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Abstract 
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Electrocatalyst Systems 

Patrick Eugene Schneider 

2021 

 

 

 Studies of molecular electrocatalysts often involve input from quantum chemical 

computations in the pursuit of catalyst design targeting several desirable features. To this end, 

conventional density functional theory (DFT) calculations have proven to be a good match with 

a reasonable balance between computational accuracy and cost. However, a multicomponent 

method that treats select nuclei on the same quantum mechanical level as electrons would be 

useful for a more proper treatment of nuclear quantum effects. Such a multicomponent DFT 

method has been developed in recent years within the nuclear-electronic orbital (NEO) 

framework. However, for the multicomponent method to be practically applied to large, 

chemically interesting systems, several functionalities were necessary. The NEO diagonal 

Born-Oppenheimer correction was calculated and shown to be small enough to validate the 

underlying Born-Oppenheimer-like separation between light and heavy nuclei. Analytical NEO 

Hessian expressions were derived and implemented, and they were utilized to identify 

transition states and generate multicomponent minimum energy paths. Lastly, the calculation 

of infrared spectra in the NEO framework was formulated and shown to produce accurate 

values compared to experiment. These developments have each been significant steps in 

preparing NEO-DFT for utilization in modeling molecular electrocatalysts.  
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Designing more efficient molecular electrocatalysts is currently an important research 

area for evolving energy needs. These efforts are intended to produce catalysts with higher 

turnover frequencies (TOFs), with lower required overpotentials, and composed of earth 

abundant materials. Collaboration between experimental and theoretical groups has provided 

a useful dialogue on the design of these systems. In those collaborations, density functional 

theory (DFT) has proven to be the most popular computational tool for studying molecular 

electrocatalysts.1 This popularity is due to the method’s tractable scaling for larger systems, as 

well as the relative accuracy of computed geometries and energies.  Interesting quantities of 

molecular electrocatalyst systems that can be practically calculated with DFT include pKa and 

E1/2 values of species in a catalytic cycle.2 These values can be computed with near-

quantitative accuracy when referenced to an experimentally known value and can be directly 

related to the desired attributes noted above.  

 As popular as DFT calculations are, computed pKa values are usually less quantitatively 

reliable than computed reduction potentials. This trend can be partially attributed to 

conventional methods utilizing the Born-Oppenheimer approximation and treating the nuclei as 

classical point charges, thus missing important characteristics of key protons that may exhibit 

proton delocalization and anharmonicity. These nuclear quantum effects may also be 

significant for electron transfer and proton transfer steps in a catalytic cycle, as exemplified in 

certain Ni(P2N2)2 systems.3 Concerted proton-coupled electron transfer (PCET) is also 

important in some molecular electrocatalysts, and the theoretical treatment of concerted PCET 

would benefit from a three-dimensional quantum mechanical treatment of the transferring 

proton(s), as contemporary applications of PCET theory often require the costly calculation of 

proton potentials on a grid to ultimately yield excited proton vibrational states.4-5 

 The nuclear-electronic orbital (NEO) method is a multicomponent quantum chemistry 
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method that provides an option for treating specific nuclei quantum mechanically, on the same 

level as the electrons. In other words, the NEO framework does not invoke the Born-

Oppenheimer approximation between select nuclei, usually key protons, and the electrons.6 

However, a Born-Oppenheimer-like separation is still maintained between the remaining 

“classical” nuclei and the quantum particles (electrons and select nuclei), with the latter 

responding instantaneously to any change in the configuration of classical nuclei. In order to 

validate the separation between quantum and classical nuclei inherent to NEO methods, a 

multicomponent counterpart of the diagonal Born-Oppenheimer correction (DBOC)7  must be 

calculated and studied. The DBOC is also called the “adiabatic correction” as it is a correction 

to the conventional electronic energy that accounts for the kinetic energy operator of the fixed 

point-charge nuclei, resulting in an adiabatic surface.8 If this adiabatic surface differs 

appreciably from the original electronic surface, then the DBOC is significant and the Born-

Oppenheimer approximation is ill fit to meaningfully describe the physics of the system. 

The NEO formalism can be adapted into multicomponent analogs of conventional 

electronic structure methods, such as Hartree-Fock (HF) theory, to include nuclear quantum 

effects in such calculations. Similarly, a variety of wavefunction-based NEO methods have 

been developed in recent years with the multicomponent coupled cluster9-10 and orbital-

optimized MP211 methods being highlights. While these NEO wavefunction methods are robust 

and can yield more accurate computed quantities, a method with lower computational cost is 

necessary for practical applications involving the relatively large molecular electrocatalyst 

systems. To meet this need, a multicomponent variant of DFT, denoted NEO-DFT, has been 

developed.12-13 The NEO-DFT method has been implemented within a Kohn-Sham style 

formalism,13 which can be viewed as a density functional analog of HF theory. This NEO-DFT 

implementation benefits from the attractive computational scaling and relative accuracy that 
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has made conventional DFT the method of choice for studying larger systems. 

 As NEO-DFT is a density functional method, it requires the use of several density 

functionals. Among these are the familiar electronic exchange-correlation (exc) functional, as 

well as the multicomponent-specific protonic exchange-correlation functional and an electron-

proton correlation (epc) functional. In practice, common conventionally developed exc 

functionals, such as B3LYP or PBE0, can be employed in a NEO-DFT calculation, allowing a 

particular exc functional to be chosen based on each system’s needs. As the protons are 

relatively localized in space, development of a sophisticated proton exchange-correlation 

functional can be avoided by simply using exact exchange for the protons and neglecting a 

treatment for proton-proton correlation. Ultimately, the epc functional is arguably the most 

important quantity to capture even a qualitatively correct physical picture within the NEO-DFT 

implementation, as an attractive potential exists between the two charged particles. A great 

amount of work has been conducted in deriving proper epc functionals. 

A handful of epc functionals have been derived, parametrized, and implemented for 

NEO-DFT. The development of these functionals followed a Colle-Salvetti formulation that 

resulted in the creation and subsequent parametrization of both local density approximation-

type14 and generalized gradient approximation-type15 epc functionals. These functionals allow 

calculations of qualitatively correct proton densities compared to a grid reference and 

quantitative accuracy in calculations of proton affinities with NEO-DFT.16 The accuracy in 

proton affinity values rivals conventional DFT while including nuclear quantum effects into the 

self-consistent field procedure to enable certain types of calculations not possible with 

conventional DFT.14, 16 Previous work has found these developed epc functionals to be 

transferrable in the sense that the accuracy of the functional is not dependent on the choice of 

the exc functional.17 For the treatment of excited states, multicomponent time-dependent HF 
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and time-dependent DFT analogs, NEO-TDHF and NEO-TDDFT, respectively, have been 

developed and provide not only accurate electronic excitation energies of the system, but also 

the vibrational excitation energies of the chosen quantum nuclei.18-20 

 As described to this point, the NEO-DFT method seems the perfect multicomponent 

candidate for utilization in the calculation of molecular electrocatalyst properties. However, 

major utilities for the characterization of the NEO reaction surface and vibrational analysis 

have yet to be developed and would be required for any serious study of molecular 

electrocatalysts. From a computational standpoint, the potential energy surface (PES) is a 

function of the nuclear coordinates of the system. The PES can, in a sense, be mapped 

through calculating energies at different geometries. Energy gradients on this surface are 

useful in determining local and global minima of the PES, which correspond to optimized 

geometries of the chemical species. For a better characterization of the PES, further 

derivatives are desired. The second derivatives of this energy surface with respect to atomic 

displacements can be used to generate a force constant matrix called the energy coordinate 

Hessian, hereon referred to as simply the Hessian. This Hessian provides information on the 

curvature of the PES and can be used to characterize stationary points as transition states or 

local minima. 

As the Hessian can characterize transition states, it is thus integral in determining 

minimum energy paths between reactants and products on the PES that, by definition, pass 

through a transition state. At stationary points, the Hessian can be employed in a harmonic 

approximation to yield vibrational modes and corresponding frequencies. In turn, these 

vibrational frequencies would be required in the calculation of thermodynamic quantities 

integral to the description of catalytic pathways, such as free energy differences. The Hessian 

is a derivative quantity and can be computed numerically in a straightforward manner, although 
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at greater computational expense. Ideally, an analytical procedure is desired for the calculation 

of these second derivatives, as this will make computations involving the NEO Hessian 

tractable in terms of cost. 

 The NEO Hessian will provide characterization of points on the NEO PES, as well as 

vibrational modes for the classical nuclei. However, these vibrational modes will not be 

comparable to experimentally obtained infrared (IR) spectroscopy data, as the NEO modes 

entail instantaneous response of the quantum nuclei to the motion of the classical nuclei. In 

other words, while the NEO Hessian produces vibrational modes that accurately describe the 

NEO PES, there is improper coupling between the quantum and classical nuclei for 

comparison to IR spectroscopy. Furthermore, the NEO PES has lesser dimensionality than the 

conventional counterpart, so certain vibrational modes dominated by the motion of the 

quantum nuclei would not be obtained through vibrational analysis using only the NEO 

Hessian. Rather, it has been found that information is required from both the NEO Hessian and 

NEO-TDHF/TDDFT to yield a complete set of molecular vibrational frequencies that can be 

compared to IR spectra. 

 In the next chapter of this dissertation, the NEO DBOC is developed and calculated for 

a range of typical small molecular systems. The effect of this DBOC on the NEO PES is 

measured and is shown to be negligible for the systems studied, validating the 

quantum/classical separation made in the NEO method between different types of nuclei. 

 In chapter 3, the derivation for the analytical calculation of NEO Hessian elements is 

presented and implemented. Analytically calculated NEO Hessians are then used in transition 

state searches for an SN2 reaction and a hydride transfer reaction. The Hessian is once again 

employed to determine minimum energy paths for each of these reactions, and differences 

between the calculated NEO and conventional paths are discussed. 
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 Chapters 4 and 5 cover the development of the NEO-DFT(V) method, which couples 

the classical nuclear vibrational modes from the NEO Hessian with the quantum nuclear 

vibrational excitations from NEO-TDDFT to produce a complete set of molecular vibrational 

modes and frequencies. The theory for this coupling is shown, and calculations are conducted 

to demonstrate the performance of the method compared to conventional harmonic and 

anharmonic vibrational analysis relative to experimental data. Cases involving single and 

multiple quantum nuclei are studied in each chapter, respectively. In addition to providing 

calculated IR spectra based on the NEO method, the NEO-DFT(V) results show promising 

agreement with experiment, mostly due to anharmonicity of the quantum nuclei through the 

inclusion of the NEO-TDDFT vibrational excitation energies in the overall vibrational analysis. 

 The final chapter then briefly summarizes the preceding work and provides a broad 

outlook on the state of NEO methods considering these developments. In addition to the work 

presented in this dissertation, several other projects concerning both NEO method 

development and computational studies of molecular electrocatalysts in conjunction with 

experimental collaborators have been completed in recent years and are complementary to the 

main body of this dissertation. While not featured as individual chapters, it is worthwhile to 

highlight these works, which have been published and are available at the following 

references: 17, 21-25. 
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Abstract 

The nuclear-electronic orbital (NEO) method treats specified nuclei, typically 

protons, quantum mechanically on the same level as the electrons. This approach 

invokes the Born-Oppenheimer separation between the quantum and classical nuclei, 

as well as the conventional separation between the electrons and classical nuclei. To 

test the validity of this additional adiabatic approximation, herein the diagonal Born-

Oppenheimer correction (DBOC) within the NEO framework is derived, analyzed, and 

calculated numerically for a set of eight molecules.  Inclusion of the NEO DBOC is 

found to change the equilibrium bond lengths by only 10-4 Å and the heavy atom 

vibrational stretching frequencies by ~1 – 2 cm-1 per quantum proton bonded to an atom 

participating in the vibrational mode. These results imply that the DBOC does not 

significantly impact molecular properties computed with the NEO approach. 

Understanding the physical characteristics and quantitative contributions of the DBOC 

has broad implications for applications of multicomponent density functional theory and 

wavefunction methods.  
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Introduction 

Nuclear quantum effects are manifested by phenomena such as zero-point 

energy, vibrational excitations, and hydrogen tunneling. Moreover, non-Born-

Oppenheimer effects are significant in a wide range of chemical and biological 

processes, including those involving proton-coupled electron transfer.1 Multicomponent 

methods, where more than one type of particle is treated quantum mechanically, have 

been developed to include nuclear quantum effects as well as some non-Born-

Oppenheimer effects in quantum chemistry calculations.2-5  A computationally tractable 

multicomponent method is the nuclear-electronic orbital (NEO) method.5 The NEO 

method differs from conventional electronic structure methods in that specified nuclei, 

typically key protons, are treated quantum mechanically on the same level as the 

electrons, avoiding the Born-Oppenheimer separation between the specified nuclei and 

the electrons. Popular conventional electronic methods such as Hartree-Fock theory, 

density functional theory (DFT), or coupled cluster theory with single and double 

excitations (CCSD) have been adapted to the NEO framework in the form of NEO-HF, 

NEO-DFT, and NEO-CCSD, respectively.5-9 

In the NEO approach, the system is divided into electrons, quantum nuclei, and 

other nuclei, which are typically denoted classical nuclei for simplicity, although they 

may be treated quantum mechanically in a different manner.  The electrons and 

quantum nuclei are treated on the same level using molecular orbital techniques, and at 

least two classical nuclei are required to avoid difficulties with translations and rotations. 

The NEO potential energy surface depends on only the coordinates of the classical 

nuclei, and each point on this potential energy surface is determined by solving the 
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time-independent Schrödinger equation for the electrons and quantum nuclei with fixed 

classical nuclei.  Thus, at the core of the NEO method is the Born-Oppenheimer 

separation between the classical nuclei and the subsystem consisting of the electrons 

and quantum nuclei. In other words, the electrons and quantum nuclei are assumed to 

respond instantaneously to the motion of the classical nuclei. Analogous to conventional 

electronic structure calculations,10-13 the diagonal Born-Oppenheimer corrections 

(DBOCs) can be computed within the NEO framework and added to the NEO potential 

energy surface to account for the most significant non-Born-Oppenheimer effects. The 

magnitudes of these terms are related to the ratio of the masses of the two types of 

particles, leading to the expectation that the DBOCs are significantly larger for protons 

relative to other nuclei than for electrons relative to protons.  The objective of this 

chapter is to derive the equations for the NEO DBOCs and to compute them for a set of 

eight molecules with varying numbers of quantum protons, analyzing their magnitudes 

and impact on the NEO potential energy surfaces.   

Theory 

The adiabatic approximation for the total wavefunction within the NEO-HF and 

NEO-DFT frameworks is 

 
( ) ( )

( ) ( ) ( )

c NEO e p

c e e p p

, ;

; ;

 =

=

R r r R

R r R r R

 

  
  (2.1) 

where re, rp, and R denote the collective coordinates of the electrons, quantum protons, 

and classical nuclei, respectively, and ( )e e ;r R , ( )p p ;r R , and ( )c R  denote the 

wavefunctions associated with the electrons, quantum protons, and “classical” nuclei, 
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respectively.  Here ( )NEO e p, ;r r R  is the NEO wavefunction satisfying 

 ( ) ( ) ( )NEO NEO e p NEO NEO e p, ; , ;H ψ E ψ=r r R R r r R   (2.2) 

where the NEO Hamiltonian includes the kinetic energies of the electrons and quantum 

protons but not the kinetic energy of the classical nuclei.  The second equality in Eq. 

(2.1) is valid only for NEO wavefunctions of the form ( ) ( ) ( )NEO e p e e p p, ; ; ;=r r R r R r R   , 

as for NEO-HF and NEO-DFT. Furthermore, although the quantum nuclei are assumed 

to be protons, the expressions derived herein are valid for other types of quantum nuclei 

as well. 

The variational optimization of ( )c R  leads to the following equation for the 

“classical” nuclei 

 ( )2 2

e p e p NEO c c

1 1 1 1

2 2
( )

I I

I II I

E E
M M

−  −  + =
 
 
 

  R        (2.3) 

where the summations are over all “classical” nuclei, which have masses MI. The Born-

Oppenheimer NEO potential energy surface is ( )NEO
E R , and the NEO DBOC is the 

second term on the left side of Eq. (2.3).  The NEO DBOC can be expressed as 

 

2

DBOC e p e p

2 2

e e p p

e e p p

1
| ( )

2

1
| |

2

1
| |

2

I

I I

I I

I I
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E
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M
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   

   

= − 

 = −  + 
 
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 







 (2.4) 

The electronic term has the identical form as the DBOC in conventional electronic 
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structure theory.10-13 Note that the DBOC would have a more complicated form if the 

NEO wavefunction were not simply the product of electronic and protonic 

wavefunctions. Extensions of this NEO DBOC derivation to correlated wavefunction 

NEO methods, such as NEO-CCSD9 and configuration interaction methods, may be 

implemented following the analogous derivations for conventional electronic structure 

theory.13-17 Note also that the DBOC is rigorously derived for wave function theories but 

in practice can be computed for the Kohn-Sham determinant within the framework of 

DFT, as discussed further below. 

The programmable equations for the numerical calculation of the electronic and 

protonic DBOCs, respectively, are as follows: 

 
e

e

DBOC e e 2

11
|

2 4

I
I I

I II I

S
E

M M
 


−

=   =    (2.5) 

 
p

p

DBOC p p 2

11
|

2 4

I
I I

I II I

S
E

M M
 


−

=   =    (2.6) 

 ( ) | ( ) , e, pj

I j I j IS j    = + − =R R   (2.7) 

where δ is the step size in the numerical differentiation, and e

IS  and p

IS  are electronic 

and protonic wavefunction overlaps of perturbed geometries, respectively.13 Typically 

the quantum subsystem includes both α- and β-spin electrons but only high-spin 

quantum protons (i.e., the protons are localized with only a single proton occupying 

each molecular orbital).  

To provide a qualitative comparison of the electronic and protonic DBOCs, we 

examine two simple model systems.  The electronic DBOC for the hydrogen atom in 
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units of Hartree is e e
DBOC

p2

m
E

m
=  , which is 0.27 mH or 60 cm-1.18 The analog for the 

protonic DBOC is a diatomic molecule, in which the heavy atom has mass MC and the 

hydrogen atom has mass mp, with a single vibrational mode of frequency ν that can be 

described by a one-dimensional harmonic oscillator model.  The protonic DBOC for this 

model system is 
pp

DBOC

C2 2

m hν
E

M
= , where the second factor is the zero-point energy 

associated with the vibrational mode (see Appendix A for details). To provide a 

qualitative estimate, if ν = 2000 cm-1 and MC = 10mp, then p

DBOCE = 50 cm-1, which is of 

similar magnitude as e

DBOCE  for the hydrogen atom. Moreover, e

DBOCE  and p

DBOCE  for these 

model systems are each expressed as the product of a ratio of masses and an intrinsic 

energy (i.e., the Hartree for the hydrogen atom and the zero-point energy associated 

with the vibrational mode for the diatomic molecule).  We emphasize that these model 

systems do not account for the complexities of molecules, which involve many heavy 

nuclei of varying masses and nuclear charges, multiple types of electrons (i.e., core and 

valence), and proton vibrational modes of different types and frequencies.  

Nevertheless, these model systems illustrate the common form of the electronic and 

protonic DBOCs, as well as the dependence of the protonic DBOC on the frequencies 

associated with the quantum protons. 

Results and Discussion 

 We computed the DBOCs for a diverse set of molecules with varying numbers of 

quantum protons. For each molecule, all electrons and all protons were treated 

quantum mechanically, as depicted for two molecules in Figure 2.1. The geometry of 
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each system was optimized at the NEO-DFT level using the B3LYP electronic 

exchange-correlation functional19-21 and the epc17-2 electron-proton correlation 

functional8 unless otherwise specified. Note that the choice of electronic exchange-

correlation functional is not expected to impact the conclusions based on the analysis 

herein.22 The cc-pVTZ electronic basis set23 was used in conjunction with an even-

tempered 8s8p8d8f nuclear basis set with 2 2 =  and 2 = .24 The electronic and 

nuclear basis function centers for each quantum hydrogen were chosen to be the same 

and were optimized variationally as part of the single-point NEO energy calculations. All 

of the conventional electronic DFT calculations were performed at the B3LYP/cc-pVTZ 

level. An in-house developmental version of the GAMESS quantum chemistry 

package25 was used for the NEO calculations. The convergence criteria for both the 

electronic and nuclear densities in the self-consistent-field (SCF) procedure were 10-8, 

which is tighter than the default values because the numerical DBOC is highly sensitive 

to slight changes in the wavefunction between perturbed geometries. Equations (2.5)–

(2.7) were used to compute the total NEO DBOC, as well as the electronic and protonic 

components, by perturbing each classical coordinate by δ = 10-3 Bohr, which was found 

to be sufficient for the desired level of accuracy (Tables A2 and A3 of Appendix A).  For 

comparison, the DBOC computed with conventional electronic DFT was also calculated.  

Table 2.1 presents the total NEO DBOC, the corresponding electronic and 

protonic components, and the conventional electronic DBOC, denoted e,conv

DBOCE , for eight 

molecules. The numerical precision of the calculated values of the DBOC is ~0.1 cm-1 

(Table S1). For each of these molecules, the electronic component of the NEO DBOC is 

30‒45 cm-1 lower per quantum proton than the DBOC computed with conventional 
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electronic DFT. This trend is a direct consequence of the quantization of the protons in 

the NEO-DFT framework, leading to a reduced number of “classical” nuclear 

coordinates and a smaller number of terms in the NEO-DBOC compared to the 

conventional electronic DBOC. As further validation of our calculations, the conventional 

DFT DBOC values for HCN and HCC‒ are in agreement with literature values of 838 

and 769 cm-1, respectively, using Hartree-Fock theory with the aug-cc-pVTZ basis set.26 

 The protonic components of the NEO DBOC exhibit more widely varying 

behavior in Table 1.  The three terminal single-proton systems all yield comparable 

values for the protonic contribution to the NEO DBOC. The magnitude of p

DBOCE  is 

somewhat smaller than the magnitude of e

DBOCE , an apparent contradiction given the 

significantly larger mass of a proton compared to an electron, which would be expected 

to lead to larger non-Born-Oppenheimer effects.  However, accounting for the 

significantly larger number of electrons than quantum protons, a single proton is found 

to contribute more to the DBOC than does a single electron for most systems studied. 

Moreover, as discussed above in the context of simple model systems, the DBOC is 

expected to depend qualitatively on an intrinsic energy, which is related to the proton 

vibrational frequencies for p

DBOCE , as well as the masses. 

Although e,conv

DBOCE  per electron in analogous conventional electronic structure 

calculations has been suggested to be approximately constant,27 p

DBOCE  per quantum 

proton is not generally constant. In particular, the value of p

DBOCE  for the internal single-

proton system of FHF‒ is nearly an order of magnitude smaller than the values for the 

terminal single-proton systems, most likely due to the significantly lower vibrational 
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frequency associated with the internal hydrogen. On the other hand, comparison of 

p

DBOCE  for HCC‒ and HCCH demonstrates an additive effect for the terminal protons in 

these systems. Specifically, p

DBOCE  almost exactly doubles for HCCH compared to HCC‒, 

indicating a constant p

DBOCE per quantum proton in this case, which is consistent with the 

nearly identical vibrational frequencies associated with these two hydrogens. In 

contrast, further increasing the number of protons to generate H2CCH2 and H3CCH3 

does not add a constant amount per proton, but rather adds a smaller amount per 

proton as the total number of protons increases, reflecting the lower vibrational 

frequencies associated with the hydrogens in these molecules. 

