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ABSTRACT

The increasing availability of smartphones allowed people to easily capture and share images on
the internet. These images are often associated with metadata, including the image capture time
(timestamp) and the location where the image was captured (geolocation). The metadata associated
with images provides valuable information to better understand scenes and events presented in these
images. The timestamp can be manipulated intentionally to provide false information to convey a
twisted version of reality. Images with manipulated timestamps are often used as a cover-up for
wrongdoing or broadcasting false claims and competing views on the internet. Estimating the time
of capture of a photograph is a challenging task that requires a comprehensive understanding of the
scene and its geographical location. In this paper, we propose a learning-based approach based on
deep learning to estimate when an outdoor image was captured. We provide a detailed quantitative
and qualitative evaluation of the trained models for various settings and show that the proposed
approach outperforms baseline methods.

Keywords: Digital forensics, Time estimation, Scene understanding, Deep learning

1. INTRODUCTION

The appearance of an outdoor scene can drasti-
cally change depending on the time of the year
and the hour of the day. As humans, if we look
at an image of an outdoor scene, like the ones
in Figure 1, and consider its characteristics and
elements (such as sunlight or dark sky), we can
roughly estimate when the image was captured.
Although this process is natural for us, doing
so requires an accumulated understanding of our
world and how the appearance of a scene varies
as time progresses.

Such variations might be as subtle as the
changes in the sunlight at different times of the
day or as noticeable as the changes in the color
of trees’ leaves over the different seasons, de-

pending on the time of the day, the month of
the year, and the geolocation where the photo
was captured. Furthermore, factors like weather
conditions and other visual elements (e.g., peo-
ple wearing warm clothes) influence our percep-
tion of time. Even though most cameras store
the timestamps of images in their metadata at
the moment of creation, this information is often
noisy and unreliable (Tsai et al., 2016). Several
photo editing software and mobile applications
overwrite the metadata when processing an im-
age, whereas social networks often erase it during
the upload process.

Manually annotating and estimating the
timestamp of a collection of photos is an error-
prone and infeasible task, especially as the num-
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Figure 1: Given a query image, our proposed ap-
proach estimates the moment when it was cap-
tured. This figure shows how the model esti-
mates the month in comparison to the ground
truth.

ber of digital photos increases. In this sense,
the development of automated methods to es-
timate the time-of-capture based on the con-
tent of an image can overcome such issues and
improve the analysis and understanding of out-
door scenes and events taking place in those im-
ages. Furthermore, such methods can aid visual
applications that benefit from accurate tempo-
ral contexts, such as semantic scene classifica-
tion (Yuan, Luo, & Wu, 2010; Derpanis, Lecce,
Daniilidis, & Wildes, 2012) and visual rendering
from crowd-sourced images (Z. Li, Xian, Davis,
& Snavely, 2020; Martin-Brualla et al., 2021).
We leverage information from ground-level im-
agery where there are plenty of geographical con-
texts and temporal information. Such imagery

can assist the network with learning to estimate
metadata closely related to real-world scenar-
ios (Padilha et al., 2022). By utilizing high-level
scene appearances, our architecture learns and
predicts the temporal information in a hierarchi-
cal way, starting from the easier time scale (i.e.,
month) to more granular information (i.e., week
of the year and hour of the day). Doing so allows
the network to better understand the relation be-
tween visual attributes and each temporal scale.
As we increase granularity (e.g., from months to
hours), the model uses the prediction of a higher
level in the hierarchy to guide the prediction of
the current stage.

In this work, we propose a high-level convo-
lutional neural network (CNN) architecture to
estimate the month, week, and hour of capture
of a photograph (Figure. 3). Our network re-
ceives as additional context, the location, which
allows the network to learn richer representa-
tions (Salem, Workman, & Jacobs, 2020) able to
adapt the temporal analysis to geographical dif-
ferences (e.g., North and South hemispheres) and
varied types of scenes (e.g., seacoast or moun-
tain regions). Our network is optimized in a
novel multi-task manner, with top-level tempo-
ral information cascaded throughout the model
and fed as input to estimate bottom-level ones.
In our approach, the features from month pre-
diction is used to estimate the hour of the day,
whereas both are used for the week estimation.
We quantitatively evaluate the proposed method
on realistic outdoor scenes, comparing the accu-
racy with other baseline methods.

