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Abstract

The Wordline Effective Field Theory of Spinning Gravitational Sources

Jingping Li

2021

The advent of gravitational wave physics has raised great interest in efficient calculations

of gravitational dynamics. In particular, the worldline effective field theory (EFT) has

proven to be powerful for describing the dynamics of compact binary inspirals. In this

thesis, we report on progress in this method on including rotating gravitational sources.

It has been shown that a connection exists between the radiative amplitudes from spinless

classical sources in Yang-Mills theory and dilaton-gravity theory, inspired by the double

copy construction in the scattering amplitude community. We generalize this result to

spinning sources and find that an additional axion channel is necessary for the connection

to be established. The spectrum coincides with that of the low energy limit of string gravity,

and we deduce that the worldline EFTs correspond to the low energy limit of classical string

theories. Furthermore, we show that tidal effects also admit a double copy structure. On

the other hand, there has been new progress on incorporating dissipative effects into the

worldline EFT. We generalize this construction to describe rotating objects and apply it

to describe the absorptive effects of Kerr black holes by matching with graviton absorption

probabilities calculated by Teukolsky equations. Using the resulting EFT, we reproduce

the correct mass and spin absorption rates under general backgrounds. We demonstrate

the utility of this EFT by computing new results for the dissipative equation of motion and

power transfer in non-relativistic black hole binaries, starting at 5 and 2.5 post-Newtonian

orders respectively.
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Introduction

The first direct detection of gravitational waves by Advanced LIGO [1] on the centennial

of general relativity marks the beginning of a new era of multi-messenger astronomy and

possibly explorations into fundamental questions of gravity. At the moment, the detectable

signals primarily come from compact binaries of black holes and neutron stars. While these

are extremely energetic events, their astronomical distance from us significantly weakens

the signals. Therefore, accurate waveform templates are required in the searches. Unfor-

tunately, as the problem is two-body in nature and highly dynamical, the full Einstein

equation is extremely difficult if not impossible to solve due to the lack of symmetries.

While recent developments in numerical relativity have enabled the full-detailed treat-

ment of the later stages (known as the merger and ringdown phases, Fig. 1) of the binary

evolution where the gravitational field is strong [2–4], these numerical methods are not de-

signed for the long inspiral phase (Fig. 1) and running them for the long timescales in this

phase can be expensive [5]. Fortunately, the full solutions to the Einstein field equation are

not always relevant. In this regime, as the bodies are still moving non-relativistically, sim-

plification can be made by neglecting contributions at high orders of the ratio between the

characteristic velocity and the speed of light v/c� 1. This is known as the post-Newtonian

(PN) approximation and the expansion at (v/c)2n power is usually called nPN order (for a

comprehensive review on various approaches to PN waveform templates, see Blanchet [6]).

This idea traces back to the pioneers in the early days of general relativity [7], but the

progress has been relatively slow. Therefore, an efficient framework would be very helpful.

A major breakthrough was made by the seminal work of Goldberger and Rothstein

[8, 9] where they realized that the problem in this regime can be solved systematically
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Figure 1: The stages of binary merger (source: aps.org)

by using effective field theory (EFT) methodologies. EFT is a powerful framework for

precision calculations of long-distance observables in problems with separation of scales,

where the short-distance dynamics is decoupled [10, 11]. The framework emerged in the

context of chiral perturbation theory in particle physics [12], where the short-distance gluon

and quark degrees of freedom of quantum chromodynamics (QCD) are decoupled and one

can focus on the simpler long-distance hadronic degrees of freedom. Throughout the years,

this framework has seen many successful applications in particle phenomenology and many

comprehensive reviews [13,14] and seminars [15] exist for this broad topic.

Their crucial realization for the binary inspiral is that the PN expansion parameter

v/c � 1 provides the separation of scales in this problem. Specifically, the characteristic

sizes of the compact bodies a (bounded by their Schwarzschild radii a ≥ 2GM/c2), the

orbital radius r, and the wavelength of gravitational waves λ are related by

v2

c2
∼ GM

r
≤ a

2r
,

v

c
∼ r

λ
,

where the first comes from the virial theorem and the second from the multipole expanding

a non-relativistic system. They used the first hierarchy a� r to replace the full theory at
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scale a by a point-particle model at scale r and constructed an EFT on the particle worldline.

Using the second r � λ, they separated the gravitational field into short-distance potential

modes and long-distance radiation modes and obtained the effective Lagrangian for long-

distance dynamics by integrating out the former using Feynman diagrams. Their results

were in agreement with direct PN calculations in full general relativity. Although these

calculations were strictly dealing with point particles, they demonstrated that the worldline

EFT framework also allows the inclusion of finite-size corrections corresponding to tidal

deformations of the underlying extended objects. This method reduced the complicated

general relativity of many-body systems into systematic calculations in perturbative field

theory and quickly led to extensive generalizations and higher PN order calculations (for

comprehensive reviews, see Porto [16] and Levi [17]). In particular, ref. [18] established the

worldline EFT with spinning degrees of freedom. This is important as angular momentum

plays crucial roles in many theoretically and phenomenologically interesting systems, such

as black holes [19].

In this thesis, we describe recent work on the spinning worldline EFT along two parallel

directions. The one, outlined in Section 0.1, revolves around developing the so-called double

copy theory, originally discovered in the study of scattering amplitude, for the worldline

EFT calculations. The results presented here are based on Refs. [20–22]. In Section 0.2,

we summarize the second direction, which involves incorporating dissipative effects in the

worldline EFTs. The extension of this framework to spinning black holes that is discussed

in this thesis is based on Ref. [23].

0.1 Developments in the spinning classical double copy

While the EFT computations have been proven to be efficient, higher-order calculations

are still expected to get troublesome due to the proliferation of graviton Feynman rules,

so a goal is to simplify them. To this end, it was noticed that the modern scattering

amplitude community has been developing a large toolbox for this purpose over the last

20 years (for an introductory review, see Elvang and Huang [24]). In particular, Bern,

Carrasco, and Johansson (BCJ) conjectured the so-called BCJ relations, which imply the
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color-kinematic duality of Yang-Mills scattering amplitudes [25]. It has also been shown

that the duality enables perturbative gravity amplitudes to be constructed by replacing

the color factors in Yang-Mills amplitudes with any kinematic numerators that satisfy the

duality [26]. Therefore, perturbative gravity calculations are simplified in this way due to

the much nicer Feynman rules in Yang-Mills theory (for a broad review, see [28]).

Naturally, one might ask whether these conclusions in scattering amplitudes have analogs

in classical observables that can simplify computations therein. It was first discovered that,

by similar replacements, stationary solutions to the Einstein field equation in Kerr-Schild

form can be generated from stationary solutions to Yang-Mills equation [27]. Since then,

various advances were made on expanding the boundaries of the Kerr-Schild double copy (see

the later part of the review [28]). More recently, there has also been important progress on

integrating various techniques from scattering amplitudes to obtain the conservative part

of the potential of a two-body system [29] based on the ideas from [30]. Following this

method, Bern et al. [31, 32] obtained results higher-order in the gravitational coupling for

the first time. This was also generalized in various other ways, such as to systems with tidal

effects [33,34].

The discussions above could not consider radiation, since radiating systems are nei-

ther stationary nor conservative. For this purpose, Goldberger and Ridgway [35] studied

radiative solutions in Yang-Mills theory resulting from the scattering of classical charges

described by worldline EFTs. They found that a set of color-kinematic mappings pertur-

batively relate them to the radiative solutions from classical scattering in a dilaton-gravity

theory. The dilaton is a scalar field that is necessary to balance the degrees of freedom on

both sides of the double copy mapping.

We generalize the classical double copy to spinning classical sources using the construc-

tion introduced in [18] and find that the same set of rules apply only when an additional

Kalb-Ramond radiation channel is included [20] with the Lagrangians fixed in specific

forms [21]. The Kalb-Ramond field is a 2-form gauge field with anti-symmetric indices,

which we call an axion for short. The axion is also needed to balance the degrees of freedom

but was decoupled previously as index anti-symmetry was disallowed in the absence of spin.

The axion-dilaton-graviton theory with fixed couplings matches the low energy spectrum
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of string theory. Furthermore, the worldline coupling of spin and Yang-Mills field strength

allows the interpretation of the worldline theory as an EFT of a rotating classical string with

charges attached at the endpoints. Thus, it is natural to ask if the worldline theory fixed

on the gravitational side has a similar interpretation. However, it is well known that closed

strings have two spinning sectors and they couple to the axion (graviton) with opposite

(same) sign. In contrast, there is no such distinction in the worldline EFT.

Fortunately, by examining the underlying structure of the bi-adjoint scalar radiation,

it was discovered that the classical radiation amplitude also exhibits color-kinematic du-

ality [36]. Therefore, we are allowed to use the kinematic factors with different spinning

sectors as long as color-kinematic duality is obeyed [22]. In this method, the worldline the-

ory we fixed in the old method is interpreted as setting one of the spinning sectors to zero.

Furthermore, when we set the two sectors equal to each other, the axion once again decou-

ples as the opposite signs cancel each other out. In the stringy interpretation, we notice that

this theory is equivalent to an unoriented string theory where the axion channel is known

to decouple. This provides a potential way to eliminate the unwanted axion for the pur-

pose of phenomenological applications. In addition, we find that using different kinematic

numerators in the mappings also allows us to establish the double copy when tidal effects

are included, although the resulting gravitational theory requires the corrections from the

three channels to be fixed to specific ratios.

0.2 Dissipative worldline theory of compact spinning objects

The worldline EFTs above consisting of long-distance degrees of freedom only describe

elastic processes. Intuitively, there is no degree of freedom left to transfer the mechanical

energy and angular momentum to. However, dissipative effects are an important part

of the full theory. They include processes such as the emission and absorption by black

hole horizons and neutron stars. In particular, for the most phenomenologically relevant

case of black holes, these effects are associated with distortions of their horizons and can

lead to significant effect on the dynamics. Specifically, absorption effects have been found

to appear at 4PN order (relative to the well-known quadrupole radiation [39]) for non-
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spinning black holes [37, 38] and 2.5PN for near extremally spinning ones [38]. The results

are obtained by solving the Teukolsky-Press [40] or Regge-Wheeler-Zerilli [41] equation in

black hole perturbation theory. These methods are devised for single black hole systems

and generalizations to interacting many-body cases are not straightforward. Therefore, an

EFT framework is desirable for fulfilling this role.

To achieve this goal, worldline operators depending on internal dynamics were intro-

duced [42] (in the spinning case, by [43, 44] and with tidal corrections, by [45]). Including

short-distance degrees of freedom in the EFT would seem to defeat the purpose. It was

shown that only some easily extractable long-distance properties of the internal dynamics

are necessary to calculate other long-distance properties. Recently, ref. [46] further extended

this method, using the Schwinger-Keldysh or “in-in” formalism [47], to describe Hawking

radiation [48]. The same method was used to compute the scattering from virtual Hawking

radiation [49] and calculate the reaction force from the horizon absorption [50].

These latest efforts have been focusing on non-spinning setups. We extend the spinning

construction to the reaction force computations [23]. By introducing a convenient basis for

the spin-dependent (in-in) correlation function, we are able to extract the correlator and

hence the retarded Green’s function for the worldline graviton quadrupole operator in a

low-frequency expansion but to all orders in the spin parameter. Using this information, we

derive the spin and mass dissipation equation under background fields at the lowest order in

curvature and found agreements with results derived using black hole perturbation theory.

The conclusions are also consistent with the recent proofs of the vanishing static tidal

response of Kerr black holes [52–54]. Finally, as an application, we derive the rate of power

and spin absorption rate in a PN system by considering the case where the background

is generated dynamically by an orbiting partner. We find that for binaries near extremal

black holes, the leading PN expansion for the power transfer is of 2.5PN order, which is

enhanced from the non-spinning 4PN results from non-spinning worldline EFT [50], both

agreeing with the black hole perturbation theory calculations.
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Outline of the thesis

The rest of the thesis is organized in the following manner. In Chapter 0.2, we briefly review

the basics of perturbative general relativity as well as the application of worldline EFT

methods which lays the groundwork for the remaining chapters. For the latter purpose, we

start with the point-particle action coupled to gravity and then we survey the generalization

to spinning degrees of freedom which is essential to the description of rotating bodies, finite-

size corrections relevant to tidal effects of extended objects, and dissipation in the worldline

theory which characterizes the internal dynamics of the gravitating sources.

The remaining chapters are devoted to reporting on the recent progress. Chapter 0.4.4

describes the classical double copy in systems with spinning sources. We motivate the dis-

cussion by a brief introduction to the color-kinematic duality and the double copy construc-

tion of scattering amplitudes as well as the latter’s counterpart in the context of classical

radiation from non-rotating sources. We then give a more detailed description of the calcu-

lations and results in the spinning case. In Chapter 0.7.4, we discuss the interpretation of

the worldline EFT with spin in terms of classical strings and generalize the framework to

deformable extended objects. In Chapter 0.10, we shift our focus to progress on construct-

ing worldline EFTs for the dissipative effects of Kerr black holes and demonstrate their

applications in various scenarios. Finally, Chapter 0.13 concludes the thesis and discusses

the outlook of these projects.

The appendices supplement the main text with some lengthier results that are not crucial

but might be useful as references to check the validity of the main calculations.

Notations and conventions

In this thesis, we use the mostly minus metric convention. The Minkowski metric is denoted

by η, while the curved coordinate counterpart is denoted by g. We choose the Levi-Civita

tensor convention as ε0123 = 1. The covariant derivative of general coordinate transforma-

tions is denoted by ∇µ. Overhead dots represent total (covariant) derivative, e.g. ẋ ≡ dx(λ)
dλ

(or Dx(λ)
Dλ for the covariant one). Indices in the middle of the Greek alphabet (µ, ν, . . . )

label components in spacetime coordinate basis and Latin ones (a, b, . . . ) label the local

xvi



frame Lorentz indices. Round brackets (. . . ) over the indices denote symmetrizations while

square ones [. . . ] are anti-symmetrizations, and we assume the Einstein summation conven-

tion whenever indices are repeated. On a separate note, in Chapter 0.4.4 where we also

encounter gauge theory, it should be clear from the context that the Latin labels (a, b, . . . ) on

gauge theory variables denote the adjoint indices of the gauge group. Other than in Chapter

0.4.4, we assume that the spacetime dimension is 4, and the Planck mass is m2
Pl = 1/32πGN

Finally, we use natural units where ~ = c = 1.
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The Worldline Effective Field

Theory of Gravity

In this chapter, we briefly describe the general framework of the worldline EFT applied to

calculations in perturbative gravity. In Section 0.3, we start with an introduction to the

key ideas in general relativity, including gravitational waves and perturbative gravity as

a massless spin-2 field theory. Section 0.4 reviews the construction of worldline EFT to

describe generic gravitational sources including spin, finite-size corrections, and dissipative

effects.

0.3 Gravitational waves and perturbative gravity

0.3.1 General relativity and gravitational waves

The central equation in general relativity is the Einstein field equation

Rµν −
1

2
Rgµν = 8πGNTµν , (1)

where Tµν is the energy-momentum tensor of the gravitating matter, R = Rµνg
µν and

Rµν = Rµρνσg
ρσ are the Ricci curvature scalar and tensor respectively, defined through the

Riemann curvature tensor

Rµρνσ = ∂νΓµρσ − ∂σΓµρν + ΓµνλΓλρσ − ΓµσλΓλρν , (2)

xviii



where Γµρσ is the metric compactible Levi-Civita connection which is expressed in terms of

the metric as

Γµρσ =
1

2
gµλ(∂ρgλσ + ∂σgλρ − ∂λgρσ). (3)

Therefore, this is a second-order non-linear partial differential equation of the gµν(x) which

is sourced by Tµν(x). In principle, if we are given the matter distribution described by Tµν ,

we could solve for a curved spacetime gµν . For later convenience, another useful curvature

is the Weyl tensor which is the traceless version of the Riemann tensor

Cµνρσ = Rµνρσ −
1

2
(gµ[ρRσ]ν − gν[ρRσ]µ) +

1

3
Rgµ[ρgσ]ν . (4)

In the region where the field is weak, the metric can be decomposed as

gµν(x) = ηµν + hµν(x), (5)

so that |hµν | � 1. The inverse gµν is an infinite series in hµν = hρση
µρηνσ, leading to an

infinite expansion of the field equation (1)

1

2
∂2h̄µν −

1

2
∂ρ∂(µh̄ν)ρ +

1

2
ηµν∂

ρ∂σh̄ρσ = 8πGNTµν +O(h̄3), (6)

where h̄µν = hµν − 1
2h

λ
ληµν and O(h̄3) denotes all the higher-order terms. The central

symmetry principle of general relativity is general covariance or diffeomorphism which is

the invariance of physics under the change of coordinate systems x → x′(x). To see that

this is a gauge symmetry, since the metric transforms as

gµν(x)→ ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x), (7)

under infinitesimal transformation x→ x+ ξ(x), the perturbed field transforms as

hµν → hµν + ∂µξν + ∂νξµ. (8)

This is essentially the gauge transformation for this field which we can use to impose gauge
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conditions. The relevant gauge condition in this thesis is the deDonder gauge ∂µh̄µν = 0,

under which Eq. (6) becomes

1

2
∂2h̄µν = 8πGNTµν +O(h̄3). (9)

On earth, in a galaxy far, far away from the source, where gravity is weak and the matter

is not dense, we have a wave equation

∂2h̄µν ≈ 0. (10)

These are the gravitational waves that we are observing.

By solving the leading-order equation for h field, it is possible to show that the time-

averaged leading-order radiative power is given by the celebrated quadrupole formula [39]

〈P 〉 =
GN
5
〈
...
Qij

...
Qij〉, (11)

where the mass quadrupole is Qij(t) =
∫
d3~xT00(t, ~x)xixj or Qij(t). The textbook derivation

can be found in any standard reference, e.g. [56].

0.3.2 Perturbative gravity as a massless spin-2 field theory

In field theory applications, it is more convenient to use Lagrangian formalism. For general

relativity, we have the Einstein-Hilbert action

SEH = − 1

16πGN

∫
d4x
√
gR. (12)

The expanded Lagrangian is essentially a self-interacting classical field theory. The terms

quadratic in h are the kinetic terms leading to the propagator which in momentum space

is given by

Dµν,ρσ(k) =
16πiGN
k2

(ηµρηνσ + ηµσηνρ − ηµνηρσ), (13)
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and the higher-order-in-h terms give an infinite tower of vertices whose vertex rules can be

derived by taking an arbitrary number of variational derivatives

δnSEH
δh(x1) . . . δh(xn)

. (14)

Given the matter action SM , the energy-momentum tensor is calculated using

Tµν(x) = − 2
√
g

δSM
δhµν(x)

. (15)

The gauge invariance under Eq. (8) signals redundancies arising from the masslessness of

the field. Furthermore, it can be shown that the deDonder gauge does not exhaust the gauge

freedom and the remaining gauge redundancies can set the trace to zero. Therefore, we

have a symmetric-traceless tensor field which in the Language of irreducible representations

of Lorentz group, is a spin-2 representation. This massless spin-2 field described by the

Einstein-Hilbert action is the graviton. In fact, the classic results [55, 57] tell us that the

classical Lagrangian for any massless spin-2 field theory is uniquely given by the Einstein-

Hilbert action.

0.4 The worldline effective field theory

In this thesis, we focus on the first hierarchy a� r, i.e. the worldline EFT description of an

isolated body at a longer-distance scale r (e.g. the background curvature radius, the radia-

tion wavelength, the orbital scale, or the impact parameter) compared to its characteristic

size a. The central idea is that in the full theory of general relativity, the energy-momentum

tensor describing a compact object is a localized distribution over spacetime and highly

curved gravitational background in the vicinity whose dynamical perturbations are difficult

to solve. However, these details are happening at a short-distance (or high-energy) scale,

relative to the (long-distance or low-energy) scale at which the object interacts with the

environment. By the old wisdom, they are well approximated by point particles.

The modern incarnation of this ancient idea is the method of EFT. By the cornerstones

of EFT, high-energy physics decouples from the low-energy dynamics and observables. Its
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effects are systematically encoded by the non-dynamical Wilson coefficients ci of an infinite

tower of operators Oi(x, g(x)) consisting of the low-energy dynamical variables x = x(λ)

and the field g(x) in the effective action

Seff ⊃
∑
i

ci

∫
dλOi(x, g(x)), (16)

where λ parametrizes the worldline of the particle. The choices of these operators are

only restricted by the symmetries of the low energy description and redundancies due to

operators which vanish under the free theory equation of motion1.

By dimensional analysis, these operators usually have positive mass dimensions. To

compensate, the Wilson coefficients have positive powers of the characteristic size a, which

has a negative mass dimension in natural units. Consequently, the contributions are or-

ganized by powers of a/r where r is the characteristic long-distance scale in this problem.

Therefore, we can calculate results to arbitrary accuracy by truncating the infinite tower at

appropriate finite orders. The advantage of this method is that we can obtain the EFTs of

the isolated bodies relative easily sweeping the short-distance physics under the rug com-

pletely, and systematically apply only the EFTs to many-body interactions without having

to worry about the difficult dynamics of the strong field regions.

Finally, we obtain the Wilson coefficients by matching observables, such as correlation

functions, calculated using these operators in the effective interaction with the ones obtained

from the full theory, under the same background field in both cases [8]. The process is greatly

simplified by choosing a convenient setup, for instance, where the worldline is staying at

rest at the coordinate origin and arbitrary background field configuration. The reason is

that these coefficients are independent of the setups being considered.