The effect of electron-proton correlation on the NEO DBOC and its components 

was also investigated. As shown in Table 2.2, the electronic contribution to the NEO 

DBOC, e

DBOCE , is not significantly influenced by electron-proton correlation. In contrast, 

the protonic contribution, p

DBOCE , is strongly influenced by electron-proton correlation. 

Specifically, the p

DBOCE  values obtained with NEO-HF and NEO-DFT/no-epc, which do 

not include any electron-proton correlation, are over twice the values obtained with 

NEO-DFT/epc17-1 and NEO-DFT/epc17-2, which include electron-proton correlation. 

This difference can be attributed to the highly localized proton densities produced by the 

methods neglecting electron-proton correlation,7 manifesting in smaller overlaps 

between the perturbed geometries in Eq (2.6) and thus leading to larger values of p

DBOCE

. Electron correlation does not impact either the electronic13 or the protonic contributions 

to the DBOC, as indicated by the nearly identical results obtained from NEO-HF and 

NEO-DFT/no-epc. Although the DBOC is rigorously derived for wave function theories, 
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the similar values of the DBOC obtained with Hartree-Fock and DFT (Table 2.1 

compared to Ref. 26 and Table 2.2) provides some justification for computing the DBOC 

within the DFT framework as an estimate of non-Born-Oppenheimer effects. 

 Despite the relatively large magnitudes of the NEO DBOC values, the impact of 

the DBOC on the NEO potential energy surface is more important for determining its 

practical significance.  In the context of conventional electronic Hartree-Fock 

calculations, Handy and Lee examined the impact of the electronic DBOC on the 

potential energy surface for a set of diatomic molecules.18 Although the conventional 

electronic DBOC can be on the order of ~1000 cm-1 for these diatomics, the equilibrium 

bond length was found to change by less than 10-3 Bohr for H2 and less than 10-4 Bohr 

for the other diatomics, and the frequencies were found to change by only ~3 cm-1 for 

H2 and by less than 0.1 cm-1 for the diatomics that do not contain hydrogen.   

 With this previous work as inspiration, we examined the equilibrium bond lengths 

and vibrational frequencies corresponding to ( ) ( )tot

NEO DBOCE E+R R  for eight molecules. 

Each molecule contains only two classical nuclei because all protons are treated 

quantum mechanically on the same level as the electrons. The frequency for the heavy 

atom stretching motion for each molecule was calculated via a finite difference second 

derivative, effectively making the DBOC contribution to the stretching frequency a 

numerical fourth derivative. As a result, the numerical precision is estimated to be lower 

for the vibrational frequency than for the magnitude of the DBOC.  In particular, the 

numerical precision for the vibrational frequencies is estimated to be ~1 cm-1 or slightly 

greater in some cases (Tables A2 and A3 of Appendix A). When the DBOC is included 

in the potential energy surface, the equilibrium bond length for the heavy nuclei changes 
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on the order of 10-4 Å for a stabilization in energy of less than 1 μHartree. This 

extremely small change in bond length was not considered when calculating the effect 

of the DBOC on the vibrational frequencies presented herein. However, the frequencies 

computed at the DBOC optimized geometries for several of the triatomic molecules are 

available in Appendix A (Table A4). 

 Table 2.3 presents the vibrational stretching frequencies for the heavy atom 

mode in each molecule computed with and without the NEO DBOC.  These data 

illustrate that inclusion of the electronic component of the DBOC, e

DBOCE , increases the 

vibrational frequency by no more than 1 cm-1. The protonic component, p

DBOCE , has a 

similarly small effect of ~1 cm-1 for the molecules with one or two quantum protons, but 

this effect increases for molecules with more quantum protons.  The quantum protons 

are expected to influence only the stretching modes associated with atoms to which 

they are bonded.  Even in the extreme case of ethane, with six quantum protons 

adjacent to the heavy atom vibrational mode, p

DBOCE  only changes the vibrational 

frequency by 11 cm-1. Although this effect is expected to be even smaller for typical 

modes, the DBOC could be included in the NEO potential energy surface routinely by 

computing it analytically. The analytical computation of the NEO Hessian and the DBOC 

is a direction of current research.  

Furthermore, when the DBOC effects are considered to be significant, they can 

be included in the calculation of the molecular vibrational frequencies using the NEO 

methodology developed recently to couple the classical and quantum mechanical 

vibrational modes.28 This approach entails diagonalization of an extended NEO Hessian 

that depends on the expectation values of the quantum protons as well as the 



22 
 

coordinates of the classical nuclei. The practical incorporation of the DBOCs within this 

strategy requires the assumption that the partial second derivatives of the DBOCs with 

respect to the expectation values of the quantum protons are negligible. 

Conclusions 

 In this chapter, the diagonal Born-Oppenheimer correction within the NEO 

multicomponent framework was derived, and its magnitude and significance were 

analyzed for a set of molecules.  In terms of the magnitude of the DBOC, the 

contribution from the quantum protons was found to be of similar order of magnitude as 

the contribution from the electrons for the molecules studied.  The contribution per 

proton is greater than the contribution per electron, but the molecules contain 

significantly more electrons than quantum protons.  Inclusion of the DBOC was found to 

change the equilibrium bond lengths on the order of 10-4 Å and to change the vibrational 

frequencies by ~1–2 cm-1 per quantum proton bonded to one of the atoms participating 

in the vibrational mode. These results suggest that the non-Born-Oppenheimer effects 

arising from the adiabatic separation between the quantum protons and the other nuclei 

in the NEO framework do not significantly impact molecular properties and may simply 

shift the energy of the entire potential energy surface by a constant amount. In this 

case, the DBOC would not need to be considered when generating reaction paths and 

dynamics on the NEO potential energy surface. If the DBOC becomes important at 

certain nonequilibrium geometries, it can be incorporated using the formalism described 

in this work. 
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Figures and Tables 

 

 
Figure 2.1: Proton orbitals (pink mesh) obtained from NEO-DFT/B3LYP/epc17-2 
calculations of ethane (top) and H5O2

+ (bottom). 
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Table 2.1: Total NEO DBOC, the Electronic and Protonic Components, and the 
Conventional Electronic DBOC.a 

  
HCN HNC HCC‒ HCCH H2CCH2 H3CCH3 FHF‒ H5O2

+ 

tot

DBOCE  1335 1210 1250 1790 2187 2502 1173 1745 

e

DBOCE  805 802 728 742 751 760 1130 1043 

p

DBOCE  530 407 522 1048 1435 1742 43 702 

e,conv

DBOCE  839 833 770 808 928 1035 1159 1193 

         
aAll NEO calculations were performed at the DFT/B3LYP/epc17-2 level of theory with the basis 
sets given in the text. The conventional electronic calculations were performed at the 
DFT/B3LYP/cc-pVTZ level of theory. All energies are given in units of cm-1. 
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Table 2.2: Effect of Electron-Proton Correlation on NEO DBOC and its 
Components for HCN.a 

 

 NEO-HF 
NEO-DFT 

no-epc epc17-1 epc17-2 
tot

DBOCE  1928 1928 1237 1335 
e

DBOCE  807 806 804 805 
p

DBOCE  1121 1122 433 530 
 

aAll NEO-DFT calculations were performed with the B3LYP electronic functional and with no 
electron-proton correlation, denoted no-epc, or the epc17-1 or epc17-2 electron-proton 
correlation functional. The geometry was optimized at each level of theory. All energies are 
given in units of cm-1. 
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Table 2.3: Vibrational Stretching Frequencies for the Heavy Atom Mode in the 
NEO Framework with and without the NEO DBOC and its Components.a 

 
 HCN HNC HCC- HCCH H2CCH2 H3CCH3 FHF- H5O2

+ 

No DBOC 2293 2160 1963 2207 1642 1061 607 642 

With 
e

DBOCE  2293 2160 1963 2208 1642 1062 607 643 

With 
p

DBOCE  2293 2161 1962 2209 1648 1072 606 648 

With 
tot

DBOCE  2293 2161 1962 2209 1648 1073 606 648 
 

aFor all of these molecules, the NEO potential energy surface is one-dimensional with a single 
vibrational mode because all protons are treated quantum mechanically and each molecule has 
only two heavy atoms. All calculations were performed at the NEO-DFT/B3LYP/epc17-2 level of 
theory with the basis sets given in the text. All energies are given in units of cm-1. The numerical 
precision of the vibrational frequency calculations including the DBOC was determined to be 
typically 1 cm-1 or slightly greater in some cases (see Appendix A for details). 
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The Supporting Information is available free of charge on the ACS Publications 

website at DOI: 10.1021/acs.jpclett.9b01803. Analysis of a simple model for protonic 

DBOC and tests of numerical precision are found in Appendix A. 
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Abstract 

The nuclear-electronic orbital (NEO) method is a multicomponent quantum 

chemistry theory that describes electronic and nuclear quantum effects simultaneously 

while avoiding the Born-Oppenheimer approximation. Specified nuclei are treated 

quantum mechanically on the same level as the electrons, and the NEO potential 

energy surface depends on the classical nuclear coordinates. Herein theoretical 

methodology is developed to optimize and characterize stationary points on the NEO 

potential energy surface, to generate multicomponent minimum energy paths, and to 

compute thermochemical properties. For this purpose, the analytic coordinate Hessian 

is developed and implemented at the NEO Hartree-Fock level of theory. These NEO 

Hessians are used to study the SN2 reaction of ClCH3Cl– and the hydride transfer of 

C4H9
+. For each system, analysis of the single imaginary mode at the transition state 

and the intrinsic reaction coordinate along the minimum energy path identifies the 

dominant nuclear motions driving the chemical reaction. Visualization of the electronic 

and protonic orbitals along the minimum energy path illustrates the coupled electronic 

and protonic motions beyond the Born-Oppenheimer approximation. This work provides 

the foundation for applying the NEO approach at various correlated levels of theory to a 

wide range of chemical reactions. 
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Introduction 

To incorporate nuclear quantum effects during the optimization of geometries 

and the generation of minimum energy paths for chemical systems in a computationally 

tractable manner, approaches beyond conventional quantum chemistry methods must 

be developed. One such approach is multicomponent quantum chemistry theory, where 

more than one type of particle is treated quantum mechanically on the same level with 

molecular orbital techniques.1-7  The nuclear-electronic orbital (NEO) multicomponent 

theory4, 8  treats specified nuclei, typically key protons, and all electrons quantum 

mechanically. This approach removes the Born-Oppenheimer separation between the 

electrons and the quantum nuclei but invokes a Born-Oppenheimer separation between 

the quantum portion of the system (i.e., the specified quantum nuclei and electrons) and 

the remaining nuclei, which are typically denoted “classical” for notational convenience. 

Within the NEO framework, the potential energy surface (PES) and the 

associated coordinate NEO Hessian depend on only the classical nuclei. The NEO PES 

inherently includes the quantum mechanical effects associated with the specified 

quantum nuclei, such as zero-point energy and nuclear delocalization. The NEO 

optimized geometries are stationary points on the NEO PES. These optimized 

geometries can be characterized by a vibrational analysis based on diagonalization of 

the NEO Hessian.9 In this manner, the stationary points can be identified as minima or 

transition states (i.e., first-order saddle points). Moreover, the imaginary mode 

associated with a NEO transition state can be analyzed to elucidate the dominant 

motions contributing to the chemical reaction. Related to this analysis, the minimum 

energy path (MEP) from a NEO transition state down to the reactant and product states 
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can also be computed on the NEO PES.  

The nuclear motions associated with the imaginary mode at the NEO transition 

state and the intrinsic reaction coordinate along the MEP provide insight into the 

dominant motions of the classical nuclei that drive the chemical reaction. This 

framework is particularly relevant to hydrogen transfer (i.e., proton, hydride, and proton-

coupled electron transfer), where the transferring hydrogen nucleus is treated quantum 

mechanically.10-12 In this case, the NEO MEP elucidates the classical nuclear motions 

that drive hydrogen transfer, analogous to conventional electronic structure calculations 

probing the nuclear motions that drive electron transfer.13-15 Due to the simultaneous 

quantum mechanical treatment of electrons and protons, analysis of the electronic and 

nuclear orbitals or densities along the MEP can provide mechanistic information, such 

as whether the electron and proton transfer synchronously or asynchronously in a 

proton-coupled electron transfer reaction.16 Despite the conceptual simplicity and utility, 

NEO MEPs have not previously been implemented. 

Although these types of analyses of the NEO PES provide useful insights, the 

calculation of full molecular vibrational frequencies requires inclusion of the coupling 

between the classical and quantum nuclei,17-18 and a complete understanding of the 

chemical reaction path should also include this coupling. For this purpose, an extended 

NEO PES can be defined to include the expectation values of the quantum nuclei. All 

stationary points on the NEO PES are also stationary points on the extended NEO PES 

because of the variational principle, as discussed elsewhere.17 Previously we developed 

the methodology to compute the extended NEO Hessian, which is defined in terms of 

second derivatives with respect to the classical nuclear coordinates and expectation 
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values of the quantum nuclei on the extended NEO PES.17-18 The stationary points on 

the extended NEO PES can be characterized as minima or transition states by a 

vibrational analysis based on diagonalization of the extended NEO Hessian. Moreover, 

analysis of the imaginary mode at the transition state on the extended NEO PES 

provides insights into the role of the quantum protons in the chemical reaction. This 

extended Hessian approach has been shown to produce accurate molecular vibrational 

frequencies that incorporate significant anharmonic effects17-18 but has not previously 

been used for the analysis of transition states. 

The goal of this paper is to develop the methodology to characterize stationary 

points on the NEO PES and extended NEO PES, generate the NEO MEP, and perform 

thermochemistry calculations. All of these objectives require the NEO coordinate 

Hessian. Previous work has utilized either a semi-numerical or fully numerical 

implementation for calculations of the NEO Hessian.9 However, as the field of 

multicomponent quantum chemistry expands and larger systems are studied, an 

analytic implementation of the NEO Hessian is necessary. Herein, we develop and 

implement analytic Hessians at the NEO-HF level of theory. We also use these analytic 

NEO Hessians to characterize stationary points, generate MEPs, and calculate 

thermochemical properties for two chemical systems: the self-exchange SN2 reaction of 

ClCH3Cl‒ and the intramolecular hydride shift in C4H9
+

. This work provides the 

foundation for future extensions to compute NEO Hessians at correlated levels of 

theory, such as NEO coupled cluster singles and doubles (NEO-CCSD),19 NEO orbital 

optimized second-order perturbation theory (NEO-OOMP2),20 and NEO density 

functional theory (NEO-DFT).21-25  Moreover, the results and analyses highlight the 
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fundamental conceptual insights obtained by computing MEPs within the NEO 

framework. 

Theory 

General Definition of the NEO Hessian 

The Hamiltonian in the NEO framework is given by 
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 (3.1) 

where electronic coordinates re are indicated by lower-case indices i and j, quantum 

nuclear coordinates rp are indicated by primed versions of these indices, and the 

remaining classical nuclear coordinates rc are indicated by capital indices A and B. 

Moreover, Ne, Np, and Nc denote the number of electrons, quantum nuclei, and classical 

nuclei, respectively. The proton mass is denoted by mp. The Hamiltonian in Eq. (3.1) 

includes the standard electronic terms (i.e., the kinetic energy, interaction of the 

electrons with the classical nuclei, and electron-electron repulsion terms), the analogous 

quantum proton terms, the electron-proton attraction terms, and the classical nuclear 

repulsion term. For ease of presentation, the quantum nuclei are presumed to be 

protons, but this approach is generalizable for any type of particle and multiple types of 

particles. The NEO energy is computed as the expectation value of the NEO 

Hamiltonian in Eq. (3.1) with respect to the mixed nuclear-electronic wave function, 

which is typically expressed in terms of electronic and nuclear orbitals that are 

expanded in electronic and nuclear basis sets. 
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 Within this framework, the NEO PES depends on only the positions of the 

classical nuclei, represented by the collective coordinate rc. However, in practice the 

quantum protons are typically associated with electronic and nuclear basis functions 

with centers represented by the collective coordinate 
b

r . These basis function centers 

must be optimized for any given geometry of the classical nuclei to satisfy the 

variational principle. Thus, the energy for any geometry of the classical nuclei is 

variationally optimized with respect to the nuclear basis function center positions as well 

as the electronic and protonic orbital coefficients. In this case, the NEO PES can be 

expressed as ( )( )c b c

NEO ,E r r r . According to the variational procedure within the NEO 

framework, the equality 

 
NEO

b
0

E
=

r
  (3.2) 

is satisfied for any point on the NEO PES.9 The dimensionality of the NEO PES will be 

lower than that of the conventional PES for the same system because certain nuclei are 

treated quantum mechanically. Similarly, the corresponding coordinate Hessian 

matrices will also be of lower dimensionality.  

As shown in previous work,17-18 the NEO gradient and Hessian elements on the 

NEO PES can be expressed as 
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and 
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Eq. (3.4) shows that the Hessian elements require the calculation of not only the partial 

second derivatives of the NEO energy with respect to the classical coordinates, but also 

the pure and mixed derivatives with respect to the basis function centers. If cN  is the 

number of classical nuclei and bN  is the number of nuclear basis function centers, then 

2

NEO

c 2

E

r
 corresponds to a c c3 3N N  matrix, 

2

NEO

b 2

E

r
 corresponds to a b b3 3N N  matrix, 

and 
2

NEO

c b

E

 r r
 corresponds to a c b3 3N N  matrix. Given that each quantum nucleus has 

at least one unique nuclear basis function center, the calculation of the NEO Hessian 

will require the calculation of at least as many second derivatives of the energy as 

required for the calculation of the conventional Hessian. These terms are combined as 

expressed in Eq. (3.4) to yield the final NEO Hessian elements. 

NEO-HF Theory, Gradients, and Hessians 

The equations for the analytic NEO-HF energy gradients were presented 

previously in Ref. 9. However, as the analytic formulation of the Hessian extends that 

theory to a higher-order derivative, it is constructive to reproduce these expressions 

here. For the purposes of this paper, the theory is presented for closed-shell electronic 

and high-spin protonic configurations, but the extension to open-shell electronic 

configurations is straightforward. Moreover, the NEO-HF framework presented herein 

serves as the foundation for other multicomponent methods such as NEO-CCSD,19 

NEO-OOMP2,20 and NEO-DFT.21-25 Analogous to the conventional formulation of HF 

theory, NEO-HF4 begins with a wave function ansatz of the form 

 e p e e p p

tot 0 0( , ) ( ) ( ) = r r r r  (3.5) 
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which is a product of electronic and nuclear Slater determinants, ( )e e

0 r  and ( )p p

0 r , 

composed of electronic and nuclear orbitals, respectively. The electronic and nuclear 

spatial orbitals are expressed as linear combinations of Gaussian basis functions: 

 ( ) ( )e e e e e

p pc 



 =r r  (3.6) 

 ( ) ( )p p p p p

' '

'

P Pc 


 =r r . (3.7) 

In this notation, , , ,    are the electronic Gaussian basis function indices, and the 

primed equivalents ', ', ',    are the nuclear Gaussian basis function indices. 

Hereafter, the indices i, j, k,… denote occupied orbitals, a, b, c,… denote virtual orbitals, 

and p, q, r,… denote general orbitals for the electrons, and the upper case variants are 

used for the quantum nuclear indices. The NEO-HF Roothaan equations, which will be 

discussed below, are solved with a self-consistent-field (SCF) approach to yield the 

orbital coefficients. 

The total closed-shell NEO-HF energy can be written in the form  
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where Vnuc is the Coulomb repulsion between the classical nuclei, the electronic and 

nuclear density matrices are defined as 
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and the integrals in the atomic orbital basis are given by 
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with analogous definitions to Eq. (3.19) for the pure nuclear and mixed two-particle 

integrals.  

In the NEO-HF method, a set of Roothaan equations is solved variationally to 

yield a single-configuration mixed nuclear-electronic wave function.4 Specifically, the 

equations for the electrons and quantum protons are given by 

 e e e e e=F C S C ε  (3.20) 

 p p p p p=F C S C ε   (3.21) 

where orbital coefficients and energies are contained in the C and ε  matrices, 
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respectively, the elements of the basis function overlap matrices are given by 
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 and the elements of the Fock matrices are defined as 
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Notably, the electronic and nuclear Roothaan equations are coupled and influence each 

other through the electron-proton Coulomb terms. Furthermore, the solutions of these 

equations are subject to the orthonormality constraints 

 e† e e =C S C I  (3.26) 

 p† p p =C S C I  . (3.27) 

As in the conventional electronic case,26 application of the first derivative to the 

total energy given in Eq. (3.8) with respect to a geometric perturbation x and 

subsequent simplification to remove the density response terms yields an expression for 

the energy gradient: 
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In this notation, terms such as ( )e
x

H  are the geometric derivative integrals, 

corresponding to the partial derivative of the integral in parentheses with respect to the 

geometric perturbation x (i.e., ( )
e

e
x H

H
x




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). The perturbation x can be either a 
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classical nuclear coordinate or a nuclear basis function center coordinate. The 

electronic and nuclear energy-weighted density matrices introduced in the above 

expression are defined as 
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 The calculation of the closed-shell NEO-HF gradient from Eq. (3.28) is 

straightforward. Most integral codes already include the analytic evaluation of the first-

order electronic derivative integrals and with minor modification can provide the 

quantum nuclear analogs. In order to calculate 
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are needed to compute the NEO Hessian, another derivative of Eq. (3.28) with respect 

to a second geometric perturbation, y, is taken, producing 
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The analytic evaluation of the electronic and nuclear terms that contain second-order 

derivative integrals has already been derived and implemented for Gaussian basis 

sets.27 The response of the SCF solution quantities to geometric perturbations are 

manifested in the density and energy-weighted density matrix response terms ( )e
y

P , 
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( )p

' '

y

P  , ( )e
y

W , and ( )p

' '

y

W  . These quantities can be computed with coupled-

perturbed NEO-HF equations analogous to those derived and implemented for 

conventional electronic HF theory.26, 28-29 The formulations for the solution of these 

equations at the restricted NEO-HF and unrestricted NEO-DFT levels are presented in 

Appendix B. 

Transition States and Minimum Energy Paths 

  Two of the most popular uses for coordinate Hessians in conventional quantum 

chemistry are the optimization and characterization of transition state geometries and 

the generation of MEPs. In the NEO formalism, these structures and paths are 

computed on a lower-dimensional PES, which incorporates the zero-point energy, 

anharmonicity, and nuclear delocalization of the quantum nuclei. Analogous to the 

conventional electronic structure case, the transition state on the NEO PES is defined to 

be a stationary point with a single imaginary vibrational frequency (i.e., a first-order 

saddle point). For this reason, any algorithm that optimizes conventional transition state 

geometries based on gradient and Hessian information30-31 can be used to find a NEO 

transition state with the NEO gradient and Hessian as input. 

 Also analogous to the conventional electronic structure case,32 the NEO MEP 

begins at the transition state and is guided by steepest descent steps with subsequent 

corrective steps down to the reactant and product optimized geometries.33-34 Analytic 

Hessians are useful for MEP calculations because the energy gradient of the transition 

state is zero, and the imaginary normal mode motion associated with the negative 

eigenvalue of the Hessian is used for the first step of the reaction path. An additional 

technical feature arises for the NEO MEP generation because the NEO energy must be 
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optimized with respect to the basis function centers as well as the orbital coefficients. As 

a result, after every steepest descent step and corrective step of the NEO MEP 

algorithm, the nuclear basis function center positions are optimized. 