2. RELATED WORK

With the emergence of machine learning, many
CNN-based methods have been explored to solve
digital forensics problems (Ding, Zhu, Alazab,
Li, & Yu, 2020). Specifically, inferring tem-
poral information from a photograph where
metadata is missing has been investigated in
different ways. Several works analyze spe-
cific visual elements such as human appear-
ance and fashion (Salem, Workman, Zhai, &
Jacobs, 2016; Ginosar, Rakelly, Sachs, Yin, &
Efros, 2015), visual style of objects (Vittayakorn,
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Figure 2: Sample of images from the dataset used in this experiment. These ground-level images show
the changes in the scene’s appearance over time. Each image is associated with the corresponding
timestamp and geo-coordinates.

Berg, & Berg, 2017; Jae Lee, Efros, & Hebert,
2013), architecture (Lee, Maisonneuve, Crandall,
Efros, & Sivic, 2015), and photo-generation ar-
tifacts (Martin, Doucet, & Jurie, 2014; Palermo,
Hays, & Efros, 2012) to estimate when an image
was captured. Even though these visual elements
carry some degree of temporal information, they
are not always present to reliably infer the time-
of-capture of an outdoor scene. In this sense,
Tsai et al. (Tsai et al., 2016) proposed a method
to estimate the position of the sun based on the
sky’s appearance and combine it with the date
and geographic location stored in the metadata
of an image to estimate the hour of capture. Sim-
ilarly, Kakar et al. (Kakar & Sudha, 2012) and
Li et al. (X. Li, Xu, Wang, & Qu, 2017) estimate
the sun azimuth angle to verify if the timestamp
stored in the metadata of a photograph has been
manipulated.

Instead of looking for particular visual cues or
indirectly estimating time from the sun’s posi-
tion, other works more closely related to ours
analyze the global appearances of a scene to
reason about its time-of-capture. Volokitin et
al. (Volokitin, Timofte, & Van Gool, 2016) use
the features extracted from a pre-trained CNN
to estimate the capture time (the year and hour
of the day) of an outdoor image. Zhai et al. (Zhai
et al., 2018) propose a CNN architecture to learn
geotemporal image features that can be used to

estimate the hour and month of capture for a
given image. In (Laffont, Ren, Tao, Qian, &
Hays, 2014), the authors show that the learned
features present a high correlation to transient
attributes of a scene related to the passage of
time, such as season, weather, and illumination
conditions. Padilha et al. (Padilha et al., 2022)
presented a deep learning-based approach for
verifying the timestamp associated with an im-
age. We build upon these strategies and propose
a new approach based on deep learning that in-
corporates visual information from ground-level
imagery and geographical coordinates to directly
predict the timestamp of an image. Different
from previous works, our approach has been
trained and optimized in an end-to-end fashion
to directly estimate the timestamp of a given out-
door ground-level image.

3. CAPTURE-TIME
ESTIMATION

We present a general approach for time estima-
tion from outdoor images that could be used to
estimate the time of capture and model the re-
lationship between scene appearances and time.
Such a model enables and supports many tasks
to better understand and analyze scene appear-
ance. Our objective is to develop an automated
method for estimating the capture time of an im-
age using the scene’s appearance in that image as
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Figure 3: An overview of our network architecture.