1. In an interacting theory, the free equation of motion equals higher-order interactions. We can use field
redefinitions and the full equations of motion to trade the operators with higher-order ones which are readily
included in the infinite tower. The result is only a shift in the higher-order Wilson coefficients which are
unknown at this stage anyway. Therefore, we can assume that this was done beforehand and directly set to
zero the vanishing operators under the free equation [65,66].
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0.4.1 Point particles in the first-order formalism

To construct the operators, we need to identify the low-energy degrees of freedom first.

A systematic way of doing this is to consider them as spontaneously breaking the full

symmetry and identify the degrees of freedom with the corresponding Goldstones using the

coset construction [59]. However, we take a more pedestrian route here by starting from

well-known results. The relevant symmetries are Lorentz and parity invariance, worldline

reparametrization invariance, plus possible internal symmetries. The simplest worldline

Lagrangian is the traditional integral over the proper time

Spp = −m
∫
dτ = −m

∫
dλ
√
ηµν ẋµẋν , (17)

for some differentiable parameter λ along the particle worldline. The square root makes it

harder to handle and we note that by introducing an auxiliary field e(λ) called the einbein,

we have an equivalent quadratic formulation

Spp = −
∫
dλ[e−1ηµν ẋ

µẋν + em2], (18)

which generates Eq. (17) by back substituting the solution to its own equation of motion

δSpp
δe = 0. The einbein varies covariantly with reparametrization, thereby serving to guaran-

tee worldline reparametrization. In constructing the Lagrangian, worldline reparametriza-

tion is always guaranteed as long as we balance the powers of dλ and e.

The action Eq. (18) is in the second-order formalism. Expecting to introduce spin

angular momentum in the following, which is a first-order dynamical variable, we compute

the canonical momentum and Legendre transform into the first-order Lagrangian

Spp = −
∫
dλ{ẋ · p− 1

2
e(p2 −m2)}. (19)

We notice that now the einbein also serves as a Lagrange multiplier that imposes the

mass-shell constraint as the Hamiltonian in the Legendre transformation. In fact, this is

classified by Dirac [58, 60] as a first-class constraint whose Poisson bracket with all other

constraints vanish, and it has been argued that first-class constraints usually generate local
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transformations [61,62] which is worldline reparametrization in the present case.

0.4.2 Spinning degrees of freedom of the free Lagrangian

Spin is the canonical conjugate to rotation which is a subgroup of Lorentz transformation.

Therefore, to incorporate rotation, we introduce worldline frame fields eaµ(λ) which are

similar to their usual spacetime cousins in that they satisfy the property

ηabe
a
µ(λ)ebν(λ) = ηµν , (20)

and eµa(λ) are their inverses

eaµe
ν
a = δνµ, eaµe

µ
b = δab . (21)

Its first derivative is defined as

Ωab = ηµνeaµ
debν
dλ

. (22)

We note that by d
dλ(ηµνeaµe

b
ν) = 0, Ωab is antisymmetric and the associated canonical mo-

mentum is the spin Sab, which is also anti-symmetric. Thus, the first two terms in the

Lagrangian are ∫
dλ{−ẋµeaµpa +

1

2
SabΩab}. (23)

By counting the degrees of freedom, we see an overcount. A generic rank-2 anti-

symmetric tensor in 4 dimensions has 6 degrees of freedom while we are expecting 3 which

are conjugate to 3 spatial rotations parametrized by Euler angles. The resolution to this

problem is to impose constraints. While various choices are possible, we choose the covariant

constraints

Sabpa = 0, (24)

where we see that in the rest frame where the spatial components of the momentum vanish,

they are proportional to Sa0 = 0, eliminating the 3 redundant components with a being

spatial indices. Again, they are imposed as a Hamiltonian term

∫
dλeλaS

abpb, (25)
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where λa is the Lagrange multiplier. They have non-vanishing Poisson brackets among

themselves and are second-class. Thus, they are not associated with any local symmetry

but only serve to eliminate redundant generalized coordinates.

With the kinematics settled, we would like to write down the EFT for an isolated

rotating body. Following the principles of EFT and traditional Hamiltonian formalism,

we construct all terms using the canonical momenta, namely pa and Sab, and due to the

constraint, the only non-vanishing Lorentz invariant combinations are their quadratics. It

was shown by Hanson and Regge [64] that the constraint always reduces to a mass-shell

constraint p2 = M2(S2) and the general spinning free Lagrangian is therefore given by

Spp =

∫
dλ{−ẋµeaµpa +

1

2
SabΩab + eλaS

abpb +
1

2
e(p2 −M2(S2))}. (26)

M2(S2) is the so-called Regge function that encodes the deformation of the underlying

object under its own spin. The detailed form does not affect the low-energy dynamics, so

we leave it as it is. We note that while the mass shell constraint is not the unique choice,

by non-linear redefinitions of the variables, it is possible to cast the other possibilities into

this form, which results in a simple momentum equation of motion.

0.4.3 Interactions, finite-size corrections

To couple to gravity, in addition to Lorentz invariance, we also require general covariance.

This is achieved simply by replacing the Minkowski metric with generic ones ηµν → gµν(x)

(the local metric ηab remains unchanged since by the equivalence principle, it is always

locally Minkowskian), derivatives by covariant ones ∂µ → ∇µ. The worldline derivative also

gets covariantized as

d

dλ
eaµ →

D

Dλ
eaµ =

d

dλ
eaµ − ẋνΓσµνe

a
σ. (27)

The covariantized free Lagrangian naturally generates the mass monopole and spin dipole

couplings.

Now the most general operators that we should consider should be constructed out of

pa, S
ab, the covariant gradients ∇a, the Levi-Civita tensors εabcd (in d dimensions this has
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to be modified to having d indices) and the gravito-electric and magnetic fields defined from

the Weyl tensor

Eab =
1

p2
Ccadbpcpd, (28)

Bab =
1

2p2
εacdeC bf

cd pepf . (29)

The symmetry principle requires that all these indices are in the corotating frame [59]. The

Ricci curvatures are redundant as discussed previously due to the vacuum Einstein equation

Rµν = 0. (30)

At linear order in curvature and time derivatives, the parity invariant possibilities are

an infinite set of operators of the form

∞∑
n=1

∫
dλe{cEn Sa1 . . . Sa2n∇a3 . . .∇a2nEa1a2

+cB2nS
a1 . . . Sa2n+1∇a3 . . .∇a2n+1Ba1a2}, (31)

where Sa = εabcdSbcpd/
√
p2. (They are the higher-spin multipoles whose effects were in-

vestigated by Levi and Steinhoff [67].) They are the only possibilities as using the vacuum

equations of motion, any other contraction would either vanish or lead to higher-order time

derivatives.

At the quadratic order in curvature, the possible curvature terms are [8]

∫
dλe{cEEabEab + cBBabB

ab}, (32)

where by parity invariance, terms like
∫
dλeEabB

ab are not considered. They lead to devi-

ations from the point-particle geodesic in general relativity implying tidal forces in action.

Thus, the Wilson coefficients cE,B encode the leading order tidal deformations which are

finite-size corrections.
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0.4.4 Internal dynamics and dissipative effects

Using these Lagrangians, it can be verified by examining the resulting equations of motion

that S2 and hence M2(S2) do not change over time. This means that there cannot be any

dissipative effects such as absorption and emission which should affect the mass shell.

To cope with this shortcoming, it is assumed that there exist some internal dynamics

which are gapless modes described by the worldline variables X(λ) and Ẋ(λ) [42,46]. Their

most generic coupling to the external background, similar to Eq. (31), are composite

multipole operators classified by the symmetry group

∞∑
n=0

∫
dλe{Qaba1...anE,(n) (X, e−1Ẋ; p, S)∇a1 . . .∇anEab

+Qaba1...anB,(n) (X, e−1Ẋ; p, S)∇a1 . . .∇anBab}, (33)

where Qaba1...anE/B,(n) are symmetric-traceless representations that are parity even/odd [42–44]

and they depend on the momenta (p, S) through the choice of reference frame and the

spinning axis. The reason that this form takes care of all possibility is that no specific

form of these objects is being assumed, so all operators in the same representations can be

defined into the same operator.

The detailed dynamics of QE/B is determined by the full theory of X, and it is expected

to be dependent on the actual physics such as the strong nuclear coupling in neutron stars.

Fortunately, it turns out that the only information we need is the correlation functions.

Therefore, we leave its Lagrangian unknown

∫
dλe{LX(X, e−1Ẋ) + Lint(X, e

−1Ẋ, S2)}. (34)

The effect of this term is to make the mass shell constraint X-dependent as well

1

2

∫
dλe{p2 −M2(S2) + LX(X, e−1Ẋ) + Lint(X, e

−1Ẋ, S2)}

=
1

2

∫
dλe{p2 −M ′2(S2, X, e−1Ẋ)}, (35)

which indeed grants the possibility of dissipation.
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The Classical Double Copy and the

Spinning Generalization

In this chapter, we report on the classical double copy construction of radiation amplitudes

from spinning worldline EFTs. To motivate the discussion, Section 0.5 starts with a brief

review on the original double copy in the context of scattering amplitudes. In Section 0.6,

we describe the setups of classical double copy in the original work which would become

useful when we consider the spinning generalizations. Finally, in Section 0.7, we outline the

important steps in the spinning calculations. This chapter is based on [20,21].

0.5 The double copy in scattering amplitudes

We describe the central idea of the BCJ color-kinematic duality and the double copy con-

struction in their original context of scattering amplitudes. We normalize the Yang-Mills

action as

SYM = −1

4

∫
ddxF aµνF

µν
a , (36)

where F aµν = ∂µA
a
ν−∂νAaµ−gfabcAbµAcν is the Yang-Mills field strength with Aaµ the compo-

nents of the gauge connection Aµ = AaµT
a. T a and fabc are the generators and the structure

constants associated with the Lie algebra of the gauge group. g is the coupling constant.

The field is usually also called a gluon due to its association with QCD, and the theory is

gauge-invariant under the non-abelian gauge transformations

Aµ → GAµG
−1 +

i

g
(∂µG)G−1, (37)
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Figure 2: The s, t, u channel graphs of a 4-point scattering

which represents the fact that gluons are massless, at least in the weak coupling limit.

Expanding out the field strength, we have terms cubic and quartic in Aaµ which generate

3- and 4-point interaction Feynman vertex rules and the vertices depend on one and two

factors of the structure constants fabc.

For any tree-level scattering amplitude in Yang-Mills theory, the scattering amplitude

can be expressed in terms of [25]

A(tree) =
∑

g∈trivalent

c(g)n(g)

d(g)
, (38)

where c(g)’s are, due to QCD, called color numerators, consisting of group theoretic ob-

jects such as the structure constants fabc, n(g)’s are kinematic numerators depending on

polarizations εµ(ki) and momenta ki of the particles being scattered and 1/d(g)’s are the

propagator pole structures which guarantees the theory is described by a local Lagrangian.

The argument g labels all the trivalent diagrams corresponding to this scattering process.

The reason tetravalent graphs corresponding to the quartic vertices are not considered is

that they contain the same set of color numerators as the trivalent graphs and they can be

absorbed into trivalent ones by modifying the definitions of n(g).

The c(g)’s satisfy some algebraic relations since the structure constants obey anti-

symmetry under the exchange of color indices

c(g) = −c(ḡ), (39)

where ḡ represents graphs with any two color states exchanged and Jacobi identities

fabefecd + facefebd + fadefebc = 0. (40)
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For example, in 4-point processes, the trivalent graphs are the traditional s, t, u channel

graphs Fig. 2, and this translates to the relations

c(gs) + c(gt) + c(gu) = 0. (41)

the trivalent graphs are for the It has been shown that the so-called BCJ relations of these

amplitudes imply that the n(g)s satisfy an identical set of algebraic relations [25] which in

the 4-point example are

n(g) = −n(ḡ), (42)

n(gs) + n(gt) + n(gu) = 0. (43)

This property is known as the color-kinematic duality of gauge theory scattering amplitudes.

The surprising duality is well-established at tree level since the BCJ relations have been

proven in various ways.

To understand the consequence of this duality, we first note that gauge invariance

Eq. (37) is manifest in the Yang-Mills amplitude A(tree) as the invariance under the shift

εµ(ki)→ εµ(ki) + kµi in n(g)s. The establishment of this property crucially depends on the

algebraic relations of c(g)s. Color-kinematic duality tells us that by the replacement

c(g) 7→ ñ(g), (44)

where ñ(g)s are duality-satisfying kinematic numerators with polarizations ε̃, we obtain a

new local tree-level amplitude

M(tree) =
∑

g∈trivalent

n(g)ñ(g)

d(g)
. (45)

There is always a symmetric traceless part of the direct product εµν(ki) ⊂ εµ(ki)ε̃
ν(ki). The

color-kinematic duality then guarantees that εµν(ki) → aµkνi + kµi b
ν , for arbitrary vectors

aµ and bν , which is essentially the gauge invariance in Eq. (8) in momentum space. As

discussed in Section 0.3.2, this local spin-2 massless field theory could only be the graviton.
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0.6 The classical double copy

In this section, we quickly review the setups of classical double copy construction introduced

in [35]. We neglect some of the details since many will be covered in the next section on

spinning generalization.

0.6.1 The actions and equations of motion

The Yang-Mills theory

When the Yang-Mills is coupled to some charges described by the action Swl, the sourced

Yang-Mills equation is given by

DνF
νµ
a (x) = gJµa (x), (46)

where Dµ = ∂µ+igAaµT
a is the gauge covariant derivative and the current on the right-hand

side is given by

Jµa (x) =
δSwl
δAaµ(x)

. (47)

The simplest Lagrangian is constructed by introducing a worldline color charge caα(λ), as

given by

Swl ⊃ −
∑
α

∫
dλẋµαc

a
αA

a
µ(xα), (48)

where from here on, the subindices (α, β, . . . ) label different particles. Strictly speaking,

there should also be kinetic terms for the charge ca(λ) that controls its dynamics2. How-

ever, it is possible to obtain the same information model-independently from the covariant

conservation of charge ẋµαDµc
a
α = 0 which leads to

ċaα = gfabcẋµαA
b
µ(xα)ccα. (49)

2. For instance,we can have a gauge-invariant action
∫
λiẋµψ†Dµψ, and the color charge is identified as

ca = ψ†T aψ [68].
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Therefore, the kinetic term is left implicit. From this action, the current is given by

Jµa (x) =
∑
α

∫
dλcaαẋ

µ
αδ

d(x− xα). (50)

The other two equations of motion are

ṗµα = gcaαF
µ
aν(xα)ẋνα, (51)

ẋµα = epµα. (52)

Lastly, in Lorenz gauge ∂µAaµ = 0, Eq. (46) reduces to

∂2Aµa = gJ̃µa , (53)

where the non-linear terms in Aaµ are also absorbed into the definition of J̃ and the effective

gluon propagator is given in momentum space by

Dµν(k) = − iηµν
k2

. (54)

The dilaton-gravity theory

In general dimensions, we introduce a scalar field called dilaton in addition to the Einstein-

Hilbert action

S = −2md−2
Pl

∫
ddx
√
g{R− (d− 2)gµν∂µφ∂νφ}, (55)

where the Planck mass is defined as mPl = (32πG)−
1
d−2 . The graviton propagator now

become

Dµν,ρσ(k) =
i

2md−2k2
(ηµρηνσ + ηµσηνρ −

2

d− 2
ηµνηρσ), (56)

and the scalar propagator is

D(k) =
i

4md−2
Pl (d− 2)k2

. (57)
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Of course, the coupling in Eq. (55) is arbitrary. This specific value is the one that establishes

the double copy. In fact, the motivation of working in general dimensions and adding the

dilaton is to subtract away the d dependence introduced by graviton propagators. The

corresponding field equations are

∇µ∇µφ = − 1

4md−2
Pl (d− 2)

J, (58)

Rµν −
1

2
Rgµν =

1

4md−2
Pl

(Tµν + Tφµν). (59)

where the dilaton energy-momentum tensor isgiven by

Tµνφ = 4(d− 2)md−2
Pl {∂µφ∂νφ+

1

2
gµν(∂φ)2}. (60)

These equations can be recasted as

∂2φ = − 1

4md−2
Pl (d− 2)

J̃ , (61)

1

2
∂2h̄µν −

1

2
∂ρ∂(µh̄ν)ρ +

1

2
ηµν∂

ρ∂σh̄ρσ =
1

4md−2
Pl

T̃µν (62)

where all the terms containing higher orders in the fields are absorbed into the modified

sources J̃ and T̃µν . Similarly, the dilaton source is given by

J(x) =
δSwl
δφ(x)

, (63)

where the worldline action is

Swl =

∫
dseφ{−ẋµeaµpa +

1

2
e(papa −m2)}. (64)
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Again, the coupling to dilaton could have been arbitrary, but this choice of eφ is the one

that works in the end. The equations of motion are

ṗνα = −
[
Γνρσẋ

ρ + (ẋν∂σ − ẋσ∂ν)φ
]
pσ, (65)

ẋµα = epµα. (66)

0.6.2 Radiation amplitude from scattering

The radiation is the solution to the field equation at asymptotic null infinity. From the

equations of motions Eqs. (46), (61), (62), we notice that any one of the fields abstracted

by Ψ(x) is schematically solved by

Ψ(x) ∝
∫
ddke−ik·xD(k)J̃ (k), (67)

where D(k) is the propagator and J̃ (k) is the redefined currents. Since the propagators are

all D(k) ∝ 1/k2, at asymptotic spatial infinity, we have (in 4 dimensions)

lim
|~x|→∞

ΨP (x) ∝ 1

|~x|

∫
dωe−iωtAP (k), (68)

where AP (k) = gεP (k)J̃ (k)|k2=0 is the radiation amplitude in the polarization channel of

εP , defined as being proportional to the on-shell current [35]. In addition, it also gives the

radiated power spectrum in phase space

∆Pµ =

∫
k
θ(k0)δ(k2)|AP (k)|2, (69)

where
∫
k ≡

∫
ddk

(2π)d
is the phase space integral. Therefore, the radiation amplitude captures

all the information about the radiative fields. It is also an amplitude in the sense that

interpreting Ψ(x) = 〈Ψ(x)〉 as a 1-point function, it can be obtained in a standard LSZ

reduction way

AP (k) = lim
k2→0

εP (k)D−1(k)

∫
k
eik·x〈Ψ(x)〉. (70)
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At this point, there is a caveat that the boundary conditions on the propagators are not

specified. In this classical system, they are expected to be retarded due to classical causality.

However, in this section, the boundary condition does not play any role, so we leave it

ambiguous. Specifically, we define the Yang-Mills radiation amplitude as

εP,µ(k)Aµa(k) = gεP,µ(k)J̃µa (k), (71)

where J̃µa (k) =
∫
ddxe−ik·xJ̃µa (x) and similarly, the dilaton and graviton radiation ampli-

tudes as

Ad(k) = − 1

2m
(d−2)/2
Pl (d− 2)1/2

J(k), (72)

respectively.

While the standard Feynman rules take good care of the non-linear interactions, a

problem remains that in the original currents such as Eq. (50) also depend on dynamical

variables which have to satisfy the equations of motion. For generic orbits, it is not obvious

how to solve them, so the simpler case with particles coming from infinity scattering and

flying off to infinity. For this setup, the dynamical variables are written as

xµα(λ) = bµα + epµαλ+ zµα(λ), (73)

pµα(λ) = pµα + p̄µα(λ), (74)

caα(λ) = caα + c̄aα(λ). (75)

where the time independent factors are the initial data at λ → ∞. In particular, bα is

the impact parameter of the scattering particle. We can use the lower-order deflections to

calculate the fields 〈Ψ(x)〉 and substitute them into the equations of motion to solve for

higher-order deflections and reiterate. In this way, the dynamical variables and hence the

source currents become perturbative as well. For the Yang-Mills equations of motion, the

expansion parameter is roughly

g2c2

Ebd−3
� 1, (76)
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Figure 3: The leading order gluon radiation diagrams, excerpted from [35]. The straight
lines with arrow always represent the classical particle worldlines, while the curved lines are
gluons.

while the expansion parameter for the field equation is

g2cb4−d � 1, (77)

where c is the typical size of the color charges, b the impact parameters, and E the scattering

energy scale. Therefore, we can identify the two when c ∼ Eb, in which case the problem

is identical to an expansion in g. In the gravitational case, the expansion parameter is

E

4md−2
Pl b

d−3
� 1, (78)

so it is equivalent to an expansion in

κ =
1

2m
d−2
2

Pl

. (79)

Yang-Mills radiation

The formal solution to the field equation Eq. (46) is

〈Aµa(x)〉 = −g
∫
k

ie−ik·x

k2
J̃µa (k), (80)

from this, we normalize the radiation amplitude as Aµa(k) = gJ̃µa (k), such that the

〈Aµa(x)〉 = −
∫
k

ie−ik·x

k2
Aµa(k). (81)
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For Yang-Mills radiation, [35] found the two diagrams in Fig. 3 at the leading non-

trivial order. The straight lines represent the particle worldlines and the vertices on them

are therefore the source currents. Due to the perturbative expansion described above, the

currents are an infinite series organized by powers of g2. In Fig. 3(a), the contribution

comes from leading-order deflections while in Fig. 3(b) the leading order results arise from

interactions between the fields sourced by undeflected charges. The result is given by

Aµa(k)

∣∣∣∣
O(g3)

= −ig3
∑
α,β

∫
`α,`β

µα,β(k)

{
(cα · cβ)

`2α
k · pα

caα

(
− (pα · pβ)

{
`µβ −

k · `β
k · pα

pµα

}

+ k · pαpµβ − k · pβp
µ
α

)
+ i(pα · pβ)fabccbαc

c
β

`2α
k · pα

pµα

+ [cα, cβ]a [2(k · pβ)pµα − (pα · pβ)`µα] , (82)

where the first two lines come from Fig. 3(a) and the last from Fig. 3(b). The commutator

means the combination [cα, cβ]a ≡ ifabccbαc
c
β. In this expression, we have introduced the

shorthand notations

µα,β(k) =

[
(2π)δ(`α · pα)

ei`α·bα

`2α

][
(2π)δ(`α · pα)

ei`β ·bβ

`2β

]
(2π)dδd(`α + `β − k). (83)

Dilaton-gravity radiation

The formal solution to Eq. (62) is given by

〈hµν(x)〉 = 2κ2

∫
k

e−ik·x

k2

[
T̃µν(k)− 1

d− 2
ηµν T̃

σ
σ(k)

]
, (84)

so we define the graviton radiation amplitude by Ag(k) = −κεµν T̃µν(k), such that

εµν〈hµν(x)〉 = −2κ

∫
k

e−ik·x

k2
Ag(k).

