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Abstract 
 

Characterization of Postoperative Recovery After Cardiac Surgery 
 

Insights into Predicting Individualized Recovery Pattern 
 

Makoto Mori 

2021 

 

Understanding the patterns of postoperative recovery after cardiac surgery is important from 

several perspectives: to facilitate patient-centered treatment decision making, to inform health care 

policy targeted to improve postoperative recovery, and to guide patient care after cardiac surgery. Our 

works aimed to address the following: 1) to summarize existing approaches to measuring and reporting 

postoperative recovery after cardiac surgery, 2) to develop a framework to efficiently measure patient-

reported outcome measures to understand longitudinal recovery process, and 3) to explore ways to 

summarize the longitudinal recovery data in an actionable way, and 4) to evaluate whether addition of 

patient information generated through different phases of care would improve the ability to predict 

patient’s outcome.  

We first conducted a systematic review of the studies reporting on postoperative recovery after 

cardiac surgery using patient-reported outcome measures. Our systematic review demonstrated that 

the current approaches to measuring and reporting recovery as a treatment outcome varied widely 

across studies. This made synthesis of collective knowledge challenging and highlighted key gaps in 

knowledge, which we sought to address in our prospective cohort study. 

 We conducted a prospective single-center cohort study of patients after cardiac surgery to 

measure their recovery trajectory across multiple domains of recovery. Using a digital platform, we 

measured patient recovery in various domains over 30 days after surgery to visualize a granular 

evolution of patient recovery after cardiac surgery. We used a latent class analysis to facilitate 
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identification of dominant trajectory patterns that had been obscured in a conventional way of 

reporting such time-series data using group-level means. For the pain domain, we identified 4 trajectory 

classes, one of which was a group of patients with persistently high pain trajectory that only became 

distinguishable from less concerning group after 10 days. Therefore, we obtained a potentially 

actionable insights to tailoring individualized follow-up timing after surgery to improve the pain control. 

 The prospective study embodied several important features to successfully conducting such 

studies of patient-reported outcomes. This included the use of digital platform to facilitate efficient data 

collection extending after hospital discharge, iteratively improving the protocol to optimize patient 

engagement including evaluation of potential barriers to survey completion, and using latent class 

analysis to identify dominant patterns of recovery trajectories. We outlined these insights in the 

protocol manuscript to inform subsequent studies aiming to leverage such a digital platform to measure 

longitudinal patient-centered outcome.  

 Finally, we evaluated the potential value of incorporating health care data generated in the 

different phases of patient care in improving the prediction of postoperative outcomes after cardiac 

surgery. The current standard of risk prediction in cardiac surgery is the Society of Thoracic Surgeons’ 

(STS) risk model, which only uses patient information available preoperatively. We demonstrated 

through prediction models fitted on the national STS risk model for coronary artery bypass graft surgery 

that the addition of intraoperative variables to the conventional preoperative variable set improved the 

performance of prediction models substantially. Using machine learning approach to such a high-

dimensional dataset proved to be marginally important. This work demonstrated the potential value and 

importance of being able to leverage health care data to continuously update the prediction to inform 

patient outcomes and guide clinical care. 

 Our work collectively advanced knowledge in several key aspects of postoperative recovery. 

First, we highlighted the knowledge gap in the existing literature through characterizing the variability in 
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the ways such studies had been conducted. Second, we designed and described a framework to 

measure postoperative recovery and an analytical approach to informatively characterize longitudinal 

patient recovery. Third, we employed these designs in a prospective cohort study to measure and 

analyze recovery trajectories and described clinical insights obtained from the study. Finally, we 

demonstrated the potential value of a dynamic risk model to iteratively improve its predictive 

performance by incorporating new data generated as the patient progresses through the phase of care. 

Such a platform has the potential to individualize patient’s post-acute care in a data-driven manner.  
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CHAPTER 1 
 

Characterizing Patient-Centered Postoperative Recovery After Adult Cardiac Surgery: A 
Systematic Review 

 

Introduction 

Postoperative recovery is a complex, time-dependent process with multiple relevant domains, 

including physiological, nociceptive, mental health, cognitive, sleep, mobility, and activity of daily living.1-

3 Understanding postoperative recovery after cardiac surgery is pertinent as there is increasing emphasis 

on readmission and outcomes of post-acute care, with implementation of national publicly-reported 

measures and incentive systems, such as bundled payments and Hospital Readmissions Reduction 

Program.4, 5 There are increasing calls for the use of patient-reported outcomes measures (PROMs) to 

improve recovery, as well as digital health tools to assess function and activity.3, 6 In fact, the Centers for 

Medicare and Medicaid Services is now paying for such remote monitoring.7 However, the quality and 

volume of the evidence base guiding this effort in cardiac surgery population are unknown.  

To inform strategies to study and improve postoperative recovery, it is important to 

systematically evaluate the volume, quality and content of existing literature. Of particular interest is 

the use of standardized methods to assess various domains relevant to recovery and inclusion of diverse 

patient population. Additionally, characterizing approaches to reporting PROM scores is important, as 
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variable reporting of raw measured scores, relative change from the preoperative measurements, or 

other ways, may impede generalizable synthesis of the literature. However, to date, there is no 

extensive review of the magnitude and quality of the studies, how prior studies have used PROM 

instruments and what patient populations are being studied. 

Accordingly, we performed a systematic review in order to 1) describe the methods used in 

existing studies that evaluated postoperative recovery after cardiac surgery using PROMs, and 2) assess 

the populations studied. The findings will help prioritize future research by identifying areas of 

postoperative recovery that currently lacks data. 

 

Methods 

Search Strategy and Study Selection 

We developed the protocol according to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) statement8. In order to identify prospective studies on cardiac surgical 

population that evaluated postoperative recovery using PROMs, publications were searched on Medline 

and Web of Science using a combination of key terms and index headings related to cardiac surgery and 

postoperative recovery. We consulted a librarian experienced in systematic review on methodology and 

refining search terms. We did not include specific PROM terms or domain terms in order to increase the 

search sensitivity. We reviewed all publications indexed through January 10, 2019. The list of MeSH 

terms (permutations of ‘postoperative,’ ‘cardiac surgery,’ and ‘recovery’) and other search strategies are 

outlined in Supplementary Text. We reviewed search results to confirm inclusion of 5 validation articles9-

14 that we identified before the search.  

We included only prospective studies in adult patients (age 18 years or older) who underwent 

any type of cardiac surgery that reported any PROMs following surgery. We excluded case reports and 

review articles. We excluded studies including patients who underwent left ventricular assist device, 
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extracorporeal membrane oxygenation support, orthotopic heart transplant, and congenital or adult 

congenital patients, as these populations likely experience distinct recovery trajectories different from 

the majority of adult cardiac surgical populations, which are those undergoing coronary artery bypass 

grafting, valve, and aortic operations. We also excluded studies with follow-up durations of fewer than 4 

post-operative days, as the aim of this study was to characterize the recovery beyond acute phase of the 

care. To focus on studies evaluating patient-centered recovery, we excluded studies not reporting 

PROMs, with the exception of studies measuring physical function using accelerometers. Additionally, 

studies measuring PROMs at unspecified time points were not included. We added this criterion to 

exclude studies that obtained PROMs at undefined time points from the index operation, which can 

have considerable time range and is challenging to interpret considering the time-dependent nature of 

recovery. 

Screening and data collection 

We organized the articles using Endnote 8 (Clarivate Analytics, Philadelphia, PA) and two 

authors (MM and SA) screened the titles and abstract of all search results to locate potentially eligible 

articles for full-text review. Both authors then reviewed the full-text to identify the final list of eligible 

articles, and all disagreements were resolved by consensus.  

Data Extraction 

 For each article, we recorded publication characteristics (first author, year of publication, and 

journal), study characteristics (instruments used to evaluate recovery, such as SF-36,15 Quality of 

Recovery score,16 or battery of neurocognitive tests, number of assessments performed, longest time of 

patient follow-up, timing of each follow-up in terms of days since the operation, the domains of 

recovery evaluated, inclusion/exclusion criteria, enrollment approach, missing data treatment, and how 

death during the follow-up was analyzed), and patient characteristics (age, sex, race, number of patients 

in the study, and cardiac surgery type). Patient follow-up duration was defined as the duration between 
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the operation and the time when the latest PROM recording was obtained. Values for the timing of 

measurement were collected in days since the operation. In order to assign a numeric value for visual 

representation of when the measurements were taken, the timing of measurement obtained at hospital 

discharge were defaulted to postoperative day 7, if the study did not report specific timing of 

postoperative discharge. Day 7 was chosen based on the mean postoperative length-of-stay of 6.9 days 

reported by the national Society of Thoracic Surgeons database for patients undergoing isolated CABG17. 

Journal type was grouped into 6 categories: nursing, surgical, psychology/behavioral, anesthesia, 

cardiology, and other. We categorized journals based on the journal title including the name of the 

specialty (e.g., anesthesiology, nursing) and professional society’s affiliations to the journal 

(Supplementary table S1).  

PROM domains 

 Six domains that characterize postoperative recovery were identified based on a previous 

literature review3: Nociceptive symptoms, physical function, activity of daily living (ADL), sleep, cognitive 

function, and mental health domains. Depression, anxiety, and psychosocial function were categorized 

into the mental health domain. Nociceptive symptoms domain included reporting of pain, physical 

discomfort, shortness of breath, and nausea. The physical function domain included measurement 

obtained either using objective tools, such as accelerometer, or PROMs. This criterion was set in order 

to not exclude studies that used a more rigorous tool to measure the domains. Similarly, studies using 

polysomnography for sleep were included to capture studies on postoperative sleep pattern, although 

polysomnography is likely not applicable for clinical home monitoring. 

Definition of outcomes reporting methodology 

 In order to evaluate how PROM values are analyzed and reported, we categorized reportings 

into the following 7 categories: raw score, percent of patients with or without symptoms or dysfunction 

(according to each study’s definition of categorizations), difference from baseline values, percent of 
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patients achieving baseline values, frequency of symptoms, fitting a model over raw scores, and others. 

To the best of our knowledge, there is no existing categorization of PROM reporting for postoperative 

period. Therefore, we identified common reporting patterns by (1) reviewing the reporting of all 

included studies, (2) defining major categories, and (3) conducted a second review to categorize the 

studies by reporting approaches. Raw score indicates reporting of mean/median value of the PROM 

score obtained at given time point, and represents the simplest form of reporting. All other reporting 

categories involve processing of the raw score, such as calculating relative changes from baseline, or 

proportion of the patients reaching the baseline value at given time points.  

 

Patient characteristics, enrollment approach, and inclusion/exclusion criteria 

 We then evaluated demographic data, enrollment approach, and inclusion/exclusion criteria to 

characterize the breadth of patient populations studied. Enrollment approach was categorized into 

convenience sampling, consecutive enrollment, or unspecified. Inclusion and exclusion criteria of 

interests were those specifically outlining age, sex, comorbidity criteria, and whether studies excluded 

patients based on case acuity status (elective vs. non-elective).  

 

Treatment of death and missing data 

Lastly, we evaluated how patients who died during the follow-up period were treated in the 

analysis, in order to understand common analytical practice and existing knowledge of recovery process 

prior to death. To characterize potential bias due to missing data, we recorded how missing data were 

being handled, because in longitudinal studies with decline in study participation over time, the 

population retained to the completion of the study may represent a biased cohort18. 

Analysis 
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 Studies were summarized using descriptive statistics by the sample size, procedure types, 

duration and timing of follow-up, number of measurements obtained, and the number of domains 

evaluated. Each variable was summarized either by the percentage or by the median, interquartile range 

(IQR), and range. Distributions of the studies in each component were summarized in a bubble plot. The 

most frequently used PROM instruments were selected to visualize the timing in days from operation 

and frequency of measurements obtained. 

 

Results 
 
Selected studies 

 The search criteria yielded 3,432 studies that potentially addressed postoperative recovery after 

cardiac surgery. Title and abstract screening excluded 3,267 studies. Common reasons for exclusion 

included studies addressing congenital heart disease population, animal studies, and studies not 

assessing PROMs. The remaining 165 potentially eligible articles underwent full-text review. This process 

excluded an additional 60 studies, consisting of studies with measures obtained at inconsistent time 

points, studies without full text, follow-up duration < 4 days, and those evaluating the same study 

sample used in other included publications. Finally, 105 articles were included for analyses (Figure 1). 

 

Study characteristics 

  For the 105 included articles, the sample size of the studies tended to be small with median of 

119 patients (IQR 62-229, range 14-7,321). Thirty-five percent (n=37) of the studies were intervention-

based, comparing recovery between specific intervention and control groups. Twenty-five percent of the 

studies (n=26) were randomized controlled clinical trials, in all of which the interventions were 

hypothesized to improve recovery, including less-invasive surgical approach19 and the use of special 

undergarments for women’s incisional discomfort.20 Seventy-seven percent (n=81) were conducted in 
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single-center settings. Median follow-up duration was 91 (IQR 42-182) days. Frequent follow-ups 

(measurements at ≥5 time points) were obtained in 15% (n=15). Studies most commonly assessed 1 

domain (n=42, 40%). The nociceptive symptom domain was the most commonly measured (n=60, 57%), 

followed by the mental health (n=58, 55%) domain. One study that met the inclusion criteria evaluated 

postoperative taste change,21 which did not meet any of our pre-specified domain categories (Table 1). 

Of note, studies with the largest sample size (N=7,321) evaluated only one domain, with one study 

having only two follow-ups22 while another having 7 follow-ups but spanning only for 7 days (Study 17, 

Supplementary Table S2). 

Studies were most commonly published in nursing journals (n=30, 30%), followed by surgical 

journals (n=25, 24%) (Supplementary Table S3). The oldest study was published in 1980 and 88% and 

40% of the included studies were published after 2000 and 2010, respectively (Supplementary Figure 1). 

Reporting methodology 

 Of the 105 studies, 71 (68%) reported only the raw scores obtained from measurement tools. 

Fourteen (13%) defined presence of symptoms or dysfunction in a binary form and reported proportion 

of patients experiencing the symptoms or dysfunction at each time point. Ten (10%) studies reported 

measurement values in relation to the baseline values, either as the absolute or relative difference, or 

proportion of patients achieving the baseline value at each measured time points (Table 2). Only 60 

(57%) studies obtained the first measurement prior to the operation (Figure 2).  

 Most of the studies with 1-2 follow-up assessments examined duration of less than 30-days. 

Three studies reported 5 measurements within 50-day period,11, 13, 23 representing the highest temporal 

resolution (Figure 3 and Supplementary Figure S2). 

Figure 4 summarizes the measurement timing and frequencies by the studies using 36-Item 

Short Form Health Survey (SF-36),10, 13, 14, 24-42 which was the most commonly used tool among the 

studies analyzed. Among the studies using SF-36, the total number of measurements obtained ranged 
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from 1 to 6, with highly variable timing of measurements among the studies. Preoperative, 42 days (6 

weeks), 91 days (3 months), and 182 days (6 months) after surgery were common time points to obtain 

the measurement. 

Patient characteristics, selection criteria, missing values 

 Of the 100 studies that reported sex, men represented 71% (n=27,308) of the patients. Only 

26% (n=27) of the studies reported race, and of those that reported race, Caucasian race comprised 88% 

(n=4,852). The most common procedure type evaluated was isolated or concomitant CABG only (n=60, 

57%), followed by studies including both CABGs and other non-CABG procedures (n=38, 36%); studies 

focusing solely on valve surgery cohort comprised 6% of the studies (n=6). Studies commonly excluded 

patients who died during the follow-up period (46%) and 45% did not specified how people who died 

were analyzed (Table 3). Only one study evaluated recovery in relation to mortality as an outcome22.  

Over half of the studies did not specify whether enrollment was consecutive or on convenience 

basis. Studies commonly set criteria to select for elective cases (53%) and patients with less comorbidity 

(64%). Ten percent of the studies set criteria to select for older patient population (age ≥60 years), and 

5% of the studies specified inclusion of women only (Table 3).  

Study findings 

 The variability in methodologies used across studies precluded synthesis of the existing 

evidence. Therefore, we summarized interventions and clinical characteristics associated with 

postoperative recovery that studies identified (Supplementary Table S4), although interpretation of such 

claims are difficult in the context of limited quality of studies included in this analysis.  

 

Discussion 
 

In this systematic review, we identified that the body of literature on postoperative recovery 

after cardiac surgery is small (105 studies) and limited in quality, mostly single-center studies focusing 
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on narrow diversity of patients. Patients studied were predominantly men and of 26% of the studies 

reporting race, 88% were Caucasian. Measurement and reporting methods varied widely among the 

studies, with no standardized use of instruments. Although studies reported predictors of recovery, 

most lacked external validation, were low in quality, and limited in breadths of the population studied. A 

significant implication of our findings is in highlighting the need for high-quality research using a 

standardized the approach so that recovery can be measured and improved on evidence-based fashion, 

especially with the current focus on post-acute phase of care. 