Results and Discussion 

Implementation and model systems 

The preceding theory was implemented in a development branch of the Q-Chem 

5.3 quantum chemistry software.35 This implementation built upon the existing NEO-HF 

framework in the release version of the software, and existing conventional electronic 

machinery was repurposed for the calculation of quantum nuclear derivative integrals, 

optimization of NEO-HF transition states, and determination of NEO-HF MEPs. The CP-

NEO-HF equations are solved using the conjugate gradient algorithm for solutions of 

inhomogeneous linear systems.36 The analytic Hessian was compared to numerical and 

semi-numerical Hessian calculations to validate the implementation. These validation 

tests, as well as more details on the implementation of the NEO analytic Hessian in Q-

Chem, are provided in the supplementary material. All NEO-HF calculations herein 

utilized the 6-31G** electronic basis set37 with the PB4-D nuclear basis set for the 

quantum protons,38 and all conventional calculations were performed at the HF/6-31G** 

level of theory. The PB4-D basis set is composed of four s-type, three p-type, and two 

d-type primitive Gaussians (4s3p2d). For these applications, each quantum proton was 

represented by a single basis function center for both the electronic and nuclear basis 

functions, which were assumed to move together. The optimization of these nuclear 

basis function centers utilizes the energy gradients given in Eq. (3.28). Although the 

NEO-HF approach lacks electron-electron and electron-proton correlation, this 
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implementation illustrates the important fundamental concepts underlying NEO 

Hessians, transition states, and MEPs. Extensions to NEO-DFT, which includes these 

correlation effects,21-25 are currently underway. 

 To illustrate the properties of transition states and MEPs at the NEO-HF level, 

two qualitatively different systems were studied. The SN2 reaction of ClCH3Cl‒ (Figure 

3.1) provides an example of a transition state in which motion of the protons does not 

dominate the MEP. This system is intended to demonstrate the calculation of NEO 

transition states and reaction paths with multiple quantum protons, and it is expected to 

be qualitatively similar to the conventional analog because the quantum nuclei are 

predominantly spectators in the overall motion along the reaction path. For an example 

in which the quantum proton motion is expected to play a dominant role along the 

reaction path, the intramolecular hydride shift (i.e., carbocation rearrangement) between 

the middle two carbon atoms of the C4H9
+

 species (Figure 3.1) was studied. In this 

application, only the transferring hydrogen was treated quantum mechanically to 

simplify the analysis. 

Transition states 

The transition states of both systems were found using the analytic Hessian and 

gradients in conjunction with an existing quasi-Newton like transition state search 

algorithm30 with the NEO-HF and conventional HF methods. In this algorithm, the 

analytic Hessian is used at the first step. The conventional transition state of C4H9
+ was 

found to correspond to a single-well proton potential (i.e., the three-dimensional proton 

potential energy surface computed at the transition state geometry with all other nuclei 

fixed exhibited a single minimum, Figure B1 of Appendix B). This feature allows the use 
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of a single determinant NEO-HF description along the entire MEP, rather than requiring 

multireference methods.39 The transition states were verified to be first-order saddle 

points because the gradients on the NEO PES were zero to within the specified 

tolerance (3×10-5 Hartree/Bohr) and the vibrational analysis performed with the NEO 

Hessian produced only a single imaginary frequency. The imaginary modes and 

associated frequencies for the ClCH3Cl– and C4H9
+ transition states are depicted in 

Figure 3.2. The NEO and conventional calculations for the ClCH3Cl– system produce 

nearly identical imaginary frequencies of 412 cm-1 and 414 cm-1, respectively. Even 

when the proton motion dominates the normal mode in the C4H9
+ system, these 

imaginary frequencies differ only by 5 cm-1. 

The visual comparisons shown in Figure 3.2 demonstrate that the motions of the 

classical nuclei in the NEO-HF imaginary mode mirror the motions of those same atoms 

in the conventional HF imaginary mode. To further analyze the differences between the 

conventional and NEO imaginary normal mode vectors, we calculated the dot product 

between these vectors, as given in Table 3.1. As the dimensionalities of the normal 

mode vectors are different in the two cases, we excluded the normal mode elements in 

the conventional HF vector that are associated with the quantum protons in the NEO-HF 

calculation. We also computed this dot product after renormalizing the HF normal mode 

vector when these elements are excluded. As the protons of ClCH3Cl– do not contribute 

significantly to the conventional HF imaginary mode (i.e., these coordinates correspond 

to 6% of this normal mode vector), its dot product with the NEO-HF mode is nearly unity 

before renormalization and is 1.000 after renormalization. In contrast, the conventional 

C4H9
+ imaginary mode is dominated by the transferring proton motion (i.e., these 
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coordinates correspond to 74% of this normal mode vector), and its dot product with the 

NEO-HF mode is only 0.495. However, after renormalization, this dot product increases 

to 0.973, indicating that the motions of the classical nuclei are nearly identical in the 

NEO-HF and conventional HF imaginary modes for this system as well. These findings 

are consistent with the visual observation that the motions of the classical nuclei in the 

NEO imaginary mode are the same as the corresponding motions in the conventional 

description, even though the conventional mode is dominated by proton motion. The 

Cartesian coordinates associated with each imaginary normal mode are presented in 

Appendix B, Table B4. 

The description of the imaginary mode obtained by diagonalizing the NEO 

Hessian does not include the motions of the quantum protons, which respond 

instantaneously to the motions of the classical nuclei due to the Born-Oppenheimer 

separation between the classical and quantum nuclei. This instantaneous response is 

analogous to the response of the electrons to the nuclei in conventional electronic 

structure calculations. In general, however, the molecular vibrational modes are 

mixtures of all nuclear coordinates, and a description of the full molecular vibrational 

frequencies requires coupling between the classical and quantum nuclei. To enable the 

calculation of molecular vibrational frequencies composed of both classical and 

quantum nuclei, we developed the NEO-DFT(V) method.17-18 This approach involves 

the diagonalization of an extended NEO Hessian that is defined in terms of the second 

derivatives of the NEO energy with respect to the expectation values of the quantum 

nuclear coordinates as well as the classical nuclear coordinates. The extended portion 

of this Hessian is constructed with input from the proton vibrational excitations 
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computed with the NEO time-dependent DFT (NEO-TDDFT) method.40-41 The NEO-

DFT(V) approach has been shown to produce accurate molecular vibrational 

frequencies that incorporate the significant anharmonic effects associated with the 

quantum protons. The NEO-HF(V) method is the NEO-HF analog of the NEO-DFT(V) 

method. 

We performed NEO-HF(V) calculations for the transition state geometry of C4H9
+ 

to compute the full molecular vibrational frequencies. Computational details for the 

NEO-HF(V) calculations are provided in the supplementary material. The optimized 

NEO-HF geometry is a stationary point in the extended NEO space corresponding to 

the classical nuclear coordinates and the expectation value of the quantum proton 

position coordinate because the derivatives of the NEO energy with respect to both 

types of coordinates are zero at this optimized geometry (see Ref. 17 for relevant 

derivation). Diagonalization of the extended Hessian produced a single imaginary 

frequency of 118 cm-1, indicating that this geometry is a first-order saddle point in the 

extended NEO space. The resulting imaginary mode is nearly indistinguishable from the 

conventional HF mode, as depicted in Figure 3.3. To quantify this similarity, the dot 

product of the NEO-HF(V) and conventional HF imaginary normal mode vectors is 

0.996. A similar NEO-HF(V) analysis was performed for the ClCH3Cl– system (Table 

3.1). 

In addition to the imaginary mode, the majority of the other normal modes from 

the NEO-HF(V) calculation are nearly indistinguishable from their conventional 

counterparts at the C4H9
+ transition state geometry. The root-mean-square deviation 

between the NEO-HF(V) and conventional HF normal mode frequencies is 58 cm-1, with 
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only six modes exhibiting differences greater than 10 cm-1. These six modes, which 

include the imaginary mode, correspond to vibrations with significant contributions from 

the quantum proton. The quantum mechanical treatment of the proton in the NEO 

framework incorporates anharmonic effects that are absent from the conventional HF 

harmonic normal mode analysis. Thus, the NEO-HF(V) frequencies associated with the 

quantum proton motion are expected to be more accurate than their conventional 

counterparts. This anharmonicity is most likely responsible for the significantly lower 

imaginary normal mode frequency produced by NEO-HF(V) than by conventional HF for 

C4H9
+ (Table 3.1). The enhanced accuracy in the frequencies due to the inclusion of 

anharmonic effects has been shown previously when comparing NEO-DFT(V) 

calculations to second-order vibrational perturbation theory42 calculations for a series of 

molecules.17-18 The complete results for this comparison are given in Appendix B, Table 

B6. Furthermore, Appendix B also describes an additional test of the transition state 

search algorithm for an asymmetric variant of the hydride transfer reaction shown in 

Figure 3.1.  

Minimum energy paths 

Starting from the transition state structures, we calculated the MEPs for both 

processes studied, as depicted in Figure 3.4. As expected, the multicomponent and 

conventional MEPs for ClCH3Cl– are virtually identical, with barrier heights that differ by 

only 0.23 kcal/mol. The C4H9
+ reaction barrier is significantly lower than the ClCH3Cl– 

barrier. Moreover, the difference in the barrier heights computed with the conventional 

electronic and NEO methods is slightly larger (0.79 kcal/mol) for the C4H9
+ system, 

presumably because the transferring proton is contributing more to the intrinsic reaction 
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coordinate. 

The main origin of the slightly lower barrier for the NEO MEP compared to the 

conventional electronic MEP is that the NEO PES includes the zero-point energy of the 

quantum proton. To benchmark this effect, we performed Fourier Grid Hamiltonian 

(FGH) calculations43-44 to compute the three-dimensional proton vibrational wave 

functions and zero-point energies at the conventional optimized transition state and 

reactant geometries of C4H9
+. Computational details for the FGH calculations are 

available in Appendix B. The proton zero-point energy at the transition state (5.79 

kcal/mol) was found to be smaller than that at the reactant state (6.94 kcal/mol). Thus, 

including the zero-point energy of the quantum proton with the FGH method lowers the 

barrier height by 1.15 kcal/mol. This trend is similar to the lowering of the C4H9
+ barrier 

height by 0.79 kcal/mol for the NEO-HF method compared to the conventional HF 

method. The quantitative differences are most likely due to the lack of electron-proton 

correlation in the NEO-HF calculations, and the agreement is expected to be better with 

the NEO-DFT method21-25 or with a higher level wave function-based method such as 

NEO-OOMP2 or NEO-CCSD.19-20 

The MEP algorithm implemented in this study33-34 uses the imaginary normal 

mode at the transition state as well as the energy gradients at points along the MEP to 

determine the pathway. Information from the Hessian is used only at the transition state. 

Steepest descent steps are taken, using energy gradients at points already determined 

to be on the pathway, and gradient bisector corrective steps or backup steps may be 

executed based on the local information of the surface. These backup steps can cause 

non-uniform spacing of points along the MEP, as observed in the conventional HF and 
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NEO-HF C4H9
+ MEPs shown in Figure 3.4. We have found that this behavior is typically 

more prevalent when the imaginary normal mode frequency is relatively low and the 

gradients along the MEP are relatively small. The points along the MEP will often 

become more evenly spaced when a smaller steepest descent step size is used, 

although small gradients along the MEP may require a sufficiently large step size for 

numerical reasons. Some of these technical issues may be alleviated by other 

algorithms, such as a Hessian based predictor-corrector integrator,45 which utilizes 

information from the coordinate Hessian at each subsequently determined point along 

the MEP. 

In the NEO framework, the intrinsic reaction coordinate is composed of only the 

classical nuclei. Analysis of the geometries along the MEP for a hydrogen atom transfer 

reaction, where the transferring hydrogen nucleus is treated quantum mechanically, 

provides insights into the classical nuclear reorganization that drives hydrogen transfer. 

This perspective is analogous to the nuclear reorganization that induces electron 

transfer in conventional calculations of electron transfer reactions. For the C4H9
+ 

system, analysis of the geometries along the NEO MEP illustrates that one of the two 

central carbon atoms adopts a tetrahedral geometry while the other remains planar with 

movement along the reaction path in either direction from the transition state, as 

depicted in Figure 3.5. Thus, the dominant reorganization that facilitates the movement 

of the quantum proton toward either carbon is the tetrahedral-to-planar (i.e., sp3 to sp2) 

rearrangement around the carbon atoms.  

An advantage of the NEO approach is that the electronic and nuclear orbitals are 

computed simultaneously on equal footing. Figure 3.5 also presents a visualization of 
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the protonic orbital and the reactive electronic orbital along the MEP for the C4H9
+ 

hydride transfer reaction. The localization of the electronic wave function to produce 

intrinsic bond orbitals and the visualization of these orbitals was performed with the 

IboView software developed by Knizia and coworkers.46-47 The protonic orbital appears 

to be quite localized when using the same isovalue for both the electronic and protonic 

orbitals, mainly due to the significant mass disparity. When a much smaller isovalue is 

used, the protonic orbital displays the expected behavior of greater delocalization in the 

transition state region of the MEP compared to the reactant and product state regions. 

Moreover, the protonic orbital is expected to become more delocalized upon inclusion of 

electron-proton correlation with an approach such as NEO-DFT.8, 23 Our analysis based 

on Figure 3.5 shows that the quantum proton moves between the two carbon atoms 

concertedly with the shifting of the electronic orbital as one C-H bond breaks and 

another C-H bond forms. This type of simultaneous visualization of quantum nuclear 

and electronic orbitals during a chemical reaction provides insights beyond the previous 

conventional electronic structure studies with this software. In particular, this analysis 

will be able to classify proton-coupled electron transfer reactions as synchronous or 

asynchronous mechanisms.16  

Thermochemistry 

The analytic NEO Hessian also enables the calculation of thermochemical 

properties. As discussed above, the zero-point energies of the quantum nuclei are 

already included in the NEO PES. The zero-point energies of the other nuclei can be 

included by diagonalization of the NEO Hessian, analogous to the conventional 

electronic structure vibrational analysis, although this approach neglects the coupling 
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between the classical and quantum nuclei in the vibrational modes. Similarly, the normal 

modes obtained from the NEO Hessian can be used to compute the entropic 

contributions to produce free energies, although these entropic contributions do not 

include the contributions from the quantum nuclei or the vibrational coupling between 

the classical and quantum nuclei. To account for the entropic contributions associated 

with all nuclei, including the vibrational coupling among all of them, the entropic 

contributions for both classical and quantum nuclei can be computed using the 

extended NEO Hessian within the NEO-HF(V) framework. Importantly, both the zero-

point energies inherent to the NEO PES and the entropic contributions resulting from a 

NEO-HF(V) calculation include the anharmonicity of the quantum nuclei.  

Table 3.2 provides the values for these various quantities for the two systems 

studied herein. The temperature used for inclusion of the vibrational entropy was 298.15 

K. For the ClCH3Cl– system, the barrier decreases when accounting for zero-point 

energy for both the NEO and conventional methods, and the addition of the respective 

vibrational entropy contributions increases each barrier by ~1.7 – 1.8 kcal/mol. For the 

C4H9
+ system, the zero-point energy contribution to the barrier of the hydride transfer 

process is nearly equal and opposite (±0.5 kcal/mol) for the HF and NEO-HF methods, 

yielding barrier heights closer in value. The vibrational entropy contributions are very 

similar for the HF and NEO-HF methods (0.8 – 0.9 kcal/mol). After addition of both zero-

point energy and vibrational entropy contributions, the barrier heights are the same to 

within 0.5 kcal/mol for the ClCH3Cl– system and to within 0.1 kcal/mol for the C4H9
+ 

system. 

These results illustrate several general concepts relevant to thermochemistry 
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calculations within the NEO approach. The zero-point energy and vibrational entropy 

corrections computed with the vibrational modes obtained from the NEO Hessian are 

not expected to be the same as those obtained from the conventional Hessian because 

the number of modes is different. However, inclusion of the zero-point energy 

corrections from these Hessians for both conventional and NEO calculations is 

expected to lead to more similar energy differences (i.e., barrier heights) because the 

NEO PES already includes the zero-point energies associated with the quantum nuclei. 

However, these energies will not be identical because the NEO approach includes the 

anharmonic effects associated with the quantum nuclei, as well as the impact of the 

nuclear quantum effects on the geometry optimization. Additionally, the vibrational 

entropy contributions of the quantum nuclei can be included by obtaining the vibrational 

modes from the extended NEO Hessian within the NEO-HF(V) framework. The 

vibrational entropy contributions to the barriers of the ClCH3Cl– and C4H9
+ systems 

computed in this manner are 1.86 kcal/mol and 0.82 kcal/mol, respectively, compared to 

the conventional HF values of 1.73 kcal/mol and 0.89 kcal/mol. The slight differences 

between NEO-HF(V) and conventional HF vibrational entropy contributions are 

attributable to the anharmonic effects of the quantum nuclei included in the NEO-HF(V) 

approach. The neglect of correlation effects and limitations of the basis sets may also 

contribute to these differences. 

Conclusions 

As multicomponent methods gain traction within the quantum chemistry 

community, the development of tools to enable the multicomponent study of chemical 

reactions becomes essential. Herein we developed and implemented the NEO-HF 
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analytic Hessian in the Q-Chem software package. We used this NEO Hessian to 

characterize stationary points as minima or transition states, analyze the imaginary 

mode at transition states, generate and analyze MEPs, and calculate thermochemical 

properties within the NEO framework. An advantage of the NEO approach is that the 

nuclear quantum effects, such as zero-point energy and nuclear delocalization, of 

specified nuclei are inherently included in the PES. Thus, these nuclear quantum effects 

are included during the optimizations of geometries and generation of MEPs rather than 

added subsequently as corrections. Analysis of the intrinsic reaction coordinate 

illustrates the dominant nuclear motions that drive the chemical reaction. Moreover, 

analysis of the electronic and nuclear orbitals along the MEP highlights the coupled 

motions of the electrons and quantum protons beyond the Born-Oppenheimer 

approximation.  An extended NEO PES that depends on the expectation values of the 

quantum nuclei as well as the classical nuclei allows the inclusion of coupling between 

the classical and quantum nuclei. 

In principle, the NEO framework can be used to treat all nuclei quantum 

mechanically. However, such a treatment requires the elimination of the overall 

rotations to allow the calculation of meaningful vibrational excitations.48-49 Moreover, 

within the NEO-DFT framework, this treatment also requires the development of 

electron-nucleus correlation functionals for each type of nucleus. We have developed 

electron-proton correlation functionals that have been shown to provide accurate proton 

densities and energies within the NEO-DFT framework.23-25 The development of more 

general electron-nucleus correlation functionals for other nuclei is an even more 

challenging task. On the other hand, the treatment of only specified protons quantum 
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mechanically enables the investigation of a wide range of chemical processes, 

particularly those involving hydrogen transfer. The extension of the NEO-HF analytic 

Hessian to the NEO-DFT analytic Hessian as a means of incorporating electron-proton 

correlation is currently underway. The description of hydrogen tunneling requires a 

multireference method such as NEO multistate DFT (NEO-MSDFT), which has been 

shown to produce bilobal, delocalized proton vibrational wave functions and accurate 

hydrogen tunneling splittings for systems such as malonaldehyde.50 The combination of 

the NEO MEP methods presented herein with NEO-MSDFT will enable the 

incorporation of hydrogen tunneling effects into the reaction paths. Correlation effects 

could also be included in geometry optimizations and MEPs with wave function methods 

such as the NEO-CASSCF,4 NEO-OOMP2, and NEO-CCSD19-20 methods. This work 

provides the foundation for all of these future directions. 
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Figures and Tables 

 
 
Figure 3.1. Schematic depiction of reactant (left), transition state (middle), and product 
(right) for the ClCH3Cl– (top row) and C4H9

+ reactions. 
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Figure 3.2. Depictions of the imaginary mode at the transition state for the (A) ClCH3Cl– 
and (B) C4H9

+ systems calculated with the NEO-HF and HF methodsa 

 

aIn the NEO cases, the quantum protons are excluded from the depiction, as their 
motion is not explicitly described by the normal mode. The transition state geometry is 
represented in gray, while positive and negative displacements of the nuclei along the 
imaginary mode are depicted with red and blue, respectively. (Multimedia view is 
available at DOI: 10.1063/5.0033540) 
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Table 3.1. NEO-HF, Conventional HF, and NEO-HF(V) Vibrational Frequencies 
Associated with the Imaginary Mode at the Optimized Transition States for the 
ClCH3Cl– and C4H9

+ Systemsa  
 

 ClCH3Cl– C4H9
+ 

NEO-HF Frequency 412 170 

HF Frequency 414 165 

NEO-HF(V) Frequency 410 118 

HF and NEO-HF Dot Productb 0.968 0.495 

HF and NEO-HF Dot Product 
after Renormalizationc 1.000 0.973 

HF and NEO-HF(V) Dot Productd 0.998 0.996 
 

a All frequencies are given in wavenumbers and are imaginary. 
bThe dot product between the HF and NEO-HF normal mode vectors excludes the normal mode 
elements corresponding to the coordinates of the quantum protons. 
cThe dot product after renormalization entails renormalization of the HF vector after the normal 
mode elements corresponding to the coordinates of the quantum protons are excluded. 
dThe dot product between the HF and NEO-HF(V) normal mode vectors includes all elements. 
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Figure 3.3. Depictions of imaginary vibrational normal modes at the transition state 
geometry of C4H9

+ computed with the NEO-HF(V) (teal arrows, left) and conventional 
HF (orange arrows, center) methods, as well as an overlay of the two depictions (right). 
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Figure 3.4. Minimum energy paths for ClCH3Cl– (left) and C4H9

+ (right) calculated with 
NEO-HF/6-31G**/PB4-D (blue triangles) and conventional HF/6-31G** (red circles)a  
 
aThe intrinsic reaction coordinate is calculated in Cartesian coordinates. 
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Figure 3.5. Depictions of protonic and electronic orbitals along the MEP for C4H9

+.a  
 
aThe protonic orbital is represented as the purple isosurface, and the reactive electronic 
intrinsic bond orbital is represented as blue (positive) and red (negative). The same 
isovalue is used for the protonic and electronic orbitals, indicating that the proton is 
significantly more localized. (Multimedia view is available at DOI: 10.1063/5.0033540) 
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Table 3.2. Barrier Heights (kcal/mol) for the ClCH3Cl– and C4H9
+ Processes 

Calculated with NEO-HF and HF Methods Including Zero-Point Energy (ΔZPE) and 
Vibrational Entropy (TΔS) Contributions. 
 