a cue. As humans, we have the ability to draw a
conclusion about the appearance of a place based
on different information such as scene category,
time, and geolocation of the place. For exam-
ple, we can expect a forest scene to have trees
with no leaves in Autumn, whereas they will look
alive and have all their leaves in Summer. The
geolocation of the scene also influences its ap-
pearance. We can anticipate seeing more sunny
scenes in Florida than in Minnesota. In our pro-
posed approach, we model this connection be-
tween the scene’s appearance and its geolocation
with time. Specifically, we train a model to learn
a conditional probability distribution, P (t|im, l),
to estimate the capture time (t) for a given image
(im), and its geolocation (l). The distribution
P (t|im, l) is challenging to learn because it re-
quires memorizing the appearance of every place
on Earth and how it changes over time. To learn
this complex relationship, we can represent the
time as an hour of the day, day, month, week,
and year. We have decided to predict the hour
(h) of the day, the week (w), and the month (m)
as the capture time of the image. We drop the
day and the year because the changes in scene
appearances between different days or years are
hard to be detected and would require additional
information besides the image and geolocation
(Palermo et al., 2012; Vittayakorn et al., 2017).
In this work, the conditional probability distri-
bution we model is P (m,w, h|im, l). Given an
image and its geolocation, we estimate the cap-

ture time of the given image with regard to the
month (m), week of the year (w), and hour of the
day (h). In our proposed architecture, we inte-
grate the human perception that we may guess
a broad range of time for the capture time, and
then we narrow it down to a more specific pe-
riod. We design the model first to predict the
month of the year, then use this prediction to
help in predicting the hour of the day and the
week of the year. Therefore, the model learns
three different conditional probabilities starting
from estimating the month, then the hour of the
day, and finally the week of the year. For pre-
dicting the hour of the day, we condition it on the
month prediction, and in the same way, we con-
dition the prediction of the week on the month
and hour predictions, as explained in the follow-
ing three conditional predictions.

P (m|im, l) (1)

P (h|im, l, P (m)) (2)

P (w|im, l, P (m), P (h)) (3)

In (1), the probability of the month is con-
ditioned on both im and l. In 2 we predict the
probability over the hours of the day conditioned
on the im, l, and the month prediction from (1).
In the same fashion, the week prediction will also
be conditioned on both the month and the hour
of the day in (1) and (2).
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Figure 4: The temporal distribution of the subset
of the AMOS dataset used in this work.

3.1 Dataset

To support our work, we use the Archive of
Many Outdoor Scenes (AMOS) (Jacobs, Roman,
& Pless, 2007) dataset. The AMOS data set con-
sists of over a billion ground-level images cap-
tured from publicly available outdoor webcams
across the world. In this experiment, we utilize
a subset of the AMOS dataset which contains
89,280 images collected between 2011 and 2014
from 53 unique cameras (Figure 2). Those 53
cameras have been found to be more stable than
other cameras (Zhai et al., 2018). We split the
dataset into 94.4% for training and 5.6% for test-
ing. The training set contains 84, 288 images,
and the testing set has 4, 992. Each image is
associated with the timestamp and geolocation
information. The location information includes
the latitude and longitude of the webcam. The
time information provides the capture time in
UTC time. Figure 4 presents the distribution of
the images over the month, week, and hour.

3.2 Architectural Details

Our proposed approach for modeling the re-
lationship between the scene appearances and
time, as in (1), (2), and (3) has two phases.
The first phase represents the feature extraction,
where the goal is to learn representative features
for the two inputs, the image features (im-fs) and
geolocation (geo-fs). We concatenate the two fea-
ture representations (im-fs, geo-fs) into one vec-
tor representation. Then we provide it as an
input to the second phase where the objective
is to learn to predict the right capture time for
the given image. In the second phase, we have

three prediction heads, individually estimating
the month (P(m)), hour of the day (P(h)), and
week of the year (P(w)) as described in Figure 3.
Because the top-level temporal information is fed
as an input to estimate bottom-level ones, we re-
fer to this model as the Cascaded model.

