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Abstract 

Researcher: Agatha Kessler Fentress 

Title: Commercial Short-Haul Flight or Autonomous Mobility-On-Demand: 

Modeling Air Passengers’ Modal Choice 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2022 

 

Commercial short-haul flights (SF) are vital to airports and airlines because they account 

for one-third of hub traffic and have higher profit margins than the long-haul market. 

While U.S. commercial air passenger travel has increased steadily over the past decades, 

SF has been declining and was doing so before the unprecedented decrease in air travel 

caused by restrictions related to the COVID-19 global pandemic. Once autonomous 

mobility-on-demand (aMoD) is more viable than the human-driven car, demand for SF 

could be negatively impacted. Although there is published research on SF and aMoD, 

studies on factors influencing the choice between SF and aMoD are missing. Based on 

goal framing theory (GFT) variables, contextual trip attributes, COVID-19 items, and 

demographics, this study used a quantitative survey design to answer two research 

questions. The first question sought to identify factors that most influence U.S. air 

travelers’ modal choice for inter-regional travel. The second question aimed to identify 

distinct passenger clusters for SF and aMoD and evaluate the similarities and differences 

within these passenger segments. An online questionnaire of 69 items was developed 

based on extant literature and the theoretical foundation of the GFT. The survey was 

administered online with an air passenger sample in October 2021 via Amazon’s MTurk. 
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Results from 1,388 air passenger respondents qualified for data analyses, including 

exploratory factor analysis (EFA), multinomial logistic regression (MNL), two-step 

cluster analysis (CA), and multivariate analysis of variance (MANOVA).  

The findings support the GFT as a theoretical framework for modeling future 

mode choice and SF and aMoD clusters. The current primary transport mode was the 

most critical predictor for future mode choice. Self-efficacy, value of time, trust, and habit 

are new variables added to the GFT framework. The first two were useful in predicting 

future mode choice; trust and habit were not. Two-thirds (66%) of the current SF 

passengers intend to shift to other transport modes once aMoD is available; 31% of the 

current SF market share could be lost to aMoD and 20% to conventional driving. More 

than half of the current most-traveled air passengers intend to use aMoD as their main 

transport choice. The potential significant shifts in the ground- and air-mode shares 

revealed in this study may have crucial impacts on airlines, airports, infrastructure, future 

air/land-use planning, and the travel and hospitality industries. 

 

 

 

 

Keywords: Short-haul flights, autonomous mobility-on-demand, goal framing 

theory, cluster analysis, EFA, MANOVA, multinomial logistic regression 
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Chapter I: Introduction 

Since the first paying passenger a century ago, commercial aviation has been the 

highway in the sky for transporting people and cargo, and, with them, ideas igniting 

globalization. Rapid improvements in aviation technologies have democratized 

commercial aviation and stimulated passenger growth. However, the commercial aviation 

industry suffers from low-profit margins, intense competition, and external risks (Chao et 

al., 2019). Airlines strive to improve the passenger experience, lower costs and 

operational inefficiencies, decrease CO2 emissions, and optimize revenues for the 

industry to thrive (Dobruszkes et al., 2017). In addition to airline competition, they 

routinely compete with alternative transport modes such as cars and trains, especially on 

short-haul routes (Pan & Truong, 2019). America’s resilient car culture already poses a 

unique challenge to the airline industry, black swan events such as the COVID-19 

pandemic and technological advances may further strengthen the car and other types of 

ground transportation as a preferred mode of transportation (Cutler & Summers, 2020; 

Linden, 2020; Rossi et al., 2020).  

Subsequent waves of change to impact commercial aviation negatively may come 

from three primary ground transportation innovations: ground vehicle automation, 

vehicle electrification, and on-demand platforms. Autonomous mobility-on-demand 

(aMoD) is defined as door-to-door, on-demand mobility service using electric self-

driving cars (Fulton et al., 2018; Manfreda et al., 2019; Sheppard et al., 2019). Once 

aMoD is more viable than the human-driven car (with potentially improved safety, 

convenience, and cost), demand for commercial aviation, especially short-haul flights, 

could be negatively impacted (Fagnant & Kockelman, 2018; Meyer et al., 2017). For the 
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purpose of this research, commercial short-haul flight (SF) is defined as a flight time of 1 

hr or less. Inter-regional travel is defined as a flight time of 1 hr or less or a driving 

distance of 500 mi (800 km) or less. Although there is research on various aspects of SF, 

aMoD, and inter-regional travel, there is limited identifiable research exploring aMoD as 

a competing mode to SF. This study seeks to expand the understanding of air passengers’ 

modal choice in inter-regional travel in the context of SF and aMoD.  

This chapter begins with background on commercial aviation before and after the 

onset of the COVID-19 pandemic, SF, alternative transport modes, and the influence of 

America’s car dominance on commercial aviation. This section is followed by a brief 

description of the literature gaps, statement of the problem, purpose statement, 

significance of the study, research questions, delimitations, and limitations and 

assumptions.  

Background 

Commercial Air Travel 

Commercial aviation connects cities and drives economic and social development 

through the movement of people and products (De Vos, 2019). Since the first flight in 

1903, commercial air transportation has grown into a multi-billion-dollar industry with an 

annual average growth rate of 6.2% (International Civil Aviation Organization [ICAO], 

2020). Figure 1 depicts the annual percentage of worldwide growth in gross domestic 

product (GDP) and revenue passenger kilometers (RPK) from 1971 to 2021. The top 

graph in Figure 1 presents the long-term data trends and the lower graph shows the sharp 

decline in both RPK and GDP coinciding with the global COVID-19 pandemic.  
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Figure 1 

 

World GDP and World Airline RPK Growth Trends  

 

 
Note. GDP = gross national product; RPK = revenue passenger kilometers. RPK is the 

sum of the number of paid passengers multiplied by the total distance traveled. Adapted 

from “CAPA Airline Profit Outlook” by Coalition of Airline Pilots Associations, 2021. 

Copyright 2021 by Coalition of Airline Pilots Associations. 

 

The rapid growth in global air travel pre-COVID has been attributed to three main 

reasons (International Air Transport Association [IATA], 2020c). First, an increase in 
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low-cost carriers (LCCs) offering lower ticket prices stimulates demand. In turn, the 

LCC’s market share nearly doubled from 2006 to 2019 (IATA, 2020b). Second, the rise 

of the middle class, particularly in Asia, means more disposable income for traveling (Ye 

& Titheridge, 2017). Third, airports have increased infrastructure spending, led by Asia 

Pacific and the Middle East (Schlumberger, 2017). In 2019, seven of the world’s 10 

busiest air routes were in the Asia Pacific region (IATA, 2020d). In the same year, the 

number of scheduled passengers transported by airlines worldwide reached 4.54 billion, 

doubling from a decade ago (IATA, 2020b). As shown in Figure 1, the general growth 

trend of RPK mirrors that of the GDP. Figure 1 also shows that RPK and GDP had been 

trending down even before the start of the pandemic, suggesting the pandemic might be a 

catalyst and not the sole cause in driving down air travel. According to IATA, year-on-

year world RPK contracted by 86.6% in June 2020 (IATA, 2020c). The Coalition of 

Airline Pilots Associations Centre for Aviation (CAPA, 2020a) reported unprecedented 

drops in RPK of 65.9% in 2020 and 58.4% in 2021, a grim negative profit margin for the 

world airline industry.  

Although most of the global commercial air traffic growth came from Asia, 

domestic U.S. air traffic has led the commercial air market, contributing 14% of the 

global RPK in 2018 (IATA, 2019a). The continued strength in the U.S. commercial air 

market comes from higher living standards, relatively inexpensive airfares, and business 

travel (IATA, 2020c). Despite the growth of the commercial airline industry, it is a low-

margin business fraught with asymmetrical risks (Vasigh et al., 2008). Airlines 

worldwide realized a net profit of $27.3 billion in 2018, one of their most profitable years 

(IATA, 2019b). However, just one company, Apple, made $59.3 billion in the same year, 
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more than double the combined profit of over 200 airlines (Odhise, 2018). U.S. airlines' 

capital and operating expenses make up 99% of the average annual income, with only a 

1% average profit margin for the entire industry from 1950 to 2018 (Chao et al., 2019; 

IATA, 2019b). In addition to thin and volatile profit margins, the profitability of U.S. 

airlines cycles up and down, with the long-term trend being downward. The air passenger 

trends illustrated in Figure 2 show that the airline industry is susceptible to various risks, 

including financial, political, market, terrorism, resources, supplier, social, and health 

(IATA, 2021). Market fluctuations and economic difficulties have caused several airlines 

to declare bankruptcy or merge (Jayanti & Jayanti, 2011; Majid et al., 2016). Airlines for 

America (A4A, 2020) estimates over 50 airline mergers and 100 bankruptcy fillings from 

1930 to 2020; large U.S. airlines such as PAN AM, TWA, and US Airways were among 

them. 

  

Figure 2 

Air Passenger Trends 1945−2021 

 
Note. IATA = International Air Transport Association; SARS = severe acute respiratory 

syndrome. From “Effects of Novel Coronavirus (COVID-19) on Civil Aviation: 

Economic Impact Analysis” by IATA, 2021, p. 4. Copyright 2021 IATA. In the public 

domain.  



6 

 

Despite the cost savings of using new technology, larger aircraft, and more fuel- 

and crew-efficient operations, airline net revenues have continued downward since 1960 

(Bachwich & Wittman, 2017). To make matters worse, while the number of U.S. air 

passengers had grown by 5% per year pre-pandemic, inflation-adjusted ticket prices have 

been declining by an average of 2% per year since 1990 (Saxon & Weber, 2017). Intense 

competition following the 1978 Airline Deregulation Act has consistently driven fares 

lower. Travel booking websites have democratized information, allowing consumers to 

compare airline prices and offerings (Dobruszkes et al., 2017); consequently, LCCs have 

thrived partly because of the Internet (Bachwich & Wittman, 2017). However, 

competition has become so intense that profit margins have continued their downward 

trend even with a 27% increase in load factors on U.S. flights over the last two decades 

(Bachwich & Wittman, 2017).  

Short-Haul Flight in the United States  

The definition of short-haul flight varies by carrier, country, and organization. 

Although IATA does not provide a flight-duration or flight-distance definition of short 

haul, it defines trip length based on the value of travel time savings and the availability of 

substitutes (IATA, 2010, p. 26). Typically, airlines define short-haul trips differently 

depending on their market focus. For example, Southwest defines it as 500 mi (800 km) 

or less, while United Airlines considers a flight within 800 mi (1,200 km) as short 

(Elking & Windle, 2014; Silk, 2018). A review of the extant literature defined SF as a 

flight time of between 1 and 2 hr (Hess et al., 2018; Sallinen et al., 2017) or a travel 

distance of up to 800 mi (1,200 km) (Elking & Windle, 2014; National Academy of 
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Sciences, Engineering, and Medicine [NAS], 2019). This research defines SF as a flight 

time of 1 hr or a one-way travel distance of 500 miles (800 km) or less. 

Evolution of the U.S. Commercial Short-Haul Market. Since the U.S. Interstate 

Highway System was built in the 1950s, transportation by car has replaced the train in 

connecting cities across the country. Commercial flight, however, accelerated economic 

developments by minimizing distances and travel time (Vasigh et al., 2008). The 1978 

Airline Deregulation Act removed the U.S. federal government control on barriers to 

entry, fares, and routes; thus, stimulating free-market innovations and growth (Marien et 

al., 2018). During the 1980s and 1990s, the U.S. commercial aviation industry 

experienced significant market growth, primarily in the short-haul sector, propelled by 

lower fuel costs, a vibrant economy, and cheaper ticket prices (Marien et al., 2019; 

Sigala, 2014). One of the essential factors in driving short-haul air traffic growth was an 

advancement in aircraft technology, such as regional jets. These 50-seat carriers 

competed in operational costs and passenger acceptance, allowing airlines to add new 

scheduled service between regional airports, which in turn increased passenger choice 

and reduced travel times (Marien et al., 2019). Nevertheless, while overall air 

transportation demand has continued to increase since the 1990s, many short-haul 

markets have seen a dramatic decline in flights since 2000 due to higher operating costs, 

higher fares, flight delays, post 9/11 airport stresses, and new business communication 

technologies (Elking & Windle, 2014; NAS, 2019; Millan et al., 2016). The left image in 

Figure 3 shows that between 2000 and 2017, the total U.S. air passenger market 

expanded by 25%, but short-haul traffic under 500 mi (800 km) shrunk by 30% (Miller, 

2017).  
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Figure 3 

U.S. Air Passenger and SF Markets: 2000−2017 

  

Note. Left: Annual growth rate of the U.S. air passenger and SF markets. Right: Inter-

regional air passenger reduction/growth by travel distance. Adapted from “What Caused 

Short-Haul Traffic Decline in the U.S.? The $34B Question” by C. Miller, 2017, para. 1.  

 

Shorter routes are expected to account for less air traffic than longer ones due to 

the availability of alternative transportation modes such as cars, buses, and trains. 