 ClCH3Cl– C4H9
+ 

ΔENEO-HF 14.01 2.06 

ΔENEO-HF + ΔZPENEO-HF 13.62 2.51 

ΔENEO-HF + ΔZPENEO-HF – TΔSNEO-HF
a 15.41 3.32 

ΔENEO-HF + ΔZPENEO-HF – TΔSNEO-HF(V)
b 15.47 3.32 

ΔEHF 13.78 2.85 

ΔEHF + ΔZPEHF 13.23 2.35 

ΔEHF + ΔZPEHF – TΔSHF 14.96 3.24 
 

aThe vibrational entropy was computed with the NEO Hessian and therefore does not 
include contributions from the quantum nuclei. 
bThe vibrational entropy was computed with the extended NEO Hessian using the NEO-
HF(V) method and therefore includes contributions from both quantum and classical 
nuclei. 
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Supplemental Information 

The Supporting Information is available free of charge on the JCP website at 

DOI: 10.1063/5.0033540. A comparison of semi-numerical and analytic Hessian 

elements, the proton potential for the C4H9
+ transition state, a comparison of 

conventional and NEO hydrogen motion along the MEP, imaginary normal mode 

vectors for transition states, a comparison of NEO-HF(V) and HF frequencies, details on 

the CP-NEO-HF equations, the unrestricted NEO-DFT formulation of the coupled-

perturbed equations, and additional computational details are found in Appendix B. 
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Abstract 

A significant challenge of multicomponent quantum chemistry methods is the 

calculation of vibrational frequencies for comparison to experiment. The nuclear-

electronic orbital (NEO) approach treats specified nuclei, typically key protons, quantum 

mechanically. The Born-Oppenheimer separation between the quantum and classical 

nuclei prevents the direct calculation of vibrational frequencies corresponding to modes 

composed of both types of nuclei. Herein an effective strategy for calculating the 

vibrational frequencies of the entire molecule within the NEO framework is devised and 

implemented. This strategy requires diagonalization of an extended NEO Hessian that 

depends on the expectation values of the quantum nuclei as well as the coordinates of 

the classical nuclei and is constructed with input from multicomponent time-dependent 

density functional theory (NEO-TDDFT). Application of this NEO-DFT(V) approach to 

molecular systems illustrates that it accurately incorporates the most significant 

anharmonic effects. This general theoretical formulation opens up a broad spectrum of 

new directions for multicomponent quantum chemistry. 
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Introduction 

Multicomponent quantum chemistry, in which more than one type of particle is 

treated quantum mechanically with either wavefunction methods or density functional 

theory (DFT), is an emerging research field.1-8 A significant advantage of 

multicomponent quantum chemistry is that electronic and nuclear quantum effects can 

be described simultaneously while avoiding the Born-Oppenheimer separation between 

the electrons and the quantum nuclei. The nuclear-electronic orbital (NEO) approach3, 5-

6, 9-11 balances chemical accuracy and computational practicality by treating all electrons 

and one or more nuclei, typically key protons, quantum mechanically, while treating at 

least two nuclei classically to avoid difficulties with translations and rotations. The NEO 

potential energy surface depends on only the coordinates of the classical nuclei,12 

predicated on the assumption that the electrons and quantum nuclei respond 

instantaneously to the motion of the classical nuclei. The characterization of stationary 

points on the NEO potential energy surface as minima or saddle points requires the 

computation of the NEO Hessian matrix within the coordinate space.12 The Hessian 

matrix is also crucial for obtaining the intrinsic reaction coordinate (IRC) or the minimum 

energy path within the NEO framework. Thus, an efficient method for computing the 

NEO Hessian matrix is essential for a wide range of applications. 

A significant challenge of multicomponent quantum chemistry methods is the 

calculation of meaningful vibrational frequencies. Molecular geometries can be 

described by representing the positions of the quantum nuclei by the expectation values 

of their coordinates. The Born-Oppenheimer separation between the quantum and 

classical nuclei, reflected by the instantaneous response of the former to the latter, 



72 
 

prevents the direct calculation of vibrational frequencies corresponding to modes 

composed of both types of nuclei. As a result, the vibrational modes obtained from 

diagonalizing the NEO Hessian matrix at a minimum on the NEO potential energy 

surface are not directly connected to those obtained from experimental infrared or 

Raman spectroscopy. In order to build this connection and enable the calculation of 

meaningful vibrational frequencies within the NEO framework, the quantum and 

classical nuclei must be coupled in a rigorous manner. 

In this chapter, we derive the equations to efficiently calculate the NEO Hessian 

matrix and devise an effective strategy to enable the calculation of meaningful 

vibrational frequencies. The NEO Hessian is composed of second derivatives of the 

NEO energy with respect to only the classical nuclei, invoking the Born-Oppenheimer 

separation between the quantum and classical nuclei. The vibrational frequencies are 

calculated by diagonalizing an extended NEO Hessian that includes second derivatives 

of the NEO energy with respect to the expectation values of the quantum nuclei as well 

as the classical nuclei, thereby coupling these two types of nuclei. Diagonalization of 

this extended NEO Hessian produces vibrational modes that are composed of both 

types of nuclei and therefore can be directly connected to the vibrational modes 

measured spectroscopically. This strategy, denoted NEO-DFT(V), differs from 

conventional quantum chemistry calculations of vibrational frequencies because the 

delocalization and zero point energy effects of the quantum nuclei are included in the 

geometry optimizations, and anharmonic effects are included in the expectation values 

of the quantum nuclei used in the extended NEO Hessian. These differences are 

expected to improve the quantitative accuracy of the vibrational frequencies, particularly 
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those involving the quantum nuclei. After deriving the key equations, we apply this 

strategy to a set of molecular systems and compare the calculated vibrational 

frequencies to experimental data. 

Theory 

For a system with Nc classical nuclei and Nq quantum nuclei, the NEO potential 

energy surface depends on only the coordinates of the classical nuclei and therefore is 

3Nc-dimensional.12 In practice, a single-point energy calculation within the NEO 

framework also depends on the positions of the electronic and nuclear basis function 

centers associated with the quantum nuclei. Here we assume that the quantum nuclei 

are described by a total of Nb basis function centers. Although often each quantum 

nucleus is represented by a single basis function center that is the same for both 

electronic and nuclear basis functions, leading to Nb = Nq, this assumption is not 

necessary. For a finite basis set, the positions of the basis function centers associated 

with the quantum nuclei must be optimized variationally to compute each point on the 

NEO potential energy surface (i.e., for each configuration of the classical nuclei).  

Mathematically, the NEO potential energy surface is defined by 

 c b c( , ( ))E E= r r r  (4.1) 

where cr  is a 3Nc-dimensional vector denoting the combined coordinates of the 

classical nuclei and br  is a 3Nb-dimensional vector denoting the combined coordinates 

of the basis function centers associated with the quantum nuclei. According to the 

definition of the NEO potential energy surface, the coordinates br  depend on the 

classical nuclear coordinates cr  and satisfy the condition 
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b

0
E
=

r
. (4.2) 

Using the chain rule, the gradient of the NEO energy, which is a 3Nc-dimensional vector, 

is  

 b

c c b c c

dd

d d

E E E E  
= + =
  

r

r r r r r
 (4.3) 

where the second equality arises because Eq. (4.2) is satisfied.  

  The NEO Hessian matrix, a 3Nc × 3Nc square matrix, can be obtained as 

 

2
22 2 2 2

b b b

2 2 2 2

c c b c c b c b c

d d dd
2

d d d d

E E E E E    
= + + + 
     

r r r

r r r r r r r r r
 (4.4) 

where this compact notation does not explicitly indicate the order of matrix operations 

and transpose of certain matrices for practical implementation. The direct evaluation of 

this form is not straightforward because the function b b c( )=r r r  is not explicitly known. 

However, this expression can be simplified by taking the derivative of Eq. (4.2) with 

respect to cr , yielding: 

 
2 2

b

2

b c b c

d
0

d

E E 
+ =
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r

r r r r
 (4.5) 

and solving for b

c

d

d

r

r
. Eqs. (4.2) and (4.5) lead to the simplification of the Hessian 

matrix in Eq. (4.4) as 

 

1
2 2 2 2 2

2 2 2

c c b c b b c

d

d

E E E E E
−

    
= −  
      r r r r r r r

. (4.6) 

In this new form, only second-order energy derivatives remain, and all of these terms 
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can be evaluated numerically or analytically. Defining the three submatrices 
2

cc 2

c

E
=


H
r

, 

2

bc

b c

E
=
 

H
r r

, and 
2

bb 2

b

E
=


H
r

, as well as the NEO Hessian matrix 
NEO

H , Eq. (4.6) can 

be expressed as  

 NEO T 1

cc bc bb bc

−= −H H H H H . (4.7) 

This matrix folding process accounts for the effect of the optimization of the nuclear 

basis function centers associated with the quantum nuclei. 

Diagonalizing the NEO Hessian given in Eq. (4.7) leads to the vibrational modes 

within the classical coordinate space, assuming that the quantum nuclei respond 

instantaneously to the motion of classical nuclei. However, because the mass difference 

between classical and quantum nuclei is not substantial, non-Born-Oppenheimer or 

nonadiabatic effects between the two types of nuclei may be significant. Moreover, the 

NEO framework does not provide frequencies that can be compared directly with 

experimentally measured IR spectra because the normal modes obtained from the NEO 

Hessian depend on only the classical nuclear coordinates and do not accurately 

describe the coupling effects between the classical and quantum nuclear motions. To 

address this issue, we propose and implement a practical strategy to recover the 

experimentally meaningful vibrational modes by combining NEO Hessian and NEO-

TDDFT calculations.13 

In a NEO calculation, the Hessian matrix is defined in the space of the Nc 

classical nuclear coordinates, denoted by cr , and the normal modes obtained from this 

Hessian do not depend explicitly on the quantum nuclear coordinates. However, an 

extended NEO Hessian may be defined to depend on both the classical nuclear 
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coordinates, cr , and the expectation values of the quantum nuclear coordinates defined 

as  

 
q q ( )d

i i
= r r r r . (4.8) 

Here 
q ( )

i
 r  and 

qi
r  denote the density and expectation value (i.e., average position), 

respectively, of the ith quantum nucleus. This extended NEO Hessian matrix can be 

divided into three submatrices: 
2

0 2

c

E
=


H
r

, 
2

1

q c

E
=
 

H
r r

, 
2

2 2

q

E
=


H
r

, where 
qr  is a 3Nq-

dimensional vector denoting the combined coordinates of the expectation values of the 

quantum nuclei. Analogous to conventional quantum chemistry calculations, the non-

zero eigenvalues of the mass-weighted extended Hessian matrix correspond to the 

squares of the frequencies of the vibrational modes, and the associated eigenvectors 

correspond to the amplitudes of motion along the mass-weighted coordinates for these 

modes.   

The 
2

2

q

E

r
 term defined as 2H  is the force constant matrix for the quantum 

nuclei while all classical nuclei are fixed within the harmonic oscillator approximation. 

Thus, this term is related to the harmonic vibrational excitation frequencies, which can 

be approximated by the vibrational excitation frequencies ω obtained from a NEO-

TDDFT calculation.13 In this case, the Hessian matrix elements can be calculated as   

 
2

†

2

q

E
=


U ΩMU

r
 (4.9) 

where M is the diagonal mass matrix corresponding to the quantum nuclei, Ω  is the 

diagonal matrix with elements 2  corresponding to the NEO-TDDFT vibrational 
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frequencies for fixed classical nuclei, and U is a unitary matrix that transforms the 

diagonal frequency matrix to a coordinate system consistent with the other molecular 

vibrational modes. Note that nuclear delocalization and aharmonicity effects of the 

quantum nuclei are included in the vibrational excitation frequencies ω, as well as in the 

optimized geometries and expectation values of the quantum nuclear coordinates.  

Although these anharmonic frequencies are incorporated as second-order harmonic 

frequency terms in the extended Hessian, this procedure incorporates a portion of these 

physically significant effects. This point will be discussed further below in the analysis of 

the applications. 

The 
2

2

c

E

r
 term defined as 0H  is the force constant matrix for the classical 

nuclei with the expectation values of the quantum nuclei fixed. Therefore, it differs from 

the elements of the NEO Hessian defined in Eq. (4.7), which requires the quantum 

nuclei to respond instantaneously to the motion of the classical nuclei. The NEO energy 

can be expressed as 

 
c q c( , ( ))E E= r r r  (4.10) 

where the expectation values of the quantum nuclei depend on the classical nuclear 

coordinates. Because the NEO energy is computed by variationally optimizing the 

densities of the quantum nuclei, the energy is stationary with respect to the expectation 

values of the quantum nuclei (see Appendix C for details): 

 
q

0
E
=

r
. (4.11) 

Equations (4.10) and (4.11) have the same form as Eqs. (4.1) and (4.2), except that 

the positions of the basis function centers, br , have been substituted with the 



78 
 

expectation values of the quantum nuclei, 
qr . Following the same mathematical 

derivations leads to 

 

1
2 2 2 2 2

2 2 2

c c q c q q c

d

d

E E E E E
−

    
= −         r r r r r r r

 (4.12) 

 NEO T 1

0 1 2 1

−= −H H H H H . (4.13) 

In this case, 0H  is the target matrix that contains the 
2

2

c

E

r
 matrix elements and can 

be obtained by  

 NEO T 1

0 1 2 1

−= +H H H H H , (4.14) 

The NEO Hessian 
NEO

H  is already known from Eq. (4.7), 1

2

−
H  can be calculated as 

described above, and 1H  will be derived in the next step. 

The derivation of 1H  utilizes the analog of Eq. (4.5) with br  substituted by 
qr : 

 
2 2

q

2

q c q c

d
0

d
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+ =
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r

r r r r
, (4.15) 

Rearrangement of this equation provides the matrix elements in 1H : 

 

2 2
q

2

q c q c

1 2

d

d
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r
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with the response of 
qr  to cr  defined as   

 
qq

q

c c c

dρ ( )d d
( )d d

d d d

i

i
= = = 

rr
R r r r r r

r r r
 . (4.17) 

The matrix R can be calculated either numerically or analytically. For the applications 

described below, we compute the numerical gradient of the expectation value of each 
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quantum nucleus with respect to each classical nucleus. Analytically, the density matrix 

response with respect to changes in the classical nuclear coordinates can be obtained 

by coupled perturbed NEO-Hartree-Fock equations, as described in Appendix C. 

Combining all of these parts, the extended Hessian matrix can be calculated from 

the following expressions:   

 †

2 =H U ΩMU   (4.18) 

 1 2= −H H R   (4.19) 

 NEO T 1 NEO T

0 1 2 1 2

−= + = +H H H H H H R H R   (4.20) 

Note that all of these quantities are straightforward to calculate. The two matrices 
NEO

H  

and R  can be calculated numerically or analytically within the NEO-DFT method, while 

2H  is constructed from the results of a NEO-TDDFT calculation. These three matrices 

alone are sufficient for calculating the remaining required pieces for the full vibrational 

analysis, which is performed on the mass-weighted extended Hessian matrix. The 

construction of the extended Hessian matrix is depicted in Figure 4.1, and an example 

of this NEO-DFT(V) procedure applied to HCN is depicted in Figure 4.2. 

Results and Discussion 

Herein the NEO-DFT(V) method is used to compute the vibrational modes for a 

set of five molecular systems, each with a single proton. For each system, the 

geometries were optimized at the NEO-DFT level with the B3LYP electronic exchange-

correlation functional14-16 and the epc17-2 electron-proton correlation functional.10 The 

cc-pVTZ17 electronic basis set was used for all heavy nuclei, while the cc-pV6Z18 basis 

set, excluding the h-function (denoted cc-pV6Z* herein), was employed for the protons. 

An even-tempered 8s8p8d8f proton basis set was used for all calculations with 
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2 2 =  and 2 = .19 The NEO Hessian and the derivatives of the expectation value 

of the quantum proton with respect to the classical nuclei were computed numerically. 

The NEO-TDDFT calculations were performed at the same level of theory for these 

geometries with the exception that the cc-pVDZ17 basis set was used for the oxygen 

and flurine atoms in HCFO and the fluorine atoms in HCF3. For the TDDFT calculations, 

the proton basis function centers were placed at the covalent bond distance determined 

from conventional DFT; the results with the proton basis function centers placed at the 

expectation values are similar (Table C1 of Appendix C). The unitary matrix U in Eq. 

(4.9) is determined from the normal modes of the quantum proton, as obtained from the 

conventional DFT Hessian when all classical nuclei are assigned infinite masses. An 

alternative procedure based on NEO-TDDFT will be explored in future work. All of the 

NEO calculations and the conventional DFT calculations were performed with an in-

house modified version of the GAMESS program.20 For comparison, we also performed 

conventional DFT calculations including third and fourth order anharmonic terms using 

Gaussian09.21 Although these molecules each contain only a single hydrogen nucleus, 

the extension to multiple protons is straightforward. For multiple protons, the extended 

Hessian depends on the expectation value of each proton orbital, and NEO-TDDFT is 

used to compute the vibrational frequencies for each proton.   

The vibrational frequencies obtained from these calculations, as well as 

experimental data, are given in Table 4.1. The conventional harmonic DFT and NEO-

DFT(V) methods provide similarly accurate vibrational frequencies, with the exception 

that the hydrogen stretch frequencies for terminal hydrogen nuclei are notably lower and 

closer to the experimental values when calculated with the NEO-DFT(V) method. This 
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decrease in the frequency of the hydrogen stretch is attributed to the anharmonic effects 

included directly in the NEO-DFT(V) calculations. Application of numerical third- and 

fourth-order corrections to the conventional DFT calculations supports this assertion, as 

the hydrogen stretch frequencies decrease by a similar amount. The hydrogen bending 

modes are more challenging to compute for linear molecules, as indicated by 

overestimates of these frequencies by vibrational self-consistent-field calculations 

(Table C2 of Appendix C). Thus, the NEO-DFT(V) method accurately incorporates the 

most significant anharmonic effects that lead to a substantial decrease in the hydrogen 

stretch frequencies. 

A different trend is observed for the FHF– system, where inclusion of anharmonic 

effects via NEO-DFT(V) or conventional DFT increases the hydrogen stretch frequency.  

This phenomonen of anharmonicity increasing the hydrogen stretch frequency for FHF– 

is not uncommon for an internal hydrogen nucleus moving in a single well potential 

between two other nuclei, in contrast to the terminal hydrogen nuclei in the other 

molecules studied here. In this case, inclusion of anharmonicity increases the deviation 

of the calculated hydrogen stretch frequency compared to the experimental value. This 

deviation is attributed to limitations of the underlying DFT method on the basis of the 

similar trend observed in the conventional DFT calculations including anharmonic 

corrections. Moreover, coupled-cluster singles and doubles with perturbative triples 

(CCSD(T)) calculations22 produce a hydrogen stretch frequency of 1195 cm-1 with a 

harmonic treatment and 1343 cm-1 with an anharmonic treatment, in good agreement 

with the experimental value. The magnitude of the increase in frequency due to 

anharmonic effects in these CCSD(T) calculations is similar to that observed with NEO-
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DFT(V), confirming that the anharmonic effects are being described in a reasonable 

manner. 

Conclusions 

In this chapter, we presented an efficient method for computing the NEO Hessian 

matrix and a novel strategy for calculating the vibrational frequencies of the entire 

molecule. The NEO Hessian matrix is required for characterizing stationary points on 

the NEO potential energy surface and for generating the IRC or minimum energy path.  

However, the NEO Hessian matrix alone is not sufficient to compute vibrational 

frequencies composed of both classical and quantum nuclei. For this purpose, we 

devised an extended NEO Hessian that depends on the expectation values of the 

quantum nuclei as well as the coordinates of the classical nuclei.  Diagonalization of 

this extended NEO Hessian, which relies on input from NEO-TDDFT, produces 

vibrational modes that are directly related to those measured spectroscopically.  

Application of this NEO-DFT(V) approach to a series of five molecules illustrates that 

this approach accurately includes anharmonic effects of the hydrogen nuclei. This 

general theoretical formulation opens up a broad spectrum of new directions for both 

DFT and wavefunction-based multicomponent quantum chemistry. 
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Figures and Tables 

 

 

 

Figure 4.1: Schematic depiction of the extended Hessian matrix (upper left corner) 
associated with the coordinates of the classical nuclei and the expectation values of the 
quantum nucleia   
 
aThe components 0H , 1H , and 2H  are defined in Eqs. (4.18)-(4.20). NEOH  is the 

c c3 3N N  NEO Hessian matrix defined in Eq. (4.7), predicated on the instantaneous 

response of the quantum nuclei to the classical nuclei. 2H  is the 
q q3 3N N  matrix 

computed from a unitary transform of the diagonal matrix composed of the NEO-TDDFT 
vibrational excitation frequencies associated with the quantum nuclei for fixed classical 
nuclei. R  is the 

q c3 3N N  matrix defined in Eq. (4.17), corresponding to the 

derivatives of the expectation values of the quantum nuclei with respect to the classical 
nuclear coordinates. 
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Figure 4.2: Schematic depiction of the application of the NEO-DFT(V) method to HCN, 
where the hydrogen nucleus and all electrons are treated quantum mechanicallya  
 
aThe quantum proton is depicted in red mesh, and the classical nuclei carbon and 
nitrogen are depicted in gray and blue, respectively. The NEO Hessian calculation 
produces the CN vibrational stretch with the hydrogen nucleus responding 
instantaneously to this motion. The NEO-TDDFT calculation provides the vibrational 
excitation frequencies associated with the bend (doubly degenerate) and stretch for the 
hydrogen nucleus with the carbon and nitrogen nuclei fixed. This information is 
combined to construct the extended Hessian, as shown in Figure 4.1, to produce the 
four coupled vibrational motions shown on the right, where the bend is doubly 
degenerate. 
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Table 4.1: Vibrational Frequencies (in cm-1) Calculated with Conventional DFT with 
Harmonic and Anharmonic Treatments and with NEO-DFT(V) 
 

 Vibrational Mode Experiment NEO-DFT(V)a 
Conv. 

Anharmonicb 

Conv. 
Harmonicb 

HCN c CH stretch 3311 3317 3321 3439 

CN stretch 2097 2191 2177 2201 

CH bend 712 789 753 773 

HNC d NH stretch 3653 3645 3644 3814 

NC stretch 2024 2100 2073 2105 

NH bend 462 568 464 480 

HCFOe CH stretch 2976 2947 2942 3081 

CO stretch 1834 1885 1861 1891 

CH in-plane bend 1344 1329 1341 1370 

CF stretch 1070 1075 1049 1069 

CH out-of-plane 
bend 

1000‒1050 1061 1019 1039 

OCF scissor 661 665 659 665 

HCF3 
f CH stretch 3035 2988 2999 3119 

CH bend 1376 1353 1360 1388 

CF asymmetric 
stretch 

1152 1134 1117 1139 

CF symmetric 
stretch 

1137 1128 1118 1133 

CF simultaneous 
bend 

700 693 688 694 

FCF scissor 508 501 497 501 

FHF‒ g FH stretch 1331 1695 1615 1451 

FH bend 1286 1302 1287 1360 

FF stretch 583 617 557 625 
 

aNEO-DFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text. bDFT/B3LYP; 
cc-pVTZ basis set for heavy nuclei and cc-pV6Z (cc-pV6Z*) basis set for the hydrogen for 
anharmonic (harmonic) treatment. cExperimental data from Ref. 23. dExperimental data from Ref. 
24. eExperimental data from Ref. 25. fExperimental data from Ref. 26. gExperimental data from Ref. 
27. 
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Supplemental Information 

     The Supporting Information is available free of charge on the ACS Publications 

website at DOI: 10.1021/acs.jpclett.9b00299. Proof that derivative of NEO energy with 

respect to expectation value of quantum nucleus vanishes, additional tables of 

computed vibrational frequencies with different methods for comparison, and the 

analytical expression for the R matrix are found in Appendix C. 
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Abstract 

The nuclear-electronic orbital (NEO) approach treats all electrons and specified 

nuclei, typically protons, on the same quantum mechanical level.  Proton vibrational 

excitations can be calculated using multicomponent time-dependent density functional 

theory (NEO-TDDFT) for fixed classical nuclei.  Recently the NEO-DFT(V) approach 

was developed to enable the calculation of molecular vibrational frequencies for modes 

composed of both classical and quantum nuclei.  This approach uses input from NEO-

TDDFT to construct an extended NEO Hessian that depends on the expectation values 

of the quantum protons as well as the classical nuclear coordinates.  Herein strategies 

are devised for extending these approaches to molecules with multiple quantum protons 

in a self-contained, effective, and computationally practical manner.  The NEO-TDDFT 

method is shown to describe vibrational excitations corresponding to collective nuclear 

motions, such as linear combinations of proton vibrational excitations. The NEO-DFT(V) 

approach is shown to incorporate the most significant anharmonic effects in the 

molecular vibrations, particularly for the hydrogen stretching modes.  These theoretical 

strategies pave the way for a wide range of multicomponent quantum chemistry 

applications. 
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Introduction 

To enable the quantum mechanical treatment of more than one type of particle, a 

variety of multicomponent wave function theory1-9 and density functional theory  (DFT)10-

19 approaches have been developed. The nuclear-electronic orbital (NEO)3, 5-7, 9, 14-15, 17-

21  method is a multicomponent quantum chemistry method in which select nuclei, 

typically protons, are treated quantum mechanically at the same level as the electrons, 

while at least two other nuclei are treated classically to avoid difficulties with translations 

and rotations. The Born-Oppenheimer approximation between the electrons and 

quantum nuclei is avoided in this context, allowing for the simultaneous description of 

electronic and nuclear quantum effects. Within the NEO framework, NEO-DFT and NEO 

wave function methods have been demonstrated to accurately describe ground state 

properties such as proton densities9, 17-19 and proton affinities.9, 18-19 Expanding upon 

electronic time-dependent density functional theory (TDDFT)22-27 and equation-of-

motion coupled cluster (EOM-CC) theory,28-31 advances have also been made in 

calculating vibrational and positronic excitation energies with NEO-TDDFT20 and NEO-

EOM-CCSD,32 respectively. 

