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Abstract

Learning, Optimization, and Data Translation with Deep Neural Networks

Ganlin Song

2021

Neural networks have been intensively studied as machine learning models and widely

applied in various areas. This thesis investigates three problems related to the theory

and application of neural networks. First, we analyze a learning scheme for neural

networks that uses random weights in the backpropagation training algorithm, which

is considered to be more biologically plausible than the standard training procedure.

We establish theory that shows the convergence of the loss and the alignment between

the forward weights of the network and the random weights used in the backward

pass. Second, we study a family of optimization problems where the objective involves

a trained generative network, with the goal of inverting the network. We introduce a

novel algorithm that takes advantage of a sequential optimization technique to deal

with the problem of non-convexity. The third part of this thesis is an application

of modern neural network models to certain problems in neuroscience. We analyze

data that contains two concurrent imaging modalities of the brain activity in mice,

and build translation models to predict one modality the other. Our study is one of

the first examples of advanced machine learning models applied to concurrent multi-

model brain imaging data and demonstrates the potential of deep neural networks in

the emerging area of neuroscience.
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Chapter 1

Overview

Neural networks have been remarkably successful in machine learning, drawing on

a wide range of algorithms that have been developed and studied for learning with

neural networks over the past few decades. The learning problem is generically the

problem of parameter estimation and typically is cast as an optimization problem.

In fact, the vast majority of neural network approaches are based on optimizing a

loss function, such as squared error loss or cross entropy loss. For example, back-

propagation enables efficiently computing gradients of the parameters of the network,

which allows stochastic gradient descent (SGD) to be used as one of the standard

algorithms for neural network training. In this thesis, we first study a novel approach

to the learning problem and show that learning is possible for certain neural networks

without explicitly optimizing any loss function. This is motivated by the fact that

the standard algorithms, which are based on backpropagation, are not biologically

plausible. Specifically, backpropagation requires the use of the forward weights in

the backward process, which is implausible in the brain given that the forward and

backward weights of the neurons are not symmetric. We show that the use of random

weights in backpropagation (Lillicrap et al., 2016) can actually carry out learning in

over-parameterized two-layer networks, and show that with this learning procedure,
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the forward weights will be aligned with the random backward weights when proper

regularization is applied. These results contribute to our understanding of the bi-

ological principles of information processing in the brain and shed light on various

possibilities of training neural networks.

In the second part of the thesis, we focus on an optimization problem that arises

after the neural network has been trained. In generative models that map a latent

vector to a high dimensional output, it is important to be able to “invert” the model

to find the latent vector that best explains the output. This type of inverse problem

is often considered under a compressed sensing framework which aims to recover the

unknown signal x from its (noisy) linear measurements y = Ax + ε. If x is from

a generative model G (Bora et al., 2017), one can approach this by minimizing an

empirical risk function

ẑ = argmin
z
‖AG(x)− y‖2.

However, this optimization problem is generally non-convex due to the presence of

the nonlinear mapping G, and the usual gradient descent algorithm can easily become

stuck in a local optimum. To tackle this problem, we introduce an algorithm that

uses a sequence of models Gt obtained during the course of training G. Gradient

descent is sequentially applied on the empirical risk function for model Gt, where the

converged point for model Gt−1 is used as the initial point for model Gt. We call

the algorithm “surfing” since it rides along the peak of the evolving surface of the

(negative) empirical risk function. The algorithm is formalized and analyzed for a

family of deep neural networks, and the experiments show that surfing can be used

to find the global optimum even when direct gradient descent fails. In general, the

surfing algorithm can be applied to any optimization problem that involves a trained

neural network or other machine learning model.

Our third investigation is an application of modern deep neural networks to some

emerging problems in neuroscience. Neuroscientists collect data by making measure-
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ments of brain activity using different technologies, including functional magnetic

resonance imaging (fMRI), electroencephalogram (EEG) and magnetoencephalog-

raphy (MEG). Methods based on tagging neurons with fluorescent markers enable

researchers to observe neural activities at multiple scales. Related technologies for

optogenetics allow researchers to modify the neural patterns and monitor the neuronal

activities. These technologies provide scientific instruments that are used by neurosci-

entists to better understand the organizational principles that govern brain function.

However, each of the data modalities has its own limitations and only reflects specific

aspects of brain activity. Machine learning offers the potential to model across these

modalities. In the third part of our thesis, we make one of the first investigations into

advanced neural networks for this type of problem. We study the problem of mapping

between calcium imaging, which shows neuronal activity on the cortical surface with

fairly high resolution, and blood oxygen level dependent (BOLD) measurements using

fMRI, which are low-resolution measurements of neural activity at multiple layers of

the brain. We build translation models that exploit modern architectures for deep

neural networks for images, and demonstrate the predictive power of these models

from multiple perspectives. Our study is one of the first examples of this line of work,

and highlights the challenges and potential of applying deep neural networks in future

neuroscience research.
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Chapter 2

Convergence and Alignment of

Gradient Descent with Random

Backpropagation Weights

Stochastic gradient descent with backpropagation is the workhorse of artificial neural

networks. It has long been recognized that backpropagation fails to be a biologi-

cally plausible algorithm. Fundamentally, it is a non-local procedure—updating one

neuron’s synaptic weights requires knowledge of synaptic weights or receptive fields

of downstream neurons. This limits the use of artificial neural networks as a tool

for understanding the biological principles of information processing in the brain.

Lillicrap et al. (2016) propose a more biologically plausible “feedback alignment” al-

gorithm that uses random and fixed backpropagation weights, and show promising

simulations. In this chapter we study the mathematical properties of the feedback

alignment procedure by analyzing convergence and alignment for two-layer networks

under squared error loss. In the overparameterized setting, we prove that the error

converges to zero exponentially fast, and also that regularization is necessary in or-

der for the parameters to become aligned with the random backpropagation weights.
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Simulations are given that are consistent with this analysis and suggest further gener-

alizations. These results contribute to our understanding of how biologically plausible

algorithms might carry out weight learning in a manner different from Hebbian learn-

ing, with performance that is comparable with the full non-local backpropagation

algorithm.

2.1 Introduction

The roots of artificial neural networks draw inspiration from networks of biological

neurons (Rumelhart et al., 1986a; Elman et al., 1996; Medler, 1998). Grounded in

simple abstractions of membrane potentials and firing, neural networks are increas-

ingly being employed as a computational tool for better understanding the biological

principles of information processing in the brain; examples include Yildirim et al.

(2019) and Yamins and DiCarlo (2016). Even when full biological fidelity is not

required, it can be useful to better align the computational abstraction with neuro-

science principles.

Stochastic gradient descent has been a workhorse of artificial neural networks.

Conveniently, calculation of gradients can be carried out using the backpropagation

algorithm, where reverse mode automatic differentiation provides a powerful way of

computing the derivatives for general architectures (Rumelhart et al., 1986b). Yet

it has long been recognized that backpropagation fails to be a biologically plausible

algorithm. Fundamentally, it is a non-local procedure—updating the weight between

a presynaptic and postsynaptic neuron requires knowledge of the weights between

the postsynaptic neuron and other neurons. No known biological mechanism exists

for propagating information in this manner. This limits the use of artificial neural

networks as a tool for understanding learning in the brain.

A wide range of approaches have been explored as a potential basis for learning

5



and synaptic plasticity. Hebbian learning is the most fundamental procedure for ad-

justing weights, where repeated stimulation by a presynaptic neuron that results in

the subsequent firing of the postsynapic neuron will result in an increased strength in

the connection between the two cells (Hebb, 1961; Paulsen and Sejnowski, 2000). Sev-

eral variants of Hebbian learning, some making connections to principal components

analysis, have been proposed (Oja, 1982; Sejnowski and Tesauro, 1989; Sejnowski,

1999). In this chapter, our focus is on a formulation of Lillicrap et al. (2016) based on

random backpropagation weights that are fixed during the learning process. Related

proposals, including methods based on the use of differences of neuron activities, have

been made in a series of recent papers (Akrout et al., 2019; Bellec et al., 2019; Lilli-

crap et al., 2020). A comparison of some of these methods is made by Bartunov et al.

(2018).

The use of random feedback weights, which are not directly tied to the forward

weights, removes issues of non-locality. However, it is not clear under what conditions

optimization of error and learning can be successful. While Lillicrap et al. (2016)

give suggestive simulations and some analysis for the linear case, it has been an

open problem to explain the behavior of this algorithm for training the weights of a

neural network. In this chapter we study the mathematical properties of the feedback

alignment procedure by analyzing convergence and alignment for two-layer networks

under squared error loss. In the overparameterized setting, we prove that the error

converges to zero exponentially fast. We also show, unexpectedly, that the parameters

become aligned with the random backpropagation weights only when regularization is

used. Simulations are given that are consistent with this analysis and suggest further

generalizations. The following section gives further background and an overview of

our results.
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2.2 Problem Statement and Overview of Results

In this section we provide a formulation of the backpropagation algorithm to establish

notation and the context for our analysis. We then formulate the feedback alignment

algorithm that uses random backpropagation weights. A high-level overview of our

results is then presented, together with some of the intuition and proof techniques

behind these results; we also contrast with what was known previously.

We mainly consider two-layer neural networks in the regression setting, specified

by a family of functions f : Rd → R with input dimension d, sample size n, and p

neurons in the hidden layer. For an input x ∈ Rd, the network outputs

f(x) =
1
√
p

p∑
r=1

βrψ(w>r x) =
1
√
p
β>ψ(Wx), (2.1)

where W = (w1, ..., wp)
> ∈ Rp×d and β = (β1, ..., βp)

> ∈ Rp represent the feed-forward

weights in the first and second layers, and ψ denotes an element-wise activation

function. The scaling by
√
p is simply for convenience in the analysis.

Given n input-response pairs {(xi, yi)}ni=1, the training objective is to minimize

the squared error

L(W,β) =
1

2

n∑
i=1

(
yi − f(xi)

)2
. (2.2)

Standard gradient descent attempts to minimize (2.2) by updating the feed-forward

weights following gradient directions according to

βr(t+ 1) = βr(t)− η
∂L
∂βr

(W (t), β(t))

wr(t+ 1) = wr(t)− η
∂L
∂wr

(W (t), β(t)),

for each r ∈ [p], where η > 0 denotes the step size. We initialize β(0) and wr(0) as

standard Gaussian vectors. We introduce the notation f(t), e(t) ∈ Rn, with fi(t) =

7
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Figure 2.1: Standard backpropagation updates the first layer weights for a hidden
node r with the second layer feedforward weight βr. We study the procedure where
the error is backpropagated instead using a fixed, random weight br.

f(xi) denoting the network output on input xi when the weights are W (t) and β(t),

and ei(t) = yi − fi(t) denoting the corresponding prediction error or residual. With

this notation, the gradients are expressed as

∂L
∂βr

=
1
√
p

n∑
i=1

eiψ(w>r xi),
∂L
∂wr

=
1
√
p

n∑
i=1

eiβrψ
′(w>r xi)xi.

Here it is seen that the the gradient of the first-layer weights ∂L
∂wr

involves not only

the local input xi and the change in the response of the r-th neuron, but also the

backpropagated error signal eiβr. The appearance of βr is, of course, due to the chain

rule; but in effect it requires that the forward weights between layers are identical

to the backward weights under error propagation. There is no evidence of biological

mechanisms that would enable such “synaptic symmetry.”

In the feedback alignment procedure of (Lillicrap et al., 2016), when updating the

weights wr, the error signal is weighted, and propagated backward, not by the second

layer feedforward weights β, but rather by a random set of weights b ∈ Rp that are

fixed during the course of training. Equivalently, the gradients for the first layer are

replaced by the terms

∂̃L
∂wr

=
1
√
p

n∑
i=1

eibrψ
′(w>r xi)xi. (2.3)
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Note, however, that this update rule does not correspond to the gradient with respect

to a modified loss function. The use of a random weight br when updating the first

layer weights wr does not violate locality, and could conceivably be implemented by

biological mechanisms; we refer to Lillicrap et al. (2016); Bartunov et al. (2018);

Lillicrap et al. (2020) for further discussion. A schematic of the relationship between

the two algorithms is shown in Fig. 2.1.

Algorithm 1 Feedback Alignment on Two-layer Networks

Input: Dataset {(xi, yi)}ni=1, step size η

1: initialize W , β and b as Gaussian

2: while not converged do

3: βr ← βr − η√
p

∑n
i=1 eiψ(w>r xi)

4: wr ← wr − η√
p

∑n
i=1 eibrψ

′(w>r xi)xi

5: for r ∈ [p]

6: end while

We can now summarize the main results that will be presented in this chapter. The

first result shows that the error converges to zero when using random backpropagation

weights.

• Under Gaussian initialization of the parameters, if the model is sufficiently over-

parameterized with p� n, then the error converges to zero linearly. Moreover,

the parameters satisfy ‖wr(t)− wr(0)‖ = Õ
(
n√
p

)
and |βr(t)− βr(0)| = Õ

(
n√
p

)
.

The precise assumptions and statement of this result are given in Theorem 2.3.2.

The proof shows in the over-parameterized regime that the weights only change by a

small amount. While related to results for standard gradient descent, new methods

are required because the “effective kernel” is not positive semi-definite.

We next turn to the issue of alignment of the second layer parameters β with

the random backpropagation weights b. Such alignment was first observed in the
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original simulations of Lillicrap et al. (2016). With h ∈ Rp denoting the hidden

layer of the two-layer network, the term δBP(h) := ∂L
∂h

= 1√
p
β
∑n

i=1 ei represents how

the error signals ei are sent backward to update the feed-forward weights. With the

use of random backpropagation weights, the error is instead propagated backward as

δFA(h) = 1√
p
b
∑n

i=1 ei.

Lillicrap et al. (2016) notice a decreasing angle between δBP(h) and δFA(h) during

training, which is a sufficient condition to ensure that the algorithm converges. In

the case of k-way classification, the last layer has k nodes, β and b are p×k matrices,

and each error term ei is a k-vector. In the regression setting, k = 1 so the angle

between δBP(h) and δFA(h) is the same as the angle between β and b. Intuitively, the

possibility for alignment is seen in the fact that while the updates for W use the error

weighted by the random weights b, the updates for β indirectly involve W , allowing

for the possibility that dependence on b will be introduced into β.

Our first result shows that, in fact, alignment will not occur in the over-parameterized

setting. (So, while the error may still converge, “feedback alignment” may be a bit

of a misnomer for the algorithm.)

• The cosine of the angle between the p-dimensional vectors δFA and δBP satisfies

cos∠(δFA, δBP(t)) = cos∠(b, β(t)) = O
(
n√
p

)
.

However, we show that regularizing the parameters will cause δBP to align with δFA

and therefore the parameters β to align with b. Since β(0) and b are high dimensional

Gaussian vectors, they are nearly orthogonal with high probability. The effect of

regularization can be seen as shrinking the component of β(0) in the parameters over

time. Our next result establishes this precisely in the linear case.

• Supposing that ψ(u) = u, then introducing a ridge penalty λ(t)‖β‖2 where

λ(t) = λ for t ≤ T and λ(t) = 0 for t > T on β causes the parameters to align,

with cos∠(b, β(t)) ≥ c > 0 for sufficiently large t.
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The technical conditions are given in Theorem 2.4.6. Our simulations are consistent

with this result, and also show alignment with a constant regularization λ(t) ≡ λ, for

both linear and nonlinear activation functions. Finally, we complement this result

by showing that convergence is preserved with regularization, for general activation

functions. This is presented in Theorem 2.4.2.

2.3 Convergence with Random Backpropagation

Weights

Due to the replacement of backward weights with the random backpropagation weights,

there is no guarantee a priori that the algorithm will reduce the squared error loss L.

Lillicrap et al. (2020) study the convergence on two-layer linear networks in a contin-

uous time setting. Through the analysis of a system of differential equations on the

network parameters, convergence to the true linear target function is shown, in the

population setting of arbitrarily large training data. Among recent studies of over-

parametrized networks under backpropagation, the neural tangent kernel (NTK) is

heavily utilized to describe the evolution of the network during training (Jacot et al.,

2018). For any neural network f(x, θ) with parameter θ, the NTK is defined as

Kf (x, y) =
〈∂f(x, θ)

∂θ
,
∂f(y, θ)

∂θ

〉
.

Given a dataset {(xi, yi)}ni=1, we can also consider its corresponding Gram matrix

K = (Kf (xi, xj))n×n. Jacot et al. (2018) show that in the infinite width limit, Kf

converges to a constant at initialization and does not drift away from initialization

throughout training. In the over-parameterized setting, if the Gram matrix K is

positive definite, thenK will remain close to its initialization during training, resulting

in linear convergence of the squared error loss (Du et al., 2018b, 2019; Gao and

11



Lafferty, 2020). For the two-layer network f(x, θ) defined in (2.1) with θ = (β,W ),

the kernel Kf can be written in two parts, Gf and Hf , which correspond to β and W

respectively:

Kf (x, y) = Gf (x, y) +Hf (x, y) :=
〈∂f(x, θ)

∂β
,
∂f(y, θ)

∂β

〉
+

p∑
r=1

〈∂f(x, θ)

∂wr
,
∂f(y, θ)

∂wr

〉
.

Under the feedback alignment scheme with random backward weights b, Gf remains

the same as for standard backpropagation, while one of the gradient terms ∂f
∂wr

in Hf

changes to
˜∂f(x, θ)

∂wr
=

1
√
p
brψ

′(w>r x)x,

with Hf replaced by

Hf =

p∑
r=1

〈 ˜∂f(x, θ)

∂wr
,
∂f(y, θ)

∂wr

〉
.

As a result, Hf is no longer positive semi-definite and close to 0 at initialization if the

network is over-parameterized. However, if G = (Gf (xi, xj))n×n is positive definite

and H = (Hf (xi, xj))n×n remains small during training, we are still able to show that

the loss L will converge to zero exponentially fast.

Assumption 2.3.1. Define the matrix G ∈ Rn×n with entries

Gi,j = Ew∼N (0,Ip)ψ(w>xi)ψ(w>xj).

We assume that the minimum eigenvalue satisfies λmin(G) ≥ γ, where γ is a positive

constant.

Theorem 2.3.2. Let W (0), β(0) and b have i.i.d. standard Gaussian entries. Assume

1. Assumption 2.3.1 holds,

2. ψ is smooth, ψ, ψ′ and ψ′′ are bounded,

12



3. |yi| and ‖xi‖ are bounded for all i ∈ [n].

Then there exists positive constants c1, c2, C1 and C2, such that for any δ ∈ (0, 1), if

p ≥ max

(
C1

n2

δγ2
, C2

n4 log p

γ4

)
,

then with probability at least 1− δ we have that

‖e(t+ 1)‖ ≤ (1− ηγ

4
)‖e(t)‖ (2.4)

and

‖wr(t)− wr(0)‖ ≤ c1
n
√

log p

γ
√
p

, |βr(t)− βr(0)| ≤ c2
n

γ
√
p

(2.5)

for all r ∈ [p] and t > 0.

We note that the matrix G in Assumption 2.3.1 is the expectation of G with

respect to the random initialization, and is thus close to G due to concentration.

To justify the assumption, we provide the following proposition, which states that

Assumption 2.3.1 holds when the inputs xi are drawn independently from a Gaussian

distribution. The proofs of Theorem 2.3.2 and Proposition 2.3.3 are deferred to

Section 2.5.2.

Proposition 2.3.3. Suppose x1, ..., xn
i.i.d.∼ N (0, Id/d) and the activation function ψ

is sigmoid or tanh. If d = Ω(n), then Assumption 2.3.1 holds with high probability.

2.4 Alignment with Random Backpropagation Weights

The most prominent characteristic of the feedback alignment algorithm is the phe-

nomenon that the error signals propagated with the forward weights align with those

propagated with fixed random backward weights during training. Specifically, if we

denote h ∈ Rp to be the hidden layer of the network, then we write δBP(h) := ∂L
∂h

to

13



represent the error signals with respect to the hidden layer that are backpropagated

with the feed-forward weights and δFA(h) as the error signals computed with fixed

random backward weights. In particular, the error signals δBP(h) and δFA(h) for the

two-layer network (2.1) are given by

δBP(h) =
1
√
p
β

n∑
i=1

ei and δFA(h) =
1
√
p
b

n∑
i=1

ei.