However, the reduction in air traffic for shorter routes is more significant than for longer 

ones (Miller, 2017). The right image in Figure 3 shows that within the inter-regional 

travel distance, most passengers travel between 200 and 500 mi. While the total U.S. 

market rose 25% between 2000 and 2017, the 401 to 500 mi segment rose only 2%. Air 

passenger traffic in the segments under 400 mi fell by 14% to 51% in those 17 years. 

Collectively, these trends have created strategic and operational challenges. The number 

of profitable markets is shrinking. To minimize operating costs on a per-seat-mile basis 

and to synergize the fixed costs, airlines have resorted to using larger aircraft and 

reducing the frequency of short-haul routes.  
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Short-Haul Flight is Vital to Airlines and Airports 

Even though the short-haul market has been shrinking, short-haul traffic is vital to 

U.S. airlines and airports for three reasons: (1) One-third of air traffic from major U.S. 

hub airports is within 500 mi (800 km) (Marien et al., 2019); (2) Airlines funnel 

passengers to their hubs to improve load factors for longer trips. If airlines have to lose 

money on some of these feeder flights, they can make it up by consolidating traffic onto 

long-haul segments, and by doing so, retain their loyal customers (Achenbach & Spinler, 

2018; Soyk et al., 2018); (3) Short-haul air traffic yields a greater margin for the airlines 

by having a higher percentage of business travelers (NAS, 2019; Vasigh et al., 2008). 

With a projected loss of $34 billion in revenues from the reduction in short-haul traffic 

between 2000 and 2017 (Miller, 2017), it is critical that airlines protect their short-haul 

routes from current and future competing modes. 

Transport Modes Competing with Short-Haul Flight 

Short-haul air transport is a challenging business because airlines that serve such 

routes must compete with substitute transportation modes, such as the car, inter-regional 

train, or inter-regional bus, in addition to other airlines. 

Car. As shown in Figure 4, the U.S. has a robust car culture. Of the 3.1 billion 

annual trips over 100 mi (160 km), 82% are made by car while only 15% are made by air 

(Bureau of Transportation Statistics [BTS], 2016). Apart from some city-pairs with dense 

urban centers, the bus (2%) and the train (1%) are not serious competition for the airlines. 

In fact, for trips between 100 to 500 mi (160 km to 800 km), the car’s dominance 

increased from 82% to 91% of total trips in 2016 (BTS, 2018). The sharp decline in SF is 

further supported by the Airport Cooperative Research Program (ACRP) (NAS, 2019 
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[NAS]) Report 204 which investigated the extent the car has diminished the role of SF 

and concluded that the role of planes and cars has changed since 2000. For inter-regional 

travel, NAS research in 2019 showed a 30% decrease in airline seat-miles per capita and 

a 30% reduction in origin-to-destination trips, while the driving miles per capita have 

increased since 2000 (NAS, 2019, p. xi).  

 

Figure 4 

U.S. Trips Over 100 mi (160 km) by Transport Mode in 2016 

 

 

The city-pair of Houston–Dallas, which are 240 mi (386 km) apart, serves as a 

good illustration for the increase in driving. Since 2000, the population of these cities has 

grown by 45% and 39%, respectively (U.S. DoT, 2016), while air traffic between 

Houston and Dallas has dropped by 60% (Miller, 2017). As two major aviation hubs, 

they are served by American, Southwest, and United, three of the largest U.S. airlines. 
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Nevertheless, the dominant substitute is the car, as many people prefer to drive than fly 

post-9/11 (Hess et al., 2018). 

Inter-regional Train and High-Speed Rail. With approximately 150,000 mi 

(241,400 km) of rail, the U.S. is home to one of the world’s largest rail networks (DoT, 

2020). Unlike Europe, Asia, and other parts of the world where rail and high-speed rail 

(HSR) have become a formidable competition to commercial flight (Pan & Truong, 

2019), the U.S. has a uniquely different transport infrastructure and travel culture. The 

convenience provided by the Interstate Highway System and the growth in commercial 

aviation have contributed to the decline in passenger train transport in most of the U.S. 

Less than 20% of the country’s rail system is used for passenger transport (DoT, 2020), 

accounting for only 1% of trips over 100 mi (160 km) (BTS, 2016).  

One of the regions where rail is beginning to compete with commercial flights is 

Florida. Virgin’s privately-funded HSR began operation in early 2018, servicing 

passengers between West Palm Beach, Fort Lauderdale, and Miami, a distance of only 62 

mi (99.8 km) (Leigh, 2020). By late 2022, the plan is for Virgin’s Brightline to expand its 

diesel-electric rail service to include the Orlando–Tampa route. Once service begins, 

Virgin will compete with the five scheduled airline routes in Florida that carried 2.3 

million annual air passengers in 2019 (Leigh, 2020). Each of these city-pairs is within 

300 mi (480 km), a market segment where trains, cars, and planes compete. Another 

region where rail may compete with commercial flights is California. With its success in 

Florida, Virgin plans to build a fully-electric HSR to connect Las Vegas to Southern 

California by the late 2020s (Cogley, 2020; NAS, 2016). At a top speed of 180 mph (290 

kph) with few stops along the way, the 170 mi (274 km) journey will take 90 min. In 
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2020, 17 airlines flew this route with 3.25 million passengers annually (BTS, 2020).  

A potential ground-based transport system in the future is the Hyperloop, a 

scheme in which passengers or cargo travel in pods through a vacuum tube at speeds up 

to 700 mph (1,130 kph) (Shinde et al., 2017). Currently, Hyperloop is in an experimental 

phase in the United States and globally. Once operational, travel between San Francisco 

and Los Angeles, a distance of 382 mi (614.8 km), could be completed in 35 min (Voltes-

Dorta & Becker, 2018). Silling (2019) proposed the Hyperloop as a potential alternative 

to commercial flight, particularly for the short- and medium-haul markets.  

Inter-regional Bus. As the most widespread form of public transportation in 

America, buses operate in more areas than trains and planes and are often used by 

passengers to travel between places not served by commercial airlines (Merkert & Beck, 

2020; Schwieterman, 2016). According to the U.S. DoT, there are 1,200 transit bus 

systems in the United States, operating 5.3 billion trips every year (U.S. DoT, 2020). 

While there is no recent scholarly research comparing inter-regional bus travel with 

flights in the United States, CAPA (2020) reports that Volaris, Mexico’s largest domestic 

airline, benchmarks its cost performance against bus companies as opposed to other 

airlines. Similarly, Yasar (2017) analyzed the competitive views of managers from 

different transport modes and found that bus companies regard airlines as competition, 

but the reverse is not true. Incidentally, operators of all transport modes recognize that 

price reduction in commercial aviation introduced by LCCs has intensified the 

competition (Yasar, 2017). While the U.S. commercial aviation industry is dominated by 

four large airlines, the bus industry is fragmented, with no individual bus companies 

dictating market prices (BTS, 2020). Like inter-regional trains, inter-regional buses in the 



13 

 

United States are minor competition for commercial air travel. 

aMoD. With more short-haul travel choices, air passengers routinely evaluate the 

time and hassle required for airport security screening, price, convenience, and comfort 

between air and other transport modes, particularly the car. At precisely the same time 

airlines and airports are experiencing multiple financial challenges, the threat of 

substitutes is increasing with the rapid development of vehicle automation, vehicle 

electrification, and on-demand platforms. While flying is still the preferred mode of 

transportation for long-distance travel in the United States, the possibility of a threat to 

SF from emerging ground transport systems such as aMoD should be considered. 

Disruptors typically come from outside the industry. Christensen (1997, 2011) contends 

new technologies can displace great firms and even an entire industry by providing 

consumers with a more accessible or better product/service regardless of how well 

managed or successful these companies are. A germane real-world example is Apple’s 

iPhone. When Apple launched its first iPhone in 2007, it immediately threatened and 

ultimately caused structural changes to five industries: personal computer, music, film, 

camera, and communications (Odhise, 2017). On-demand features paved the way for 

consumer adoption a few years later of the ride-hailing/sharing model popularized by 

Uber and Lyft. As the latest multidisciplinary paradigm for personal mobility, aMoD is 

the confluence of three revolutions in transportation: On-demand platform, vehicle 

automation, and electrification (Sperling, 1991, 2018). Autonomous vehicles (AVs) refer 

to all driverless vehicles, including privately-owned AVs. aMoD refers to the service 

provided by electric AVs on an on-demand ride-hailing platform (Gurumurthy & 

Kockelman, 2020). 
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Even though aMoD is a potentially formidable competition to flight, a review of 

extant literature reveals that despite the considerable number of research studies related to 

commercial flight and aMoD, there are only five identifiable studies that explore 

passengers’ transport mode choice between commercial flight and aMoD: Ashkrof et al. 

(2019), LaMondia et al. (2016), NAS (2019), Perrine et al. (2020), and Rice and Winter 

(2018). None of these studies framed the research from the commercial airlines’ 

perspective, particularly SF; therefore, few findings are directly relevant or easily 

applicable to the U.S. short-haul air transport market. Furthermore, none researched the 

key predictors for SF and aMoD; consequently, the main factors influencing air 

passengers’ potential aMoD decisions and how they may differ from SF are still 

unknown. Additionally, no identifiable studies explored passenger clusters to understand 

their characteristics; therefore, similarities and differences within distinct aMoD and SF 

groups are still undetermined. Lastly, the ACRP Research Report 204 (NAS, 2019) was 

the only study of the five that used a theoretical framework. This research uses the goal 

framing theory (GFT) as a grounding theory, which is discussed in Chapter II. 

Statement of the Problem 

SF is a large and critical market to airlines, airports, travelers, and regional and 

local economies (Marien et al., 2019). External shocks such as the pandemic in 2020 

reduced U.S. air demand by an unprecedented 66% (CAPA, 2021), which has accelerated 

the erosion of this already under-stress air passenger market. The human-driven car has 

been taking over SF’s market share (NAS, 2019; Perrine et al., 2020). Once aMoD is 

operational, air passengers will have more inter-regional transportation options, which 

may negatively impact SF’s revenue sources and the financial sustainability of airlines 
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and airports. While there is a body of research on various aspects of SF and aMoD 

individually, there is no identifiable research that explores SF and aMoD as competing 

modes from the perspective of U.S. air passengers. In addition, there is a lack of 

knowledge in air passenger segmentation of aMoD. Cluster knowledge of SF and aMoD 

will aid airlines and airports in understanding these diverse groups of passengers to better 

communicate and serve them.  

Purpose Statement 

To fill the research gaps, this study considers differences in modal choice across 

travel distances and population segments by lending a deeper understanding of U.S. air 

passengers’ modal choice for inter-regional travel. The purpose of this research is 

twofold: It seeks to develop a model to identify factors that most influence U.S. air 

passengers’ modal choice, principally SF and aMoD; and it seeks to identify distinct SF 

and aMoD passenger clusters and evaluate the similarities and differences within these 

passenger segments. While this research considers the potential influence of COVID-19, 

the primary focus is on travel choices in general, not just during the pandemic. 

Significance of the Study 

Theoretical Significance  

There are five theoretical contributions to the literature on air transportation and 

inter-regional travel, with each one the first in its category. GFT is a relatively new social 

sciences theory that has been validated by studies in different fields, including ground 

transportation. However, this study is the first application of GFT to air transportation 

research. Second, while there have been increasing studies on aMoD in the past few 

years, there is no identifiable aMoD research on SF and inter-regional travel. This study 
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is the first exploratory model examining SF and aMoD clusters in the context of inter-

regional transportation in the United States. Third, this research presents the first novel 

multimodal model using SF, aMoD, and the full array of current transport modes to gain 

a more realistic set of transportation options for inter-regional travel. Fourth, with the 

increasing popularity of aMoD, prolific research has explored various perspectives. 

Nevertheless, this study is the first to examine the perspectives of air passengers in aMoD 

research, thus gaining needed insight into the potential competing role aMoD may pose 

for SF. Lastly, the drive-time decision between SF, driving, and aMoD has not been 

studied previously. Therefore, findings from this study add to the scholarly knowledge of 

both ground and air transportation. 

Practical Significance  

 

Transportation planning, policy-making, and infrastructure design take time. This 

study provides actionable insights to airports, commercial airlines, the general aviation 

industry, and governments on how air passengers may make modal choices in the short-

haul market in the future once aMoD is available. There are four practical contributions. 

First, knowledge of the factors influencing air passengers’ future mode decisions once 

aMoD is available can inform aviation operators and planners to develop service and 

communications strategies necessary to keep and grow their customer base. Second, even 

though this study concerns a future challenge, there is no known scholarly research on air 

passenger segmentation of SF and aMoD based on GFT variables and contextual trip 

attributes. This research provides critical input to airlines and airports regarding 

infrastructure planning and capital evaluations, which are long lead-time decisions. Third, 

understanding the similarities and differences of early air passenger adopters of aMoD 
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and SF provides aviation operators with the details needed to create critical business and 

communication strategies for passenger retention. Lastly, this research adds to the limited 

knowledge of inter-regional travel of 100–500 mi (160–800 km), where three-quarters of 

all out-of-town trips are made. 

Research Questions 

This study aims to answer the following two research questions (RQ).  

RQ1. Based on goal framing theory variables, contextual trip attributes, COVID-

19 variables, and demographics, what factors most influence air passengers’ modal 

choice for inter-regional travel of distances under 500 mi (800 km)? 

