 0.95 (0.93-0.96) 0.97 (0.95-0.99) 

Boston 1.59 (1.15-2.22) 0.70 (0.40-1.22) 1.35 (0.82-2.18) 0.95 (0.84-1.07) 1.53 (1.10-2.12) 1.02 (0.99-1.05) 1.12 (1.06-1.19) 1.06 (1.01-1.12) 0.94 (0.92-0.96) 0.93 (0.91-0.96) 

Chicago 1.15 (0.71-1.84) 0.79 (0.46-1.35) 0.46 (0.27-0.80) 1.05 (0.88-1.24) 0.77 (0.62-0.96) 1.02 (0.97-1.07) 1.03 (0.93-1.13) 0.95 (0.90-1.00) 0.91 (0.90-0.93) 0.95 (0.92-0.97) 

Cincinnati 0.71 (0.47-1.09) 1.21 (0.70-2.10) 1.44 (0.69-2.99) 1.16 (1.03-1.30) 0.98 (0.69-1.41) 1.02 (0.99-1.04) 1.02 (0.98-1.06) 0.92 (0.87-0.98) 0.96 (0.94-0.97) 0.95 (0.92-0.97) 

Cleveland 0.66 (0.47-0.93) 0.43 (0.27-0.69) 1.99 (0.93-4.25) 0.97 (0.88-1.08) 0.77 (0.59-1.02) 0.94 (0.91-0.97) 0.91 (0.87-0.95) 1.12 (1.05-1.20) 0.97 (0.95-0.98) 0.94 (0.92-0.97) 

Milwaukee 0.58 (0.40-0.84) 0.57 (0.37-0.87) 0.73 (0.44-1.20) 0.98 (0.83-1.16) 0.85 (0.72-1.00) 1.02 (0.98-1.06) 1.03 (0.93-1.15) 0.97 (0.93-1.01) 0.93 (0.92-0.95) 0.98 (0.96-1.00) 

Nashville 0.93 (0.58-1.52) 0.38 (0.21-0.67) 1.73 (0.72-4.12) 0.91 (0.79-1.05) 0.89 (0.63-1.26) 1.02 (1.00-1.04) 1.01 (0.95-1.07) 0.84 (0.77-0.93) 0.92 (0.90-0.93) 0.82 (0.79-0.85) 

New Orleans 0.82 (0.52-1.28) 0.84 (0.46-1.52) 0.85 (0.46-1.52) 1.04 (0.95-1.14) 0.99 (0.83-1.19) 0.99 (0.96-1.01) 1.00 (0.96-1.03) 1.02 (0.97-1.07) 0.97 (0.96-0.99) 0.98 (0.96-1.01) 

New York 1.25 (0.78-1.97) 1.19 (0.60-2.33) 1.14 (0.63-2.12) 1.08 (0.97-1.20) 0.79 (0.51-1.23) 0.99 (0.97-1.01) 0.98 (0.94-1.02) 1.00 (0.88-1.14) 0.98 (0.97-1.00) 0.93 (0.90-0.96) 

Philadelphia 1.73 (1.16-2.55) 2.02 (1.28-3.17) 1.34 (0.69-2.58) 1.16 (1.00-1.33) 0.68 (0.51-0.91) 1.04 (1.01-1.06) 1.07 (1.02-1.13) 0.93 (0.88-0.98) 0.92 (0.91-0.94) 0.93 (0.91-0.96) 

Pittsburgh 0.78 (0.54-1.12) 0.37 (0.23-0.58) 2.14 (1.02-4.54) 1.23 (1.11-1.37) 0.79 (0.54-1.18) 0.99 (0.97-1.01) 1.05 (1.01-1.09) 0.89 (0.82-0.98) 0.94 (0.93-0.95) 0.85 (0.82-0.88) 

Providence 1.05 (0.72-1.56) 0.85 (0.51-1.41) 0.99 (0.45-2.21) 0.96 (0.88-1.05) 0.83 (0.61-1.12) 0.99 (0.96-1.02) 0.99 (0.96-1.02) 1.04 (0.99-1.09) 0.98 (0.97-1.00) 0.95 (0.92-0.98) 

Saint Louis 0.93 (0.73-1.19) 0.78 (0.51-1.20) 1.95 (0.94-4.06) 0.98 (0.92-1.05) 1.11 (0.91-1.34) 0.99 (0.97-1.00) 0.99 (0.96-1.02) 0.96 (0.90-1.04) 0.99 (0.98-1.01) 0.94 (0.92-0.97) 

San Francisco 1.22 (0.78-1.88) 0.72 (0.35-1.45) 1.28 (0.72-2.28) 1.02 (0.90-1.15) 0.91 (0.73-1.15) 1.01 (0.99-1.03) 1.00 (0.94-1.06) 0.95 (0.88-1.02) 0.97 (0.96-0.99) 0.97 (0.94-0.99) 