The diagrams contributing to the leading order are summarized in Fig. 4. Fig. 4(a) results

from radiations caused by deflections of the worldline variables. Fig. 4(b), (c) are due to

higher (than linear) field dependence in the worldline EFT. Finally, Fig. 4(d), (e) are the

consequence of field interactions in spacetime.
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Figure 4: The leading order graviton radiation diagrams, excerpted from [35]. The dashed
lines are dilatons and the coiled lines represent gravitons.

Figure 5: The leading order dilaton radiation diagrams, excerpted from [35].
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Similarly, the formal solution to Eq. (61) is given by

〈φ(x)〉 =
κ2

d− 2

∫
k

e−ik·x

k2
J̃(k), (85)

and we define the dilaton radiation amplitude as Ad(k) = − κ
(d−2)1/2

J̃(k). The relevant

diagrams are summarized in Fig. 5 which are also very similar to the graviton diagrams in

nature. The results are not particularly relevant to the discussions at hand and are omitted.

They appear as Eqs. (50), (55) in Section III of [35].

0.6.3 The classical double copy

The conjectured mapping rules are

caα 7→ pµα, (86)

fabc 7→ Γµνρ(−k, `α, `β), (87)

g 7→ κ, (88)

where Γµνρ(−k, `α, `β) is the kinematic factor of the 3-point vertex rule in Yang-Mills theory,

given by

Γµνρ(−k, `α, `β) ≡ 1

2
[(`β − `α)µηνρ + (`α + k)ρηµν − (`β + k)νηµρ] .

The mappings convert the radiation amplitude Eq. (82) into a new one Aµν(k) which has

to satisfy Ward identities on both indices kµAµν(k) = kµAνµ(k) = 0 to guarantee the gauge

invariance of the resulting theory. Unfortunately, it does not work out naively. However, as

radiation amplitude is only defined on-shell, we may add to Eq. (82) any gauge terms that

vanish on-shell. Therefore, there is a freedom of adding any term proportional to kµ since

it always vanishes when contracted to kµ due to the k2 = 0 on-shell condition. By adding

the term

Âµa(k) = −ig3
∑
α,β

∫
`α,`β

µα,β(k)
1

2
(cα · cβ)caα

`2α
k · pα

(pα · pβ)kµ, (89)
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one can check that the resulting amplitude

Aµa(k) + Âµa(k) 7→ Aµν(k) (90)

indeed satisfies the Ward identities.

To see how this relates to the gravitational radiation, it shall be decomposed into po-

larization channels. The direct product of the two copies of vector polarizations

εµε̃ν = εµν + aµν +
ε · ε̃
d− 2

πµν , (91)

is decomposed into the symmetric traceless channel εµν ≡ 1
2(εµε̃ν + εν ε̃µ) − ε·ε̃

d−2πµν , the

anti-symmetric channel aµν ≡ 1
2(εµε̃ν − εν ε̃µ), and the trace πµν ≡ ηµν − (kµqν+kνqµ)

k.q where

qµ is an arbitrary reference vector that is not parallel to kµ. It was verified that Aµν(k)

is in fact symmetric, and the non-vanishing symmetric traceless and trace channels match

with the graviton and dilaton amplitudes on-shell [35]

εµνAµν(k) = Ag(k), (92)

ε · ε̃
d− 2

πµνAµν(k) = Ad(k). (93)

0.7 The spinning generalization

In this section, we report on generalizing this construction to spinning sources [20,21].

0.7.1 The spinning setup and equations of motion

Yang-Mills theory

As discussed in the previous section, there are an infinite number of operators that can be

constructed with spins which are not higher-order in g or κ coupling. To avoid this issue, we

focus on the regime where the object is rotating slowly so that we could expand in powers

of spin and truncate the results to linear-order in spin. At this order in spin, there is only
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one possible operator in the Yang-Mills worldline EFT

S = −g
2

∫
dλecaαS

µν
α F aµν(xα). (94)

While the coefficient is again arbitrary in principle, this is the value that allows a consistent

double copy. Incidentally, in d = 4, this can be written as

g

m

∫
dtca~S · ~Ba, (95)

which is the non-abelian analog to the Dirac gyromagnetic ratio gD = 2.

The field equation remains the same, but the gauge current becomes

Jµa (x) ≡ −1

g

δ

δAaµ(x)
Spp (96)

=
∑
α

∫
dxµαc

a
αδ

d(x− xα) +

∫
dλeSµνα Dν

[
caαδ

d(x− xα)

]
. (97)

Using the covariant continuity equation DµJ
µ
a = 0, we find the new conservation equation

for the charges

(ẋα ·D) caα =
g

2
efabcSµνα F bµνc

c
α. (98)

The energy-momentum tensor is given by

Tµν(x) ≡ −2
δ

δgµν(x)
Swl

∣∣∣∣
g=η

=
∑
α

∫
dx(µpν)δd(x− xα) +

∫
dx(µSν)σ∂σδ

d(x− xα) (99)

+g

∫
dλδd(x− xα)caαF

a
σ

(µSν)σ. (100)

Given the Yang-Mills energy-momentum tensor TµνYM , a corollary of Noether’s theorem is

that under arbitrary support X ,
∫
ddxXν∂µ

(
Tµν + TµνYM

)
= 0 is true when equations of

motion are satisfied. From this fact, we can extract the equations of motion

ṗµα = gsc
a
αF

µν
a ẋαν +

g

2
eSρσα caαD

µF aρσ, (101)
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Ṡµνα = ẋναp
µ
α − ẋµαpνα + gecaαF

a µ
σ Sνσα − gecaαF a νσ Sµσα . (102)

The remaining equation for the position variable is most conveniently obtained by requiring

the constraint to hold along the worldline

d

ds
(Sµνα pαν) = 0, (103)

and substitute in the equations above to solve for ẋµα. In solving these problems, we assume

that the spin also separates into the initial data and the deflections

Sµνα (λ) = Sµνα + S̄µνα (λ). (104)

String-gravity theory

In this case, we include the previously ignored anti-symmetric gauge field channel denoted

by Bµν = −Bνµ which has an anti-symmetric gauge transformation

Bµν → Bµν + ∂µξν − ∂νξµ. (105)

The complete action that works for the double copy is given by

Sg = −2md−2
Pl

∫
ddx
√
g

[
R− (d− 2)gµν∂µφ∂νφ+

e−4φ

12
HµνσH

µνσ

]
, (106)

where Hµνσ = 6∂[µBνσ] is the gauge-invariant field strength tensor. We call this the string-

gravity action since it is precisely the low-energy effective action of the massless common

sector of oriented string theories. In that context, the Bµν field is called the Kalb-Ramond 2-

form field, which we will call an axion since in 4 dimensions, the field strength is equivalent to

an odd-parity scalar field Hµνσ = εµνσρ∂
ρφ known by the same name [69]. We note that this

is somewhat expected due to its roles in the double copy of gauge theory amplitudes [70] as

well as in Kerr-Schild double copy [71]. For the worldline theory, we also have one additional

possibility

Swl ⊃
1

4

∑
α

∫
dλSµνα ẋσαHµνσe

−2φ. (107)
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Incidentally, this coupling together with the graviton coupling term has a simpler geometric

interpretation in terms of the “string frame” spin S̃µν = e2φSµν , which is given by

Swl ⊃
1

2

∫
dxρC+

µνρS̃
µν . (108)

The symmetric part C+ρ
(µν) = Γ̃ρµν corresponds to the Levi-Civita connection compatible

with string frame metric g̃µν = e2φgµν and the torsion T ρµν = C+ρ
[µν] = e−2φHρ

µν ≡ H̃ρ
µν

corresponds to the axion field strength.

The field equations arising from these actions are given by

Rµν −
1

2
Rgµν =

1

4md−2
Pl

(Tµν + Tµνφ + TµνB ), (109)

∇µ∇µφ = − 1

4md−2
Pl (d− 2)

J +
e−4φ

6(d− 2)
H2, (110)

∇λ(e−4φHµνλ) =
1

md−2
Pl

Jµν , (111)

where the currents latter two currents are given by

J ≡
∑
α

∫
ds

(
ẋµαpαµe

φ + Sµνα ẋσαHµνσe
−2φ

)
δd(x− xα)
√
g

, (112)

Jµν ≡
∑
α

1

4

∫
ds(Sλµα ẋνα + Sνλα ẋµα + Sµνα ẋλα)∇λ

[
e−2φ δ

d(x− xα)
√
g

]
. (113)

The energy-momentum tensors are given by

Tµν =
∑
α

∫
dx(µ

α p
ν)
α

δd(x− xα)
√
g

eφ +

∫
dx(µ

α S
ν)α
α ∇α

[
δd(x− xα)
√
g

]
− 1

2

∫
dxσαHρλσg

λ(µSν)ρ
α e−2φ δ

d(x− xα)
√
g

, (114)

TµνB = −md−2
Pl e

−4φ{HµρσHν
ρσ −

1

6
H2gµν}, (115)

and Tµνφ remains unchanged. Using the covariant conservation
∫
ddx
√
gXν∇µ

(
Tµνpp +TµνB +
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Tµνφ

)
= 0, we obtain the full equations of motion for the momentum and spin

ṗµα =pαν ẋ
ν
α∂

µφ− pµαẋσα∂σφ− Γµσρẋ
σ
αp

ρ
α +

1

2
Rµνλσẋ

ν
αS

σλ
α e−φ

+
1

4
ẋα · ∇(gµλHλσρS

σρ
α e−2φ)e−φ − 1

2
Sλρα ẋσαHλρσe

−3φ∂µφ, (116)

Ṡµνα = pµαẋ
ν
αe
φ − pναẋµαeφ − ΓµσρS

ρν
α ẋ

σ
α − ΓνσρS

µρ
α ẋσα

−1

2
Hλσρg

λµSνρα ẋ
σ
αe
−2φ +

1

2
Hλσρg

λνSµρα ẋσαe
−2φ. (117)

The position equation is again obtained by requiring the spin constraint Eq. (103).

For the axion field equation (111), we choose the gauge ∂µB
µν = 0 and the equation

becomes

∂2Bµν(x) = 4κ2J̃µν(x), (118)

and correspondingly, we define the axion radiation amplitude by

Aa = 2κaµν J̃
µν(k). (119)

0.7.2 Yang-Mills radiation from spinning charges

To shorten the writings, we introduce the notations

Sµνα pν ≡ (Sα ∧ p)µ, (120)

kµS
µν
α pν ≡ (k ∧ p)α. (121)

The leading order current corresponds to the Feynman diagrams in Figs. 6(a), (b) which is

given by

J̃µa (k)
∣∣
Fig. 6(a)+(b)

=
∑
α

∫
dλ eik·xαcaα [ẋµα − i(Sα ∧ k)µ] . (122)
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µ, a

k

Sα

Figure 6: The O(κ3, S1) gluon radiation diagrams

It sources the field at the intermediate order

Aµa(x)
∣∣
O(g1)

= g

∫
dd`

(2π)d
e−i`·x

`2
J̃µa (`)

∣∣
O(g1s)

= g
∑
α

∫
dλe

dd`

(2π)d
e−i`·(x−xα)

`2
caα [pµα + iκα(Sα ∧ `)µ] , (123)

which by the equations of motion, leads to deflections: for colors

˙̄cµα
∣∣
O(g2,S0)

= −g2
∑
β 6=α

∫
l
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2
fabccbαc

c
β(pα · pβ), (124)

˙̄cµα
∣∣
O(g2,S1)

= −ig2
∑
β 6=α

∫
l
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2
fabccbαc

c
β(pαµ`νS

µν
β + pβν`µS

µν
α ), (125)

for momenta

˙̄pµα
∣∣
O(g2,S0)

= ig2
∑
β

(cα · cβ)pαν

∫
`
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2
(`µpνβ − `νp

µ
β), (126)

˙̄pµα
∣∣
O(g2,S1)

= g2
∑
β

(cα · cβ)

∫
l
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2
[pαν(`µ`σS

νσ
β − `ν`σS

µσ
β ) + Sρσα pβσ`ρ`

µ]

(127)

xlv



for positions

żµα − ep̄µα
∣∣
O(η2,S1)

= 0, (128)

(we note that this would be non-zero if gD 6= 2) and for spins

˙̄Sµνα
∣∣
O(η2,S1)

= żναp
µ
α − żµαpνα + ig2

∑
β

∫
l
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2

× (cα · cβ)([`σp
µ
β − `

µpβσ]Sνσα − [`σp
ν
β − `νpβσ]Sµσα ). (129)

Substituting these deflections into the lower order amplitude, we find

Aµa(k)
∣∣
Fig. 6(a)+(b);O(g3,S1)

=
∑
α

∫
dλeik·xα

i

k · ẋα

[
ċaαẋ

µ
α + caα

{
ẍµα −

k · ẍα
k · vα

vµα

}]∣∣∣∣∣
O(g3,S1)

(130)

+
1

k · ẋα

[
ċaα(Sα ∧ k) + caα

{
(Ṡα ∧ k)− k · ẍα

k · ẋα
(Sα ∧ k)µ

}]∣∣∣∣∣
O(g3,S1)

, (131)

where the explicit results are given by Eqs. (316), (317) in Appendix .1. At this order

O(g3) in perturbation, there are two contributions from diagrams without deflections in the

particle trajectories. The first of these is from Fig. 6(c),

Aµa(k)
∣∣
Fig. 6(c);O(g3,S1)

= ig2
s

∑
α,β
α6=β

∫
µαβ(k)[cα, cβ]a`2α(Sα ∧ pβ)µ. (132)

The second of the zero deflection contributions is from the diagram with the triple vertex

in Fig. 6(d),

Aµa(k)
∣∣
Fig. 6(d);O(g3,S1)

= −ig3
∑
α,β
α6=β

∫
µαβ(k)[cα, cβ]a{2(k · pβ)(Sα ∧ `α)µ

+ (`α ∧ pβ)α(`α − `β)µ + 2(`α ∧ `β)αp
µ
β}. (133)

Combining them together, we find the results in terms of a sum of two different color
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structures

Aµa(k)
∣∣
O(g3,S1)

= ig3
∑
α,β
α6=β

∫
dµαβ(k)

[
(cα · cβ)caαAµs + [cα, cβ]aAµadj

]
, (134)

with

Aµadj ≡ −

[
(`α ∧ pβ)α(`β − `α)µ − `2α

k · pα
(`β ∧ pβ)αp

µ
α −

`2β
k · pβ

(`α ∧ pβ)αp
µ
β + `2α(Sα ∧ pβ)µ

]

+2(k · pβ)

[
(Sα ∧ `α)µ − (k ∧ `α)α

k · pβ
pµβ

]
+

`2α
k · pα

(pα · pβ)(Sα ∧ k)µ, (135)

and

Aµs ≡ +`2α

[
(Sβ ∧ `β)µ −

(k ∧ `β)β
k · pα

pµα

]
+

`2α
k · pα

[
(k · pβ)

{
(Sα ∧ `β)µ −

(k ∧ `β)α
k · pβ

pµβ

}
− (k · `β)

{
(Sα ∧ pβ)µ −

(k ∧ pβ)α
k · pβ

`µβ

}]
− `2α
k · pα

[
(`β ∧ pβ)α

{
`µβ −

k · `β
k · pα

pµα

}
+ (k · pβ)(Sα ∧ k)µ

]
+ κβ

`2α
k · pα

(`β ∧ pα)β

[
`µβ −

k · `β
k · pα

pµα

]
+

`2α
(k · pα)2

(pα · pβ)(k · `β)(Sα ∧ k)µ. (136)

0.7.3 String-gravity radiation from spinning particles

As we are focusing on linear-order in spin, there is no need to consider the deflection from

the axion field. The reason is that it is always sourced at one order in spin by Eq. (113)

and couples to the equations of motion Eqs. (116), (117) at another which is already second

order in spin.

The graviton and dilaton fields at the lowest order are given by

〈hµν(x)〉
∣∣
O(κ2)

= 2κ2
∑
α

∫
dd`

(2π)d
e−i`·(x−xα)

`2

[
pµαp

ν
α−

p2
α

d− 2
ηµν− i

2

{
pµα(Sα∧`)ν+pνα(Sα∧`)µ

}]
,

(137)

〈φ(x)〉
∣∣
O(κ2)

=
κ2

(d− 2)

∑
α

p2
α

∫
dd`

(2π)d
e−i`·(x−xα)

`2
. (138)
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which in the equations of motion upto linear order in spin

ṗµα
∣∣
O(S0)+O(S1)

= pαν ẋ
ν
α∂

µφ− pµαẋσα∂σφ− Γµσρẋ
σ
αp

ρ
α +

1

2
Rµνλσẋ

ν
αS

σλ
α e−φ, (139)

Ṡµνα
∣∣
O(S0)+O(S1)

= pµαẋ
ν
αe
φ − pναẋµαeφ − ΓµσρS

ρν
α ẋ

σ
α − ΓνσρS

µρ
α vσα, (140)

leads to deflections in momentum

˙̄pµα
∣∣
O(κ2,S0)

= iκ2
∑
β 6=α

∫
`
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2

[
−

p2
β

d− 2
(` · pα)pνα + 2(pα · pβ)(` · pα)pνβ − (pα · pβ)2`ν

]
,

(141)

˙̄pµα
∣∣
O(κ2,S1)

= κ2
∑
β 6=α

∫
`
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2

[
p2
β

d− 2
(` · pα)(Sα ∧ `)µ

+ [(` ∧ pβ)α − (` ∧ pα)β][(` · pα)pµβ − (pα · pβ)`µ] + (` · pα)(pα · pβ)(Sβ ∧ `)µ
]
,

(142)

in position

żµα − ep̄µα
∣∣
O(η2,S1)

≡ − iκ2

(d− 2)

∑
β 6=α

m2
β

∫
`
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2
(Sα ∧ `)µ,

and in spin

˙̄Sµνα
∣∣
O(η2,S1)

= iκ2
∑
β 6=α

∫
`
2πδ(` · pβ)

e−i`·(bαβ+eλpα)

`2

[
(` · pα)

{
pνβ(Sα ∧ pβ)µ − pµβ(Sα ∧ pβ)ν

}
+(pα · pβ)

{
pνβ(Sα ∧ `)µ − pµβ(Sα ∧ `)ν + `µ(Sα ∧ pβ)ν − `ν(Sα ∧ pβ)µ

}
+

p2
β

d− 2

{
pµα(Sα ∧ `)ν − pνα(Sα ∧ `)µ − `µ(Sα ∧ pα)ν + `ν(Sα ∧ pα)µ − 2(` · pα)Sµνα

}]
.

(143)
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Figure 7: The O(κ3, S1) axion radiation diagrams. The coiled lines here are now axions
and the thin curved lines represent the gravitons.

The axion channel

The leading order radiation has contributions from Figs. 7(a)-(d). The contribution from

Fig. 7(a) is due to deflections induced by the leading order fields. It is given by

Aa(k)
∣∣
Fig. 7(a);O(κ3,S1)

=
i

2
κ3aµν

∑
α

∫
dταe

ik·xα kλ
k · ẋα

[
− k · ẍα
k · ẋα

Sλµα ẋνα + Sλµα ẍνα (144)

+ Ṡλµα ẋνα + cyclic permutations (µ, ν, λ)

]∣∣∣∣∣
O(η2,S1)

. (145)

We can explicitly evaluate these expressions by substituting deflections derived previously.

The resulting expressions are given by Eqs. (318), (319) in Appendix .2.

The other contributions to the axion amplitude, at this order in perturbation, come

from diagrams with no deflections in the trajectories of the particles. Fig. 7(b), with an

intermediate dilaton, corresponds to

Aa(k)
∣∣
Fig. 7(b);O(η2,S1)

= − iκ3aµν
2(d− 2)

∑
α,β
α6=β

m2
β

∫
dµαβ(k)`2α

[
(k·pα)Sµνα −2(Sα∧k)µpνα−(µ↔ ν)

]
.