RQ2. What distinct passenger clusters exist for SF and aMoD? How are these 

clusters similar/different within the SF and aMoD segments? 

Delimitations 

Six delimitations set the boundaries for this research. 

Focus on the United States. This research is conducted using a quantitative 

survey method with an online questionnaire focusing on air passengers who have flown 

in the United States within the last 24 months. The choice of surveying only air 

passengers in the United States is because transportation choices are influenced by the 

availability of transportation modes, costs, and distances between cities, among others. 

Countries may differ significantly in these factors. Therefore, it is crucial to focus on one 

country or region where the transport infrastructure is relatively homogeneous.  

Air Passengers as the Sampling Frame. This study aims to examine the 

perspectives of air passengers to gain insights into aMoD as a potential competing mode 

to SF; therefore, novel models using air passengers, not the general population, were 
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developed for data input. Consequently, this study screened for air passengers who have 

flown commercially within 24 months (October 2019 to October 2021), accounting for 

the normal flight conditions prior to and during the onset of the pandemic. 

Focus on Inter-Regional Travel. For this study, inter-regional travel refers to 

travel distances of 500 mi (800 km) or a flight time of 1 hr or less. Depending on traffic, 

assuming an average driving speed of 70 mph (113 kph) on the highway, 500 mi (800 

km) is roughly equivalent to 7 to 8 hr of driving time. 

aMoD as a Service. Depending on context and publication, AV and aMoD could 

be interchangeable. For this study, AV is a product (the autonomous car) and aMoD is an 

on-demand service using an AV. When a privately-owned AV performs an on-demand 

for-fee service, it is considered aMoD. This study excludes on-demand AVs for cargo 

transportation (trucking), AVs that run on a track (driverless shuttle-on-a-track or 

driverless train), and AVs in a closed environment (closed-loop campus and inside 

airfields).  

COVID-19 Variables. Considering the COVID pandemic was ongoing at the 

time of this research, the influencing COVID factors for air passengers’ modal choice are 

fluid. In addition, cluster analysis provides more valid results when the models have few 

variables. Therefore, only five COVID variables are included: COVID-19 fear, COVID-

19 variants, change in disposable income, air travel during the pandemic, and perception 

of the economy. All other COVID-related factors are excluded from consideration. 

English Language. English was the only language used in the questionnaire 

because this research was conducted in the United States for domestic travel. 

Respondents who do not read or write in English were excluded. 
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Limitations and Assumptions  

There are three limitations to this study. First, while survey research is an indirect 

method of evaluating air passengers’ modal choice, it is a generally accepted 

methodology for determining key factors influencing their behavioral intentions. Every 

effort was utilized in the research design and execution to enhance the generalizability of 

results and external validity. A non-response bias test and a comparison of demographics 

in the air passenger population were conducted to strengthen external validity. Second, 

data were collected at a single point in time using a single web-based platform. This 

cross-sectional survey offers the researcher a snapshot in time which is a typical problem 

that can be solved using longitudinal surveys (which is a recommendation for future 

research in this study). Third, during the pandemic, air passengers’ perceptions may not 

be the same as in normal times. Therefore, the five COVID variables listed above were 

included in the study to address possible confounds and enhance external validity. 

This research has five assumptions. Assumption 1: Technology and regulatory 

approvals will not impede the launch of aMoD. Therefore, the topic of regulation is not 

addressed in this study. Assumption 2: The study participants are able and willing to 

respond to such projective questions. Considering aMoD is not currently available in 

most people’s daily lives, people may have varying degrees of ability to imagine and 

answer aMoD-related questions. Pretest and pilot studies were conducted to ensure 

respondents' ability to answer aMoD questions. Assumption 3: Survey respondents are 

competent, honest in their opinions, accurate in their responses, and familiar with the 

terms used in the survey. Pretest and pilot studies led to improvements in respondents’ 

understanding. Assumption 4: Respondents are able and willing to answer the questions 
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truthfully regardless of their fear of the unknown. Assumption 5: Once aMoD becomes 

available in everyday life, perception of trust and safety will not inhibit aMoD adoption. 

Summary 

The purpose of this quantitative study is to explore air passengers’ multimodal 

transportation choices for inter-regional travel once aMoD is available and to understand 

passenger perceptions and characteristics regarding the use of SF and aMoD. This 

chapter provides a concise introduction to the challenges facing commercial airlines, 

including industry economic trends and competition from other modes of transportation 

in the United States. It briefly discusses the extant literature on U.S. transport modes and 

identifies gaps in the literature related explicitly to SF and aMoD.  

The research questions seek to identify predictive factors associated with the goal 

framing theory that influence air passengers’ modal choice for inter-regional travel and 

classify air passenger segmentation of SF and aMoD and similarities and differences 

within the clusters. The results from this study have significance to airlines, airports, 

travelers, and, ultimately, to the regional and local economies. The next chapter reviews 

the relevant literature, identifies the research gaps, provides justification and support for 

the chosen research model and variables, and explains the theoretical framework of this 

study. 
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Definitions of Terms 

Autonomous 

vehicle (AV)  

A fully autonomous Level 5 vehicle is an unmanned ground vehicle 

that “senses” its environment and navigates without human input 

(Cook et al., 2019; Menon, 2017).  

Autonomous 

mobility-on-

demand 

(aMoD) 

A combination of vehicle automation + vehicle electrification + on-

demand business platform. 

Driverless 

cars 

Fully automated robotic vehicles designed to travel without human 

operators (synonymous with autonomous vehicles and robot cars). 

Driverless cars denote full automation, whereas self-driving cars can 

have various levels of autonomy (Wen et al., 2019).  

Goal framing 

theory (GFT) 

The GFT theory concerns the power of goals to drive cognitive 

processes and motivation. (Lindenberg, 2016; Steg et al., 2016). There 

are three overarching GFT goals: hedonic (to feel good), gain (to 

optimize resources), and normative (to act appropriately).  

Inter-regional 

travel/Short-

Haul 

A 1 hr flight time or a driving distance of 500 mi (800 km) or less. 

Transportation 

network 

company 

(TNC) 

Ride-hailing or ride-sharing companies.  

Urban air 

mobility 

(UAM) 

Manned or unmanned systems for air passenger and cargo 

transportation within an urban area (Parker, 2017). UAM is often 

associated with small vertical-takeoff-and-landing (VTOL) aircraft, 

drones, and flying cars (Cook et al., 2019). 
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List of Acronyms 

ACRP   Airport Cooperative Research Program 

aMoD  Autonomous Mobility-on-Demand 

AV  Autonomous Vehicle 

DOT  Department of Transportation 

EV  Electric Vehicle 

FAA  Federal Aviation Administration 

GFT   Goal Framing Theory 

IATA  International Air Transport Association 

ICAO  International Civil Aviation Organization 

MaaS  Mobility-as-a-Service   

NASA  National Aeronautics and Space Administration  

RPK  Revenue Passenger Kilometer 

SF  Commercial Short-Haul Flight  

TaaS  Transportation-as-a-Service 

TNC  Transport Network Company 

TPB  Theory of Planned Behavior 

UAM  Urban Air Mobility  
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Chapter II: Review of the Relevant Literature 

This chapter reviews the extant literature on commercial short-haul flights (SF), 

autonomous mobility-on-demand (aMoD), and other transportation modes for inter-

regional travel. It presents current knowledge about these topics and identifies the gaps in 

the literature. It reviews the relevant literature on the goal framing theory (GFT) and 

describes the use of the GFT as the theoretical foundation for this research. It also 

presents the literature foundation for this study’s research models and main variables, 

providing justification and support for their selection. The conclusion of the chapter 

includes a discussion of this study’s theoretical framework and research models based on 

the expanded GFT model, contextual trip attributes, COVID-19 variables, and passenger 

demographics. 

Commercial Short-Haul Flight 

Air transportation research does not always distinguish air travel distance (Mills 

& Kalaf-Hughes, 2017). IATA defines trip length based on the value of travel time 

savings and the availability of substitutes (IATA, 2010, p. 26). Typically, airlines define 

short-haul trips differently depending on their market focus. A review of extant literature 

found short-haul flight times between 1 to 3 hr. Southwest defines it as 500 mi (800 km) 

or less, while United Airlines delineates a flight within 650–800 mi (1,050–1,290 km) as 

short (Elking & Windle, 2014; Silk, 2018). For this research, short haul refers to a flight 

time of 1 hr or less or a driving distance of 500 mi (800 km) or less.  

Murphy and Meilus (2012) and Elking and Windle (2014) maintain that short-

haul travel is different from longer-haul air trips fundamentally and statistically, so 

should be treated as two different markets. In the 15 years from 1995 to 2010, Murphy 
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and Meilus noted that while long-haul air traffic grew approximately 50%, short-haul 

traffic decreased by 26%. They studied the correlation between GDP and air passenger 

demand for these two markets. They found 0.97 and 0.41 correlation coefficients for 

long-haul and short-haul traffic, respectively, meaning that domestic long-haul air travel 

increased almost proportionately to the GDP growth when the U.S. economy was good. 

Whereas for short-haul, the increase is less than half the GDP growth. Lending support to 

the findings by Murphy and Meilus (2012), Elking and Windle (2014) found (a) short-

haul air markets are more affected by changes in airline market concentration, (b) 

increased time needed for security screening post 9/11, and (c) changes in cost savings 

gained by lower LCC airfare. Several of their control variables showed statistically 

significant different effects between short- and long-haul markets. These findings show 

that short- and long-haul markets have markedly different characteristics and mode 

choice factors; thus, they are worthy of separate investigations. 

Literature Review on SF 

Focusing on inter-regional markets, the U.S. has approximately 81,000 city-pairs 

within 500 mi (800 km) of each other (U.S. BTS, 2021). Together, short-haul trips make 

up three-quarters of all trips (Ryerson & Kim, 2018). Little research, however, has been 

done in the SF travel segment in the past two decades (NAS, 2016). A 2019 inter-

regional study by the NAS sought to understand the behavior and patterns of the most 

traveled SF segments in the United States. There were three research aims. The first was 

to learn where most transportation mode substitutions occur among planes, trains, autos, 

and buses. The second was to study where most out-of-town trips happen because this is 

the least researched segment. The third was to explore how America’s complex air, rail, 
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and highway systems serve different geographical regions for different purposes with 

regional variabilities. As Figure 5 illustrates, the majority of the 200 most heavily-

traveled city-pair markets in the U.S. are between 100 to 500 mi (160 to 800 km), 

concentrating on several super-regions (NAS, 2016). Some city-pairs cluster around the 

oldest U.S. cities where a densely connected rail system already exists, while others 

bundle on a close network of roads and air routes. While the car is the dominant 

transportation for short inter-regional distances, more people use SF as trip lengths 

increase, with a crossover at around 700 mi (1,130 km) (see Figure 6). 

 

Figure 5 

Most Heavily-Traveled Inter-Regional City-Pair Markets in the United States 

 
Note. Adapted from “Interregional Travel: A New Perspective for Policy Making” by 

NAS, 2016, p. 83. Copyright 2016 by The National Academies Press. 
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Figure 6 

Percentage of Air and Car Trips by Travel Distance  

 

Note. Adapted from “Passenger Travel Facts and Figures,” by the U.S. Department of 

Transportation Bureau of Transportation Statistics, 2016. In the public domain. 

 

Arguably, the U.S. airline industry has an oligopoly structure with the four largest 

airlines (American, Delta, Southwest, and United) controlling three-quarters of the air 

transport market in 2019, as shown in Figure 7 (U.S. DoT, 2020). Business travelers who 

tend to be more price inelastic and, therefore, more stable and profitable, are at the center 

of every full-service airline’s target, leaving the LCCs to focus on price-sensitive 

passengers (Soyk et al., 2018). According to Wolla and Backus (2018), LCCs such as 

Southwest (Southwest is also one of the four largest airlines), Spirit, and Frontier began 

expanding their SF routes in 2016. This route expansion has caused airfares to decline 

drastically. For example, the average one-way fare between Detroit and Philadelphia 

dropped from $300 before route expansion to $183 after expansion. Apart from business 

travelers who tend to be less flexible, price elasticities on short-haul routes tend to be 

higher than on long-haul routes (Cho & Min, 2018; Zhang & Wang, 2015). There is a 
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greater chance for intermodal substitution on these shorter distance trips because these 

travelers have multiple transport options in response to airline ticket price increases. 

 

Figure 7 

U.S. Airlines Domestic Revenue Passenger Kilometers  

 
Note. Adapted from “The Economics of Flying: How Competitive are the Friendly 

Skies?” by Woola & Backus, 2018, p. 4. 

 

Short-haul or regional flights have advantages such as proximity to customers and 

brand loyalty (Marien et al., 2019). However, challenges could include network 

fragmentation, small catchment areas, frequent flight delays, copious crew bases, and 

high operational exposure (NAS, 2016; Vasigh et al., 2008). In addition, network 

planners for short-haul airlines must balance the number of service destinations to 

maintain adequate flight frequency (Corbo, 2017). Naturally, the lower the flight 

frequency, the less appealing it is to the business traveler; and the more destinations 

served, the greater the network appeal (Official Aviation Guide [OAG], 2020). 
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Another way to understand short-haul air travel in the United States is to study the 

evolution of Southwest Airlines (SWA), the leading airline in the short-haul regional 

market (Dobruszkes et al., 2017). Since SWA began service in 1967, it has consistently 

refined its business acumen and operational model to excel in four key areas: the point-

to-point route network system (99 U.S. city-pairs and 10 international destinations), fleet 

commonality (Boeing 737 and its variants), fast aircraft turnaround times, and utilization 

of primary medium to small airports (Corbo, 2017). Even though LCCs have replicated 

these strategies worldwide, after five decades of operation, SWA is still the leading 

airline in the low-cost, no-frills air transportation category (Bachwich & Wittman, 2017).  