 This review has marked implications to researchers and funding bodies, as it revealed how 

limited the evidence on postoperative recovery is when significant interest exists in readmission 

reduction and improving the quality of post-acute care. The Centers for Medicare and Medicaid Services 

is developing PROMs as part of its Quality Payment Program to relate patient experience to hospital 

reimbursement43. This signals the need for the science behind measuring patient experience to catch up 

to the practice, and that need is not being fulfilled by current literature. A major implication to clinicians 

is that interventions to optimize postoperative recovery are based on little evidence at this point, and 

drawing clinical guidance on this topic from the literature is challenging.  

  

Measurement methodologies 

Significant heterogeneity and methodological weaknesses were noted in the duration of follow-

ups, the frequency of measurement, tools used to assess recovery, and the domains that were assessed. 

Even among 22 studies using the same SF-36 instrument, there was a high variation in when, in relation 

to the time of surgery, and how frequently the assessments were obtained. Because such variation 

complicates interpretation of the results across studies, a priority area in studying postoperative 

recovery may be to identify standard approach to measurement frequency and timings. In addition, 

although accounting for individual variations in preoperative level of measurement may be important to 
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contextualize postoperative recovery, measurement of preoperative values was inconsistent, with only 

57% of the studies performing preoperative measurement. Furthermore, the review highlighted the low 

temporal granularity in measurement, with 8 and 9 being the highest numbers of measurements 

obtained over a relatively long period of 6 months12 to 1 year44. Because digital platforms may allow for 

a high-frequency measurement of PROM, as frequent as on a daily basis45, leveraging such technology 

provides novel opportunities to obtain granular insights into the process of recovery.  

 

Reporting methodologies 

 Reporting of PROMs varied across studies, representing another element that requires 

standardization to promote cohesive interpretation of the evidence. A majority of the studies (67%) 

reported results as raw scores, often as the group-level mean or median and standard deviations, 

without any further processing of the score. Other studies sought to provide more clinically intuitive 

values, such as the proportion of patients reaching the preoperative values in the measured domains or 

items.9, 10 Defining the recovery as the time that one reaches preoperative level of function in each of 

global domains3, 9 may be useful in the clinical setting in providing estimate of the time it takes for 

certain proportion of the cohort to achieving ‘recovery’. However, this approach to reporting may not 

be as useful in assessing domains that do not have a clear improving or declining trajectory, such as the 

mental health domain,10 and is also not possible when the preoperative (baseline) values are not 

measured. Additionally, the binary categorization of the scores limits the interpretation of recovery to 

that at the group-level, and obscures distributional properties, such as the standard deviation, of the 

raw scores. Furthermore, improvement of scores beyond baseline are not reflected in this reporting  

Raw scores measured via instruments calibrated to certain population-based distributions may 

be difficult to interpret in highly selective cohort such as those recovering after cardiac surgery, because 

the clinical characteristics of specific subpopulations may not match that of the population from which 
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the calibration was obtained. SF-36 score was linearly transformed to have the mean score of 50 and 

standard deviation of 10,46 and has been validated by the original authors across 24 patient populations 

with variable sociodemographic characteristics and disease severity.47 However, whether this norm 

holds true in a highly specific subpopulations, such as a postoperative cohort after high acuity 

operations recovering from a critical care setting, is uncertain. Taken together, standardization of 

reporting is needed, which may entail reporting of both raw scores obtained by the instruments and any 

post-processing of the scores if they provide additional interpretive advantages. 

  

Underrepresented population 
 We identified underrepresented populations in this review. As the vast majority of the studies 

(92%) selected for CABG or mixture of CABG and other operations, existing data on postoperative 

recovery after non-CABG operations are limited. Only 6 studies exclusively evaluated valve operations. 

Because the mortality and complication incidences vary across case types48, the process of recovery is 

expected to also vary and likely represent an important area of investigation. Expectedly, non-Caucasian 

and female patients were underrepresented but more importantly, only 26% of the studies reported 

race data. Recovery process is reported to be more protracted in female patients14, and racial 

differences in recovery and the underlying causes likely warrant investigation. Most studies excluded or 

did not specify the treatment of mortality that occurred during the follow-up. While exclusion may be a 

practical approach to handling missing data, excluding deceased patient leaves the trajectory or 

recovery prior to death unknown. Similarly, a large number of studies excluded patients undergoing 

non-elective cases with higher comorbidity levels and enrolled patients on convenience basis. Although 

such approaches may improve response rates, they obscure the recovery process of sicker patients. 

Measuring recovery of this population requires patient engagement and creatively devising ways to 

simplify patient response.  
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Design and domain 
The use of objective mobility tracker device in this population was infrequent (3 studies). As the 

prognostic value of objectively-measured mobility has been demonstrated in oncologic49 and non-

cardiac surgical populations,6 it may be an important aspect of global recovery assessment. Sleep and 

cognitive domains represented the least frequently assessed domains, although both domains undergo 

significant disturbances postoperatively50, 51. This relative infrequency may owe to the challenge related 

to resource-intensive cognitive function testing and polysomnography being the gold standards52. In 

order to generate evidence in a large cohort representing wide spectrum of patient population, the use 

of subjective surrogate measures, such as self-perceived sleep quality and duration, may be a practical 

alternative.  

 

Limitations 
This systematic review should be interpreted in the context of several potential limitations. First, 

the analysis was dependent on the available published data and is limited by publication bias and 

applicability of historical publications to contemporary clinical and research practice. However, we 

evaluated the temporal trend in the publication of included studies to assess contemporariness, and 

found that almost 90% of the eligible studies were published after year 2000. Second, although we 

worked with an experienced librarian to define the inclusive search terms and searched two large 

databases, it is possible that relevant studies may not have been identified. Third, the heterogeneity of 

studies in methodology and reporting precluded meta-analysis. We reported qualitative summary of the 

studies in the form of predictors of recovery reported. Fourth, although a systematic review typically 

include risk of bias assessment, this study focused on the synthesis of meta-data of broad types of 

studies, and the heterogeneity of study types precluded systematic assessment of risk of bias applicable 

to all studies. As the main aim of the study was to describe the characteristics of all existing studies on 
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this topic, we believe the metrics we used to characterize the studies provide a unified view of existing 

literature.  

 

Conclusions 
 
 Our systematic review on post-operative, patient-centered outcomes after adult cardiac surgery 

revealed that studies are quite limited in what they assess, most often single site without external 

validation, varied in their approach to missing data, and narrow in terms of the diversity of patients. The 

evidence base regarding post-operative patient-centered outcomes needs to be strengthened in order 

to guide data-driven improvement of post-operative recovery. Priority areas include augmenting the 

volume and quality of studies, improving and standardizing the methods and PROM instruments, and 

focused recruitment of minority populations.  
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Tables and Figures  
 
Table 1: Study characteristics of 105 studies 
 

Variables 
N or 
median % or Q1-Q3 (range) 

Sample size (n) 119 62-229 (14-7321) 
Randomized trial 26 25% 
Intervention-based* 37 35% 
Multicenter study 24 23% 
   
Follow-up duration (days) 91 42-182 (4-1825) 
   
Number of follow-ups   
1 7 7% 
2 27 26% 
3 35 33% 
4 21 20% 
5 7 7% 
6~9 8 8% 
   
Domains   
Nociceptive symptoms 60 57% 
ADL 51 49% 
Cognitive 18 17% 
Mental health 58 55% 
Physical function 55 52% 
Sleep 11 10% 
   
Number of domains assessed  
1 42 40% 
2 14 13% 
3 17 16% 
4 23 22% 
5 8 8% 
6 0 0% 

 
IQR= interquartile range. 
*Intervention-based refers to studies that examined patient-reported outcome measures 
according to different process of care (robotic vs. sternotomy approach, telehealth follow-up 
vs. usual care, etc).  
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Table 2: Outcomes reporting methodology 
 

Reporting methods N % 
Raw score values 71 68% 
Percent of patients with and without 
symptoms/dysfunction 

14 13% 

Difference from baseline 6 6% 
Percent of patients achieving baseline 4 4% 
Function-based (fit over raw score values) 4 4% 
Frequency of symptom 3 3% 
Other 3 3% 

 
*Raw score values include 1 study reporting number of steps measured by a tracker.  
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Table 3: Study population characteristics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
CABG= coronary artery bypass graft surgery.  
Total N is 105, except for male and Caucasian numbers, which are specified in the table. Older and younger ages 
were defined by different thresholds in order to identify studies that focused on extremes of patient age (i.e. 
‘older’ referred to the exclusion of extremely young population and vice versa). 
  

 Criteria N  % 
Sex reported 100 95% 
   Male (of sex reported) 27,308/38,567 71% 
Race reported 27 26% 
   Caucasian (of race reported) 4,852/5,509 88% 
   
Procedure type   
   CABG only 60 57% 
   CABG + other 38 36% 
   Valve only 6 6% 
   Other 1 1% 
   
Death treatment   
   Unspecified 47 45% 
   Excluded  48 46% 
   No death occurred 7 7% 
   Other 3 3% 

   
Enrollment approach   
   Unspecified 55 52% 
   Convenience 19 18% 
   Consecutive 31 30% 

   
Inclusion/exclusion criteria to select for: 
   Elective case only 56 53% 
   Non-elective case only 0 0% 
   Less comorbidity 67 64% 
   More comorbidity 4 4% 
   Older age (>60 years old) 10 10% 
   Younger age (<80 years old) 10 10% 
   Female sex only 5 5% 
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Figure 1: Study selection flow chart 
 

 
 
Figure shows the study selection process to arrive at the one hundred ten articles analyzed. Studies 
were excluded based on case types (ventricular assist device or heart transplant) and patient population 
(congenital, adult congenital), because the course of recovery may differ in these populations compared 
to common adult cardiac surgical population.   
PRO= patient-reported outcomes.  
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Figure 2: Timing of the first measurement obtained 
 

 
 
The figure displays the distribution of the timing of first measurement reported by the studies. Fifty-
seven percent of the studies obtained the first measurement prior to surgery.   
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Figure 3: Bubble chart of studies by the study characteristics 
 

 
The figure shows studies by the duration of follow-up (x-axis) up to 100 days, sample size (y-axis) up to 
500 patients, number of domains evaluated (bubble size), and number of follow-ups at which time the 
measurements were obtained (color). Six possible domains are: nociceptive symptoms, activity of daily 
living, cognitive, sleep, mental health, and physical function. 
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Figure 4: Measurement timings and frequencies of studies using the 36-Item Short Form Health Survey 
(SF-36) 
 

 
 
The figure shows measurement timing and frequencies in studies using 36-Item Short Form Health 
Survey (SF-36). Each horizontal line represents a study and each dot represents the time point at which 
measurements were obtained. Last name of the first author and publication years are displayed in the 
left column. Studies are clustered by the total number of measurements obtained during the study 
(right column). Arrows indicate follow-up > 200 days
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Supplementary materials 
 
Search terms 
 
Medline (n=2,851): 
(("postoperative period"[MeSH Terms] OR (("postoperative"[All Fields] OR "post-operative"[All Fields]) 
AND "period"[All Fields]) OR "postoperative period"[All Fields] OR "postoperative"[All Fields] OR 
“postsurgical”[All Fields]) AND recovery[All Fields] AND ("cardiac surgery"[All Fields] OR "cardiac surgical 
procedures"[MeSH Terms] OR "cardiac surgical"[All Fields] OR “CABG”[All Fields] OR “coronary artery 
bypass”[All Fields] OR “valve replacement”[All Fields] OR “valve repair”[All Fields])) AND 
English[Language] 
 
Web of Science (n=1,921): 
(ALL= ((Postoperative OR post-operative OR “post operative” OR postsurgical OR post-surgical OR “post 
surgical”) AND recovery AND ("cardiac surgery" OR "cardiac surgical" OR CABG OR 'coronary artery 
bypass' OR 'valve surgery' OR 'valve repair' OR valve replacement)))AND LANGUAGE: (English) 
 
Final list after de-duplication (n=3,432) 
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Table S1: Journal categorization by specialty 
 
Journals were categorized according to the inclusion of the specialty name in the journal title and the 
professional society that publishes the journal.  
 
 
Table S2: List of included studies 
 
 
Given few studies with extremely large samples compared to the median sample size, we qualitatively 
described studies with the largest sample sizes to evaluate whether we could make a strong inference 
on normative recovery pattern. The largest study (n= 7,321), Study 45, obtained measurements at only 
two time points, first of which was 180 days after the operation. The second largest study (n=5,658), 
Study 17, obtained measurements in a single-center setting at 7 time points but only within the first 7 
days, and only assessed the proportion of patients ambulating on each day.  
 
Table S3: Number of articles by journal category 
 
*Psych/behavioral category includes psychology, psychiatry, and behavioral medicine.  
 
 
Table S4: Qualitative summary of predictors and interventions associated with improved recovery 
 
 
 
Figure S1: Number of publications by year 
 

 
The figure shows the number of articles published by 5-year increment of calendar year. No publication 
published prior to 1980 met the inclusion criteria. The latest bin (2015-2018) includes only 4-year 
period.  
 
Figure S2: Bubble chart of studies by the study characteristics up to 400 follow-up days 
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The figure shows studies by the duration of follow-up (x-axis) up to 400 days, sample size (y-axis) up to 
600 patients, number of domains evaluated (bubble size), and number of follow-ups at which time the 
measurements were obtained (color). Six possible domains are: nociceptive symptoms, activity of daily 
living, cognitive, sleep, mental health, and physical function. 
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CHAPTER 2 

Characterization of Postoperative Recovery Trajectories After Cardiac Surgery 

Introduction 
Postoperative pain is an outcome important to patients1 and physicians2 as poorly 

controlled pain may result in prolonged rehabilitation, reduced activity level, and 

complications3, 4. Although it is expected that pain level evolves after surgery, there is great 

variability in how pain has been studied in terms of assessment frequency and duration5, 

making it difficult to draw a collective inference. Additionally, such studies commonly report 

pain level as an average of the entire study cohort,5, 6 potentially obscuring individual variations 

in the longitudinal experience of pain and identification of patient characteristics denoting 

those with either desirable or concerning progression of pain level. A more granular 

understanding of pain trajectories can guide judicious pain management strategies at hospital 

discharge and inform individualized timing of postoperative visits. Electronic platform to 

measure patients’ pain level may enable frequent measurement even beyond hospital 

discharge to provide novel insight.1 

We aimed to characterize heterogeneity of pain trajectories and explore clinical 

characteristics of patients with persistently low and high pain over time, using longitudinal data 

of patient-reported postoperative pain after cardiac surgery captured using electronic platform. 

We also aimed to assess how measuring responses more frequently than prior studies may 

relate to precisely capturing patients’ pain experience. 

 

Methods 
Patient selection criteria and data source 
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We studied a convenience sample of patients who underwent cardiac surgery at Yale 

New Haven Hospital between January 2019 and March 2020. Postoperative, as opposed to 

preoperative, enrollment allowed us to enroll non-elective cases. Inclusion criteria were 

patients undergoing isolated or concomitant coronary artery bypass graft (CABG), aortic valve 

replacement, mitral valve replacement, mitral valve repair, or aortic operation who were 

discharged from the intensive care unit (ICU) within 5 days of the operation. This 5-day 

threshold ensured that time of initiation of pain assessments would be standardized, since 

patients could not be enrolled while in the ICU. Patients were enrolled with written informed 

consent upon discharge from the ICU after surgery. We excluded those who do not own a 

smartphone or a tablet or those who do not speak or read English because the electronic 

platform for patient-reported outcome measure (PROM) data collection relied on patients 

responding to surveys displayed on a web browser via email or text. Despite the need for these 

exclusion criteria, we chose to use the electronic platform for the automated electronic delivery 

of surveys that allowed for seamless collection of PROM data even after the patient’s hospital 

discharge. We also excluded those who could not complete the enrollment process (Figure 1). 

Details of the protocol have been published.7 The cardiac surgery service did not have a 

formalized Enhanced Recovery After Surgery pathway at the time of the study. Pain regimens 

were individualized to the patients’ needs during the hospitalization and at the time of 

discharge. The Yale Institutional Review Board approved the study. 