Lillicrap et al. (2016) notice a decreasing angle between δBP(h) and δFA(h) during

training. We formalize this concept of alignment by the following definition.

Definition 2.4.1. We say a two-layer network aligns with the random weights b

during training if there exists a constant c > 0 and time Tc such that for all t > Tc,

cos∠(δFA, δBP(t)) = cos∠(b, β(t)) =
〈b, β(t)〉
‖b‖‖β(t)‖

≥ c.

2.4.1 Regularized feedback alignment

Unfortunately, alignment between β(t) and b is not guaranteed for over-parameterized

networks and the loss (2.2). In particular, we control the cosine value of the angle by

inequalities (2.5) from Theorem 2.3.2, i.e.,

∣∣∣ cos∠(b, β(t))
∣∣∣ ≤ |〈 b

‖b‖ , β(0)〉|+ ‖β(t)− β(0)‖
‖β(0)‖ − ‖β(t)− β(0)‖

= O

(
n
√
p

)
,

which indicates that β(t) and b become orthogonal as the network becomes wider.

Intuitively, this can be understood as resulting from the parameters staying near their

initializations during training when p is large, where β(0) and b are almost orthogonal

to each other. This motivates us to regularize the network parameters. We consider
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in this work the squared error loss with an `2 regularization term on β:

L(t,W, β) =
1

2

n∑
i=1

(
f(xi)− yi

)2
+

1

2
λ(t)‖β‖2, (2.6)

where {λ(t)}∞t=0 is a sequence of regularization rates, which defines a series of loss

functions for different training steps t. Thus, the update for wr remains the same and

the update for β changes to

βr(t+ 1) = (1− λ(t))βr(t)−
η
√
p

n∑
i=1

ei(t)ψ(wr(t)
>xi), for r ∈ [p].

Comparing to Algorithm 1, an extra contraction factor 1−λ(t) is added in the update

of β(t), which doesn’t affect the locality of the algorithm but helps the alignment by

shrinking the component of β(0) in β(t).

Algorithm 2 Regularized Feedback Alignment on Two-Layer Networks

Input: Dataset {(xi, yi)}ni=1, and step size η, and regularization {λ(t)}.

1: initialize W (0), β(0) and b as Gaussian

2: for t = 0, 1, 2, . . . do

3: βr(t+ 1) = (1− λ(t))βr(t)− η√
p

∑n
i=1 ei(t)ψ(wr(t)

>xi)

4: wr(t+ 1) = wr(t)− η√
p

∑n
i=1 ei(t)brψ

′(wr(t)>xi)xi

5: for r ∈ [p]

6: end for

Following Theorem 2.3.2, we provide an error bound for regularized feedback align-

ment in Theorem 2.4.2. Since regularization terms λ(t) make additional contributions

to the error e(t) as well as to the kernel matrix G, an upper bound on
∑

t≥0 λ(t) is

needed to ensure positivity of the minimal eigenvalue of G during training, in order

for the error e(t) to be controlled. In particular, if there is no regularization, i.e.,

λ(t) = 0 for all t ≥ 0, then we recover exponential convergence for the error e(t) as
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in Theorem 2.3.2. The proof of Theorem 2.4.2 is also deferred to Section 2.5.2.

Theorem 2.4.2. Assume all the conditions from Theorem 2.3.2. Assume
∑∞

t=0 λ(t) ≤

S̃λ = c̃S
γ2
√
p

ηn2
√
log p

for some constant c̃S. Then there exist positive constants C1 and C2,

such that for any δ ∈ (0, 1), if p ≥ max
(
C1

n2

δγ2
, C2

n4 log p
γ4

)
, then with probability at

least 1− δ, we have

‖e(t+ 1)‖ ≤
(

1− ηγ

4
− ηλ(t)

)
‖e(t)‖+ λ(t)‖y‖ (2.7)

for all t ≥ 0.

2.4.2 Alignment analysis for linear networks

In this section, we focus on the theoretical analysis of alignment for linear networks,

which is equivalent to setting the activation function ψ to the identity map. The loss

function can be written as

L(t,W, β) =
1

2

∥∥ 1
√
p
XW>β − y

∥∥2 +
λ(t)

2
‖β‖2,

where X = (x1, . . . , xn)>; this is a form of over-parameterized ridge regression. Before

presenting our results on alignment, we first provide a linear version of Theorem 2.4.2

that adopts slightly different conditions.

Theorem 2.4.3. Assume (1) ‖y‖ = Θ(
√
n), λmin(XX>) > γ and λmax(XX

>) < M

for some constants M > γ > 0, and (2)
∑∞

t=0 λ(t) ≤ Sλ = cS
γ
√
γp

η
√
nM

for some constant

cS. Then for any δ ∈ (0, 1), if p = Ω(Md log(d/δ)
γ

), the following inequality holds for all

t ≥ 0 with probability at least 1− δ:

‖e(t+ 1)‖ ≤
(
1− ηγ

2
− ηλ(t)

)
‖e(t)‖+ λ(t)‖y‖. (2.8)

We remark that in the linear case, the kernel matrix G reduces to the form
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XW>WX> and its expectation G at initialization also reduces to XX>. Thus,

Assumption 2.3.1 holds if XX> is positive definite, which is equivalent to the xi’s

being linearly independent. The result of Theorem 2.4.2 can not be directly applied

to the linear case since we assume that ψ is bounded, which is true for sigmoid or

tanh but not for the identity map. This results in a slightly different order for Sλ and

an improved order for p.

Our results on alignment also rely on an isometric condition on X, which requires

the minimum and the maximum eigenvalues of XX> to be sufficiently close (cf.

Definition 2.4.4). On the other hand, this condition is relatively mild and can be

satisfied when X has random Gaussian entries with a gentle dimensional constraint,

as demonstrated by Proposition 2.4.5. Finally, we show in Theorem 2.4.6 that under

a simple regularization strategy where a constant regularization is adopted until a

cutoff time T , regularized feedback alignment achieves alignment if X satisfies the

isometric condition.

Definition 2.4.4 ((γ, ε)-Isometry). Given positive constants γ and ε, we say X is

(γ, ε)-isometric if λmin(XX>) ≥ γ and λmax(XX
>) ≤ (1 + ε)γ.

Proposition 2.4.5. Assume X ∈ Rn×d has independent entries drawn from N(0, 1/d).

For any ε ∈ (0, 1/2) and δ ∈ (0, 1), if d = Ω(1
ε

log n
δ

+ n
ε

log 1
ε
), then X is (1− ε, 4ε)-

isometric with probability 1− δ.

Theorem 2.4.6. Assume all conditions from Theorem 2.4.3 hold and X is (γ, ε)-

isometric with a small constant ε. Let the regularization weights satisfy

λ(t) =


λ, t ≤ T,

0, t > T,

with λ = Lγ and T = bSλ/λc for some large constant L. Then for any δ ∈ (0, 1),

if p = Ω(d log(d/δ)), with probability at least 1 − δ, regularized feedback alignment
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achieves alignment. Specifically, there exist a positive constant c = cδ and time Tc,

such that cos∠(b, β(t)) ≥ c for all t > Tc.

We defer the proofs of Proposition 2.4.5, Theorem 2.4.3 and Theorem 2.4.6 to

Section 2.5.3. In fact, we prove Theorem 2.4.6 by directly computing β(t) and the

cosine of the angle. Although b doesn’t show up in the update of β, it can still

propagate to β through W . Since the size of the component of b in β(t) depends on

the inner-product 〈e(t), e(t′)〉 for all previous steps t′ ≤ t, the norm bound (2.8) from

Theorem 2.4.3 is insufficient; thus, a more careful analysis of e(t) is required.

We should point out that the constant c in the lower bound is independent of

the sample size n, input dimension d, network width p and learning rate η. We

also remark that the cutoff schedule of λ(t) is just chosen for simplicity. For other

schedules such as inverse-squared decay or exponential decay, one could also obtain

the same alignment result as long as the summation of λ(t) is less than Sλ.

Large sample scenario. In Theorems 2.4.3 and 2.4.6, we consider the case where

the sample size n is less than the input dimension d, so that positive definiteness of

XX> can be established. However, both results still hold for n > d. In fact, the

squared error loss L can be written as

n∑
i=1

(
f(xi)− y

)2
=
∥∥ 1
√
p
XW>β − y

∥∥2 =
∥∥ 1
√
p
XW>β − ȳ

∥∥2 + ‖ȳ − y‖2,

where ȳ denotes the projection of y onto the column space of X. Without loss of

generality, we assume y = ȳ. As a result, y and the columns of X are all in the same

d-dimensional subspace of Rn and XX> is positive definite on this subspace, as long

as X has full column rank. Consequently, we can either work on this subspace of

Rn or project all the vectors onto Rd, and the isometric condition is revised to only

consider the d nonzero eigenvalues of XX>.
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2.5 Proofs for Technical Results

In this section, we provide proofs for the theoretical results in Section 2.5.2 and

Section 2.4. To help make the proof more readable, we use c, C to denote the global

constants whose values may vary from line to line.

2.5.1 Technical Lemmas

To begin with, we list technical lemmas that will be used in the proofs, with references.

The first is a variant of the Restricted Isometry Property that bounds the spectral

norm of a random Gaussian matrix around 1 with high probability.

Lemma 2.5.1 (Hand and Voroninski, 2019). Let A ∈ Rm×n has i.i.d. N (0, 1/m)

entries. Fix 0 < ε < 1, k < m, and a subspace T ⊆ Rn of dimension k, then

there exists universal constants c1 and γ1, such that with probability at least 1 −

(c1/ε)
ke−γ1εm,

(1− ε)‖v‖22 ≤ ‖Av‖22 ≤ (1 + ε)‖v‖22, ∀v ∈ T.

Let us take k = n in Lemma 2.5.1 to get the following corollary.

Corollary 2.5.2. Let A ∈ Rm×n has i.i.d. N (0, 1/m) entries. For any 0 < ε < 1,

there exists universal constants c2 and γ2, such that with probability at least 1 −

(c2/ε)
de−γ2εm,

‖A>A− Im‖ ≤ ε

Then following lemma gives tail bounds for χ2 random variables.

Lemma 2.5.3 (Laurent and Massart, 2000). Suppose X ∼ χ2
p, then for all t ≥ 0 it
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holds

P{X − p ≥ 2
√
pt+ 2t} ≤ e−t

and

P{X − p ≤ −2
√
pt} ≤ e−t.

For two independent random Gaussian vectors, their inner product can be con-

trolled with the following tail bound.

Lemma 2.5.4 (Gao and Lafferty, 2020). Let X, Y ∈ Rp be independent random

Gaussian vectors where Xr ∼ N (0, 1) and Yr ∼ N (0, 1) for all r ∈ [p], then it holds

P(|X>Y | ≥
√

2pt+ 2t) ≤ 2et.

2.5.2 Convergence on Two-Layer Nonlinear Networks

We consider the family of neural networks

f(x) =
1
√
p

p∑
r=1

βrψ(w>r x) =
1
√
p
β>ψ(Wx) (2.9)

where β ∈ Rp, W = (w1, ..., wp)
> ∈ Rp×d, and ψ is an activation function. Given

data, the loss function is

L(W,β) =
1

2

n∑
i=1

(f(xi)− yi)2 =
1

2

n∑
i=1

( 1
√
p
β>ψ(Wxi)− y

)2
. (2.10)
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The feedback alignment algorithm has updates

W (t+ 1) = W (t)− η 1
√
p

n∑
i=1

Di(t)bx
>
i ei(t)

β(t+ 1) = β(t)− η 1
√
p

n∑
i=1

ψ(W (t)xi)ei(t)

(2.11)

where Di(t) = diag(ψ′(W (t)xi)) and ei(t) = 1√
p
β(t)>ψ(W (t)xi)− yi.

Concentration Results

Lemma 2.5.5 (Lemma A.7 in Gao and Lafferty, 2020). Assume x1, ..., xn
i.i.d.∼ N (0, Id/d).

We define matrix G̃ ∈ Rn×n with entries

G̃i,j = |Eψ′(Z)|2 x>i xj
‖xi‖‖xj‖

+ (E|ψ(Z)|2 − |Eψ′(Z)|2)I{i = j}

where Z ∼ N (0, 1). If d = Ω(log n), then with high probability, we have

‖G− G̃‖2 . log n

d
+
n2

d2
.

Proof of Proposition 2.3.3. If ψ is sigmoid or tanh, for a standard Gaussian random

variable Z, we have

γ :=
1

2
(E|ψ(Z)|2 − |Eψ′(Z)|2) > 0.

From Lemma 2.5.5, we know that with high probability λmin(G) ≥ λmin(G̃) − ‖G −

G̃‖ ≥ 2γ − C(
√

logn
d

+ n
d
) ≥ γ.

Lemma 2.5.6. Assume W (0), β(0) and b have i.i.d. standard Gaussian entries.

Given δ ∈ (0, 1), if p = Ω(n/δ), then with probability 1− δ

1

p

p∑
r=1

|br| ≤ c, (2.12)
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1

p

p∑
r=1

|brβr(0)| ≤ c, (2.13)

‖e(0)‖ ≤ c
√
n, (2.14)

max
r∈[p]
|br| ≤ 2

√
log p. (2.15)

Proof. We will show each inequality holds with probability at least 1− δ
4
, then by a

union bound, all of them hold with probability at least 1−δ. Since Var(1
p

∑p
r=1 |br|) ≤

Var(|b0|)
p

, by Chebyshev’s inequality, we have

P(
1

p

p∑
r=1

|br| > E(b1) + 1) ≤ Var(|b1|)
p

≤ δ/4

if p ≥ 4Var(|b1|)/δ, which gives (2.12). The proof for (2.13) is similar since Var(1
p

∑p
r=1 |brβr(0)|) =

O(1/p). To prove (2.14), since |yi| and ‖xi‖ are bounded, it suffices to show |ui(0)| ≤ c

for all i ∈ [n]. Actually, by independence, we have

Var(ui(0)) = Var
(1

p

p∑
r=1

βr(0)ψ(wr(0)>xi)
)

=
1

p
Var

(
β1(0)ψ(w1(0)>xi)

)
= O(1/p).

By Chebyshev’s inequality, we have for each i ∈ [n]

P(|ui(0)| > c) ≤ Var(ui(0))

c2
≤ δ

4n

where we require p = Ω(n/δ). With a union bound argument, we can show (2.14). Fi-

nally, (2.15) followed from standard Gaussian tail bounds and union bound argument,
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yielding

P(max
r∈[p]
|br| > 2

√
log p) ≤

∑
r∈[p]

P(|br| > 2
√

log p) ≤ 2pe−2 log p =
2

p
≤ δ

4
.

Lemma 2.5.7. Under the conditions of Theorem 2.3.2, we define matrices G(0), H(0) ∈

Rn×n with entries

Gij(0) =
1

p
ψ(W (0)xi)

>ψ(W (0)xj) =
1

p

p∑
r=1

ψ(wr(0)>xi)ψ(wr(0)>xj) (2.16)

and

Hij(0) =
x>i xj
p

β(0)>Di(0)Dj(0)b =
1

p

p∑
r=1

βr(0)brψ
′(wr(0)>xi)ψ

′(wr(0)>xj). (2.17)

For any δ ∈ (0, 1), if p = Ω( n
2

δγ2
), then with probability at least 1 − δ, we have

λmin(G(0)) ≥ 3
4
γ and ‖H(0)‖ ≤ γ

4
.

Proof. By independence and boundedness of ψ and ψ′, we have Var(Gij(0)) = O(1/p)

and Var(Hij(0)) = O(1/p). Since E(G(0)) = G, we have

E‖G(0)−G‖2 ≤ E‖G(0)−G‖2F = O(
n2

p
).

By Markov’s inequality, when p = Ω( n
2

δγ2
)

P(‖G(0)−G‖ > γ

4
) ≤ O(

n2

pγ2
) ≤ δ

2
.

Similarly we have P(‖H(0)‖ > γ
4
) ≤ δ

2
, since E(H(0)) = 0. Then with probability at

least 1− δ, λmin(G(0)) ≥ λmin(G)− γ/4 ≥ 3
4
γ, and ‖H(0)‖ ≤ γ/4.
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Proof of Theorem 2.3.2

Lemma 2.5.8. Assume all the inequalities from Lemma 2.5.6 hold. Under the con-

ditions of Theorem 2.3.2, if the error bound (2.4) holds for all t = 1, 2, ..., t′− 1, then

the bounds (2.5) hold for all t ≤ t′.

Proof. From the feedback alignment updates (2.11), we have for all t ≤ T

|βr(t)− βr(0)| ≤ η
√
p

t−1∑
s=0

n∑
i=1

|ψ(wr(t)xi)ei(t)|

≤ c
η
√
p

t−1∑
s=0

n∑
i=1

|ei(t)|

≤ c
η
√
n

√
p

t−1∑
s=0

‖e(t)‖

≤ c
η
√
n

√
p

t−1∑
s=0

(1− γη

4
)t‖e(0)‖

≤ c

√
n

γ
√
p
‖e(0)‖

≤ c
n

γ
√
p

where we use the fact that ψ is bounded and (2.14). We also have

‖wr(t)− wr(0)‖ ≤ η
√
p

t−1∑
s=0

n∑
i=1

‖ψ′(wr(t)>xi)brxiei(t)‖

≤ c
η
√
p

t−1∑
s=0

n∑
i=1

|br||ei(t)|

≤ c|br|
η
√
n

√
p

t−1∑
s=0

‖e(t)‖

≤ c|br|
√
n

γ
√
p
‖e(0)‖

≤ c
n
√

log p

γ
√
p

where we use that ψ′ is bounded, (2.14) and (2.15).
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Lemma 2.5.9. Assume all the inequalities from Lemma 2.5.6 hold. Under the con-

ditions of Theorem 2.3.2, if the bound for the weights difference (2.5) holds for all

t ≤ t′ and error bound (2.4) holds for all t ≤ t′ − 1, then (2.4) holds for t = t′.