As of February 2019, the U.S. had the highest number of LCC seats sold globally, 

followed by the United Kingdom and Spain. SWA continues to dominate the short-haul 

regional and LCC markets (Lieberman et al., 2018; Southwest Airlines, 2018). In 1990, 

SWA’s annual passenger load for SF flights comprised nearly 59% of its annual load 

(U.S. BTS, 2021). As the airline matured and demand shifted, SWA’s reliance on SF 

changed. In 2009, SF dropped to 35% of SWA’s annual load (U.S. BTS, 2021). On 

average, SWA passengers are flying longer distances, increasing the average trip from 

502 mi (807.9 km) each way in 1990 to 863 mi (1,389 km) in 2009, a 72% increase (U.S. 

BTS, 2021). Table 1 shows a decline in passengers flown on several SWA’s SF routes 

between 1990 and 2009. The decline amounted to a reduction of 33% to 48% depending 

on the market. These SF reductions have created a strategic and operational challenge for 

SWA. Since 1987, SWA has flown the Boeing 737 almost exclusively as part of its fleet 

strategy. To minimize operating costs on a per-seat-mile basis while the number of 
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profitable markets is shrinking, SWA has little choice but to reduce flight frequency to 

synergize the fixed costs.  

 

Table 1 

Decrease in SWA Short-Haul Passengers by City-Pair: 1990−2009  

    Number of Passengers  

City-Pair 
Flight Distance 

mi (km) 
1990 2009 

% Decrease 

Passengers 

Dallas–Houston   225 (362) a 1,500,000 1,000,000 33 

LA–Phoenix 370 (595) 2,200,000 1,300,000 41 

Boston–NY 185 (298) 1,800,000 1,000,000 44 

St. Louis–Kansas City   237 (381) a     430,600        223,835 48 

Note. SWA = Southwest Airlines. From U.S. Department of Transportation Bureau of 

Transportation Statistics (2021). a Values rounded. 

 

SF is vital to airport and airline revenues. On average, one-third of the flights in 

major hub cities are less than 500 mi (800 km) (Evans, 2014; NAS, 2016). For example, 

40% of flights arriving at Chicago’s O’Hare Airport are from cities less than 500 mi (800 

km) away (U.S. BTS, 2021). A reduction in direct flights and flight frequency has 

accelerated the present trend of declining SF and air mode leakage in smaller and non-

hub airports (NAS, 2019). Conversely, since 2000, major car manufacturers (Mercedes-

Benz, BMW, Tesla, Toyota, and Ford) and technology companies (Google, Apple, Aptiv, 

Baidu, Bosch, Cisco, Microsoft, and Nvidia) have made significant advances in the 

development and testing of aMoD technologies in real-life scenarios under various traffic 

and weather conditions (Becker & Axhausen, 2017; Taeihagh et al., 2019). Furthermore, 

aMoD’s potential improvement in passenger comfort and the convenience of point-to-

point on-demand travel may further reduce SF in the future. 
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Autonomous Mobility-on-Demand 

In potential use-case scenarios, aMoD service using on-demand driverless cars 

can be employed to transport people to and from work, school, and other activities. The 

vehicle could also park itself and charge its batteries while idle. A privately-owned AV 

that generates income is considered an aMoD. In August 2018, Singapore launched a 

pilot of self-driving taxis, thus becoming the world’s first country to test the commercial 

application of aMoD technology. As of January 2019, Austin, Ann Arbor, Boston, 

Pittsburg, Phoenix, San Jose, and 16 other U.S. cities have piloted aMoD transportation 

(Belakaria et al., 2018). Globally, over a hundred cities such as Dubai, London, Sydney, 

and Amsterdam have launched large-scale aMoD pilots (Dia & Javanshour, 2017).  

Ecosystem  

This section on aMoD research defines aMoD and its ecosystem. It includes brief 

descriptions of autonomous or automated vehicles (AV), electric vehicles (EV), transport 

network companies (TNCs), transport-as-a-service (TaaS), mobility-as-a-service (MaaS), 

and urban air mobility (UAM) in the context of this research. This section also describes 

levels of automation, reviews scholarly research on aMoD (consumer perception and use 

intention), and presents the potential future impact of aMoD on SF. 

In the last decade, the topics of aMoD and AV have garnered increasing attention 

from scholars, practitioners, and policymakers in the United States and globally. The idea 

that cars will one day drive themselves on demand, moving passengers and cargo while 

improving road safety, productivity, accessibility, and reducing CO2 emissions is of 

interest to researchers (Ashkrof et al., 2019; Legacy et al., 2019; Taeihagh et al., 2019). 

While the terms driverless car, self-driving car, robocar, automated vehicle, and 
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autonomous vehicle are used interchangeably in everyday parlance, researchers use these 

terms with nuanced meanings and precise context. For this study, autonomous vehicle 

(AV) refers to a fully autonomous driverless ground vehicle that operates without human 

input (Wadud, 2017; Zmud & Sener, 2017) and is similar to a computer-on-wheels, a 

ground-based version of the aerial drones (de Bruin, 2016). It uses various technologies 

such as radar, laser, GPS, odometry, LiDAR (light detection and ranging), and computer 

vision to detect its surroundings (Mehdy, 2017; Thomopoulos & Givoni, 2015). Using 

sensors located in different parts of the vehicle, AVs constantly maintain an accurate map 

of their surroundings. Video cameras and sonar software detect traffic lights, recognize 

and obey road signs, track other vehicles, and sense pedestrians (Krueger et al., 2019). 

Radar, ultrasonic, and LiDAR sensors monitor distances and detect curbs and lane 

markings. As computers-on-wheels, AVs rely on hard-coded rules, complex software 

algorithms (e.g., obstacle avoidance algorithms), machine learning, predictive modeling, 

smart-object discrimination, and powerful microprocessors to control steering, 

acceleration, and braking (Van Brummelen et al., 2018). Krueger et al. (2017) postulated 

a strong potential for merging traditional taxis, TNCs, car manufacturers, and technology 

companies to provide on-demand mobility using AVs. It is necessary to emphasize the 

distinction between AV and aMoD for this research. AV is a driverless vehicle (a 

product), while aMoD is an on-demand service using AV. 

aMoD has the potential to deliver on-demand autonomous mobile services that 

were too expensive to offer before, such as driverless mobile food trucks, coffee shops, 

virtual reality theatres, medical clinics, and even professional services (Krueger et al., 

2016; Pakusch et al., 2018). Without needing a dashboard and steering wheel, 
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configurations of the interior of aMoD vehicles can accommodate multiple needs. This 

flexibility can enable businesses to provide potentially cheaper and more timely services 

to their customers (Becker & Axhausen, 2017; Fagnant & Kockelman, 2015). 

Levels of Automation  

Typically, the differentiation of AVs is by progressive levels of automation. 

Figure 8 shows the six levels of driving automation (Level 0 to Level 5) as defined in the 

SAE J3016 standard (Society of Automotive Engineers [SAE] International, 2021) that 

the U.S. DoT has adopted. Using the SAE definition, self-driving is Level 3 or Level 4, 

while driverless is Level 5 (full automation).  

 

Figure 8 

Overview of Automation Levels 

 
Note. From “Management and Business of Autonomous Vehicles: A Systematic 

Integrative Bibliographic Review” by B. H. Cavazza et al. (2019), p. 4. Copyright 2019 

by the International Journal of Automotive Technology and Management.  
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A thorough literature review found that there is no consistent differentiation 

between “automated” and “autonomous” vehicles, and the terms are often used 

interchangeably (Hancock et al., 2019; Riehl, 2018). Functionally, AV will not require 

steering wheels, brakes, and other driving controls inside the vehicle. This change could 

enable the vehicles to shapeshift to fulfill the passengers’ trip requirements such as 

sleeping, working, eating, exercising, and using virtual reality communication with 

friends and colleagues (Krueger et al., 2019). AV production was supposed to begin in 

the early 2020s (Bagloee et al., 2016; Bansal & Kockelman, 2017), but regulation and 

consumer adoption have continued to pose considerable uncertainties for large-scale 

production and implementation (Bansal & Kockelman, 2017; Campbell, 2017; Krueger et 

al., 2016). Implementation dates vary between researchers, practitioners, governments, 

and car manufacturers. Not surprisingly, every fatal accident involving aMoD technology 

delayed the forecast date. On average, car manufacturers are the most optimistic group, 

citing the early 2020s for aMoD availability. Market analysts view the late 2020s to mid-

2030s as the potential adoption timeframe. Academics seem to gravitate toward 2030 to 

2050 for aMoD to become a reality (Litman, 2019). 

Literature Review on aMoD 

Like autonomous flight, public perceptions remain the biggest hurdle for 

widespread aMoD acceptance (Ashkrof et al., 2019; Hardman et al., 2019; Soteropoulos 

et al., 2019). In the last decade, the public has vacillated between excitement over aMoD 

pilot implementation in various cities to serious concern about its safety, privacy, and 

hackability (Liljamo et al., 2018; Pakusch et al., 2018). In early 2018, the death of a 

pedestrian by an Uber self-driving test vehicle in Arizona added to consumer perception 
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problems, prompting vehicle, equipment, and software companies to recalibrate their 

positions on autonomy and further delay launch projections. Nonetheless, ardent 

supporters contend that aMoD and AVs are the future of ground transportation because 

they are statistically safer than human-driven vehicles (Hand, 2017; Yuen et al., 2020). 

Detractors who love to drive will be reluctant to relinquish driving as a sport, a reaction 

not unlike that over the replacement of the horse for transportation over a hundred years 

ago (NAS, 2019). 

aMoD has the potential to create a fundamental revolution in mobility (Meyer et 

al., 2017) by making traveling in a car potentially safer (Eriksson, 2014), less expensive 

(Chin, 2017; Meyer et al., 2017; Wen et al., 2019), more comfortable (Yuen et al., 2020), 

and more sustainable (Liyanage et al., 2019; Pakusch et al., 2018). It may substantially 

reduce private car ownership (Hand, 2017; Levin et al., 2017) and allow for better capital 

utilization (Litman, 2015), increase accessibility, and provide better use of in-vehicle 

travel time for work or relaxation (Fagnant & Kockelman, 2018). aMoD may be more 

accessible than flying for children, the physically challenged, and the elderly (Liu et al., 

2019; Pakusch et al., 2018). The potential reduction in transportation costs is crucial for 

travelers (Fagnant & Kockelman, 2014, 2018). Fagnant and Kockelman (2014) estimated 

that aMoD would produce a substantial cost reduction compared to the human-driven car 

by assuming a vehicle investment of $70,000 and 50¢ per mile operating costs. Bösch et 

al. (2018) conducted a thorough cost-based analysis of aMoD, accounting for direct costs 

(capital costs, maintenance, and operations), external costs (congestion cost and crashes), 

and environmental costs. They compared the cost-per-mile of the private human-driven 

car, taxis, public transport, and aMoD and concluded vehicle automation substantially 
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reduces costs. While the actual cost reduction depends on many variables (e.g., fleet size, 

vehicle management and overhead costs, locations, and demand), the median value is 

$18.63 per vehicle per day (Bösch et al., 2018, p. 87). 

aMoD has been an increasingly studied topic in academia, especially in the past 7 

years, and many studies focus on the much-debated aspects such as ethics (Fleetwood, 

2017; Ro & Ha, 2019; Sparrow & Howard, 2017; Thomopoulos & Givoni, 2015) and 

legislation and liability (Simpson et al., 2019; Taeihagh et al., 2019). Essentially, laws 

embody a society’s ethical values (Taeihagh et al., 2019). The two top arguments 

concerning ethical and moral dilemmas, such as potential job losses for truck and taxi 

drivers versus the loss of life in fatal accidents, are not easy to resolve (Taeihagh et al.,   

2019). Other key issues are the risk of cyber attacks and the difficulty of assigning 

insurance claims. Because aMoD has no driver, should the passenger have an override 

such as a panic button or control for braking in case of an accident? Who is liable when 

the aMoD vehicle is at fault? Is it the vehicle manufacturer, software provider, 5G service 

provider, passenger, or a combination of factors? 

There are numerous potential benefits of aMoD, including improved convenience, 

accessibility, point-to-point flexibility, potentially enhanced safety with significantly 

reduced casualties, less air pollution due to lower CO2 emissions, and quality-of-life 

enhancements for young and mobility-challenged travelers. However, the difficulties 

facing aMoD are substantial and range from technological and environmental to 

legislative and perceptual. Weather conditions could limit the functions of cameras and 

sensors. Density could interfere with LiDAR and radar signals. Tunnels, mountains, and 
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tall buildings could constrain signals and reception, and mixing drivers and AV in traffic 

could create unintentional problems.  