 

Questionnaire and data collected 
Quality of Recovery (QoR-24), a 24-item questionnaire assessing postoperative 

recovery8-10 adapted from the original QoR-40,11 was emailed every 3 days for 30 days. The 

questionnaire item for pain read ‘During the last 24 hours, I have been having pain in the 
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surgical wound,’ with possible responses ranging from 0 to 10 with 0 corresponding to ‘none of 

the time’ and 10 corresponding to ‘all of the time.’ Variables describing patient characteristics 

were prespecified in the protocol article7 and were collected via the institutional Society of 

Thoracic Surgeon’s (STS) Adult Cardiac Surgery Database using the data version 2.91 definitions. 

Prescription of opioid medication at the time of hospital discharge was collected via chart 

review and standardized to morphine milligram equivalents (MME). 

 

Statistical analysis 
We evaluated the variability in pain trajectories over 30 days by visualizing the plot by 1) 

individual, 2) cohort-level mean, and 3) latent class group-based trajectory model. For this step, 

we excluded patients with fewer than 3 responses to estimate potential quadratic effects (i.e. 

increase and decrease). We applied a group-based trajectory model, a family of latent class 

analysis, which estimated the probability of belonging to a specific trajectory of pain.12, 13  This 

is a semiparametric finite mixture model for longitudinal data using a maximum likelihood 

method fitting the pain score with a censored normal distribution. We fitted the model from 

one to five trajectories with polynomial order of up to a cubic term. Attrition from the study 

was not modeled together, as there was no mortality during the study period. 

We determined the optimal number of trajectory classes based on the Bayesian 

information criterion and average posterior probability of assignment (>0.9 indicated excellent 

fit and <0.7 indicated poor fit) among the models with one to five trajectory classes and 

incrementally increasing the polynomial order.14  

 

Representativeness and number of measurements 
We tested whether increasing the number of measurements improves the 

representativeness of pain level. Specifically, we compared the average pain level for each 
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patient based on k number of measurements, against the reference of individual’s average pain 

level over 10 measurements. This analysis was performed on 56 patients who responded to ≥7 

surveys. In this subgroup, pain level was missing in 16% (93/560) of the surveys. The difference 

between patient-level average of pain score over 10 measurements was compared with the 

patient-level average of pain score over k measurements and the difference was plotted along 

the k measurement to visualize the relationship between the number of measurement and 

representativeness of the measurement. 

 

Missing data 
For the analysis of representativeness of pain measurement, we used data from those 

who responded to ≥7 surveys. We used a higher threshold for survey response in this analysis 

to minimize bias introduced by imputing missing values. We used linear interpolation to 

estimate the missing value for missing responses, because in this dataset, missing data were 

sparse across the time-series.15 Such imputation was not used for the trajectory model that 

used observations with ≥3 responses, as group-based trajectory model’s full information 

maximum likelihood estimation allowed for integration of all available information based on 

missing-at-random assumption.16 Missing data for the STS data occurred in <2% of participants 

and missing values were conditionally estimated as described by Shahian, et al. in the STS risk 

model development,17 classifying missing values to those in the lowest risk category for 

categorical variables and using age and sex-specific means for continuous variables.  

We did not compare groups in terms of statistically significant differences because of 

the limited sample size. We used Traj package for a group-based trajectory model and 

calculated k means via Proc Univariate procedure in SAS 9.4 (SAS Institute, Inc Cary, NC). We 

used Python 3.8 for data preprocessing including linear interpolation.   
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Results 
Of 92 patients enrolled, there were 75 (82%) with ≥3 responses and 56 (61%) with ≥7 

responses. Characteristics of the 75 patients are summarized in Table 1. The median age of the 

patients was 64 (interquartile range: 58 to 70) years with 57 (76%) men, and 66 (88%) White. 

Thirty-four patients underwent isolated CABG, which was the most common case type. 

In 75 patients with ≥3 responses, we observed that individual pain scores varied 

substantially across patients with no dominant mean or pattern (Figure 2, Panel A). Cohort-level 

mean and 95% confidence interval (Figure 2, Panel B) showed a gradual and consistent decline 

in the mean pain level over time, but the confidence bands covered most of the pain score 

range. Based on the best BIC value (Appendix Table 1), the group-based trajectory model 

identified 4 trajectories (Figure 2, Panel C), all of which had a posterior probability of 

assignment of 0.85 or higher. We labeled the trajectories according to the observed pattern: 

persistently low (n=9, 12%), moderate declining (n=26, 35%), high declining (n=33, 44%), and 

persistently high pain (n=7, 9%). Persistently high pain and high declining groups did not appear 

to be clearly distinguishable until the 3rd measurement of approximately 10 days. 

Comparing patient, operative, and postoperative characteristics in the 4 assigned 

trajectories, patients in the persistently low pain trajectory class were older (numerically higher 

median age) than the other 3 classes. The proportions of patients who underwent robotic-

assisted surgery were 1 (11%) in persistently low, 5 (19%) in moderate declining, 7 (21%) in high 

declining, and 3 (43%) in persistently high pain trajectory classes. Patients in the persistently 

high pain trajectory class had a numerically higher median length of hospital stay than the other 

3 classes. The proportion of patients who were not prescribed any opioid medications at the 
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time of hospital discharge were 2 (22%) in persistently low, 6 (23%) in moderate declining, 6 

(18%) in high declining, and 2 (29%) in persistently high pain trajectory classes.  

Median morphine milligram equivalent of narcotics prescribed at the time of discharge 

were 90 (interquartile range [IQR] 60-100mg) in persistently low, 150 (IRQ: 60-180mg) in 

moderate declining, 150 (IQR: 75-150mg) in high declining, and 90 (IQR: 0-165mg) in 

persistently high pain trajectory classes (Table 2). 

Compared with the patient-level mean of pain score over 10 measurements as a 

reference, the pain level determined by the first measurement alone differed by 2.1 points on 

average within the same patient. The pain level determined by the last measurement alone 

differed by 1.9 points. Increasing the number of measurements decreased the difference 

incrementally. Obtaining measurements every 6, 9, and 15 days for a total of 5, 3, and 2 

measurements was associated with 0.5, 0.7, and 1.0 point differences from the reference, 

respectively (Figure 3). 

 

Discussion 
 Using a longitudinal patient-reported pain measure collected up to 30 days after cardiac 

surgery, we identified distinct trajectories of reported pain. These result reveals that people 

experience very different recoveries after cardiac surgery. Revealing this heterogeneity 

provides an impetus to understand the determinants of different outcomes and targets of 

intervention to ensure that more people have less pain. It also provides the possibility of better 

informing patients about what the recovery experience might entail. To date, little attention 

has focused on quantifying the variations in the way that pain tracks through the early recovery 

period.  
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 The heterogeneity of the identified pain trajectories is important because pain and 

other postoperative recovery domains have mostly been reported as cohort-level average even 

in studies that measured pain at multiple postoperative time points.18-20 Therefore, the 

dominant patterns of trajectories and a heterogeneous patient experience after cardiac surgery 

may be obscured by focusing on average effects.5 This study highlights the opportunity to 

identify factors that may be related to distinct pain trajectories. These may include factors at 

the patient, surgeon, and site levels. It also highlights the potential for studying heterogeneity 

in trajectories of other post-operative outcomes, including mobility, energy level and return to 

baseline activities. 

This study adds to the literature on trajectories of pain following surgery in several 

notable ways. First, prior studies have included thoracotomy, orthopedic, and general 

surgery,21, 22 23 Therefore, this study uniquely highlights pain trajectories after cardiac surgery 

that may differ from non-cardiac surgery due to sternotomy and less-invasive approaches. 

Second, prior studies focused on a much longer timescale with the follow-up at 1 year after the 

operation. 21, 22 23 Our granular measurement within the shorter, 30-day postoperative window 

may offer different opportunities for timely interventions. Given the current opioid epidemic 

and increased attention to judicious postoperative narcotics prescription,24 recognizing the pain 

trajectory variations in the immediate postoperative period may promote more judicious and 

individualized narcotics prescription. Individualized opioid regimen is especially important in 

the postoperative period where the risk of opioid misuse is high.2 Given the growing population 

of patients undergoing valve surgery due to endocarditis in the setting of injection drug use, 

information to guide pain management after surgery is especially relevant.25, 26 

 Our study highlights the utility of characterizing postoperative recovery and proposes an 

underutilized approach to measuring and reporting recovery. Because remote patient 
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monitoring can be reimbursed with recent expansion of the rules,3 our study offers timely 

insights into the frequency of measurements needed to adequately capture patient experience.  

We demonstrated that relying on a single point of measurement may insufficiently represent a 

patient’s recovery experience, and increasing the number of measurements incrementally 

improved the representation. In summarizing such data, the cohort-level average of pain level 

over time alone limits information meaningful to patients and surgeons, obscuring important 

variations among patients. For example, it would be less informative to patients to know that 

on average, pain level after cardiac surgery will mostly be between 2 to 8 points around 10 days 

after the operation than to know that given the first few measurements of pain, the patient is 

likely to have persistently high or low pain. It is important to recognize that, albeit a small 

study, we identified this substantial variation among this relatively homogenous patient group 

of younger, mostly Caucasian, and male patients. 

 Although the small sample size limited evaluation of associations between patient 

characteristics and each trajectory class of pain, it is notable that patients in the persistently 

high pain trajectory did not differ substantially according to opioid prescription at discharge, 

readmission, or sternal wound infection within 30 days. The total morphine milligram 

equivalent of narcotics prescribed was numerically lower compared with low or high-declining 

groups, but the median value of 90 was equivalent to that of persistently low pain group. 

Understanding associations of such potentially relevant factors and the pain trajectories require 

further studies.  

 

Limitations 

 The single-center design of our study may limit the generalizability of our findings, 

although the variation in the phenotype of pain trajectories may be a finding applicable to 
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practices in care settings different from ours. Despite the relative homogeneity of our patient 

group in terms of demographics, low comorbidity profile, and low complication rates, we 

observed considerable variation in the trajectories of pain. Generalizability of such variation in 

the trajectories to different patient groups must be evaluated in future studies. The number of 

approached patients were lower than the number of cases usually performed at our hospital because of 

the COVID-19 pandemic, gradual acceleration of the enrollment rate at the beginning of the study, and 

the part-time availability of the research assistant to complete the enrollment. Nevertheless, the bias 

was toward a more homogeneous sample and yet our results reveal marked heterogeneity in patient 

experience even among this selected cohort. A small sample size limited our ability to make more 

robust inference for characteristics associated with specific recovery trajectory, including 

multivariable analysis and evaluation of the longitudinal change in pain regimen. As expected, 

many patients did not complete all 10 delivered surveys. We delivered a high number of 

surveys to capture at least 3 responses for the trajectory to be modeled in the latent class 

analysis. The reported pain levels were the perceived pain level without adjusting for variation 

in adherence or the prescribed narcotic dose. Therefore, this study did not evaluate whether 

the observed variation in pain level is associated with variation in individual pain management 

approaches. Nevertheless, the heterogeneity identified irrespective of the treatment approach 

inform potential ways to improve postoperative pain experience, including individualized timing 

of postoperative follow-up.  

 

Conclusion 
After cardiac surgery, the trajectory of pain is variable within 30 days. This individual 

variation is not adequately captured unless multiple measurements are obtained. Cohort-level 

mean, a common way of reporting pain level, fails to capture this variation, while a latent class 
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model can illustrate the heterogeneity. Studies on postoperative pain should consider the time-

varying nature of pain and recognize the limitation in capturing patient experience when relying 

on a small number of measurements.  
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Tables and Figures 
Table 1: Patient characteristics 

Variable  
N=75 

(median) % (IQR) 

Age (years) 64 (58-70) 

Female 18 24% 
Body mass index (kg/m2) 28.9 (24.4-32.1) 

   
Race   
White 66 88% 

Black 4 5% 

Other 5 7% 

   
Comorbidity   
Hypertension 52 69% 
Diabetes 24 32% 

Stroke 8 11% 

Chronic lung disease 12 16% 
Peripheral vascular disease 7 9% 

Liver disease 4 5% 

Dialysis 2 3% 
Prior cardiac surgery 5 7% 

Myocardial infarction 22 29% 

Heart failure 23 31% 
Ejection fraction (%) 60 (55-63) 

   
Operative details   
Non-elective cases 22 29% 

Isolated CABG 34 45% 

Concomitant CABG 4 5% 
Aortic surgery 5 7% 

Aortic valve replacement 16 21% 

Mitral valve replacement 8 11% 
Mitral valve repair 17 23% 

    Robotic approach 16  

   
Complications within 30 days of operation   
Mortality 0 0% 

Pneumonia 1 1% 
Sternal wound infection 2 3% 

Pleural effusion requiring drain 4 5% 

Stroke 0 0% 
Renal failure 0 0% 
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30-day readmission 5 7% 
CABG= coronary artery bypass graft. 
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Table 2: Patient characteristics by trajectory classes 
 

 Persistently low pain (N=9)  
Moderate declining pain 

(N=26)  High declining pain (N=33)  Persistently high pain (N=7) 

Variable  N (median) % (IQR)  N (median) % (IQR)  N (median) % (IQR)  N (median) % (IQR) 

Age 68 (65-73)  65.5 (57-71)  62 (57-69)  62 (58-64) 

Female 3 33%  5 19%  7 21%  3 43% 

Body mass index 29.6 (24.8-32.9)  30.5 (26.8-32.8)  27.5 (24.2-30.5)  26.7 (23.8-35.3) 

            
Race            
White 9 100%  24 92%  27 82%  6 86% 

Black 0 0%  0 0%  4 12%  0 0% 

Other 0 0%  2 8%  2 6%  1 14% 

            
Comorbidity            
Hypertension 9 100%  20 77%  19 58%  4 57% 

Diabetes 4 44%  10 38%  7 21%  3 43% 

Stroke 2 22%  0 0%  1 3%  1 14% 

Chronic lung disease 2 22%  4 15%  6 18%  0 0% 
Peripheral vascular 
disease 0 0%  3 12%  2 6%  2 29% 

Liver disease 0 0%  2 8%  2 6%  0 0% 

Dialysis 0 0%  0 0%  2 6%  0 0% 

Prior cardiac surgery 1 11%  2 8%  2 6%  0 0% 

Myocardial infarction 4 44%  8 31%  8 24%  2 29% 

Heart failure 3 33%  7 27%  10 30%  3 43% 

Ejection fraction (%) 63 (58-68)  58 (48-63)  60 (55-63)  60 (47-62) 
Pain regimen on 
admission            
   Non-narcotic pain 
medication  1 11%  5 19%  7 21%  1 14% 
   Narcotic pain 
medication 0 0%  1 3%  1 3%  2 29% 

Operative details            
Non-elective cases 5 56%  8 31%  6 18%  3 43% 

            
Isolated CABG 3 33%  13 50%  14 42%  4 57% 

Concomitant CABG 0 0%  1 4%  3 9%  0 0% 

Aortic surgery 2 22%  2 8%  1 3%  0 0% 

AVR 2 22%  5 19%  9 27%  0 0% 

MVR 2 22%  1 4%  5 15%  0 0% 

Mitral valve repair 2 22%  8 31%  4 12%  3 43% 

Robotic assist 1 11%  5 19%  7 21%  3 43% 
Non-robotic 
thoracotomy 1 11%  0 0%  2 6%  0 0% 

            
Complications            
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30-day mortality 0 0%  0 0%  0 0%  0 0% 

Pneumonia 0 0%  0 0%  1 3%  0 0% 

30-day readmission 0 0%  2 8%  3 9%  0 0% 
Sternal wound 
infection 0 0%  1 4%  1 3%  0 0% 
Pleural effusion 
requiring drain 0 0%  2 8%  2 6%  0 0% 

Stroke 0 0%  0 0%  0 0%  0 0% 

Renal failure 0 0%  0 0%  0 0%  0 0% 

            
Postoperative length 
of stay 5 (4-6)  4 (4-6)  5 (4-6)  6 (3-7) 
Pain regimen at 
discharge            
No narcotic 
medication 
prescribed post-op 2 22%  6 23%  6 18%  2 29% 
Total MME 
prescribed at 
discharge 90 (60-100)  150 (60-180)  150 (75-150)  90 (0-165) 

            
IQR = interquartile range; CABG = coronary artery bypass graft; AVR = aortic valve replacement; 
MVR = mitral valve replacement; MME= morphine milligram equivalent  
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Figure 1: CONSORT-style patient flow chart 

 

The figure shows the flow of patient exclusion and enrollment. We included 75 patients for 

trajectory analysis and 56 patients for analysis evaluating the optimal interval and number of 

measurements. There was no mortality during the study period.  
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Figure 2: Various representations of the same longitudinal pain data (n=75) 

Trajectories of pain 30 days after surgery, at individual level (A), cohort-level mean (solid line, 

Panel B) and 95% confidence interval (dotted lines, Panel B), and by latent class (C). In Panel C, 

percentage values in the parenthesis indicate the mean probability of the classified patients 

belonging to the particular class, dotted lines are the observed mean pain level in each class, 

solid lines represent fitted lines, and colored band represent 95% confidence interval. The 

figure shows that cohort-level mean oversimplifies variable trajectories and the latent class 

model may offer an interpretable representation of various trajectories.  
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Figure 3: Representativeness of pain experience characterized via variable number of 
measurements 

 

Difference in patient-level pain scale ranging 0-10 (y-axis) over 10 measurements vs. over k 

measurements (x-axis). Using only one measurement of pain at the beginning or end of the 

measurement yielded approximately 2-point differences when compared with average pain 

level of 10 measurements over 30 days. Blue circles are counting number of measurements 

from the first postoperative survey and orange circles are counting from the last survey. This 

difference diminished incrementally with every 15, 9, and 6 days of measurements.  
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Supplementary Materials 
 
Appendix Table 1: Bayesian Information Criterion value by the number of trajectory classes 

Number of trajectory class BIC value 
1 1455.46 
2 1285.72 
3 1279.55 
4 1259.05 
5 1259.31 

BIC = Bayesian Information Criterion 

Based on the best (lowest) BIC value, we selected 4-class model. 
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Appendix Figure 1: Observed pain scores of patients classified into the persistently low 

trajectory group 

 

The figure shows the reported pain levels of the 9 patients who were classified to be in the 

persistently low pain trajectory group. Most patients in this group (6/9) scored 2 or lower 

across the entire follow-up duration while there were 3 patients who scored outlier values at 

5th or later measurement. The mean score at each time point for the 9 patients ranged from 0.0 

to 1.7, confirming that this patient group had overall low pain score during the follow-up 

period.  
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CHAPTER 3 

A study design and analytical approach to measure and characterize patient-centered 

postoperative recovery 

Introduction 
 
Improving postoperative patient recovery is a priority. Readmission rates in the post-operative 

period are high. Moreover, in the United States, the expansion of episode-based payments and 

performance measures is increasing interest in the post-acute experience of patients1, 2. 