(146)
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Figure 8: The O(κ3, S1) graviton radiation diagrams

The two 3-point vertex diagrams in Figs. 7(c), (d) contribute

Aa(k)
∣∣
Fig. 7(c);O(η2,S1)

= −2iκ3aµν
d− 2

∑
α,β
α6=β

p2
β

∫
µαβ(k)

[{
(k · `α)(Sα ∧ `α)µpνα

− (k · pα)(Sα ∧ `α)µ`να + (k ∧ `α)αp
µ
α`
ν
α

}
− (µ↔ ν)

]
, (147)

Aa(k)
∣∣
Fig. 7(d);O(η2,S1)

= −iκ3aµν
∑
α,β
α6=β

∫
µαβ(k)

[
(pα · pβ)

{
(k · `α)(Sα ∧ `α)µpνβ − (k · pβ)(Sα ∧ `α)µ`να

− (k ∧ `α)αl
µ
αp

ν
β

}
+ (k · pβ)2(Sα ∧ `α)µpνα − (k · pα)(k · pβ)(Sα ∧ `α)µpνβ

+ (k · pβ)(k ∧ `α)αp
µ
αp

ν
β + (k · pβ)(`α ∧ pβ)α`

µ
αp

ν
α − (k · pα)(`α ∧ pβ)α`

µ
αp

ν
β

+ (k · `α)(`α ∧ pβ)αp
µ
αp

ν
β −

2p2
β

d− 2

{
(k · `α)(Sα ∧ `α)µpνα − (k · pα)(Sα ∧ `α)µ`να

+ (k ∧ `α)αp
µ
α`
ν
α

}
− (µ↔ ν)

]
. (148)

The graviton channel

Similarly, the gravitational radiation receives contributions from Fig. 8(a)-(d). The contri-

bution from Figs. 8(a), (b) come from deflections to the particle spin and trajectory due to

l



the leading order fields. This comes out to be

Ag(k)
∣∣
Fig. 8(a)+(b);O(κ3,S1)

= −κεµν
∑
α

∫
dλeik·xα

[
−i
k · ẋα

{
k · ẍα
k · ẋα

ẋµαp
ν
α − v̇µαpνα − ẋµαṗνα

}
(149)

− kρ
k · ẋα

{
k · ẍα
k · ẋα

ẋµαS
νρ
α − ẋµαSνρα

}
+ (µ↔ ν)

]∣∣∣∣∣
O(κ3,S1)

.

(150)

These contributions are explicitly given by Eqs. (320), (321) in Appendix .2.

There are two contributions from emission off bulk vertices with the particles not suf-

fering any deflections. The first of these is from Fig. 8(c) with an intermediate graviton.

This contributes

Ag(k)
∣∣
Fig. 8(c);O(κ3,S1)

= −2κεµν
∑
α,β
α6=β

∫
µαβ(k)

`2α
2

[
(pα · pβ)

{
(Sα ∧ pβ)µ`νβ − (Sα ∧ `β)µpνβ

}

− (k · pα)(Sα ∧ pβ)µpνβ +
m2
β

d− 2
(Sα ∧ `β)µpνα + (µ↔ ν)

]
. (151)

The final contribution is from the graviton triple vertex diagram in Fig. 8(d). As in [?],

in computing this contribution, we use the background field gauge 3-point vertex. This

gives

Ag(k)
∣∣
Fig. 8(d);O(η2,S1)

= −2κεµν
∑
α,β
α6=β

∫
µαβ(k)

[
(pα · pβ)

{
(`α · `β)(Sα ∧ `α)µpνβ + (k · pβ)(Sα ∧ `α)µ`να

+ (`α ∧ `β)αp
µ
βl
ν
α + (`α ∧ pβ)α`

µ
α`
ν
α −

1

2
`2α(`α ∧ pβ)αη

µν

}
− (k · pβ)2(Sα ∧ `α)µpνα

+ (k · pα)(k · pβ)(Sα ∧ `α)µpνβ + (k · pα)(`α ∧ pβ)αp
µ
β`
ν
α − (k · pβ)(`α ∧ pβ)αp

µ
α`
ν
α

− (k · pβ)(`α ∧ `β)αp
µ
αp

ν
β + (k · pα)(`α ∧ `β)αp

µ
βp

ν
β − (`α · `β)(`α ∧ pβ)αp

µ
αp

ν
β

+
p2
β

d− 2
(Sα ∧ `α)µpνα + (µ↔ ν)

]
. (152)
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Figure 9: The O(κ3, S1) dilaton radiation diagrams

The dilaton channel

Lastly, the leading order dilaton radiation amplitude is summarized in Fig. 9. The first

gives contributions to the dilaton amplitude from trajectory deflections,

Ad(k)
∣∣
Fig. 9(a);O(κ3,S1)

=
∑
α

∫
dλeeik·xα

i

k · ẋα

[
k · ẍα
k · ẋα

ẋα · pα − ẍα · pα − ẋα · ṗα
]∣∣∣∣∣
O(η2,S1)

.

(153)

We substitute in the momentum deflections and find the result in Appendix .2, Eq. (322).

The other two contributions are calculated at zero deflections in the particle trajectories.

Fig. 9(b) involving an intermediate graviton contributes

Ad(k)
∣∣
Fig. 9(b);O(κ3,S1)

=
2iκ3

(d− 2)1/2

∑
α,β
α6=β

∫
µαβ(k)`2α(pα · pβ)(`β ∧ pα)β. (154)

Finally, we have Fig. 9(c) involving the 3-point graviton-dilaton vertex in the bulk,

contributing

Ad(k)
∣∣
Fig. 9(c);O(κ3,S1)

= − 2iκ3

(d− 2)1/2

∑
αβ
α6=β

p2
α

∫
µα,β(k)(k · pβ)(`α ∧ `β)β. (155)

0.7.4 The spinning classical double copy

Applying the same set of mapping rules in Eqs. (86), (87), (88) and leaving the spin

unchanged, we find that once again, it is necessary to include an additional gauge term
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Âµa
∣∣∣∣
O(S1)

=
1

2
g3
∑
α,β

∫
µα,β(k)εµ

[
(cα · cβ)caα

`2α
k · pα

{(`α ∧ pβ)α + (`β ∧ pα)β}kµ
]
, (156)

so that the mapped amplitude

Aµa + Âµa
∣∣∣∣
O(S1)

7→ Aµν
∣∣∣∣
O(S1)

, (157)

is gauge-invariant. Decomposing by the polarization tensors, we have therefore successfully

confirmed that the predictions match with each channel directly calculated from string-

gravity

aµνAµν(k)

∣∣∣∣
O(S1)

= Aa(k)

∣∣∣∣
O(S1)

, (158)

εµνAµν(k)

∣∣∣∣
O(S1)

= Ag(k)

∣∣∣∣
O(S1)

, (159)

ε · ε̃
d− 2

πµνAµν(k)

∣∣∣∣
O(S1)

= Ad(k)

∣∣∣∣
O(S1)

, (160)

at linear order in spin expansion [21].
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Classical strings and extended

objects

While the leading order calculations are surely successful, the color-kinematic mapping

rules proposed above are not applied to the radiation amplitudes. The problem is that,

unlike their scattering amplitude cousins in Section 0.5, these rules cannot guarantee gauge

invariance by construction and there is a possibility of failure at higher orders.

The issue was resolved by Shen [36]. By examining the radiation amplitudes in the so-

called cubic bi-adjoint scalar theory [72], it was discovered that color-kinematic duality also

exists for these classical radiation amplitudes. Exploiting the duality, an updated version of

classical double copy was constructed, and was verified to hold at the next-to-leading order.

In this chapter, we re-analyze the results derived in the previous chapter, using this

revised version of classical double copy as described in Section 0.8. In Section 0.9, we

discuss how the generalization to the spinning case has a possible interpretation in terms

of classical strings. Furthermore, in Section 0.10, we apply the new classical double copy to

worldline EFT with finite-size corrections and show that it works under specific conditions.

This chapter is a modified version of [22].

0.8 The color-kinematic duality of radiation amplitudes

To facilitate the duality for radiation amplitudes, we begin with reviewing the classical

bi-adjoint scalar radiation and its mapping to the Yang-Mills radiation amplitude. From

this result, we describe how the color-kinematic duality can be established for radiation

amplitudes.
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0.8.1 Bi-adjoint scalar radiation

Inspired by the works on scattering amplitudes [73] and Kerr-Schild double copy [71], Ref.

[72] considered the massless bi-adjoint scalar field theory with a cubic interaction

S ⊃ −y
3

∫
ddxfabcf̃ ãb̃c̃φaãφbb̃φcc̃, (161)

that is invariant under two independent G × G̃ global symmetry groups acting on φaã in

their respective adjoint representation. In this theory, there are also two copies of color

charges caα, c̃
ã
α, respectively transforming in the adjoint representations of G and G̃. Given

these variables, the simplest worldline term that is consistent with the symmetries is given

by (suppressing particle labels)

Swl ⊃ y
∫
dλe(c · φ · c̃), (162)

where we have introduced the shorthand notation c ·φ · c̃ = (c ·φ)ãc̃ã = ca(φ · c̃)a = caφaãc̃ã.

The field equation is

∂2φaã − yfabcf̃ ãb̃c̃φbb̃φcc̃ = −yJ aã, (163)

where the source from the worldline action is given by

J aã(x) =
∑
α

∫
dλecaαc̃

ã
αδ

d(x− xα). (164)

The equations of motion are given by

ṗµα = −ecaαc̃ãα∂µφaã, (165)

ẋµα = epµα, (166)

ċaα = −yfabcccαc̃b̃αφbb̃, (167)

˙̃cãα = −yf̃ ãb̃c̃c̃c̃αcbαφbb̃. (168)

Similarly to the Yang-Mills calculations, in the regime c ∼ c̃ ∼ Eb, the expansion is orga-
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Figure 10: The leading order bi-adjoint scalar radiation diagrams

nized by a single parameter proportional to the coupling constant y.

The calculations are entirely analogous to the other cases, and the two leading order

diagrams in Fig. 10 lead to the total amplitude in the form

Aaã(k) =− iy3
∑
α,β

∫
`α,β

µα,β(k)

[
((cα · cβ)cα)a`2α

k · `β
(k · pα)2

((c̃α · c̃β)c̃α)ã + [cα, cβ]a(−1)[c̃α, c̃β]ã

+ [cα, cβ]a
`2α

k · pα
((c̃α · c̃β)c̃α)ã + ((cα · cβ)cα)a

`2α
k · pα

[c̃α, c̃β]ã
]
. (169)

By using a similar set of mappings

c̃aα 7→ pνα, (170)

f̃ ãb̃c̃ 7→ Γµνρ(−k, `α, `β), (171)

y 7→ g, (172)

the Yang-Mills amplitude is retrieved

Aaã(k) 7→ Aaµ(k). (173)

0.8.2 The classical color-kinematic duality

The key observation is that the bi-adjoint radiation amplitude Eq. (169) is factorizable in

a matrix form

Aaã(k) = y3
∑
α,β

∫
(Ca)

TPC̃ã, (174)
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where the two copies of the “color numerators” written as column vectors are

Ca =

 (cα · cβ)caα

[cα, cβ]a

 , C̃ ã =

 (c̃α · c̃β)c̃ãα

[c̃α, c̃β]ã

 , (175)

and the “propagator matrix”

P = −iµα,β(k)

 `2α
k·`β

(k·pα)2
`2α
k·pα

`2α
k·pα −1

 , (176)

consisting of a mixture of poles from both the worldline and spacetime propagators. Using

these results, the Yang-Mills radiation amplitude Eq. (82) is also found to be factorizable

as

Aaµ(k) = g3
∑
α,β

∫
(Ca)

TPNµ, (177)

where the kinematic numerators are now written as

Nµ =

 (pα · pβ)pµα

(k · pα)pµβ − (k · pβ)pµα + 1
2(pα · pβ)`µα − 1

2(pα · pβ)`µβ

 . (178)

Now we can see that the second components both enjoy anti-symmetry under the

exchange α ↔ β, which is the manifestation of color-kinematic duality in the classical

case. The mappings from bi-adjoint to Yang-Mills and from Yang-Mills to dilaton-graviton

straightforwardly become

C̃ ã 7→ Nµ, Ca 7→ Nν . (179)

Indeed, the resulting prediction

Aµν(k) = g3
∑
α,β

∫
(Nν)TPNµ, (180)

corresponds to the dilaton gravity amplitude. Now we understand that the role of the extra

gauge term Eq. (89) is to equip the numerators with algebraic properties dual to the color

factors.
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The proposal further generalizes to the n-th order perturbative amplitude. We organize

the bi-adjoint theory amplitude into

Aaãn (k) = y2n+1
∑
ij

Cai P
ijC̃ ãj . (181)

from which we could extract P ij(k). For the gauge theory, we construct all possible Nµ
i (k)

that obey similar particle interchange symmetries and kinematic Jacobi identities as the

corresponding color objects Cai do, and we make the first replacement C̃ ã 7→ Nµ to obtain

a Yang-Mills amplitude

Aµan (k) = g2n+1
∑
ij

Cai P
ijNµ

j , (182)

such that Ward identity kµAµan (k) = 0 is satisfied. This then automatically guarantees that

a second replacement Ca 7→ Nν generates a consistent radiation amplitude

Aµνn (k) = κ2n+1
∑
ij

Nµ
i (k)P ij(k)Nν

j (k), (183)

whose spectrum contains a graviton by the color-kinematic duality. By explicit calculations,

this conjecture was verified to be valid at the next-to-leading order [36].

0.9 The spinning worldline theory and classical strings

0.9.1 The color-kinematic dual radiation amplitude with spin

We combine the two Yang-Mills radiation amplitude Eq. (82), (134) together with the extra

gauge terms Eqs. (89), (156) result can be put into the form

Aµ,a(k) = g3
∑
α,β

∫
(Ca)TPNR

µ (184)
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where the effects of spin are encoded in the new numerator structure NR = N +NS , with

Nµ as in Eq. (178) and

NS
µ = i

 (`β ∧ pα)βp
µ
α − (`β ∧ pβ)αp

µ
α − (pα · pβ)(Sα ∧ k)µ + (k · pα)(Sα ∧ pβ)µ

(k · pβ)(Sα ∧ `α)µ + (`α ∧ `β)βp
µ
α − 1

2(`α ∧ pβ)α(`β − `α)µ − (α↔ β).

 .

(185)

Remarkably, the propagator matrix is identical to Eq. (176) found in the absence of spin

and the second kinematic numerator satisfies the correct anti-symmetry condition. Now we

understand that the specific choice of gyromagnetic ratio of gD = 2 and the extra gauge

terms conspire to provide a color-kinematic dual factorizable amplitude.

Then substitution Ca 7→ Nµ in Eq. (184) gives an amplitude

Aµν(k) = κ3
∑
α,β

∫
(Nν)TPNR

µ, (186)

which is consistent with the results for string-gravity radiation in the spacetime theory

defined by Eq. (106).

We further notice that this construction allows a generalization to a wider class of spin-

ning extended objects. We recall that as described in Section 0.5, the kinematic numerator

structure in the original double copy construction replacements need not be the one in the

original one, but any one that possesses color-kinematic duality. In the present case, we can

use the mapping Ca 7→ Nµ
L , where in general the consistent numerators NL

µ do not coincide

with NR
µ, but are instead taken from a different gauge theory radiation amplitude. The

gravitational radiation field in this more general situation is given by

Aµν(k) = κ3
∑
α,β

∫
(NL

ν)TPNR
µ. (187)

The duality once again guarantees gauge invariance kµAµν = kνAµν = 0.

In particular, we can take Nµ
R and Nµ

L to possess two independent sets of spin degrees

of freedom SµνR and SµνL but identical otherwise (same color charges and momenta). The

result in Eq. (186) is recovered by taking SµνL = 0 and SµνR = Sµν , while taking SµνL = Sµν

and SµνR = 0 flips the order of ε and ε̃ leading to a sign change in the axion channel. This
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corresponds to coupling the spin to a different connection

Swl ⊃
1

2

∫
dxρC−µνρS̃

µν , (188)

where C−
ρ
(µν) = Γ̃ρµν and torsion T ρµν = C−

ρ
[µν] = −H̃ρ

µν . On the other hand, the choice

SµνL = SµνR =
1

2
Sµν , (189)

yields an amplitude Aµν(k) = Aνµ(k) corresponding to spinning particles with vanishing

axion couplings.

0.9.2 Classical strings

The form of the string-gravity action radiation in Eq. (106) is clearly alluding to certain

connections to string theory. As it turns out, the more general situation with independent

spins SµνL and SµνR coupled to gravitational fields via a term

Swl ⊃ −
1

4

∫
dxλ(SµνL − S

µν
R )Hµνλe

−2φ. (190)

also has a similar interpretation. Namely, the form of this coupling and the gD = 2 chro-

momagnetic coupling in Eq. (94) suggests that they are in fact a classical closed string

interacting with the string-gravity background and a classical open string coupled to a

gauge field.

Open strings

To provide evidence for this claim, we consider first an open string which is in a “semi-

classical” configuration (i.e. a state where a large portion of the stringy oscillator spectrum

are highly occupied and the string invariant mass Ms is large in string units). If this object

is placed in an external field Aaµ whose typical time and distance scales are large compared

to the string length l, we can describe it systematically as a point source carrying gauge-

invariant interactions with the gauge field. We focus on the interactions linear in Aµ and

consider for simplicity the case of abelian gauge symmetry.
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In the full theory of the extended string, we couple the gauge field by attaching Chan-

Paton charges qσ localized at the string endpoints σ = 0, π (go is the open string coupling

constant)

Sint = go
∑
σ=0,π

qσ

∫
dXµ(τ, σ)Aµ(X(τ, σ)). (191)

In the Polyakov gauge in which the free string equations of motion are simply (∂2
τ−∂2

σ)Xµ =

0, subject to Virasoro constraints ∂τX · ∂σX = 0, and (∂τX)2 = −(∂σX)2, we may expand

the solution in terms of oscillator modes

Xµ(τ, σ) = xµ + l2pµτ + Zµ(τ, σ), (192)

with oscillator contribution Zµ = il
∑

n6=0
αµn
n e
−inτ cosnσ, and expanding about the center-

of-mass coordinate xµ(τ) = xµ + l2pµτ . In particular, the current induced by the moving

string is the “vertex operator”

Jµ(k) =

∫
ddxeik·xJµ(x) = go

∑
σ=0,π

qσ

∫
dτ∂τX

µ(σ, τ)eik·X(σ,τ), (193)

and the multipole limit corresponds to the formal expansion in powers of kµ → 0 and Zµ.

Choosing coordinates with xµ = 0, the leading order term in this expansion is

Jµ(k → 0) ' go
∑
σ

qσ

∫
dτeil

2k·pτ l2pµ +O(Z1, k · Z1) = goQ(2π)δ(k · p)pµ, (194)

which is of course the current of a static point particle with total charge Q =
∑

σ qσ.

At the next order in the expansion, the string motion generates an electric dipole moment

of the form

Jµ(k → 0)|E ' −igo
∑
σ

qσ

∫
dτeil

2k·pτ (k · pZµ − (k · Z)pµ) +O(Z2, k · Z2) (195)

after integration by parts. Inserting the mode expansion for Zµ, this is a sum of delta

functions δ(l2k ·p−n) with n 6= 0 and therefore vanishes at frequencies ω ≡ k ·v �M−1
s l−2.

So there is no permanent (time-independent) electric dipole moment, as expected from time-
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reversal symmetry. At the same order in the multipole expansion but next order in powers

of Zµ, we also have a term

Jµ(k → 0)|B ' go
∑
σ

qσ

∫
dτeil

2k·pτ ik · Z∂τZµ +O(k · Z2) (196)

' − i
2
gokν

∑
σ

qσ

∫
dτeil

2k·pτ (Zµ∂τZ
ν − Zν∂τZµ) +O(k · Z2) (197)

Here we have discarded a term which, upon integration by parts, acquires a factor of (k · p)

and is suppressed in the static limit ω �M−1
s l−2. Given that

ZµŻν
∣∣∣
σ=0,π

= −il2
∑
n6=0

1

n
αµnα

ν
−n + time dependent terms, (198)

the part of the moment that remains after rapid oscillations of order the string scale are

averaged out is proportional to the angular momentum of the string about the center of

mass xµ = 0,

Jµ(k → 0)|B = igoQ(2π)δ(k · p)kνSµν (199)

with intrinsic spin Sµν � ~ given in terms of the oscillator modes by [75]

Sµν =

∫ π

0
dσ (Zµ∂τZ

ν − Zν∂τZµ) = −i
∞∑
n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
. (200)

To summarize, we have found the current induced by the open string in the long-

wavelength limit

Jµ(k) = goQ(2π)δ(k · p) [1 + ikνS
µν ] + · · · . (201)

This is precisely the form one finds for a pointlike startic particle with current Jµ(x) =

δSpp/δAµ(x) and

Spp = goQ

∫
dxµAµ(x) +

1

2
goQ

∫
dτSµνFµν(x). (202)

In particular, in d = 4 dimensions, if we make the identification go = g, the spin-dependent

terms corresponds to a magnetic moment interaction with gyromagnetic ratio equal to

Dirac’s value gD = 2, consistent with earlier classical [76] and quantum mechanical [77]
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string theory results. The non-abelian generalization of this calculation should proceed

along the same lines, with a Wilson line inserted between the string endpoints in order to

ensure gauge invariance, and the effective description, in that case, is then the chromomag-

netic interaction in Eq. (94).