As of the writing of this research in 2022, there is no federal legislation on AV. 

Instead, the U.S. regulatory process has shifted from federal guidance for AVs to state 

mandates. There is wide digression at the state level: 41 states and the District of 

Columbia have passed AV legislation or issued executive orders (National Conference of 

State Legislatures, 2022). Some states have discussed a per-mile tax on AVs to minimize 

the rise of “zombie cars,” adding congestion and pollution (Schuelke-Leech et al., 2019). 

In the same argument, some lawmakers have proposed that all AVs must be electric to 

reduce emissions (Rietmann & Lieven, 2019). Would an AV be permitted to cross state 

lines if states decide on their AV laws? Although aMoD development, as measured by 

business deal volume, continues to increase with new partnerships and road tests, ethics, 

moral dilemmas, and regulation continue to be big challenges. Nonetheless, ethics, 

morals, and legislative issues are not a focus of this research. 

Transportation models are changing, spurred by the rapid growth of TNCs and the 

decline of vehicle ownership by millennials and others (Henao & Marshall, 2019b). 

While Zipcar has been in service for two decades, the rapid adoption of TNCs such as 

Uber, Lyft, and Wingz since 2012 has transformed how people travel within cities and 

to/from airports (Shaheen & Cohen, 2019). TNCs provide a ride-hailing on-demand 

service that offers consumers door-to-door mobility (Davol, 2017, p. 147). The fare 

changes depending on time of use, demand, and distance traveled (Henao & Marshall, 

2019a). The ride may be nonstop or shared with another party, depending on the type of 

service selected (Hahn & Metcalfe, 2017). As more people become concerned about the 
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environmental impacts of transportation (road congestion and time lost in the daily 

commute), they become more receptive to ridesharing.  

The rapid adoption of TNCs by travelers has created a new paradigm in 

transportation, leaving traditional taxi companies struggling to remain competitive 

(Clewlow et al., 2017). Mandle and Box’s (2016) online survey of the 100 largest U.S. 

airports was one of the first studies demonstrating how TNCs affect airport operations 

and non-aeronautical businesses regardless of size. Their findings revealed a rapid 

increase in TNC permits from five airports in 2014 to 43 airports in 2016, as shown in 

Figure 9. The impact of TNCs on airport operations was already significant after only 18 

months, including increased curbside and roadway congestion, a 30% decrease in taxicab 

trips, a 20% decline in the use of private vehicles, and a 13% reduction in rental car 

transactions (Mandle & Box, 2017, p. 5). This unprecedented increase in TNC adoption 

by air passengers provided a hint of aMoD’s potential rapid adoption by air passengers 

once it becomes available (Shaheen & Cohen, 2019). 
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Figure 9 

Number of TNC Permits Granted at Airports by Hub Size 

 
Note. TNC = transport network companies. Individual airports in December 2016 

reported data. Adapted from “Transportation Network Companies: Challenges and 

Opportunities for Airport Operators” by Mandle and Box, 2017. Copyright 2017 by The 

National Academies Press.  

Sperling’s 2017 research report “Three Revolutions in Urban Transportation” 

confirms that aMoD could reduce transportation costs by more than 40% and decrease 

CO2 emissions by more than 80% (Institute for Transport & Development Policy [ITDP], 

2017). This cost and CO2 reduction are consistent with Bischoff and Maciejewski's 

(2016) findings. The researchers simulated a city-wide AV fleet in Berlin. They found 

that one AV could replace ten private vehicles (p. 243) in peak times with more fluent 

traffic flow and postulated that aMoD would improve this ratio further. Martinez and 

Viegas (2017) studied the effects of aMoD in Lisbon, a mid-size European city. Using an 

agent-based model, they found that full city-wide implementation of aMoD would 

significantly reduce traveled mileage by 30% and CO2 emissions by 40% (p. 25). By 
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reducing parking demand and traffic congestion, cities could reallocate these prime 

spaces to parklets, wider sidewalks, housing, and urban farms (Zakharenko, 2016).  

Although aMoD is a nascent technology, there is a rapidly increasing number of 

studies on consumer attitudes and perception for aMoD, particularly in the last few years 

(Berliner et al., 2019; Haboucha et al., 2017; Hudson et al., 2019; Liljamo et al., 2018). 

Nevertheless, predicting the impact and ultimate adoption of aMoD is a shifting 

challenge. Menon (2017) conducted a multi-culture survey to gain insight into 

consumers’ perceptions and intentions for aMoD adoption. His findings revealed that 

while four-fifths of the respondents expressed familiarity with the terminology, trust was 

an issue. Menon concluded that AV would likely have to overcome technological 

challenges and social barriers. In 2015, Zmud and Sener (2017) conducted an online 

survey with 556 people living in Austin, Texas, to determine the intention to use aMoD. 

Using a car technology acceptance model (cTAM), they found a split sample with half of 

the respondents indicating the intention to use while the other half did not. As expected, 

their findings revealed that people whose physical mobility prohibits them from driving 

showed a higher intention to use aMoD. Also, as expected, people who regularly use 

intelligent technologies (e.g., smartphones), TNCs, and other on-demand services show a 

higher intention to use aMoD. Intended users are not concerned with data privacy and 

thought that aMoD would be fun to use while reducing car accidents (p. 2516). Zmud and 

Sener (2017) hypothesized that once operational, aMoD might bring the most significant 

changes in consumer transport mode behavior by using aMoD for inter-regional point-to-

point travel and with increased frequency (p. 2517). A year later, Sener, Zmud, and 

Williams (2019) expanded their geographic content by including three more Texas cities: 
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Dallas, Houston, and Waco. Using the same cTAM as the 2015 36-item Austin survey, 

the authors found that intent-to-use had increased 5% in just one year, from 50% to 55%. 

They also found that attitudes toward aMoD, namely, perceived safety, performance 

expectation, and social influence, are strongly associated with intention-to-use. In 

addition, psychosocial variables and travel behavior attributes are more critical in 

predicting intent to use than demographic variables. For example, as expected, 

respondents owning a Level-3 car such as a Tesla showed a higher intention to use 

aMoD. However, attitudes are a dynamic human attribute that can change rapidly based 

on contemporary events and social trends, underlining the importance of continued 

monitoring of aMoD research (Cai et al., 2019). 

Few studies identify and contrast traveler’s attitudes, perceptions, and intentions-

to-use between car and air trips (LaMondia et al., 2016; NAS, 2019; Rice & Winter, 

2018). The NAS (2019) research used five scenarios to identify the demographic and 

attitudinal differences between flyers and drivers. Using structural equation modeling 

(SEM) and the theory of planned behavior (TPB), the research report confirmed the 

hypotheses that four latent constructs influence transportation behavior: Long-term 

values, location of the traveler, shorter-term attitudes, and choice of short-haul mode. The 

nesting of other latent factors and observed variables make up these four latent 

constructs. For example, long-term values comprises three latent factors: value urbanism 

(walkable to a commercial district, being outside with people, and having a mix of people 

from different backgrounds); auto orientation (hedonic considerations such as love for the 

auto, an observed variable representing the desire to control one’s own space in the car, 

and the ability and freedom to go whenever and wherever one wants to go); and values 
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information technology (the importance of being productive, staying connected all day, 

and level of device ownership).  

Gaps in the Literature  

Even before it is an available service, aMoD is already disrupting the roadmaps of 

governments, urban planners, technology companies, car manufacturers, and 

transportation companies. It is likely that once operational, in addition to reducing airport 

parking revenues, aMoD may challenge airline revenue on SF (Rice & Winter, 2018). 

While there has been an increasing amount of research in the past 7 years on aMoD in 

engineering, design, legislation, ethics, city planning, and consumer perception and 

adoption, there is little research in the United States on aMoD’s potential competition 

with SF. After an extensive literature search, there are only five studies investigating 

consumers’ (not air passengers) modal choice between autonomous driving and 

commercial flying. 

First, LaMondia et al. (2016) researched the potential changes in transport mode 

choices with different trip distances and found that for travel distances of under 500 mi 

(800 km), 25% of airline trips would shift to aMoD. Over this distance, 43.6% of the 

participants preferred flying. For distances greater than 1,000 miles, 70.9% preferred 

flying. However, there is a significant limitation with the research of LaMondia et al. 

They used a 10-year-old Michigan State 2009 Long-Distance Travel Survey to analyze 

the impact of aMoD on long-distance travel mode choice. Consequently, they had to 

create a synthetic population with copious assumptions on aMoD characteristics. 

Considering the survey was conducted for other purposes, they did not analyze attitudinal 

and behavioral attributes regarding SF and aMoD travel.  
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Second, the NAS (2019) conducted an online survey of 4,223 respondents in four 

U.S. metropolitan areas to examine travelers’ choice to drive or fly for long-distance 

travel. The sample population was travelers who had flown or driven a trip of 300 mi 

(480 km) or more within the past year. The survey asked respondents to choose driving or 

flying by selecting from eight stated preferences (SP) with varying characteristics such as 

trip distance, purpose (business or leisure), and mode choice (car or plane). The research 

found that many of the choices between flying and driving depend on attitudes and values 

(p.106). From the point of view of airport operators, testing included five scenarios of 

various travel distances. The results demonstrated adverse current and future states for 

SF. As discussed in Chapter I, there is currently a shift in air passengers using 

automobiles for long-distance trips, with more significant increases in short trips of 500 

mi (800 km) or less (BTS, 2016; Miller, 2017; NAS, 2019). Even though the report 

compared commercial flying with driving, the research differed from this present study. It 

focused on the issue of airport passenger leakage, long-range trips, and the use of the 

regular human-driven car; thus, it only tangentially explored aMoD.  

The third study to investigate consumers’ (not air passengers) modal choice 

between autonomous driving and commercial flying, Rice and Winter (2018) conducted 

an online consumer survey to determine if AV would significantly disrupt commercial air 

travel. Over 2,000 respondents were presented with scenarios of five city-pairs with 

varying travel times (5–45 hr of driving) and asked to rate their mode preferences. As the 

driving distance increased, the percentage of respondents choosing commercial flights 

increased regardless of whether they would prefer a driverless car or a typical human-

driven car. Within a 5-hr drive, the same proportion of respondents (one-third) chose 
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commercial flights. As the drive time increased to 7 hr, 62% with a manual car chose 

flight and only 45% with aMoD chose flight. Although their study confirms prior 

research that aMoD is a stronger competition to airlines in short-haul routes, it failed to 

provide information on the similarities and differences within the groups making these 

mode decisions. Nor did it predict mode choice or employ any foundation theories for the 

hypotheses. 

Fourth, Perrine, Kockelman, and Huang (2020) used a 2010 rJourney database 

with 1.17 billion U.S. long-distance trips to study AV’s potential inter-regional impacts. 

Like LaMondia et al. (2016), Perrine et al. had to add an artificial AV/aMoD mode to the 

2010 database with numerous assumptions to model AV/aMoD’s impact on the airline 

market. They estimated that AV/aMoD would reduce airline revenues by 47%.  

The last study was another stated preference survey for traveler mode choice 

among public transportation, AVs, and typical human-driven cars. Ashkrof et al. (2019) 

collected data from 663 Dutch travelers on their trip attributes (travel time and cost), 

attitudinal factors, and demographics. Specifically, the authors investigated how travel 

distance and trip purpose influenced mode choice. 

Three of these five studies used scenarios to identify non-air travelers’ transport 

mode choices (Ashkrof et al., 2019; NAS, 2019; Rice & Winter, 2018). Two studies used 

10-year-old research conducted for other purposes to construct artificial populations to 

project aMoD’s impact (LaMondia et al., 2016; Perrine et al., 2020). More importantly, 

most studied the conventional human-driven car and long-distance trips, not aMoD and 

SF. No identifiable published research has explored air passengers’ transportation choice 

between SF and aMoD in the United States. None was found to investigate passengers’ 
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modal choice between SF, aMoD, cars, trains, and buses, a more realistic inter-regional 

scenario. This study fills these gaps in the research literature by investigating factors that 

most influence air passengers’ modal choice for inter-regional travel of 500 mi (800 km) 

or less. It seeks to identify air passenger clusters for SF and aMoD by exploring 

participant demographics and specific trip attributes. The objective is to understand inter-

regional transportation mode choices based on GFT variables, contextual trip attributes, 

demographics, and COVID-19 variables. 

aMoD may potentially become a formidable competition to SF in three crucial 

areas. First, one-third of all large/medium hub traffic serves short-haul routes, but the 

convenience and cost of aMoD may lure some passengers away from this critical air 

passenger market. Second, cities with small or non-hub airports have seen a drastic 

decline in service frequency (Marien et al., 2019; NAS, 2019). Instead of driving to an 

airport in another city to take a short-haul flight (airport passenger leakage) or endure the 

post 9/11 airport hassle, some passengers may use aMoD for their point-to-point journey 

(NAS, 2019). Third, people with mobility issues and groups of family, friends, or 

colleagues may choose to take aMoD together to increase fun and productivity and 

reduce cost. aMoD provides door-to-door convenience and flexibility and is not as 

sensitive to weather conditions as air travel (Webb, 2019). There can be various levels of 

interior amenities and luxury appropriate for different market sectors and price points, 

including more legroom, tables, food and drinks, virtual-reality television, movie 

programming, Wi-Fi, conference amenities, and entertainment console. (Cho & Jung, 

2018; Menon, 2015). In addition, aMoD offers a higher level of convenience than 

traveling by plane. The time and hassle of getting to the airport, traveling through traffic, 
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waiting in line to go through security, waiting to board the plane, and frequent flight 

delays are some of the inconveniences of air travel (Zhang & Wang, 2016). The space 

available to the passengers in aMoD may be larger and more luxurious than a commercial 

plane. Car companies are designing shape-shifting interiors for aMoD to fit the type of 

journey, bespoke to the passengers’ needs (Gkartzonikas et al., 2019; Lustgarten & Le 

Vine, 2018). Traveling by aMoD could be like traveling in a mobile living room with an 

entertainment center. In this scenario, aMoD could substitute both airline seats and hotel 

rooms. In terms of price, a non-stop, round-trip flight between LAX and SFO may cost 

$250 or more. Ordering aMoD may be less expensive if the ride is shared.  