Toledo 0.74 (0.54-1.02) 0.63 (0.40-0.98) 1.25 (0.59-2.68) 1.06 (0.91-1.23) 0.83 (0.65-1.06) 0.99 (0.95-1.03) 1.06 (1.00-1.13) 0.95 (0.91-1.00) 0.97 (0.95-0.98) 0.95 (0.93-0.98) 

Washington, D.C. 1.09 (0.64-1.79) 0.94 (0.57-1.54) 1.33 (0.73-2.42) 1.02 (0.95-1.09) 1.22 (0.95-1.56) 1.00 (0.99-1.02) -- -- 0.98 (0.97-0.99) 0.94 (0.92-0.97) 

Average (Fixed) 
Effects 0.94 (0.76-1.17) 0.75 (0.56-1.00) 1.23 (0.90-1.72) 1.03 (0.97-1.10) 0.92 (0.79-1.06) 1.00 (0.98-1.01) 1.01 (0.98-1.05) 0.97 (0.93-1.01) 0.96 (0.94-0.97) 0.94 (0.91-0.96) 
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S7 Table. Fit of the TSIR models to within- and out-of-sample data for each city. Variability in typhoid deaths explained (R2) 
by TSIR models fit to data for the full study period (1889-1931) is shown, along with the within-sample mean squared errors (MSE) 
for 1922-1926 (i.e. the last five years of within-sample data used to generate the prediction model), the out-of-sample mean squared 
prediction errors (MSPE) for 1927-1931 (i.e. the out-of-sample data), and their ratio (MSPE/MSE) for comparison. 

City R2 (full 
model fit) 

MSE 
(within-
sample) 

MSPE (out-
of-sample) 

Ratio 
(MSPE/ 
MSE) 

Baltimore 0.64 3.53 3.84 1.09 
Boston 0.64 2.56 0.71 0.28 

Chicago 0.86 8.1 1.85 0.23 
Cincinnati 0.71 0.98 0.65 0.66 
Cleveland 0.73 1.28 6.55 5.13 
Milwaukee 0.56 0.54 0.21 0.39 
Nashville 0.48 2.82 2.14 0.76 

New Orleans 0.5 7.52 14.7 1.96 
New York 0.86 39.59 38.17 0.96 

Philadelphia 0.9 4.57 6.56 1.44 
Pittsburgh 0.82 1.01 1.32 1.3 
Providence 0.45 0.3 0.39 1.31 
Saint Louis 0.6 2.43 1.8 0.74 

San Francisco 0.61 0.88 1.9 2.16 
Toledo 0.52 0.83 0.73 0.88 

Washington, D.C. 0.74 0.04 0 0 
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S8 Table. Sensitivity analyses for hierarchical regression: Random and fixed effects for yearly average long-term typhoid 
transmission vs. overall investments in the water supply system. Each estimate shows the associated multiplicative change in the 
estimated long-term typhoid transmission rate for each $1 per capita increase in overall investment for the water supply system (in 
1931 US dollars) for each model fit. Both random and fixed effects are shown, with their 95% confidence intervals. 

Effect City Main Model 
(imputation 13 

weeks, +1 to 
deaths) 

Imputation 8 
weeks 

Imputation 26 
weeks 

+0.5 to deaths 1-year 
immunity 

No waning of 
immunity 

Random + Fixed Baltimore 0.95 (0.93-0.96) 0.95 (0.94-0.97) 0.95 (0.93-0.97) 0.93 (0.91-0.95) 0.96 (0.95-0.97) 0.96 (0.95-0.98)  

 Boston 0.94 (0.93-0.96) 0.93 (0.92-0.95) 0.94 (0.92-0.96) 0.93 (0.91-0.95) 0.95 (0.93-0.96) 0.96 (0.95-0.97)  

 Chicago 0.91 (0.90-0.93) 0.91 (0.89-0.92) 0.91 (0.89-0.93) 0.90 (0.88-0.92) 0.93 (0.92-0.94) 0.93 (0.92-0.94)  

 Cincinnati 0.95 (0.94-0.97) 0.96 (0.94-0.97) 0.96 (0.94-0.98) 0.94 (0.92-0.96) 0.96 (0.94-0.97) 0.96 (0.95-0.97)  

 Cleveland 0.97 (0.95-0.98) 0.97 (0.95-0.98) 0.96 (0.94-0.98) 0.96 (0.94-0.98) 0.98 (0.97-0.99) 0.98 (0.97-0.99)  

 Milwaukee 0.93 (0.91-0.94) 0.93 (0.91-0.94) 0.94 (0.91-0.96) 0.91 (0.88-0.93) 0.93 (0.92-0.95) 0.95 (0.93-0.96)  