 Although the NEO approach does not invoke the Born-Oppenheimer separation 

between the quantum protons and the electrons, it does invoke the Born-Oppenheimer 

separation between the quantum protons and all classical nuclei. This separation leads 

to challenges in calculating vibrational frequencies that can be compared to 

spectroscopic data because the NEO potential energy surface depends on only the 

coordinates of the classical nuclei, and the quantum protons are assumed to respond 

instantaneously to the motion of the classical nuclei. As a result, diagonalization of the 
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NEO Hessian matrix produces vibrational modes that depend on only the classical 

nuclear coordinates without proper coupling to the quantum proton motions. Proton 

vibrational excitations can be calculated using NEO-TDDFT,20 but these calculations are 

performed for fixed classical nuclei, resulting in proton vibrational excitations that are 

decoupled from the classical nuclei. Recently, the NEO-DFT(V) method was developed 

to overcome these difficulties and compute full molecular vibrational frequencies.21  

 The NEO-DFT(V) method is capable of calculating vibrational frequencies 

composed of both the classical and quantum nuclei via diagonalization of an extended 

NEO Hessian matrix that depends on second derivatives of the NEO energy with 

respect to the expectation values of the quantum nuclei as well as the coordinates of 

the classical nuclei. This extended NEO Hessian is constructed with input from NEO-

TDDFT, which provides information about the proton vibrational excitations. The effects 

of zero-point energy and delocalization of the quantum nuclei are included in the 

geometry optimization, and anharmonic effects are incorporated into the molecular 

vibrational frequencies dominated by the quantum nuclei. The NEO-DFT(V) method 

was tested on a set of five molecules and found to produce results comparable to both 

experimental data and anharmonic calculations.21 For all of these test systems, 

however, only a single proton was treated quantum mechanically. In this chapter, we 

extend the NEO-TDDFT method to molecules with multiple quantum protons, discuss 

the theoretical challenges associated with performing NEO-DFT(V) calculations with 

multiple quantum protons, and provide a generalization of the NEO-DFT(V) approach 

for any number of quantum nuclei. 

 The chapter is organized as follows. In the next section, we review the theory of 
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NEO-DFT(V) and NEO-TDDFT and then explain how properties calculated using NEO-

TDDFT can be used to enable practical NEO-DFT(V) calculations with more than one 

quantum proton. We then calculate the vibrational frequencies for a set of four 

molecules, each with two quantum protons, using NEO-DFT(V). We compare the 

results to experimental data as well as anharmonic computational results. The final 

section contains concluding remarks. 

Theory 

 Extended NEO Hessian 

 For a system with Nc classical nuclei and Nq quantum nuclei, the NEO potential 

energy surface (PES) depends on only the coordinates of the classical nuclei.3 Because 

the NEO approach invokes the Born-Oppenheimer separation between the quantum 

and classical nuclei, the quantum nuclear densities are optimized variationally for a 

given configuration of the classical nuclei. As a consequence, diagonalization of the 3Nc 

× 3Nc NEO Hessian matrix provides the harmonic vibrational excitation energies 

associated with only the classical nuclei. Additionally, these vibrational modes are not 

properly coupled to the quantum nuclei because the quantum nuclei are assumed to 

respond instantaneously to any perturbation of the classical nuclei. The strategy of the 

NEO-DFT(V) method is to compute and diagonalize an extended 3(Nc + Nq) × 3(Nc + Nq) 

Hessian matrix that includes the proper coupling among all nuclei and produces full 

molecular vibrational excitation energies that can be compared to spectroscopic data.  

The NEO energy can be expressed as  

 
   
E = E(r

c
,r

q
(r

c
))  , (5.1) 

where rc is a 3Nc-dimensional vector denoting the combined coordinates of the classical 
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nuclei, and  rq is a  3Nq-dimensional vector denoting the combined expectation values of 

the quantum nuclei. Specifically, 
  
r

q
 is a concatenation of 

   
r

q
i

 for each quantum nucleus, 

and 
   
r

q
i

 is defined as the expectation value of the ith quantum nucleus according to 

 
   
r

q
i

= rr
q

i

(r)drò  , (5.2) 

where 
   
r

q
i

(r) is the density of the ith quantum nucleus. This approach assumes that 

each quantum nucleus is spatially localized, rendering them effectively distinguishable. 

Consequently, each quantum nucleus corresponds to an occupied nuclear orbital that is 

localized in space, and 
   
r

q
i

(r) for a given nucleus is the square of this nuclear orbital. 

Such an assumption is valid for most molecular systems of interest. From the definition 

of the NEO energy, which is calculated by variationally optimizing the densities of the 

electrons and quantum nuclei, the condition  

 

   

¶E

¶r
q

= 0   (5.3) 

is satisfied for any geometry of the classical nuclei. Specifically, this condition must be 

satisfied under the constraint that the nuclear determinant used to construct the nuclear 

density 
  
r

q
(r) minimizes the total NEO energy in Eq. (5.1) (see the Supporting 

Information of Ref. 21 for details).  

As mentioned above, the NEO-DFT(V) method requires the calculation and 

diagonalization of an extended Hessian that couples the classical and quantum nuclei. 

This extended Hessian is defined in terms of the 3Nc coordinates of the classical nuclei 

and the 3Nq expectation values (i.e., average positions) of the quantum nuclei. 

Mathematically, the extended Hessian matrix is defined as21  
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ext 0 1
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where 
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E 
=    r

H
r

. Diagonalization of the mass-

weighted form of 
  
H

NEO

ext  provides the full molecular vibrational excitation energies. The 

remainder of this subsection will outline how each of these submatrices can be 

calculated. 

As a first step toward evaluating these three submatrices, we express the NEO 

Hessian matrix 
  
H

NEO
 in terms of them. As discussed above, the 3Nc × 3Nc NEO Hessian 

matrix 
  
H

NEO
 depends on only the classical nuclear coordinates, assuming that the 

quantum nuclei respond instantaneously to perturbations of the classical nuclei. In 

practice, this Hessian matrix can be computed analytically or numerically while invoking 

this Born-Oppenheimer separation between the classical and quantum nuclei.21 An 

alternative mathematically rigorous expression for the NEO Hessian matrix 
  
H

NEO
 can 

be obtained by taking the second derivative of the NEO energy in Eq. (5.1) with respect 

to the classical nuclei: 

 

q c

2 22 2 2 2
q q q

2 2 2 2

c c c q c q c q c

d d dd
2

d d d d

E E E E E       
= + + +             r r

r r r

r r r r r r r r r
. (5.5) 

This expression can be simplified after some straightforward mathematical 

manipulations. Differentiating Eq. (5.3) with respect to the classical nuclei gives 

 

c

2 2
q

2

c q c q

d
0

d

E E  
+ =     r

r

r r r r
,  (5.6) 
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and solving for 

  

dr
q

dr
c

 yields 

 

c

1
2 2

q

2

c c q q

d

d

E E
−

  
= −      r

r

r r r r
.  (5.7) 

Using Eqs. (5.3) and (5.7) allows us to simplify Eq. (5.5) as 

 

q c

1
2 2 2 2 2

2 2 2

c c c q q q c

d

d

E E E E E
−

     
= −             r r

r r r r r r r
.  (5.8)  

Eq. (5.8) can be expressed in terms of the submatrices defined above as21 

 T 1

NEO 0 1 2 1

−= −H H H H H  . (5.9) 

Given this mathematical expression for 
  
H

NEO
, the three submatrices in Eq. (5.4) 

can be computed in a straightforward manner. The 
  
H

0
 submatrix is the force constant 

matrix for the classical nuclei with the expectation values of the quantum nuclei fixed, 

and it is obtained in practice through a rearrangement of Eq. (5.9): 

 
  
H

0
= H

NEO
+ H

1

T
H

2

-1
H

1
= H

NEO
+ R

T
H

2
R  . (5.10) 

Here the R matrix is defined as 

 

  

R =
dr

q

dr
c

 , (5.11) 

where 

 

   

dr
q

i

dr
c

=
d

dr
c

rr
q

i

(r)dr = ròò
dr

q
i

(r)

dr
c

dr  . (5.12) 

This R matrix can be calculated analytically or numerically from the gradient of the 

expectation value of each quantum nucleus with respect to each classical nucleus. 
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From Eq. (5.6), it is clear that the 
  
H

1
 submatrix can be expressed as21 

 1 2= −H H R  . (5.13) 

Eqs. (5.4), (5.10), and (5.13) indicate that if the 
  
H

2
 matrix is known, then the target 

  
H

NEO

ext  can be constructed and diagonalized.  However, 
  
H

2
 is challenging to compute 

directly using only information from the nuclear density because it contains second 

derivatives of the NEO energy with respect to specific components of the combined 

expectation values rq that must vary while other components of rq remain fixed.21 It is 

therefore desirable to formulate an alternative scheme for constructing 
  
H

2
.  

As defined above, 
  
H

2
 is the Hessian matrix corresponding to the second 

derivatives of the energy with respect to the expectation values of the quantum nuclei 

with the classical nuclei fixed. Within the harmonic oscillator approximation, its 

associated generalized eigenvalue equation is 

 
  
H

2
U = MUΩ ,  (5.14) 

with the orthonormalization condition 

 † =U MU I  (5.15) 

where Ω  is the diagonal matrix of eigenvalues 2 , M is the diagonal mass matrix 

corresponding to the quantum nuclei, and U is composed of the eigenvectors, which are 

denoted normal modes in this context. Typically the Hessian matrix is known and is 

diagonalized to obtain the normal modes and vibrational frequencies. However, our 

problem is the reverse in that 
  
H

2
needs to be calculated from approximate normal 

modes and frequencies. For this purpose, Eq. (5.14) can be rearranged to be 
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c

2
1

2 2

q

†E −
 

= = =   r

U MH MUΩU MUΩ
r

 . (5.16) 

Thus, 
  
H

2
can be constructed if we know the associated eigenvalues 2  and 

eigenvectors U. In our strategy, the quantum proton vibrational frequencies w  used to 

construct Ω  are approximated by the anharmonic frequencies calculated by NEO-

TDDFT. As a result, this approach partially incorporates the anharmonic effects that 

naturally arise in NEO-TDDFT calculations of vibrational excitations. For single proton 

systems, the U matrix was previously constructed from the normal modes associated 

with the quantum proton as obtained from a conventional electronic Hessian matrix with 

all nuclei except the proton fixed.21 While effective, this procedure is not self-contained 

and adds computational expense. An alternative construction of the U matrix based on 

the transition dipole moments obtained from NEO-TDDFT is introduced in the next 

subsection.  

NEO-TDDFT and the U Matrix Construction 

 The NEO-DFT method was developed previously for a system composed of 

electrons and quantum nuclei in a field of fixed classical nuclei. To simplify the 

discussion, we only consider quantum protons, although the theory is easily extended to 

other types of quantum nuclei or particles such as positrons. Within the Kohn-Sham 

formalism, the reference state is defined as the product of electron and proton Slater 

determinants composed of electronic and protonic orbitals, respectively. The total 

energy depends on the electron and proton densities, 
 r

e   and 
 r

p , respectively: 

 
  
E[re ,r p] = E

ext
[re ,r p]+ E

ref
[re ,r p]+ E

exc
[re]+ E

pxc
[r p]+ E

epc
[re ,r p]  (5.17) 

Here E denotes the interaction of the electron and proton densities with the external 
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potential due to the fixed classical nuclei, and Eref includes the kinetic energies of the 

electrons and quantum protons and the classical Coulomb interactions for the reference 

state. In addition, Eexc, Epxc, and Eepc denote the electron-electron exchange-correlation 

functional, the proton-proton exchange-correlation functional, and the electron-proton 

correlation functional. Application of the variational principle to this total energy 

functional leads to Kohn-Sham equations for the electrons and quantum protons that 

are solved iteratively. Our group has developed electron-proton correlation 

functionals,19, 33 which can be used in conjunction with existing electronic exchange-

correlation functionals. Because proton-proton exchange and correlation are negligible 

for molecular systems associated with localized proton densities, the proton-proton 

exchange-correlation functional is chosen to be the diagonal Hartree-Fock exchange 

terms to eliminate self-interaction energy.  

The NEO-TDDFT approach was developed to compute electronic and proton 

vibrational excitations simultaneously in a computationally practical manner.  The NEO-

TDDFT equations have been derived previously,20 and only the relevant working 

equations are presented here. The electronic and protonic excitation energies are 

calculated by solving  

 

e e e e

e e e e

T T p p p p

T T p p p p

0 0 0

0 0 0

0 0 0

0 0 0



     
     

−     =
     
         −     

IA B C C X X

IB A C C Y Y

IC C A B X X

IC C B A Y Y

  (5.18) 

Within the adiabatic approximation, the matrix elements in Eq. (5.18) are,  
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A
ia, jb

e = (e
a
- e

i
)d

ab
d

ij
+ ia | bj( ) +

d 2E
exc

d P
jb

ed P
ai

e
+

d 2E
epc

d P
jb

ed P
ai

e
 , (5.19) 

 

  

B
ia, jb

e = ia | jb( ) +
d 2E

exc

d P
bj

ed P
ai

e
+

d 2E
epc

d P
bj

ed P
ai

e
 , (5.20) 

 

 

  

A
IA,JB

p = e
A

- e
I( )d AB

d
IJ

+ IA | BJ( ) +
d 2E

pxc

d P
JB

p d P
AI

p
+

d 2E
epc

d P
JB

pd P
AI

p
 , (5.21) 

 

 

  

B
IA,JB

p = IA | JB( ) +
d 2E

pxc

d P
BJ

p d P
AI

p
+

d 2E
epc

d P
BJ

p d P
AI

p
 , (5.22) 

 

  

C
ia,JB

= - ia | BJ( ) +
d 2E

epc

d P
JB

pd P
ai

e
 . (5.23) 

Here, P denotes the density matrix, e  denotes the orbital energies, and the superscripts 

e and p denote electrons and protons, respectively. The lower case indices i and j 

denote occupied electronic orbitals, while the indices a and b denote virtual electronic 

orbitals. The upper case indices are defined analogously for protonic orbitals. The 

solution of Eq. (5.18) produces the excitation energies w . 

In the current formulation of linear response NEO-TDDFT, only single excitations 

can be captured, and in principle these excitations could be of electronic, protonic, or 

mixed electron-proton vibronic character.20 However, for electronically adiabatic 

systems, typically the excitations are either electronically or protonically dominated and 

thus can be described as pure electronic or vibrational excitations to a reasonable 

approximation. The character of the excitation can be evaluated by examination of the 
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corresponding eigenvector: electronic excitations are dominated by 
e

X , and protonic 

excitations are dominated by 
p

X . The eigenvectors are subject to the 

orthonormalization condition20 

 
   

X
m

e X
n

e - Y
m

e Y
n

e + X
m

p X
n

p - Y
m

p Y
n

p = ±d
mn

 . (5.24) 

In addition to calculating proton vibrational excitation energies, various other quantities 

can be calculated using information from NEO-TDDFT, such as transition densities, 

transition dipole moments, and oscillator strengths.20, 34 

 In the context of NEO-DFT(V), a quantity that is of particular interest is the 

transition dipole moment, which is defined for a general NEO excited state  
 
Y

k
 as 

 
p p e e

0
ˆ

k IA IA ia ia

IA ia

r X I r A Y A r I X i r a Y a r i    
     = + + +
      , (5.25) 

where r̂  = x̂ , ŷ , or ẑ  for g  = 1, 2, or 3, respectively, and X and Y are obtained from 

solving Eq. (5.18). For notational simplicity, the dependence of the elements of X and Y 

on k in Eq. (5.25) is omitted. As mentioned above, the excitations for electronically 

adiabatic systems can typically be characterized as purely electronic or vibrational. For 

the molecular vibrational analysis, 
 
Y

k
 in Eq. (5.25) corresponds to the kth proton 

vibrational excited state, and the terms in the second summation vanish. The resulting 

transition dipole moment is a vector that reflects the polarization of the protonic 

transition. The kth transition dipole moment vector can be viewed as the “normal mode” 

associated with the kth proton vibrational excitation energy k . These vectors are used 

to construct a rotation matrix U that in turn can be used in Eq. (5.16) for computing the 

submatrix 
  
H

2
. This approach provides the rotation matrix U in an effective, self-
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contained, and generalizable manner. 

 As a simple conceptual example, consider the construction of the 
  
H

2
 matrix for 

HCN, which has a single quantum proton. To generate 
  
H

2
, we use NEO-TDDFT to 

calculate the 3Np proton vibrational excitation energies 
 
w

1
, 

 
w

2
, and 

 
w

3
 that comprise 

:Ω  

 . (5.26) 

 We then use Eq. (5.25) to calculate the transition dipole moment vectors associated 

with each excitation. The transition densities and transition dipole moment vectors 

associated with the three proton vibrational excitations for HCN are shown in Figure 5.1.  

In Figure 5.1, the three orthogonal transition dipole moment vectors 
 
w

k
  

associated with the three protonic excitations are represented along axes in a primed 

coordinate system that may be viewed as the “normal mode” coordinate system for the 

quantum proton. In most cases, the primed coordinate system will not be coincident with 

the unprimed coordinate system associated with the lab frame, as observed in Fig. 5.1. 

The vectors 
 
w

k
 can be represented in the lab frame coordinates using Eq. (5.25) 

according to  

 
 
w

k
= u

x

k x + u
y

k y + u
z

k z   (5.27) 

where 
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0

3 2

0

1

ˆ

ˆ

kk

p k

r
u

m r






 =

 
=

 

 . (5.28) 

Here 
  
m

p
 is the mass of the proton and r̂  = x̂ , ŷ , or ẑ  for g  = 1, 2, or 3. Each 

 
w

k
 

vector forms a column of the transformation matrix U 

 

1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

u u u

u u u

u u u

 
 

=  
 
 

U . (5.29)  

This matrix corresponds to a transformation or rotation from the normal mode 

coordinate system to the lab frame coordinate system. Note that this U matrix satisfies 

the orthonormalization condition in Eq. (5.15). 

At this point, we have generated the U and Ω  matrices for the case of a single 

quantum proton and are now equipped to calculate 
  
H

2
 according to Eq. (5.16). In the 

special case where the “normal mode” coordinate system is coincident with the lab 

frame coordinate system, the matrix given in Eq. (5.29) becomes the   M
-1/2 matrix, and 

the 
  
H

2
matrix given in Eq. (16) has the simple diagonal representation 

 . (5.30) 

However, this situation is not typical, particularly for non-linear molecules with multiple 

protons. 

Building on the single proton case, the U matrix can be constructed for a system 

with multiple quantum protons. A system of Np quantum protons will have Np occupied 
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protonic orbitals that are assumed to be spatially localized. A NEO-TDDFT calculation 

will yield 3Np protonic excitation energies of interest, where each excitation energy w  

will be associated with collective protonic motions. For a given collective mode, we 

calculate Np individual transition dipole moment vectors, where each vector is 

associated with a singly occupied protonic orbital. In the single proton case, each 

column of the U matrix was constructed according to Eqs. (5.27) and (5.28). In the 

multiproton case, a given excitation is now associated with Np individual transition dipole 

moment vectors, which may be conceptualized as  

   (5.31) 

For a system composed of Np quantum protons, the general 3Np × 3Np U matrix 

used in NEO-DFT(V) is constructed according to  

   (5.32) 

where  
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u
g

kQ =
Y

0
r̂
g

Q Y
k

m
Q

Y
0

r̂
g

Q Y
k

2

g =1

3

å
Q

N
p

å

 . (5.33) 

In Eq. (5.33), k is the index specifying a proton vibrational excited state, Q is the index 

specifying a quantum proton, and 
 
m

Q
 is the mass of the Qth quantum proton.  For 

notational clarity in Eq. (5.32), 
 
u

g

kQ = u
x

kQ , 
 
u

y

kQ , 
 
u

z

kQ  for g = 1, 2, and 3, respectively. The 

operator 
  
r̂
g

Q  appearing in Eq. (5.33) acts on only the Qth quantum proton, which 

occupies the Qth nuclear orbital in the ground state, and the corresponding matrix 

element is defined as 

 
p p

0
ˆQ

k QA QA

A

r X Q r A Y A r Q  
   = +
   . (5.34) 

The resulting U matrix is composed of column vectors, each associated with a 

specific proton vibrational excited state k. These column vectors are themselves 

composed of Np concatenated sets of x, y, z transition dipole moment vector 

components, where each set is associated with an occupied protonic orbital Q. Note 

that in the case of a single type of quantum nucleus, the mass 
 
m

Q
 in the expression for 

 
u

g

kQ  can be factored out in the denominator because it is the same for all quantum 

nuclei. However, the expression for 
 
u

g

kQ  in Eq. (5.33) is general and is valid for the case 

of multiple types of quantum nuclei with different masses. This procedure can be used 

to construct the U matrix, which in conjunction with the associated Ω  matrix can be 

used to compute the 
  
H

2
 matrix given in Eq. (5.16). The 

  
H

2
 matrix can be used to 

compute the 0H  and 1H  matrices for the construction of 
  
H

NEO

ext
 . The eigenvalues and 
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eigenvectors of this extended Hessian provide the molecular vibrational frequencies and 

normal modes coupling the classical and quantum nuclei.  

Overview of NEO-DFT(V) for Multiple Protons 

The overall NEO-DFT(V) procedure described above is well-defined and 

systematic. Given the reasonable definition of the extended Hessian in terms of the 

classical nuclear coordinates and the expectation values of the quantum nuclei, the 

expressions for the 0H  and 1H  matrices are mathematically rigorous. The main 

approximation of this approach lies in the physically motivated construction of the 
  
H

2
 

matrix from the NEO-TDDFT proton vibrational excitation energies and transition dipole 

moment vectors. A significant advantage of this procedure is that the anharmonicities of 

the proton vibrational modes are naturally included in the NEO-TDDFT proton 

vibrational excitation energies used to construct the 
  
H

2
 matrix. Thus, even though the 

use of a Hessian to produce vibrational frequencies is based on the harmonic oscillator 

approximation, the matrix elements of the extended Hessian incorporate the 

anharmonic effects associated with the quantum protons. As will be shown below, the 

resulting molecular vibrational frequencies reflect this incorporation of anharmonic 

effects. 