Proof. We start with analyzing the error e(t) according to

ei(t+ 1) =
1
√
p
β(t+ 1)>ψ(W (t+ 1)xi)− yi

=
1
√
p
β(t+ 1)>(ψ(W (t+ 1)xi)− ψ(W (t)xi))

+
1
√
p

(β(t+ 1)− β(t))>ψ(W (t)xi)

+
1
√
p
β(t)>ψ(W (t)xi)− yi

= ei(t)−
η

p
β(t+ 1)>Di(t)

n∑
j=1

Dj(t)bx
>
j xiej(t)

− η

p

n∑
j=1

ψ(W (t)xj)
>ψ(W (t)xi)ej(t) + vi(t)

= ei(t)− η
n∑
j=1

(
Hij(t) +Gij(t)

)
ej(t) + vi(t)

where

Gij(t) =
1

p
ψ(W (t)xj)

>ψ(W (t)xi)

Hij(t) =
x>i xj
p

β(t+ 1)>Di(t)Dj(t)b

and vi(t) is the residual term from the Taylor expansion

vi(t) =
1

2
√
p

p∑
r=1

βr(t+ 1)|(wr(t+ 1)− wr(t))>xi|2ψ′′(ξri(t))

with ξri(t) between wr(t)
>xi and wr(t+1)>xi. We can also rewrite the above iteration

in vector form as

e(t+ 1) = e(t)− η(G(t) +H(t))e(t) + v(t). (2.18)
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Now for t = t′ − 1, we wish to show that both G(t) and H(t) are close to their

initialization. Notice that

|Gij(t)−Gij(0)| = 1

p

∣∣∣ψ(W (t)xj)
>ψ(W (t)xi)− ψ(W (t)xj)

>ψ(W (t)xi)
∣∣∣

≤ 1

p

p∑
r=1

|ψ(wr(t)
>xj)||ψ(wr(t)

>xi)− ψ(wr(0)>xi)|

+
1

p

p∑
r=1

|ψ(wr(0)>xi)||ψ(wr(t)
>xj)− ψ(wr(0)>xj)|

≤ c
1

p

p∑
r=1

|wr(t)>xi − wr(0)>xi|+
1

p

p∑
r=1

|wr(t)>xj − wr(0)>xj|

≤ c0
n
√

log p

γ
√
p

(‖xi‖+ ‖xj‖)

where the second inequality is due to the boundedness of ψ and ψ′, and the last

inequality is by (2.5). Then we have

‖G(t)−G(0)‖ ≤ max
j∈[n]

n∑
i=1

|Gij(t)−Gij(0)| ≤ c0
n2
√

log p

γ
√
p

. (2.19)
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For matrix H(t), we similarly have

|Hij(t)−Hij(0)| ≤ |x
>
i xj|
p

∣∣∣β(t+ 1)>Di(t)Dj(t)b− β(0)>Di(0)Dj(0)b
∣∣∣

≤ ‖xi‖‖xj‖
p

p∑
r=1

∣∣∣brβr(t+ 1)ψ′(wr(t)
>xi)ψ

′(wr(t)
>xj)

− brβr(0)ψ′(wr(0)>xi)ψ
′(wr(0)>xj)

∣∣∣
≤ |‖xi‖‖xj‖|

p

p∑
r=1

(
|br||βr(t+ 1)− βr(0)||ψ′(wr(t)>xi)ψ′(wr(t)>xj)|

+ |br||βr(0)||ψ′(wr(t)>xi)− ψ′(wr(0)>xi)||ψ′(wr(t)>xj)|

+ |br||βr(0)||ψ′(wr(0)>xi)||ψ′(wr(t)>xj)− ψ′(wr(0)>xj)|
)

≤ c
‖xi‖‖xj‖

p

p∑
r=1

(
|br|

n

γ
√
p

+ |br||βr(0)|n
√

log p

γ
√
p

(‖xi‖+ ‖xj‖)
)

≤ c1
n

γ
√
p

+ c2
n
√

log p

γ
√
p

.

It follows that

‖H(t)−H(0)‖ ≤ max
j∈[n]

n∑
i=1

|Hij(t)−Hij(0)| ≤ c1
n2

γ
√
p

+ c2
n2
√

log p

γ
√
p

. (2.20)

Next, we bound the residual term vi(t). Since ψ′′ is bounded, we have

|vi(t)| ≤ c
1
√
p

p∑
r=1

|βr(t+ 1)|‖wr(t+ 1)− wr(t)‖2

≤ c
1
√
p

η2

p

p∑
r=1

|βr(t+ 1)|
( n∑
i=1

‖ψ′(wr(t)>xi)brxiei(t)‖
)2

≤ c
1
√
p

η2

p

p∑
r=1

|βr(t+ 1)||br|2
( n∑
i=1

|ei(t)|
)2

≤ c
η2n
√
p
‖e(t)‖2

≤ c3
η2n
√
n

√
p
‖e(t)‖.
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This leads to the bound

‖v(t)‖ =
( n∑
i=1

|vi(t)|2
)1/2
≤ c3

η2n2

√
p
‖e(t)‖. (2.21)

Combining Eqs. (2.18) to (2.21), we have

‖e(t+ 1)‖ ≤ ‖In − η(G(t) +H(t))‖‖e(t)‖+ ‖v(t)‖

≤
(
‖In − ηG(0)‖+ η‖G(t)−G(0)‖+ η‖H(0)‖

+ η‖H(t)−H(0)‖
)
‖e(t)‖+ ‖v(t)‖

≤
(

1− 3ηγ

4
+ c0

ηn2
√

log p

γ
√
p

+
ηγ

4
+ c1

ηn2

γ
√
p

+ c2
ηn2
√

log p

γ
√
p

+ c3
η2n
√
n

√
p

)
‖e(t)‖

≤ (1− ηγ

4
)‖e(t)‖

where we use Lemma 2.5.7 and p = Ω(n
4 log p
γ4

).

Proof of Theorem 2.3.2. We prove the inequality (2.4) by induction. Suppose (2.4)

and (2.5) hold for all t = 1, 2, ..., t′ − 1, by Lemma 2.5.8 and Lemma 2.5.9 we know

(2.4) and (2.5) hold for t = t′, which completes the proof.

Proof of Theorem 2.4.2

Lemma 2.5.10. Assume all the inequalities from Lemma 2.5.6 hold. Under the

conditions of Theorem 2.4.2, if the error bound (2.7) holds for all t = 1, 2, ..., t′ − 1,

then

‖wr(t)− wr(0)‖ ≤ c1
n
√

log p

γ
√
p

(1 + ηS̃λ),

|βr(t)− βr(0)| ≤ c2
n

γ
√
p

(1 + ηS̃λ)

(2.22)

hold for all t ≤ t′, where c1, c2 are constants.

Proof. For any k ≤ t′ − 1, we apply (2.7) repeatedly on the right hand side of itself
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to get

‖e(k)‖ ≤
k−1∏
i=0

(
1− ηγ

4
− ηλ(i)

)
‖e(0)‖+

k−1∑
i=0

ηλ(i)
∏
i<j<k

(
1− ηγ

4
− ηλ(j)

)
‖y‖.

For t ≤ t′ − 1, we take the sum over k = 0, .., t on both sides of above inequality to

obtain

t∑
k=0

‖e(k)‖ ≤
t∑

k=0

k−1∏
i=0

(
1− ηγ

4
− ηλ(i)

)
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
∏
i<j<k

(
1− ηγ

4
− ηλ(j)

)
‖y‖

≤
t∑

k=0

(
1− ηγ

4

)k−1
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
(

1− ηγ

4

)k−i−1
‖y‖

≤
t∑

k=0

(
1− ηγ

4

)k−1
‖e(0)‖+ η‖y‖

t−1∑
k=0

λ(i)
T∑

k=i+1

(
1− ηγ

4

)k−i−1
≤ 4

ηγ
‖e(0)‖+

4

γ
S̃λ‖y‖

≤ c
√
n

γ
(
1

η
+ S̃λ)

where we use ‖e(0)‖ = O(
√
n) and ‖y‖ = O(

√
n). Then for all t ≤ t′, we have

|βr(t)− βr(0)| ≤ η
√
p

t−1∑
s=0

n∑
i=1

|ψ(wr(t)xi)ei(t)|

≤ c
η
√
p

t−1∑
s=0

n∑
i=1

|ei(t)|

≤ c
η
√
n

√
p

t−1∑
s=0

‖e(t)‖

≤ c
η
√
n

√
p

√
n

γ
(
1

η
+ S̃λ)

≤ c
n

γ
√
p

(1 + ηS̃λ)
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where we use ψ is bounded and (2.14). We also have

‖wr(t)− wr(0)‖ ≤ η
√
p

t−1∑
s=0

n∑
i=1

‖ψ′(wr(t)>xi)brxiei(t)‖

≤ c
η
√
p

t−1∑
s=0

n∑
i=1

|br||ei(t)|

≤ c|br|
η
√
n

√
p

t−1∑
s=0

‖e(t)‖

≤ c|br|
η
√
n

√
p

√
n

γ
(
1

η
+ S̃λ)

≤ c
n
√

log p

γ
√
p

(1 + ηS̃λ)

where we use the fact that ψ′ is bounded, (2.14) and (2.15).

Lemma 2.5.11. Assume all the inequalities from Lemma 2.5.6 hold. Under the

conditions of Theorem 2.4.2, if the bound for weights difference (2.22) holds for all

t ≤ t′ and error bound (2.7) holds for all t ≤ t′ − 1, then (2.7) holds for t = t′.

Proof. We start by analyzing the error e(t) according to

ei(t+ 1) =
1
√
p
β(t+ 1)>ψ(W (t+ 1)xi)− yi

=
1
√
p
β(t+ 1)>(ψ(W (t+ 1)xi)− ψ(W (t)xi)) +

1
√
p

(β(t+ 1)− (1− ηλ(t))β(t))>ψ(W (t)xi)

+ (1− ηλ(t))
( 1
√
p
β(t)>ψ(W (t)xi)− yi

)
− ηλ(t)y

= (1− ηλ(t))ei(t)−
η

p
β(t+ 1)>Di(t)

n∑
j=1

Dj(t)bx
>
j xiej(t)−

η

p

n∑
j=1

ψ(W (t)xj)
>ψ(W (t)xi)ej(t)− ηλ(t)y

+ vi(t)

= (1− ηλ(t))ei(t)− η
n∑
j=1

(
Hij(t) +Gij(t)

)
ej(t) + vi(t)− ηλ(t)y
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where

Gij(t) =
1

p
ψ(W (t)xj)

>ψ(W (t)xi)

Hij(t) =
x>i xj
p

β(t+ 1)>Di(t)Dj(t)b

and vi(t) is the residual term from a Taylor expansion

vi(t) =
1

2
√
p

p∑
r=1

βr(t+ 1)|(wr(t+ 1)− wr(t))>xi|2ψ′′(ξri(t))

with ξri(t) between wr(t)
>xi and wr(t+1)>xi. We can also rewrite the above iteration

in vector form as

e(t+ 1) = (1− λ(t))e(t)− η(G(t) +H(t))e(t) + v(t)− ηλ(t)y. (2.23)

Now for t = t′ − 1, we show that both G(t) and H(t) are close to their initialization.

Using the argument in Lemma 2.5.9, we can obtain following bounds

‖G(t)−G(0)‖ ≤ c1
n2
√

log p

γ
√
p

(1 + ηS̃λ) (2.24)

‖H(t)−H(0)‖ ≤ c2
n2
√

log p

γ
√
p

(1 + ηS̃λ) (2.25)

‖v(t)‖ ≤ c3
η2n2

√
p
‖e(t)‖. (2.26)
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Combining Eqs. (2.23) to (2.26), we have

‖e(t+ 1)‖ ≤ ‖(1− ηλ(t))In − η(G(t) +H(t))‖‖e(t)‖+ ‖v(t)‖

≤
(
‖(1− ηλ(t))In − ηG(0)‖+ η‖G(t)−G(0)‖+ η‖H(0)‖

+ η‖H(t)−H(0)‖
)
‖e(t)‖+ ‖v(t)‖

≤
(

1− ηλ(t)− 3ηγ

4
+ (c1 + c2)

ηn2
√

log p

γ
√
p

(1 + ηS̃λ) + c3
η2n
√
n

√
p

)
‖e(t)‖

≤ (1− ηλ(t)− ηγ

4
)‖e(t)‖

where we use Lemma 2.5.7, p = Ω(n
4 log p
γ4

) and S̃λ = O(
γ2
√
p

ηn2
√
log p

).

Proof of Theorem 2.4.2. We prove the inequality (2.7) by induction. Suppose (2.7)

holds for all t = 1, 2, ..., t′ − 1. Then by Lemma 2.5.10 and Lemma 2.5.11 we know

(2.7) holds for t = t′, which completes the proof.

2.5.3 Alignment on Two-Layer Linear Networks

Now we assume ψ(u) = u, so that f is a linear network. The loss function with

regularization at time t is

L(t,W, β) =
1

2

∥∥ 1
√
p
XW>β − y

∥∥2 +
1

2
λ(t)‖β‖2. (2.27)

The regularized feedback alignment algorithm gives

W (t+ 1) = W (t)− η 1
√
p
be(t)>X

β(t+ 1) = (1− ηλ(t))β(t)− η
√
p
W (t)X>e(t)

(2.28)

where e(t) = 1√
p
XW (t)>β(t)− y is the error vector at time t.

Lemma 2.5.12. Suppose the network is trained with the regularized feedback align-
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ment algorithm (2.28). Then the prediction error e(t) satisfies the recurrence

e(t+ 1) =

[
(1− ηλ(t))Id −

η

p
XW (0)>W (0)X> − η

(
J1(t) + J2(t) + J3(t)

)]
e(t)− ηλ(t)y

(2.29)

where

J1(t) =
1

p
b>β(0)

t∏
i=0

(1− ηλ(i))XX>

J2(t) = −η
p

(
v̄>X>ŝ(t)XX> +XX>s(t− 1)v̄>X> +Xv̄s(t− 1)>XX>

)
J3(t) =

η2

p2
‖b‖2

(
Ŝ(t)XX> +XX>s(t− 1)s(t− 1)>XX>)

and

v̄ =
1
√
p
W (0)>b

s(t) =
t∑
i=0

e(i)

ŝ(t) =
t∑
i=0

∏
i<k≤t

(1− ηλ(k))e(i)

Ŝ(t) =
t∑
i=0

∏
i<k≤t

(1− ηλ(k))e(i)>XX>
i−1∑
j=0

e(j).

Proof. We first write W (t) in terms of W (0) and e(i), i ∈ [t], so that

W (t) = W (0)− η
√
p
b

t−1∑
i=0

e(i)>X = W (0)− η
√
p
bs(t− 1)>X. (2.30)
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Similarly, for β(t) we have

β(t) =
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))W (i)X>e(i)

=
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))
(
W (0)− η

√
p
b

i−1∑
j=0

e(j)>X
)
X>e(i)

=
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p

t−1∑
i=0

∏
i<k<t

(1− ηλ(k))W (0)X>e(i)

+
η2

p
b
t−1∑
i=0

∏
i<k<t

(1− ηλ(k))e(i)>XX>
i−1∑
j=0

e(j)

=
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p
W (0)X>ŝ(t− 1) +

η2

p
bŜ(t− 1).

(2.31)

We now study how the error e(t) changes after a single update step, writing

e(t+ 1) =
1
√
p
XW (t+ 1)>β(t+ 1)− y

=
1
√
p
X(W (t+ 1)−W (t)>β(t+ 1) +

1
√
p
XW (t)>(β(t+ 1)− (1− ηλ(t))β(t))

+ (1− ηλ(t))
( 1
√
p
XW (t)>β(t)− y

)
− ηλ(t)y

= (1− ηλ(t))e(t)− η

p
b>β(t+ 1)XX>e(t)− η

p
XW (t)>W (t)X>e(t)− ηλ(t)y

By plugging (2.30) and (2.31) into above equation, we have

e(t+ 1) = (1− ηλ(t))e(t)

− η

p
b>
[ t∏
i=0

(1− ηλ(i))β(0)− η
√
p
W (0)X>ŝ(t) +

η2

p
bŜ(t)

]
XX>e(t)

− η

p
X

[
W (0)− η

√
p
bs(t− 1)>X

]>[
W (0)− η

√
p
bs(t− 1)>X

]
X>e(t)

− ηλ(t)y

After expanding the brackets and rearranging the items, we can obtain (2.29).
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Lemma 2.5.13. Given δ ∈ (0, 1) and ε > 0 , if p = Ω(1
ε

log d
δ

+ d
ε

log 1
ε
), the following

inequalities hold with probability at least 1− δ

|b>β(0)|
√
p
≤ c

√
log

1

δ
(2.32)

‖b>W (0)‖
√
p

≤ c

√
d log

d

δ
(2.33)

∣∣∣‖b‖2
p
− 1
∣∣∣ ≤ c
√
p

√
log

1

δ
(2.34)

∥∥∥1

p
W (0)>W (0)− Id

∥∥∥ ≤ ε (2.35)

where c is a constant.

Proof. (2.32) is derived from Lemma 2.5.4. (2.33) is by (2.32) and a union bound

argument. (2.34) is by Lemma 2.5.3. (2.35) is by Corollary 2.5.2

Proof of Theorem 2.4.3. We show (2.8) by induction. Assume (2.8) holds for all

t = 0, 1, ..., t′, we will show it hold for t = t′ + 1. For any k ≤ t′, we apply (2.8)

repeatedly on the right hand side of itself to get

‖e(k)‖ ≤
k−1∏
i=0

(
1− ηγ

2
− ηλ(i)

)
‖e(0)‖+

k−1∑
i=0

ηλ(i)
∏
i<j<k

(
1− ηγ

2
− ηλ(j)

)
‖y‖
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For t ≤ t′, we take the sum over k = 0, .., t on both sides of above inequality

t∑
k=0

‖e(k)‖ ≤
t∑

k=0

k−1∏
i=0

(
1− ηγ

2
− ηλ(i)

)
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
∏
i<j<k

(
1− ηγ

2
− ηλ(j)

)
‖y‖

≤
t∑

k=0

(
1− ηγ

2

)k−1
‖e(0)‖+

t∑
k=0

k−1∑
i=0

ηλ(i)
(

1− ηγ

2

)k−i−1
‖y‖

≤
t∑

k=0

(
1− ηγ

2

)k−1
‖e(0)‖+ η‖y‖

t−1∑
k=0

λ(i)
T∑

k=i+1

(
1− ηγ

2

)k−i−1
≤ 2

ηγ
‖e(0)‖+

2

γ
Sλ‖y‖

≤ c
√
n

γ
(
1

η
+ Sλ)

where we use ‖e(0)‖ = O(
√
n) and ‖y‖ = O(

√
n). With this bound and the in-

equalities from Lemma 2.5.13, we can bound the norms of J1(t), J2(t) and J3(t) from

Lemma 2.5.12. It follows that

‖J1(t)‖ ≤
1

p
|b>β(0)|‖XX>‖ ≤ c

M
√

log δ−1
√
p

≤ γ

16
, (2.36)

‖J2(t)‖ ≤
η

p
‖X‖‖XX>‖‖v̄‖(2‖s(t−1)‖+‖ŝ(t)‖) ≤ c

η

p
M3/2

√
d log

d

δ

√
n

γ
(
1

η
+Sλ) ≤

γ

16

(2.37)

and

‖J3(t)‖ ≤
η2

p2
‖b‖2(‖XX>‖|Ŝ(t)|+ ‖XX>‖2‖s(t− 1)‖2) ≤ c

η2

p
M2 n

γ2
(
1

η
+ Sλ)

2 ≤ γ

16

(2.38)

hold for all t ≤ t′ if p = Ω(Md log(d/δ)
γ

) and Sλ = O(
γ
√
γp

η
√
nM

). Furthermore, since
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‖1
p
W (0)W (0)> − Id‖ ≤ ε0 with high probability when p = Ω(d), we have

‖1

p
XW (0)>W (0)X> − γId‖ ≤ ‖

1

p
XW (0)>W (0)X> −XX>‖+ ‖XX> − γId‖

≤ (1 + ε)ε0γ + εγ ≤ γ

16
(2.39)

Therefore, combining (2.36), (2.37), (2.38) and (2.29), we have

‖e(t′ + 1)‖ ≤
(

1− ηλ(t′)− ηγ
)
‖e(t′)‖+ η

∥∥∥η
p
XW (0)>W (0)X> − γId

∥∥∥‖e(t′)‖
+ η(‖J1(t′)‖+ ‖J2(t′)‖+ ‖J3(t′)‖)‖e(t′)‖+ ηλ(t′)‖y‖

≤
(

1− ηλ(t′)− ηγ
)
‖e(t′)‖+

1

16
ηγ‖e(t′)‖+

3

16
ηγ‖e(t′)‖+ ηλ(t′)‖y‖

≤
(

1− ηλ(t′)− ηγ

2

)
‖e(t′)‖+ ηλ(t′)‖y‖

which completes the proof.

Proof of Proposition 2.4.5. By Corollary 2.5.2, if d = Ω(1
ε

log n
δ

+ n
ε

log 1
ε
), we have

‖XX> − In‖ ≤ ε

It follows that λmin(XX>) ≥ 1 − ε and λmax(XX
>) ≤ 1 + ε ≤ (1 + 4ε)(1 − ε) for

ε < 1/2.

Lemma 2.5.14. Recall from Lemma 2.5.12 that

β(t) =
t−1∏
i=0

(1− ηλ(i))β(0)− η
√
p
W (0)X>ŝ(t− 1) +

η2

p
bŜ(t− 1)

with ŝ(t) =
∑t

i=0

∏
i<k≤t(1−ηλ(k))e(i) and Ŝ(t) =

∑t
i=0

∏
i<k≤t(1−ηλ(k))e(i)>XX>

∑i−1
j=0 e(j).