However, we generally lack systematically-collected information on the experience of patients 

in the post-acute period, as few studies rigorously collecting information using established 

patient-reported outcomes measures (PROMs). We have, for example, little information about 

the variation of the trajectories of recovery and the factors most strongly associated with better 

outcomes3. 

The assessment of the patient experience can provide important insights into the 

process of recovery that is not evident through clinical outcomes or intermittent clinical office 

visits. PROMs and wearable devices can provide complementary information by providing 

measurements of how the patient’s experience and functional status change over time4. 

Current digital platforms allow us to efficiently collect PROMs and wearable-generated data at 

high frequencies and with little cost and burden. These automated data collection approaches 

may minimize the bias introduced by clinician-directed patient interviews5. Such a platform is 

highly suited to obtain repeated measures to characterize a time-dependent process such as 

recovery6.  

Cardiac surgery is an ideal area for the study of recovery. Many patients have good 

outcomes, but the limited existing evidence suggests a wide variation in the post-operative 
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experience of these patients7.  However, these patients’ experience has been poorly studied, 

as most studies of recovery simply assess deaths and complications.  

Characterizing the recovery from the patient perspective is important for many reasons. 

First, shared decision-making and informed consent should be guided not only by the risk of 

mortality and complications but also by the recovery experience. Understanding variations in 

recovery could enable the early identification of people who are struggling and require 

additional attention. Recovery data from the patient perspective may enable remote 

monitoring after the procedure to selectively and preemptively intervene on those at high risk 

of poor recovery to improve outcomes. Characterization of recovery can also be used to 

identify patient, surgeon, procedural, and institutional factors that are associated with different 

patterns. With this information we can identify modifiable risk factors for poor recovery. 

Thus, at this juncture, there are several notable gaps in knowledge. First, although 

recovery occurs over time, most studies of recovery included a small number of timepoints, and 

the recovery trajectory phenotypes remains poorly defined3. Cohort-level average of recovery 

trajectories is a common way of reporting3 and can indicate how patients recover on average7, 

but it obscures individual variation such as rapid early recovery, gradual recovery, or initial 

recovery followed by a decline. Second, we have limited understanding of how recovery 

trajectories vary by patient factors, operation types, center or surgeon characteristics, 

procedural processes, and complications, which limit opportunities to identify high risk patients 

preemptively and intervene.  

 Accordingly, our overall objective is to characterize short-term trajectories of patient 

recovery after cardiac surgery using PROMs and wearable data. We are conducting a 

prospective study to characterize trajectories of postoperative recovery in multiple domains 

after cardiac surgery. The specific aims of this study are to: 1) leverage a digital data platform to 
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collect PROM and wearable device data to bring forth the variable individual recovery 

trajectories, 2) describe distinct classes of recovery trajectories and clinical factors associated 

with the classes, and 3) to evaluate whether early postoperative recovery trajectory predicts 

later recovery trajectory. In addition, we will investigate optimal ways to manage missing data 

specific to these time-series data This study is a step toward using this approach to 

prospectively monitor and preemptively identify patients at risk of poor recovery and facilitate 

intervention to reduce the risk of adverse events. The purpose of this study protocol summary 

is to describes a new approach to studying recovery in order to address the knowledge gap as 

well as to prespecify our approach.  

 

Methods 
Design Overview 

This is a prospective cohort study of patients who are undergoing valve, CABG, or aortic 

surgery at a tertiary center in the U.S. We chose the operations because they are the most 

common cardiac operations performed8 while having different patient and operative 

characteristics, such as the use of deep hypothermic circulatory arrest, to potentially provide 

insights into the recovery pattern associated with such variations. Subgroup analysis will be 

conducted to evaluate whether there is a distinct patient experience by operation types. We 

are enrolling patients postoperatively after ICU discharge in order to ensure clinical stability, 

and we electronically delivering surveys directly to patients every 3 days for 30 days after 

hospital discharge to study patient trajectories in multiple domains characterizing recovery. The 

closing phone interview after 30 days, electronic medical record review, and linkage to the 

Society of Thoracic Surgeons database are used to confirm survival, readmission, and 

complications. The closing interview asks about details of readmissions if they occurred, 

patients’ overall satisfaction with the study, and whether their experience was well captured by 
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the summary of their PROM data. We will apply group-based trajectory modeling to the 

longitudinal PROM data to identify distinct categories of recovery trajectories in a data-driven 

fashion. We also identify predictors of protracted recovery trajectory and evaluate whether 

early recovery patterns (<10 days) predict the overall trajectory (30 days) at the patient-level. 

The Yale Institutional Review Board approved this study (IRB # 2000025689). 

 

Patient Population 
This study began in January 2019 and is ongoing. The study is taking place at Yale-New 

Haven Hospital, a tertiary center in the United States, where over 1,100 cardiac surgeries are 

performed annually. Inclusion criteria are patients of age 18 and older who are undergoing 

coronary artery bypass grafting (CABG), valve replacement or repair, or aortic operations. 

Exclusion criteria are those who undergo heart transplant, extracorporeal membrane 

oxygenation (ECMO), adult congenital operations, or ventricular assist device implantation, as 

these patient populations tend to have a longer course of intensive care unit stay9, precluding 

the timely enrollment necessary to capture immediate postoperative recovery. We also 

excluded those who do not own a smartphone or a tablet or those who do not speak or read 

English, because the digital platform for PROM data collection relies on patients responding to 

surveys displayed on web browser via email or text, and the surveys were written in English 

language. We do not allow proxy for survey response and consequently excluded patients who 

were not able to respond by themselves as determined by the research assistant. 

In order to provide the sense of patient selection resulting from these criteria, we will 

compare patient characteristics of those who were approached and were and were not able to 

participate in the study for any reasons.  
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Recruitment 
Recruitment takes place postoperatively after the patient has left the intensive care unit 

(ICU) for the step-down or floor unit (Figure 1). We chose to enroll patients postoperatively, as 

opposed to preoperatively, because postoperative enrollment allows for enrollment of patients 

who undergo surgery under non-elective settings. Recruitment after transfer from the ICU 

setting ensures clinical stability. A research assistant (RA) visits the patient and after confirming 

the patient is eligible to participate and following the description of the study procedure, 

obtains written informed consent (Supplementary Material S1) from all study participants. The 

informed consent form states that all personal information, survey response, and any medical 

records are confidential, will not be shared, and will be stored in an encrypted database. 

We iteratively refined the enrollment process to minimize the onboarding time, which 

includes obtaining informed consent and signup process directed by the RA on a tablet device 

to enter patient name and email address or phone number and takes approximately 10-15 

minutes.  

 

PROM instrument and administration 
We use 24-item quality of recovery (QoR-24) to characterize patients’ postoperative 

recovery in various domains. The questionnaire consists of 24 items that were developed and 

validated in inpatient and outpatient surgical populations in terms of convergent validity with 

visual analogue scale, construct validity compared with length of hospital stay and sex-based 

difference, along with good internal consistency and test-retest reliability10-13. We chose QoR-

24 among 5 other PROMs developed specifically to measure postoperative recovery. QoR-24 

possessed many qualities advantageous for the purpose of our study, including the robust 

validation of psychometric property, extensive use cases in various surgical populations, ability 

for self-administration, and the ease of interpreting item-wise scores (Supplementary Table 1-
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2). The instrument was previously adapted into a mobile format and was successfully used to 

administer the survey daily for 14 days11, 12. We added 3 items to QoR-24 to capture the self-

reported time patients went to sleep, the time they awakened, and their global perception of 

how much they have ‘recovered’ in a 0-100% scale. The resulting 27-item questionnaire takes 2-

4 minutes to complete, making its frequent administration feasible (Supplementary Material 

S2). Among the published studies in cardiac surgery, this study will have the highest number of 

PROM data points collected in the first postoperative month3.  

 

Digital data platform 
We are delivering surveys on the day of enrollment and every 3 days for 30 days. This 

method provides detailed longitudinal data across multiple domains of recovery (Figure 2). To 

facilitate data organization and scheduled survey delivery, we use Hugo (Me2Health, LLC, 

Guilford CT, USA) a patient-centered health data sharing platform, which has a customizable 

survey delivery function and reminder feature to facilitate data collection. Hugo platform allows 

for automated delivery of surveys without researchers having to directly contact patients, 

which facilitates high-frequency data collection. Additionally, it imports data from connected 

wearable devices to facilitate centralization of patient health data. The patients retain access to 

their own data in a cloud-based account. Hugo does not fall under the Covered Entity that 

Health Insurance Portability and Accountability Act (HIPAA) regulates, but employs all the 

security measures that would be required by HIPAA had it been a Covered Entity.  

 

Identifying common reasons for low response rate 
Recognizing that the survey response will be incomplete for some participants, we have 

conducted a phone interview with the first 22 patients to learn reasons for low responses and 

identify strategies to minimize the barriers toward survey response for subsequent participants. 
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In the first 22 patients, we identified 5 with response rate of <50% and conducted recorded 

phone interviews. Our interview guide (Supplementary Material S3) contained questions to 

elucidate technical barriers, differential preferences for engagement, and or any other issues 

precluding survey completion. We also asked whether the length of the questionnaire or types 

of questions asked made it difficult to complete the survey. Two members of the research team 

(CB and MM) evaluated the interview recordings to identify common reasons for low response 

rate. This suggested the potential importance of reminder to maintain patient engagement. We 

modified the protocol to contact all participants approximately 10 days after enrollment. We 

will continue to conduct this phone interview for patients with low response rate and describe 

engagement and barriers to participation in the final cohort. Survey response rate and time 

spent to complete each survey will be reported descriptively to evaluate the degree of patient 

engagement. This approach likely allows us to identify patients who either did not respond or 

completed the survey in an unrealistically short time that may not represent a meaningful 

response.  

 

Additional clinical data and adjudication of hospitalization and survival 
Additionally, we are using the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery 

Database data specifications to retrospectively collect clinically relevant data in this patient 

population. Pre-specified candidate predictors in this database will be used to identify clinical 

predictors of recovery trajectories (Table 1). The STS database contains patient demographics, 

comorbidities, presenting clinical status, operative details, and postoperative mortality and 

morbidity up to 30 days after the time of operation14. These data are routinely collected at Yale 

New Haven Hospital. At our program, 30-day mortality rates for isolated aortic valve 
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replacement and isolated CABG are stable around 1%, with 30-day readmission rate of about 

10%, which are slightly lower than the national average.  

We will determine mortality and hospital readmissions by several approaches: review of 

hospital records, review of cardiac surgery clinic notes, and conducting closing phone 

interviews with the patient or contact person previously identified.  

 

Patient Involvement  
 Prior to launching the study, we interviewed 5 patients both in pre and postoperative 

settings to evaluate whether the frequency of survey delivery and PROM instrument were likely 

to adequately capture their experience of recovery. All patients agreed that the frequency of 

questionnaire administration and the length of the PROM instrument were reasonable and 

provided face validity that the questionnaire captured aspects of recovery that were important 

to the patients. Additionally, this article is authored with a patient (LG) who participated in the 

study to reflect his perspective on the study design and experience in responding to the 

surveys.  

 

Sample size 
The study sample target is 200 patients. Adequate sample size for studies using group-

based trajectory modeling depends on the dataset’s representativeness of the population of 

interest15. Therefore, the concept of statistical power traditionally used for sample size 

calculation does not apply to latent class analyses. We may generate a larger simulation dataset 

from the measured patient trajectory data to perform a split-sample testing, evaluating 

whether trajectories generated from the derivation sample would allow for satisfactory 

categorization of the testing dataset. Additionally, the study setting is scalable to increase the 

sample size by increasing the enrollment period, should a larger sample size become necessary. 
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Analytical approach – group-based trajectory modeling 
The resulting dataset is a complex time-series data, with each patient having 10 data 

points (one every three days) at different postoperative times for each item. A practical 

approach to dimension reduction is group-based trajectory modeling, which is a type of latent 

class analysis that groups similar patient trajectories according to a number of features derived 

from the time-series data16, 17. This approach allows for dimension reduction of the complex 

time-series data into several distinct classes of recovery trajectories. These trajectories can be 

labeled according to the observed clinical phenotype of trajectories, for example ‘fast recovery,’ 

‘average recovery,’ or ‘protracted recovery,’. This data-driven categorization enables additional 

regression modeling to identify predictors of patients belonging to a certain class of recovery 

path. 

The dataset will be classified into distinct categories of trajectories at domain level, 

using group-based trajectory modeling16, 17. Traj package on R18 or Proc Traj package on SAS15, 

performs trajectory modeling by first extracting 24 features of patient-level trajectory, selecting 

a subset of features that describes the overall trajectory, and identifying optimal number of 

classes to group the trajectories based on the longitudinal k-means method. The 24 features 

include range, mean change per unit time, and slope of the linear model (Table 2), which have 

been demonstrated to discriminate between stable-unstable, increasing-decreasing, linear-

nonlinear, and monotonic-nonmonotonic patterns of trajectories18. K-means method partitions 

the time-series data into k groups such that the mean squared error distance of each data point 

from the assigned cluster is minimized19. The optimal number of clusters is determined by the 

minimization of Bayesian information criterion, which signifies the balance between model’s 

complexity and the ability to describe the dataset. This process yields distinct classes of patient 
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trajectories in a data-driven fashion. Trajectories will be identified separately for the 5 

domains and 1 global recovery measure. 

 With the characterization of trajectories, we will then fit multinomial logistic regression 

models using clinical variables outlined in Table 1, including patient demographics, comorbidity, 

and postoperative event such as complications and ICU readmissions, to identify predictors of 

patients belonging to each trajectory class. As some variables interact with each other, such as 

history of chronic lung disease increasing the risk of postoperative pneumonia, which likely 

impacts the recovery experience, we plan to stratify the cohort with and without the index 

complications defined by the STS (prolonged ventilation, renal failure, sternal wound infection, 

pneumonia, stroke, all-cause reoperation). Further analyses on interaction and mediation 

effects likely requires a larger sample size and are of interest in the future.   

 

Analytical approach – missing data 
 Because missing data are inevitable in longitudinal PROMs, there is a need employ an 

appropriate handling of missing data. Multiple imputation prior to latent class analysis may 

yield a less biased estimate of the resulting trajectories. An alternative approach used in group-

based trajectory models assumes the data are missing at random (MAR) and generates the 

maximum likelihood of the model parameters20. MAR is valid when the response attrition is 

independent of the group membership. However, patient attrition is oftentimes dependent on 

clinical characteristics and likely related to the class of trajectory itself. An extension of the 

model allows for modeling of attrition across trajectory groups21, permitting dropout 

probability to vary as a function of covariates or observed outcomes prior to dropout and yields 

a more robust estimate of the probability of group membership. As such, we will perform 

sensitivity analysis to compare the trajectories generated via raw data vs. data preprocessed 
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with multiple imputation vs. trajectories generated via trajectory model accounting for 

response attrition. 