 Nashville 0.91 (0.90-0.93) 0.91 (0.90-0.93) 0.91 (0.89-0.93) 0.90 (0.88-0.92) 0.96 (0.94-0.97) 0.97 (0.96-0.98)  

 New Orleans 0.97 (0.95-0.99) 0.97 (0.95-0.99) 0.97 (0.95-1.00) 0.97 (0.94-0.99) 0.98 (0.96-0.99) 0.98 (0.97-0.99)  

 New York 0.98 (0.97-1.00) 0.98 (0.96-0.99) 0.98 (0.96-1.00) 0.98 (0.96-1.00) 0.98 (0.97-0.99) 0.98 (0.98-0.99)  

 Philadelphia 0.93 (0.91-0.95) 0.92 (0.90-0.93) 0.87 (0.85-0.89) 0.92 (0.90-0.94) 0.94 (0.93-0.95) 0.94 (0.93-0.95)  

 Pittsburgh 0.94 (0.92-0.95) 0.94 (0.93-0.96) 0.91 (0.89-0.93) 0.88 (0.86-0.90) 0.95 (0.93-0.96) 0.96 (0.95-0.97)  

 Providence 0.98 (0.97-1.00) 0.98 (0.97-1.00) 0.99 (0.97-1.01) 0.98 (0.96-1.00) 0.99 (0.98-1.00) 0.99 (0.98-1.00)  

 Saint Louis 0.99 (0.98-1.00) 0.99 (0.97-1.00) 0.99 (0.97-1.01) 0.99 (0.97-1.01) 0.99 (0.98-1.00) 0.99 (0.98-1.00)  

 San Francisco 0.98 (0.96-0.99) 0.97 (0.96-0.99) 0.97 (0.95-0.99) 0.97 (0.95-0.99) 0.97 (0.96-0.99) 0.97 (0.96-0.98)  

 Toledo 0.96 (0.95-0.98) 0.96 (0.94-0.98) 0.97 (0.94-0.99) 0.95 (0.93-0.97) 0.96 (0.95-0.97) 0.96 (0.95-0.97)  

 Washington, 
D.C. 

0.98 (0.97-0.99) 0.98 (0.97-1.00) 0.98 (0.96-1.00) 0.98 (0.96-0.99) 0.98 (0.97-0.99) 0.98 (0.97-0.99)  

Fixed  - 0.95 (0.94-0.97) 0.95 (0.94-0.97) 0.95 (0.93-0.97) 0.94 (0.93-0.96) 0.96 (0.95-0.97) 0.97 (0.96-0.98)  
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S9 Table. Sensitivity analyses for hierarchical regression: Random and fixed effects for yearly average long-term typhoid 
transmission vs. overall investments in the sewer system. Each estimate shows the associated multiplicative change in the 
estimated long-term typhoid transmission rate for each $1 per capita increase in overall investment for the sewer system (in 1931 US 
dollars) for each model fit. Both random and fixed effects are shown, with their 95% confidence intervals. 

Effect City 

Main Model 
(imputation 13 

weeks, +1 to 
deaths) 

Imputation 8 
weeks 

Imputation 26 
weeks +0.5 to deaths 1-year immunity No waning of 

immunity 

Random 

Baltimore 0.97 (0.95-0.99) 0.97 (0.95-1.00) 0.97 (0.94-1.00) 0.96 (0.93-1.00) 0.98 (0.96-0.99) 0.98 (0.97-0.99)  

Boston 0.93 (0.91-0.96) 0.92 (0.90-0.95) 0.93 (0.90-0.97) 0.92 (0.88-0.96) 0.94 (0.92-0.95) 0.95 (0.94-0.97)  

Chicago 0.95 (0.92-0.97) 0.94 (0.92-0.97) 0.95 (0.92-0.98) 0.94 (0.91-0.98) 0.96 (0.94-0.97) 0.96 (0.95-0.97)  

Cincinnati 0.95 (0.92-0.97) 0.95 (0.92-0.97) 0.95 (0.92-0.99) 0.93 (0.89-0.97) 0.95 (0.93-0.97) 0.95 (0.94-0.97)  

Cleveland 0.94 (0.92-0.97) 0.94 (0.92-0.97) 0.94 (0.91-0.97) 0.93 (0.90-0.97) 0.96 (0.95-0.98) 0.97 (0.96-0.98)  

Milwaukee 0.98 (0.96-1.00) 0.98 (0.95-1.00) 0.98 (0.95-1.01) 0.97 (0.94-1.01) 0.98 (0.97-1.00) 0.99 (0.97-1.00)  

Nashville 0.82 (0.79-0.85) 0.82 (0.79-0.85) 0.82 (0.78-0.86) 0.80 (0.76-0.84) 0.90 (0.88-0.93) 0.94 (0.92-0.96)  