Under the conditions of Theorem 2.4.6, if t > C1
log(p/η)
ηλ

and Ŝ(t) ≥ max(C2

√
pγ

η
‖ŝ(t)‖, 1)

for some positive constants C1 and C2, then cos∠(b, β(t)) ≥ c for some constant

c = cδ.
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Proof. We compute the cosine of the angle between β(t) and b. With probability

1− δ,

cos∠(b, β(t)) =
b>β(t)

‖b‖‖β(t)‖
=

b
‖b‖
>
β(t)

‖β(t)‖

≥
η2

p
‖b‖Ŝ(t− 1)− (1− ηλ)t‖β(0)‖ − η√

p
‖ b
‖b‖
>
W (0)‖‖X‖‖ŝ(t− 1)‖

η2

p
‖b‖Ŝ(t− 1) + (1− ηλ)t‖β(0)‖+ η√

p
‖W (0)‖‖X‖‖ŝ(t− 1)‖

≥
c′1

η2√
p
Ŝ(t− 1)− c′2

√
p(1− ηλ)t − c′3η

√
dγ
p
‖ŝ(t− 1)‖

c′1
η2√
p
Ŝ(t− 1) + c′2

√
p(1− ηλ)t + c′4η

√
γ‖ŝ(t− 1)‖

where we use (2.34), (2.35) and the tail bound for standard Gaussian vectors, and c′i

are constants that only depend on δ. Notice that if t = Ω( log(p/η)
ηλ

), we have c′2
√
p(1−

ηλ)t = O( η
2
√
p
). It follows that cos∠(b, β(t)) ≥ c if Ŝ(t−1) = Ω(

√
pγ

η
‖ŝ(t−1)‖+1).

Lemma 2.5.15. Consider the orthogonal decomposition e(t) = a(t)ȳ + ξ(t), where

ȳ = −y/‖y‖ and ξ(t) ⊥ y. Under the conditions of Theorem 2.4.6, there exists a

constant Cτ > 0 such that for any t ∈ [τ, T ] with τ = Cτ
ηλ

, we have

a(t) ≥ λ− γ
λ+ γ

‖y‖ (2.40)

and

‖ξ(t)‖ ≤ γ

λ+ γ
‖y‖. (2.41)

Proof. By Theorem 2.4.3, we have for all t ≤ T , ‖e(t)‖ ≤ (1 − ηλ − ηγ/2)‖e(t)‖ +

ηλ‖y‖. By rearranging the terms, we have

‖e(t+ 1)‖ − λ

λ− γ/2
‖y‖ ≤ (1− ηλ− ηγ

2
)
(
‖e(t)‖ − λ

λ− γ/2
‖y‖
)

or

‖e(t)‖− λ

λ− γ/2
‖y‖ ≤ (1− ηλ− ηγ

2
)t
(
‖e0‖−

λ

λ− γ/2
‖y‖
)
≤ (1− ηλ)t(‖e0‖+ ‖y‖).
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Notice that ‖y‖ and ‖e(0)‖ are of the same order, so when t ∈ [τ1, T ] with τ1 = c1
ηλ

and some constant c1, we have

‖e(t)‖ ≤ λ+ γ/2

λ− γ/2
‖y‖. (2.42)

In order to get a lower bound for a(t), we multiply ȳ> on both sides of (2.29). It

follows that for t ∈ [τ1, T ]

a(t+ 1) ≥ ȳ>
(

1− ηλ− ηγ
)
e(t)− η‖1

p
XW (0)>W (0)X> − γId‖‖e(t)‖

− η(‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖)‖e(t)‖+ ηλ‖y‖

≥ (1− ηλ− ηγ)a(t)− 1

4
ηγ‖e(t)‖+ ηλ‖y‖

≥ (1− ηλ− ηγ)a(t) +
1

2
ηγ‖y‖.

In the second inequality, we use the bounds (2.36), (2.37), (2.38) and (2.39). The last

inequality is by (2.42) and λ ≥ 3γ. Following a similar derivation, we have

a(t)−λ− γ/2
λ+ γ

‖y‖ ≥ (1−ηλ−ηγ)t−τ1
(
a(τ1)−

λ− γ/2
λ+ γ

‖y‖
)
≥ −(1−ηλ)t−τ1(‖e(τ1)‖+‖y‖).

The bound (2.40) holds when t ∈ [τ1 + τ2, T ] with τ2 = c2
ηλ

and some constant c2.

Then we multiply ξ(t+1)>

‖ξ(t+1)‖ on both sides of (2.29). This establishes that for t ∈ [τ1, T ]

‖ξ(t+ 1)‖ ≤ ξ(t+ 1)>

‖ξ(t+ 1)‖

(
1− ηλ− ηγ

)
e(t) + η‖1

p
XW (0)>W (0)X> − γId‖‖e(t)‖

+ η(‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖)‖e(t)‖+ ηλ‖y‖

≤ (1− ηλ− ηγ)‖ξ(t)‖+
ηγ

4
‖e(t)‖

≤ (1− ηλ− ηγ)‖ξ(t)‖+
ηγ

2
ηγ‖y‖.

The first inequality is by ξ(t + 1)>y = 0 and in the second inequality we use ξ(t +
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1)>e(t) = ξ(t+ 1)>ξ(t) ≤ ‖ξ(t+ 1)‖‖ξ(t)‖. It follows that

‖ξ(t)‖− γ/2

λ+ γ
‖y‖ ≤ (1−ηλ−ηγ)t−τ1

(
‖ξ(0)‖− γ/2

λ+ γ
‖y‖
)
≤ (1−ηλ)t−τ1(‖e(τ1)‖+‖y‖).

The bound (2.41) holds when t ∈ [τ1 + τ3, T ] with τ3 = c3
ηλ

for a constant c3. Finally,

the bounds (2.40) and (2.41) hold when t ∈ [τ, T ] with τ = τ1 + max(τ2, τ3).

Lemma 2.5.16. Under the conditions of Theorem 2.4.6, suppose T = bSλ
λ
c =

CT
√
p

η
√
nγ

. Then we have Ŝ(T ) ≥ c̃
√
pγ

η
‖ŝ(T )‖, where CT and c̃ are positive constants.

Proof. Notice that

e(i)>XX>e(j) ≥ γe(i)>e(j)−‖e(i)‖‖e(j)‖‖XX>−γI‖ ≥ γe(i)>e(j)−εγ‖e(i)‖‖e(j)‖.

For i ∈ [T/2, T ] and τ defined in Lemma 2.5.15, we have

e(i)>XX>
∑
j<i

e(j) = e(i)>XX>
∑
τ≤j<i

e(j) + e(i)>XX>
∑
j<τ

e(j)

≥
∑
τ≤j<i

(
γe(i)>e(j)− εγ‖e(i)‖‖e(j)‖

)
− 2γ

∑
j<τ

‖e(i)‖‖e(j)‖

≥
∑
τ≤j<i

γ
(
a(i)a(j)− ‖ξ(i)‖‖ξ(j)‖ − ε‖e(i)‖‖e(j)‖

)
− 2cτγ‖y‖2

≥ (i− τ)γ
[(λ− γ
λ+ γ

)2
‖y‖2 −

( γ

λ+ γ

)2
‖y‖2 − ε

(λ+ γ/2

λ− γ/2

)2
‖y‖2 − 2cτ

i− τ
‖y‖2

]
≥ T

8
γ‖y‖2 =

CT
8

√
p

η
√
nγ
γ‖y‖2

≥ c

√
pγ

η
‖y‖.

(2.43)

The second inequality is the orthogonal decomposition of e(i) and ‖e(i)‖ ≤ c‖y‖ given

by (2.8). The third inequality is by (2.40), (2.41) and (2.42) from Lemma 2.5.15. The

fourth inequality is by λ = Ω(γ), i − τ ≥ T/4 and the fact that τ/(i − τ) is small
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(p = Ω(n)). The last inequality is by ‖y‖ = Θ(
√
n). Therefore,

Ŝ(T ) =
T∑
i=0

(1− ηλ)T−ie(i)>XX>
∑
j<i

e(j)

=
T∑

i=T/2

(1− ηλ)T−ie(i)>XX>
∑
j<i

e(j) + (1− ηλ)T/2
T/2∑
i=0

(1− ηλ)T/2−ie(i)>XX>
∑
j<i

e(j)

≥
T∑

i=T/2

(1− ηλ)T−ic

√
pγ

η
‖y‖+ (1− ηλ)T/2

T/2∑
i=0

(1− ηλ)T/2−ic′Tγ‖y‖2

≥ c

2

√
pγ

η

‖y‖
ηλ
− (1− ηλ)T/2

c′Tγ‖y‖2

ηλ

≥ c

4

√
pγ

η

‖y‖
ηλ

where the last inequality is by (1− ηλ)T/2 � 1 when p = Ω(n). On the other hand,

‖ŝ(T )‖ ≤
T∑
i=0

(1− ηλ)T−i‖e(i)‖ ≤ c

ηλ
‖y‖.

Combining the above inequalities gives the proof.

Proof of Theorem 2.4.6. First, notice that λ(t) = 0 when t > T . By Theorem 2.4.3

we have that the prediction error converges to zero exponentially fast, or ‖e(t+1)‖ ≤

(1 − ηγ/2)‖e(t)‖. It follows that Ŝ(t) → Ŝ(∞) and ŝ(t) → ŝ(∞) as t → ∞. By

Lemma 2.5.14, we know it suffices to show Ŝ(∞) ≥ C
√
pγ

η
‖ŝ(∞)‖ with some constant

C. Since

Ŝ(∞) =
∞∑
i=0

(1− ηλ)(T−i)+e(i)>XX>
∑
j<i

e(j) = Ŝ(T ) +
∑
i>T

e(i)>XX>
∑
j<i

e(j)

and

ŝ(∞) =
∞∑
i=0

(1− ηλ)(T−i)+e(i) = ŝ(T ) +
∑
i>T

e(i),
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by Lemma 2.5.16, it suffices to show

∑
i>T

e(i)>XX>
∑
j<i

e(j) ≥ C

√
pγ

η

∑
i>T

‖e(i)‖. (2.44)

We write g = XX>
∑

j<T e(j). Then we have

‖g‖ ≥ λmin(XX>)
[∥∥∥ ∑

τ≥j<T
e(j)

∥∥∥−∑
j<τ

‖e(j)‖
]

≥ λmin(XX>)
[ ∑
τ≥j<T

a(j)−
∑
j<τ

‖e(j)‖
]

≥ γ
[
(T − τ)

(λ− γ
λ+ γ

)
‖y‖ − τc‖y‖

]
(2.45)

and

‖g‖ ≤ ‖XX>‖
(∑
j<τ

‖e(j)‖+
∑
τ≥j<T

‖e(j)‖
)

≤ (1 + ε)γ
[
τc‖y‖+ (T − τ)

(λ+ γ/2

λ− γ/2

)
‖y‖
] (2.46)

where we use the bounds (2.40) and (2.42) from Lemma 2.5.15. We further denote

α(t) = ḡ>e(t) where ḡ = g/‖g‖. Following the same calculation in (2.43), we have

g>e(T ) = e(T )>XX>
∑
j<T

e(j)

≥ (T − τ)γ
[(λ− γ
λ+ γ

)2
‖y‖2 −

( γ

λ+ γ

)2
‖y‖2 − ε

(λ+ γ/2

λ− γ/2

)2
‖y‖2 − 2cτ

T − τ
‖y‖2

]
.

Then

α(T )

‖e(T )‖
≥ g>e(T )

‖g‖‖e(T )‖

≥
(T − τ)γ

[(
λ−γ
λ+γ

)2
‖y‖2 −

(
γ

λ+γ

)2
‖y‖2 − ε

(
λ+γ/2
λ−γ/2

)2
‖y‖2 − 2cτ

T−τ ‖y‖
2
]

(1 + ε)γ
[
τc‖y‖+ (T − τ)

(
λ+γ/2
λ−γ/2

)
‖y‖
]
×
(
λ+γ/2
λ−γ/2

)
‖y‖

≥

[(
λ−γ
λ+γ

)2
−
(

γ
λ+γ

)2
− ε
(
λ+γ/2
λ−γ/2

)2
− 2cτ

T−τ

]
(1 + ε)

[
τc
T−τ +

(
λ+γ/2
λ−γ/2

)]
×
(
λ+γ/2
λ−γ/2

) .
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Notice that T/τ = Ω(
√
p/n), so that when p/n, λ/γ are large and ε is small, we have

α(T ) ≥ 3

4
‖e(T )‖. (2.47)

In order to obtain the lower bound on α(t) for all t ≥ T , we multiply ḡ> on both sides

of (2.29). Notice λ(t) = 0 and apply the bounds (2.36), (2.37), (2.38) and (2.39). We

have that

α(t+ 1) ≥ (1− ηγ)ḡ>e(t)− η‖1

p
XW (0)>W (0)X> − γId‖‖e(t)‖

− η(‖J1(t)‖+ ‖J2(t)‖+ ‖J3(t)‖)‖e(t)‖

≥ (1− ηγ)α(t)− ηγ

4
‖e(t)‖

or for t ≥ T ,

α(t) ≥ (1− ηγ)t−Tα(T )− ηγ

4

t−1∑
i=T

(1− ηγ)t−i‖e(i)‖. (2.48)

Taking the sum over t > T , we have

∑
t>T

α(t) ≥
∑
t>T

(1− ηγ)t−Tα(T )− ηγ

4

∑
t>T

t−1∑
i=T

(1− ηγ)t−i‖e(i)‖

≥ 1− ηγ
ηγ

α(T )− ηγ

4

∑
i>T

‖e(i)‖
∑
t>i

(1− ηγ)t−i

≥ 1− ηγ
ηγ

(
α(T )− ηγ

4

∑
i>T

‖e(i)‖
)

≥ 1− ηγ
ηγ

(α(T )− 1

2
‖e(T )‖)

≥ 1− ηγ
4ηγ

‖e(T )‖.

(2.49)

The second inequality follows from switching the order of sums. The fourth inequality

is by exponential convergence after T steps. The last inequality is by (2.47). With
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the above inequalities, we are ready to bound the left hand side of (2.44), obtaining

∑
i>T

e(i)>XX>
∑
j<i

e(j) =
∑
i>T

e(i)>XX>
∑
j<T

e(j) +
∑
i>T

e(i)>XX>
∑
j≥T

e(j)

≥
∑
t>T

α(t)‖g‖ − 2γ
(∑

i≥t
‖e(i)‖

)2
≥ 1− ηγ

4ηγ
‖e(T )‖γ

[
(T − τ)

(λ− γ
λ+ γ

)
‖y‖ − τc‖y‖

]
− 2γ

4

η2γ2
‖e(T )‖2

≥ 1− ηγ
4ηγ

‖e(T )‖γ
[
(T − τ)

(λ− γ
λ+ γ

)
‖y‖ − τc‖y‖ − 64

ηγ(1− ηγ)
‖y‖
]

≥ 1− ηγ
4ηγ

‖e(T )‖γT
2
‖y‖ =

1− ηγ
4ηγ

‖e(T )‖γCT
2

√
p

η
√
nγ
‖y‖

≥ C
1− ηγ

4ηγ

√
pγ

η
‖e(T )‖.

(2.50)

The second inequality is by (2.49) and (2.45). The third inequality is by ‖e(T )‖ ≤

2‖y‖. The last inequality is by ‖y‖ = Θ(
√
n). On the other hand,

∑
i>T

‖e(i)‖ ≤
∑
i>T

(1− ηγ/2)i−T‖e(T )‖ =
1− ηγ/2
ηγ/2

‖e(T )‖ (2.51)

Combining (2.50) and (2.51) implies (2.44), as desired.

2.6 Simulations

Our experiments apply the feedback alignment algorithm to two-layer networks, us-

ing a range of networks with different widths and activations. The numerical results

suggest that regularization is essential in achieving alignment, in both regression and

classification tasks, for linear and nonlinear models. We implement the feedback

alignment procedure in PyTorch as an extension of the autograd module for back-

propagation, and the training is done on V100 GPUs from internal clusters.
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(f) Loss on Tanh network.

Figure 2.2: Comparisons of alignment and convergence for the feedback alignment
algorithm on synthetic data with different levels of `2 regularization. The x-axes on
the first row and the y-axes on the second row are presented using a logarithmic scale.

Feedback alignment on synthetic data. We first train two-layer networks on

synthetic data, where each network f shares the architecture shown in (2.1) and

the data are generated by another network f0 that has the same architecture but

with random Gaussian weights. We present the experiments for both linear and

nonlinear networks, where the activation functions are chosen to be Rectified Linear

Unit (ReLU) and hyperbolic tangent (Tanh) for nonlinear case. We set training

sample sample size to n = 50 and the input dimension d = 150, but vary the hidden

layer width p = 100 × 2k with k ∈ [7]. During training, we take step size η = 10−4

for linear networks and η = 10−3, 10−2 for ReLU and Tanh networks, respectively.

In Figs. 2.2a to 2.2c, we show how alignment depends on regularization and the

degree of overparameterization as measured by the hidden layer width p. Alignment
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is measured by the cosine of the angle between the forward weights β and backward

weights b. We train the networks until the loss function converges; this procedure is

repeated 50 times for each p and λ. The data points in the figures represent the mean

value computed across simulations, and the error bars mark the standard deviation

out of 50 independent runs. For all three types of networks, as p increases, alignment

vanishes if there is no regularization, and grows with the level of regularization λ

for the same network. We complement the alignment plots with the corresponding

loss curves. In Figs. 2.2d to 2.2f, we show the trajectories of the training loss for

networks with p = 3200, with the shaded areas indicating the standard deviation

over 50 independent runs. We observe that the training loss converges slower with

larger regularization. These numerical results are consistent with our theoretical

statements. Due to the regularization, the loss converges to a positive number that

is of the same order as λ.

We remark that using dropout as a form of regularization can also help the align-

ment between forward and backward weights (Wager et al., 2013). However, our nu-

merical results suggest that dropout regularization fails to keep the alignment away

from zero for networks with large hidden layer width. No theoretical result is available

that explains the underlying mechanism.

Feedback alignment on the MNIST dataset. The MNIST dataset is available

under the Creative Commons Attribution-Share Alike 3.0 license (Deng, 2012). It

consists of 60,000 training images and 10,000 test images of dimension 28 by 28. We

reshape them into vectors of length d = 784 and normalize them by their mean and

standard deviation. The network structure is 784-1000-10 with ReLU activation at

the hidden layer and with softmax normalization at output layer. During training,

we choose the batch size to be 600 and the step size η = 10−2. The training procedure

uses 300 epochs in total. We repeat the training 10 times for each choice of λ.

46



0 5000 10000 15000 20000 25000 30000

Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
lig

nm
en

t

Regularization λ

0.0

0.1

0.3

0 5000 10000 15000 20000 25000 30000

Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Regularization λ

0.0

0.1

0.3

Figure 2.3: Comparisons of alignment and accuracy for feedback alignment algorithm
on MNIST with different levels of `2 regularization.

Fig. 2.3 shows the performance of feedback alignment with regularization λ =

0, 0.1, 0.3. The dashed lines and corresponding shaded areas represent the means and

the standard deviations over 10 runs with random initialization. Since the output of

the network is not one-dimensional but 10-dimensional, the alignment is now mea-

sured by cos∠(δBP(h), δFA(h)), where δBP(h) is the error signal propagated to the

hidden neurons h through forward weights β, and δFA(h) the error weighted by the

random backward weights b. We observe that both alignment and convergence are

improved by adding regularization to the training, and increasing the regularization

level λ can further facilitate alignment, with a small gain in test accuracy.

2.7 Discussion

In this chapter we have analyzed the feedback alignment algorithm of Lillicrap et al.