 

Results 
 Between January and May 2019, we have enrolled 22 patients who completed the 30-

day follow-up. In this cohort, median age was 58.5 years (interquartile range 53.5-67.0) and 7 

(32%) were women. There were 9 (41%) mitral valve repair cases and 6 isolated or concomitant 

CABG (27%). 

 

Barriers to completing surveys 
Of the 22 patients enrolled, 3 (14%) did not complete any surveys, 19 (86%) completed 

at least 3 surveys, and 17 patients (77%) completed at least 6 of 11 delivered surveys (>50% of 

delivered surveys). Of the 5 patients who completed less than half of the surveys, we 

successfully contacted 4, and 1 could not be reached after 5 attempts. All 4 reported that the 

major barriers precluding survey completion were their clinical conditions: 2 described 

readmissions as an overwhelming event that made them feel continuing survey participation 

challenging, and 2 described not feeling well in general, which precluded participation. All 4 

patients noted that text or email reminders might have been helpful to sustain participation. 

Based on these responses, we modified the protocol to contact all participants approximately 

10 days after enrollment to improve engagement and resolve any patient-specific issues in 

completing the surveys. 

 

Clinical outcomes 
There were no deaths during follow-up. Two (9%) patients experienced at least 1 

hospital readmission. Figure 2 depicts the breadth in recovery trajectories in pain, sleep, ability 
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to take care of own hygiene, and perception of overall recovery in five patients with 

complete response. 

 

Discussion 
 This study will provide time-series data on short-term recovery after cardiac surgery 

using PROM instruments complemented by clinical records obtained via the STS database and 

electronic health records. This study will provide one of the highest density of postoperative 

PROM data in existing cardiac surgery literature3, and it will characterize the variability in 

individual recovery processes with a high temporal resolution. This study will be important in 

closing knowledge gaps around patient-level variations in trajectories because prior studies 

have mostly focused on changes in PROM scores at a limited number of time points3 or 

reporting group-level aggregate of longitudinal recovery data7, 22.  Because recovery is an 

individual, variable, and time-dependent process, we designed our data collection and 

analytical approach to capture such features important to recovery.  

This study has the potential to make a variety of contributions toward improving post-

acute phase of care. First, we will be able to develop a preliminary nomogram of postoperative 

recovery for each domain and overall perception of recovery, which would be instrumental for 

patients and clinicians to gauge the breadth of possible recovery trajectories to facilitate 

informed shared decision-making. Second, identifying predictors of accelerated or protracted 

recovery, as classified by group-based trajectory model, may allow for individualized prediction 

of the postoperative recovery course to better inform the patients and family members. Third, 

early detection of recovery signals related to adverse events, such as mortality and 

readmission, may eventually facilitate preemptive intervention and focused monitoring of 

patients at an elevated risk for such events. Our design of the longitudinal PROM data 
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collection allows for incremental update of such prediction as patients progress through the 

phase of recovery.  

There are many challenges to the successful acquisition of patient measurements during 

recovery: efficient administration of PROMs in a way that does not require prohibitive amount 

of resources, minimizing selection bias originating from barriers to survey completion, handling 

of missing data that inevitably occurs in PROMs, and summarizing the complex data in a way 

that is interpretable to surgeons and patients23. Additionally, the use of wearables and device 

data require active patient participation in periodically charging the device, wearing them 

correctly, and reliably syncing the device to the server for data uploads. Moreover, there is a 

need to provide value to the patients for providing their recovery profile, such as giving them 

access to their health data in a meaningful way. 

The resulting data collection, analytical, and output platforms have the potential of 

being implemented in the clinical setting where an integration of incrementally increasing 

PROM and clinical data provides the near-real time estimate of individual patient risk of 

adverse post-operative events. Such a model may allow for triggering of preemptive clinical 

intervention. An output may assimilate a form of clinical dashboard within the electronic health 

record system, which may be monitored at a centralized location where a trained clinician 

reviews high-risk cases filtered by the algorithm to further evaluate whether the patient 

condition warrants an intervention. Together, this workflow has a tremendous potential to 

improve post-acute phase of care following surgery. 

 

Lessons Learned from the initial experience 
 Through this first group of enrolled patients, we learned that most of the patients 

approached were willing to participate and consented to the study. By streamlining the 
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enrollment process, the enrollment time shortened from over 1 hour on the first patient to 

approximately 10-15 minutes for the current enrollment. The overall response rate is 

acceptable, with 77% of the participants completing more than half of the delivered surveys 

independently without any intervention by researchers. Challenging recovery course, including 

readmissions may have interfered with patient engagement. While this would have resulted in 

an underrepresentation of those with protracted recovery or with complications, our 

preliminary data show we were able to capture variations in the trajectories of recovery.  

To sustain patient engagement through challenging recovery course, we implemented a 

protocol for a research assistant to call the patient around 10 days after enrollment to 

troubleshoot any issues and reemphasize the importance of their participation. By the protocol, 

research assistant making this call does not act in clinical capacity and does not provide clinical 

evaluation or advise, which is an important boundary for this call to not act as an intervention 

to alter recovery course. We believe that once the survey becomes part of clinical workflow 

with clinicians monitoring and responding to the PROM response, patient response rate would 

improve further. 

 We modified the enrollment protocol to reduce the enrollment time, because to some 

patients, the complexity and prolonged time spent for enrollment discouraged signups. Initial 

protocol for enrollment required patients to download an app and register. This resulted in a 

wide range of time spent for enrollment between 15 minutes and 90 minutes, with longer 

enrollment owing to technical challenges. These challenges include patients forgetting the 

password for app download, having to reset the password, and not having immediate email 

access to check account confirmation emails. Because our cardiac surgery patient population 

tended to be older, these technical challenges may have been pronounced. By not including the 
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app download and allowing for the research assistant to enroll the patient via an online form 

with their permission, the enrollment time shortened significantly to 10-15 minutes.  

 Examining the initial individual data on recovery, there were wide variations in the 

trajectories of recovery even among only 5 patients. The variation suggests that the instrument 

we used was sensitive to capturing such differences. We also noted variations in improvement 

over time across different domains of recovery, where overall perception of recovery seemed 

to have a steady improvement pattern, while pain varied between consecutive measurements 

in some patients.  

 

Limitations 
There are several limitations to this study. First, the single-center tertiary care setting 

limits the sample size and applicability of the findings to patients cared for in different settings. 

A multi-center study following the current study would address this limitation and evaluate 

whether the findings at our center are comparable to findings in other centers. Additionally, 

group-based trajectory modeling will classify patients into distinct trajectories based on similar 

recovery patterns, and this analytical approach may allow for generalization of the variations in 

the trajectories as long as our sample represents the breadth of the possible variation in 

recovery.  

Another limitation is the exclusion of patients who cannot participate for various 

reasons. The use of digital platform is advantageous in reducing the resource intensity for data 

collection, but leads to exclusion of patients who do not own mobile devices, which likely 

affects older patients disproportionately. As the number of adults using mobile devices is 

increasing24, we believe this will become less of a limitation over time. Initiating this study now 

despite this limitation is important to establish a platform that may become the standard of 
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postoperative care when the vast majority of patient population own digital devices in a 

predictably near future. Those who cannot participate due to lack of interest or technological 

barrier represent an important population that may be distinct in characteristics and risk 

profiles. While acknowledging the selection bias originating from this inclusion threshold, we 

believe there is a need to initiate collection of patient-centered outcome measures in the 

proposed approach, in order to further engage hospitals and programs for a broader 

implementation of this approach in the context of extremely limited evidence base. We plan on 

minimizing the non-participation for the lack of interest by intermittent phone check-ins to 

sustain interests and identify barriers to inform strategies to increase engagement. While 

recognizing that clinical implemenation of this protocol would preclude the use of incentives, in 

following studies, we may consider other forms of incentives to participate, if this population is 

indeed distinct and large in proportion. Additionally, when the PROM data are integrated into 

routine clinical care, patient engagement will likely increase substantially because they will be 

more inspired to share these data if they are used by their clinicians. 

 Finally, postoperative enrollment and retrospective assessment of preoperative health 

status, as opposed to preoperative enrollment, may introduce recall bias. We decided on 

postoperative enrollment, because preoperative enrollment precluded standardized 

enrollment of patients operated on under non-elective settings. Given the retrospective 

assessment of baseline health status takes place on the first postoperative survey, we believe 

the recall bias is minimized owing to the temporal proximity. 

 

Latent class analysis to uncover clinical phenotypes 
 

In precision medicine, a common question for researchers is whether patients can be 

classified with others who have similar risks and treatment responses. Such groupings can assist 



 

 

73 

73 

in predicting risk and matching patients with appropriate treatment strategies. The challenge 

is that it is often not easy to identify meaningful clusters of people with the observable data.  

Latent class analysis (LCA) is a common explanatory modeling technique that allows 

researchers to identify groups of people that have similar  characteristics that can include 

demographics, clinical characteristics, treatments, comorbidities, and outcomes(1). The term 

latent derives from the fact that the classes are not directly observable. LCA estimates the 

probability of each participant being a member of each latent class (2).  

In the November 17, 2019 issue of  JAMA Cardiology, Patel, et al. (3) used group-based 

trajectory modeling (GBTM), a type of LCA, and identified five distinct patterns of change in 

participant urine albumin-to-creatinine ratio (UACR) observed over 20 years. These 5 classes 

were independently associated with adverse changes in cardiac structure and ventricular 

function (3). Notably, participants belonging to the identified trajectory classes could not be 

distinguished by the baseline UACR alone, highlighting the value of this technique. This Guide to 

Statistics and Methods article describes LCA, its potential application, and limitations. 

 

What is latent class analysis? 
LCA is a statistical technique that identifies groups defined by specific combinations of 

observed variables (2). LCA assigns each participant a probability of being in each subgroup 

based on maximum likelihood estimation. Then, each participant is assigned to the group to 

which they have the highest probability of belonging. In GBTM, the trajectories’ shape can be a 

straight or curvilinear form; shapes are based on the maximum likelihood estimation. Selecting 

the number of groups requires manual reconciliation of the trajectories’ shape, the minimum 

number of participants assigned to a trajectory, and measures indicating how well the model 

fits, such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) (6). 
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Although there is no single criterion to select the number and shape of classes or 

trajectories, the number of classes that yield the best fit to the observed data, the highest 

average probability of group membership, and the fewest poor fitting participants (i.e. those 

with a highest probability of group membership <0.7) is chosen (7). Therefore, reporting the 

decisions and rationales behind this process of manual reconciliation is crucial.  

 

Why are latent class analyses used? 
 LCA is useful when the patterns that constitute distinct clusters or classes are difficult to 

discern with traditional methods. For example, the clinical heterogeneity within the broad 

definition of sepsis has made it difficult to determine whether there are patient subgroups that 

respond more favorably to one treatment or another. Investigators have used LCA as a 

confirmatory analysis (4) to reproduce novel phenotypes of sepsis identified by another 

clustering technique called consensus k-means clustering. The investigators identified clinical 

phenotypes of sepsis with differential treatment responses, based on a combination of 

hemodynamics, laboratory, and end-organ functional parameters.  

LCA can also capture groups of participant preferences that depend on a complex 

intersection of options. For example, LCA was used recently to group personal preferences for 

bariatric surgery resulting in three subgroups relating to: concerns with costs, benefit-focused 

and procedure-focused (5). An advantage of this approach is that the grouping originates from 

the data; thus, the categories are not predefined and thus not limited by current conceptual 

frameworks. 

The LCA methods include longitudinal approaches, in which participant-level trajectories 

of an outcome can be classified into groupings. These are called GBTM or latent class growth 

analysis (6) and identify underlying subgroups that would have been masked if only a single 
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regression line was estimated, as done in the majority of longitudinal analyses. For example, 

Wu, et al. (1) found five trajectories of overall cardiovascular health over four years that were 

independently associated with subsequent risk of incident cardiovascular disease.  

  

Limitations of the latent class analysis 
 Several limitations of LCA merit consideration. First, although grouping based on latent 

class facilitates data presentation and interpretation, participants do not actually belong to a 

single group. The class membership for each participant is assigned based on the highest 

probability of belonging to one of the latent classes. That is, some participants have similar 

probabilities of belonging to multiple groups (i.e. probabilities of 0.5, 0.49 and 0.01 for classes 

A, B and C, respectively); however, the group membershio is assigned based on the highest 

probability (7). Therefore, it is critical to examine the participants for whom the highest 

probability of belonging to a single class is poor (<0.7) and provide descriptions of such 

participants (7).  

Second, the number of classes is derived from the cohort considering the model fit and 

complexity and that the number is not fixed. LCA applied to a larger cohort or a cohort with 

more observed characteristics may yield a different number of classes with different patterns. 

Therefore, reporting validation and reproducibility of the latent class is important. To validate 

the latent classes, researchers may perform cross-validation. Reproducibility should be tested 

by using a different source data (4) to test whether the identified groupings can be reproduced, 

although it is often difficult to find an independent dataset of similar cohort that contains 

variables comparable to the original dataset.  

Third, for GBTM applied to longitudinal data, participants assigned to a class may vary 

around the estimated trajectory. For example, a participant may assimilate a rapid recovery 
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trajectory initially, then experience a catastrophic event such as stroke, and no longer follow 

the initial trajectory afterward (8). In such cases, the probability of membership is unlikely to be 

high for a single class. Furthermore, GBTM is only able to model trajectories in polynomial 

functions and is not equipped to model trajectories that do not conform to other shapes, such 

as a cyclical trajectory.  

  

 

How were latent class analyses used? 
 In the study by Patel, et al.(3), authors used GBTM to categorize participants (n=2,647) 

into five distinct classes of trajectories of UACR (Figure 1 in the article by Patel, et al.) over the 

course of 20 years in young adults. UACR measurements were recorded prospectively at five 

timepoints (10, 15, 20, 25, and 30 years since the enrollment). GBTM identified distinct 

categories of trajectories, that were not identifiable from the baseline UACR measurement 

alone. The authors labeled the trajectories, with the ‘high-increasing’ group (1.6% of 

participants) showing a clinically concerning pattern of persistently high UACR level that 

continued to increase over the study period. Their linear models showed that trajectories of 

worse UACR were associated with greater risk of adverse cardiac structural alterations and 

ventricular systolic and diastolic functions measured at year 30, the end of the study period. 

 

How should the latent class analysis be interpreted? 
Using GBTM, Patel, et al.(3), were able to reduce the complex longitudinal UACR data to 

an interpretable number of trajectory types that prognosticated adverse cardiac functions and 

structural alterations. They concluded that such trajectory-based categorization may help with 

early identification of those at risk of subclinical cardiovascular disease. However, identifying 

the group expected to have the worst trajectory before the completion of follow-up remains a 
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challenge. As expected in a longitudinal study, there were participant attritions over time 

(71% of surviving participants completing the last follow-up). Additionally, the analytical 

method required each participant to have at least three longitudinal measurements to be 

included in the analysis, leading to an additional exclusion. The excluded cohort differed from 

the retained cohort in certain demographic and comorbidity characteristics. As these exclusions 

occurred based on follow-up information, it remains unknown whether the trajectory classes 

are generalizable to the initial cohort prior to such exclusions, which is the cohort for which 

clinicians are interested in prognosticating the risk. There are methods for modeling loss over 

follow-up using GBTM (6), which were not applied. As the authors modeled the trajectories of 

>2600 participants, examination of a split sample may have reinforced the reproducibility of the 

latent classes. Regardless, the general conclusion that the dynamic changes of UACR may be 

associated with a later adverse cardiac remodeling is supported by their approach. 