For evaluation and comparison purposes, we
also train two other models as baselines. The
first one is Cascaded without location model, in
which we only use the image as an input with-
out including geolocation. The second baseline
is the Not cascaded model, in which the pre-
diction heads are independent without leverag-
ing previously estimated temporal information.
To extract the features from the ground-level in-
put image, the DenseNet-121 (Huang, Liu, Van
Der Maaten, & Weinberger, 2017) model pre-
trained on ImageNet is used as a base model
with all the layers being trainable during train-
ing. The extracted features are flattened and
then fed into two fully connected layers with 256
and 128 neurons, respectively. After each fully
connected layer, ReLU activation and batch nor-
malization are applied.
In the location branch, the location features

are extracted using two fully connected layers
with 256 and 128 neurons, and the ReLU ac-
tivation function is applied to both layers. Each
fully connected layer is followed by dropout with
a rate of 0.5 and 0.3, respectively. Then batch
normalization is performed after every dropout.
Finally, ground and location features are con-
catenated and used as input to the three classi-
fiers(month, hour, and week).
Depending on whether the cascading tech-

nique is utilized, the input for each classifier is
provided in a different way. First, with the cas-
cading models, the output from the month clas-
sifier as well as the combined features (or ground
features only in the case of the Without location
model) are concatenated and fed into the hour
branch. The output from the hour prediction is
then added to these concatenated features, which
are provided as the input for the week classi-
fier. The non-cascaded model also receives the
combined features of ground and location input.
However, each classifier makes a prediction inde-
pendently. The output from the previous clas-
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sifier does not cascade into the next classifier as
its input.
Each classifier branch consists of three fully

connected layers. The first fully connected layer
has 256, and the second has 128 neurons. We
use the ReLU activation function on the two lay-
ers. Then we apply dropout with a 0.5 ratio on
the first and 0.3 on the second, and the batch
normalization gets applied on both layers. Fi-
nally, the last fully connected layer includes lin-
ear activation (with 12, 53, and 24 neurons for
the month, week, and hours predictions, respec-
tively) followed by the Softmax function.

3.3 Implementation Details

To implement the proposed architecture, we use
Keras 2.2.4 with TensorFlow. We preprocess
ground-level images and location data prior to
passing them into the models. The input im-
ages are augmented by zooming and horizontally
flipping. Input images are resized to 224×224
and scaled to [0,1]. The location input (latitude
and longitude) is converted to ECEF coordinates
(Earth-centered-Earth-fixed) and normalized to
[-1,1]. All the models are trained for 100 epochs
and optimized using Adam optimizer (Kingma &
Ba, 2014) with an initial learning rate of 0.01 and
a batch size of 64. We apply L2 regularization
with the value of 0.0001 for each fully connected
layer.

4. EVALUATION

In this section, we evaluate the accuracy of the
different models. Then we illustrate how their
accuracy changes over the different thresholds.

Timestamp Network Top 1 Top 3 Top 5

Month
Not cascaded 49.76 85.88 93.63

Cascaded w/o location 50.78 85.86 93.53
Cascaded 53.31 86.44 92.81

Week
Not cascaded 13.64 40.10 58.73

Cascaded w/o location 14.72 40.36 58.69
Cascaded 15.32 43.37 62.78

Hour
Not cascaded 22.00 57.01 75.76

Cascaded w/o location 24.02 60.20 77.14
Cascaded 26.66 62.08 78.35

Table 1: Time estimation accuracy (%) yielded
for considered networks (Cascaded, Not cas-
caded, and Cascaded without location input).

4.1 Quantitative Evaluation

Using the test set, we evaluate how well our mod-
els estimate the capture time (month, week, and
hour) of a given image. Table 1 shows the accu-
racy of each network. Our results show that the
Cascaded network performs the best, followed by
the Cascaded without location and Not cascaded
models. With the Cascaded network, which out-
performs the other models, we compute Top-K
accuracy with different thresholds and present it
in Figure 5.

Figure 5: Time estimation accuracy for month,
week, and hour obtained with the proposed ap-
proach (Cascaded).