(2016), showing convergence of the algorithm. The convergence is subtle, as the

algorithm does not directly minimize the target loss function; rather, the error is

transferred to the hidden neurons through random weights that do not change during

the course of learning. The supplement to Lillicrap et al. (2016) presents interesting
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insights on the dynamics of the algorithm, such as how the feedback weights act

as pseudoinverse of the forward weights. After giving an analysis of convergence in

the linear case, the authors state that “a general proof must be radically different

from those used to demonstrate convergence for backprop” (Supplementary note 16),

observing that the algorithm does not minimize any loss function. Our proof of

convergence in the general nonlinear case leverages techniques from the use of neural

tangent kernel analysis in the over-parameterized setting, but requires more care

because the kernel is not positive semi-definite at initialization. In particular, as a sum

of two terms G and H, the matrix G is concentrated around its positive-definite mean,

while H is not generally positive-semidefinite. However, we show that the entries of

both matrices remain close to their initial values, due to over-parameterization, and

analyze the error term in a Taylor expansion, which establishes convergence.

In analyzing alignment, we unexpectedly found that regularization is essential;

without it, the alignment may not persist as the network becomes wider, as our

simulations clearly show. Our analysis in the linear case proceeds by essentially

showing that

β(t) = (1− ηλ)t−1β(0) +
η
√
p
W (0)X>α1(t− 1) +

(
η
√
p

)
bα2(t− 1)

and controlling α1 while showing that α2 remains sufficiently large; the regularization

kills off the first term. Although we see no obstacle, in principle, to carrying out this

proof strategy in the nonlinear case, the calculations are more complex. While con-

vergence requires analysis of the norm of the error, alignment requires understanding

the direction of the error. But our simulations strongly suggest this result will go

through.
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2.8 Future Work

In this work, we provide convergence results on general two-layer networks and align-

ment results on linear networks, without an activation function. An immediate future

direction is to analyze the alignment phenomenon on two-layer nonlinear networks,

and it is also meaningful to study the training problem in the large sample regime

rather than the over-parameterization regime. In the multi-layer case, direct feedback

alignment (DFA) (Nøkland, 2016) provides an alternative training scheme where the

error signals are propagated directly to each layer with a single random weight ma-

trix, instead of being propagated layer by layer. The theoretical analysis for both FA

and DFA on multi-layer networks would be important in the future.

In terms of methodology, it would be interesting to explore new algorithms to im-

prove the performance of the feedback alignment algorithm. Specifically, in feedback

alignment, the backward weights between layers are fixed, but it seems more natural

to update them during training. One possible approach is to use Hebbian learning

rule to devise a local update method for the backward weights. Another way could

be updating the backward weights by the input signals propagated through forward

weights, which can be viewed as an analogy of updating the forward weights by the

error signals propagated through backward weights in feedback alignment. We would

expect that both the convergence and alignment can be improved when updating

weights in both directions.

More generally, it is also important to study other biologically plausible learning

rules that can be implemented in deep learning frameworks at scale and without loss

of performance. The results presented here offer support for this as a fruitful line of

research.
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Chapter 3

Surfing: Iterative Optimization

Over Incrementally Trained Deep

Networks

In this chapter, we investigate a sequential optimization procedure to minimize the

empirical risk functional fθ̂(x) = 1
2
‖Gθ̂(x)− y‖2 for certain families of deep networks

Gθ(x). The approach is to optimize a sequence of objective functions that use network

parameters obtained during different stages of the training process. When initialized

with random parameters θ0, we show that the objective fθ0(x) is “nice” and easy to

optimize with gradient descent. As learning is carried out, we obtain a sequence of

generative networks x 7→ Gθt(x) and associated risk functions fθt(x), where t indicates

a stage of stochastic gradient descent during training. Since the parameters of the

network do not change by very much in each step, the surface evolves slowly and can

be incrementally optimized. The algorithm is formalized and analyzed for a family

of expansive networks. We call the procedure surfing since it rides along the peak

of the evolving (negative) empirical risk function, starting from a smooth surface at

the beginning of learning and ending with a wavy nonconvex surface after learning
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is complete. Experiments show how surfing can be used to find the global optimum

and for compressed sensing even when direct gradient descent on the final learned

network fails.

3.1 Introduction

Intensive recent research has provided insight into the performance and mathematical

properties of deep neural networks, improving understanding of their strong empirical

performance on different types of data. Some of this work has investigated gradient

descent algorithms that optimize the weights of deep networks during learning (Du

et al., 2018b,a; Davis et al., 2018; Li and Yuan, 2017; Li and Liang, 2018). In this

chapter we focus on optimization over the inputs to an already trained deep network

in order to best approximate a target data point. Specifically, we consider the least

squares objective function

fθ̂(x) =
1

2
‖Gθ̂(x)− y‖2

where Gθ(x) denotes a multi-layer feed-forward network and θ̂ denotes the parameters

of the network after training. The network is considered to be a mapping from a latent

input x ∈ Rk to an output Gθ(x) ∈ Rn with k � n. A closely related objective is to

minimize fθ,A(x) = 1
2
‖AGθ(x)− Ay‖2 where A is a random matrix.

Hand and Voroninski (2019) study the behavior of the function fθ0,A in a com-

pressed sensing framework where y = Gθ0(x0) is generated from a random network

with parameters θ0 = (W1, . . . ,Wd) drawn from Gaussian matrix ensembles; thus, the

network is not trained. In this setting, it is shown that the surface is very well be-

haved. In particular, outside of small neighborhoods around x0 and a scalar multiple

of −x0, the function fθ0,A(x) always has a descent direction.

When the parameters of the network are trained, the landscape of the function
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fθ̂(x) can be complicated; it will in general be nonconvex with multiple local optima.

Figure 1 illustrates the behavior of the surfaces as they evolve from random networks

(left) to fully trained networks (right) for 4-layer networks trained on Fashion MNIST

using a variational autoencoder. For each of two target values y, three surfaces

x 7→ −1
2
‖Gθt(x)− y‖2 are shown for different levels of training.

This chapter explores the following simple idea. We incrementally optimize a se-

quence of objective functions fθ0 , fθ1 , . . . , fθT where the parameters θ0, θ1, . . . , θT = θ̂

are obtained using stochastic gradient descent in θ during training. When initial-

ized with random parameters θ0, we show that the empirical risk function fθ0(x) =

1
2
‖Gθ0(x)−y‖2 is “nice” and easy to optimize with gradient descent. As learning is car-

ried out, we obtain a sequence of generative networks x 7→ Gθt(x) and associated risk

functions fθt(x), where t indicates an intermediate stage of stochastic gradient descent

during training. Since the parameters of the network do not change by very much

in each step (Du et al., 2018a,b), the surface evolves slowly. We initialize x for the

current network Gθt(x) at the optimum x∗t−1 found for the previous network Gθt−1(x)

and then carry out gradient descent to obtain the updated point x∗t = argminx fθt(x).

We call this process surfing since it rides along the peaks of the evolving (negative)

empirical risk function, starting from a smooth surface at the beginning of learning

and ending with a wavy nonconvex surface after learning is complete. We formalize

this algorithm in a manner that makes it amenable to analysis. First, when θ0 is

initialized so that the weights are random Gaussian matrices, we prove a theorem

showing that the surface has a descent direction at each point outside of a small

neighborhood. The analysis of Hand and Voroninski (2019) does not directly apply

in our case since the target y is an arbitrary test point, and not necessarily generated

according to the random network. We then give an analysis that describes how

projected gradient descent can be used to proceed from the optimum of one network

to the next. Our approach is based on the fact that the ReLU network and squared
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Figure 3.1: Behavior of the surfaces x 7→ −1
2
‖Gθt(x)−y‖2 for two targets y shown for

three levels of training, from random networks (left) to fully trained networks (right)
on Fashion MNIST data.

error objective result in a piecewise quadratic surface. Experiments are run to show

how surfing can be used to find the global optimum and for compressed sensing even

when direct gradient descent fails, using several experimental setups with networks

trained with both VAE and GAN techniques.

3.2 Background and Previous Results

In this work we treat the problem of approximating an observed vector y in terms

of the output Gθ̂(x) of a trained generative model. Traditional generative processes

such as graphical models are statistical models that define a distribution over a sam-

ple space. When deep networks are viewed as generative models, the distribution

is typically singular, being a deterministic mapping of a low-dimensional latent ran-

dom vector to a high-dimensional output space. Certain forms of “reversible deep

networks” allow for the computation of densities and inversion (Dinh et al., 2017;

Kingma and Dhariwal, 2018; Chen et al., 2018).
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The variational autoencoder (VAE) approach training a generative (decoder) net-

work is to model the conditional probability of x given y as Gaussian with mean µ(y)

and covariance Σ(y) assuming that a priori x ∼ N(0, Ik) is Gaussian. The mean

and covariance are treated as the output of a secondary (encoder) neural network.

The two networks are trained by maximizing the evidence lower bound (ELBO) with

coupled gradient descent algorithms—one for the encoder network, the other for the

decoder network Gθ(x) (Kingma and Welling, 2014). Whether fitting the networks

using a variational or GAN approach (Goodfellow et al., 2014; Arjovsky et al., 2017),

the problem of “inverting” the network to obtain x∗ = argmin fθ(x) is not addressed

by the training procedure.

In the now classical compressed sensing framework (Candes et al., 2006; Donoho

et al., 2006), the problem is to reconstruct a sparse signal after observing multiple

linear measurements, possibly with added noise. More recent work has begun to

investigate generative deep networks as a replacement for sparsity in compressed

sensing. Bora et al. (2017) consider identifying y = G(x0) from linear measurements

Ay by optimizing f(x) = 1
2
‖Ay−AG(x)‖2. Since this objective is nonconvex, it is not

guaranteed that gradient descent will converge to the true global minimum. However,

for certain classes of ReLU networks it is shown that so long as a point x̂ is found for

which f(x̂) is sufficiently close to zero, then ‖y − G(x̂)‖ is also small. For the case

where y does not lie in the image of G, an oracle type bound is shown implying that

the solution x̂ satisfies ‖G(x̂)−y‖2 ≤ C infx ‖G(x)−y‖2+δ for some small error term

δ. The authors observe that in experiments the error seems to converge to zero when

x̂ is computed using simple gradient descent; but an analysis of this phenomenon is

not provided.

Hand and Voroninski (2019) establish the important result that for a d-layer ran-

dom network and random measurement matrix A, the least squares objective has

favorable geometry, meaning that outside two small neighborhoods there are no first
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order stationary points, neither local minima nor saddle points. We describe their

setup and result in some detail, since it provides a springboard for the surfing algo-

rithm. Let G : Rk → Rn be a d-layer fully connected feedforward generative neural

network, which has the form G(x) = σ(Wd...σ(W2σ(W1x))...) where σ is the ReLU

activation function. The matrix Wi ∈ Rni×ni−1 is the set of weights for the ith layer

and ni is number of the neurons in this layer with k = n0 < n1 < ... < nd = n. If

x0 ∈ Rk is the input then AG(x0) is a set of random linear measurements of the signal

y = G(x0). The objective is to minimize fA,θ0(x) = 1
2

∥∥AGθ0(x) − AGθ0(x0)
∥∥2 where

θ0 = (W1, . . . ,Wd) is the set of weights.

Due to the fact that the nonlinearities σ are rectified linear units, Gθ0(x) is a

piecewise linear function. It is convenient to introduce notation that absorbs the

activation σ into weight matrix Wi, denoting

W+,x = diag(Wx > 0)W.

For a fixed W , the matrix W+,x zeros out the rows of W that do not have a positive dot

product with x; thus, σ(Wx) = W+,xx. We further define W1,+,x = diag(W1x > 0)W1

and

Wi,+,x = diag(WiWi−1,+,x...W1,+,xx > 0)Wi.

With this notation, we can rewrite the generative network Gθ0 in what looks like a

linear form,

Gθ0(x) = Wd,+,xWd−1,+,x...W1,+,xx,

noting that each matrix Wi,+,x depends on the input x. If fA,θ0(x) is differentiable at

x, we can write the gradient as

∇fA,θ0(x) =
( 1∏
i=d

Wi,+,x

)T
ATA

( 1∏
i=d

Wi,+,x

)
x−

( 1∏
i=d

Wi,+,x

)T
ATA

( 1∏
i=d

Wi,+,x0

)
x0.
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In this expression, one can see intuitively that under the assumption that A and

Wi are Gaussian matrices, the gradient ∇fθ0(x) should concentrate around a deter-

ministic vector vx,x0 . Hand and Voroninski (2019) establish sufficient conditions for

concentration of the random matrices around deterministic quantities, so that vx,x0

has norm bounded away from zero if x is sufficiently far from x0 or a scalar multiple

of −x0. Their results show that for random networks having a sufficiently expansive

number of neurons in each layer, the objective fA,θ0 has a landscape favorable to

gradient descent.

We build on these ideas, showing first that optimizing with respect to x for a

random network and arbitrary signal y can be done with gradient descent. This

requires modified proof techniques, since it is no longer assumed that y = Gθ0(x0).

In fact, y can be arbitrary and we wish to approximate it as Gθ̂(x(y)) for some x(y).

Second, after this initial optimization is carried out, we show how projected gradient

descent can be used to track the optimum as the network undergoes a series of small

changes. Our results are stated formally in the following section.

3.3 Theoretical Results

Suppose we have a sequence of networks G0, G1, . . . , GT generated from the training

process. For instance, we may take a network with randomly initialized weights as

G0, and record the network after each step of gradient descent in training; GT = G

is the final trained network.

For a given vector y ∈ Rn, we wish to minimize the objective f(x) = 1
2
‖AG(x)−

Ay‖2 with respect to x for the final network G, where either A = I ∈ Rn×n, or

A ∈ Rm×n is a measurement matrix with i.i.d. N(0, 1/m) entries in a compressed
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Algorithm 3 Surfing

Input: Sequence of networks θ0, θ1, . . . , θT
1: x−1 ← 0
2: for t = 0 to T do
3: x← xt−1
4: repeat
5: x← x− η∇fθt(x)
6: until convergence
7: xt ← x
8: end for

Output: xT

sensing context. Write

ft(x) =
1

2
‖AGt(x)− Ay‖2, ∀ t ∈ [T ]. (3.1)

The idea is that we first minimize f0, which has a nicer landscape, to obtain the

minimizer x0. We then apply gradient descent on ft for t = 1, 2, ..., T successively,

starting from the minimizer xt−1 for the previous network.

We provide some theoretical analysis in partial support of this algorithmic idea.

First, we show that at random initialization G0, all critical points of f0(x) are localized

to a small ball around zero. Second, we show that if G0, . . . , GT are obtained from a

discretization of a continuous flow, along which the global minimizer of ft(x) is unique

and Lipschitz-continuous, then a projected-gradient version of surfing can successively

find the minimizers for G1, . . . , GT starting from the minimizer for G0.

We consider expansive feedforward neural networks G : Rk ×Θ 7→ Rn given by

G(x, θ) = V σ(Wd . . . σ(W2σ(W1x+ b1) + b2) . . .+ bd).

Here, d is the number of intermediate layers (which we will treat as constant),

σ is the ReLU activation function σ(x) = max(x, 0) applied entrywise, and θ =

(V,W1, ...,Wd, b1, ..., bd) are the network parameters. The input dimension is k ≡ n0,
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each intermediate layer i ∈ [d] has weights Wi ∈ Rni×ni−1 and biases bi ∈ Rni , and a

linear transform V ∈ Rn×nd is applied in the final layer.

For our first result, consider fixed y ∈ Rn and a random initialization G0(x) ≡

G(x, θ0) where θ0 has Gaussian entries (independent of y). If the network is suf-

ficiently expansive at each intermediate layer, then the following shows that with

high probability, all critical points of f0(x) belong to a small ball around 0. More

concretely, the directional derivative D−x/‖x‖f0(x) satisfies

D−x/‖x‖f0(x) ≡ lim
t→0+

f0(x− tx/‖x‖)− f0(x)

t
< 0. (3.2)

Thus −x/‖x‖ is a first-order descent direction of the objective f0 at x.

Theorem 3.3.1. Fix y ∈ Rn. Let V have N (0, 1/n) entries, let bi and Wi have

N (0, 1/ni) entries for each i ∈ [d], and suppose these are independent. There exist

d-dependent constants C,C ′, c, ε0 > 0 such that for any ε ∈ (0, ε0), if

1. n ≥ nd and ni > C(ε−2 log ε−1)ni−1 log ni for all i ∈ [d], and

2. Either A = I and m = n, or A ∈ Rm×n has i.i.d. N(0, 1/m) entries (independent

of V, {bi}, {Wi}) where m ≥ Ck(ε−1 log ε−1) log(n1 . . . nd),

then with probability at least 1 − C(e−cεm + nde
−cε4nd−1 +

∑d−1
i=1 nie

−cε2ni−1), every

x ∈ Rk outside the ball ‖x‖ ≤ C ′ε(1 + ‖y‖) satisfies (3.2).

We defer the proof to Section 3.4. Note that if instead G0 were correlated with y,

say y = G0(x∗) for some input x∗ with ‖x∗‖ � 1, then x∗ would be a global minimizer

of f0(x), and we would have ‖y‖ � ‖xd‖ � . . . � ‖x1‖ � ‖x∗‖ � 1 in the above

network where xi ∈ Rni is the output of the ith layer. The theorem shows that for

a random initialization of G0 which is independent of y, the minimizer is instead

localized to a ball around 0 which is smaller in radius by the factor ε.

58



For our second result, consider a network flow

Gs(x) ≡ G(x, θ(s))

for s ∈ [0, S], where θ(s) = (V (s),W1(s), b1(s), . . . ,Wd(s), bd(s)) evolve continuously

in a time parameter s. As a model for network training, we assume that G0, . . . , GT

are obtained by discrete sampling from this flow via Gt = Gδt, corresponding to s ≡ δt

for a small time discretization step δ.

We assume boundedness of the weights and uniqueness and Lipschitz-continuity

of the global minimizer along this flow.

Assumption 3.3.2. There are constants M,L <∞ such that

1. For every i ∈ [d] and s ∈ [0, S],

‖Wi(s)‖ ≤M.

2. The global minimizer x∗(s) = argminx f(x, θ(s)) is unique and satisfies

‖x∗(s)− x∗(s′)‖ ≤ L|s− s′|

where f(x, θ(s)) = 1
2
‖AG(x, θ(s))− Ay‖2.

Fixing θ, the function G(x, θ) is continuous and piecewise-linear in x. For each

x ∈ Rk, there is at least one linear piece P0 (a polytope in Rk) of this function that

contains x. For a slack parameter τ > 0, consider the rows given by

S(x, θ, τ) = {(i, j) : |w>i,jxi−1 + bi,j| ≤ τ},

where

xi−1 = σ(Wi−1 . . . σ(W1x+ b1) . . .+ bi−1)
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is the output of the (i−1)th layer for this input x, and v>j , w>i,j, and bi,j are respectively

the jth row of V , the jth row of Wi and the jth entry of bi in θ. This set S(x, θ, τ)

represents those neurons that are close to 0 before ReLU thresholding, and hence

whose activations may change after a small change of the network input x. Define

P(x, θ, τ) = {P0, P1, . . . , PG}

as the set of all linear pieces Pg whose activation patterns differ from P0 only in rows

belonging to S(x, θ, τ). That is, for every x′ ∈ Pg ∈ P(x, θ, τ) and (i, j) /∈ S(x, θ, τ),

we have

sign(w>i,jx
′
i−1 + bi,j) = sign(w>i,jxi−1 + bi,j)

where x′i−1 is the output of the (i− 1)th layer for input x′.

With this definition, we consider a stylized projected-gradient surfing procedure

in Algorithm 4, where ProjP is the orthogonal projection onto the polytope P .

Algorithm 4 Projected-gradient Surfing

Input: Network flow {G(·, θ(s)) : s ∈ [0, S]}, parameters δ, τ, η > 0.
1: Initialize x0 = argminx f(x, θ(0)).
2: for t = 1, . . . , T do
3: for each linear piece Pg ∈ P(xt−1, θ(δt), τ) do
4: x← xt−1
5: repeat
6: x← ProjPg(x− η∇f(x, θ(δt)))
7: until convergence
8: x

(g)
t ← x

9: end for
10: xt ← x

(g)
t for g ∈ {0, . . . , G} that achieves the minimum value of f(x

(g)
t , θ(δt)).