 

Conclusion 
 This study will generate highly granular, longitudinal PROM data to characterize 

individual trajectories of patient recovery after cardiac surgery. Digital data sharing platforms 

promise to minimize the patient and researcher burden in administering and completing 

PROMs, allowing for characterization of granular progression of patients’ state of health over 

time in the postoperative period. Implementation of such study is complex but feasible, and it 

will serve as an important platform to facilitate clinical use of PROM data to improve the overall 

patient recovery. Latent class analysis may provide insights into the underlying heterogeneity of 

recovery trajectories that have not been available via conventional, investigator-driven 

grouping of patients. 
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Tables and Figures 
Table 1: Candidate predictors of recovery trajectory 
Demographic Comorbidity Operative factors Postoperative factors 

Age Diabetes Cardiopulmonary 
bypass time Length of ICU stay 

Sex Prior stroke Cross clamp time Length of hospital stay 
Race Congestive heart failure Operation type Surgical site infection 
Insurance status Chronic kidney disease Non-elective status Prolonged ventilation 

BMI Dialysis Transfusion 
requirement 

Transfusion 
requirement 

 Prior MI Minimally invasive 
approach Stroke 

 Prior cardiac surgery  Reoperation for any 
reasons 

 Ejection fraction  Death 
 Arrhythmias  Readmission 
 Prior PCI  Pneumonia 
 Cardiogenic shock   
 Hypertension   
 Dyslipidemia   
 Smoking status   
 Chronic lung disease   
 Endocarditis   
 Pneumonia   
 Peripheral artery disease   
 Immunocompromised   

 Mechanical circulatory 
support use 

  

 Valvular disease severity   
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Table 2: 24 features of trajectory used in group-based trajectory model 
N Features 

1 Range  
2 Mean-over-time  
3 Standard deviation (SD)  
4 Coefficient of variation (CV)  
5 Change  
6 Mean change per unit time  
7 Change relative to the first score  
8 Change relative to the mean over time  
9 Slope of the linear model  

10 Proportion of variance explained by the linear model  
11 Maximum of the first differences  
12 SD of the first differences  
13 SD of the first differences per time unit  
14 Mean of the absolute first differences  
15 Maximum of the absolute first differences  
16 Ratio of the maximum absolute difference to the mean-over-time  
17 Ratio of the maximum absolute first difference to the slope  
18 Ratio of the SD of the first differences to the slope  
19 Mean of the second differences  
20 Mean of the absolute second differences  
21 Maximum of the absolute second differences  
22 Ration of the maximum absolute second difference to the mean-over-time  
23 Ratio of the maximum absolute second difference to mean absolute first difference  
24 Ratio of the mean absolute second difference to the mean absolute first difference  
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Figure 1: Timing of patient enrollment and PROM administration 

 

The figure shows the timing of patient enrollment and PROM administration over the clinical 

course. Baseline function is assessed by retrospectively asking the patient about their state of 

health during 1 month prior to the operation. 24-item Quality of Recovery questionnaire is 

administered every 3 days for 30 days following discharge from the intensive care unit.  
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Figure 2: Sample trajectories of recovery in 5 patients 

 

The figures display trajectories of recovery in different domains in 5 patients. Each color 

corresponds to the same patient. Overall recovery is the patient’s perception of overall 

recovery in 0 to 100% scale. Pain in surgical site is reported in 0 to 10 point scale, with 10 

representing the worst pain. Being able to take care of own hygiene is reported in 0 to 10 point 

scale, with 10 representing complete independence in managing own hygiene. Patient’s 

perception of sleep quality is reported in 0 to 10 point scale, with 10 being the best sleep.  

 

 

 

CHAPTER 4 

Examining the impact of adding intraoperative variables in predicting postoperative 

outcomes 

Introduction 
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The Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database (ACSD) risk 

models1, 2 are based on logistic regression and only incorporate information available before 

the operation to inform preoperative decision making and counseling2. Intraoperative events 

may influence the risk of postoperative outcomes3. Existing risk models in clinical use, such as 

the STS models and EuroSCORE, do not consider intraoperative information, although such data 

could improve postoperative prediction and patient care. A possible benefit of such dynamic 

update of predicted risk includes quantitatively recalibrating patient and provider expectations 

based on intraoperative events, which may modify decision thresholds to pursue diagnostic 

tests such as head scans for questionable neurologic deficit or early preparation of dialysis 

catheter access for those with renal failure risk that increased because of intraoperative events.  

Several studies have demonstrated the value of risk models that update risk estimates 

as more data are generated4-6. In a digital era, this updating could be automated and made 

available to support decisions at the bedside. However, whether adding intraoperative 

variables improves prediction, which variables are most important, and which analytic methods 

yield the more accurate predictions remain unknown. Accordingly, using the national STS ACSD 

dataset for coronary artery bypass graft (CABG), we sought to determine whether adding and 

which intraoperative variables into the existing STS preoperative model would improve the 

predictive performance of the model. 

 To address this aim, we used the STS database, which includes approximately 100 

intraoperative variables related to coronary artery bypass graft (CABG). We also employed 

machine learning approaches in addition to logistic regression. Machine learning techniques 

based on tree-based models, such as gradient descent boosting, are suited to identify complex 

relationships in high-dimensional data. Although researchers have tested machine learning 
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approaches to estimate risk for patients undergoing percutaneous coronary interventions7, 8, 

such methods have not been evaluated extensively in cardiac surgical risk modeling.  

  

Methods 
Cohort definition and data source 

We included adult patients who underwent isolated CABG from July 2014 to December 

2016 in the U.S. centers participating in the STS reporting. We used the STS ACSD data 

definition version 2.81. We excluded concomitant cases defined at those undergoing any 

concomitant cardiac operations except for pacemaker implantation, arrhythmia correction 

surgeries, or left atrial appendage ligation or occlusion. The criteria yielded 378,834 operations. 

We excluded 102 cases missing gender and 160 with intraoperative death. These exclusions 

yielded 378,572 operations performed by 2,730 surgeons in 1,083 centers. 

The STS ACSD includes >90% of the cardiac surgery centers in the United States9. Clinical 

sites enter data using uniform STS definitions for patient characteristics and outcomes. The 

quality of the data has been rigorously validated by comparison with independent national and 

local datasets10. The database is deidentified, and the Participant User File (PUF) Research 

Program Committee of the STS Workforce and the Yale University Human Investigation 

Committee approved this study. 

 

Outcomes 
We studied 7 postoperative outcomes using standard STS ACSD definitions: operative 

mortality, defined as postoperative death from any cause either in-hospital or in discharged 

patients, within 30 days of the index operation (with the exclusion of intraoperative deaths), 

prolonged ventilation, defined as mechanical ventilation requirement >24 hours 

postoperatively, pneumonia, permanent stroke, defined as a neurologic deficit of abrupt onset 
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caused by a disturbance in blood supply to the brain that did not resolve within 24 hours, 

reoperation for any reasons during the index hospitalization, deep sternal wound infection 

(DSWI), and renal failure defined as new dialysis requirement, increase in serum creatinine 

three times greater than the baseline and absolute rise of greater than 0.5mg/dl, or creatinine 

level >4mg/dL. We fitted models predicting postoperative renal failure on the data, excluding 

those with preoperative renal failure with or without dialysis need as done in previous works1, 2. 

Further specifications of the STS ACSD data definitions are available online11. Missing data were 

rare (<2% for all variables, except for ejection fraction, which was missing in 3%). Missing data 

were handled as described in the STS ACSD risk model specifications1. Briefly, missing data on 

categorical predictor variables were imputed to the lowest risk value, and missing data on 

continuous covariates were imputed to the conditional mean. Missing ejection fraction values 

were set to the mean values conditioned on congestive heart failure status and sex, and body 

surface area was conditioned on sex.  

 

Candidate variables 
 We chose candidate preoperative variables based on the STS ACSD risk model for 

isolated CABG12. The variables were processed per the description for the STS ACSD model, 

which included splining of continuous variables such as age and creatinine, and combining 

categorical variables describing related disease states, such as congestive heart failure and New 

York Heart Association class variables12. Candidate intraoperative variables were all variables 

generated during the operation in the STS ACSD version 2.81. We did not employ any specific 

feature engineering because there are no established standards, unlike the preoperative 

variables. General categories of variables are summarized in Table 1, and the categories 

included operative approach, laboratory values, temperature measurements, transfusions, 
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transesophageal echocardiogram results, case duration, cardioplegia strategy, and 

prophylactic antibiotics use. Cardiopulmonary bypass time and cross-clamp time were excluded 

because we included off-pump cases. Total operative time was available for all cases and was 

used instead as a measure of case length. Categorical variables that would be missing in off-

pump cases, such as cardioplegia-related variables, were included but missingness was treated 

as a feature.  

 

Model development and validation techniques 
For each of the 7 outcomes, we developed 12 models with different combinations of 

starting variable sets, variable selection methods, and relationship modeling for a total of 84 

models (Figure 1). We used two starting variables sets: 1) preoperative variables only (same as 

the existing STS models), 2) intraoperative variables only, and 3) pre + intraoperative variables. 

Preoperative variables comprised 47 fields that were preprocessed using the method used in 

the previous STS ACSD risk models. Intraoperative variables consisted of 96 fields without 

specific preprocessing. The variables in each category are summarized in Table 1. We used two 

relationship modeling approaches: 1) logistic regression and 2) gradient descent boosting using 

XGBoost package13. XGBoost is a machine learning algorithm that makes a prediction based on 

a series of decision trees, with a highly efficient tree boosting algorithm with improved 

performance over other tree-based approaches in various settings7, 13. Its additional appeal is 

the ability to rank predictive variables on the order of importance to facilitate clinical 

interpretation of the model. We chose to use both XGBoost and logistic regression under the 

hypothesis that the XGBoost algorithm may yield better model performances given the 

increasingly large number of variables. Logistic regression is the approach that the STS ACSD 

risk models use. Therefore, logistic regression models were developed as a reference model 
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against which the performance of XGBoost models was evaluated. We used two variable 

selection methods: 1) no external variable selection and 2) external variable selection by 

support vector classifier. XGBoost algorithm has an internal variable selection process, and we 

hereafter refer to models with ‘no variable selection’ as those without prior variable selection 

using support vector classifier. Parameters of XGBoost models (number of trees, learning rate, 

and depth of trees) were tuned via internal cross-validation for each outcome to optimize c-

statistics of each model, with final parameters outlined in Supplemental Table S1. For each 

model, we split the dataset randomly into 70% training and 30% testing dataset. This was 

iterated 20 times to yield 20 estimates for model performance metrics in predicting the 

outcomes for internal validation. We chose the number of iterations to be 20 after observing 

that increasing the iterations further did not change the mean or the confidence interval for 

operative mortality. The random sampling of the split was stratified to ensure adequate 

sampling of rare events. We reported means and 95% confidence intervals of 20 iterations for 

each metric. 

 

Performance metrics 
We evaluated the model performance for the testing dataset in each model using c-

statistics, the area under the precision-recall curve (AUPRC), Brier score, resolution, and 

reliability. C-statistics (AUROC) characterized model discrimination and ranged between 0 to 1, 

with a higher value corresponding to better discrimination14. AUROC is the proportion of the 

times patients with an event were accurately classified to have a higher probability of event 

within all possible pairs of patients with and without an event14. Because AUROC can provide a 

misleadingly optimistic view of the model performance when classifying event of low 

incidences, we also evaluated AUPRC, which relates positive predictive value (also known as 
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precision) and sensitivity (also known as recall), and is less susceptible to unbalanced nature 

of datasets15. Therefore, AUPRC complements AUROC to characterize the discriminatory ability 

when the outcome of interest is rare, as it can uncover potentially faulty model performance in 

the precision-recall space by penalizing a high false-negative rate. Brier score is the mean 

squared error (MSE) of predicted probability of an event (ranges 0 to 1) and observed event 

(binary 0 or 1), with lower values corresponding to higher accuracy of the prediction16. 

Performance metrics were compared to their means to report whether one is numerically 

higher or lower, with the corresponding interpretation of better or worse. We did not evaluate 

the statistical significance of the difference because arbitrarily increasing the number of 

resampling iterations would drive the comparisons toward statistically significant differences.  

We also assessed calibration using reliability measure, defined as the sum of MSE 

between the predicted probability and observed rate at each decile, with lower values 

corresponding to better calibration17. Reliability is more sensitive in capturing deviations of the 

predicted risks from the true rates than the calibration slope does. Resolution is the MSE 

between the deciles of predicted risks and the event rate of the entire cohort. Therefore, higher 

values of resolution indicate prediction across greater distances from the observed event rate 

and indicate models with better performance18. We also showed a continuous calibration plot 

showing model calibration for a wide range of risks using cubic spline smoothers. In contrast to 

the commonly used calibration plots with decile-based risk stratification, a continuous 

calibration plot offers an estimation of calibration in a continuum of predicted risk19. 

 

Clinical interpretability 
 To provide clinically interpretable information beyond model performance metrics, we 

evaluated how many cases were re-stratified according to the predicted risk generated by the 
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base model (logistic regression with preoperative variables without variable selection) and 

the model with the best performance. This step was performed on a randomly selected split of 

the data without multiple iterations. Risk strata were defined a priori based on authors’ 

consensus as clinically relevant cutoffs. We applied the same threshold for outcomes with 

similar incidences (mortality, renal failure, and stroke as <1%, 1-3%, 3-5%, 5-10%, and >10%). 

We reported proportions of cases with underestimated or overestimated risks compared to the 

true event incidence for the base and best models. We also made this comparison between 

pre+intraoperative variable models fitted with logistic regression and XGBoost. We elected not 

to use the net reclassification index for its susceptibility to yield false-positive results when 

using large datasets20.  

To understand intraoperative variables that may be related to changing patients’ 

predicted risk, we fitted logistic regression using both pre and intraoperative variables over the 

entire dataset to estimate coefficients, odds ratio, and 95% confidence interval of each variable 

in its relationship to operative mortality. For the XGBoost model, we used the 

‘feature_importances_’ function, a built-in function in the XGBoost package, to rank the input 

variables in the order of importance in fitting the particular model. Additionally, we evaluated 

two patients whose predicted probabilies of mortality were discrepant between logistic 

regression and XGBoost approaches to gain further insights into how different phenotypes are 

handled by each algorithm.  

Data preprocessing and statistical analysis were implemented with Python (version 2.7) 

and the open-source packages available in Scikit-Learn21. Three authors (MM, TJD, and CH) had 

access to the data, did the coding, and take responsibility for the analyses. The final code was 

reviewed independently by one author (AC) for quality assurance.  
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Results 
 Among the 378,572 hospitalizations for isolated CABG, the mean (standard deviation 

[SD]) patient age was 65.3 (10.2) years. Women comprised 93,425 (24.7%) of the cohort. 

Operative mortality, excluding intraoperative death, occurred in 1.9%. Permanent stroke 

occurred in 1.3%, renal failure in 2.1%, prolonged ventilation in 8.1%, reoperation for any 

reasons in 3.5%, DSWI in 0.3%. The composite event rate of the above adverse events was 

12.1%. (Table 2). Intraoperative variables are summarized in Supplementary Table 3. 

Preoperative, Intraoperative, Pre+Intraoperative variables 
 Between models using only preoperative or intraoperative variables, models for all 

outcomes, except for reoperation, had better AUROC values with a preoperative variable set 

alone than those using only intraoperative variable sets. In all outcomes, models using 

pre+intraoperative variables had better AUROC than respective models using either 

intraoperative or preoperative variable sets alone. This relationship also held for Brier score 

and AUPRC in all outcomes, except for DSWI, in which there were no substantial differences in 

Brier score between 3 different variable sets (Figure 2). Other performance metrics are 

summarized in Supplementary Table 3. 

Logistic regression vs. XGBoost 
 Among the models using pre+intraoperative variables, XGBoost without prior variable 

selection had the best AUROC, Brier score, and AUPRC values in 4 of the 7 outcomes (mortality, 

renal failure, prolonged ventilation, and composite) compared with logistic regression models 

with or without variable selection. For DSWI, the logistic regression model with variable 

selection had the best performance in all 3 metrics. For reoperation and stroke, the model with 

the best performance varied across the metrics: discrimination (AUROC and AUPRC) was better 

in logistic regression models while calibration (Brier score) was better in the XGBoost model 

(Figure 2 for mortality and renal failure, Supplementary Table S4 for other outcomes). The 
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supplementary text describes two patients' phenotypes of which the predicted risk of 

mortality differed largely between the XGBoost and logistic regression model.  

Calibration plot 
 Continuous calibration plot demonstrated that for all outcomes, the logistic regression 

model tended to underestimate the patient risk at extremely high risks compared with the 

observed event rate (Figure 3). Calibration plots including the confidence band and outcomes 

other than mortality and renal failure are summarized in Supplementary Figure 2 and 3. 

Calibration was generally good in the risk range, where the majority of patients resided. For all 

combinations of outcomes and variable sets (preoperative only or pre+intraoperative 

variables), XGBoost models showed better calibration across broader range of risks compared 

with the logistic regression model.  