Closed strings

Since the bulk action on the gravity side is related to closed strings, we would naturally

expect that the worldline action is also somehow related. Following the notations in [75],

In the background field action, the closed string coupling to axion is given by

SB = − 1

2πl2

∫
dτ

∫ π

0
dσεαβBµν(X)∂αX

µ∂βX
ν , (203)

where l is the string length. From Eq. (338) in Appendix .3, we see that the low energy

effective vertex generated by this action can be written as

Jµν(k) ' π

2
δ(k · p)kλ[pµ(SνλL − SνλR ) + pν(SλµL − S

λµ
R )]. (204)

where we have denoted the two sets of closed string angular momentum generators by

SµνL = −i
∞∑
n=1

1

n
(αµ−nα

ν
n − αν−nαµn), (205)

SµνR = −i
∞∑
n=1

1

n
(α̃µ−nα̃

ν
n − α̃ν−nα̃µn), (206)

this vertex corresponds to the worldline action

Sa = −1

4

∫
dxλ(SµνL − S

µν
R )Hµνλ. (207)

This agrees with Eq. (190) apart from the dilaton factor. But the discrepancy arises only

because this expression is in the string frame and it is related to the previous result by a

Weyl rescaling. This is expected since the spacetime action Eq. (106) is also in this so-called

Einstein frame metric. Similarly, as shown in Appendix .4, the low energy contribution to
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Figure 11: The diagrams containing internal axion lines

the energy-momentum tensor correspond to the correct coupling to gravity.

We note that although SL cannot be set to exactly zero when SR is not due to the

Virasoro constraints arising from the string worldsheet conformal symmetry, states where

SR � SL do exist. The construction is also very reminiscent of Kawai-Lewellen-Tye (KLT)

relations [79], in that the spin-2 radiation amplitude can be obtained from the product of

two independent spin-1 radiation amplitudes. In fact, the KLT relations are the source of

inspiration for BCJ. Thus, this provides another parallel between the classical and quantum

field theory results.

0.9.3 Unoriented strings and the decoupling of axion

In addition to the generic description above, there is also the interesting special case

SL = SR =
1

2
S. (208)

In this setting, the two kinematic numerators are identical and hence axion radiation is

absent.

We speculate that by imposing the constraint Eq. (208), we might be able to consistently

remove axion radiation. The axion is sourced by spins and only has spacetime interaction

vertices with two axion insertions. To linear order in spin, the decoupling of axion is then

trivial, since these Feynman rules do not allow internal axion lines to interfere with graviton

and dilaton radiation. At the next order O(S2), internal axion lines start to enter through

diagrams such as Fig. 11 start to enter as well as through equations of motion, but this is
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somewhat expected, since

ε̃νεµAνµ =
∑
i,j

(
Nν
i (S0) +Nν

i (S1) +Nν
i (S2)

)
Pij
(
Nµ
j (S0) +Nµ

j (S1) +Nµ
j (S2)

)
+O(S3)

= . . .+
∑
i,j

[
Nν
i (S1)PijN

µ
j (S1) +Nν

i (S2)PijN
µ
j (S0) +Nν

i (S0)PijN
µ
j (S2)

]
+O(S3).

(209)

It is easy to see that Ni(S
1)PijNj(S

1) gives a new contribution at O(S2) comparing to the

results if we were to construct the double copy using a single sector of spin. It is possible

that there are cancellations among these additional contributions at the next order.

In fact, one might consider the parity transformation operator on these classical quan-

tities, defined as

Ω : SR 7→ SL, (210)

and construct the projection operator

P =
1

2
(1 + Ω). (211)

Acting with this on the two sets of Lorentz generators yields Eq. (208). This is analogous to

the projection which yields unoriented strings. If this correspondence to unoriented strings

holds at all orders, axion radiation would indeed be absent, as is the case for unoriented

string spectrum.

0.10 The classical double copy of extended objects

The classical double copy based on color-kinematic duality is also applicable to worldline

EFTs containing finite-size corrections [22]. We explore its feasibility in the following.

At leading (quadratic in fields) order, the finite-size operators determine the linear

response, namely the multipole moments induced on the finite-size object by an external

field configuration. In the bi-adjoint theory, the linear response operators consistent with
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Figure 12: The Leading order diagrams for bi-adjoint and Yang-Mills radiation amplitudes
induced by finite-size worldline operators.

G×G̃ symmetry arise at zeroth order in spacetime derivatives, and consist of the four terms

S =
1

2
y2
∑
i

λi

∫
dλeOBS(i) , (212)

where

OBS(1) = φaãφaã, OBS(2) = (c · φ)ã(c · φ)ã, OBS(3) = (c · φ)ã(c · φ)ã, OBS(4) = (c · φ · c̃)2, (213)

and λαi are set of dimensionless coupling constants. For clarity, we have suppressed the

particle label α on the coupling constants and action. We have also introduced the shorthand

notation (c·φ)ã = caφ
aã, (φ·c̃)a = φaãc̃ã, and c·φ·c̃ = cac̃ãφ

aã. We normalize these operators

with prefactor y2 and impose the coupling constant mapping rules y 7→ g 7→ κ under the

double copy.

It is straightforward to compute the contribution to long-distance radiation from the

terms in Eq. (212). We work to linear order in the parameters λi and consider a scattering

event where the field generated by a second point source deforms the extended object. The

time-dependence of the induced moments then sources scalar radiation. Diagrammatically,

the situation is depicted in Fig. 12(a). To linear order in the finite-size couplings, the

amplitude is given by

Aaã = y3
∑
α,β

∫
C̃Ta ΛCa, (214)
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where we have defined the color numerators as

Ca =

 caβ

(cα · cβ)caα

 , C̃ ã =

 c̃ãβ

(c̃α · c̃β)c̃ãα

 , (215)

as well as the 2× 2 matrix Λα of Wilson coefficients and a propagator prefactor for particle

α

Λ = µα,β(k)`2α

 λα1 λα3

λα2 λα4

 . (216)

Likewise, in gauge theory, the linear response of a (spinless) extended color sources in

the long-wavelength limit can be described by including the operators

S =
1

4
g2
∑
i

λi

∫
dλeOYM(i) , (217)

where now

OYM(1) = F aµνF
µν
a , OYM(2) = (c · F )µν(c · F )µν ,

OYM(3) = pµpνF aµσF
a
ν
σ, OYM(4) = pµpν(c · F )µσ(c · F ) σ

ν . (218)

These operators induce contributions to radiation in scattering as shown in Fig. 12(b). By

explicit calculations, we find that the result exhibits a factorization property which parallels

that found in the bi-adjoint case,

Aaµ = g3
∑
α,β

∫
C̃Ta ΛαN

µ. (219)

where Cai , i = 1, 2 is the set of color factors given in Eq. (215) while the kinematic numer-

ators are defined to be

Nµ =

 (k · pβ)`µβ − (k · `β)pµβ

1
2(pα · pβ)[(k · pα)`µβ − (k · `β)pµα] + 1

2(k · pα)[(k · pβ)pµα − (k · pα)pµβ]

 . (220)

In order to account for the full finite-size effects in gravity (including all the axionic
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operators), it is also necessary to consider the radiation induced by the interactions of the

spin of the probe particle β with the extended object α. Working to linear order in spin

3, the amplitude is represented by diagrams of the same topology as in Fig. 12(b) where

the off-shell gluon is emitted from the chromomagnetic coupling of particle β. The result

is then of the same form as Eq. (219), but the kinematic factor is shifted by a term linear

in Sµνβ , Nµ → Nµ +NS
µ, where

NS
µ = i

 (k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`
µ
β

1
2(`β ∧ pα)β[(k · pα)`µβ − (k · `β)pµα] + 1

2(k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp
µ
α]

 .

(221)

The respective results in Eqs. (214, 219) suggest a set of mapping rules between finite-

size objects in bi-adjoint scalar and Yang-Mills theory. Namely, making the replacement

C̃a 7→ Nµ maps the finite-size amplitude Aaã of bi-adjoint theory to the radiation field Aaµ

in gauge theory4. We note that the Wilson coefficients in Eqs. (214, 219) are in principle

different. However, this mapping relation gives a direct correspondence between the two

sets λi 7→ λYMi ≡ λi. Given this, it is then natural to take a further step Aaµ 7→ Aµν while

demanding λi unchanged, where

Aµν = κ3
∑
α,β

∫
(NL

ν)TΛNR
µ, (222)

with NL,R
µ = NSL,R

µ. Because kµAµν = kνAµν = 0 this defines a consistent radiation field

in a theory of finite-size sources coupled to massless fields (φ, gµν , Bµν).

Given the structure of the mapping Aaã 7→ Aaµ, which takes finite-size operators in

bi-adjoint theory with no derivatives to two-derivative operators in gauge theory, we expect

that the double copy amplitude Aµν encodes finite-size effects corresponding to a total of

3. We ignore finite-size operators built out of spin at this order in gauge or finite-size couplings. It is easy
to see that there is no kinematic numerator with a dual representation at linear order in spin. However, we
might still need include such terms at higher orders in perturbation theory.

4. Notice that this mapping takes operators with no derivatives on φaã to operators involving gradients of
Aµa in Yang-Mills. Including an operator of the form, e.g., y2

∫
dτ(∂µφ

aã)2 in scalar theory yields a radiation

amplitude Aaã = y3
∫
µα,β`

2
α(k · `β)C̃ ã1C

a
1 whose propagator structure `2α(k · `β) does not match with any of

the terms in Eq. (219) Rather, it corresponds to a four-derivative operator
∫
dτDσF

a
µνD

σFµνa which yields an

amplitude of the form g3
∫
µα,β`

2
α(k · `β)Ca1N

µ
1 consistent with the color-kinematics substitution C̃ ã 7→ Nµ.
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four derivatives acting on the fields (φ, gµν , Bµν). To determine the precise form of the

finite-size response encoded in Aµν , we therefore start with the most general set of four-

derivative diffeomorphism invariant worldline operators that are quadratic in these fields.

Since we are not considering spin-dependent finite-size operators in the gauge theory, we

also limit ourselves to spin-independent gravitational higher-dimensional operators. At the

four-derivative level, the complete set of terms allowed by diffeomorphism invariance is

S =
∑
i

λ̃i

∫
dλeÕ(i), (223)

where now we have twelve Wilson coefficients λ̃i corresponding to ten positive definite

operators

Õ(G1) =
1

4
(Rµνρσ)2, Õ(G2) =

1

4
(Rµνρσp

σ)2, Õ(G3) =
1

4
(Rµνρσp

νpσ)2, (224)

Õ(D1) =
1

2
(∇µ∇νφ)2, Õ(D2) =

1

2
(pµ∇µ∇νφ)2, Õ(D3) =

1

2
(pµpν∇µ∇νφ)2, (225)

Õ(A1) =
1

6
(∇σHµνρ)

2, Õ(A2) =
1

4
(∇σHµνρp

ρ)2, Õ(A3) =
1

6
(∇σHµνρp

σ)2, Õ(A4) =
1

4
(∇σHµνρp

σpρ)2,

(226)

and to two terms that mix the graviton with the dilaton or axion

Õ(GD) = (pρpσRµρνσ)∇µ∇νφ, (227)

Õ(GA) = (pσRµνρσ)(pλ∇µHνρλ). (228)

We note that as we are dealing with a general dimensional scenario, we are not classifying

the operators by parities as we did in Eqs. (28, 29) for the case of d = 4.

The amplitudes corresponding to radiation from the induced multipoles at zeroth and

first orders in spin are calculated from the diagrams in Figs. 13, 14 respectively. It turns

out that the individual amplitudes corresponding to each of the operators in Eq. (223)

do not factorize in the way that would be expected from color-kinematics. However, by

taking linear combinations of operators, it is possible to construct amplitudes where the

only kinematic numerators that arise coincide with those that appear in the gauge theory
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Figure 13: The leading order radiation diagrams for non-spinning sources induced by finite-
size effects.

(in Eqs. (220), (221). For this choice of operators coefficients, the amplitude in the gravity

theory agrees with the prediction of the double copy given by Eq. (219).

As an explicit example, we consider the case with positive axion-spin coupling, SµνL = 0

and SµνR = Sµν . The explicit calculations are reported in Appendix .6. The result is that the

gravitational Wilson coefficients are related to the finite-size coupling on the gauge theory

side by the relations

λα1 = 2λ̃αG1
=

λ̃αD1

d− 2
= 4λ̃αA1

, (229)

λα2 = 2λ̃αG2
= −2λ̃αGD = 2λ̃αD1

=
2λ̃αD2

d− 4
= 4λ̃αGA = 4λ̃αA2

= 8λ̃αA3
, (230)

λα3 = 2λ̃αG2
= −2λ̃αGD = 2λ̃αD1

=
2λ̃αD2

d− 4
= −4λ̃αGA = 4λ̃αA2

= 8λ̃αA3
, (231)

λα4 = 2λ̃αG3
=− 4λ̃αGD = 4λ̃αD1

= −2λ̃αD2
=

4λ̃αD4

d− 2
= 4λ̃αA4

. (232)

We note that although the full set of operators in the string gravity background are not

independent, there are still more free coefficients than the number of purely gravitational

operators. Thus it should be possible to characterize the full gravitational tidal response at

the linear level, provided one could project out the fields φ,Bµν in a systematic way that

does not introduce new constraints among the gravitational tidal operators.
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Figure 14: The leading order radiation diagrams for linear-order spinning sources induced
by finite-size effects.

It is also interesting to note that, at least for some of these relations, there is a geomet-

rical pattern. In terms of the non-minimal connection C+
µνρ connection defined in Eq. (108),

the above relations imply that the independent operators in the gravitational double can

be expressed as

S =
1

8

∑
i

λi

∫
dλeOSG(i) , (233)

where

OSG(1) = (R̃+
µνρσ)2, (234)

OSG(2) = (R̃+
µνρσẋ

σ)2+Õ(GA) +
1

4
Õ(A2) +

1

12
Õ(A3), (235)

OSG(3) = (R̃+
µνρσẋ

σ)2 − 3Õ(GA) +
1

4
Õ(A2) +

1

12
Õ(A3), (236)

OSG(4) = (R̃+
µνρσẋ

ρẋσ)2. (237)

However, while the dilaton dependence has been completely absorbed into the curvature

associated with the non-minimal connection C+
µνρ , it does not seem possible to modify the

torsion in order to simplify the axion-dependent terms.
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An Effective Theory of Kerr

Horizons

In this chapter, we turn to the the description of dissipative effects in the worldline EFT with

spins. While the corresponding worldline EFT has been constructed for non-spinning [42]

and slowly rotating objects [43], it has not been done for generic spinning objects. As

we have mentioned, the near extremally rotating black holes have 1.5PN order enhanced

absorption effects relative to the non-spinning case [38], so it is more phenomenologically

relevant to consider the case with arbitrarily large spin (only bounded by extremality).

Therefore, the goal is to generalize the method used in [50] to the case with generic value

of spin and calculate the dissipative effect in that framework.

In the following, we start with describing the treatment of worldline EFT using the

in-in formalism in Section 0.11. Then we implement the construction for rotating (Kerr)

black holes in Section 0.12. As a validity check, we verify that at the leading order, the

resulting dissipative equations of motion from the worldline EFTs are consistent with the

ones derived using black hole perturbation theory. Furthermore, in Section 0.13, we derive

the leading-PN-order dissipative dynamics for the momentum and angular momentum, and

calculate the associated energy and spin transfer. This chapter is adapted from [23].
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0.11 Dissipative effects for spinning compact objects and the

in-in formalism

For reader’s convenience, we repeat the relevant action

S =

∫
dλ{−ẋµeaµpa +

1

2
SabΩab + eλaS

abpb

+
1

2
e(p2 + LX(X, e−1Ẋ))}+ Sint, (238)

where the interaction term contains

Sint = −
∫
dλe{QabE (X)Eab +QabB (X)Bab}+ . . . . (239)

In the following, we will denote ds = edλ.

A caveat in the dissipative problem is that the safest assumption about the worldline

momentum and spin is that they are also composite operators p(X) and S(X), as naturally,

the overall momentum and spin of a composite object is not independent of its internal

dynamical modes. For instance, the spin of a classical string is dependent on their oscil-

lator modes as discussed in Section 0.9.2. However, it is possible to choose a generalized

coordinate system such that the external variables become independent of the internal ones.

In the string theory example, the center of mass momentum is separated from the other

degrees of freedom by imposing appropriate boundary conditions for the oscillator modes.

In any case, as it turns out, if we interpret these variables as the in-in expectation values

pµ = eµa〈pa(X)〉 and Sµν = eµaeνb 〈Sab(X)〉, there would not be any difference in the end.

The appropriate framework to understand how the internal modes affect the dynamics

with a given initial condition is the in-in formalism which is designed to calculate expectation

values at a fixed time (as opposed to transition amplitudes). The corresponding path

integral formulation is the Schwinger-Keldysh [47] closed time path which essentially path

integrate over both the forward and the backward evolution, as opposed to the conventional

Feynman path integral over only the forward path when taking the in-out expectation value.

We encode the full set of classical variables by ∆ = (xµ, eaµ), and the Schwinger-Keldysh
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effective action Γ is given by

exp

[
iΓ[∆, e, h; ∆̃, ẽ, h̃]

]
=

∫
ini
DXDX̃ exp

[
iS[∆, e, h,X]− iS[∆̃, ẽ, h̃, X]

]
, (240)

where we are integrating over an additional copy of variables X̃ which corresponds to the

back evolution and the boundary conditions are fied at the initial time. In principle, there

are also corrections from integrating out dynamical gravitons, but those effects are higher

orders and not considered in the present discussions.

The resulting functional Γ[∆, e, h; ∆̃, ẽ, h̃] determines the classical equations of motion

by

δ

δ∆
Γ[∆, e, h; ∆̃, ẽ, h̃]

∣∣∣∣∣ ∆=∆̃
e=ẽ,h=h̃

= 0. (241)

The path integral makes the moments QE/B(X) appear in the equations of motion in terms

of 〈QE/B(X)〉 which is an in-in correlation function defined as

〈QE/B(X)〉 =

∫
DXDX̃ exp

[
iS[∆, e, h,X]− iS[∆̃, ẽ, h̃, X̃]

]
QE/B(X). (242)

Just as in the usual quantum field theory correlation functions calculated by Feynman

propagators, in the perturbative regime, this can be calculated using the Schwinger-Keldysh

propagators

〈Oa(λ)Ob(λ′)〉 =

 〈TO(λ)O(λ′)〉 〈O(λ′)O(λ)〉

〈O(λ)O(λ′)〉 〈T̃O(λ)O(λ′)〉

 , (243)

where T and T̃ represents time and anti-time orderings, and the subindices label the first

and the second copy. Explicitly, perturbative expansion gives

〈QabE (s)〉 = i

∫
ds′{〈TQabE (λ)QcdE (λ′)〉 − 〈QabE (λ′)QcdE (λ)〉}Ecd(x(s′)) +O(E2). (244)

We find that

〈QabE (s)〉 =

∫
ds′Gab,cdR,E (s− s′)Ecd(x(s′)), (245)
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with the retarded Green’s function given by

Gab,cdR,E (s− s′) = −iθ(s− s′)〈[QabE (s), QcdE (s′)]〉

= i(〈TQabE (s)QcdE (s′)〉 − 〈QabE (s′)QcdE (s)〉) (246)

In the low-energy regime, where the rate of variation of external fields is way slower than the

internal dynamics, the low-energy effective description should regard the internal dynamics

as instantaneous and Green’s function should be derivatives over δ-functions. Integrating

by parts, we find a derivative expansion

〈QabE (s)〉 = Λab,cd0 Ecd + Λab,cd1

d

ds
Ecd + . . . , (247)

and these Λab,cd0,1 are the structures that we would like to obtain to determine the dynamics.

In particular, the former encodes the static tidal response, which is essentially described

by the tidal operators introduced in the previous sections, while the latter includes the

dissipative effects. We note that in calculating d
dsEcd, the derivative acts on both the field

and the frames

D

Ds
Eab = ea

µeb
ν D

Ds
Eµν − e−1Ωa

cEcb − e−1Ωb
cEac. (248)

Variation with respect to the einbein gives the condition

δ

δe
Γ[∆, e, h; ∆̃, ẽ, h̃]

∣∣∣∣∣ ∆=∆̃
e=ẽ,h=h̃

= 〈p2 −HX −Hint〉 = 0, (249)

where the Hamiltonians are given by

HX = − δ

δe

∫
dλeLX(X, e−1Ẋ) = Ẋ

∂LX

∂Ẋ
− LX , (250)

and at the quadrupole order

Hint = − δ

δe

∫
dλe{QabEEab +QabBBab}. (251)
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We observe that the mass shell condition is given by M2 ≡ 〈p2〉 = 〈HX〉 in the absence of

interactions. As the mass is now determined by the internal dynamics, interactions that

change it could affect the mass by 〈Hint〉, an apparent manifestation of dissipation predicted

in this framework.