11: end for
Output: xT

The complexity of this algorithm depends on the number of pieces G to be op-

timized over in each step. We expect this to be small in practice when the slack

parameter τ is chosen sufficiently small. In fact, the projected-gradient surfing algo-
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rithm performs an exhaustive search over pieces Pg ∈ P(xt−1, θ(δt), τ). The number

of such pieces is at most 1 + 2|S(xt−1,θ(δt),τ)|, where we recall that

S(x, θ, τ) = {(i, j) : |w>i,jxi−1 + bi,j| ≤ τ}

is the collection of layers and rows where the sign could change during the next step.

We reason heuristically that if θ ≡ θ(δt) is “generic”, then for sufficiently small τ ,

we should have |S(x, θ, τ)| ≤ dk for all s ∈ [0, S] and x ∈ Rk, so that this search is

tractable for small k. Indeed, for fixed W1, b1, . . . ,Wi, bi, the set of possible outputs

{xi : x ∈ Rk} at the ith layer is a finite union of affine linear spaces of dimension k.

For generic Wi+1 and bi+1, and every J ⊂ [ni] where |J | = k+ 1, each such space has

empty intersection with the affine linear space

{z ∈ Rni : w>i+1,jz + bi+1,j = 0 for all j ∈ J}

of dimension ni − k − 1. Thus

sup
x∈Rk
|{j ∈ [ni] : w>i+1,jxi + bi+1,j = 0}| ≤ k,

so supx∈Rk |S(x, θ, 0)| ≤ dk for τ = 0. Then we expect this to hold also for some small

τ > 0.

The following shows that for any τ > 0, there is a sufficiently fine time discretiza-

tion δ depending on τ,M,L such that Algorithm 4 tracks the global minimizer. In

particular, for the final objective fT (x) = f(x, θ(δT )) corresponding to the network

GT , the output xT is the global minimizer of fT (x). We remark that the time dis-

cretization δ may need to be smaller for deeper networks, as G(x) corresponding to a

deeper network may have a larger Lipschitz constant in x. The specific dependence

below arises from bounding this Lipschitz constant by
∏d

i=1 ‖Wi‖, which is a con-

61



servative bound also used and discussed in greater detail in Szegedy et al. (2014);

Virmaux and Scaman (2018).

Theorem 3.3.3. Suppose Assumption 3.3.2 holds. For any τ > 0, if δ < τ/(Lmax(M, 1)d+1)

and x0 = argminx f(x, θ(0)), then the iterates xt in Algorithm 4 are given by xt =

argminx f(x, θ(δt)) for each t = 1, . . . , T .

Proof. For any fixed θ, let x, x′ ∈ Rk be two inputs to G(x, θ). If xi, x
′
i are the

corresponding outputs of the ith layer, using the assumption ‖Wi‖ ≤M and the fact

that the ReLU activation σ is 1-Lipschitz, we have

‖xi − x′i‖ = ‖σ(Wixi−1 + bi)− σ(Wix
′
i−1 + bi)‖

≤ ‖(Wixi−1 + bi)− (Wix
′
i−1 + bi)‖

≤M‖xi−1 − x′i−1‖ ≤ . . . ≤M i‖x− x′‖.

Let x∗(s) = argminx f(x, θ(s)). By assumption, ‖x∗(s− δ)−x∗(s)‖ ≤ Lδ. For the

network with parameter θ(s) at time s, let x∗,i(s) and x∗,i(s − δ) be the outputs at

the ith layer corresponding to inputs x∗(s) and x∗(s − δ). Then for any i ∈ [d] and

j ∈ [ni], the above yields

|(wi,j(s)>x∗,i(s− δ) + bi,j)− (wi,j(s)
>x∗,i(s) + bi,j)| ≤ ‖wi,j(s)‖‖x∗,i(s− δ)− x∗,i(s)‖

≤M ·M i‖x∗(s− δ)− x∗(s)‖ ≤M i+1Lδ.

For δ < τ/(Lmax(M, 1)d+1), this implies that for every (i, j) where |wi,j(s)>x∗,i(s−

δ) + bi,j| ≥ τ , we have

sign(wi,j(s)
>x∗,i(s− δ) + bi,j) = sign(wi,j(s)

>x∗,i(s) + bi,j).

That is, x∗(s) ∈ Pg for some Pg ∈ P(x∗(s− δ), θ(s), τ).
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Assuming that xt−1 = x∗(δ(t − 1)), this implies that the next global minimizer

x∗(δt) belongs to some Pg ∈ P(xt−1, θ(δt), τ). Since f(x, θ(δt)) is quadratic on Pg,

projected gradient descent over Pg in Algorithm 4 converges to x∗(δt), and hence

Algorithm 4 yields xt = x∗(δt). The result then follows from induction on t.

3.4 Proof of Theorem 3.3.1

We denote [n] = {1, 2, ..., n}, Πd
i=1Wi = W1W2 . . .Wd, and Π1

i=dWi = WdWd−1 · · ·W1.

‖x‖ and ‖A‖ are the Euclidean vector norm and matrix operator norm. C,C ′, c, c′ > 0

denote d-dependent constants that may change from instance to instance.

We adapt ideas of Hand and Voroninski (2019). Denote for simplicity G(x) =

G(x, θ0) and f(x) = f0(x). Define

Wi,+,v = diag(Wiv + bi > 0)Wi, bi,+,v = diag(Wiv + bi > 0)bi

where diag(w > 0) denotes a diagonal matrix with jth diagonal element I{wj > 0}.

Then

σ(Wiv + bi) = Wi,+,vv + bi,+,v.

The analysis of Hand and Voroninski (2019) shows that the matrices

W̃i,+,v ≡
(
Wi,+,v bi,+,v

)
∈ Rni×(ni−1+1)

satisfy a certain Weight Distribution Condition (WDC), yielding a deterministic ap-

proximation for W̃>
i,+,vW̃i,+,v′ and any v, v′ ∈ Rni−1 . We will use the following conse-

quence of this condition.

Lemma 3.4.1. Under the conditions of Theorem 3.3.1, with probability at least 1−

C
∑d

i=1 nie
−cε2ni−1, the following hold for every i ∈ [d] and v, v′ ∈ Rni−1:
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(a) ‖Wi,+,v‖ ≤ 2 and ‖bi,+,v‖ ≤ 2.

(b) ‖W>
i,+,vWi,+,v′ − 1

2
I‖ ≤ ε+ θ/π, where θ is the angle formed by v and v′.

(c) ‖W>
i,+,vbi,+,v‖ ≤ ε.

Proof. For (a), note that ‖Wi‖ ≤ 2 and ‖bi‖ ≤ 2 with probability 1 − e−cni , by a

standard χ2 tail-bound and operator norm bound for a Gaussian matrix. On the

event that these hold, the bounds hold also for Wi,+,v and bi,+,v and every v ∈ Rni−1 .

For (b) and (c), by (Hand and Voroninski, 2019, Lemma 11), with probability

1 − 8nie
−cε2ni−1 the matrix W̃i,+,v satisfies WDC with constant ε for every v. (The

dependence of the constants c, γ in (Hand and Voroninski, 2019, Lemma 11) are given

by c & ε−2 log ε−1 and γ . ε2 as indicated in the proof. This condition for c matches

the growth rate of ni specified in our Theorem 3.3.1.) From the form of Q in (Hand

and Voroninski, 2019, Definition 2), the WDC implies

∥∥∥∥W̃>
i,+,vW̃i,+,v′ −

1

2
I

∥∥∥∥ ≤ ε+ θ̃/π

where θ̃ is the angle between (v, 1) and (v′, 1). Noting that θ̃ ≤ θ and recalling the

definition of W̃i,+,v, we get (b) and (c).

For x ∈ Rk, let x0 = x and let xi = σ(Wi . . . σ(W1x + b1) . . . + bi) be the output

of the ith layer. Denote

Wi,x = Wi,+,xi−1
, bi,x = bi,+,xi−1

.

Then also xi = Wi,xxi−1 + bi,x.

Lemma 3.4.2. Under the conditions of Theorem 3.3.1, with probability 1, the total

number of distinct possible tuples (W1,x, b1,x, . . . ,Wd,x, bd,x) satisfies

|{(W1,x, b1,x, . . . ,Wd,x, bd,x) : x ∈ Rk}| ≤ 10d
2

(n1 . . . nd)
d(k+1).
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Proof. Let S = Rk+1, which contains (x, 1). Then the result of (Hand and Voroninski,

2019, Lemma 15) applied to the vector space S and to W̃1,x = (W1,x b1,x) yields

|{(W1,x, b1,x : x ∈ Rk)}| ≤ 10nk+1
1 .

Each distinct (W1,x, b1,x) defines an affine linear space of dimension k which contains

the first layer output x1, and hence a subspace S of dimension k + 1 which contains

(x1, 1). Applying (Hand and Voroninski, 2019, Lemma 15) to each such S and W̃2,x

yields

|{(W2,x, b2,x : x ∈ Rk)}| ≤ 10nk+1
1 · 10nk+1

2 .

Proceeding inductively,

|{(Wi,x, bi,x : x ∈ Rk)}| ≤ 10i(n1 . . . ni)
k+1,

which is analogous to (Hand and Voroninski, 2019, Lemma 16) in our setting with

biases b1, . . . , bd. The result follows from taking the product over i = 1, . . . , d.

Lemma 3.4.3. Let A ∈ Rm×n have i.i.d. N(0, 1/m) entries. Fix ε > 0, let k < n,

and let V =
⋃M
i=1 Vi and W =

⋃N
j=1Wj where Vi and Wj are subspaces of dimension

at most k. Then with probability at least 1 −MN(c/ε)2ke−c
′εm, for all x ∈ V and

y ∈ W we have

|x>A>Ay − x>y| ≤ ε‖x‖‖y‖.

Proof. See (Hand and Voroninski, 2019, Lemma 14).

Using these results, we analyze the gradient and critical points of f(x). Note that
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with the above definitions,

G(x) = V (Wd,x . . . (W1,xx+ b1,x) . . .+ bd,x)

= V

(
1∏
i=d

Wi,x

)
x+ V

d∑
j=1

(
j+1∏
i=d

Wi,x

)
bj,x.

The function G(x) is piecewise linear in x, so f(x) is piecewise quadratic. If f(x) is

differentiable at x, then the gradient of f can be written as

∇f(x) =

(
d∏
i=1

W>
i,x

)
V >A>

(
AV

(
1∏
i=d

Wi,x

)
x+ AV

d∑
j=1

(
j+1∏
i=d

Wi,x

)
bj,x − Ay

)
.

Lemma 3.4.4. Define

gx = 2−dx−

(
d∏
i=1

W>
i,x

)
V >y

Under the conditions of Theorem 3.3.1, we have with probability 1−C(e−cεm+e−cεn+∑
i nie

−cε2ni−1) that at every x ∈ Rk where f is differentiable,

‖∇f(x)− gx‖ ≤ C ′ε(1 + ‖x‖+ ‖y‖)

Proof. By Lemma 3.4.2, for fixed θ = (V,W1, b1, . . . ,Wd, bd), the range {V
∏1

i=dWi,xx
′ :

x, x′ ∈ Rk} belongs to a union of at most C(n1 . . . nd)
d(k+1) subspaces of dimension k.

For some C ′, c > 0, under the condition m ≥ C ′k(ε−1 log ε−1) log(n1 . . . nd), we have

C2(n1 . . . nd)
2d(k+1)(c/ε)2ke−c

′εm ≤ e−cεm.

Then for A ∈ Rm×n with i.i.d. N(0, 1/m) entries, applying Lemma 3.4.3 conditional

on θ, and then 3.4.1(a) to bound ‖Wi,x‖ and ‖V ‖, we get

∥∥∥∥∥
(

d∏
i=1

W>
i,x

)
V >(A>A− I)V

(
1∏
i=d

Wi,x

)
x

∥∥∥∥∥ ≤ Cε‖x‖.
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For A = I, this bound is trivial. The given conditions imply also

n ≥ nd ≥ C ′k(ε−1 log ε−1) log(n1 . . . nd),

so applying the same argument with V in place of A yields

∥∥∥∥∥
(

d∏
i=1

W>
i,x

)
(V >V − I)

(
1∏
i=d

Wi,x

)
x

∥∥∥∥∥ ≤ Cε‖x‖.

Next, applying Lemma 3.4.1(a–b) yields, for each j = d, d− 1, . . . , 2, 1,

∥∥∥∥∥
(
j−1∏
i=1

W>
i,x

)
(W>

j,xWj,x − I/2)

(
1∏

i=j−1
Wi,x

)
x

∥∥∥∥∥ ≤ Cε‖x‖.

Combining these results, we get for the first term of ∇f(x) that

∥∥∥∥∥
(

d∏
i=1

W>
i,x

)
V >A>AV

(
1∏
i=d

Wi,x

)
x− 2−dx

∥∥∥∥∥ ≤ Cε‖x‖. (3.3)

This holds with probability at least 1− e−cεm − e−cεn − C
∑

i nie
−cni−1 .

The second term is controlled similarly: Lemma 3.4.2 implies that for fixed pa-

rameters θ, the set {V
∏j+1

i=d Wi,xbj,x : x ∈ Rk, j ∈ [d]} is comprised of at most one of

C(n1 . . . nd)
d(k+1) distinct vectors (which belong to subspaces of dimension 1.) Then

applying Lemma 3.4.3 twice to A and V as above, and using also ‖bj,x‖ ≤ 2 from

Lemma 3.4.1(a),

∥∥∥∥∥
(

d∏
i=1

W>
i,x

)
(V >A>AV − I)

(
j+1∏
i=d

Wi,x

)
bj,x

∥∥∥∥∥ ≤ Cε.

Applying Lemma 3.4.1(a–b) iteratively as above, we get

∥∥∥∥∥
(

j∏
i=1

W>
i,x

)[(
d∏

i=j+1

W>
i,x

)(
j+1∏
i=d

Wi,x

)
− 2−(d−j)I

]
bj,x

∥∥∥∥∥ ≤ Cε.
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Finally, Lemma 3.4.1(a) and (c) yield

∥∥∥∥∥
(

j∏
i=1

W>
i,x

)
bj,x

∥∥∥∥∥ ≤ Cε.

Combining these, we have for the second term of ∇f(x) that

∥∥∥∥∥
d∑
j=1

(
d∏
i=1

W>
i,x

)
V >A>AV

(
j+1∏
i=d

Wi,x

)
bj,x

∥∥∥∥∥ ≤ Cε (3.4)

also with probability 1− e−cεm − e−cεn − C
∑

i nie
−cε2ni−1 .

Finally, for the last term of ∇f(x), if A 6= I then we may apply Lemma 3.4.3

again to get ∥∥∥∥∥
(

d∏
i=1

W>
i,x

)
V >(A>A− I)y

∥∥∥∥∥ ≤ Cε‖y‖ (3.5)

with probability 1−e−cεm. Combining (3.3), (3.4), and (3.5) concludes the proof.

We now bound the second term of gx.

Lemma 3.4.5. Under the conditions of Theorem 3.3.1, with probability 1−Cnde−cε
4nd−1,

for every v ∈ Rnd−1 ∥∥W>
d,+,vV

>y
∥∥ ≤ Cε‖y‖.

Proof. Note that V >y ∈ Rnd has i.i.d. N (0, ‖y‖2/n) entries. Then conditional on Wd,

for each fixed v ∈ Rnd−1 ,

u(v) ≡ W>
d,+,vV

>y ∼ N(0,Σ)

where

Σ = (‖y‖2/n) ·W>
d,+,vWd,+,v ∈ Rnd−1×nd−1 .

On the event that Lemma 3.4.1(b) holds, we have ‖Σ‖ ≤ ‖y‖2/n and hence ‖u(v)‖2 ≤

tnd−1‖y‖2/n with probability 1− ecnd−1t for large t, by a χ2 tail-bound. Noting that

68



n ≥ nd � ε−2nd−1 and applying this bound for t = ε2n/nd−1, we get ‖u(v)‖ ≤ ε‖y‖

with probability 1− e−cε2n.

We use a covering net argument to take a union bound over v: Let N be an ε2-net

of the nd−1-sphere, of cardinality |N | ≤ (3/ε2)nd−1 . The above holds uniformly over

v ∈ N with probability 1− ec′ε2n, because n ≥ nd � nd−1 · ε−2 log ε−1. For any v′ on

the sphere and v ∈ N with ‖v − v′‖ < ε2, the angle θ between v and v′ is at most

Cε2. We have

‖u(v)− u(v′)‖ ≤
∥∥W>

d,+,v −W>
d,+,v′

∥∥ · ‖V >y‖.
Suppose now that Lemma 3.4.1(b) holds for Wd with the constant ε2: This occurs

with probability 1− 8nde
−cε4nd−1 . Approximating each of the four terms in

(
W>
d,+,v −W>

d,+,v′

)
(Wd,+,v −Wd,+,v′)

by I/2 on this event, we get

∥∥W>
d,+,v −W>

d,+,v′

∥∥2 =
∥∥(W>

d,+,v −W>
d,+,v′

)
(Wd,+,v −Wd,+,v′)

∥∥ ≤ C ′(ε2 + θ) ≤ Cε2.

Thus on this event, ‖u(v)−u(v′)‖ ≤ Cε‖V >y‖. By a χ2 tail-bound, with probability

1− e−cnd we have ‖V >y‖2 ≤ 2‖y‖2nd/n ≤ 2‖y‖2 and hence ‖u(v)− u(v′)‖ ≤ Cε‖y‖.

Proof of Theorem 3.3.1. Combining Lemmas 3.4.4, 3.4.5, and 3.4.1(a), with the stated

probability,

‖∇f(x)− 2−dx‖ ≤ Cε(1 + ‖x‖+ ‖y‖)

for every x ∈ Rk. Since G is piecewise linear, the directional derivative Dvf(x)

always exists at any x ∈ Rk for any unit vector v ∈ Rk, even for x where f is non-

differentiable. Set x̃ = x/‖x‖. For any fixed x, there exists a sequence {xn} which
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converges to x and where f is differentiable, such that

D−x̃f(x) = lim
n→∞

−x̃>∇f(xn)

Since

−x̃>∇f(xn) = −2−dx̃>xn + x̃>(2−dxn−∇f(xn)) ≤ −2−dx̃>xn +Cε(1 + ‖xn‖+ ‖y‖),

we get

D−x̃f(x) ≤ lim inf
n→∞

[
− 2−dx̃>xn + Cε(1 + ‖xn‖+ ‖y‖)

]
= −2−d‖x‖+ Cε(1 + ‖x‖+ ‖y‖).

For ε > 0 sufficiently small and C ′ > 0 sufficiently large, this implies D−x̃f(x) < 0

whenever ‖x‖ ≥ C ′ε(1 + ‖y‖).

3.5 Experiments

We present experiments to illustrate the performance of surfing over a sequence of

networks during training compared with gradient descent over the final trained net-

work. We mainly use the Fashion-MNIST dataset1 to carry out the simulations, which

is similar to MNIST in many characteristics, but is more difficult to train. We build

multiple generative models, trained using VAE (Kingma and Welling, 2014), DCGAN

(Radford et al., 2015), WGAN (Arjovsky et al., 2017) and WGAN-GP (Gulrajani

et al., 2017). The structure of the generator/decoder networks that we use are the

same as those reported by Chen et al. (2016); they include two fully connected lay-

ers and two transposed convolution layers with batch normalization after each layer

1. https://github.com/zalandoresearch/fashion-mnist
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Input dimension 5 10 20 5 10 20

Model VAE DCGAN

% successful
Regular Adam 98.7 100 100 48.3 68.7 80.0
Surfing 100 100 100 78.3 98.7 96.3

# iterations
Regular Adam 737 1330 8215 618 4560 18937
Surfing 775 1404 10744 741 6514 33294

Model WGAN WGAN-GP

% successful
Regular Adam 56.0 84.3 90.3 47.0 64.7 64.7
Surfing 81.7 97.3 99.3 83.7 95.7 97.3

# iterations
Regular Adam 464 1227 3702 463 1915 15445
Surfing 547 1450 4986 564 2394 25991

Table 3.1: Surfing compared against direct gradient descent over the final trained
network, for various generative models with input dimensions k = 5, 10, 20. Shown
are percentages of “successful” solutions x̂T satisfying ‖x̂T − x∗‖ < 0.01, and 75th-
percentiles of the total number of gradient descent steps used (across all networks
G0, . . . , GT for surfing) until ‖x̂T − x∗‖ < 0.01 was reached.