New Orleans 0.98 (0.96-1.01) 0.98 (0.96-1.01) 0.98 (0.95-1.02) 0.98 (0.94-1.02) 0.99 (0.97-1.01) 0.99 (0.97-1.00)  

New York 0.93 (0.90-0.96) 0.91 (0.88-0.94) 0.93 (0.89-0.97) 0.92 (0.88-0.97) 0.92 (0.90-0.94) 0.93 (0.92-0.95)  

Philadelphia 0.93 (0.91-0.96) 0.92 (0.90-0.95) 0.89 (0.85-0.92) 0.92 (0.89-0.96) 0.94 (0.92-0.96) 0.94 (0.93-0.96)  

Pittsburgh 0.85 (0.82-0.88) 0.85 (0.83-0.88) 0.79 (0.76-0.83) 0.73 (0.70-0.77) 0.87 (0.84-0.89) 0.89 (0.87-0.91)  

Providence 0.95 (0.92-0.98) 0.95 (0.92-0.97) 0.95 (0.92-0.99) 0.93 (0.90-0.98) 0.96 (0.94-0.98) 0.96 (0.95-0.98)  

Saint Louis 0.94 (0.92-0.97) 0.94 (0.91-0.96) 0.95 (0.92-0.98) 0.92 (0.88-0.96) 0.95 (0.93-0.96) 0.96 (0.94-0.97)  

San Francisco 0.97 (0.94-0.99) 0.97 (0.94-0.99) 0.96 (0.93-1.00) 0.96 (0.92-1.00) 0.97 (0.95-0.98) 0.97 (0.95-0.98)  

Toledo 0.95 (0.93-0.98) 0.95 (0.92-0.97) 0.95 (0.92-0.99) 0.94 (0.90-0.98) 0.95 (0.93-0.97) 0.95 (0.94-0.97)  
Washington, 

D.C. 0.94 (0.92-0.97) 0.94 (0.92-0.97) 0.95 (0.91-0.98) 0.93 (0.89-0.97) 0.94 (0.93-0.96) 0.95 (0.93-0.96)  

Fixed  - 0.94 (0.91-0.96) 0.93 (0.91-0.96) 0.93 (0.90-0.96) 0.92 (0.88-0.95) 0.95 (0.93-0.96) 0.95 (0.94-0.97) 
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S10 Table. Heterogeneous mixing from sensitivity analyses for assumptions of waning immunity, chronic carriers, or using a 
simple TSIR model. Values are shown for each city and assumption. The second column shows the heterogeneous mixing 
parameter value in the final models fit, the “No K” column shows the value for models fit without including waning immunity, the 
“No C” column shows the value for models excluding chronic carriers as part of the transmission process, the “No K, No C” column 
shows the values for models excluding both waning immunity and chronic carrier populations, and the last column (“Simple TSIR 
Model”) shows the value for models fit using ordinary least squares regression and does not use splines or smoothing weights.  

  
Final 
Model 
Used  

No K No C No K, No 
C 

Simple 
TSIR 
Model 

Baltimore 0.25 0.42 0.17 0.29 0.17 
Boston -0.27 0.29 -0.08 0.14 0.2 

Chicago 0.18 0.21 0.15 0.18 0.28 
Cincinnati 0.11 0.56 0.08 0.31 0.4 
Cleveland 0.07 0.24 0.08 0.23 0.22 
Milwaukee 0.04 0.29 0.01 0.28 0.13 
Nashville -0.4 0.05 -0.05 0.05 0.07 

New Orleans 0.59 0.53 0.25 0.28 0.28 
New York 0.39 0.61 0.37 0.41 0.35 

Philadelphia 0.41 0.74 0.27 0.5 0.51 
Pittsburgh 0.31 0.43 0.2 0.33 0.34 
Providence 0.09 0.12 0.09 0.12 0.01 
Saint Louis 0.29 0.23 0.07 0.12 0.14 

San Francisco -0.1 0.14 -0.06 0.09 0.07 
Toledo 0.04 0.05 0.05 0.05 -0.03 

Washington, 
D.C. 0.25 0.28 0.25 0.28 0.18 
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Conclusion 
 

 This dissertation was innovative in both its methods and conclusions. The approaches we 

have taken allowed us to gain insights that otherwise would have been difficult to obtain. A 

variety of statistical and mathematical modelling made it possible to evaluate the cost-

effectiveness of typhoid interventions in different settings. In this dissertation,  we have 

estimated the true population-based incidence of typhoid fever in Africa and Asia; weighed the 

costs and effects of vaccination strategies in an outbreak setting; and estimated the impact of 

water and sanitation investments in a historical endemic setting. Governments are always 

looking to prioritize their allocation of resources for typhoid control. These findings fill in some 

gaps in knowledge and can help to inform decision-making for typhoid control and prevention. 
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