Risk re-stratification 
The shift table of risk strata was created to compare the mortality risk stratification by 

the baseline model (preoperative variable set with logistic regression without variable 

selection) and the model that performed optimally (preoperative and intraoperative variables 

with logistic regression without variable selection). For mortality, this showed that baseline 

model underestimated the risk in 11,114 patients (9.8%) and overestimated 12,005 patients 

(10.6%). In contrast, the best model underestimated the risk in 7,218 patients (6.4%) and 

overestimated 0 patients (0%) (Figure 4). Comparing models fitted over pre+intraoperative 

variables, logistic regression without variable selection underestimated the risk 7,137 patients 

(6.3%) and overestimated in 3,566 patients (3.1%), while XGBoost without variable selection 

underestimated the risk in 4,263 patients (3.8%) and overestimated in 1,886 patients (1.7%) 

(Figure 5). Therefore, using the same set of predictors for mortality, the XGBoost model yielded 

54% fewer misclassifications in risk compared with the logistic regression model. For renal 
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failure, using pre+intraoperative predictors, the XGBoost model yielded 112% fewer 

misclassifications in risk than the logistic regression model (Supplementary Table 2). 

Examples of patients with large discrepancies between logistic regression and XGBoost 

models are the following:  A 42-year-old man with minimal comorbidity who underwent 

emergent 3-vessel CABG received 23 units of red blood cell and 16 units of plasma. This patient 

had a 44% and 6% chance of death predicted by XGBoost and logistic regression, respectively. A 

70-year-old man who underwent salvage 5-vessel CABG with intraoperative IABP placement. 

XGBoost and logistic regression models predicted the risk of this patient's mortality to be 30% 

and 10%, respectively. In a case where logistic regression had a significantly higher predicted 

mortality probability, a 52-year-old woman with minimal comorbidity undergoing elective 5-

vessel CABG required IABP during the operation and had the lowest body temperature of 27°C. 

This patient had predicted mortality of 6% by XGBoost and 20% by logistic regression.  

Intraoperative variables associated with the outcomes 
 Fitting logistic regression model for operative mortality using pre+intraoperative 

variable set, we identified intraoperative variables that improved the prediction of operative 

mortality. These included undergoing full sternotomy, intraoperative intraaortic balloon pump 

(IABP) use, lack of left internal mammary artery use, number of distal anastomosis performed, 

appropriate type and timing of antibiotics use, lowest body temperature, highest glucose and 

lowest hemoglobin level, cardioplegia route and type, blood product use, and postoperative 

residual tricuspid regurgitation and ejection fraction, and total case time (Table 3). 

Intraoperative variables identified as important features in the XGB model were similar, 

including: intraoperative IABP use, blood product use, timing and redosing of antibiotics, lowest 

body temperature, highest glucose and lowest hemoglobin level, cardioplegia route, 

postoperative valvular insufficiency, incision approach, and total case time. The relative 
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importance score for the XGB model was the highest for plasma transfusion (score of 292), 

followed by any transfusion (220), intraoperative IABP use (182), red cell transfusion (123), and 

lack of internal mammary artery use (50) (Table 4). 

 

Discussion 
 Using the national STS ACSD for isolated CABG, we demonstrated that including 

intraoperative variables provided a better model predicting postoperative events across all 

outcomes, although the gain was small in some outcomes. The findings were consistent with 

our two analytic approaches, though the XGBoost algorithm improved the model performance 

slightly more than logistic regression. This study highlights the potential value of including 

interoperative variables and using machine learning approaches to predict the risk of adverse 

events after surgery.  

 Our study adds to the current literature in several ways. First, the existing STS ACSD 

models only use variables that are available before the operation, which are predominantly 

patient characteristics. While this is an appropriate approach for a tool intended to characterize 

surgeon and hospital performances and support operative decision making, the potential value 

of intraoperative information had yet to be demonstrated conclusively. Our work showed a 

sizable, consistent gain in the model performance by adding the intraoperative variables. With 

the integration of such a model with an electronic health record system and mapping of 

pertinent variables, it may be possible to implement a dynamic risk model that updates the 

predicted risk for individual patients as the data become available. Our work can serve as a 

prototype for future endeavors. 

Second, although machine learning models have been evaluated in large clinical 

registries, it has not been applied to the contemporary national STS ACSD with an extensive 



 

 

96 

96 

number of variables, and the potential advantage of machine learning approach applied to 

this commonly utilized dataset had been unknown. Our work demonstrated that performance 

gain occurred with the XGBoost approach compared with the logistic regression counterparts in 

4 of the 7 evaluated outcomes. Even when the gains occurred, those measured by AUROC, Brier 

score, and AUPRC were small. However, when evaluating risk re-stratification across the pre-

specified risk strata, the XGBoost model showed more accurate stratification. For example, for 

operative mortality, the logistic regression model overestimated risk in 10.6% of the patients, 

while overestimation was 0% in the XGBoost model. In examining several patients who had a 

discrepant predicted probability of mortality between XGBoost and logistic regression models, 

we noted that discrepancies may occur in patients with extreme observed value in variables 

that are key predictors of the event. This may be because algorithms had different ways of 

processing extreme values and that larger magnitude of predicted risks tends to have larger 

error margin. 

The STS ACSD, despite being one of the most extensive clinical registries in cardiac 

surgery, constrains variables at the time of data collection, resulting in the categorization of the 

majority of the variables with only a small fraction retained as continuous variables. This likely 

limited the performance of the XGBoost algorithm, as a strength of the algorithm lies in better 

handling of extensive interactions between continuous variables in a high-dimensional space8. 

Therefore, the dataset likely did not allow the machine learning algorithm to realize its full 

potential in improving prediction, and emphasizes the importance of future work leveraging the 

rich health data that exist with electronic medical record systems22. 

 Additionally, a continuous calibration plot suggested that the XGBoost model may 

improve the prediction of those at extremely high risks in all outcomes. Although the 

confidence interval is wide at high-risk ranges due to most events having low incidences, the 
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pattern appeared to be consistent that XGBoost follows the line of ideal calibration more 

closely than the logistic regression model counterparts did. This may have implications in better 

estimating the risks of those patients at extreme risks, which surgeons encounter rarely but 

may not have been predicted as well with existing models. 

This study has several implications. First, as the predictions appear to improve with 

incorporating variables from multiple phases of care (preoperative and intraoperative), data 

acquisition, processing, and output platforms must evolve to shorten the time gap between the 

origination of the data and outputting the prediction in order for this improved prediction to 

make clinical impact22, 23. Given the large number of variables used, potential implementation 

solutions likely require integration of the prediction algorithm into the electronic medical 

record system. With appropriate data mapping, the model may continue to update prediction 

as the variable becomes available in the electronic medical record system. Second, as XGBoost 

may yield better prediction, not only by the conventional performance metrics but also by risk 

re-stratifications, especially for those with extremely high risk, widely used prediction models 

may benefit from adopting such a modeling approach.  

 Our analysis brought forth several intraoperative variables that were associated with 

adverse outcomes. For mortality, appropriate timing of antibiotic use and the use of antegrade 

cardioplegia compared to retrograde cardioplegia alone was associated with lower odds of 

operative mortality. As have been demonstrated, intraoperative body temperature and glucose 

levels were also predictive of mortality risk. As we did not evaluate such relationships in a 

rigorous causal inference framework, future works should determine whether they are markers 

or mediators of adverse outcomes. For example, the observation that transfusions are 

associated with increased risk of mortality may be a marker of severe conditions requiring 

transfusion, rather than the transfusion itself affecting short-term mortality. Similarly, the 
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inability to use the left internal mammary artery may represent the surgeon-specific or 

process-related risk and not the immediate physiologic effect towards mortality. Evaluating 

causal pathways for the intraoperative variables will likely improve the dynamic prediction of 

risk.  

 Finally, while not the main aim of this study, both XGBoost and logistic regression 

models yielded similar sets of variables that were deemed important or statistically significant 

for the prediction. These include preoperative hemodynamic acuity, transfusion-related 

variables, peak intraoperative glucose level, and intraoperative echocardiographic findings. 

 

Limitations 
 Our study shares limitations of the STS ACSD risk models in that the models were 

developed from the dataset of those who underwent the operation. Therefore, even the 

models using only the preoperative variables do not encompass the entire population of 

potential operative candidates, only some of whom will undergo the operation. Additionally, to 

evaluate intraoperative predictors, we excluded intraoperative deaths. Although this was an 

extremely small population, this difference in the definition of operative mortality, and 

consequently, the slight difference in event incidences, compared with the STS ACSD risk 

model, should be acknowledged. Tree-based models, including XGBoost used in this study, does 

not yield covariate coefficients as logistic regression models do. This limits the interpretation of 

the relationship between covariates and outcomes in the way with which the clinical 

community is familiar. In order to provide the interpretability of our results, we provided lists of 

variables that were deemed important by the XGBoost models. Finally, the dataset was studied 

retrospectively and although the phase of care to which the variable set belonged to was 
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informed by the STS ACSD data definition, we did not have the knowledge of which variables 

were actually available to clinicians preoperatively and intraoperatively.  

 

Conclusions 
 In predicting 7 outcomes commonly used to measure cardiac surgical outcomes, the 

addition of intraoperative variables to preoperative variables resulted in improved predictions 

of all outcomes. For most outcomes, the XGBoost model performed better than logistic 

regression counterparts, although the gain associated with the modeling technique was small 

when measured by calibration and discrimination metrics.  Calibration plot and risk 

reclassification further demonstrated the potential advantage of the XGBoost approach. In an 

environment where high dimensional data can be processed, risk models based on XGBoost 

may provide a better prediction of adverse events to guide clinical care. 
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Tables and Figures 
Figure 1: Analysis flow for development and evaluation of models 
 

 
CABG = coronary artery bypasss graft surgery; STS ACSD= Society of Thoracic Surgeons Adult 
Cardiac Surgery Database; AUPRC = area under the precision-recall curve 
The figure summarizes the modeling approach and metrics used to evaluate the performance. 
Combinations of variable sets, variable selection approach, and modeling technique for 7 
outcomes resulted in 84 different models.  
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Figure 2: Model performances for mortality and renal failure 
 

 
 
Figure summarizes model performances for mortality and renal failure evaluated by 3 metrics. 
Circled red triangles represent the baseline model, which are logistic regression models using 
preoperative variables only without further variable selection. * indicates the model with best 
performance within the same variable set. For all metrics, the right end of the x-axis is better 
and the left end is worse. For example, for operative mortality, XGBoost model using 
pre+intraoperative variables without variable selection had the best performance in c-statistics, 
Brier score, and the area under precision-recall curve (AUPRC). 
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Figure 3: Continuous calibration plot for 7 outcomes 

 
 
Figure shows continuous calibration plot for mortality (left) and renal failure (right). Red lines 
are XGBoost and blue lines are logistic regression model calibrations. Dotted lines are models 
using preoperative variables only and solid lines are models using pre+intraoperative variables. 
Black line represents perfect calibration. The legend shows percent of the cohort that had 
predicted event probability above the indicate threshold in percentage. For example, for 
operative mortality, 2.3% of the patients had predicted probability of operative mortality >10%. 
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Figure 4: Shift table of predicted risk for operative mortality: Logistic regression with 
preoperative variables vs. XGBoost with pre+intraoperative variables 
 

 
 
The figure shows predicted risk of operative mortality by the base model (logistic regression 
using preoperative variables without variable selection) and the best model (XGBoost using 
pre+intraoperative variables without variable selection). Actual observed mortality rate is 
indicated by the % and numbers in parenthesis indicate number of all patients in each predicted 
risk strata. Gray cells are those classified in the same stratum by both models. Base model 
underestimated 11,114 patients (9.8%) and overestimated 12,005 patients (10.6%). Best model 
underestimated 7,218 patients (6.4%) and overestimated 0 patients (0%). 
*1-5 denotes cell location by the column and a-e denotes cell location by the row. 
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Figure 5: Shift table of predicted risk for operative mortality: Logistic regression with 
pre+intraoperative variables vs. XGBoost with pre+intraoperative variables 
 

 
 
The figure shows predicted risk of operative mortality by the base model (logistic regression 
using preoperative variables without variable selection) and the best model (XGBoost using 
pre+intraoperative variables without variable selection). Actual observed mortality rate is 
indicated by the % and numbers in parenthesis indicate number of all patients in each predicted 
risk strata. Gray cells are those classified in the same stratum by both models. Base model 
underestimated 7,137 patients (6.3%) and overestimated 3,566 patients (3.1%). Best model 
underestimated 4,263 patients (3.8%) and overestimated 1,886 patients (1.7%). 
*1-5 denotes cell location by the column and a-e denotes cell location by the row. 
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Tables:  
 
Table 1: Predictor variables 

Preoperative variables Type or level 

Age Linear spline with knots at 50 and 60 years, interaction term with case 
status and incidence of operation 

Race/ethnicity Caucasian, Black, Asian, Hispanic 
Sex Female, Male 
Body surface area Continuous, conditioned on sex 
Chronic lung disease Mild, Moderate, Severe 

Last preoperative creatinine level Linear spline with knots at 1.0 and 1.5, conditioned on preoperative 
dialysis 

Preoperative dialysis Yes, No  
Hypertension Yes, No 
Diabetes No, Non-insulin dependent, insulin dependent 
Congestive heart failure Yes, No, conditioned on NYHA class 
Cerebrovascular disease Yes, No, conditioned on stroke/TIA 
Peripheral vascular disease Yes, No 
Atrial fibrillation Yes, No 
Immunosuppressed status Yes, No 
Left main disease Yes (≥ 50% stenosis), No 
Myocardial infarction No, within 6 hours, 24 hours, 21 days, ≥21 days 
Number of diseased vessels Discrete continuous 
PCI < 6 hours Yes, No 
Shock Yes, No 
Inotrope or IABP use preoperatively Yes, No 
Prior cardiovascular surgery None, once, ≥ twice 
Ejection fraction Continuous 
Mitral insufficiency Yes, No (Yes = moderate or severe) 
Tricuspid insufficiency Yes, No (Yes = moderate or severe) 
Aortic stenosis Yes, No (Yes = moderate or severe) 
Case status Elective, Urgent, Emergent, Salvage 
 

 
Intraoperative variables Type or level 
Operative approach Sternotomy, thoracotomy, partial sternotomy, port access 
Conversion of planned approach Yes, No 
Robot used Yes, No 
Prophylactic antibiotics used Yes, No 
Antibiotics given within 1 hour of 
incision Yes, No 
Prophylactic antibiotics redosed Yes, No 
Lowest body temperature Continuous 
Lowest hemoglobin, hematocrit Continuous 
Cardiopulmonary bypass use None, Combination, Full, reasons if combination 
Amino caprioc acid use Yes, No 
Tranexamic acid use Yes, No 
Clotting factor use Yes, No 



 

 

108 

108 

Cardioplegia delivery Antegrade, Retrograde, Both 
Cardioplegia type Blood, Crystalloid, Both, Other 
Blood product use Yes, No 
Unit of red blood cell transfused Continuous 
Unit of platelet transfused Continuous 
Unit of fresh frozen plasma 
transfused Continuous 
Unit of cryoprecipitate transfused Continuous 
Intraoperative transesophageal echo Ejection fraction, valvular insufficiency 
Time from skin incision to closure Continuous 

 
The table summarizes predictor variables by general categories. 
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Table 2: Incidences of Postoperative Events 

Events N=378,572 
Operative mortality 1.88% 
Permanent stroke 1.31% 
Renal failure 2.11% 
Prolonged ventilation 8.05% 
Reoperation 3.47% 
DSWI 0.30% 
Composite morbidity and mortality 12.08% 

 
*DSWI = deep sternal wound infection  



 

 

110 

110 

Table 3: Odds ratio estimate for variables selected by support vector machine in predicting 
mortality  
Variables OR 2.50% 97.50% 
Preoperative    
Body surface area 2.464 2.011 3.019 
Shock 2.396 2.144 2.677 
Dialysis 2.066 1.67 2.556 
Severe lung disease 2.013 1.852 2.188 
Salvage status 2.004 1.712 2.345 
IABP or inotrope dependent 1.661 1.539 1.791 
Creatinine (splined at 1.0) 1.512 1.194 1.914 
CHF with NYHA III/IV 1.477 1.36 1.604 
MI (within 24 hours) 1.469 1.303 1.657 
Tricuspid insufficiency 1.463 1.335 1.604 
Peripheral vascular disease 1.439 1.356 1.526 
Moderate lung disease 1.331 1.207 1.467 
CHF with NYHA I/II 1.324 1.245 1.408 
Immunosuppressed 1.309 1.173 1.461 
CVD without stroke 1.293 1.198 1.397 
MI (within 21 days) 1.232 1.163 1.304 
Mitral insufficiency 1.206 1.121 1.299 
Urgent status 1.145 1.076 1.219 
Insulin-dependent diabetes 1.142 1.074 1.214 
Number of diseased vessels 1.135 1.074 1.199 
CVD with stroke 1.127 1.054 1.206 
Age (splined at 50) 1.116 1.095 1.138 
Left main disease 1.079 1.025 1.136 
Age*Case urgency 1.023 1.019 1.028 
Age*Reoperative status 1.011 1.006 1.017 
Age (splined at 60) 1.003 0.989 1.017 
Ejection fraction 0.982 0.978 0.987 
Age 0.933 0.924 0.943 
#Creatinine 0.896 0.722 1.111 