(Ioffe and Szegedy, 2015). We use the simple surfing algorithm in these experiments,

rather than the projected-gradient algorithm proposed for theoretical analysis. Note

also that the network architectures do not precisely match the expansive relu net-

works used in our analysis. Instead, we experiment with architectures and training

procedures that are meant to better reflect the current state of the art.

We first consider the problem of minimizing the objective f(x) = 1
2
‖G(x)−G(x∗)‖2

and recovering the image generated from a trained network G(x) = GθT (x) with input

x∗. We run surfing by taking a sequence of parameters θ0, θ1, ..., θT for T = 100,

where θ0 are the initial random parameters and the intermediate θt’s are taken every

40 training steps, and we use Adam (Kingma and Ba, 2014) to carry out gradient

descent in x over each network Gθt . We compare this to “regular Adam”, which uses

Adam to optimize over x in only the final trained network GθT for T = 100.

To ensure that the runtime of surfing is comparable to that of a single initializa-

tion of regular Adam, we do not run Adam until convergence for each intermediate

network in surfing. Instead, we use a fixed schedule of iterations for the networks

71



0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

VAE, dim 5
Regular Adam
Surfing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

VAE, dim 10
Regular Adam
Surfing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

VAE, dim 20
Regular Adam
Surfing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

DCGAN, dim 5
Regular Adam
Surfing

0 1 2 3
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

DCGAN, dim 10
Regular Adam
Surfing

0 1 2 3 4 5
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

DCGAN, dim 20
Regular Adam
Surfing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

WGAN, dim 5
Regular Adam
Surfing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

WGAN, dim 10
Regular Adam
Surfing

0 1 2 3 4 5
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

WGAN, dim 20
Regular Adam
Surfing

0.0 0.5 1.0 1.5 2.0 2.5
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

WGAN-GP, dim 5
Regular Adam
Surfing

0 1 2 3
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0

fre
qu

en
cy

WGAN-GP, dim 10
Regular Adam
Surfing

0 1 2 3 4 5
distance to the truth

0.0

0.2

0.4

0.6

0.8

1.0
fre

qu
en

cy
WGAN-GP, dim 20

Regular Adam
Surfing

Figure 3.2: Distribution of distance between solution x̂T and the truth x∗ for VAE,
DCGAN, WGAN and WGAN-GP, comparing surfing (red) to regular gradient descent
(blue) over the final network.

Gθ0 , . . . , GθT−1
, and run Adam to convergence in only the final network GθT . The

total number of iterations for networks Gθ0 , . . . , GθT−1
is set as the 75th-percentile of

the iteration count required for convergence of regular Adam. These are split across

the networks proportional to a deterministic schedule that allots more steps to the
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Figure 3.3: Compressed sensing setting for exact recovery. As a function of the
number of random measurements m, the lines show the proportion of times surfing
(red) and regular gradient descent with Adam (blue) are able to recover the true
signal y = G(x), using DCGAN and WGAN.

earlier networks where the landscape of G(x) changes more rapidly, and fewer steps

to later networks where this landscape stabilizes.

For each network training condition, we apply surfing and regular Adam for 300

trials, where in each trial a randomly generated x∗ and initial point xinit are chosen

uniformly from the hypercube [−1, 1]k. Table 3.1 shows the percentage of trials where

the solutions x̂T satisfy our criterion for successful recovery ‖x̂T − x∗‖ < 0.01, for

different models and over three different input dimensions k. The table also shows

the 75th-percentile for the total number of gradient descent iterations taken (across

all networks for surfing), verifying that the runtime of surfing was typically 1–2x that

of regular Adam.

We also provide the distributions of ‖x̂T − x∗‖ under each setting: Figure 3.2

shows the results for VAE, DCGAN, WGAN and WGAN-GP. The results indicate

that direct descent often succeeds, but can also converge to a point that is far from

the optimum. By moving along the optimum of the evolving surface, surfing is able

to move closer to the optimum in these cases.

We next consider the compressed sensing problem with objective f(x) = 1
2
‖AG(x)−
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Figure 3.4: Compressed sensing setting for approximation, or rate-distortion. As a
function of the number of random measurements m, the box plots summarize the
distribution of the per-pixel reconstruction errors for DCGAN and WGAN trained
models, using surfing (red) and regular gradient descent with Adam (blue).

AG(x∗)‖2 where A ∈ Rm×n is the Gaussian measurement matrix. We carry out 200

trials for each choice of number of measurements m. The parameters θt for surfing are

taken every 100 training steps. As before, we record the proportion of the solutions

that are close to the truth x∗ according to ‖x̂T − x∗‖ < 0.01. Figure 3.3 shows the

results for DCGAN and WGAN trained networks with input dimension k = 20.

Lastly, we consider the objective f(x) = 1
2
‖AG(x)−Ay‖2, where y is a real image

from the hold-out test data. This can be thought of as a rate-distortion setting, where

the error varies as a function of the number of measurements used. We carry out the

same experiments as before and compute the average per-pixel reconstruction error√
1
n
‖G(x̂T )− y‖2 as in Bora et al. (2017). Figure 3.4 shows the distributions of the

reconstruction error as the number of measurements m varies.

3.6 Discussion

In this chapter, we has explored the idea of incrementally optimizing a sequence

of objective risk functions obtained from models that are slowly changing during

stochastic gradient descent during training. When initialized with random parameters
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θ0, we have shown that the empirical risk function fθ0(x) = 1
2
‖Gθ0(x) − y‖2 is well

behaved and easy to optimize. The surfing algorithm initializes x for the current

network Gθt(x) at the optimum x∗t−1 found for the previous network Gθt−1(x) and

then carries out gradient descent to obtain the updated point x∗t = argminx fθt(x).

Our experiments show that this scheme has merit, and often significantly outperforms

direct gradient descent on the final model alone.

On the theoretical side, our main technical result applies and extends ideas of Hand

and Voroninski (2019) to show that for random ReLU networks that are sufficiently

expansive, the surface of fθ0(x) is well-behaved for arbitrary target vectors y. This

result may be of independent interest, but it is essential for the surfing algorithm

because initially the model is poor, with high approximation error.

The analysis for the incremental scheme uses projected gradient descent, although

we find that simple gradient descent works well in practice. The analysis assumes

that the argmin over the surface evolves continuously in training. This assumption

is necessary—if the global minimum is discontinuous as a function of t, so that the

minimizer “jumps” to a far away point, then the surfing procedure will fail in practice.

3.7 Future Work

In our experiments, we see that simple surfing can indeed be effective for mapping out-

puts y to inputs x for the trained network, where it often outperforms direct gradient

descent for a range of deep network architectures and training procedures. However,

these simulations also point to the fact that in some settings, direct gradient descent

itself can be surprisingly effective. A deeper understanding of this phenomenon could

lead to more advanced surfing algorithms that are able to ride to the final optimum

even more efficiently and often.

Beside inverting a generative network and solving a compressed sensing problem,

75



the idea of surfing can also be applied to solve other optimization problems whose

objective involves a trained machine learning model. Specifically, when minimizing a

nonconvex objective f(x;Mθ) that involves a model Mθ parameterized by θ, surfing

can in principle be applied to a sequence of objectives f(x;Mθt) obtained from training

Mθ. If the landscape of f(x;Mθt) is nice at initialization and evolves continuously as

θt is trained, we can expect a better solution with surfing than direct gradient descent

on the final trained model f(x;MθT ). An immediate extension of surfing could be to

phase retrieval where the signals are from a generative prior (Hand et al., 2018).
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Chapter 4

Translation between Brain

Modalities with Artificial Neural

Networks

Artificial neural networks (ANNs) have achieved tremendous success in various areas,

including computer vision, natural language processing, motion control and health-

care. ANNs are computational graphs inspired from neural networks in the brain.

The basic elements of ANN are neurons, which connect to each other according to

specific structures. By varying the structure of the network, an ANN is able to adapt

to different tasks.

Although ANNs are designed by analogy to circuits in the brain, the actual mech-

anism of the brain still remains unclear. In this chapter, we try to take advan-

tage of modern ANN models to analyze brain imaging data. In particular, we build

proper ANN models to explore the relationship between the electrical signals mea-

sured through fluorescence Ca2+ imaging, and blood oxygen level dependent (BOLD)

signals measured through functional magnetic resonance imaging (fMRI). Given two

modalities are collected simultaneously in mice, we build a translation model to pre-
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dict the BOLD signals from the calcium. We also show the brain connectivity map has

been preserved in the predictions. The experimental results indicate that our models

have the power of translate from one type of signal to another and demonstrate the

merit of ANNs in helping understand brain activity.

4.1 Introduction

ANN models have been widely used for computer vision tasks since convolutional

neural networks (CNN) were proposed by LeCun et al. (1995) as a supervised clas-

sification model. The ResNet architecture (He et al., 2016) adds skip connections

to CNNs that allow for a deeper network without the vanishing gradient problem,

and further improves model performance on image classification tasks. On the other

hand, generative adversarial networks (GANs) (Goodfellow et al., 2014) provide a fun-

damental training framework for unsupervised image generation tasks. The model

contains a generator and a discriminator network that are trained simultaneously in

an adversarial manner — the generator aims to fool the discriminator by generating

fake images while the discriminator aims to differentiate them from real images from

the training set. The training objective is then to solve a minimax problem where

the solution is a saddle point of the loss function, which makes it difficult for the

gradient descent algorithm to converge. DCGANs (Radford et al., 2015) incorporate

convolutional structures into both the generator and discriminator, and stabilizes

the training with batch normalization (Ioffe and Szegedy, 2015) and comprehensive

parameter tuning. WGANs (Arjovsky et al., 2017) use Wasserstein distance as the

training loss to measure the difference between the distributions of generated images

and real images, which also stabilizes the training and improve the quality of gener-

ated images. During training of a WGAN, the parameters in the discriminator have

to be clipped after every gradient step in order to maintain the Lipschitz property of
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the network. Alternatively, WGAN-GP (Gulrajani et al., 2017) introduces a gradient

penalty term into the loss function and gets rid of the unnatural weight clipping op-

eration. PGGAN (Karras et al., 2017) and Style GAN (Karras et al., 2019) are recent

advances in image generation based on GANs that are able to achieve state-of-the-art

performance on generating high-resolution images.

The adversarial training framework is also often used in image translation tasks.

Similar to language translation, the image translation model takes an image as in-

put and outputs an image that has a certain relation with the input. Typical image

translation problems include style change and semantic segmentation. Conditional

GANs (pix2pix) (Isola et al., 2017) use the GAN framework to solve the supervised

image-to-image translation problem, where the training data contains paired source

and target images. A conditional GAN combines the GAN loss with the reconstruc-

tion loss in its training objective and uses a “U-Net” structure for its generator that

enables extraction of low-level features of images while preserving the high-level fea-

tures. In the unsupervised settings where only the marginal distribution of source

and target images are given or the images are unpaired, the Cycle-GAN framework

(Zhu et al., 2017a) considers training a source-to-target GAN and a target-to-source

GAN at the same time, and its training objective consists of the two GAN losses

for both directions and a cycle-consistent loss. UNIT (Liu et al., 2017) trains two

GANs to generate images from source and target distributions respectively but with

a shared latent space. Two encoder networks are also trained at the same time to

map the images back to the common latent space. Since the encoder and genera-

tor also form a VAE model, the training objective consists of two VAE losses, two

GAN losses and cycle-consistent losses. Bicycle-GAN (Zhu et al., 2017b) considers

multimodal translation problem where multiple target images can be generated from

a single source image. The model is still based on conditional GANs but introduces

an encoder to map the target image to a Gaussian latent space for a style variable.
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The generator takes both the input image and the style variable as input to produce

an output image. The training loss is a hybrid of the losses of the encoder-generator

model (cVAE-GAN) and generator-encoder model (cLR-GAN).

In this chapter, we develop tools for working with two brain imaging modalities,

the whole-brain blood oxygen level-dependent (BOLD) imaging and cortex-wide fluo-

rescence Ca2+ imaging. The BOLD signals are collected through functional magnetic

resonance imaging (fMRI), which provides a non-invasive measure of activity with

whole-brain coverage. However, fMRI is limited by relatively low spatial and tempo-

ral resolutions and low signal-to-noise ratios (SNR). On the other hand, Ca2+ imaging

is able to examine the concerted activity of neurons across a large field of view (FOV)

with fairly high resolution and SNR, but the signal collection requires invasive ma-

nipulation of the nervous system and is only limited to optically accessible tissue,

i.e., cerebral cortex. Lake et al. (2020) combine Ca2+ and fMR imaging techniques

together and acquire the first simultaneous cortex-wide calcium imaging and whole-

brain fMRI in mice. In collaboration with their group, we apply modern ANN models

on this concurrent calcium/BOLD data set. In particular, we build translation mod-

els that predict global (whole-brain) BOLD signals from local (cortex-wide) calcium

signals, and the experimental results suggest that the model is able to capture brain

functional mechanism and fill in the missing information of the modality.

The rest of this chapter is organized as follows. We first briefly describe the data

acquisition process together with the data pre-processing in Section 4.2. Then, as a

preliminary computational experiment, we show in Section 4.3 that with the WGAN-

GP architecture, we are able to synthesize calcium and BOLD images of high quality.

In Section 4.4, we implement a conditional GAN to translate from calcium images to

BOLD. However, we find that the model is not able to give a favorable prediction for

normalized BOLD images because of the low SNR of fMRI. Therefore, in Section 4.5

we instead consider a simplified data set where the signals are averaged in each of
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the brain regions-of-interest (ROI). We show our translation model can preserve the

brain connectivity map by comparing the connectivity matrix of predicted BOLD

sequences with the truth. Finally, we discuss our results and future research directions

in Section 4.6.

4.2 Data Acquisition and Pre-processing

4.2.1 Data Acquisition

The calcium images and BOLD images are simultaneously acquired by imaging mice

using a special approach (Lake et al., 2020). In the experiments, each mouse is imaged

for three sessions. Each session contains seven 10-minute runs, and in some of the

runs the mouse receives an LED stimulus in its eyes. There are 10 mice involved in

the experiments while the image data is available for three of them.

The calcium images are recorded in cerebral cortex with interleaved violet (Ca2+-

insensitive) and cyan (Ca2+-sensitive) illumination, at a rate of 20Hz. Both wave-

lengths are smoothed, motion corrected and downsampled by a factor of two. In

order to remove the background noise, the violet wavelength is regressed from the

cyan pixel-wise. The final calcium images are grey-level 2D images at 10 frames per

second, with a shape of 390× 390 pixels.

The BOLD data are collected through whole-brain functional magnetic resonance

imaging (fMRI) with a 1Hz sampling rate. The data are also processed with motion

correction and denoising procedures. The final BOLD images are grey-level 3D images

with a shape of 64× 32× 28.

In order to study the functions of different brain regions, calcium and BOLD

images are co-registered using the vascular anatomy in the cortex as landmarks. Then,

the Allen mouse brain atlas is referenced to identify the brain regions of interest

(ROIs) for both calcium and BOLD images. Further details of data acquisition and

81



registration can be found in (Lake et al., 2020).

4.2.2 Data Pre-processing

Although the image data has been processed after it is collected from the medical

devices, it still needs further manipulation before being ready to feed into neural

network models. The calcium images are first centered and rotated so they have the

same orientation. We cut out the part that are outside the brain, giving 190×190 pixel

images, which then are resized to 128 × 128 for the convenience of model-building.

To avoid extreme pixel values, we Winsorize the pixel values according their 0.025%

and 99.975% quantiles. Specifically, we apply the following Winsorization function

on each pixel:

w(x) =


q1, x ≤ q1,

x, q1 < x ≤ q2,

q2, x > q2,

where q1 and q2 are the 0.025% and 99.975% percentiles. Finally, we move the pixel

values into [−1, 1] through a linear transformation.

The BOLD images have the shape 64 × 32 × 28. We center the brain in the

images and trim them to 32 × 32 × 16. The pixel values are also Winsorized and

transformed into [−1, 1] following the same procedure as for the calcium images.

Samples of calcium and BOLD images after pre-processing can be found in Fig. 4.1a

and Fig. 4.2.

4.3 Image Generation with GANs

Generative adversarial networks (GANs) are unsupervised ANN models used to gen-

erate samples from a target distribution (Goodfellow et al., 2014). The distributions

that we want to sample from are usually high-dimensional and difficult to model with
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classical statistical models. GANs consist of a generator and a discriminator that are

trained in an adversarial fashion, where the generator aims to generate fake data to

fool the discriminator, while the goal of the discriminator is to differentiate them from

the real data. In this section, we describe a variant of GAN used to obtain synthetic

calcium and BOLD images.

The objective of GAN training is to solve a minimax problem. Given the generator

G and discriminator D, it can be written as

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [1− logD(G(z))],

where pz is usually assumed to be standard Gaussian or uniform distribution. The

Wasserstein GAN or WGAN (Arjovsky et al., 2017) variant uses Warsserstein distance

to measure the difference between pG, the distribution of samples generated from G,

and pdata, the target distribution, with the training objective given by

min
G

max
D:‖D‖L≤1

Ex∼pdata [D(x)]− Ez∼pz [D(G(z))].

When training a WGAN, a weight clipping operation on D should be added after

each SGD update to ensure the Lipschitz constant of D is always upper bounded.

Alternatively, WGAN-GP (Gulrajani et al., 2017) enforces the Lipschitz constant by

adding a gradient penalty on the objective, according to

min
G

max
D

Ex∼pdata [D(x)]− Ez∼pz [D(G(z))] + λEx̂∼px̂
[
(‖∇D(x̂)‖2 − 1)2

]
, (4.1)

where px̂ = (1− u)pG + updata with u ∼Uniform[0, 1].

Calcium image generation. We first train a WGAN-GP model for the calcium

image generation task. Table 4.1 gives the architectures of the generator and dis-
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Generator G
Layer Output shape
Input 128
FC, batchnorm, ReLU 4× 4× 512
Upconv, batchnorm, ReLU 8× 8× 512
Upconv, batchnorm, ReLU 16× 16× 256
Upconv, batchnorm, ReLU 32× 32× 128
Upconv, batchnorm, ReLU 64× 64× 64
Upconv, tanh 128× 128

(a) Generator network.

Discriminator D
Layer Output shape
Input 128× 128
Conv, leakyReLU 64× 64× 32
Conv, layernorm, leakyReLU 32× 32× 64
Conv, layernorm, leakyReLU 16× 16× 128
Conv, layernorm, leakyReLU 8× 8× 256
Conv, layernorm, leakyReLU 4× 4× 512
FC 1

(b) Discriminator network.

Table 4.1: Architecture of WGAN-GP on calcium images

criminator networks in the WGAN-GP model, where conv and upconv denote the

convolution and transposed convolution operation with a 4 × 4 kernel and stride 2.

We pick 2000 out of 6000 images in each 10-minute run and use the calcium images

for all three mice, which forms a training set of 126,000 images (3 mice × 3 sessions

× 7 runs × 2000 images). The model is trained for 50 epochs where the batch size is

64. On each mini batch, the discriminator is trained for 5 steps before the generator

is trained for one step. The initial learning rates for both the generator and discrimi-

nator are 0.001. Then, both learning rates are divided by 3 after every 10 epochs that

allows the training from coarse to fine. The gradient penalty coefficient λ in (4.1)

is set to 10. Fig. 4.1 compares the real calcium images with images generated from

the WGAN-GP; the images in both panels are randomly sampled from the data set
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(a) Real calcium images (b) Synthetic calcium images

Figure 4.1: Comparison between real (left) and synthetic (right) calcium images by
WGAN-GP

or the model. We observe that the synthetic images are similar to the real ones. In

particular, the synthetic calcium signals are bilaterally symmetric on cortex surface,

and the vasculature on the brain can also be observed from some of the synthetic

images.