Results and Discussion 

We used the NEO-DFT(V) method described above to compute the molecular 

vibrational frequencies for a set of four molecules, each containing two protons. All 

molecular geometries were optimized using NEO-DFT with the B3LYP35-36 electronic 

exchange-correlation functional and the epc17-2 electron-proton correlation functional,18 

which has been shown to provide accurate proton affinities18 and accurate NEO-TDDFT 
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excitations.20, 34 The cc-pVDZ electronic basis set37 was used for the heavy atoms, and 

the cc-pV5Z electronic basis set37-38 was used for the quantum protons. An even 

tempered 6s6p6d6f  nuclear basis set with exponents spanning the range from 4 2  to 

32 was used for the quantum protons. This combination of nuclear and electronic basis 

sets for the quantum proton has been demonstrated to be effective in calculating 

accurate proton vibrational excitation energies with the NEO-TDDFT/B3LYP/epc17-2 

method.34 The NEO-DFT(V) and conventional harmonic calculations were performed 

using a developer version of the GAMESS program.39 The anharmonic calculations 

were performed using Gaussian09.40 

For the ground state NEO-DFT calculations, the nuclear and electronic basis 

function centers were chosen to be the same for each quantum proton, and the 

positions of these centers were optimized variationally. For the NEO-TDDFT 

calculations, the variational ground state positions of the nuclear/electronic basis 

function centers may not be optimal for calculating accurate proton vibrational excitation 

energies. The impact of the nuclear/electronic basis function center position on proton 

vibrational excitation energies calculated with NEO-TDDFT has been investigated in 

previous work.34 These previous results indicate that two possible choices for the 

positions of the nuclear/electronic basis function centers yield accurate and comparable 

results: (1) the conventional electronic XH bond distance and angle (where X represents 

an arbitrary heavy atom), and (2) the expectation value of the quantum proton obtained 

from a ground state NEO-DFT calculation, where the nuclear/electronic basis function 

centers are optimized variationally.34 In the present work, the NEO-TDDFT proton 

vibrational excitation energies used in Eq. (5.16) were calculated with the 
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nuclear/electronic basis function centers placed at the expectation values of the 

quantum protons. This choice has the benefit of being self-contained and therefore 

more computationally practical, as all information necessary for performing the NEO-

TDDFT calculation is obtained from the ground state NEO-DFT calculation.  

The procedure for calculating vibrational modes with the NEO-DFT(V) approach 

is summarized as follows. First, a NEO-DFT geometry optimization is performed on the 

system of interest. The matrix 
  
H

NEO
 is then calculated numerically by perturbing the 

classical nuclear coordinates and optimizing the basis function centers for the quantum 

protons at each perturbed geometry. Using the NEO-DFT optimized geometry for the 

classical nuclei and the expectation values of the quantum nuclei for the 

nuclear/electronic basis function center positions, a NEO-TDDFT calculation is 

performed. The U matrix is constructed according to Eqs. (5.32) and (5.33), and this 

matrix is used in conjunction with the proton vibrational excitation energies to obtain the 

  
H

2
 matrix given by Eq. (5.16). The 

  
H

2
 matrix is then used together with the R matrix to 

calculate the 
  
H

0
 and 

  
H

1
 matrices according to Eqs. (5.10) and (5.13), respectively. 

Finally, 
  
H

0
, 

  
H

1
, and 

  
H

2
 are used to construct the extended NEO Hessian 

  
H

NEO

ext
 in Eq. 

(5.4). Diagonalization of the mass-weighted form of 
  
H

NEO

ext
 gives the full molecular 

vibrational modes.   

An important aspect of the NEO-DFT(V) scheme is the use of NEO-TDDFT to 

compute the proton vibrational excitations for fixed classical nuclei. In our previous 

work,20, 34 the NEO-TDDFT method was applied to molecular systems with only a single 

quantum proton. Herein, we implement the NEO-TDDFT method for molecular systems 
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with multiple quantum protons. Interestingly, the NEO-TDDFT method produces 

collective proton vibrational modes that combine motions of multiple quantum nuclei. 

These collective proton vibrational modes correspond to linear combinations of singly 

excited determinants and thus are described by linear response NEO-TDDFT. For 

example, Figure 5.2 shows the six NEO-TDDFT proton vibrational modes and excitation 

energies calculated for HCCH with fixed carbon nuclei, where two of the modes are 

doubly degenerate. Arrows indicating the direction of the transition dipole vector 

associated with each quantum proton are shown for each mode. Table 5.1 provides the 

full U matrix, which contains the values of all components of the transition dipole 

moment vectors shown in Figure 5.2. As mentioned previously, the NEO Hessian 

depends on only the classical nuclei, assuming the instantaneous response of the 

quantum nuclei. Thus, the NEO Hessian is one-dimensional in the case of HCCH, with 

a CC frequency of 2207 cm-1.  

The NEO-DFT(V) approach mixes the CC frequency from the NEO Hessian with 

the NEO-TDDFT modes shown in Figure 5.2 to produce the coupled molecular 

vibrational modes shown in Figure 5.3. Given the three translational and two rotational 

modes for this linear molecule, this approach provides seven vibrational modes, where 

two of these modes are doubly degenerate. The TDDFT proton vibrational excitation 

energies for the other three molecules studied, namely H2O2, H2CO, and H2NF, are 

provided in Appendix D. All of these molecules contain only two classical nuclei and 

therefore correspond to linear geometries in the NEO framework. However, when the 

quantum nuclei do not maintain this linearity (i.e., the molecule is not linear in a 

conventional electronic structure calculation), the NEO-DFT(V) approach produces one 
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rotational mode that is associated with a negligible NEO-TDDFT excitation energy. 

Thus, this approach provides six vibrational modes for the other three molecules. 

The NEO-DFT(V) vibrational frequencies for the four molecular systems studied 

are given in Table 5.2. Experimental data are provided, along with results obtained from 

a conventional Hessian calculation within the harmonic oscillator approximation, as well 

as results obtained from perturbative anharmonic calculations.41 The average mean 

unsigned error (MUE) relative to experiment is also reported. Note that the average 

MUE is virtually the same for the NEO-DFT(V) and the conventional perturbative 

anharmonic calculations, and both of these methods are more accurate than the 

conventional harmonic calculations. The errors for specific modes vary, with NEO-

DFT(V) typically overestimating bending modes, as well as low energy modes such as 

the H2O2 torsion, to a greater extent than the perturbative anharmonic calculations. 

Conversely, the conventional perturbative anharmonic calculations typically 

underestimate the hydrogen stretching modes to a greater extent than do the NEO-

DFT(V) calculations, with the largest deviations observed for the asymmetric CH stretch 

and the NH stretch in H2CO and H2NF, respectively. The overall comparability of the 

NEO-DFT(V) and conventional perturbative anharmonic methods is reasonable 

because the anharmonicity associated with the hydrogen nuclei is partially incorporated 

into the NEO-DFT(V) procedure through the NEO-TDDFT proton vibrational excitation 

energies that are used to construct the 
  
H

2
 matrix.  

Conclusions 

In this chapter, we have developed and implemented the formalism for treating 

multiple quantum protons within the NEO-DFT(V) scheme. In this approach, proton 
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vibrational excitation energies and transition dipole moment vectors calculated with 

NEO-TDDFT are used to construct an extended NEO Hessian matrix, which is defined 

in terms of the expectation values of the quantum protons as well as the classical 

nuclear coordinates. Diagonalization of this extended Hessian provides the molecular 

vibrational frequencies associated with coupled motions of both classical and quantum 

nuclei. The underlying assumptions of this molecular vibrational analysis are: (1) the 

harmonic approximation inherent to the Hessian framework; (2) the representation of 

the quantum nuclei by their expectation values; and (3) the use of the NEO-TDDFT 

proton vibrational excitation energies and transition dipole moment vectors to construct 

the submatrix associated with the quantum nuclei, thereby partially including the 

corresponding anharmonicities.   

The results indicate that NEO-TDDFT is capable of capturing vibrational 

excitation energies associated with collective nuclear motion. Moreover, the NEO-

DFT(V) calculations for molecules with multiple quantum protons are accurate and 

comparable to conventional perturbative anharmonic calculations. Anharmonicity is 

included in NEO-DFT(V) calculations through the NEO-DFT geometry optimizations and 

the NEO-TDDFT vibrational excitation energies, leading to significantly more accurate 

hydrogen stretching modes, as well as an overall improvement in accuracy compared to 

conventional harmonic calculations. The NEO-DFT(V) approach incorporates 

anharmonicities associated with the quantum nuclei, and the anharmonicities 

associated with the classical nuclei could be included perturbatively if they are expected 

to be significant. This formalism lays the foundation for a wide range of applications for 

multicomponent quantum chemistry methods.  
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Figures and Tables 

 

 
Figure 5.1. Protonic transition densities and associated transition dipole moment 

vectors (primed axes) for the three excitations with energies 
 
w

1
(left), 

 
w

2
(center), and 

 
w

3
(right)a  

 
aThe lab frame coordinate system is depicted as the unprimed coordinate system at the 
far right of the figure. Each transition dipole moment vector is defined along a primed 
coordinate axis which is, in general, different than the lab frame.  
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Figure 5.2. Proton vibrational modes and excitation energies calculated with NEO-
TDDFT for HCCH with fixed carbon nucleia  
 
aThe red mesh indicates the quantum proton density.  The molecule is oriented on the 
z-axis with one carbon placed at the origin and a C‒C bond distance of 1.207 Å. The 
expectation values of the quantum protons are −1.086 Å  and 2.293 Å. For each mode, 
the red arrows indicate the direction of the transition dipole moment vector associated 
with each quantum proton. Mode (A) is a doubly degenerate CH symmetric bend, mode 
(B) is a doubly degenerate asymmetric CH bend, mode (C) is an asymmetric CH 
stretch, and mode (D) is a symmetric CH stretch. 
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Table 5.1: U Matrix for HCCH Constructed from the Transition Dipole Moments 
Computed with NEO-TDDFTa  
 

  A A B B C D 

1x -0.707 0.000 0.707 0.000 0.000 0.000 

1y 0.000 0.707 0.000 -0.707 0.000 0.000 

1z 0.000 0.000 0.000 0.000 0.705 -0.710 

2x 0.707 0.000 0.707 0.000 0.000 0.000 

2y 0.000 -0.707 0.000 -0.707 0.000 0.000 

2z 0.000 0.000 0.000 0.000 0.710 0.705 
 

aEach column corresponds to a concatenation of transition dipole moment vectors associated 
with a given NEO-TDDFT vibrational mode, as defined in Eqs. (5.32)-(5.34). The labels A, B, C, 
and D correspond to the modes presented in Figure 5.1. The left-most column indicates the 
quantum proton (1 or 2) and the Cartesian component (x, y, or z). The slight asymmetry in the z 
components of protons 1 and 2 for columns C and D arises from numerical error and does not 
impact the NEO-DFT(V) frequencies given in Figure 5.2.  
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Figure 5.3. Molecular vibrational modes and excitation energies calculated with NEO-
DFT(V) for HCCHa 

 
aThe red mesh indicates the quantum proton density. For each mode, the red and gray 
arrows indicate the directions of the motions of the quantum protons and carbon atoms, 
respectively. Mode (A) is a doubly degenerate CH symmetric bend, mode (B) is a 
doubly degenerate asymmetric CH bend, mode (C) is an asymmetric CH stretch, mode 
(D) is a symmetric CH stretch, and mode (E) is a symmetric CC stretch. 
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Table 5.2: Proton Vibrational Frequencies Calculated with the NEO-DFT(V), 
Conventional Harmonic, and Conventional Perturbative Anharmonic Methods, as 
well as Comparison to Experimental Data.a  
 

  
Mode Experiment NEO-DFT(V) 

Conv 
Anharmonic 

Conv 
Harmonic 

C2H2
b Symmetric CH bend (2) 612 727 700 569 

 Aymmetric CH bend (2) 730 786 753 777 
 CC stretch 1974 2047 2040 2070 
 Asymmetric CH stretch 3289 3263 3294 3388 
 Symmetric CH stretch 3374 3378 3390 3503 

H2O2
c HOOH torsion 254-370 523 248 424 

 OO stretch 865-877 957 921 957 
 Asymmetric OH bend 1265-1274 1314 1249 1332 
 Symmetric OH bend 1393 1425 1397 1435 
 Asymmetric OH stretch 3610-3619 3596 3522 3789 
 Symmetric OH stretch 3609-3618 3599 3528 3792 

H2COd CH2 wag 1167 1190 1167 1239 
 CH2 rock 1249 1254 1233 1278 
 CH2 scissor 1500 1477 1484 1567 
 CO stretch 1746 1812 1808 1824 
 Symmetric CH stretch 2783 2724 2706 2882 
 Asymmetric CH stretch 2843 2772 2651 2935 

H2NFe NF stretch 891 936 910 941 

  NH2 wag 1233 1257 1225 1271 

  NH2 wag 1241 1310 1294 1338 

  NH2 scissor 1564 1556 1550 1638 

  Symmetric NH stretch 3234 3241 3192 3420 

  Asymmetric NH stretch 3346 3336 3266 3506 

MUEf   47 48 92 

 
aAll frequencies given in cm-1. The average mean unsigned error (MUE) relative to experiment is 
reported for all methods. All calculations were performed with the B3LYP electronic exchange-
correlation functional, and the NEO-DFT(V) excitation energies were computed with the epc17-2 
electron-proton correlation functional. The electronic and nuclear basis sets are given in the 
text. 
bExperimental data from ref.42. 
cExperimental data from ref.43 (HOOH torsion), ref.44 (OO stretch), ref.45 (OH stretches, OH 
asym. bend),   ref.46 (OH sym. bend) . 
dExperimental data from ref.42. 
eExperimental data from ref.47. 
fFor H2O2 the average of the reported experimental range was used for the calculation of the 
MUE.  
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Supplemental Information 

The Supporting Information is available free of charge on the ACS Publications 

website at DOI: 10.1021/acs.jctc.9b00665. A table of TDDFT vibrational excitation 

energies is found in Appendix D. 
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In the preceding chapters, the development of several functionalities of the nuclear-

electronic orbital (NEO) method were presented, all related to the NEO potential energy 

surface (PES). As the PES concept is foundational in a computational approach to chemical 

reactions, the findings of this dissertation have helped to solidify the basis and practicality of 

these multicomponent methods. As will be demonstrated, the previous chapters have opened 

the door to several novel opportunities for applications of the NEO method. 

In chapter 2, the diagonal Born-Oppenheimer correction for NEO-DFT was derived and 

employed to validate the separation of quantum and classical nuclei intrinsic to the NEO 

method. The DBOC was calculated in a numerical fashion and it was found to not appreciably 

change equilibrium bond lengths and heavy atom vibrational frequencies for a set of simple 

molecular systems, demonstrating that the difference between the NEO energy surface and 

the adiabatic surface including the DBOC is negligible in these situations. Much like the 

conventional electronic DBOC, the NEO DBOC was found to increase in value based on the 

number of particles being treated quantum mechanically. Ultimately, the results presented in 

chapter 2 confirmed the validity of the NEO method’s separation between light and heavy 

nuclei for the systems that were studied. 

Chapter 3 was concerned with the development and implementation of analytical 

Hessian functionality for the NEO method, particularly in its utility for transition state searches 

and minimum energy path calculations. The analytical equations for Hessian elements were 

given and the implementation was verified by comparison to numerical benchmarks. Transition 

states for both an SN2 and a hydride transfer reaction were then located on the PES using a 

transition state optimization based on surface characterization from the analytical Hessian. The 

heavy atom motion of the imaginary vibrational mode defining each transition state was shown 

to align with the corresponding atomic motion of the conventionally calculated transition states. 
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Differences between conventional and multicomponent computed minimum energy paths were 

elucidated by demonstrating the fact that the zero-point energy of the quantum nuclei is 

included directly into the NEO surface, accounting for most of the difference in calculated 

barrier height. Lastly, modeling software was used to animate the change in both the reactive 

electronic orbital and the quantum nuclear orbital along the reaction coordinate. 

In chapters 4 and 5, the NEO-DFT(V) method for the calculation of molecular vibrational 

frequencies within the NEO framework was presented. Chapter 4 concerned the application to 

systems where a single proton was treated quantum mechanically, and chapter 5 generalized 

the formalism for treatment of any number of quantum nuclei. These studies found that 

quantities concerning the vibrational excitations of the classical modes from the NEO Hessian 

needed to be coupled with the quantum nuclear vibrational excitations from NEO-TDDFT in 

order to yield a complete set of molecular vibrational frequencies. In both chapters, the 

resulting NEO-DFT(V) vibrational analysis yielded highly accurate results relative to 

experimental data on par in accuracy with conventional anharmonic vibrational analysis 

calculations. 

In light of the advances in the NEO method presented in this dissertation, a survey on 

the future outlook of the method’s applicability can be made. Analysis of the DBOC verified the 

central approximation of the method, which is also now outfitted with a tool for vibrational 

analysis and PES characterization via the analytical Hessian. The vibrational analysis has 

been used to compute differences in free energy, and a protocol for calculation of IR spectra in 

the NEO method was developed. With this work, significant strides have been made in 

preparing the method for meaningful application to larger systems of interest, notably 

molecular electrocatalysts. In the future, this multicomponent method can be used in 

conjunction with proton-coupled electron transfer (PCET) theory1-2 to improve the capabilities 
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of charge transfer models and help distinguish between asynchronous and synchronous 

concerted electron-proton transfer.3  As a final concrete example, previously studied N2O2-

ligated Co-centered oxygen reduction reaction catalysts4 could be revisited computationally 

with this multicomponent method. A preliminary calculation of the peroxide species in the 

catalytic pathway is presented in Figure 6.1, with the distal proton treated quantum 

mechanically. The quantum proton orbital is depicted as an isosurface with yellow mesh. With 

the advances described in this dissertation, novel studies of such complexes using 

multicomponent quantum chemical theory are on the horizon.  
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Figure 6.1 Structure of the peroxo species of an N2O2-ligated Co-centered molecular 
electrocatalysta  
 
aThe proton on the distal oxygen of the peroxo moiety was treated quantum mechanically 
using NEO-DFT, and the protonic orbital is depicted as an isosurface with yellow mesh. 
  



128 
 

References 

(1) Soudackov, A.; Hammes-Schiffer, S., Derivation of rate expressions for nonadiabatic proton-
coupled electron transfer reactions in solution. J. Chem. Phys. 2000, 113, 2385-2396. 
(2) Hammes-Schiffer, S.; Stuchebrukhov, A. A., Theory of Coupled Electron and Proton Transfer 
Reactions. Chem. Rev. 2010, 110, 6939-6960. 
(3) Goings, J. J.; Hammes-Schiffer, S., Nonequilibrium Dynamics of Proton-Coupled Electron 
Transfer in Proton Wires: Concerted but Asynchronous Mechanisms. ACS Cent. Sci. 2020, 6, 1594-
1601. 
(4) Wang, Y.-H.; Goldsmith, Z. K.; Schneider, P. E.; Anson, C. W.; Gerken, J. B.; Ghosh, S.; 
Hammes-Schiffer, S.; Stahl, S. S., Kinetic and Mechanistic Characterization of Low-Overpotential, 
H2O2-Selective Reduction of O2 Catalyzed by N2O2-Ligated Cobalt Complexes. J. Am. Chem. Soc. 
2018, 140, 10890-10899. 

 



129 
 

Appendices 

  



130 
 

A.     Supplemental Information for Chapter 2 

 

Supporting Information for Diagonal Born-Oppenheimer Corrections within 

the Nuclear-Electronic Orbital Framework  

 

Patrick E. Schneider, Fabijan Pavošević, and Sharon Hammes-Schiffer* 

 

Department of Chemistry, Yale University 

225 Prospect Street, New Haven, Connecticut 06520 USA 

 

*Corresponding author: sharon.hammes-schiffer@yale.edu 

  



131 
 

Derivation of protonic DBOC for simple harmonic oscillator model system 

The analog of the hydrogen atom for the protonic DBOC is a diatomic molecule, 

where the heavy atom has mass MC and the hydrogen atom has mass mp.  This 

molecule has a single vibrational mode of frequency ν described as a harmonic 

oscillator that depends on the distance x between the two atoms: 
p Cx r r= − .  The 

harmonic oscillator ground state wavefunction is given by  

 ( )
21 4 2

p , 2αxψ α π e α πνm−= =  . (A1) 

Here we assume that m = mp, although the results will be similar if we use the reduced 

mass instead.  The protonic DBOC is given by 

 
2

p 2

DBOC p C p

C2
E ψ ψ

M
= −   . (A2) 

Because the proton vibrational wavefunction depends on x, which is defined to be the 

distance between the two coordinates, the second derivative with respect to rp is the 

same as the second derivative with respect to rC.  Then the quantity in Eq. (A2) is just 

the expectation value of the kinetic energy T of the proton multiplied by the mass ratio: 

 
p p pp

DBOC

C C C

.
4 2 2

m m mhν hν
E T

M M M
= = =   (A3) 

Testing the Numerical Precision of the DBOC 

When including the DBOC in the calculation of vibrational frequencies, a finite-

difference numerical second derivative of the DBOC with respect to the distance 

between the heavy nuclei must be calculated. As the DBOC is also calculated via a 

finite-difference second derivative method (see Eqs. 2.5-2.7 of chapter 2), its 

contribution to the vibrational frequencies is effectively a numerical fourth derivative with 
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two finite-difference parameters: δ for the initial DBOC calculation and Δ for the second 

derivative of the DBOC with respect to the heavy nuclei. An additional numerical 

challenge is that the positions of the quantum proton basis function centers must be 

optimized variationally for each position of the heavy nuclei. An extra tight value, 10-6 

Hartree/Bohr, was used as the geometry optimization convergence criterion, where both 

the magnitude of the maximal gradient element must be smaller than the threshold and 

the root-mean-square of all gradient element magnitudes must be smaller than one third 

of the threshold. The precision of these numerical fourth derivatives was determined by 

examining the dependence of the vibrational frequencies on these two parameters, as 

given in Tables A1 and A2. For chapter 2, values of δ=10-3 Bohr and Δ=10-2 Bohr were 

employed. Note that increasing or decreasing these chosen values by a factor of two 

can change the vibrational frequency by less than 1 cm-1 in some cases or as much as 

6 cm-1 in one case, although the typical change is ~1 cm-1. When these parameters 

become too small, the energy differences become smaller than the numerical precision, 

and consequently the numerical derivatives are no longer meaningful. Thus, the 

numerical precision of these calculations is presumed to be ~1 cm-1 with a more 

conservative estimate of ~6 cm-1. 

Effect of DBOC on Equilibrium Distance and Vibrational Frequency at the 

NEO-HF Level 

Analogous to the analysis in chapter 2, the effects of including the DBOC in the 

calculation of the vibrational stretching frequencies of the heavy nuclei was performed 

at the NEO-HF level of theory for HCN. The vibrational frequency of the CN stretching 

mode was found to change from 2514 cm-1 to 2518 cm-1, a somewhat larger change 
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than that observed at the NEO-DFT/epc17-2 level. The NEO-HF equilibrium CN 

distance for HCN was found to change from 1.125116 Å to 1.125719 Å, corresponding 

to an increase of 6.03×10-4 Å with an energy stabilization of -2.20 μH. The changes in 

the equilibrium distance and vibrational frequency of HCN upon inclusion of the DBOC 

are greater at the NEO-HF level of theory than at the NEO-DFT/epc17-2 level of theory. 