Explicitly, for the momentum equation of motion, we vary with respect to xµ and find

D

Ds
pµ = −1

2
Rµλρσ

dxλ

ds
Sρσ + eaρe

b
σ

[
〈QEab〉∇µEρσ + 〈QBab〉∇µBρσ

]
. (252)

The first term on the right is the usual Mathisson-Papapetrou-Dixon force [63,80]. By con-

tracting both sides with pµ, we could verify that indeed only the interaction part contribute

to the dissipation of mass

d

ds
M2 = 2eaρe

b
σ

[
〈QEab〉(p · ∇)Eρσ + 〈QBab〉(p · ∇)Bρσ

]
6= 0. (253)

To obtain the spin equation of motion consistently, we take the variation with respect to

the parameters θab = −θba from δeaµ = θabe
b
µ and find

D

Ds
Sµν =

dxν

ds
pµ − dxµ

ds
pν + 2eµae

ν
b

[
〈QEcd〉

δ

δθab
Ecd + 〈QBcd〉

δ

δθab
Bcd

]
, (254)

with the field variations given by

1

2
〈QEcd〉

δ

δθab
Ecd = 〈QEc[a〉E

c
b] − 〈QEcd〉

p[aεb]
ceBd

e√
p2

, (255)

1

2
〈QBcd〉

δ

δθab
Bcd = 〈QBc[a〉B

c
b] − 〈QBcd〉

p[aεb]
ceEde√
p2

. (256)

We find similarly that the only interaction part leads to the dissipation of spin

d

ds
S2 = 4〈QEab〉EbcSac + 4〈QBab〉BbcSac 6= 0. (257)

Furthermore, we also need to find the other set of Hamiltonian equations that determines

the velocities dxµ

ds and Ωab which are obtained by variations with respect to their conjugate
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momenta (the in-in expectation values). The position equation of motion is easy to find

dxµ

ds
+

1

2p2
Rνλρσ

dxλ

ds
SµνSρσ − pµ

p2
p · dx

ds

=
1

p2
〈QEab〉

(
2
√
p2eµdε

dacBb
c + eaρe

b
σS

µν∇νEρσ
)

+
1

p2
〈QBab〉

(
2
√
p2eµdε

dacEbc + eaρe
b
σS

µν∇νBρσ
)
, (258)

but the momentum equation would have dependence on the choice of 〈HX +Hint〉. We can

circumvent this model dependence on the internal dynamics by directly obtaining the spin

equation via matching to the full theory in the following applications to black holes.

0.12 Application to Kerr black holes

In this section, we apply the general framework described in the previous section to the

case of a Kerr black hole with mass M and spin S. For the low-frequency observation

characterized by ω, the EFT power counting consists of a double expansion in the small

parameters κ ≡ ~ω/mPl � 1 and GNMω � 1. The former controls quantum gravity

corrections, which are negligibly small for the classical applications here, while the latter

gives an expansion parameter for classical finite-size effects. Thus, we focus on the leading

order in GNMω power counting but zeroth order in κ. In terms of the dimensionless

rotation parameter χ = S/GNM
2, our EFT works upto extremality (maximal rotation)

χ2 ≤ 1. Equivalently, our EFT is for arbitrary ω/ΩH (with ΩH the angular velocity of

the horizon), and therefore extends previous work [43] to the ΩH � ω regime where these

effects are PN enhanced relative to the non-spinning case.

0.12.1 Wightman function from absorption probability

Here we extract the two-point Wightman correlators of the composite operators QE,Bab , by

matching to the graviton absorption probability given in [81,82]. The incoming graviton is

assumed to be in a state with fixed angular momentum quantum numbers (`,m, h = ±2),

sharply localized about a frequency ω. Classically, the probability is simply the coefficient

for absorption of a localized wavepacket in the given partial wave.
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The calculation is most simply done in the rest frame. The probability is given by

p(1→ 0) =
∑
X

|A(1 +M → 0 +X)|2, (259)

where the S-matrix amplitude takes the form

iA(1 +M → 0 +X) = 〈X; 0|T exp

[
iSint

]
|M ; 1〉

≈ − i
∫
ds〈X|QabE (s)|M〉eia(s)ejb(s)〈0|Eij(x0(s), 0)|λ〉

+ magnetic, (260)

at the lowest order in perturbation theory. Summing over the final states using the resolution

of identity
∑

X |X〉〈X| = I, we get

p(1→ 0) =
∑
X

∫
dsds′〈M ;λ|Hint(s)|X; 0〉〈X; 0|Hint(s

′)|M ;λ〉

=

∫
dsds′〈QEa1b1(s)QEa2b2(s′)〉ea1c1(s′)eb1d1(s′)〈λ|Ec1d1(x′0, 0)|0〉

×ea2c2(s)eb2d2(s)〈0|Ec2d2(x0, 0)|λ〉+ magnetic. (261)

where working in the rest frame, we have the freedom to choose the coordinate time as the

parametrization of the worldline

x0(s) = M?s, (262)

where M? is some unimportant constant to take care of the dimensions. We explain the

symbols in the following.

The graviton state |λ〉 with quantum numbers (`,m, h) is defined as a wavepacket

|λ〉 ≡
∫ ∞

0

dω

2π
ψλ(ω)|ω, `,m, h〉

where the spherical helicity eigenstates [83] and the wavepackets are normalized as

〈ω, `,m, h|ω′, `′,m′, h′〉 = 2πδ(ω − ω′)δ``′δmm′δhh′ , (263)
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and ∫ ∞
0

dω

2π
|ψλ(ω)|2 = 1, (264)

respectively such that 〈λ|λ〉 = 1. The one-graviton-state matrix elements of the field

strengths on the worldline are given by

〈0|Bab(x0, 0)|λ〉 = ±i〈0|Eab(x0, 0)|λ〉 = ±iεh,ij(k)e−i|
~k|x0 ,

By using the Wigner D-matrices, defined as the matrix elements of the rotation operator

Û [R(θ, φ, ψ)] with Euler angles (θ, φ, ψ)

D`
m,h(θ, φ, ψ) ≡ 〈`,m|Û [R(θ, φ, ψ)]|`, h〉, (265)

we further decompose the polarization tensors oriented along k̂ = (sin θ cosφ, sin θ sinφ, cos θ)

into

εh,ab(k) = 〈a, b|2, h〉 =

2∑
m=−2

〈a, b|2,m〉D`=2
m,h(θ, φ, 0). (266)

where 〈i, j| is the abstract representation of the space of symmetric traceless tensors. In 4

dimensions and in the rest frame, this is normalized as

〈a, b|c, d〉 =
1

2
(δacδbd + δadδbc −

2

3
δabδcd). (267)

(A concrete representation is given in [44].) The third angle is set to zero as this on-axis

rotation gives an unimportant phase factor. Furthermore, given that the one-graviton state

and the spherical helicity eigenstates are related by

〈ω, `,m, h|k, h〉 = (2π)2

√
2`+ 1

2πω
δ(ω − |~k|), (268)

lxxix



the wavepacket can be written as

〈0|Eab(x0, 0)|λ〉 =
∑
h′

∫
d3~k

(2π)32|~k|
〈0|Eab(x0, 0)|k, h′〉〈k, h′|λ〉

=

√
2`+ 1

4mPl
ψλ(x0)

2∑
m=−2

〈a, b|2,m′〉
∫
dΩD`∗

m′,h(θ, φ, 0)D`=2
m′,h(θ, φ, 0),

where we have written down the time domain representation

ψλ(x0) =

∫ ∞
0

d|~k||~k|
1
2

(2π)5/2
e−i|

~k|x0ψλ(|~k|). (269)

We use the orthogonality relation

∫
dΩD`∗

m,p(θ, φ, 0)D`′
m′,p(θ, φ, 0) =

4π

2`+ 1
δ``′δmm′ , (270)

to integrate over the solid angle and obtain

〈0|Eij(x0, 0)|λ〉 =
π√

5mPl

δ`,2〈i, j|2,m〉ψλ(x0). (271)

In the rest frame, we may also align the spin along x3-axis, we have the spatial compo-

nents

eac(s) =


cos Ωx0 − sin Ωx0 0

sin Ωx0 cos Ωx0 0

0 0 1

 , (272)

where Ω is the magnitude of angular velocity. In the abstract representation, we can trade

the tensor representation for the unitary representation

eace
b
d〈c, d|2,m〉 = 〈a, b|Û [R−1

z (Ωx0)]|2,m〉 = eimΩx0〈a, b|2,m〉. (273)

Now the remaining unknown is the 〈QE(s)QE(s′)〉 correlation function which we would

like to express in terms of a set of form factors as arbitrary functions of χ. Notice that

χ scales with inverse powers of 1/GN and thus must be matched non-perturbatively. The

form factors are enumerated by the possible tensor structures which can now depend upon
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the direction of the spin, the magnitude of which is absorbed into the form factors. It is

useful to expand this correlator into a basis of tensors that are invariant under rotations

about the spin axis. Viewing the correlator as a linear map on the 5D space of traceless

symmetric rank-` = 2 tensors (transverse to the black hole momentum pa), a basis of tensors

consists of the various powers of the generator J3 of rotations. Because we are in the ` = 2

representation of SO(3), only the powers Jk3 for k = 0, . . . , 4 are independent. For instance,

J5
3 = 5J3

3 − 4J3 and so on. Thus, our tensor basis consists of the identity tensor on the

` = 2 space.

〈a, b|c, d〉 =
1

2

[
〈a|c〉〈b|d〉+ 〈a|d〉〈b|c〉 − 2

3
〈a|b〉〈c|d〉

]
, (274)

with 〈a|b〉 = δab−papb/p2 the ` = 1 identity matrix, together with the independent powers of

the angular momentum J3 in the ` = 2 representation. In particular, the rotation generator

in the Cartesian basis is

〈a, b|J3|c, d〉 =
1

2
[〈a|c〉〈b|J3|d〉+ 〈a|d〉〈b|J3|c〉+ 〈b|c〉〈a|J3|d〉+ 〈b|d〉〈a|J3|c〉] (275)

where in turn the angular momentum generator in the ` = 1 space is 〈a|J3|b〉 = iscεc
a
b =

i√
p2
pcsdεcd

a
b (we denote the spin direction by the unit spacelike vector sa = δa3). The tensor

〈a|J3|b〉 has eigenvalues m = ±1, 0 corresponding to the eigenvectors va± = ∓ 1√
2

(δa1 ± iδa2)

and va0 = sa so it is normalized according to the usual conventions used in quantum mechan-

ics. Higher powers, of the form 〈a, b|Jk3 |c, d〉. can be obtained from Eq. (275) by successive

tensor contraction, e.g.

〈a, b|J2
3 |c, d〉 =

∑
e,f

〈a, b|J3|e, f〉〈e, f |J3|c, d〉, (276)

etc. We have defined these invariant tensors such that 〈a, b|J3|c, d〉 is pure imaginary and

Hermitian, and therefore our tensor basis satisfies the relation

〈a, b|J j3 |c, d〉 = (−1)j〈c, d|J j3 |a, b〉. (277)
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In this basis, the correlator then takes the form

〈QabE (s)QE,cd(s
′)〉 = M2

?

4∑
j=0

A+
E,j(s− s

′)〈a, b|J j3 |c, d〉, (278)

where the functions A+
E,j(s − s′) can depend on the magnitude of the particle spin as

well as its mass. We will adopt an identical decomposition for the magnetic correlator

〈QabB (s)QcdB (s′)〉.

In the point particle limit where our EFT is valid, the form factors A+
k (s − s′) are

analytic in ω, i.e. can be represented as series of derivatives acting on the delta function

δ(s− s′) given the lack of long-time tails. Note that Hermiticity of the operators QabE/B(s)

implies that the frequency space Wightman function

W ab,cd
E/B (ω) = M∗

∫
dseiωM∗s〈QabE/B(s)QcdE/B(0)〉 (279)

obeys the reality condition

[W ab,cd
E/B (ω)]∗ = W cd,ab

E/B (ω) (280)

on the real ω-axis. Given the properties of our tensor basis, this implies that the frequency-

dependent form factors A+
k (ω) = M∗

∫
dseiωM∗sA+

k (s) obey [A+
k (ω)]∗ = [A+

k (ω)] on the real

axis.

Inserting the form Eq. (278) into p(1→ 0), and using the fact that J3|`,m〉 = m|`,m〉,

we obtain that

p(1→ 0) =
4

5
GNω

5
4∑
j=0

mj
(
A+
E,j(ω −mΩ) +A+

B,j(ω −mΩ)
)
. (281)

The dependence on the shifted frequency ω−mΩ reflects the transformation from the static

frame to the rotating frame of the black hole where the correlators are defined. We can

read off A+
k (ω) by comparing powers of m in the result given in [81,82]

p(1→ 0) ≈ 16

225π
AH(GNM)4ω5

[
1 + (m2 − 1)χ2

] [
1 +

1

4
(m2 − 4)χ2

]
θ(ω−mΩH) (ω −mΩH) ,

(282)
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with AH = 4π(r2
++a2) = 8π(GNM)2

[
1 +

√
1− χ2

]
the area of the horizon, χ = a/GNM =

J/GNM
2 the dimensionless rotation parameter of the Kerr black hole, and ΩH = 4πa/AH

the angular velocity of the horizon. This result is valid to all orders in the rotation parameter

χ, but holds to leading order in GNMω � 1. The factor of ω − mΩH , ensures that his

result is valid in both the slow and rapidly rotating cases. We have inserted a step function

into Eq. (282) to enforce the condition ω −mΩH > 0 so that the single-particle absorption

probability is positive. Naively, this seems to imply that we can not trust our results in the

super-radiant regime ω � ΩH . However we can match in this regime for mΩH < 0, which

can then be continued for all m.

Comparison of p(1 → 0) with Eq. (281) suggests that we should identify the angular

velocity in the EFT with the horizon angular velocity,

Ω = ΩH =
4πa

AH
, (283)

which, together with Eq. (262) fixes the relation between the angular velocity Ωab and spin

Sab for a Kerr black hole,

e−1Ωab = gµνe
a
µ

D

Ds
eνb =

4π

AH

M∗
M

Sab. (284)

The non-vanishing frequency space response functions are then

A+
0,E(ω) = A+

0,B(ω) =
2AH

45πGN
(GNM)4(1− χ2)2θ(ω)ω, (285)

A+
2,E(ω) = A+

2,B(ω) =
AH

18πGN
(GNM)4χ2(1− χ2)θ(ω)ω, (286)

A+
4,E(ω) = A+

4,B(ω) =
AH

90πGN
(GNM)4χ4θ(ω)ω. (287)

In obtaining this result, we have used the equality of the electric and magnetic responses

that arises as a consequence of the Teukolsky equation [43]. We will check this below by

comparing to known results obtained via different methods.

The step function θ(ω) reflects that matching was performed under the assumption the

graviton is quantized around the Boulware vacuum [84], corresponding to no (Hawking)
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particle emission for ω −mΩH > 0. By contrast, matching in the Unruh state [85], where

the black hole can emit Hawking radiation, would lead to Wightman response functions

A+(ω) that are non-vanishing even at ω < 0. See [46] for a more detailed discussion of

matching in the Unruh state. It is straightforward to check that in the Boulware state, the

single-particle emission probability p(0→ 1) is given in the EFT by a formula like Eq. (281)

that involves the Wightman correlators A+(mΩ−ω), leading to the prediction of a non-zero

emission probability for superradiant modes with ω −mΩH < 0:

p(0→ 1) ≈ 16

225π
AH(GNM)4ω5

[
1 + (m2 − 1)χ2

] [
1 +

1

4
(m2 − 4)χ2

]
θ(mΩH−ω) (mΩH − ω) ,

(288)

see [44] for more a detailed discussion of the worldline EFT in the regime of superradiant

emission.

0.12.2 The causal response function

In the classical processes that we consider in this paper, the relevant correlator is the

retarded Green’s function

Gab,cdR (s− s′) = −iθ(s− s′)〈
[
Qab(s), Qcd(s′)

]
〉 (289)

rather than the Wightman functions obtained in the previous section. Because this is a real

quantity, the frequency space causal response Gab,cdR (ω) = M∗
∫
dseiωM∗sGab,cdR (s) satisfies

the reality condition [
Gab,cdR (−ω)

]∗
= Gab,cdR (ω), (290)

for real frequencies. Thus ReGab,cdR (ω) is an even function on the real ω-axis while ImGab,cdR (ω)

is an odd function. The retarded Green’s function is related to the two-point Wightman

correlators by a dispersion relation of the form

Gab,cdR (ω) = M∗

∫
dseiωM∗sGab,cdR (s) =

∫ ∞
−∞

dω′

2π

W ab,cd(ω′)−W cd,ab(−ω′)
ω − ω′ + iε

, (291)
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ω ↔ −ω ab↔ cd

Re
[
W ab,cd(ω)−W cd,ab(−ω)

]
odd even

Im
[
W ab,cd(ω)−W cd,ab(−ω)

]
even odd

Table 1: The properties of W ab,cd(ω) −W cd,ab(−ω). Even/odd means that the function
changes/does not change sign under the given transformation.

which, as a consequence, defines a function that is analytic for Imω ≥ 0 but singular on the

lower-half complex-ω plane. Expanding out the dispersion relation in Eq. (291) into its real

and imaginary parts, we find that in terms of the Wightman functions

ReGab,cdR (ω) =
1

2
Im
[
W ab,cd(ω)−W cd,ab(−ω)

]
+ Pr

∫ ∞
0

ω′dω′

π

Re
[
W ab,cd(ω′)−W cd,ab(−ω′)

]
ω2 − ω′2

,(292)

and

ImGab,cdR (ω) = −1

2
Re
[
W ab,cd(ω)−W cd,ab(−ω)

]
+ ω · Pr

∫ ∞
0

dω′

π

Im
[
W ab,cd(ω′)−W cd,ab(−ω′)

]
ω2 − ω′2

.(293)

This result follows from Eq. (280), which implies the exchange properties under the trans-

formations ω → −ω or ab↔ cd listed in Table 1.

Note that in addition to the contribution of the worldline multipole operators, the

physical response (as determined, for example, through measurements of the gravitational

field at large distances) can also receive contributions from terms in the worldline action

that are polynomial in Eab, Bab and/or their derivatives with respect to the parameter s.

We will henceforth refer to these terms as “local”, to make the distinction from terms in

the action involving the internal degrees of freedom X.

Focusing on purely electric couplings, such local terms modify the low-frequency re-

sponse by an analytic function Lab,cd(ω) whose real part is even under ω ↔ −ω or index

interchange ab ↔ cd. Then using (277) we see that the local contribution to the real re-

sponse can only involve the tensor structures 〈a, b|J j3 |c, d〉 with j = 0, 2, 4. In particular,

the static Love numbers of the black hole, which are identified with the local response at

ω = 0 (both from Lab,cd(ω) and from Eq. (291)) cannot involve tensor structures that are

linear or cubic in the spin. Alternatively, time reversal-invariance implies that terms odd
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in spin vanish in the static limit.

The contribution from terms in the action also modifies the imaginary part by terms

that are odd under either ω → −ω or ab ↔ cd exchange. Despite possibly having a non-

vanishing imaginary part, the local response Lab,cd(ω) does not contribute to dissipation,

as will be discussed below, and thus can not be matched using p(1 → 0) but instead must

be fixed by matching to other observables in the full theory, for instance, elastic scattering

of low-frequency gravitons off the black hole.

Because our matching procedure only fixes the Wightman function at low frequency, it

does not completely determine the form of the retarded response function. In particular,

matching to low-frequency absorption cannot yield information about the terms in Eq. (292)

and Eq. (293) that involve principal part integrals over high arbitrarily high-frequency

scales, where the EFT description necessarily breaks down. However, from Eq. (292) and

Table 1, we see that the principal part integral contribution to ReGab,cdR (ω) is analytic at

ω = 0 (assuming the integral in Eq. (292) converges), and even under either ω ↔ −ω

or ab ↔ cd exchange. Similarly ImGab,cdR (ω) is odd if we replace ω ↔ −ω or ab ↔ cd.

Consequently, the principal part contribution toGab,cdR (ω) is physically indistinguishable (i.e.

of the same form), from the local response Lab,cd(ω) arising from adding local counterterms

to the point particle action.

On the other hand, the calculable part of Eqs. (292), (293) gives rise to a genuinely

non-local contribution to the retarded Green’s function, of the form

Gab,cdR,non−local(ω) = − i
2

[
W ab,cd(ω)−W cd,ab(−ω)

]
. (294)

This object does not have the correct ab ↔ cd index exchange properties to arise from

curvature couplings in the point particle action, and cannot be absorbed into a local coun-

terterm. It is in particular this function Gab,cdR,non−local(ω) that gives rise to dissipative effects

in the EFT description of the black hole.

Ignoring the local contribution to the causal response, we obtain from Eqs. (285)-(287)
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the result

GabR,Ecd(ω) =
M2AH
45πGN

(GNM)4 (−iω) · 〈a, b|(1− χ2)2 +
5

4
χ2(1− χ2)J2

3 +
1

4
χ4J4

3 |c, d〉, (295)

with an identical expression for the magnetic Green’s function GabR,Bcd(ω). This result is

equivalent to the statement that, up to local terms, the quadrupole moment induced5 by

an external electric field is

〈QabE (s)〉 =

∫
ds′Gab,cdR,E (s− s′)Ecd(s′)

=
AH

45πGN
(GNM)4〈a, b|(1− χ2)2 +

5

4
χ2(1− χ2)J2

3 +
1

4
χ4J4

3 |c, d〉
d

ds
Ecd(x(s)),(296)

where the derivative here is in the co-rotating frame, see Eq. (248).

An identical formula relates the induced magnetic moment 〈QabE (s)〉 to the co-rotating

components of magnetic curvature Bab(x(s)) along the point particle worldline.