BOLD images generation. The BOLD images are 3D tensors with dimension

32 × 32 × 16. We train WGAN-GPs with both 2D and 3D convolutional networks.

In the 2D network, we regard the 3D images as 32 × 32 images with 16 channels.

The kernels used in the convolutional layers are 4 × 4. In the 3D network, since

the outputs of each layer are 4-dimensional tensors (disregarding the dimension on

batch size) with shape [height, width, depth, channel], we use 4 × 4 × 4 kernels for

the convolution. The architectures of the generator and discriminator networks with

both 2D and 3D convolutions are summarized in Table 4.2. We use all the BOLD

images of the three mice as the training data, so it contains 37,800 images in total (3

mice × 3 sessions × 7 runs × 600 images). We adopt the same training parameters as

for calcium data, except that the learning rate is divided by 2 after every 10 epochs.
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Generator G
Layer Output shape (2D) Output shape (3D)
Input 128 128
FC, batchnorm, ReLU 4× 4× 1024 4× 4× 2× 512
Upconv, batchnorm, ReLU 8× 8× 1024 8× 8× 4× 256
Upconv, batchnorm, ReLU 16× 16× 512 16× 16× 8× 128
Upconv, tanh 32× 32× 16 32× 32× 16

(a) Generator networks.

Discriminator D
Layer Output shape (2D) Output shape (3D)
Input 32× 32× 16 32× 32× 16
Conv, leakyReLU 16× 16× 256 16× 16× 8× 128
Conv, layernorm, leakyReLU 8× 8× 512 8× 8× 4× 256
Conv, layernorm, leakyReLU 4× 4× 1024 4× 4× 2× 512
FC 1 1

(b) Discriminator networks.

Table 4.2: Architecture of WGAN-GP with 2D and 3D convolutions on BOLD images

Figs. 4.3 and 4.4 present samples of synthetic BOLD images from the 2D and 3D

models respectively. We observe that the synthetic images from both models are of

high quality and very similar to the real BOLD images in Fig. 4.2. The anatomy at

each layer of the brain can be clearly observed from the synthetic images.

4.4 Image Translation with Conditional GANs

In this section, we focus on the problem of predicting BOLD images from contempo-

raneous calcium images. We use a conditional GAN (pix2pix) model (Isola et al.,

2017) which is designed for image-to-image translation tasks. Similar to GAN, it

consists of a generator G and discriminator D that are trained adversarially by

min
G

max
D
LGAN(G,D) + µLL1(G)
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Figure 4.2: BOLD images after pre-processing, where each row presents randomly
sampled 32× 32× 16 BOLD images in 16 slices.

Figure 4.3: Synthetic BOLD images randomly sampled from a trained WGAN-GP
with 2D convolutions.

87



Figure 4.4: Synthetic BOLD images randomly sampled from a trained WGAN-GP
with 3D convolutions.

where the GAN loss is

LGAN(G,D) = Ey∼py [logD(y)] + Ex∼px [1− logD(G(x))] (4.2)

and the L1 loss is

LL1(G) = Ex,y∼px,y‖y −G(x)‖1. (4.3)

Note that the loss involves px,y, the joint distribution of input images x and target

images y, which means training requires paired images (xi, yi); thus it is a supervised

algorithm. To improve the performance of the model, we use the WGAN-GP loss in

place of the GAN loss LGAN(G,D), i.e.

LWGAN-GP(G,D) = Ey∼py [D(y)]− Ex∼px [D(G(x))] + λEŷ∼pŷ
[
(‖∇D(ŷ)‖2 − 1)2

]
where pŷ is defined similarly as px̂ in (4.1).
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Generator G
Layer Output shape
Input 128× 128
Downsample 64× 64× 64
Downsample [1] 32× 32× 128
Downsample [2] 16× 16× 256
Downsample [3] 8× 8× 512
Downsample 4× 4× 1024
Upsample, dropout, concat [3] 8× 8× 1024
Upsample, dropout, concat [2] 16× 16× 512
Upsample, concat [1] 32× 32× 256
Conv, tanh 32× 32× 16

(a) Generator network.

Discriminator D
Layer Output shape
Input 32× 32× 16
Conv, layernorm leakyReLU 16× 16× 256
Conv, layernorm, leakyReLU 8× 8× 512
Conv, layernorm, leakyReLU 4× 4× 1024
FC 1

(b) Discriminator network.

Table 4.3: Architecture of pix2pix model. Downsampling block includes a convolu-
tional layer followed by batch normalization and ReLU activation, while upsampling
block composes of transposed convolution, batch normalization and leakyReLU.

Notice that it is not a standard image-to-image translation problem, given that

the inputs are 2D calcium images while the targets are 3D BOLD images. In order to

reconcile the discrepancy in dimension, we treat the 3D BOLD images as 2D images

with multiple channels and apply 2D convolutions in our networks. Since there is spa-

tial correspondence between the calcium images and each slice of the BOLD images,

we also adopt the “U-Net” structure for the generator, following Isola et al. (2017).

Specifically, the “U-Net” consists of an encoder and a decoder network, where the

encoder network is able to extract the high-level features of input images through a se-

ries of down-sampling convolutional layers, and the decoder network generates target
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(a) Comparison between real and predicted BOLD im-
ages on training data.

(b) Comparison between real and predicted BOLD im-
ages on test data.

Figure 4.5: Predicting BOLD images from calcium images with pix2pix model. For
each of the eight rows in a figure, the input calcium image is on the left, the real 3D
BOLD image is presented at the top sub-row on the right, and the predicted BOLD
image is below the real one at the bottom sub-row.
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images from those features with up-sampling layers. There are also skip connections

between each pair of layers in encoder and decoder networks that have the same size

of feature map. These skip connections circumvent the bottleneck in the middle and

allow low-level features to shortcut across the network. In addition, we also include

dropout layers with dropout rate 0.5 in the generator to avoid over-fitting. The de-

tailed architecture of the pix2pix model for our translation experiments is presented

in Table 4.3.

A study by Ma et al. (2016) shows that BOLD signals in the brain always have

approximately a 1.4 second delay compared to calcium signals, since the blood oxy-

genation is a secondary metabolic process. During training, we use image pairs (x, y)

where x is the average of 5 consecutive calcium images 1.4 second prior to the target

BOLD image y. We train the model for 100 epochs. The learning rate is 0.0001 at

beginning and divided by 2 after every 20 epochs. The gradient penalty coefficient λ

is still 10 and the L1 loss coefficient µ is set to 100 as suggested by Isola et al. (2017).

Fig. 4.5 shows the results of predicting BOLD images from calcium images with

the pix2pix model on both the training set and the test set. Recall that the images

are collected on three mice with three sessions. We select data from all three sessions

for the first mouse and two sessions for the second mouse as the training set and use

the rest as the test set. In each figure of Fig. 4.5, we show eight groups of images in

rows. For each of the eight rows, the input calcium image is on the left, the real 3D

BOLD image is presented at the top sub-row on the right, and the predicted BOLD

image is below the real one at the bottom sub-row. We observe that the model can

well predict the BOLD images on training data, while on the test data that contains

data from a different mouse, it can still generate reasonable BOLD images, but the

predicted images have less resemblance to the real ones. In fact, compared with

calcium images, the BOLD images have much smaller variance for each mouse. Thus,

the model can capture the anatomical features of the mouse brain, but it does not
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capture the functional variations of the BOLD images.

In order to address this problem, we normalize the BOLD images to remove the

anatomical information. Specifically, for each pixel of the BOLD images, we subtract

the mean of its pixel value across a whole session for each mouse. We don’t subtract

mean across each 10-minute run because there are several runs in the session where

the mouse receives LED stimulus, and normalizing for each run would potentially

damage this information. We retrain the model with the normalized BOLD images

and the results are presented in Fig. 4.6. We observe that the model can now fit the

normalized BOLD images to some extent on training data, but fails to give reasonable

predictions on test data. The pixel values on predicted BOLD images are close to

zero, which indicates the model has difficulty predicting the BOLD signals from the

calcium images that it has not seen before. One reason why the model fails might

be that the signal-to-noise ratio in BOLD images, compared with calcium images, is

low. The BOLD images capture the blood oxygen level signals of the whole brain,

and result from many other factors than the calcium concentration on cerebral cortex.

The relationship between these two signals might be especially weak at deep layers of

the brain. Unlike the calcium images, the dynamics of the BOLD is not easy to view

by eye, even after normalization. Considering that there is also noise introduced from

the measurements, the BOLD dynamics therefore has a faint signal with respect to

calcium level, which causes the weak model predictions on test data.

4.5 Translation Models on ROI Data

The above analysis indicates that the low signal-to-noise ratio on fMRI data pre-

vents us from obtaining favorable translation results. In order to reduce the problem

complexity and noise level, we turn to modeling with a simplified data set, where

the high-dimensional calcium and BOLD images are reduced to low-dimensional time
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series. Specifically, after image registration with the Allen atlas, we are able to divide

the whole brain into a number of regions-of-interest (ROIs). The calcium and BOLD

signal vectors are computed by taking the mean of the pixel values of the calcium or

BOLD images within the same ROI. Given the calcium signals are relatively consis-

tent within each second, we down-sample the signals from 10 Hz to 1 Hz so that it

matches the frequency of the BOLD data.

Generator G
Layer Output shape
Input 64× 44
Downsample [1] 32× 128
Downsample [2] 16× 256
Downsample [3] 8× 512
Downsample 4× 1024
Upsample, dropout, concat [3] 8× 1024
Upsample, dropout, concat [2] 16× 512
Upsample, dropout, concat [1] 32× 256
Upsample 64× 128
Conv, batchnorm, tanh 64× 44

(a) Generator network.

Discriminator D
Layer Output shape
Input 64× 44
Conv, layernorm leakyReLU 32× 128
Conv, layernorm, leakyReLU 16× 356
Conv, layernorm, leakyReLU 8× 512
FC 1

(b) Discriminator network.

Table 4.4: Architecture of pix2pix model on ROI data. Downsampling block in-
cludes a convolutional layer followed by batch normalization and ReLU activation,
while upsampling block composes of transposed convolution, batch normalization and
leakyReLU. The dropout rate is 0.5.

We still focus on the problem of predicting BOLD signals from calcium. Since the

data is available in 44 ROIs, the input of the model is the 44-dimensional calcium

time series of length 64 seconds and the output is the BOLD time series within the
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same time period. There are several differences in data format between this problem

and the previous one that requires a change in the design of model structure. In the

image translation problem, the data are 2D/3D images and a single BOLD image is

predicted from an averaged calcium image at a given time, while in current setting, the

data are time series of vector signals, and the BOLD signals are predicted by calcium

within a given time period instead of at a single time point. To address this change,

we treat the time series for each ROI as a 1D image and take different ROIs as image

channels, so that we can take a 1D convolution at each layer of the network. There are

two reasons for this design. First, the BOLD signals are local in time, meaning that

they have a strong relation with the calcium signals that arise within the surrounding

time period but a relatively weak relation with those at distant times. This can be

modeled using the convolution operation since the receptive field of an output pixel

is the surrounding input pixels defined by the size of the convolution kernels. Second,

the BOLD signals are global in space. Since brain ROIs have functional connections

with each other, the BOLD signals in one ROI may be affected by calcium signals

from any other ROIs. It is reasonable to take ROIs as the channels of the images since

the convolution operation is “fully-connected” across the input and output channel

dimensions.

We still apply the WGAN-GP framework and the training object is given by

min
G

max
D
LWGAN-GP(G,D) + µ1LL1(G)− µ2Lcorr(G)

where LWGAN-GP(G,D) and LL1(G) are the WGAN-GP loss and L1 loss defined in

(4.2) and (4.3). We also add a correlation loss

Lcorr(G) = Ex,y∼px,yCorr(y,G(x)) = Ex,y∼px,y
〈y,G(x)〉
‖y‖‖G(x)‖

, (4.4)

which encourages the correlation between predicted times series and the truth to

94



be large. The architectures of the generator and discriminator are summarized in

Table 4.4. The initial learning rate for both generator and discriminator is 0.0001,

and it is divided by 2 after every 20 epochs. We take the gradient penalty coefficient

λ = 10 as before. We take µ1 = 1 and µ2 = 10 from a grid search. In fact, a large

L1 penalty µ1 and small correlation loss penalty µ2 would cause the generated BOLD

time series close to zero, while larger µ2 would help increase the variation of generated

results.

Since the ROI data is available for 10 mice, we designs three disjoint test sets to

test our model performance. The first test set includes the data for two random mice

and contains 39 runs in total. The second one includes three random sessions from

three remaining mice and contains 20 runs. The third one contains 21 runs that are

randomly sampled from each of the remaining sessions. The rest of the data forms the

training set. After the model is trained for 100 epochs, we find that the correlation

between predicted BOLD times series and actual time series on the training data

is 0.412. The correlations on the three test sets are 0.045, 0.045 and 0.043. This

shows that model learns useful information from the data, although the correlations

are relatively small compared with those on the training data. It is also surprising

that the correlations are similar given that the three test sets have different levels

of correspondence with the training set. This indicates that the model captures the

general relationship between calcium and BOLD signals that is invariant for individual

mice. We present the model predictions on training data and the first test data set

in Fig. 4.7. We observe that on the training data, although the predictions do not

exactly match the real time series, they always have a similar trend that is consistent

with the correlation result. On the test data, most of the predicted BOLD time series

still follow the real curves and look reasonable.

The functional connections between the ROIs can be characterized from the cal-

cium or BOLD signals. A simple brain connectivity map is the connectivity matrix
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where the (i, j) entry is the correlation between calcium signals in the i-th and j-th

ROIs if i < j, and the correlation between BOLD signals if i > j (Lake et al., 2020).

We can also evaluate our model by comparing the connectivity matrix computed from

actual BOLD data and the connectivity matrix computed from the predicted BOLD

time series. Fig. 4.8 gives the comparison between the real and predicted connectivity

matrices on both training and test data. This result shows that the predictions retain

the connectivity map, indicating the predictive power of our model.

4.5.1 Control Experiments

We observe that the correlation between the predicted BOLD time series and the

actual time series on the test data are relatively small (0.045) compared to the corre-

lation on the training data (0.412). It is possible that the trained model just randomly

generates BOLD time series similar to those in the training data, regardless of the

input of calcium time series. In this case, it becomes a generative model instead

of translation model, and the connectivity matrix would also be preserved on the

test data. We design two control experiments to test this hypothesis. In the first

control experiment, for each pair of calcium and BOLD time series (xi,yi) in the

training data, we replace the calcium time series xi = {xi+t|t = 0, 1, ..., 63} with

x̃i = {xj+t|t = 0, 1, ..., 63}, where xj is randomly picked from the 10-minute run that

contains xi. This effectively breaks up the relationship between calcium and BOLD

on the time axis. In the second experiment, we shuffle the ROIs of the calcium time

series xi for each training pair (xi,yi) so that the ROIs for input calcium signals

are not aligned with the ROIs for target BOLD signals. We train the model under

these two control settings using the same hyper-parameters and training/test data

as before. Table 4.5 summarizes the correlations between predictive and real BOLD

time series for these three experiments.

We observe that our translation model has significantly higher test correlation
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Experiment Training correlation Test correlation
Normal setting 0.412 0.045
Scramble time 0.196 0.001
Shuffle ROIs 0.285 0.015

Table 4.5: Training and test correlations for normal translation model and two control
experiments.

than the two control experiments, showing that the model indeed captures some of

the relationship between calcium and BOLD signals. Notably, the test correlation for

the second control experiment is still substantial. This is because the calcium signals

are always consistent across a large number of ROIs, and some of the information is

still preserved after shuffling the ROIs. We also examine the connectivity matrices

for these two control experiments and find that they are similar to normal setting.

This is still reasonable, since the presence of the discriminator network ensures the

generated BOLD time series are similar to the actual time series, and the connectivity

matrices should therefore be preserved as well.

4.6 Discussion

In this chapter, we present results of applying modern ANN models to the simulta-

neous mice fluorescence Ca2+ imaging and fMRI data sets. We start with generating

calcium and BOLD images using WGAN-GPs, and show that the synthetic images

have qualities that closely resemble the actual images. In following translation task,

we try to map from calcium images to BOLD using conditional GANs. When BOLD

images are not normalized, the brain anatomy is the dominant signal and variations

of the BOLD images are quite small within each experiment session. In this case, the

translation model can recover the anatomy signal of BOLD from the calcium images

while the functional signals are overwhelmed. After normalizing the BOLD by sub-

tracting the static anatomy, we find that the model is able to fit the training data to
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some extent but fails to generalize on test data — the predicted BOLD images always

have small pixel values close to zero. There are several reasons that could lead to

these results. First, the SNR of BOLD signals is relatively low compared to calcium

given the nature of fMR imaging. The BOLD signals are measured in a low spatial

and temporal resolution from outside of the brain, which introduce more noise to the

collected BOLD images. Second, the calcium signals are consistent across the cortex,

while the dynamics of BOLD signals are much more complicated and vary across lay-

ers of the brain. Third, the dynamics of BOLD signals may depend on factors other

than calcium. It is especially hard to predict the BOLD signals at deeper layers of the

brain from the calcium signals on the cortical surface. Finally, external factors such

as the discrepancy in brain shape for different mice and the artifacts on the images

brought by the device could also affect the model prediction power.

To address these challenges, we consider a simplified data set where the calcium

and BOLD signals are averaged within the brain functional ROIs as determined by the

Allen mouse brain atlas. This ROI data set reduces the high-dimensional images to

low-dimensional signal vectors but still contains information of brain activity. Here

we consider translating between the calcium and BOLD time series of length 64

seconds. We modify the conditional GAN model to adapt time series data and add

a correlation loss to the training objective. We show that the predicted BOLD time

series has high correlation with actual BOLD on training data, while the correlation

is small but positive on the test set. Despite the small correlation, we observe that

the predicted BOLD signals maintain the brain connectivity map across the ROIs by

comparing the connectivity matrix between predicted and real BOLD signals. This

result demonstrates the predictive power of our model and shows the merit of ANNs

in the study of brain function.

We note that image translation between calcium and BOLD can be potentially

improved in several ways in future studies. Given the uncertainty of BOLD signals
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at deep layers of the brain, it is reasonable to just focus on the BOLD images near

the cortical surface and project those voxels to a 2D image, which serves as a new

translation target. Moreover, more calcium images can be included in the model to

predict a frame of BOLD, since a strong stimulus on the cortex may have long-term

effects on BOLD. And a simple way to combine calcium images is stacking them

along the channel dimension. The anatomical information could also be included in

the model so that the model would be able to generate customized BOLD images

for different mice. Finally, beyond an image translation model, a video generation or

translation model (Tulyakov et al., 2018; Bansal et al., 2018) could also be applied

to this data.
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(a) Comparison between real and predicted BOLD im-
ages on training data.

(b) Comparison between real and predicted BOLD im-
ages on test data.

Figure 4.6: Predicting BOLD images from calcium images with pix2pix model, where
BOLD images are normalized by subtracting the mean. For each of the eight rows in
a figure, the input calcium image is on the left, the real 3D BOLD image is presented
at the top sub-row on the right, and the predicted BOLD image is below the real one
at the bottom sub-row.
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(a) Comparison between real and predicted BOLD time series on training
data.

(b) Comparison between real and predicted BOLD time series on test data.

Figure 4.7: Predicting BOLD signals from calcium signals with pix2pix model on
14th ROI. Red curves, solid blue curves and dashed blue curves represent input
calcium signals, real BOLD signals and predicted BOLD signals.
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(a) Comparison of connectivity matrix on training data.

(b) Comparison of connectivity matrix on test data.

Figure 4.8: Comparison of connectivity matrix between one computed from real cal-
cium & real BOLD signals (left) and one computed from real calcium & predicted
BOLD signals (right). The title of the right figures gives the RMSE between two
matrices.

102



Bibliography

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and Tweed, D. B. (2019). Deep

learning without weight transport. In Wallach, H., Larochelle, H., Beygelzimer, A.,
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