This trend is consistent with the larger value of p

DBOCE  computed with NEO-HF, as seen 

in Table 2.2 of chapter 2.  
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Table A1: Effect of Changing the DBOC Finite Difference Parameter δ on the 
Magnitude of the DBOC and its Components for HCN and HCC‒ a 

  
δ (parameter for computing DBOC; Bohr) 

1x10-2 5x10-3 2x10-3 1x10-3 5x10-4 2x10-4 1x10-4 

HCN tot

DBOCE  1328.7 1333.4 1334.8 1335.1 1335.1 1335.1 1335.0 

e

DBOCE  800.4 803.6 804.5 804.7 804.7 804.7 804.7 

p

DBOCE  528.2 529.8 530.3 530.4 530.4 530.4 530.3 

HCC‒ tot

DBOCE  1245.2 1249.1 1250.2 1250.4 1250.3 1250.1 1250.4 

e

DBOCE  725.2 727.6 728.3 728.4 728.4 728.4 728.4 

p

DBOCE  520.0 521.5 521.9 522.0 521.9 521.7 522.0 
 

aAll calculations were performed at the NEO-DFT/B3LYP/epc17-2 level of theory with the basis 
sets given in the text. All values are given in units of cm-1. The value of δ=10-3 Bohr was used for 
the calculations in the main text. 
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Table A2: Effect of Changing the DBOC Finite Difference Parameter δ on the 
Vibrational Frequency of HCN and HCC‒ a 

  
δ (parameter for computing DBOC; Bohr) 

1x10-2 5x10-3 2x10-3 1x10-3 5x10-4 2x10-4 1x10-4 

Δ=10-2 

(Bohr) 

HCN No DBOC 2293 

With 
p

DBOCE  2294 2294 2293 2293 2293 2287 2297 

HCC‒ No DBOC 1963 

With 
p

DBOCE  1963 1963 1964 1962 1968 1967 1965 
 

aFor both molecules, the NEO potential energy surface is one-dimensional with a single 
vibrational mode because all protons are treated quantum mechanically and each molecule has 
only two heavy atoms. All calculations were performed at the NEO-DFT/B3LYP/epc17-2 level of 
theory with the basis sets given in the text. All frequencies are given in units of cm-1. The values 
of δ=10-3 Bohr and Δ=10-2 Bohr were used for the calculations in the main text. 
 

  



136 
 

Table A3: Effect of Changing the Vibrational Analysis Parameter Δ on the 
Vibrational Frequency of HCN and HCC‒a 

  
Δ (parameter for computing second derivative of DBOC; Bohr) 

1x10-1 5x10-2 2x10-2 1x10-2 5x10-3 2x10-3 1x10-3 

δ=10-3 
(Bohr) 

HCN     
No DBOC 2330 2302 2294 2293 2292 2292 2292 

With 
p

DBOCE  2331 2303 2294 2293 2288 2259 2106 

HCC‒    
No DBOC 1989 1969 1963 1963 1962 1962 1962 

With 
p

DBOCE  1991 1970 1965 1962 1963 1951 1930 

 

aFor both molecules, the NEO potential energy surface is one-dimensional with a single 
vibrational mode because all protons are treated quantum mechanically and each molecule has 
only two heavy atoms. All calculations were performed at the NEO-DFT/B3LYP/epc17-2 level of 
theory with the basis sets given in the text. All frequencies are given in units of cm-1. The values 
of δ=10-3 Bohr and Δ=10-2 Bohr were used for the calculations in the main text. 
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Table A4: Effect of Including the DBOC on the Equilibrium Heavy Atom Distances 
and Energies 
  

HCN HNC HCC‒ FHF‒ 

Bond length (Å) 1.146979 1.165022 1.238879 2.321623 

Bond length with 
tot

DBOCE  (Å) 1.147471 1.165561 1.239244 2.321735 

Change (Å) 0.000492 0.00054 0.000365 0.000111 

Energy Change (μHa) -0.884 -0.435 -0.617 -0.015 

Heavy atom vibrational 
frequency without DBOC (cm-1)a 2293 2160 1962 606 

Heavy atom vibrational 

frequency with 
tot

DBOCE  (cm-1)b 2291 2158 1963 606 

 

aFrequency calculated at the NEO equilibrium geometry without considering 
tot

DBOCE . 

bFrequency calculated with 
tot

DBOCE  at the equilibrium bond length determined with 
tot

DBOCE . 

 

  



138 
 

Table A5: Effect of Changing the DBOC Finite Difference Parameter δ on the 
Vibrational Frequency of HCN and HCC‒ at Equilibrium Bond Length Determined 

with tot

DBOCE a 

  
δ (parameter for computing DBOC; Bohr) 

1x10-2 5x10-3 2x10-3 1x10-3 5x10-4 2x10-4 1x10-4 

Δ=10-2 

(Bohr) 

HCN     
No DBOC 2293 

With 
tot

DBOCE  2290 2290 2290 2291 2290 2282 2282 

HCC‒   
No DBOC 1963 

With 
tot

DBOCE  1961 1961 1962 1963 1962 1954 1965 
 

aFor both molecules, the NEO potential energy surface is one-dimensional with a single 
vibrational mode because all protons are treated quantum mechanically and each molecule has 
only two heavy atoms. All calculations were performed at the NEO-DFT/B3LYP/epc17-2 level of 
theory with the basis sets given in the text. All frequencies are given in units of cm-1. The values 
of δ=10-3 Bohr and Δ=10-2 Bohr were used for the calculations in the main text. 
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Table A6: Effect of Changing the Vibrational Analysis Parameter Δ on the 
Vibrational Frequency of HCN and HCC‒ at Equilibrium Bond Length Determined 

with tot

DBOCE a 

  
Δ (parameter for computing second derivative of DBOC; Bohr) 

1x10-1 5x10-2 2x10-2 1x10-2 5x10-3 2x10-3 1x10-3 

δ=10-3 
(Bohr) 

HCN     
No DBOC 2330 2302 2294 2293 2292 2292 2292 

With 
tot

DBOCE  2327 2299 2291 2291 2291 2308 2327 

HCC‒    
No DBOC 1989 1969 1963 1963 1962 1962 1962 

With 
tot

DBOCE  1988 1968 1963 1963 1965 1998 2051 

 

aFor both molecules, the NEO potential energy surface is one-dimensional with a single 
vibrational mode because all protons are treated quantum mechanically and each molecule has 
only two heavy atoms. All calculations were performed at the NEO-DFT/B3LYP/epc17-2 level of 
theory with the basis sets given in the text. All frequencies are given in units of cm-1. The values 
of δ=10-3 Bohr and Δ=10-2 Bohr were used for the calculations in the main text. 
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Comparison of Analytic Hessian with Semi-Numerical Implementation 

 The implementation of the analytic Hessian was benchmarked by comparing 

semi-numerical and analytic Hessians for a set of molecules. One representative 

example is the HCN molecule. The geometry of HCN was optimized to the desired 

tolerance (3×10-5 Hartree/Bohr for gradient elements) at the NEO-HF level with the 

STO-3G electronic basis set and a minimal sp nuclear basis set and is given in Table 

B1. The sp nuclear basis set is composed of a single s-type Gaussian function and a 

single p-type Gaussian function both with exponent 4.00 for each basis function center. 

The semi-numerical Hessian and analytic Hessian for this HCN system are given in 

Tables B2 and B3, respectively. All Hessians discussed in the main text were computed 

fully analytically. 

Coupled-Perturbed NEO-HF Equations 

 To calculate the density matrix response terms and orbital energy response 

terms needed for the Hessian element evaluation, the Roothaan equations and 

orthonormality constraints given in Eqs. (3.20), (3.21), (3.26), and (3.27) from chapter 3 

are written under a general geometric perturbation y as1 

 ( ) ( ) ( ) ( ) ( )e e e e ey y y y y=F C S C ε  (B1) 

 ( ) ( ) ( ) ( ) ( )p p p p py y y y y=F C S C ε  (B2) 

 ( ) ( ) ( )e† e ey y y =C S C I  (B3) 

 ( ) ( ) ( )p† p py y y =C S C I  . (B4) 
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Note that in the limit of y approaching zero, the original Roothaan equations and 

solutions are reproduced. The perturbed orbital coefficients can be written as a unitary 

transformation of the unperturbed coefficients, 

 ( ) ( ) ( )e e e0y y=C C U  (B5) 

 ( ) ( ) ( )p p p0y y=C C U  (B6) 

which can be used to recast the relations given in Eqs. (B1)–(B4) in terms of orbital 

rotations: 

 ( ) ( ) ( ) ( ) ( )e e e e ey y y y y=F U S U ε  (B7) 

 ( ) ( ) ( ) ( ) ( )p p p p py y y y y=F U S U ε  (B8) 

 ( ) ( ) ( )e† e ey y y =U S U I  (B9) 

 ( ) ( ) ( )p† p py y y =U S U I . (B10) 

In this form, the Fock and overlap matrices have now been transformed to the orbital 

basis and are represented by the notation 

 ( ) ( ) ( ) ( )e e† e e0 0y y=F C F C  (B11) 

 ( ) ( ) ( ) ( )p p† p p0 0y y=F C F C   (B12) 

 ( ) ( ) ( ) ( )e e† e e0 0y y=S C S C  (B13) 

 ( ) ( ) ( ) ( )p p† p p0 0y y=S C S C .  (B14) 

To solve for the orbital rotations and perturbed energies of Eq. (B7)–(B10), the 

Fock matrix, overlap matrix, orbital rotations, and energy matrix are expressed as Taylor 

expansions in terms of the perturbation: 
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 ( ) ( )0

y

y y  = + +F F F  (B15) 

 ( ) ( )
y

y y = + +S 1 S  (B16) 

 ( ) ( )
y

y y = + +U 1 U  (B17) 

 ( ) ( )0

y

y y  = + +ε ε ε  (B18) 

where the superscript  e,p  refers to the electron or proton terms. The only unknown 

quantities in the first-order Taylor expansions are the first-order derivatives of the orbital 

energy, orbital rotations, and Fock matrix, the last of which is only unknown due to a 

dependence on the orbital rotations. The first-order overlap matrix, ( )
y


S , is related to 

the basis function overlap derivative integrals by a transformation to the orbital basis, 

 ( ) ( )( ) ( )† 0 0
y y

   =S C S C . (B19) 

The first-order Fock matrix, ( )
y


F , is similarly related to other first-order derivative 

integrals but also depends on the orbital rotations. After combining Eqs. (B15)–(B18) 

with Eqs. (B7)–(B10) and rearranging terms, an expression is found for ( )
y


ε  that 

depends on the diagonal elements of the Fock and overlap matrices: 

 ( ) ( ) ( )
y y y

pppp pp pp
F S    = − . (B20) 

The occupied-occupied block of the first-order orbital rotations is determined to be 

 ( ) ( )
1

2

y y

ij ij
U S = −  (B21) 

through similar mathematical manipulations, and the virtual-virtual block is zero. Now 

the only remaining unknown is the occupied-virtual block, ( )
y

ai
U 

. 
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These rotations are solutions of the well-known coupled-perturbed HF 

equations,1-3 which are expressed in the multicomponent framework as 

 ( )( ) ( ) ( ) ( )e e e e e p e4 ,
y y y y

i a aiai bj BJ ai
U G U U Q   − − =

  
 (B22) 

 ( )( ) ( ) ( ) ( )p p p p p e p4 ,
y y y y

I A AIAI BJ bj AI
U G U U Q   − − =

  
  (B23) 

with 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )e e e ep e e e e p2 ,
y y y y y y y

i aiai ai ai ai ai jk JK
Q H G G S G S S  = + − − −

  
 (B24) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )p p p pe p p p p e2 ,
y y y y y y y

I AIAI AI AI AI AI JK jk
Q H G G S G S S  = + − − −

  
 (B25) 

In these coupled-perturbed NEO-HF (CP-NEO-HF) equations, ( )
y

H  , ( )
y

G , ( )ep
y

G , 

and ( )pe
y

G  are defined in terms of basis function derivative integrals analogous to ( )
y

S   

given in Eq. (B19). The matrices G , given general electronic and nuclear inputs e

rsM  

and p

RSM , are defined as 

 e e p e e e e ep p1
,

2
pq rs RS p q rs RSG M M c c G M G M   



 
     = −      

 
  (B26) 

 p p e p p p p pe e

' ' ' ' ' '

' '

1
,

2
PQ RS rs P Q RS rsG M M c c G M G M     

 

 
     = −      

 
   (B27) 

 ( ) ( )e e e e e 1
| |

2
rs r rs s

rs

G M c M c  


   
 

  = −   
 

   (B28) 

 ( )ep p p p p

' '

' '

| ' 'RS R RS S

RS

G M c M c  

 

    =        (B29) 

 ( ) ( )p p p p p

' ' ' '

' '

' ' | ' ' ' ' | ' 'RS R RS S

RS

G M c M c   

 

         = −       (B30) 
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 ( )pe e e e e

' ' ' ' |rs r rs s

rs

G M c M c   



    =      . (B31) 

The matrices e

rsM  and p

RSM  will be either ( )e
y

bj
U  and ( )p

y

BJ
U  as in Eqs. (B22) and (B23) 

or ( )e
y

ij
S  and ( )p

y

IJ
S  as in Eqs. (B24) and (B25). Now the occupied-virtual first-order 

orbital rotations ( )e
y

ai
U  and ( )p

y

AI
U  are the unknowns for a system of coupled 

inhomogeneous linear equations. By solving these CP-NEO-HF equations for every 

geometric perturbation y , the derivative density and derivative energy-weighted density 

matrices of Eq. (31) are obtained, providing the complete analytic expression for the 

NEO-HF coordinate Hessian elements. 

Unrestricted NEO-DFT Coupled-Perturbed Equations 

 The analytical unrestricted NEO-DFT energy coordinate Hessian elements are 

given by 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
e e p p e e p pNEO-HF

' ' ' ' ' ' ' '

' ' ' '

ee pp

, ' ' ', ' '

' ' ' ' '

e e p p e e

' ' ' '

' '

| ' ' | ' '

xy xy xy xy

xy xy

y x y x y x

E
P H P H W S W S

x y

G G

P H P H W S W

           
     

     
    

        
   

     


= + − −

 

+ +

+ + − −

   

 

   ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( )( )

( )
( )( )

( )
( ) 

( )
( ) 

( )

p p

' ' ' '

' '

ee pp

, ' ' ', ' '

' ' ' ' '

ep ep

, ' ' , ' '

' ' ' '

exc epc exc epc

nuc

| ' ' | ' '

| ' ' | ' '

y x

y yx x

yxy x

x y x y x y x y xy

S

G G

G G

E E E E V

  
 

     
    

     

   

     

     

+ +

− −

+ + + + +



 

 

 (B32) 

using notation from chapter 3, with 

 ( )ee e e e e

, ' ' x '

1

2
G P P c P P      = −   (B33) 



146 
 

 ( )pp p p e e

' ', ' ' ' ' ' ' ' ' ' '

1

2
G P P P P           = −   (B34) 

 ep e p

, ' ' ' 'G P P     =   (B35) 

where σ denotes electron spin and cx is the exchange coefficient for hybrid electronic 

exchange-correlation functionals. The notation for the derivatives of functional 

contributions is borrowed from previous work,2 which uses parentheses around the 

perturbation to denote the explicit derivative and square brackets to denote the implicit 

derivative. In short, the explicit derivative is attributed to only the geometric perturbation 

of the basis functions with no response of the SCF quantities, whereas the implicit 

derivative contains a first-order response of the wavefunction. This response of the 

wavefunction is also present in the derivatives of the P, W, and G matrices. 

 The first-order wavefunction response can be completely described by occupied-

virtual orbital rotations as well as the derivatives of overlap integrals, the latter of which 

have an analytical form. The occupied-virtual rotations U are solutions of the coupled-

perturbed NEO-SCF equations: 

 
( )( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

e e e e e e p e

p p p p e e p p

, ,

, ,

yy y y y y

i a ai ai bj bj BJ ai

yy y y y y

I A AI AI bj bj BJ AI

U G U U U Q

U G U U U Q

      

 

 

 

 − − =
  

 − − =
  

  (B36) 

The right-hand sides of the equations are given by 
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( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( ) ( )

e e

x '

'

exc epc,e e e e e e p

p p

epc,p p p p e

| ' | |

1
, ,

2

| | |

1
,

2

y y y y y

ai ai

j I

yy y y y y y

ai ai i ai ai jk jk JK

y y y y y

AI AI

J i

yy y y

AI I AI AI jk

Q H ai jj c aj ji ai II

v v S G S S S

Q H AI JJ AJ JI AI ii

v S G S S

  



      





     







 = + − −
 

 + + − −
  

 = + − −
 

+ − −

 

 

( ) ( )e p,
y y

jk JKS
 
  

  (B37) 

where the functional potentials are given as exc exc ev E  = , epc,e epc ev E  = , and 

epc,p epc pv E = . For general electronic and protonic derivative quantities ( )e

'

y

rs  and 

( )p
y

RS , here ( )e
y

aiG   and ( )p
y

AIG  are defined as 

 

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )
( )

e e e e

' ' ' x '

'
exc epc,ee

, ' , '

p p p epc,ep

' ' , ' '

' '

p p p p

' '

2 | '

| |

2 2

2 | ' ' 2

2 | ' '

y y

ai r rs s

rs

ia ia

y

R RS S ia

RS

y y

AI R RS S

ia

G C C c a i a i

f f

C C ia f

IA
G C C

    

 

   

    

 

 

 

     

  

  

 
  

=  − +   
 
+ +  

 −  − 

−
= 





( )

( )

( ) ( )

epc,pp
' ' , ' '

e e e epc,pe

' ' ' , '

'

' | '

' | ' 2

2 | ' 2

RS IA

y

r rs s IA

rs

A I

A I f

C C IA f

   

   

 



 



 
 
− +  

 −  − 





  (B38) 

with the functional kernels defined as exc 2 exc e e

, ' 'f E     = , epc,ee 2 epc e e

, ' 'f E     = , 

epc,pp 2 epc p2f E = , and epc,ep epc,pe 2 epc p ef f E    = = . 

Additional Details on NEO-HF(V) and FGH Calculations 

 The NEO-HF(V) calculations entail diagonalization of an extended NEO 

coordinate Hessian, as described in detail elsewhere.4-5 This extended Hessian 

depends on three matrices: the NEO coordinate Hessian, a matrix composed of the 

fundamental vibrational excitations of the quantum protons computed with NEO-TDHF, 
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and a geometric response matrix composed of the derivatives of the expectation values 

of the quantum protons with respect to the coordinates of the classical nuclei. The NEO 

Hessian was calculated with the implementation of the analytic theory presented in the 

main text and with the same reported basis sets. For the NEO-TDHF calculations, 

previous work indicates that larger electronic and nuclear basis sets are needed to 

compute accurate proton vibrational excitations. For this reason, the NEO-TDHF 

calculations were performed using the cc-pVDZ electronic basis set for the classical 

nuclei, the cc-pV6Z electronic basis set for the quantum protons, and the PB5-G 

protonic basis set. The PB5-G basis set is composed of five s-type, four p-type, three d-

type, two f-type, and one g-type primitive Gaussians (5s4p3d2f1g). The proton basis 

function centers were placed at the positions optimized at the NEO-HF level. We have 

found that the conventional analog of the geometric response matrix is nearly identical 

to that calculated at the NEO level because the difference in geometries optimized at 

the conventional HF and NEO-HF levels is negligible and this geometric property is not 

sensitive to nuclear quantum effects. Thus, the geometric response matrices were 

calculated at the optimized NEO geometry using the conventional HF level of theory 

with the same basis sets as reported in the main paper. 

 The Fourier grid Hamiltonian (FGH) calculations6 were performed for the reactant 

and transition states of C4H9
+. The grid spanned 0.6 Å from the position of the hydrogen 

nucleus optimized with conventional HF in each principle direction with 32 grid points 

over 1.2 Å per dimension. Single-point energy calculations were performed at the 

conventional HF/6-31G** level with the proton at each of these grid points while all other 

nuclei remained fixed. Subsequently, the three-dimensional Schrödinger equation was 
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solved for the proton moving on this potential energy surface, and the zero-point energy 

was determined as the energy of the ground vibrational state relative to the lowest-

energy point on the potential energy surface. 

Asymmetric Transition State Search 

To further test the efficacy of the transition state search algorithm, we 

investigated an asymmetric version of the hydride transfer reaction from Figure 3.1 with 

an additional methyl group on one of the two central carbon atoms, C5H11
+. The 

conventional HF and NEO-HF transition states for this C5H11
+ asymmetric system were 

found using the same search algorithm as used for the symmetric cases in the main 

paper but with the minimal STO-3G electronic basis set and sp protonic basis set 

described above. As in the symmetric case, the conventional HF and NEO-HF transition 

state geometries were found to be comparable. The frequencies of the conventional HF 

and NEO-HF imaginary normal modes were calculated to be 768i cm-1 and 834i cm-1, 

respectively. The dot product between these two imaginary normal modes, excluding 

the normal mode elements corresponding to the coordinates of the quantum proton for 

conventional HF, is 0.253. Renormalization of the conventional HF mode after this 

exclusion produces a dot product of 0.905. The Cartesian coordinates associated with 

each imaginary normal mode vector are given in Table B7.   

Geometries for C4H9
+ Species 

All cartesian coordinates are provided in Angstroms. The NEO-HF geometries 

used the same basis sets as described in chapter 3 and the above sections. NEO-DFT 

geometries for these species are also provided and used the same basis sets as the 
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NEO-HF calculations in conjunction with the B3LYP electronic exchange-correlation 

functional and the epc17-2 electron-proton correlation functional. 