The magnitude and timing of aMoD’s impact on SF are likely to hinge on several 

factors (Rice & Winter, 2018): vehicle ownership (Woldeamanuel & Nguyen, 2018), 

consumer acceptance (Becker & Axhausen, 2017; Xu et al., 2018), cost (NAS, 2019) and 

most of all, public policy (Riehl, 2018). For example, a city could dictate that only aMoD 

are permitted to operate in the city core to improve air quality (Levin et al., 2017), 

enhance pedestrian safety (Deb et al., 2017; Hulse et al., 2018), and facilitate traffic flow 

(Shi & Prevedouros, 2016). This kind of policy would likely accelerate aMoD adoption 

(Yap et al., 2016). High-profile aMoD trials have taken place in the U.K., Sweden, U.S., 

Japan, Australia, and Singapore (Hardman et al., 2018; Zhang et al., 2016). The auto 

industry sees new competition from tech companies such as Google (Alphabet) and 

Alibaba. With a drastically weakened commercial aviation industry caused by COVID-

19, IATA research estimates that 50% of the airlines may not survive the impacts (IATA, 

2020). Consequently, a decline in commercial air travel may accelerate the development 

and adoption of aMoD. 
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Similar to severe acute respiratory syndrome COVID-2 (SARS-CoV), COVID-19 

(SARS-CoV-2) is a coronavirus that can rapidly spread from human to human via 

airborne transmission and or by fomite transmission (touching infected surfaces) (Johns 

Hopkins University & Medicine, 2020). First detected in China in December 2019, by 

April 2020, COVID-19 had paralyzed most global economies, with demand for 

international air travel dropping 98.4% compared to April 2019 (IATA, 2020a). From 

March to April 2020, U.S. domestic traffic fell 95.7%, causing U.S. airlines to incur 

unprecedented losses and layoffs (IATA, 2020a). Within a year, U.S. domestic passenger 

load factor dropped from 89.2% in July 2019 to 49.6% in July 2020 (IATA, 2020c). 

Instead of the 4.3% annual growth forecasted by IATA (2020c), in June 2020, IATA 

announced 2020 would be the worst year ever for the airline industry (IATA, 2020b). 

Unknowingly, commercial aviation contributed to the global spread of this 

pandemic in the first few months before general lockdowns and border closures 

(Gössling, 2020; Sun et al., 2020). Commercial aviation has become one of COVID’s 

primary economic casualties (Sun et al., 2020; Tanrıverdi et al., 2020). In the United 

States, Cutler and Summers (2020) called COVID-19 the “$16 trillion virus. … the 

greatest threat to prosperity and well-being the U.S. has encountered since the Great 

Depression (p. 1495).” The aggregated direct economic losses, mental health conditions, 

and mortality could reach 90% of the U.S. annual GDP (Cutler & Summers, 2020).  

An evaluation of the extant literature on transportation research reveals that while 

there is an increasing number of articles on COVID-19, many of these focus on lessons 

learned pre-COVID (Iacus et al., 2020; Tanrıverdi et al., 2020) or potential impacts on 

airports and the aviation network post-COVID (Serrano & Kazda, 2020; Sun et al., 
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2020). Some focus on aeropolitics (Macilree & Duval, 2020), while others explore the 

potential economic impact post-COVID (Linden, 2020; Suau-Sanchez et al., 2020). 

COVID’s potential impact on leisure and business travelers is critical to understanding 

the potential COVID impact on SF and aMoD. Suau-Sanchez et al. (2020) conducted 

qualitative industry interviews to understand the demand side of commercial aviation and 

consumer behavior amid COVID. Their findings show a reduction in air transport 

demand in the immediate, medium, and long term. Initially, this drop in travel may be 

due to fear of contracting COVID while flying or a reduced level of disposable income. 

According to Suau-Sanchez et al. and supported by Linden (2020), these initial factors 

will be compounded by behavioral changes in the long term. Consistent with CAPA 

Centre for Aviation (2020c), Suau-Sanchez et al. concluded that leisure passengers would 

resume flying sooner than business travelers. Suau-Sanchez et al. and Linden found three 

factors influencing both leisure and business passengers’ decisions to fly: health 

concerns, disposable income, and ticket prices. Using neural network models and Monte 

Carlo simulations, Truong (2021) found the weekly economic index as the most 

important predictor for COVID-19-influenced air travel. None of the reviewed 

transportation research on COVID-19 has investigated the influence of COVID on the 

transportation mode choice between aMoD and SF travel; therefore, this study addresses 

this gap by exploring the impact of COVID-19 related to health concerns, disposable 

income, ticket prices, and the health of the U.S. economy.  
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Cluster Analysis 

Cluster analysis (CA), also called market segmentation, represents one of the 

primary techniques in transportation research used by academic researchers for 

knowledge creation (Dolnicar et al., 2014). CA is used in taxonomy classification and 

description (identifying natural groups within the data set), data simplification (analyzing 

groups of similar observations versus individual observations), and relationship 

identification (revealing relationships not otherwise discovered) (Hair et al., 2017, p. 

428). CA classifies objects or respondents on a set of researcher-selected characteristics, 

making it critical that the researcher selects each variable objectively based on prior 

research, extant literature, and reasoned judgment (Hair et al., 2017). In the transportation 

industry, many strategic and financial decisions are made based on results from CA, 

including airport classification (Adikariwattage et al., 2012; Cui et al., 2017; Magalhães 

et al., 2015), airline categorization (Truong et al., 2020; Urban et al., 2018), and 

passenger mode choice segmentation (Bösehans & Walker, 2020; Kuljanin & Kali, 2015; 

Westin et al., 2020); however, there is only one scholarly research study found on aMoD 

using CA. Using latent profile analysis in CA with a sample of 1,345 Australians (97% 

drivers and 3% non-drivers), Pettigrew, Dana, and Norman (2019) found that Australians 

are not familiar with the concept of aMoD. Five clusters were identified based on 

respondents’ self-reported knowledge of aMoD, perceptions of various aspects of aMoD, 

and aMoD use intentions. Pettigrew et al. titled the five segments with distinct profiles: 

Non-Adopters (29%), Ridesharing (20%), aMoD Ambivalent (19%), Likely Adopters 

(17%), and First Movers (14%). First Movers showed strong interest in AVs and aMoD 

and are likely to be strong influencers toward broader aMoD adoption. 
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Multinomial Logistic Regression  

Multinomial logistic regression (MNL, also called multinomial logit) is one of the 

primary methods for categorical data analysis and a generalization of the binary 

regression model. Instead of two categories for the nominal/ordinal response variable, 

MNL has three or more categories. There is one empirical transportation study identified 

that is grounded in the goal framing theory (GFT) using CA and MNL. In a large 

University Travel Survey in England, Bösehans and Walker (2020) used GFT (see the 

Theoretical Framework section) to compare to the results of their prior research obtained 

by using the theory of planned behavior (TPB). They found that GFT supported their 

earlier TPB findings with evidence that the GFT traveler clusters seem to be more stable 

and can be segmented based on the goal frames—hedonic, gain, and normative. Their 

findings are significant because they validated GFT as “a parsimonious way to replace 

the various attitudinal variables” commonly used in prior CA research (Bösehans & 

Walker, 2020, p. 247). As such, GFT may add a new theoretical element to transportation 

segmentation research with CA and MNL as valuable analytical techniques. Bösehans 

and Walker found three clusters of mode-independent supramodal clusters that could be 

distinguished across traveler types, regardless of their mode choices. While Krueger et al. 

(2016) argued that a mode choice decision results from a behavioral disposition toward 

that mode, Bösehans and Walker’s three supramodal clusters provided evidence that it 

may not need to be. This finding means that mode choices might be due to interactions 

between the traveler’s goals (hedonic, gain, and normative) and the trip context. 



50 

 

Theoretical Framework   

Frames are lenses, subconscious mental models through which people view the 

world. There is a line of decision research that uses various framing theories. The premise 

is that people’s decisions change based on their situation frame. In turn, their attitudes, 

emotions, and behavior change (Castiglioni et al., 2019). Therefore, frames are essential 

in decision and choice theories because they affect how people act. This research used 

GFT as its grounded theory. However, it is vital to understand why the theory of reasoned 

action (TRA), the theory of planned behavior (TPB), the technology acceptance model 

(TAM), and the unified theory of acceptance and use of technology (UTAUT) were 

inappropriate for this study, although their use is routine in transportation research. These 

theories are briefly discussed and collectively evaluated. 

Evaluating Behavioral Theories  

The TPB is an attitude-behavioral framework for understanding and predicting 

human behavior (Ajzen, 1991). Evolved from the theory of reasoned action (TRA) 

(Ajzen & Fishbein, 1980), Ajzen added perceived behavioral control to TRA in 1985 to 

recognize the fact that it is a chief factor influencing both behavioral intention and 

behavior (Ajzen, 1985). The behavior of a future service such as aMoD could not be 

directly measured because it was not operational at the time of this research. However, it 

is possible to evaluate behavioral intentions as a function of an individual’s attitude 

toward the behavior, the subjective norms around the behavior, and the degree of 

perceived control the individual believes they have over the behavior (Ajzen, 1991). 

Testing of TPB shows it has good model predictability for explaining behavioral 

intention (41% to 68%) and behavior (28% to 34%) (Chen & Yan, 2019; Pan & Truong, 
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2018). A search of the literature revealed that TPB was broadly used in studies of 

passenger intention and behavior, including low-cost carrier selection (Buaphiban & 

Truong, 2017; Truong et al., 2020), the modal choice between HSR and LCCs (Pan & 

Truong, 2018), intention to use fully autonomous driving systems (Chen & Yan, 2019), 

and attitude toward drone usage as a service-delivery mode (Ramadan et al., 2016).  

Developed by Davis in 1989, TAM began as an information system theory to 

model user acceptance of technology. TAM focuses on perceived ease of use and 

perceived usefulness. It has been used in transportation research studies on consumers’ 

intentions to use AVs (Müller, 2019; Panagiotopoulos & Dimitrakopoulos, 2018). 

However, inconsistent use of TPB and TAM is frequent in scholarly research (Cheng, 

2019; Moták et al., 2017). TAM is appropriate when technology is available for 

evaluation by individuals regarding its adoption, whereas TPB is appropriate when 

evaluating an individual’s intention to use a current or future service (Cheng, 2019; 

Schepers & Wetzels, 2007). TAM use is most prevalent in technology acceptance 

research (Lai, 2017). Incidentally, Cheng (2019) found that the TPB model provides a 

more robust prediction of behavioral intentions (adjusted R2 = .678) compared to the 

TAM model (R2 = .469) and that the combined model (TPB + TAM) only increased the 

explanatory power by a small amount. The third technology acceptance model frequently 

used is UTAUT. It is a unified technology acceptance model developed by Venkatesh et 

al. It consolidates constructs from TRA, TPB, TAM, and a few other theories to include 

performance expectancy, effort expectancy, social influence, and facilitating conditions 

(Venkatesh & Davis, 2000). UTAUT use is frequent in future technology acceptance 

research, such as Nordhoff et al.'s (2020) multi-country study on the public acceptance of 
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Level 3 AVs and Yuen et al.'s (2020) study to understand factors that influence the 

adoption of shared autonomous vehicles. In a longitudinal study conducted in 2003, 

Venkatesh and Davis validated UTAUT to explain 70% of the variance for behavioral 

intention to use and approximately 50% in actual use.  