Taking the limit where the rotation of the black hole is larger than the intrinsic time

dependence of the curvature, we may approximate

d

ds
Eab ≈ −Ωa

cEcb − Ωb
cEac = iM∗ΩH〈a, b|J3|c, d〉Ecd, (297)

in which case the induced moment is of the form

M−1
∗ 〈QabE (s)〉 ≈ 4i(GNM)5

45GN
χ〈a, b|(1− 2χ2)J3 +

5

4
χ2J3

3 |c, d〉Ecd. (298)

Despite appearances, Eq. (298) does not imply the existence of a non-vanishing static Love

tensor for the Kerr black hole, since this relation cannot arise from local terms in the point

particle action. In particular, a term such as
∫
χdsEab〈a, b|J j3 |c, d〉Ecd for j = 1, 3 vanishes

identically due to the antisymmetry under ab ↔ cd of the tensor structures. We have

verified, however, that Eq. (298) is consistent, for χ � 1, with the results of [52] which

5. Because of spin, the Kerr black hole has an infinite series of permanent multipole moments [93], which
in the point particle limit are equivalent to local spin-dependent worldline interactions that linearly in the
curvature tensor. Here, by induced moment, we mean the shift in the value of the permanent moments that
are generated when a background field Rµνρσ 6= 0 is turned on.
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obtained the quadrupolar response of a slowly spinning Kerr black hole, at linear order in

χ.

On the other hand, it is in principle possible that Kerr black holes have non-zero static

Love numbers, but by symmetry those, would have to correspond to local worldline coun-

terterms which in our basis take the form

Spp ⊃ G4
NM

6

∫
dsfj(χ

2)χjEab〈a, b|J j3 |c, d〉Ecd, (299)

with j = 0, 2, 4, as well as their magnetic counterparts. Here, we have defined χ =
√
−SµSµ
GNp2

≤ 1, and f0,2,4(χ2) are functions analytic at χ2 = 0. The overall scaling G4
NM

6

is the characteristic magnitude of the static tidal response of a compact object. It is well

known that the spin-independent term in Eq. (299) has vanishing Wilson coefficient, i.e

f0(χ2 = 0) = 0, [86–88]. Recently, ref. [53] has extended this calculation to arbitrary or-

ders in spin (previous partial results can be found in [89]) and found, remarkably, that

the all-local contributions to the static response function of the Kerr black hole are in fact

vanishing as well.

In addition to the local contributions to the static response, there are also terms in the

point particle action which modify Gab,cdR (ω) away from ω = 0. The leading such terms at

low frequency are of the form

Spp ⊃ G5
NM

6

∫
dsχjEab〈a, b|[iJ3]j |c, d〉Ėcd, (300)

with j = 1, 3. These local interactions not forbidden by symmetries (it is even under both

parity and time reversal), and yield contributions to 〈QabE 〉 of comparable magnitude to

those in Eq. (296). However, unlike the terms in Eq. (296), the curvature couplings in

Eq. (300) cannot give rise to dissipative effects, despite the fact that they contribute to

ImGab,cdR,E (ω). The recent analysis of ref. [53] indicates that, for the Kerr black hole, terms

such as those in Eq. (300) are also vanishing. Assuming the validity of the results in [53],

it then follows that Eq. (295) completely characterizes the black hole response function at

linear order in time derivatives but to all orders in spin.
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0.12.3 Black hole dissipative dynamics in a tidal environment

Assuming that all the local contributions to black hole response are indeed zero [53], the

complete equations of motion for a spinning black hole moving in a background gravitational

field with curvature scale R � GNM can be obtained straightforwardly by inserting the

induced moments 〈QE,B〉 from Eq. (296) and its magnetic analog into Eqs. (252), (254).

Because the resulting expressions are messy and not particularly illuminating, we will report

instead on the implications of these equations for the rate of change of mass and spin

that arise as a consequence of tidal interactions, given in Eqs. (253), (257). We consider

separately the cases of a rapidly spinning black hole, R−1 � ΩH and χ ∼ O(1), as well as

the opposite slow-spin limit R−1 � ΩH , which necessarily requires that |χ| � 1,

Using the relation in Eq. (262) between our parameter s and the proper time τ along

the worldline of the rotating black hole, we find, in the large spin case

d

dτ
M ≈ 8(GNM)5

45GN
χεµνλs

λ

[
(1 + 3χ2)EµρĖ

ρ
ν +

15

4
χ2Eµρs

ρĖνσs
σ

]
+ magnetic

+O(G7
NM

7/R7). (301)

This result, which is valid to all orders in spin, agrees with results found in Refs. [90, 91].

To linear order in χ it also agrees with results obtained in [43]. In the opposite, χ → 0

limit, we find instead

d

dτ
M ≈ 16

45GN
(GNM)6

[
ĖρσĖ

ρσ + ḂρσḂ
ρσ
]

+O(χ,G6
NM

6/R6) (302)

which receives corrections at linear order in χ� 1 from radiative tail contributions to the

EFT matching and to the Schwinger-Keldysh action. This is also in agreement with [51,92].

For the torque induced on the black hole by the tidal background, we find from Eqs. (254), (296)

d

dτ
S ≈ − 2

45GN
(GNM)5χ

[
8(1 + 3χ2)EρσE

ρσ + 3(4 + 17χ2)EλρE
λ
σs
ρsσ + 15χ2(Eρσs

ρsσ)2
]

(303)

+ magnetic.

in the limit ΩH � R−1. In the opposite, χ → 0, Eq. (296) is dominated by the time
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variation of Eµν and the torque is instead

d

dτ
S ≈ − 8

45GN
(GNM)6εµνλs

λ
[
EµρĖ

ρ
ν +BµρḂ

ρ
ν

]
(304)

Both Eqs. (303), (304) are in agreement with results obtained previously in [51, 92]. To

go to next order in GNM/R � 1 would require the inclusion in both the EFT matching

and Schwinger-Keldysh action of infrared divergent tail terms corresponding to graviton

scattering off the black holes own gravitational field. Ref. [91] has reported a result for

these next-to leading order corrections, although a discrepancy with their earlier results [90]

obtained in a probe limit remains unsettled in the literature.

As another check of our results, note that from Eqs. (252), (254), we also find that in

terms of the curvatures Eab, Bab in the rotating frame

d

dτ
M − ΩH

d

dτ
S = 〈QEab〉

D

Dτ
Eab + 〈QBab〉

D

Dτ
Bab, (305)

or by Eq. (296),

d

dτ
M − ΩH

d

dτ
S =

AH(GNM)4

45πGN

D

Dτ
Eab〈a, b|(1− χ2)2 +

5

4
χ2(1− χ2)J2

3 +
1

4
χ4J4

3 |c, d〉
D

Dτ
Ecd

+ magnetic. (306)

Because the even powers of the tensor 〈a, b|J3|c, d〉 are positive definite, this quantity is

manifestly positive in the physical region χ2 ≤ 1. Therefore the change in the black hole

area as a result of tidal interactions is also positive

d

dτ
AH =

2AH

M
√

1− χ2

[
Ṁ − ΩH Ṡ

]
≥ 0, (307)

as required on general grounds [94].

xc



(a)

<latexit sha1_base64="jI4J7hhQylP9+iANoltISJDWJiw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoUIv+qWyW3XnIKvEy0kZcjT6pa/eIGZphNIwQbXuem5i/Iwqw5nAabGXakwoG9Mhdi2VNELtZ/NTp+TcKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadog3BW355lbQuq16tWruvles3eRwFOIUzqIAHV1CHO2hAExgM4Rle4c0Rzovz7nwsWtecfOYE/sD5/AGK8Y1R</latexit>

(b)

<latexit sha1_base64="JhaEG5pNSYRFO1v5INP2gmPV8yg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSLUS0mkoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJaPZpKgH9Gh5CFn1FjpoRJc9Etlt+rOQVaJl5My5Gj0S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+anTsm5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14bWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6RRuCt/zyKmldVr1atXZfK9dv8jgKcApnUAEPrqAOd9CAJjAYwjO8wpsjnBfn3flYtK45+cwJ/IHz+QOMdo1S</latexit>

1

<latexit sha1_base64="RSOBfsC0h9n0lPM3VbiR0pceZig=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBfOOMvA==</latexit>

2

<latexit sha1_base64="XW0qcPrccSfI7onjbbF2xR2gGy4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6LHoxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyterVJr1sr12zyOApzDBVyBB9dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBfmeMvQ==</latexit>

2

<latexit sha1_base64="XW0qcPrccSfI7onjbbF2xR2gGy4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6LHoxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyterVJr1sr12zyOApzDBVyBB9dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBfmeMvQ==</latexit>

QE,B
1

<latexit sha1_base64="FmlM2iaISNsUyMfkMLdMcLMVbRU=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBg5RdKeixVASPLdgPadeSTbNtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4g508Z1v53c2vrG5lZ+u7Czu7d/UDw8aukoUYQ2ScQj1QmwppxJ2jTMcNqJFcUi4LQdjG9mfvuJKs0ieW8mMfUFHkoWMoKNlR4aj+ntRW3a9/rFklt250CrxMtICTLU+8Wv3iAiiaDSEI617npubPwUK8MIp9NCL9E0xmSMh7RrqcSCaj+dHzxFZ1YZoDBStqRBc/X3RIqF1hMR2E6BzUgvezPxP6+bmPDaT5mME0MlWSwKE45MhGbfowFTlBg+sQQTxeytiIywwsTYjAo2BG/55VXSuix7lXKlUSlVa1kceTiBUzgHD66gCndQhyYQEPAMr/DmKOfFeXc+Fq05J5s5hj9wPn8A0Q6PxQ==</latexit>

Figure 15: Potential exchange diagrams responsible for two-particle effective interaction.
The graviton is mediated between the mass monopole of particle 2 and (a) mass monopole
of 1 (b) the tidal quadrupole of 1 (a similar diagram with 1↔ 2 has been omitted).

0.13 Post-Newtonian equations of motion for binary dynam-

ics

The same worldline effective action formalism can also be applied to dissipation in dy-

namically generated spacetimes, i.e sourced by the particles themselves, rather than the

fixed background field case discussed above. In order to do so, we have to include in the

Schwinger-Keldysh functional an integral over the fluctuations of the gravitational field

itself6.

As an example, we will consider a binary system of black holes in the non-relativistic

regime, with v2 ∼ GNMr/r � 1. For illustration, we will focus on the regime of rapidly

spinning black holes, with ΩH � v/r. The rotation parameters will be assumed to scale

as χ ∼ O(1). Integrating out the potential graviton exchange between the black holes,

Fig. 15(b), the two-particle interaction term reduces to [50]

Γint ≈ −GNm1m2

∫
dt

[
QabE,1(t)

m2
1

e1
i
ae1

j
b + (1↔ 2)

]
∂i∂j

1

|~x(t)|
, (308)

with ~x = ~x1−~x2, up to terms suppressed by more power of the velocities. Varying the in-in

action, we obtain, in the linear response limit, an instantaneous non-conservative force on

6. The role of the in-in formalism to describe radiation reaction forces was first discussed in [95].
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the black holes that is given by,

~F1(t) =
δ

δ~x1(t)
Γ[~x, ~̃x; e1,2, ẽ1,2]

∣∣∣
~x=~̃x;e1,2=ẽ1,2

≈ −GNm1m2

[
〈QabE,1(t)〉

m2
1

e1
a
je1

b
k + (1↔ 2)

]
∇∂j∂k

1

|~x(t)|
= −~F2(t), (309)

with ~x = ~x1 − ~x2. Similarly, the torque on each black hole can be obtained from the

Schwinger-Keldysh action by varying with respect to the frame eai,

d

dt
~Si1 = ei1aε

abc δ

δθ1
bc

Γ[~x, ~̃x; e1,2, ẽ1,2]
∣∣∣
~x=~̃x;e1,2=ẽ1,2

≈ 2GNm2

m1
ei1ae

j
1be

k
1cε

abd〈QE,1cd〉∂j∂k|~x|−1.(310)

On the right-hand side of this and the previous equation, the in-in expectation values in

the PN limit can be obtained from Eq. (296), by inserting

Eab = GNm2e1
i
ae1

i
b∂i∂j |~x(t)|−1 (311)

into 〈QabE,1〉, and similarly for the case of 〈QabE,2〉. This yields the result

~F1(t) = −~F2(t) = −8

5

G5
Nm

3
1m

2
2

|~x|7

[
1 + 3χ2

1 −
15

4
χ2

1

(
~s1 ·

~x

|~x|

)2
]
~x

|~x|
× ~S1 + (1↔ 2) (312)

for the non-conservative force. The torque on each particle is

d

dt
~S1 = −8

5

G5
Nm

3
1m

2
2

|~x|6

[
1 + 3χ2

1 −
15

4
χ2

1

(
~s1 ·

~x

|~x|

)2
][

~S1 −
~S1 · ~x
~x2

~x

]
. (313)

In Eq. (312), “1↔ 2” has the meaning that we exchange the particle labels without changing

the sign of ~x. The PN equations of motion to linear order in the spin for an arbitrary

composite object were first calculated in [45]. Our results at χ � 1 agree with those of

ref. [45] if one uses Eq. (285) with χ = 0 to fix their dissipation parameter. The friction

force ~F1,2 is a 5PN effect, while our result for the torque is 4PN relative to the leading order

gravito-magnetic spin precession formula predicted by linearized GR.

As a simple consequence of Eq. (312), consider the mechanical power that is absorbed
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or extracted by the black hole horizons

d

dt
E =

∑
α

~vα · ~Fα ≈
8

5

G5
Nm

2
1m2

|~x|8
(m1 +m2)

[
1 + 3χ2

1 −
15

4
χ2

1

(
~s1 ·

~x

|~x|

)2
]
~S1 · ~L+ (1↔ 2),

(314)

where ~L is the orbital angular momentum about the center of mass. This results agrees to

linear order with [43,45]. Depending on the relative orientations between the spins and the

orbit, the rate of change of energy can be positive or negative, reflecting the possibility of

energy extraction from the black holes through the Penrose process. For example, if the

spins are orthogonal to the orbital plane, dE/dt can be either positive or negative depending

on whether the spins are aligned or anti-aligned with ~L. Regardless, Eq. (314) enters at

order v5, or 2.5PN relative to leading order quadrupole radiation from the binary and, as

is well known [38, 51], is enhanced relative to absorption in the case of non-rotating black

holes by a factor of v−3. A final check of these results is that the orbital angular momentum

as predicted by Eq. (312) is given by

d

dt
~L =

∑
α

~xα × ~Fα ≈ −
d

dt
(~S1 + ~S2), (315)

with d~S1,2/dt given by Eq. (313). It therefore follows that the total angular momentum

~J = ~L + ~S1 + ~S2 is conserved, as should be expected given that the tidal dynamics we

consider here does not involve any gravitational radiation out to infinity at leading PN

order.
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Conclusions and Outlook

In this thesis, we reported on recent progress in developing worldline EFT methodologies for

describing gravitational dynamics and gravitational radiation involving many-body systems

of compact spinning objects. In Chapter 0.2, we gave a brief introduction to the central

ideas in perturbative gravity, the logic behind applying the worldline EFT framework in

gravity, and how to describe spin, finite-size effect, and dissipation therein.

In Chapter 0.4.4, we described how the color-kinematic duality and double copy con-

struction formulated in quantum field theory scattering amplitudes led to the proposal of

classical double copy [35] in studying classical Yang-Mills and dilaton-gravity radiation am-

plitudes. We generalized the discussion in [35] to worldline EFT containing spin degrees

of freedom and verified that the same procedure works at leading order, provided that we

also include an axion channel and the couplings are fixed to specific spins. In particular, we

found that the worldline spin-gauge field coupling corresponds to a gypromagnetic ratio of

Dirac value gD = 2 and, the spacetime couplings of the gravitational channels correspond to

the low-energy EFT of string theory. The form of the string-gravity action is very suggestive

of underlying connections to string theories, but the worldline couplings deviate from the

ones expected in a worldline effective action of a closed string due to the fact that the latter

has two spinning sectors while we only have one in the former.

This problem was resolved by the classical double copy based on color-kinematic duality

[36]. In Chapter 0.7.4, we generalized this upgraded version to the spinning system and

found that it is possible to incorporate both sectors. In this new language, an appropriate

choice of Dirac gyromagnetic ratio is necessary for the color-kinematic duality to hold.

We explicitly calculated the low-energy effective gauge vertex of a classical open string by

xciv



dimensionally reducing over the string length and found that it is in agreement with the

Yang-Mills worldline EFT with gD = 2. Similarly, the low-energy vertices from a closed

string match with those from the string-gravity worldline EFT with two spin sectors. The

particular case with spin sectors identified decouples from axion and can be understood as

corresponding to unoriented strings. Furthermore, we showed that the modified classical

double copy is applicable to worldline EFTs with finite-size corrections, provided that the

Wilson coefficients are set to specific ratios.

Along a parallel direction, in Chapter 0.10, we extended the works from [42–44, 50] to

construct the worldline EFT that describes dissipative dynamics of Kerr black holes. To do

this, we matched with absorption probabilities calculated by black hole perturbation theory

and extracted the in-in correlation functions for the worldline multipoles to all orders in spin

using a convenient basis for these correlation functions. This information was substituted

into the equation of motion to derive the dissipation of spin and mass and the results

were found to be consistent with the existing literature at the lowest order. Finally, we

demonstrated the utility of this framework by computing the dissipation in a PN binary

and obtained a new result that is 2.5 PN enhanced from the non-spinning counterpart.

As the classical application of double copy is a burgeoning field at the moment, there

are many potential topics for further investigations. For phenomenological applications, it

would be useful to remove the axion and dilaton channels. The former might be achieved

due to the underlying string theory interpretation, so it would be helpful to verify the

stringy interpretation beyond the leading order results. For the latter, a proposed solution

is to introduce a ghost field that cancels with the dilaton [96]. However, there is not a

systematic construction of the ghost field and it is not obvious whether it holds at higher

orders. Another possibility is to further the progress on applications to bound orbits as

opposed to scattering sources [97] since the bounded binaries are much more relevant to

observations compared to the scattering scenario. Moreover, as we have seen progress in

the case of conservative dynamics, it might be useful if we could establish some direct

connections between the double copy construction in scattering amplitude methods and

radiative dynamics [98,99].

There are also plenty of direct follow-ups to the Kerr horizon EFT program. As already
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mentioned, we would like to perform higher-order calculations and resolve the discrepancies

in existing literature [90, 91]. It would also be interesting to explore the phenomenological

implications of our results, since the enhanced dissipative effect could be relevant to obser-

vations. Following the works of [46, 49], the spinning generalizations to the treatments on

quantum gravitational effects in the worldline EFT framework is another exciting possibil-

ity. Finally, there have been efforts aimed at quantizing the worldline theory of spinless

black holes to establish connections to S-matrix theory [100, 101] but the quantization has

yet to be extended to spinning black holes with dissipative effects.

In summary, the worldline EFT has been proven to be a powerful tool for studying grav-

itational dynamics and calculating gravitational-wave observables and the generalization to

spinning systems is essential to observations. In preparation for the increasing sensitivity

of gravitational wave experiments in this new decade, it is surely a fruitful area of research

to focus on.
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Worldline graph calculations

In this appendix, we summarize the explicit results for the contributions to the total ampli-

tudes that are due to radiation coming directly off the worldline described in Section 0.7.2

and 0.7.3. The two sections present the relevant contributions in the gauge and gravitational

theories respectively.

.1 Gauge theory

The relevant contributions are from Figs. 6(a), (b) and are given by Eqs. (130), (131).

These can be written down explicitly as

(130) = ig2
∑
α,β
α 6=β

∫
dµαβ(k)

[
[cα, cβ]a

`2α
k · pα

{
κα(`β ∧ pβ)αp

µ
α − κβ(`β ∧ pα)βp

µ
α

}

+ (cα · cβ)caα

{
`2α

k · pα

[
(`β ∧ pβ)α

(
`µβ −

k · `β
k · pα

pµα

)]
− `2α
k · pα

[
(k · pα)(Sβ ∧ `β)µ + (`β ∧ `α)βp

µ
α + (`β ∧ pα)β

(
`µβ −

k · `β
k · pα

pµα

)]
+

}]
,

(316)

(131) = ig2
∑
α,β
α 6=β

∫
dµαβ(k)

[
[cα, cβ]a

pα · pβ
k · pα

`2α(Sα ∧ k)µ

+ (cα · cβ)caα

{
`2α

k · pα

[
pα · pβ
k · pα

(k · `β)− (k · pβ)

]
(Sα ∧ k)µ

− `2α
k · pα

[
(`α ∧ `β)αp

µ
β − (k ∧ pβ)α`

µ
β − (k · pβ)(Sα ∧ `β)µ + (k · `β)(Sα ∧ pβ)µ

]}]
.