 NEO-HF C4H9
+ Reactant/Product State 

C   0.6055634092   0.3550756206   -0.0428896647 

C   -0.5573770509   -0.4487512344   -0.3288602284 

C   1.9618355593   -0.1536686215   0.1308019147 

H   -0.3984015286   -1.4939763575   -0.0899057789 

C   -1.9241573703   0.1001812888   0.0936112613 

H   2.1389700201   -0.0513568711   1.2100826812 

H   2.6956363414   0.4860868805   -0.3473018607 

H   2.0769248896   -1.1922514748   -0.1430263595 

H   -2.0580923037   1.1266616361   -0.2265678749 

H   -2.0386351889   0.0492605371   1.1691832590 

H   -2.7046142765   -0.4986412976   -0.3548293258 

H   0.4704161434   1.4272472879   0.0153476913 

H   -0.4574440234   -0.3923148264   -1.4493081735 

NEO-HF C4H9
+ Transition State 

C   0.5869258343   0.3708687154   0.0055918117 

C   -0.5506922845   -0.4150505864   -0.0200586359 

C   1.9912829590   -0.1469672573   0.1066420805 

H   -0.4067911601   -1.4854965962   -0.0276031748 

C   -1.9568434728   0.0990952382   0.0762663617 

H   2.3392548266   0.0800771171   1.1103338749 
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H   2.6427969019   0.3648847155   -0.5894506847 

H   2.0490410122   -1.2158467807   -0.0487228464 

H   -2.0121673457   1.1731381415   -0.0393344661 

H   -2.3222659967   -0.1657914788   1.0643383875 

H   -2.5959469922   -0.3855431249   -0.6501378605 

H   0.4428215452   1.4408800721   0.0361855934 

H   0.0274565682   -0.0007414014   -1.1410761969 

NEO-DFT C4H9
+ Reactant/Product State 

C   0.6184086974   0.3498316677   -0.0147054019 

C   -0.5460733111   -0.4439402143   -0.3119562682 

C   1.9673527779   -0.1578617202   0.1718878062 

H   -0.3975116855   -1.5112167094   -0.1069019695 

C   -1.9291299087   0.0980342620   0.1093772010 

H   2.2413139282   0.0545435036   1.2295835073 

H   2.7061703929   0.4348451264   -0.3901855543 

H   2.0824252053   -1.2267878735   -0.0091322963 

H   -2.0538693368   1.1529219883   -0.1532186285 

H   -2.0598068314   -0.0142055479   1.1895615762 

H   -2.7157793341   -0.4733551399   -0.3871537083 

H   0.4813441835   1.4351420518   0.0438566600 

H   -0.4885747403   -0.3791311232   -1.4371628973 

NEO-DFT C4H9
+ Transition State 

C   0.5973010371   0.3703953665   0.0029619627 
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C   -0.5599063810   -0.4148034924   -0.0270757706 

C   1.9929920634   -0.1480823559   0.1052737047 

H   -0.4158874393   -1.4978449061   -0.0416197835 

C   -1.9582386931   0.1003030410   0.0742492163 

H   2.3475542583   0.1147559191   1.1116073266 

H   2.6599694124   0.3525050367   -0.6015088105 

H   2.0562170415   -1.2314489627   -0.0129164351 

H   -2.0194436174   1.1873293310   -0.0057481102 

H   -2.3283929133   -0.1980293232   1.0646980816 

H   -2.6139325852   -0.3728641430   -0.6611890891 

H   0.4531122403   1.4532863793   0.0268127206 

H   0.0235279714   -0.0019951161   -1.1525707690 
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Table B1: Optimized geometry of HCN at the NEO-HF/STO-3G/sp level.a 

 

 X y z 

C 0.0000000000 0.0000000000 0.9684140792 

N 0.0000000000 0.0000000000 -1.2085828830 

H 0.0000000000 0.0000000000 2.9046475823 
 

aAll coordinates are given in Bohr. 
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Table B2: Semi-numerical Hessian for HCN at the NEO-HF/STO-3G/sp level.a 

 

 Cx Cy Cz Nx Ny Nz 

Cx -0.00009 0.00000 0.00000 -0.00008 0.00000 0.00000 

Cy 0.00000 -0.00009 0.00000 0.00000 -0.00008 0.00000 

Cz 0.00000 0.00000 1.73530 0.00000 0.00000 -1.73529 

Nx -0.00005 0.00000 0.00000 0.00006 0.00000 0.00000 

Ny 0.00000 -0.00005 0.00000 0.00000 0.00006 0.00000 

Nz 0.00000 0.00000 -1.73529 0.00000 0.00000 1.73529 
 

aAll elements are in units of Hartree/Bohr2. A symmetric five-point stencil of step size 0.001 Bohr 
was used to take numerical first derivatives of analytic gradient elements to yield the semi-
numerical Hessian elements. 
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Table B3: Analytic Hessian for HCN at the NEO-HF/STO-3G/sp level.a 

 

 Cx Cy Cz Nx Ny Nz 

Cx 0.00009 0.00000 0.00000 -0.00009 0.00000 0.00000 

Cy 0.00000 0.00009 0.00000 0.00000 -0.00009 0.00000 

Cz 0.00000 0.00000 1.73530 0.00000 0.00000 -1.73530 

Nx -0.00009 0.00000 0.00000 0.00009 0.00000 0.00000 

Ny 0.00000 -0.00009 0.00000 0.00000 0.00009 0.00000 

Nz 0.00000 0.00000 -1.73530 0.00000 0.00000 1.73530 
 

aAll elements are in units of Hartree/Bohr2. 
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Figure B1: Proton potential energy curve at the transition state for C4H9

+ determined at 
the conventional HF/6-31G** level of theory. This curve was generated by moving the 
proton along the proton transfer axis with all other nuclei remaining fixed. The proton 
transfer axis was chosen to be the line in the same plane as the transferring proton and 
the central carbon atoms, parallel to the line connecting the central carbon atoms, and 
passing through the transferring proton position at the transition state. The proton 
moves in a single-well potential for this system at the transition state geometry. 
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Figure B2: Hydrogen transfer coordinate along the central portion of the conventional 
HF and NEO-HF MEPs calculated at the level of theory described in the main paper. 
The hydrogen transfer coordinate is defined as the difference between the donor 
carbon-hydrogen distance and the acceptor carbon-hydrogen distance. The intrinsic 
reaction coordinate is calculated in Cartesian coordinates. For NEO-HF, the dotted blue 
line is the expectation value of this quantity, and the dashed blue line is the basis 
function center position. 
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Table B4: Imaginary normal mode vectors from conventional HF, NEO-HF(V), and 
NEO-HF calculations at the transition states for ClCH3Cl– and C4H9

+. a 

  

HF NEO-HF(V) NEO-HF 
HF 

Renormalized 

ClCH3Cl— C1x 0.000 0.000 0.000 0.000 
C1y 0.000 0.000 0.000 0.000 
C1z 0.939 0.919 0.972 0.970 
Cl2x 0.000 0.000 0.000 0.000 
Cl2y 0.000 0.000 0.000 0.000 
Cl2z -0.167 -0.166 -0.167 -0.172 
Cl3x 0.000 0.000 0.000 0.000 
Cl3y 0.000 0.000 0.000 0.000 
Cl3z -0.167 -0.166 -0.167 -0.172 
H4x 0.000 0.000 --- --- 
H4y 0.000 0.000 --- --- 
H4z 0.144 0.183 --- --- 
H5x 0.000 0.000 --- --- 
H5y 0.000 0.000 --- --- 
H5z 0.144 0.183 --- --- 
H6x 0.000 0.000 --- --- 
H6y 0.000 0.000 --- --- 
H6z 0.144 0.183 --- --- 

C4H9
+ C1x 0.030 0.026 0.029 0.059 

C1y -0.017 -0.017 -0.056 -0.033 
C1z 0.188 0.172 0.271 0.369 
C2x 0.033 0.029 0.033 0.065 
C2y -0.010 -0.011 -0.045 -0.020 
C2z -0.188 -0.173 -0.275 -0.369 
C3x -0.007 -0.003 -0.029 -0.014 
C3y 0.024 0.024 0.030 0.047 
C3z -0.021 -0.016 -0.045 -0.041 
H4x 0.038 0.034 0.042 0.075 
H4y -0.010 -0.010 -0.045 -0.020 
H4z 0.131 0.079 0.354 0.257 
C5x -0.007 -0.003 -0.030 -0.014 
C5y 0.023 0.023 0.028 0.045 
C5z 0.022 0.018 0.047 0.043 
H6x 0.075 0.082 0.107 0.147 
H6y 0.170 0.164 0.336 0.334 
H6z -0.070 -0.066 -0.138 -0.137 
H7x -0.086 -0.082 -0.165 -0.169 
H7y 0.007 0.004 -0.034 0.014 
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HF NEO-HF(V) NEO-HF 
HF 

Renormalized 
H7z -0.112 -0.110 -0.228 -0.220 
H8x 0.001 0.005 -0.009 0.002 
H8y 0.008 0.009 -0.006 0.016 
H8z 0.118 0.116 0.251 0.232 
H9x 0.003 0.007 -0.005 0.006 
H9y 0.013 0.013 0.003 0.026 
H9z -0.118 -0.115 -0.252 -0.232 
H10x 0.074 0.082 0.107 0.145 
H10y 0.167 0.163 0.331 0.328 
H10z 0.078 0.075 0.155 0.153 
H11x -0.088 -0.085 -0.170 -0.173 
H11y 0.002 -0.001 -0.044 0.004 
H11z 0.111 0.111 0.227 0.218 
H12x 0.040 0.035 0.049 0.078 
H12y -0.005 -0.007 -0.032 -0.010 
H12z -0.131 -0.078 -0.354 -0.257 
H13x -0.636 -0.671 --- --- 
H13y -0.580 -0.574 --- --- 
H13z -0.017 -0.019 --- --- 

 

aThe NEO-HF calculations were performed with the 6-31G** electronic and PB4-D protonic 
basis sets, and the conventional HF calculations were performed with the 6-31G** electronic 
basis set. For the renormalized HF calculations, the elements corresponding to the quantum 
protons for the corresponding NEO-HF calculations were excluded, and the resulting vector was 
renormalized. All units are in Angstroms. 
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Table B5: Conventional HF and NEO-HF(V) vibrational frequencies for the 
transition state of ClCH3Cl–.a 

 

Mode # Conventional HF NEO-HF(V) 

1 413i 410i 

2 202 200 

3 202 200 

4 213 211 

5 988 1098 

6 988 1098 

7 1208 1295 

8 1537 1579 

9 1537 1579 

10 3392 3271 

11 3606 3476 

12 3606 3476 
 

aAll calculations were performed at the level of theory given in the main text. The frequencies are given in 
units of cm-1. 
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Table B6: Conventional HF and NEO-HF(V) vibrational frequencies for the 
transition state of C4H9

+.a 

 

Mode # Conventional HF NEO-HF(V) 

1 165i 118i 

2 195 197 

3 259 262 

4 274 273 

5 309 311 

6 518 518 

7 860 874 

8 914 914 

9 1070 1077 

10 1120 1120 

11 1129 1134 

12 1219 1215 

13 1246 1280 

14 1282 1281 

15 1380 1702 

16 1435 1433 

17 1455 1437 

18 1548 1545 

19 1550 1550 

20 1585 1585 

21 1589 1581 

22 1602 1602 

23 1616 1615 

24 1734 1734 

25 2274 2217 

26 3203 3202 

27 3203 3205 

28 3283 3284 

29 3284 3283 

30 3314 3313 

31 3314 3314 

32 3330 3328 

33 3341 3339 
 

aAll calculations were performed at the level of theory given in the main text. The frequencies 
are given in units of cm-1. 
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Table B7: Imaginary normal mode vectors from conventional HF and NEO-HF 
calculations at the transition states for C5H11

+. a 

 

 HF NEO-HF 
HF 

Renormalized 

C1x -0.012 0.115 -0.043 
C1y 0.011 -0.056 0.039 

C1z 0.180 0.689 0.645 

C2x -0.045 -0.132 -0.161 

C2y 0.015 0.029 0.054 

C2z -0.138 -0.293 -0.495 

C3x -0.003 0.002 -0.011 

C3y 0.002 -0.010 0.007 

C3z -0.030 -0.165 -0.108 

C4x -0.003 0.010 -0.011 

C4y 0.000 0.003 0.000 

C4z -0.028 -0.168 -0.100 

H5x -0.065 -0.234 -0.233 

H5y 0.042 0.106 0.151 

H5z 0.097 0.181 0.348 

H6x -0.010 -0.009 -0.036 

H6y -0.004 -0.105 -0.014 

H6z -0.025 -0.211 -0.090 

H7x -0.001 -0.042 -0.004 

H7y 0.002 -0.006 0.007 

H7z -0.020 -0.145 -0.072 

H8x 0.019 0.074 0.068 

H8y -0.025 -0.073 -0.090 

H8z -0.011 -0.085 -0.039 

H9x -0.011 -0.049 -0.039 

H9y 0.008 0.074 0.029 

H9z -0.024 -0.167 -0.086 

 H10x 0.007 0.104 0.025 

 H10y 0.018 0.096 0.065 

 H10z -0.032 -0.245 -0.115 

 H11x 0.019 0.055 0.068 

 H11y 0.001 -0.009 0.004 

 H11z -0.009 -0.058 -0.032 

 C12x -0.004 0.008 -0.014 

 C12y 0.003 0.009 0.011 

 C12z 0.008 0.003 0.029 

 H13x 0.019 0.052 0.068 

 H13y -0.001 0.005 -0.004 
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 HF NEO-HF 
HF 

Renormalized 
 H13z -0.012 -0.030 -0.043 

 H14x -0.015 -0.036 -0.054 

 H14y 0.020 0.078 0.072 

 H14z 0.000 -0.016 0.000 

 H15x 0.002 0.045 0.007 

 H15y 0.026 0.133 0.093 

 H15z 0.003 -0.012 0.011 

 H16x 0.836 --- --- 

 H16y -0.455 --- --- 

 H16z 0.128 --- --- 
 

a For this test on an asymmetric system, the NEO-HF calculations were performed with the 
minimal STO-3G electronic and sp protonic basis sets, and the conventional HF calculations 
were performed with the STO-3G electronic basis set. For the renormalized HF imaginary 
normal mode vector, the elements corresponding to the quantum proton were excluded, and the 
resulting vector was renormalized. All units are in Angstroms. 
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Proof that Derivative of the NEO Energy with Respect to Expectation Value 

of Quantum Nucleus Vanishes 

In this subsection, we provide a derivation for Eq. (4.11). For simplicity we 

assume that the system has only a single quantum nucleus, but the extension of this 

proof to multiple quantum nuclei is straightforward due to the localization of the quantum 

nuclei in molecular systems. The fully converged NEO solution corresponds to the 

nuclear density associated with the lowest total energy E0, and this nuclear density 

produces an expectation value of the quantum nucleus, 
qr , that is completely defined 

by this density according to Eq. (4.8). Because the NEO solution is variational, any 

other nuclear density that leads to the same or different expectation value would be 

associated with an energy greater than or equal to E0, and any other expectation value 

of the quantum nucleus would be associated with an energy greater than or equal to 

E0. Thus, based on the variational nature of the fully converged NEO solution, 

q 0E  =r . 

For completeness, we also include a more rigorous mathematical derivation. A 

NEO solution corresponds to a density ( ) r  for the quantum nucleus, and this nuclear 

density is associated with the expectation value qr  defined in chapter 4. For a given 

expectation value qr , however, an infinite number of nuclear densities could produce 

this value:  

  1 2

q( ), ( ), , ( )   →r r r r . (C1) 

For a given nuclear density ( )n r , a NEO calculation in which only the electronic 

densities are optimized can be performed, and each of these calculations produces an 
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energy nE : 

    1 2 1 2( ), ( ), , ( ) , , ,E E E   →r r r . (C2) 

Note that, in general, these energies are not fully converged NEO energies. The nuclear 

density associated with the lowest energy is defined to correspond to the expectation 

value 
qr , as expressed mathematically by  

 ( )( )
q

q
c

( ) { ( )| ( ) }
( ) arg min , ( )E

  
 

 →

 
=  

 
r

r r r r
r r r   (C3) 

and  

 ( ) ( )
qc q c, : , ( )E E = rr r r r . (C4) 

For a fully converged NEO-DFT solution with nuclear density 0 ( ) r  and 0

q( ) →r r , 

the nuclear density has been optimized to achieve the lowest energy under the density 

normalization condition, leading to 

 ( ) ( )0

c c, ( ) , ( )E E r r r r . (C5) 

More specifically, 

 ( ) ( ) ( )0

c q c c, , ( ) , '( )E E E = r r r r r r  for all q'( ) { ( ) | ( ) }   →r r r r   (C6) 

and  

 ( ) ( ) ( ) ( )
q

0

c q c c ' c q, , ( ) , ( ) , 'E E E E =  =rr r r r r r r r .  (C7) 

Thus, according to the definition given in Eq. (C3), the energy reaches its minimum at 

the nuclear density corresponding to the fully converged NEO solution, and  

 
q

0
E
=

r
. (C8) 
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Derivation of an Analytical Expression for the Response Matrix 

In this subsection, an analytical expression for the quantity given in Eq. (4.17) is 

presented. Based on Eqs. (4.1) and (4.8), elements of this matrix may be defined as 

 
q q q b

c c b c

d d

d d

i i i k

j j k j

ij

k

r r r r

r r r r

 
= = +

 
R .  (C9) 

Note that the ith expectation value can be written as 

 ( )
p ,0 p ,0 p ,0

q b b b ' ' ' '

' '

di i i

i i i i

ir r r r P   
 

= + = + = + r r r r ,  (C10) 

where p ,0i  is the ith quantum nuclear density centered at the origin, 
p

' '
iP   is a one-

particle density matrix based on the SCF solution for the ith quantum nucleus, and ,0

' '

i

   

are dipole integrals for the ith protonic basis function center at the origin. Moreover, the 

last factor of Eq. (C9) can be produced by manipulating Eq. (4.5) to produce 

 

1
2 2

1

2,bb 1,bc2

b b c

E E

r r r

−

−    
= − = −   

     

b

c

dr
H H

dr
. (C11) 

 Now, the partial derivatives of 
iqr  of Eq. (C9) are given by 

 

p p,0

q ' ' ' ' ' 'p,0 ,0

' ' ' ' ' '

' ' ' 'c c c c

i i

i i

j j j j

i

i i
r P P

P
r r r r

     

     
   

    
 =  + = 
    
 

  ,  (C12) 

and  

 

p p,0

q ' ' ' ' ' 'p,0 ,0

' ' ' ' ' '

' ' ' 'b b b b

i i

i i

k k k k

i

i i

ik ik

r P P
P

r r r r

     

     

   

 
    

= +  + = +  
     

  . (C13) 



169 

 

The derivatives of these dipole integrals with respect to basis function centers are zero 

due to these dipole integrals being defined for a single basis function center at the 

origin. As alluded to in chapter 4, the derivatives of density matrix elements can be 

obtained through a coupled-perturbed NEO-SCF calculation. Combining Eqs. (C9), 

(C12), and (C13) yields the final expression for elements of the response matrix:  

 

p p

q b b' ' ' ' ,0

' '

' 'c c c b c

d d d

d d d

i i

i i k

j j j k j

i

k

r r rP P

r r r r r

   

 
 

   
  = + + 
     

  . (C14) 
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Table C1: Vibrational Frequencies (in cm-1) Calculated with Conventional DFT with 
Harmonic Treatment and with NEO-DFT(V) with Different Basis Function Center 
Positions for TDDFT 
 

 Vibrational Mode Experiment NEO-DFT(V)a,b NEO-DFT(V)a,c Conv. 
Harmonicd 

HCN e CH stretch 3311 3317 3292 3439 

CN stretch 2097 2191 2190 2201 

CH bend 712 789 796 773 

HNC f NH stretch 3653 3645 3641 3814 

NC stretch 2024 2100 2100 2105 

NH bend 462 568 607 480 

HCFOg CH stretch 2976 2947 2899 3081 

CO stretch 1834 1885 1884 1891 

CH in-plane bend 1344 1329 1311 1370 

CF stretch 1070 1075 1061 1069 

CH out-of-plane 
bend 

1000‒1050 1061 1053 1039 

OCF scissor 661 665 665 665 

HCF3 
h CH stretch 3035 2988 2935 3119 

CH bend 1376 1353 1341 1388 

CF asymmetric 
stretch 

1152 1134 1133 1139 

CF symmetric 
stretch 

1137 1128 1128 1133 

CF simultaneous 
bend 

700 693 693 694 

FCF scissor 508 501 501 501 

FHF‒ i FH stretch 1331 1695 1695 1451 

FH bend 1286 1302 1302 1360 

FF stretch 583 617 617 625 
 

aNEO-DFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text. 
bQuantum proton basis function centers for NEO-TDDFT placed at conventional covalent 
hydrogen bonding distance. cQuantum proton basis function centers for NEO-TDDFT 
placed at the expectation value of the proton determined by NEO-DFT. dDFT/B3LYP; cc-
pVTZ and cc-pV6Z* electronic basis sets for the heavy atoms and hydrogen, respectively. 
eExperimental data from Ref. 20. fExperimental data from Ref. 21. gExperimental data 
from Ref. 22. hExperimental data from Ref. 23. iExperimental data from Ref. 24. 
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Table C2: Vibrational Frequencies (in cm-1) Calculated with Conventional DFT with 
Harmonic and VSCF Treatments and with NEO-DFT(V) 
 

 Vibrational Mode Experiment NEO-DFT(V)a DFT/VSCFb Conv. 
Harmonicb 

HCN c CH stretch 3311 3317 3365 3439 

CN stretch 2097 2191 2183 2201 

CH bend 712 789 868 773 

HNC d NH stretch 3653 3645 3690 3814 

NC stretch 2024 2100 2084 2105 

NH bend 462 568 721 480 

HCFOe CH stretch 2976 2947 2965 3081 

CO stretch 1834 1885 1871 1891 

CH in-plane bend 1344 1329 1379 1370 

CF stretch 1070 1075 1058 1069 

CH out-of-plane 
bend 

1000‒1050 1061 1069 1039 

OCF scissor 661 665 665 665 

HCF3 
f CH stretch 3035 2988 3004 3119 

CH bend 1376 1353 1405 1388 

CF asymmetric 
stretch 

1152 1134 1148 1139 

CF symmetric 
stretch 

1137 1128 1130 1133 

CF simultaneous 
bend 

700 693 694 694 

FCF scissor 508 501 502 501 

FHF‒ g FH stretch 1331 1695 1940 1451 

FH bend 1286 1302 1372 1360 

FF stretch 583 617 621 625 
 

aNEO-DFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text. 
bDFT/B3LYP; cc-pVTZ and cc-pV6Z* electronic basis sets for the heavy atoms and hydrogen, 
respectively; vibrational self-consistent-field (VSCF) calculations performed with the GAMESS 
program. cExperimental data from Ref. 23 of chapter 4. dExperimental data from Ref. 24 of 
chapter 4. eExperimental data from Ref. 25 of chapter 4. fExperimental data from Ref. 26 of 
chapter 4. gExperimental data from Ref. 27 of chapter 4.  
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Table C3: Vibrational Frequencies (in cm-1) Calculated with NEO Hessian with 
Born-Oppenheimer Separation of Quantum Proton, NEO-TDDFT with Fixed 
Classical Nuclei, and NEO-DFT(V) 
 

 Vibrational Mode Experiment NEO-DFT(V)a NEO Hessiana NEO-TDDFTb 

HCN c CH stretch 3311 3317 --- 3112 

CN stretch 2097 2191 2294 --- 

CH bend 712 789 --- 671 

HNC d NH stretch 3653 3645 --- 3481 

NC stretch 2024 2100 2160 --- 

NH bend 462 568 --- 493 

HCFOe CH stretch 2976 2947 --- 2838 

CO stretch 1834 1885 1905 --- 

CH in-plane bend 1344 1329 --- 1284 

CF stretch 1070 1075 1077 --- 

CH out-of-plane 
bend 

1000‒1050 1061 --- 806 

OCF scissor 661 665 670 --- 

HCF3 
f CH stretch 3035 2988 --- 2875 

CH bend 1376 1353 --- 1277 

CF asymmetric 
stretch 

1152 1134 1156 --- 

CF symmetric 
stretch 

1137 1128 1154 --- 

CF simultaneous 
bend 

700 693 699 --- 

FCF scissor 508 501 505 --- 

FHF‒ g FH stretch 1331 1695 --- 1674 

FH bend 1286 1302 --- 1286 

FF stretch 583 617 617 --- 
 

aNEO-DFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text. 
bNEO-TDDFT/B3LYP/epc17-2 with electronic and nuclear basis sets given in the text 
and quantum proton basis function centers placed at conventional covalent hydrogen 
bonding distance. cExperimental data from Ref. 23 of chapter 4. dExperimental data 
from Ref. 24 of chapter 4. eExperimental data from Ref. 25 of chapter 4. fExperimental 
data from Ref. 26 of chapter 4. gExperimental data from Ref. 27 of chapter 4. 
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Table D1: NEO-TDDFT Excitation Energies (cm-1) in Ascending Ordera  

 

  NEO-TDDFT 

H2O2
 346 

  500 

  1251 

  1358 

  3491 

  3491 

H2CO 322 

  1003 

  1045 

  1449 

  2625 

  2687 

H2NF 292 

  1123 

  1246 

  1518 

  3179 

  3193 
 

aThe lowest excitation energy for each species corresponds to a rotational mode. 


	Development of the Nuclear-Electronic Orbital Method for Applications to Molecular Electrocatalyst Systems
	Recommended Citation

	tmp.1656078843.pdf.7miBb