    
Intraoperative    
Intraoperative IABP 4.419 4.054 4.816 
Any blood products used 1.168 1.095 1.247 
pRBC (number of units used) 1.122 1.103 1.142 
Intraoperative TEE performed 1.093 1.027 1.163 
FFP (number of units used) 1.066 1.04 1.092 
Highest intraoperative glucose level 1.002 1.002 1.002 
Skin-to-skin time 1.002 1.002 1.002 
Lowest body temperature 0.98 0.97 0.989 
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Blood cardioplegia use 0.927 0.868 0.99 
Lowest intraoperative hemoglobin level 0.924 0.909 0.94 
Number of distal anastomosis 0.902 0.878 0.928 
Postop EF (increased) 0.88 0.82 0.945 
LIMA used 0.844 0.781 0.911 
#Appropriate antibiotics used 0.844 0.696 1.022 
Antegrade cardioplegia 0.822 0.764 0.884 
Postop tricuspid regurgitation (None) 0.812 0.75 0.879 
Appropriate timing of antibiotics use 0.793 0.65 0.967 
Antegrade and retrograde cardioplegia 0.783 0.727 0.843 
Postop tricuspid regurgitation 
(trace/trivial) 0.782 0.718 0.851 

Full sternotomy 0.779 0.64 0.949 
Planned use of combination CPB 0.585 0.474 0.721 

#Indicates variables with confidence interval crossing 1.0.  
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Table 4: Variables on the order of importance in XGBoost model for mortality 
Intraoperative variables Importance score 
Plasma transfusion 291.7 
Any transfusion 219.9 
Intraoperative IABP use 181.9 
Red cell transfusion 122.8 
Internal thoracic artery use 50.0 
Lowest hemoglobin level 40.2 
Postop ejection fraction 39.3 
Highest glucose level 34.7 
Surgery duration 30.7 
Cardioplegia delivery approach 27.2 
Postop tricuspid insufficiency 15.4 
Number of distal anastomosis 15.0 
Postop mitral insufficiency 14.1 
Unplanned use of combination CPB 13.7 
Platelet transfusion 13.6 
Tranexamic acid use  11.3 
Postop aortic insufficiency 10.1 
Operative approach (full/partial sternotomy, thoracotomy) 9.1 
Cryoprecipitate transfusion 8.5 
Lowest body temperature 8.3 
Whether additional prophylactic antibiotic dose given 7.9 
Timing of antibiotics dosing 7.3 
Clotting factor administration 5.9 
Preoperative variables  
Preop IABP or inotrope use 193.2 
Shock 166.0 
CHF*NYHA class 165.9 
Peripheral vascular disease 115.9 
Age*Status 97.8 
Chronic lung disease 92.3 
Tricuspid insufficiency 89.7 
Mitral insufficiency 85.8 
Ejection fraction 85.2 
Age   63.6 
Creatinine 59.7 
Timing of myocardial infarction 43.0 
Status (elective, urgent, emergent, salvage) 40.2 
Insulin-dependent diabetes 19.5 
Sex*body surface area 18.9 
Age*Redo sternotomy 17.3 
Number of diseased vessels 16.8 
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Body surface area 14.1 
Stroke 13.8 
PCI within 6 hours 12.0 
Left main disease 11.6 
Immunosuppressed status 10.4 
Hypertension 10.4 
Atrial fibrillation 9.9 
Aortic stenosis 9.9 
Transient ischemic attack 8.6 
Race 7.5 
Ethnicity 6.0 

 
 
 
CPB=cardiopulmonary bypass; IABP = intraaortic balloon pump; CHF = congestive heart failure; 
NYHA = New York Heart Association; PCI = percutaneous coronary intervention. *indicates 
interaction between the two variables. Importance score denotes the average number of times 
the variable was used to split the trees in XGBoost. 
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Supplementary Table S1: Final XGBoost model parameters 

Events Number of 
estimators 

Maximum tree 
depth 

Learning 
rate C 

Operative mortality 257 2 0.3 0.5 
Permanent stroke 182 2 0.4 0.15 
Renal failure 220 3 0.3 0.125 
Prolonged 
ventilation 380 3 0.3 0.2 
Reoperation 178 3 0.4 0.175 
DSWI 92 2 0.4 0.8 
Composite 
morbidity and 
mortality 324 3 0.3 0.5 

DSWI = deep sternal wound infection 
Table summarizes two parameters that were tuned for XGBoost models. C values are only 
applicable for models with variable selection, and represent penalty value to regularize variable 
selection in the support vector machine algorithm, with 0 exerting maximum regularization and 
1 exerting no regularization.  
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Supplementary Table S2: Shift table for renal failure using pre+intraoperative variables 
comparing XGBoost and logistic regression 

  Base Model 
  <1% 1-3% 3-5% 5-10% >10% All 

Best 
Model 

Event rate 
(No. 
patients) 

Event rate 
(No. 
patients) 

Event rate 
(No. patients) 

Event rate 
(No. patients) 

Event rate 
(No. 
patients) 

Event rate 
(No. patients) 

<1% 
 (0.5%) 
56455  (0.8%) 5886 (0%) 4 (0%) 0 (0%) 0 

(0.48%) 
62345 

1-3%  (1.0%) 2926 
 (1.8%) 
26665  (2.9%) 2430 (6.1%) 131  (50.0%) 2 (1.8%) 32154 

3-5%  (0%) 14 (2.5%) 1513  (3.6%) 3790 (6.5%) 1332 (12.8%) 39  (4.0%) 6688 
5-10% (33.3%) 3  (3.3%) 123  (5.1%) 1103 (8.0%) 3107  (12.1%) 595 (7.8%) 4931 

>10%  (0%) 1  (0%) 5 (11.4%) 44 (11.8%) 845 
(22.4%) 

3097 (20.0%) 3992 

All 
  (0.5%) 

59399  
  (1.7%) 

34192   (3.7%) 7371    (8.2%) 5415  
 (20.7%) 

3733  
  (2.12%) 

110110  
 
The table shows predicted risk of renal failure by the base model (logistic regression using 
pre+intraoperative variables without variable selection) and the best model (XGBoost using 
pre+intraoperative variables without variable selection). Actual observed renal failure rate is 
indicated by the % and numbers in parenthesis indicate number of all patients in each predicted 
risk strata. Gray cells are those classified in the same stratum by both models. Base model 
underestimated 5,044 patients (4.6%) and overestimated 8,325 patients (7.6%). Best model 
underestimated 2,102 patients (1.9%) and overestimated 1,656 patients (1.5%). 
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Supplementary Table S3: Intraoperative variables 
 

Intraoperative variables N, median %, IQR 
Total 378572   

   
Appropriate antibiotics selected   
   Yes 373358 98.6% 
   No 1498 0.4% 
   Exclusion (reason for different selection known) 3716 1.0% 

   
Appropriate timing of antibiotics administration   
   Yes 374124 98.8% 
   No 2431 0.6% 
   Exclusion (contraindication) 2017 0.5% 

   
Additional prophylactic antibiotics dose given 179023 47.3% 
Lowest temperature 34 33-35.1 
Lowest hemoglobin 8.9 7.8-9.5 
Operative approach converted during surgery 5770 1.5% 
   Missing 103 0.0% 

   
CPB Use   
   None 50889 13.4% 
   Combination 4212 1.1% 
   Full 327683 86.6% 
   Missing 407 0.1% 

   
Reasons for combined CPB utilization (off-pump to on-pump)   
   Exposure 281 0.1% 
   Bleeding 39 0.0% 
   Inaddquate size/diffuse disease 95 0.0% 
   Hemoduynamic instability 1123 0.3% 
   Conduit quality/trauma 50 0.0% 
   Other 126 0.0% 
   Missing/No combination CPB 376858 99.5% 

   
Cardioplegia delivery   
   None 64809 17.1% 
   Antegrade 167376 44.2% 
   Retrograde 3229 0.9% 
   Both 140615 37.1% 
   Missing 2543 0.7% 
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Cardioplegia type   
   Blood 247317 65.3% 
   Crystalloid 17391 4.6% 
   Both 46227 12.2% 
   Other/missing 2828 0.7% 
   None 64809 17.1% 

   
Intraop use of IABP 6980 1.8% 

   
IMA use   
   Left 340535 90.0% 
   Right 2775 0.7% 
   Both 18383 4.9% 
   No IMA 16875 4.5% 
   Missing 4 0.0% 

   
Epsilon Amino-Caproic Acid use (Yes) 274896 72.6% 
   Missing 142 0.0% 
Tranexamic acid use 37232 9.8% 
   Missing 140 0.0% 
Intraop clotting factor use 4987 4987 
Intraop TEE 208365 55.0% 
Number of distal anastomosis 3    3-4 

   
Operative approach   
   Full sternotomy 372767 98.5% 
   Partial sternotomy 1311 0.3% 
   Right or left parasternal incision 97 0.0% 
   Left thoracotomy 862 0.2% 
   Right thoracotomy 30 0.0% 
   Transverse sternotomy 25 0.0% 
   Sub-xiphoid 26 0.0% 
   Sub-costal 12 0.0% 
   Bilateral thoracotomy 28 0.0% 
   Mini-thoracotomy 2819 0.7% 
   Port-access 308 0.1% 
   Missing 287 0.1% 

   
Postop aortic insufficiency   
   None 109561 28.9% 
   Trace/trivial 25386 6.7% 
   Mild 12209 3.2% 
   Moderate 2304 0.6% 



 

 

118 

118 

   Severe 115 0.0% 
   Not reported 58790 15.5% 
   No TEE obtained/missing 170207 45.0% 

   
Postop ejection fraction   
   Unchanged 97823 25.8% 
   Increased 63570 16.8% 
   Decreased 7089 1.9% 
   Not reported 39883 10.5% 
   No TEE obtained/missing 170207 45.0% 

   
Postop mitral insufficiency   
   None 47130 12.4% 
   Trace/trivial 59137 15.6% 
   Mild 43034 11.4% 
   Moderate 43034 11.4% 
   Severe 523 0.1% 
   Not reported 50012 13.2% 
   No TEE obtained/missing 135702 35.8% 

   
Postop tricuspid insufficiency   
   None 65832 17.4% 
   Trace/trivial 53122 14.0% 
   Mild 23334 6.2% 
   Moderate 3704 1.0% 
   Severe 422 0.1% 
   Not reported 61953 16.4% 
   No TEE obtained/missing 170205 45.0% 

   
Blood product use   
   Yes 103794 27.4% 
   No 272703 72.0% 
   Refused 2075 0.5% 
   Missing 0 0.0% 

   
Transfusion units   
   Cryoprecipitate 0 0-0 
   Fresh frozen plasma 0 0-0 
   Platelet 0 0-0 
   Red blood cell 0 0-0 

   
Robot use 3364 0.9% 
Skin incision duration 225 182-275 
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CPB= cardiopulmonary bypass; IMA= internal mammary artery; IABP=intraaortic balloon pump; 
TEE= transesophageal echocardiogram. 
  



 

 

120 

120 

Supplementary Table S5: Combinations of variables, modeling technique, and variable 
selection 

Variable sets Relationship model Variable selection Label 

Preoperative 
Logistic regression None *1 

SVC 2 

XGBoost None 3 
SVC 4 

Intraoperative 
Logistic regression None 5 

SVC 6 

XGBoost None 7 
SVC 8 

Pre + 
Intraoperative 

Logistic regression None 9 
SVC 10 

XGBoost None 11 
SVC 12 

SVC = support vector classifier 
*Model 1 is considered the baseline model for comparisons. 
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Supplementary Figure S1: Continuous calibration plot 

 
Figures shows continuous calibration plot for the indicated outcomes. Red solid line is XGBoost 
and blue solid line is logistic regression model calibrations. Dotted colored lines are 95% 
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confidence interval for corresponding models. Dotted black line represents perfect 
calibration. Right legend shows percent of the cohort that had predicted event probability 
above the indicate threshold in percentage. 
 
 
 
Supplementary Figure S2: Continuous calibration plot for mortality and renal failure 
 

 
 
Figures shows continuous calibration plot for the indicated outcomes. Red solid line is XGBoost 
and blue solid line is logistic regression model calibrations. Dotted colored lines are 95% 
confidence interval for corresponding models. Dotted black line represents perfect calibration. 
Right legend shows percent of the cohort that had predicted event probability above the 
indicate threshold in percentage. 
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Supplementary Text: Case examples of predicted risks of death that were divergent 
between XGboost and logistic regression models 
 
In examining several patients who had discrepant predicted probability of mortality between 
XGBoost and logistic regression models, we noted that discrepancies may occur in patients with 
extreme observed value in variables that are key predictor of the event. For example, a 42-year-
old man with minimal comorbidity who underwent emergent 3-vessel CABG received 23 units 
of red blood cell and 16 units of plasma. This patient had 44% and 6% chance of death 
predicted by XGBoost and logistic regression, respectively. Similarly, a 70-year-old man who 
underwent salvage 5-vessel CABG with intraoperative IABP placement. XGBoost and logistic 
regression models predicted the risk of mortality of this patient to be 30% and 10%, 
respectively. In a case where logistic regression had a significantly higher predicted mortality 
probability, a 52-year-old woman with minimal comorbidity undergoing elective 5-vessel CABG 
required IABP during the operation and had the lowest body temperature of 27°C. This patient 
had predicted mortality of 6% by XGBoost and 20% by logistic regression. 
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CHAPTER 5 
 

Concluding Remarks 
 
 Understanding the patterns of postoperative recovery after cardiac surgery is important 

from several perspectives: to facilitate patient-centered treatment decision making, to inform 

health care policy targeted to improve postoperative recovery, and to guide patient care after 

cardiac surgery. Although existing literature has described postoperative recovery after cardiac 

surgery, we demonstrated through our systematic review that the current approaches to 

measuring and reporting recovery as a treatment outcome varies widely across studies. This 

made synthesis of collective knowledge challenging. Notably, there were no standards 

regarding the number of measurements taken over variable follow-up duration even for studies 

using the same patient-reported outcome measure instruments such as SF-36. Therefore, our 

systematic review highlighted key gaps in knowledge, which we sought to address in our 

prospective cohort study, 

 We conducted a prospective single-center cohort study of patients after cardiac surgery 

to measure their recovery trajectory across multiple domains of recovery. This study leveraged 

digital platform to facilitate frequent data collection over 30 days after surgery to visualize a 

granular evolution of patient recovery after cardiac surgery. We used a latent class analysis to 

facilitate identification of dominant trajectory patterns that had been obscured in a 

conventional way of reporting such time-series data using group-level means. For the pain 

domain, we identified 4 trajectory classes, one of which was a group of patients with 

persistently high pain trajectory that only became distinguishable from less concerning group 

after 10 days. This information is potentially useful in tailoring individualized follow-up timing 

after surgery to improve the pain control.  
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 The prospective study embodied several important features to successfully 

conducting such studies of patient-reported outcome. This included the use of digital platform 

to facilitate efficient data collection even after hospital discharge, iteratively improving the 

protocol to optimize patient engagement including evaluation of potential barriers to survey 

completion, and using latent class analysis to identify dominant patterns of recovery 

trajectories. We outlined these insights in the protocol manuscript to inform subsequent 

studies aiming to leverage such a digital platform to measure longitudinal patient-centered 

outcome.  

 Finally, we evaluated the potential value of incorporating health care data generated in 

the different phases of patient care in improving the prediction of postoperative outcomes 

after cardiac surgery. The current convention is the Society of Thoracic Surgeons’ risk model, 

which only uses patient data available preoperatively. We demonstrated that the addition of 

intraoperative variables to the conventional preoperative variable set improves the 

performance of prediction models substantially. Using machine learning approach to such a 

high-dimensional dataset proved to be only marginally important, however. This work 

demonstrated the potential value and importance of being able to leverage health care data to 

continuously update the prediction to inform patient outcomes and guide clinical care. 

 Our work collectively advanced knowledge in several key aspects of postoperative 

recovery. First, we highlighted the knowledge gap in the existing literature through 

characterizing the variability in the ways such studies had been conducted. Second, we 

designed and described a framework to measure postoperative recovery and an analytical 

approach to informatively characterize longitudinal patient recovery. Third, we employed these 

designs in a prospective cohort study to measure and analyze recovery trajectories and 

described clinical insights obtained from the study. Finally, we demonstrated the potential 
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value of a dynamic risk model to improve on its predictive performance by incorporating 

new data generated as the patient progresses through the phase of care. Such a platform has 

the potential to individualized approach to improve postoperative recovery.  
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