4.2 Time Estimation

In this experiment, we explore how our models
learn the relationship between scene appear-
ances and time. When we provide ground-level
images, our models estimate when those images
were taken in terms of month, week, and hour.
For instance, as can be seen in Figure 1, our
models predict the month of capture, yielding
high probabilities around the ground-truth
month.

4.3 Capturing Temporal Patterns

We analyze how our models identify and esti-
mate temporal trends in scene appearances that
shift over a period of time (e.g., during the day
or across the year). We find how the models
can capture the patterns in two different scenar-
ios and compare their results. As presented in
Figure 6, our models can estimate the different
times in the same place while showing the tempo-
ral patterns. The models can generate curves of
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1AM1PM 4PM 8PM 9PM Sep NovJan Mar May

(a) (b)

Figure 6: Visualization of consistency probability. Both (a) and (b) show the same location; (a)
presents images captured at different hours on a fixed date in September and (b) displays pictures
from different months in a year on a fixed hour, at 3PM (UTC). Our models are able to learn various
temporal patterns that may change as the appearance of the place alters over time.

consistency probability, with each of them reach-
ing the highest point on or near the ground-truth
of the capture time.

5. CONCLUSION

We introduced a high-level CNN model that
estimates the time-of-capture (month, week,
and hour of the day) of ground-level photos. We
trained the model in a multi-task manner with
a novel cascading technique, where top-level
temporal features are fed to estimate low-level
attributes, boosting the network performance in
time estimation. Despite the accuracy improve-
ment, a potential drawback of the cascading
approach could be the propagation of errors
from top-to-bottom-level temporal attributes.
As for future work, we will explore the impact of
such errors on the overall performance, as well
as include additional contexts (e.g., co-located
satellite imagery, weather measurements) as
input to the model for more accurate prediction.

Acknowledgements: We thank Dr. Nathan
Jacobs for the helpful feedback he provided at
different stages during this study.
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F. A., Rocha, A., & Jacobs, N. (2022).
Content-aware detection of temporal
metadata manipulation. IEEE

Transactions on Information Forensics
and Security , 17 , 1316–1327.

Palermo, F., Hays, J., & Efros, A. A. (2012).
Dating historical color images. In
European conference on computer vision
(pp. 499–512).

Salem, T., Workman, S., & Jacobs, N. (2020).
Learning a dynamic map of visual
appearance. In IEEE conference on
computer vision and pattern recognition
(pp. 12435–12444).

Salem, T., Workman, S., Zhai, M., & Jacobs,
N. (2016). Analyzing human appearance
as a cue for dating images. In IEEE
winter conference on applications of
computer vision (pp. 1–8).

Tsai, T.-H., Jhou, W.-C., Cheng, W.-H., Hu,
M.-C., Shen, I.-C., Lim, T., . . . Hidayati,
S. C. (2016). Photo sundial: estimating
the time of capture in consumer photos.
Neurocomputing , 177 , 529–542.

Vittayakorn, S., Berg, A. C., & Berg, T. L.
(2017). When was that made? In IEEE
winter conference on applications of
computer vision (pp. 715–724).

Volokitin, A., Timofte, R., & Van Gool, L.
(2016). Deep features or not:
Temperature and time prediction in
outdoor scenes. In IEEE conference on
computer vision and pattern recognition
workshops (pp. 63–71).

Yuan, J., Luo, J., & Wu, Y. (2010). Mining
compositional features from gps and
visual cues for event recognition in photo
collections. IEEE Transactions on
Multimedia, 12 (7), 705–716.

Zhai, M., Salem, T., Greenwell, C., Workman,
S., Pless, R., & Jacobs, N. (2018).
Learning geo-temporal image features. In
British machine vision conference.

8


	Timestamp Estimation From Outdoor Scenes
	Scholarly Commons Citation

	Timestamp Estimation From Outdoor Scenes