The TPB, TAM, UTAUT, and their extensions use behavioral theories to predict 

behavioral intention. They differ in influential factors used to predict acceptance. Lai 

(2017) and Rahman, Lesch, Horrey, and Strawderman (2017) independently assessed 

TPB, TAM, and UTAUT for their predictive power and concluded that their utilities 

depend on specific research problems, variables, and measurements. The advantages of 

the behavioral theories (TPB, TAM, UTAUT, et al.) include their usefulness for 

understanding factors that lead to behavioral intention and prediction for mode choice 

(Bianchi et al., 2017; Wang et al., 2016). Furthermore, they are flexible frameworks that 

are “open to the inclusion of additional predictors” (Ajzen, 1991, p. 199), such as past 

behavior (Bamberg et al., 2003). However, these theories have some limitations. First, 

these theories do not include other behavioral factors such as emotions and hedonic 

values, which could drive behavioral intentions (Westin et al., 2020). Second, they 

assume that humans are rational beings who make decisions based on available 

information. One of the general criticisms of these behavioral theories is that they pay too 

much attention to reasoned action and not enough to unconscious motives and control 

(Bösehans & Walker, 2020). Third, they do not consider habit, contextual factors, and 

demographics (Bösehans & Walker, 2020; Westin et al., 2020). Consequently, GFT is 

more appropriate for this research to use as a foundational theory. 
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Goal Framing Theory  

The GFT has recently been used successfully in transportation and segmentation 

research (Bösehans & Walker, 2020; Marley & Swait, 2017; Westin et al., 2020). This 

theory posits that multiple goals (which may or may not be compatible) are always active 

in people’s life. These goals change in their relative importance in different situations and 

frame people’s decisions, which influences what people do and how they do it 

(Lindenberg, 2016; Steg et al., 2016). The activated goal frame determines what 

information receives attention and what action will be taken (Bösehans & Walker, 2020).  

In essence, GFT is about the power of goals to drive cognitive processes and 

motivation (Steg et al., 2016). Three overarching GFT goals influence information 

processing and behavior. These goals have been studied and validated (see Figure 10): 

hedonic (to feel good and self-enhancement), gain (to optimize personal resources), and 

normative (to act appropriately regarding socially and culturally accepted norms and 

behaviors) (Bösehans & Walker, 2020; Légal et al., 2016; Lindenberg & Steg, 2013; Steg 

et al., 2016; Westin et al., 2020).  

A hedonic goal frame relates to how an individual wants to feel good about 

himself or herself by choosing behaviors that bring happiness and wellbeing. In the 

context of travel, this includes comfort, ease of effort, independence/perceived control, 

habit, and satisfaction with the primary transport mode. A gain goal frame causes the 

traveler to optimize his/her resources such as money, time, and convenience. A normative 

goal frame triggers the traveler to do what is considered proper, such as environmental 

concerns with various transport modes. Social norms refer to informally-enforced rules 

(Lindenberg & Steg, 2013). For example, the GFT applies to transportation behaviors 
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(choices) based on the goal of achieving cleaner air. Air transport contributes to 2% of all 

carbon emissions (Larsson et al., 2019). Presently, there is no electric commercial air 

transport, but aMoD will operate on an electric platform with cleaner emissions, which 

should appeal to passengers with a strong normative goal frame (Greenblatt & Shaheen, 

2015; Pakusch et al., 2018). 

 

Figure 10 

Goal Framing Theory and Transportation Choices  

 
 

 

These goal frames have different degrees of importance for the traveler at 

different times and will “frame” his/her modal decisions (Bösehans & Walker, 2020). 

Lindenberg and Steg (2013) theorized that the dominant goal has the most substantial 

influence on one’s thoughts and behaviors. The other two goals act in the background by 

strengthening the dominant goal if they are compatible or weakening it if they conflict 

(Lindenberg & Steg, 2007; Steg et al., 2016). Lindenberg and Steg (2007) posited that 

part of these goal frames can only be measured by values that transcend situations, 
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making them more stable. They asserted that values affect beliefs, attitudes, norms, 

intentions, and behaviors, essential factors in GFT. 

Expanded Goal Framing Theory  

Some literature provided substantial evidence that transportation mode decisions 

are not rational (Innocenti et al., 2013; Lois & López-Sáez, 2009; Steg, 2005; Thomas & 

Walker, 2015). Steg (2005) used different methods (inductive and deductive), different 

motives (instrumental, symbolic, and affective), and different types of car use to provide 

empirical evidence that travel behavior is dependent on contextual factors (which the 

author called situational characteristics, p. 160). Moreover, symbolic and affective 

motives are essential in predicting mode choice (Steg, 2005). Lois and López-Sáez 

(2009) used SEM to further validate Steg’s (2005) findings. Although their variables did 

not measure precisely the same way, Lois and López-Sáez confirmed that affective 

motivations are the dominant factor in predicting mode choice. They also found that 

demographics are chief predictors.  

Other researchers have validated these findings using different research methods. 

Innocenti et al. (2013) conducted a laboratory experiment to investigate determinants of 

mode choice and concluded that travelers show stickiness, cognitive heuristics, and 

biases toward transport mode choice leading to “robust deviations from rational 

behavior” (p. 165). Their experiment clearly showed “available information is not 

properly processed; cognitive efforts are generally low, and rational calculations play a 

limited role” (p. 167) for repeated travel mode choices. They established that travel mode 

choice is influenced by psychological and subjective factors such as habit and emotions 

(p.167); so, must be considered for mode choice prediction. Even though some extended 
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TPB models have included habit and environmental concerns, some researchers argue 

that these TPB extensions have “obscured the theory beyond recognition” (Bösehans & 

Walker, 2020, p. 245). Figure 11 shows the expanded GFT including the Contextual Trip 

Attributes, COVID factors, and Demographics utilized in this present study. 

 

Figure 11 

Expanded Goal Framing Theory Utilized in This Study 

 

Note. Adapted from “Normative, Gain and Hedonic Goal Frames Guiding Environmental 

Behavior” by S. Lindenberg & L. Steg, 2007, Journal of Social Issues, 63(1) 

(https://doi.org/10.1111/j.1540-4560.2007.00499.x). Copyright 2007 the Journal of the 

Society for the Psychological Study of Social Issues and “Goal-Framing Theory and 

Norm-Guided Environmental Behavior” by S. Lindenberg & L. Steg, 2013, in H. C. M. 

van Trijp (Ed.), Encouraging Sustainable Behavior: Psychology and the Environment 

(1st ed.) (https://doi.org/10.1111/j.1540-4560.2007.00499.x). Copyright 2013 by 

Psychology Press.  



57 

 

Literature Support for the Variable Selection  

Strong conceptual and empirical support for variable choice is critical for CA and 

MNL for different reasons (Hair et al., 2017). The importance of strong conceptual 

support is apparent in three common criticisms of CA (Hair et al., 2017, p.419). First, 

there is no statistical basis for drawing inferences from a sample to a population with CA. 

There is no unique solution because varying researcher inputs result in different 

solutions. Second, the identification of clusters does not validate their existence. Strong 

conceptual support and validation are critical in making the CA findings relevant and 

meaningful. Third, the cluster variate is entirely specified by the researcher, making the 

selection, addition, and deletion of relevant variables a significant impact on results. For 

these reasons, careful selection of variables is of the utmost importance. As for the MNL 

model using the maximum likelihood (ML) method, it is essential to minimize the 

number of predictor variables because too many predictors create high-dimensional 

settings, weakening maximum likelihood estimates (Hair et al., 2017). Therefore, careful 

selection of variables is critical to obtain interpretable and reliable MNL and CA models. 

There is research on the effects of trip characteristics (cost, delay, travel time, and 

demographics) on aMoD as a mode choice, but the findings are city- or country-specific; 

thus, not transferable (Bansal et al., 2016; Haboucha et al., 2017; Krueger et al., 2016; 

Zhang et al., 2018). The reason is that different regions may have different availability of 

transport modes. Travelers may also have unique perceptions of mode choice at different 

times and in different conditions. Cai et al. (2019) conducted a study in Singapore to 

obtain insights on consumers’ perceptions of aMoD through a Stated Preference survey. 

They sought to determine if familiarity using on-demand apps such as Uber and Grab 
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would influence acceptance of aMoD service. Using a logit kernel model, the authors 

found that 31% of public transport users would consider using aMoD. Surprisingly, 57% 

of drivers said they would give up driving and use aMoD. They also found that gender, 

education, income, cost, travel time, expected delay, and the traveler’s value for 

convenience are predictors of aMoD as a mode choice. Contrary to Rice et al. (2019) and 

Zmud and Sener’s (2017) findings, Cai et al. found familiarity is not a factor for mode 

choice in Singapore. 

This study is grounded using GFT as its theoretical framework. Table 2 

summarizes the GFT variables evaluated in this study using a 5-point Likert scale. 

Chapter III discusses the specific variables for the CA and MNL models and presents the 

operational definitions for all variables.  
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Table 2 

Expanded GFT Variables 

Variable Conceptual Definition Sources 

Hedonic Goal (to Feel Good) 

Effort/Access Travelers’ perceptions of the efficiency 

and ease of access in using their main 

transport mode 

Bösehans & Walker (2020); Lindenberg 

& Steg (2007; 2013); NAS (2019); 

Wadud (2017); Zmud & Sener (2017) 

Comfort Travelers’ perceptions of personal space, 

seat comfort, and general comfort 

Anable (2005); Bösehans & Walker 

(2020); Lindenberg & Steg (2007; 2013); 

Zmud & Sener (2017)  

Self-Efficacy/ 

Independence a 

Travelers’ perceived independence and 

control of the transport mode choice and 

trip 

Bandura (1997); Bösehans & Walker 

(2020); Chen & Yan (2019); NAS 

(2019); Thomas et al. (2014); Zmud & 

Sener (2017)  

Habit a Travelers’ automaticity of using their 

main transport mode  

Bösehans & Walker (2020); Lindenberg 

& Steg (2007; 2013); Thomas & Walker 

(2015); Verplanken & Orbell (2003)  

Satisfaction a Travelers’ general level of satisfaction 

with their main transport mode for ground 

distances 100-500 mi (160-800 km)   

Bösehans & Walker (2020); Lindenberg 

& Steg (2007. 2013); Millan et al. (2016); 

Thomas & Walker (2015)  

Trust a Trust is important in modal choice 

decisions. Trust in transport mode is 
highly correlated to fear of using and 

trusting the operator 

Adnan et al. (2018); Becker & Axhausen 

(2017); Menon (2017); Rice et al. (2019); 
Schellekens (2015); Zhang et al. (2019); 

Zmud & Sener (2017) 

Hedonic Values Travelers’ perceived hedonic values from 

the main mode, gained from experience 

and pleasurable emotions elicited by the 

mode  

Bösehans & Walker (2020); Lindenberg 

& Steg (2007; 2013); NAS (2019); 

Westin et al. (2020)  

Gain Goal (to Optimize Resources) 

Cost Travelers’ perceptions of how the total 

trip (one-way, point-to-point) cost meets 

expectations 

Anable (2005); Bösehans & Walker 

(2020); Lindenberg & Steg (2007; 2013); 

NAS (2019)  

Convenience Travelers’ perceived convenience in using 

their main transport mode  

Bösehans & Walker (2020); Cai et al. 

(2019); De Looff et al. (2018); Wadud 

(2017); NAS (2019); Zmud & Sener 

(2017) 

Travel Time Total travel time in hours to travel point-

to-point from origination to destination. 

Bösehans & Walker (2020); Cai et al. 

(2019); NAS (2019); Wadud (2017); 

Zmud & Sener (2017)  

Value of Time a  Amount of money a passenger is willing 

to pay to save time or travel time’s 

opportunity cost 

De Looff et al. (2018); NAS (2019); 

Wadud (2017); Zmud & Sener (2017) 

Normative Goal (to Act Appropriately) 

Biospheric 

Values and 

Subjective 

Norms 

Pro-environmental value. Environmental 

concern is important to some people in 

their transport mode choice 

Anable (2005); Lindenberg & Steg (2007; 

2013); Thomopoulos et al. (2015); 

Haboucha et al. (2017); Westin et al. 

(2020); Bösehans & Walker (2020) 

Note. a Variables added to the original GFT based on the literature review.  
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Literature Support by Variable 

Self-efficacy/Independence. Independence is an original element in the GFT; 

however, the expanded GFT model includes self-efficacy regarding a traveler’s perceived 

control due to the importance of perceived autonomy (as in independence) and control 

over the traveler’s transport mode resources and opportunities. Because of its direct 

impact on human behavior, self-efficacy is an essential component of TPB and is relevant 

in this context. It affects our choices regarding human motivation and our confidence to 

do something successfully (Bösehans & Walker, 2016). Factors affecting self-efficacy 

include modeling or vicarious experience, social persuasion, and psychological factors 

(Bandura, 1977, 2006).  

Habit. This variable refers to a traveler’s typical behavior pattern automatically 

triggered by specific cues (Bösehans, 2018). Generally, the literature supports that travel 

behavior encompasses a strong component of habit (Thomas & Walker, 2015). Travel 

habit has been added to prior behavioral models such as the Radman et al. (2017) 

research on advanced driver assistance systems using TAM, TPB, and UTAUT and the 

Moták et al. (2017) study on precursor variables of intent-to-use autonomous shuttles. 

Although segmentation research rarely measures travel habits (Bösehans & Walker, 

2020), Bösehans and Walker (2020) and Thomas and Walker (2015) added habit to their 

models. They found it was one of the chief variables in cluster differentiation. Figure 12 

presents examples of two distinct clusters in Bösehans and Walker’s model, illustrating 

how one cluster has a strong habit z-score while the other does not. 
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Figure 12 

Sample Clusters by Mean Z-Scores  

 
 

Note. The left image shows clustering on Travel Habit, and the right image shows 

clustering on Independence as found in Bösehans and Walker’s (2020) model. 