(317)

xcvii



.2 Gravitational theory

First, we look at the axion current. This receives contributions from the worldline diagram

Fig. 7(a), given by Eqs. (144), (145). These compute to

(144) =
iκ3

2
εµν

∑
α,β
α 6=β

∫
µαβ(k)`2α

[
−

(pα · pβ)2(k · `β)

(k · pα)2
(Sα ∧ k)µpνα

+
pα · pβ
k · pα

{
(pα · pβ)`νβ − 2(k · pα)pνβ + 2(k · pβ)pνα

}
(Sα ∧ k)µ − (µ↔ ν)

]
, (318)

(145) =
iκ3

2
εµν

∑
α,β
α 6=β

∫
dµαβ(k)`2α

[
pα · pβ
k · pα

{
(k · `β)(Sα ∧ pβ)µpνβ − (k · pβ)(Sα ∧ `β)µpνβ

− (k ∧ `β)αp
µ
αp

ν
β + (k ∧ pβ)αp

µ
α`
ν
β

}
+ (pα · pβ)

{
(Sα ∧ `β)µpνβ − (Sα ∧ pβ)µ`νβ

}
+ (k · pα)(Sα ∧ pβ)µpνβ − (k · pβ)(Sα ∧ pβ)µpνα − (k ∧ pβ)αp

µ
αp

ν
β

+
p2
β

d− 2

{
2(Sα ∧ k)µ − (k · pα)Sµνα

}
− (µ↔ ν)

]
. (319)

Next, we move to graviton radiation. Worldline contributions to the energy momentum

pseudotensor are from Figs. 8(a), (b). The corresponding expressions Eqs. (149), (150) are

respectively given by

(149) = −2iκ3εµν
∑
α,β
α 6=β

∫
dµαβ(k)`2α

[
(pα · pβ)(k · `β)

2(k · pα)2

{
(`β ∧ pβ)α − (`β ∧ pα)β

}
pµαp

ν
α

−
pα · pβ
k · pα

{(
(`β ∧ pβ)α − (`β ∧ pα)β

)
pµα`

ν
β +

1

2
(`α ∧ `β)βp

µ
αp

ν
α

}
−

k · pβ
2(k · pα)

{
(`β ∧ pβ)α − (`β ∧ pα)β

}
pµαp

ν
α

+ (pα · pβ)(Sβ ∧ `β)µpνα +
{

(`β ∧ pβ)α − (`β ∧ pα)β

}
pµαp

ν
β

+
m2
β

2(d− 2)
(Sα ∧ `β)µpνα + (µ↔ ν)

]
, (320)
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(150) = −2iκ3εµν
∑
α,β
α 6=β

∫
dµαβ(k)`2α

[
(pα · pβ)2(k · `β)

2(k · pα)2
(Sα ∧ k)µpνα −

(pα · pβ)2

2(k · pα)
(Sα ∧ k)µ`νβ

−
pα · pβ

2(k · pα)

{
(k · pβ)

(
(Sα ∧ k)µ + (Sα ∧ `α)µ

)
pνα + (k · `β)(Sα ∧ pβ)µpνα

+ (`α ∧ `β)αp
µ
αp

ν
β − (k ∧ pβ)αp

µ
α`
ν
β

}
+ (pα · pβ)(Sα ∧ k)µpνβ +

1

2
(k · pβ)(Sα ∧ pβ)µpνα

− 1

2
(k ∧ pβ)αp

µ
αp

ν
β −

m2
β

d− 2
(Sα ∧ k)µpνα + (µ↔ ν)

]
. (321)

Finally, the dilaton worldline graph Fig. 9(a) gives rise to the contribution in Eq. (153)

and can be computed explicitly to be

(153) = − 2iκ3

(d− 2)1/2

∑
α,β
α 6=β

∫
dµαβ(k)`2α

[
pα · pβ

(k · pα)2
p2
α(k · `β)

{
(`β ∧ pα)β − (`β ∧ pβ)α

}

+
pα · pβ
k · pα

p2
α(`α ∧ `β)β +

k · pβ
k · pα

p2
α

{
(`β ∧ pβ)α − (`β ∧ pα)β

}
+ 2(pα · pβ)(`β ∧ pα)β

]
.

(322)
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Total amplitudes in the

gravitational theory

In this appendix, we display the total radiation amplitude in each channel as calculated in

Section 0.7.2 and 0.7.3. First, the axion amplitude is given by

Aa(k)
∣∣
O(κ3,S1)

= − iκ
3aµν
2

∑
α,β
α 6=β

∫
µαβ(k)

[
−

(pα · pβ)2(k · `β)`2α
(k · pα)2

(Sα ∧ k)µpνα

+
(pα · pβ)`2α
k · pα

{(
(pα · pβ)`νβ − 2(k · pα)pνβ + 2(k · pβ)pνα

)
(Sα ∧ k)µ + (k · `β)(Sα ∧ pβ)µpνβ

− (k · pβ)(Sα ∧ `β)µpνβ − (k ∧ `β)αp
µ
αp

ν
β + (k ∧ pβ)αp

µ
α`
ν
β

}
+ (pα · pβ)

{
`2α(Sα ∧ `β)µpνβ − `2α(Sα ∧ pβ)µ`νβ + 2(k · `α)(Sα ∧ `α)µpνβ

− 2(k · pβ)(Sα ∧ `α)µ`να − 2(k ∧ `α)αl
µ
αp

ν
β

}
+ `2α(k · pα)(Sα ∧ pβ)µpνβ

− `2α(k · pβ)(Sα ∧ pβ)µpνα − 2(k · pα)(k · pβ)(Sα ∧ `α)µpνβ + 2(k · pβ)2(Sα ∧ `α)µpνα

− `2α(k ∧ pβ)αp
µ
αp

ν
β + 2(k · pβ)(k ∧ `α)αp

µ
αp

ν
β + 2(k · pβ)(`α ∧ pβ)α`

µ
αp

ν
α

− 2(k · pα)(`α ∧ pβ)α`
µ
αp

ν
β + 2(k · `α)(`α ∧ pβ)αp

µ
αp

ν
β − (µ↔ ν)

]
. (323)
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The leading order graviton amplitude is given by

Ag(k)
∣∣
O(κ3,S1)

= −iκ3εµν
∑
α,β
α 6=β

∫
dµαβ(k)

[
(pα · pβ)(k · `β)`2α

2(k · pα)2

{
(pα · pβ)(Sα ∧ k)µpνα

+
(

(`β ∧ pβ)α − (`β ∧ pα)β

)
pµαp

ν
α

}
−

(pα · pβ)`2α
k · pα

{
1

2
(pα · pβ)(Sα ∧ k)µ`να

+
1

2
(k · pβ)

(
(Sα ∧ k)µ + (Sα ∧ `α)µ

)
pνα +

1

2
(k · `β)(Sα ∧ pβ)µpνα +

1

2
(`α ∧ `β)βp

µ
αp

ν
α

+
1

2
(`α ∧ `β)αp

µ
αp

ν
β +

(
(`β ∧ pβ)α − (`β ∧ pα)β −

1

2
(k ∧ pβ)α

)
pµα`

ν
β

}
−

(k · pβ)`2α
2(k · pα)

{
(`β ∧ pβ)α − (`β ∧ pα)β

}
pµαp

ν
α + (pα · pβ)

{
`2α
2

(Sα ∧ `β)µpνβ

− (`α · `β)(Sα ∧ `α)µpνβ + (k · pβ)(Sα ∧ `α)µ`να +
1

2
`2α(Sα ∧ pβ)µ`νβ

+ (`α ∧ `β)αp
µ
β`
ν
α + (`α ∧ pβ)α`

µ
α`
ν
α −

`2α
2

(`α ∧ pβ)αη
µν

}
+

1

2

{
`2α(`β ∧ pβ)α − `2β(`α ∧ pβ)α

}
pµαp

ν
β +

{
(k · pβ)(Sα ∧ `α)µ − `2α

2
(Sα ∧ pβ)µ

+ (`α ∧ pβ)αl
µ
α + (`α ∧ `β)αp

µ
β

}(
(k · pα)pνβ − (k · pβ)pνα

)
+ (µ↔ ν)

]
, (324)

and finally, we have the leading order dilaton amplitude

Ad(k)
∣∣
O(κ3,S1)

= − iκ3

(d− 2)1/2

∑
α,β
α 6=β

∫
dµαβ(k)p2

α

[
pα · pβ

(k · pα)2
`2α(k · `β)

{
(`β ∧ pα)β − (`β ∧ pβ)α

}

+
k · pβ
k · pα

`2α

{
(`β ∧ pβ)α − (`β ∧ pα)β

}
+
pα · pβ
k · pα

`2α(`α ∧ `β)β + 2(k · pβ)(`α ∧ `β)β

]
. (325)
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Classical closed strings

In this appendix, we give the explicit derivations of the low-energy limit of axion and

graviton vertices for classical closed strings as discussed in Section 0.9.2.

.3 Axion coupling

The axion term in the background field action

SB = gc

∫
dτ

∫ π

0
dσεαβBµν(X)∂αX

µ∂βX
ν (326)

where we have denoted the closed string coupling as

gc = − 1

2πl2
. (327)

The one point vertex corresponding to this part of the action is given by

Jµν(x) = igc

∫
dτ

∫ π

0
dσεαβ∂αX

µ∂βX
νδD(x−X). (328)

The zeroth order is the solution to the free closed string mode expansion (sum of left and

right movers)

Xµ(τ, σ) = xµ + l2pµτ + Zµ(τ, σ), (329)

cii



where we have defined

Zµ(τ, σ) = i
l

2

∑
n6=0

1

n
e2inσ(e−2inταµn − e2inτ α̃µ−n), (330)

Z ′µ(τ, σ) = −l
∑
n 6=0

e2inσ(e−2inταµn − e2inτ α̃µ−n), (331)

Żµ(τ, σ) = l
∑
n 6=0

e2inσ(e−2inταµn + e2inτ α̃µ−n), (332)

where prime and dot denotes the spatial and temporal derivatives with respect to the

worldline coordinates. Using the same set of constraints for a rotating string at the origin,

we have

Jµν(k) = igc

∫
dDxeik·x

∫
dτ

∫ π

0
dσ(ẊµX ′ν −X ′µẊν)δD(x−X)

' igc
∫
dτeik·pl

2τ

∫ π

0
dσ[(l2pµZ ′ν − l2Z ′µpν)

+ (ik · Zl2pµ + Żµ)Z ′ν − Z ′µ(ik · Zl2pν + Żν)]. (333)

Since the closed string has periodic boundary conditions, the linear terms
∮
dσZ ′ = 0

naturally. Hence, the lowest order consists of two powers of the modes

Jµν(k) = igc

∫
dτeik·pl

2τ

∫ π

0
dσ[(ikλZ

λl2pµ + Żµ)Z ′ν − (µ↔ ν)]. (334)

The first term is given by

∫
dτeik·pl

2τ ikλl
2pµ

∫ π

0
dσZλZ ′ν

=

∫
dτeik·pl

2τ l
4

2
kλp

µ
∑
n,m 6=0

1

n
(e−2inταλn − e2inτ α̃λ−n)(e−2imτανm − e2imτ α̃ν−m)

∫ π

0
dσe2i(n+m)σ

=π2l4kλp
µ
∑
n6=0

1

n
[δ(k · pl2)αλnα

ν
−n − δ(k · pl2)α̃λnα̃

ν
−n + δ(k · pl2 − 4n)α̃λnα

ν
n − δ(k · pl2 − 4n)αλnα̃

ν
n]

'π2l4kλp
µ
∑
n6=0

1

n
[δ(k · pl2)αλnα

ν
−n − δ(k · pl2)α̃λnα̃

ν
−n], (335)
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since we are looking at k ·p� 1/l2. For the second, we integrate by part where appropriate

∫
dτeik·pl

2τ

∫ π

0
dσŻµZ ′ν

=−
∫
dτ

∫ π

0
dσeik·pl

2τZµŻ ′ν −
∫
dτ

∫ π

0
dσeik·pl

2τ ik · pl2ZµZ ′ν

=

∫
dτ

∫ π

0
dσeik·pl

2τZ ′µŻν

− π2k · pl4
∑
n6=0

1

n
[δ(k · pl2)αµnα

ν
−n − δ(k · pl2)α̃µnα̃

ν
−n

+ δ(k · pl2 − 4n)α̃µnα
ν
n − δ(k · pl2 − 4n)α̃µnα̃

ν
n]. (336)

The first two terms are constrained by the δ-function to vanish; thus, the remaining gives

∫
dτ

∫ π

0
dσeik·pl

2τ ŻµZ ′ν − (µ↔ ν) ' 0. (337)

Substituting the string coupling constant and the mode expansions, the one point vertex is

then given by

Jµν(k) = igcπ
2l4δ(k · pl2)kλ

∑
n6=0

1

n
[pµ(αν−nα

λ
n − α̃ν−nα̃λn) + pν(αλ−nα

µ
n − α̃λ−nα̃µn)]. (338)

.4 Graviton coupling

In conformal gauge, the graviton coupling term looks like

Sg = − 1

2πl2

∫
dτ

∮
dσhµν(X)ηαβ∂αX

µ∂βX
ν (339)

for a closed string. The one point vertex corresponding to this part of the action is given

by

V µν(x) = gc

∫
dτ

∮
dσηαβ∂αX

µ∂βX
νδD(x−X). (340)
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The zeroth order is the solution to the free closed string mode expansion (sum of left and

right movers)

Xµ(τ, σ) = xµ + l2pµτ + i
l

2

∑
n6=0

1

n
e2inσ(e−2inταµn − e2inτ α̃µ−n). (341)

Using the same set of constraints for a rotating string at the origin, we have

V µν(k) = gc

∫
dDxeik·x

∫
dτ

∮
dσηαβ∂αX

µ∂βX
νδD(x−X)

' gc
∫
dτeik·pl

2τ

∮
dσ[l4pµpν + il4pµpνk · Z + l2pµŻν + l2Żµpν

− l4pµpν(k · Z)2 + il2pµk · ZŻν + il2pνk · ZŻµ + ŻµŻν − Z ′µZ ′ν ]. (342)

The lowest order gives the point particle contribution. The terms with one power of Z vanish

upon closed loop integration of σ. The double time derivative gives the same contribtuion

(up to high-frequency terms) as the double σ derivative and hence cancels each other.

Explicitly, we have

∮
dσŻµŻν = l2

∑
n6=0

(αµnα
ν
−n + e2inτ α̃µ−ne

2inταν−n

+ e−2inταµne
−2inτ α̃νn + e2inτ α̃µ−ne

−2inτ α̃νn). (343)

The term with two powers of k is suppressed and hence we have

V µν(k) ' gc
∫
dτeik·pl

2τ

∮
dσ[il2pµk · ZŻν + il2pνk · ZŻµ]

= −gcl
4π

2

∫
dτeik·pl

2τ [pµkλ
∑
n,m 6=0

1

n
(αλnα

ν
−n + α̃λnα̃

ν
−n − e4inτ α̃λ−nα

ν
−n + e−4inταλnα̃

ν
n) + (µ↔ ν)]

' igcl
4

2
2π2δ(k · pl2)[pµkλ(Eλν + Ẽλν) + (µ↔ ν)]. (344)

The corresponding energy-momentum pseudo-tensor is negative two times this

T̃µν(k) = 2πiδ(k · p)[kλ(SL + SR)λ(νpµ)]. (345)
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Radiation from higher-dimensional

operators

In this appendix, we summarize the results for the gravitational radiation amplitudes due

to finite-size operators as calculated in Section 0.10

.5 Spin-independent contributions

First we consider radiation induced by graviton or dilaton exchange only. Then, as de-

picted in Fig. 13(a), the quadratic graviton operators Eq. (224) lead to graviton radiation

amplitudes

AµνG1
=2κ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`µβ − (k · `β)pµβ

][
(k · pβ)`νβ − (k · `β)pνβ

]
, (346)

AµνG2
=κ3

∑
α,β

∫
`α,β

µα,β(k)`2α

{[
(pα · pβ)[(k · pα)`µβ − (k · `β)pµα]

+ (k · pα)[(k · pβ)pµα − (k · pα)pµβ]
][

(k · pβ)`νβ − (k · `β)pνβ

]
− 1

d− 2

[
(k · pα)`µβ − (k · `β)pµα

][
(k · pα)`νβ − (k · `β)pνα

]}
, (347)

AµνG3
=
κ3

2

∑
α,β

∫
`α,β

µα,β(k)`2α

{[
(pα · pβ)[(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pβ)pµα

− (k · pα)pµβ]
][

(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ]
]

− 1

d− 2

[
(k · pα)`µβ − (k · `β)pµα

][
(k · pα)`νβ − (k · `β)pνα

]}
. (348)
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In addition, the graviton-dilaton operator Eq. (227) gives rise to the diagram Fig. 13(b)

that corresponds to graviton radiation of the form

AµνGD = − κ3

d− 2

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pα)`µβ − (k · `β)pµα

][
(k · pα)`νβ − (k · `β)pνα

]
. (349)

We observe that the combinations AG2 −AGD and AG3 − 1
2AGD yield results independent

of d.

In the dilaton channel, the quadratic dilaton operators Eq. (225) allow diagrams of the

form shown in Fig. 13(c), resulting in radiation amplitudes

AD1 =
κ3

(d− 2)3/2

∑
α,β

∫
`α,β

µα,β(k)`2α(k · `β)2, (350)

AD2 =
κ3

(d− 2)3/2

∑
α,β

∫
`α,β

µα,β(k)`2α(k · `β)(k · pα)2, (351)

AD3 =
κ3

(d− 2)3/2

∑
α,β

∫
`α,β

µα,β(k)`2α(k · pα)4. (352)

In addition, Fig. 13(d) with an insertion of the graviton-dilaton operator Eq. (227) also

leads to radiation in the scalar channel,

ADG =
κ3

(d− 2)1/2

∑
α,β

∫
`α,β

µα,β(k)`2α

[(
(pα · pβ)(k · `β)− (k · pα)(k · pβ)

)2
−

(k · `β)2

d− 2
+

2(k · `β)(k · pα)

d− 2

]
. (353)

Finally, diagram Fig. 13(e) with a single insertion of the graviton-axion operator Eq. (228)

yields the axion radiation amplitude

AµνAG =2κ3

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`µβ − (k · `β)pµβ

]
×
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ]

]
. (354)

We note that in matching the double copy to the dilaton channel, we have omitted

contact terms with no propagator factors. Such terms yield integrals that are proportional
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to to

∫
dd`α
(2π)d

dd`β
(2π)d

[
(2π)δ(`α · pα)ei`α·bα

][
(2π)δ(`α · pα)ei`β ·bβ

]
(2π)dδd(`α + `β − k)

=

∫
dταdτβe

ik·x(0)β
∫

dd`

(2π)d
ei`·x

(0)
α e−i`·x

(0)
β =

∫
dταdτβe

ik·x(0)β δd(x(0)
α − x

(0)
β ), (355)

where the free particle paths are x
(0)
α = bα + vατα. Because we consider classical scattering

at non-zero impact parameter bαβ = bα − bβ 6= 0, such terms are identically zero.

.6 Spin-dependent contributionss

The spinning point sources now support internal graviton and axion exchange, correspond-

ing to the diagrams in Fig. 14(a). These yield graviton emission amplitudes

AµνG1
=2iκ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`νβ − (k · `β)pνβ

][
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]
,

(356)

AµνG2
=
iκ3

2

∑
α,β

∫
`α,β

µα,β(k)`2α

{[
(k · pβ)`νβ − (k · `β)pνβ

]
×
[
(`β ∧ pα)β[(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp

µ
α]
]

+
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ]

]
×
[
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]}
, (357)

AµνG3
=
iκ3

2

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα]

+(k · pα)[(k · pβ)pνα − (k · pα)pνβ]
][

(`β ∧ pα)β[(k · pα)`µβ − (k · `β)pµα]

+ (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp
µ
α]
]
. (358)
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At linear order in spin, we can also have graviton radiation mediated by axion exhange, as

in Fig. 14(b)

AµνGA =iκ3
∑
α,β

∫
`α,β

µα,β(k)`2α

{
−
[
(k · pβ)`νβ − (k · `β)pνβ

]
×
[
(`β ∧ pα)β[(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp

µ
α]
]

+
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ]

]
×
[
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]}
. (359)

There is also dilaton radiation, from the diagram in Fig. 14(c) with one insertion of the

graviton-dilaton mixing operator in Eq. (227)

ADG =
iκ3

(d− 2)1/2

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)(k · pα)− (k · `β)(pα · pβ)

]
×
[
(`β ∧ pα)β(k · `β) + (`α ∧ `β)β(k · pα)

]
. (360)

Finally, there is spin-dependent axion radiation, involving insertions of the purely axionic

operators in Eq. (226) in the diagram of Fig. 14(e). Two of these amplitudes readily factorize

into products of the kinematic factors appearing in gauge theory

AµνA1
=4iκ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`νβ − (k · `β)pνβ

][
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]
,

(361)

AµνA4
=2iκ3

∑
α,β

∫
`α,β

µα,β(k)`2α

[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα]

+ (k · pα)[(k · pβ)pνα − (k · pα)pνβ]
][

(`β ∧ pα)β[(k · pα)`µβ − (k · `β)pµα]

+ (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp
µ
α]
]
. (362)

The remaining two, AA2 and AA3 , do not factorize into Yang-Mills kinematic factors. How-

ever, if we also includeAAG (Fig. 14(d)) obtained from inserting the graviton-axion operator

cix



Eq. (228), we find that the linear combinations

AµνAG +AµνA2
+

1

2
AµνA3

=2iκ3
∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · `β)(Sβ ∧ `β)µ − (`α ∧ `β)β`

µ
β

]
×
[
(pα · pβ)[(k · pα)`νβ − (k · `β)pνα] + (k · pα)[(k · pβ)pνα − (k · pα)pνβ]

]
, (363)

AµνAG −A
µν
A2
− 1

2
AµνA3

=− 2iκ3
∑
α,β

∫
`α,β

µα,β(k)`2α

[
(k · pβ)`νβ − (k · `β)pνβ

]
×
[
(`β ∧ pα)β[(k · pα)`µβ − (k · `β)pµα] + (k · pα)[(k · pα)(Sβ ∧ `β)µ − (`α ∧ `β)βp

µ
α]
]
, (364)

indeed factorize.
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