 

Satisfaction. This variable conveys the traveler’s general level of fulfillment 

relating to their primary transport mode. Satisfaction is in the original GFT framework as 

a component of the hedonic goal (to feel good). As found in Bösehans and Walker’s 

(2020) transportation research, satisfaction, comfort, convenience, cost, travel time, 

effort, independence, and environment vary significantly between mode users, as 

illustrated in Figure 12. Therefore, satisfaction is suitable for discriminating between air 

passenger clusters in the research. 

Value of Time. This variable is the opportunity cost for travel time. In a way, the 

value of time is a crucial aspect of travel time (Cai et al., 2019; NAS, 2019). While travel 

time is in the original GFT, time value is not. The expanded GFT model includes the 

value of time as a component of the gain goal (to optimize resources). Both SF and aMoD 

are associated with the research on the value of time (De Looff et al., 2018; Homem et 

al., 2019; van den Berg & Verhoef, 2016; Zmud & Sener, 2017). Wadud (2017) explored 
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where aMoD might offer the most significant benefits and found that higher-income 

households had a higher perceived value of time and perceived aMoD as a means of 

increasing productivity (p.174). The NAS (2019) found that travelers would equate an 

hour of driving to save half an hour of flying, signifying the difference in the value of 

time via different mode choices, even by the same traveler. In the future, customization 

of aMoD for different needs such as sleeping, eating, entertaining, exercising, working, 

or just relaxing, can provide options for different trip requirements. Increased 

productivity while using aMoD may reduce stress, improve health, and enhance the 

economy (NAS, 2019). 

Trust and Perceived Safety/Risks. This variable is a critical factor in 

transportation mode choice. Trust is important in modal choice decisions (Rahman et al., 

2017; Zhang et al., 2019; Zmud & Sener, 2017), especially if it involves an innovative 

and new mode choice that passengers are less familiar with (Ashkrof et al., 2019; Vance 

& Malik, 2015). In researching factors on trust in novel service/technology, Li, Hess, and 

Valacich (2008) found four statistically significant factors: (a) reputation of the 

organization; (b) cost/benefit; (c) trust in the organization’s integrity; and (d) subjective 

norm, a form of peer pressure, similar to the normative goal in GFT. Ashkrof et al. (2019) 

found that trust in aMoD is the most significant latent variable measured by t-values and 

magnitude compared to the other factors (p. 10). Consistent with Ashkrof et al., Molnar et 

al. (2018) found that trust in aMoD is the most critical factor in explaining future aMoD 

acceptance. As expected in a nascent service like aMoD, people and the government 

perceive trust as the most critical concern (Molnar et al., 2018). Trust-related concerns 

include aMoD’s capability to adhere to traffic laws (Schellekens, 2015), consumer trust 
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in aMoD’s reliability under all weather conditions (Zhang et al., 2019), trust in data 

privacy and protection from software hacking (Kyriakidis et al., 2015), and aMoD’s 

certainty in avoiding irrational and unpredictable pedestrian and driver behavior (Noy et 

al., 2018). Improving trust increases acceptance. Empirical research by Yang and Xu 

(2019) concluded that trust has direct and indirect effects on acceptance; the direct effect 

is more important in explaining behavioral intention and willingness to use, while the 

indirect effect is essential in influencing general acceptance. 

Trust, distrust, perceived safety, perceived risks, and perceived benefits are 

closely related, and trust can be a predecessor of perceived risk (Molnar et al., 2018). 

Generally, aviation safety has improved since the 1970s, even though passenger count 

has doubled every 15 years (Barros et al., 2010). In the past 10 years, there were only two 

commercial flight fatalities in the U.S., one in 2018 and one in 2019, as recorded by the 

National Transportation Safety Board (Airlines for America, 2021). In 2021 alone, there 

were over 36,000 driving-related fatalities (U.S. DoT, 2022). Nevertheless, a proven 

safety record and consumer perception of safety and trust are not necessarily the same. 

Consistent with Li et al.’s findings, trust in flying is highly correlated to fear of 

flying and trust in the operator (Vance & Malik, 2015). The fatal Boeing 737 Max 

accidents in 2018 (Lion Air Flight 610) and 2019 (Ethiopian Airlines Flight 302) have 

increased the public’s concern about fully turning over critical safety systems to 

automation. The resultant grounding of all Boeing 737 Max planes worldwide shook 

passenger confidence in automation (Slotnick, 2020). Compilation of public opinion polls 

by the Advocates for Highway & Auto Safety (2020) shows that the public holds deep 

skepticism about aMoD. Half of U.S. adults surveyed believe aMoD is more dangerous 
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than human-driven vehicles, and two-thirds believe it should adhere to higher safety 

standards than human-driven cars (Advocates for Highway & Auto Safety, 2020). These 

consumer perceptions highlight the challenges facing aMoD adoption. Nevertheless, 

compared with human-driven cars, aMoD has a better driving record so far (Hulse et al., 

2018; Teoh & Kidd, 2017). In 2017, one fatality occurred per 94 million mi (151.3 

million km) driven by people (Radfar, 2017) versus one fatality per 222 million mi (357.3 

million km) driven with Tesla’s Level 3 autonomous cars (Hai, 2017). Even the cause of 

the one Tesla fatality was attributed to human error by drivers in the other vehicles (Hai, 

2017).  

As the autonomous level increases, so should safety (Noy et al., 2018; Rödel et 

al., 2014). If aMoD becomes the norm, reluctant passengers may use the on-demand 

mobility service because their friends and family do so, just as some of today’s 

passengers with aviophobia fly because of the social and professional expectations to do 

so (Vance & Malik, 2015). Sener et al. (2019) found that perceived safety, performance 

expectation, and social influence indicated the strongest associations with intention-to-

use aMoD. Using SEM, Zhang et al. (2019) found that trust could improve perceived 

benefits and reduce perceived safety risks. More importantly, perceived benefits are more 

important than perceived risks in determining aMoD acceptance. Their findings offer 

insights into increasing aMoD acceptance by increasing trust and decreasing society’s 

perceived risks and benefits of aMoD (Zhang et al., 2019, p. 339). 

While technology companies, car manufacturers, and ride-share operators invest 

heavily in aMoD development, the general public’s safety perception lags. 

Understandably, most people in the United States hear about AV or aMoD from the 
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media, and some may have seen accidents caused by Level 3 and 4 vehicles. Very few 

people in the United States have been in a driverless car or a driverless shuttle. Therefore, 

the media, friends, and family influence public perception instead of objective safety 

data. With MNL, it is essential to minimize the number of predictor variables because too 

many predictors create high-dimensional settings, weakening the maximum likelihood 

estimates (Hair et al., 2017). Furthermore, with both CA and MNL, it is critical to avoid 

confounding variables. In this case, while perceived safety, perceived risks, perceived 

benefits, and distrust are essential factors based on extant literature, they are not 

explicitly investigated in this research. For this present study, the trust variable 

encompasses perceived risks and safety. 

Cost. While cost is part of the original GFT framework, it deserves a special 

mention due to its importance in transportation research (Bösehans & Walker, 2020; De 

Looff et al., 2018; NAS, 2019; Zmud & Sener, 2017). Cost in this research refers to a 

passenger’s perception of how the total trip cost meets his or her expectations. Cost and 

time are archetypal tradeoffs in transportation, with a common perception that flying 

saves time and driving saves money (Chen et al., 2019). The value of time is also a factor 

in the cost equation (Wadud, 2017; see also NAS, 2019). Driving a car requires the driver 

to focus on driving, while flying and aMoD allow the passengers to use travel time for 

other pursuits. Compared to the car and aMoD costs, flying costs are relatively stable 

once the air ticket is purchased. For SF, the total trip costs include the airfare and the 

costs to travel to and from the airport. Unlike SF, the costs of car and aMoD travel 

depend on many variables, including traffic density, the number of stops, the number of 

travelers sharing the ride, the type and size of car used, gasoline (car), and electricity 
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(aMoD) costs, supply and demand at the time of service (aMoD), vehicle utilization, toll 

road pricing, and other route and behavior variables (Bansal & Kockelman, 2017; 

Krueger et al., 2019). This present research focuses on short-haul travel under 500 mi 

(800 km), so it does not consider hotel costs . 

Demographics, COVID-19, and Contextual Variables. The remaining research 

variables relate to demographics, COVID-19, and contextual items. (See Tables 3 and 4 

for a list of the conceptual definitions and support in the extant literature. Operational 

definitions are presented in Chapter III.) In addition to the typical passenger and 

household demographics (age, gender, income, and education), it is necessary to include 

the following because of their importance and relevance in transport mode choice 

research, particularly with inter-regional trips and aMoD: (a) physical mobility, (b) 

children in the household, (c) vehicle ownership, (d) previous crash history, (e) driver’s 

license, and (f) length of time with driver’s license (Rice et al., 2019; Whittle et al., 

2019). aMoD may offer enhanced mobility to the young, elderly, infirm, and people 

without driver’s licenses. However, the findings may not be generalizable to this broader 

population if their demographics do not match the study’s selected demographics. 

Therefore, this study compares the demographics of participants (sample) with the 

demographics of the air passenger population. 
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Table 3 

Demographic and COVID-19 Variables  

 Conceptual Definition Source 

Demographic Variables 

Age There are systematic differences between age groups in 

travel perceptions, perceived risky behavior, and new 

technologies. Age may also reflect mobility limitations 

(i.e., older and younger people tend to travel less).  

Meyer et al. (2017); Rice et 

al. (2015); Venkatesh et al. 

(2003) 

Children in 

Household 

Generally, the higher this number, the fewer long-

distance trips depending on trip purpose and duration. 

Sener et al. (2019); Ullman 

& Aultman-Hall (2020) 

Education Highest level of education attended.  Venkatesh et al. (2000; 

2003); Rice et al. (2015) 

Gender There are systematic differences between gender in 

decision-making and perceived risky behavior. Men 

typically travel more overall, but some studies show that 

women travel more for leisure. 

Hardman et al. (2018); 

Ullman & Aultman-Hall 

(2020); Zmud & Sener 

(2017) 

Household 

Income 

Total income earned by everyone living in the same 

house. Income confounds with age in some studies. 

NAS (2019); Rice et al. 

(2015); Venkatesh et al. 

(2003) 

Physical 

Mobility 

Level of physical mobility of self/friends/family 

traveling together. Flying may be challenging for people 

with mobility issues. aMoD and driving may increase 

mobility opportunities for the physically challenged. 

Becker & Axhausen (2017); 

Schellekens (2015); Zhang 

et al. (2019) 

Previous 
Crash History 

Vehicle crash (personal/family/friends) history 
influences modal choice. 

NAS (2019) 

Vehicle 

Ownership 

The number of vehicles per household can influence 

transport mode decisions. Vehicle ownership may vary 

by generation and city/suburban residency. 

Cai et al. (2019); Sener et al. 

(2019); Zmud & Sener 

(2017) 

COVID-19 Variables 

COVID-19 

Fear 

The extent of the fear of contracting COVID while 

traveling 

Linden (2020); Suau-

Sanchez et al. (2020); Sun et 

al. (2020) 

Disposable 

Income 

Change 

The positive or negative impact of a change in 

disposable income  

Linden (2020); Suau-

Sanchez et al. (2020)  

Ticket Price An increase or decrease in ticket price Serrano & Kazda (2020); 

Suau-Sanchez et al. (2020)  

Note. aMoD = autonomous mobility-on-demand.  
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Table 4 

Contextual Trip Variables  

Variable Conceptual Definition Source 

Direct Flight Percentage of direct versus indirect flights at the 

nearest airport 

NAS (2019); Wadud 

(2017)  

Time to Nearest 

Airport 

Drive time between home and the nearest airport NAS (2018) 

Current  

Main Mode 

Typical mode to travel distances 100–500 mi 

(160–800 km) using fly, drive (conventional car), 

aMoD, intercity bus, or intercity train 

Berliner et al. (2019); 

Bösehans & Walker 

(2020); NAS (2018) 

Neighborhood 

Type 

Urban, suburban, rural  Berliner et al. (2019); 

Bösehans & Walker 

(2020); NAS (2018) 

Future Transport 

Mode  

Fly, drive (conventional car), aMoD, bus, or train 

in the future when aMoD is available 

Bösehans & Walker 

(2020); Hess et al. (2018) 

Trip Party Size Total number of passengers traveling together  NAS (2019); Perrine et al. 

(2020); Wadud (2017); 

Zmud & Sener (2017) 

Note. aMoD = autonomous mobility-on-demand; NAS = National Academy of Sciences, 

Engineering, and Medicine. 

 

Research Models  

There are three MNL models and two CA models in this study.  

Future Multimodal Transportation Choice Models  

In the MNL models, the dependent variable (DV) is the future mode choice with 

five categories (SF, aMoD, car, intercity bus, and intercity train). The independent 

variables (IVs) are the exploratory factor analysis (EFA) latent constructs, the GFT goals 

(hedonic, gain, and normative), contextual trip attributes, COVID-19 variables, and 

demographics. Figure 13 shows the three MNL models using various combinations of 

variables and the EFA latent constructs (details are discussed in Chapter III).  
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Figure 13 

 

Multimodal Transportation Choice Models

 
Note. SF = commercial short-haul flight; aMoD = autonomous mobility-on-demand; GFT 

= goal framing theory; EFA = exploratory factor analysis; MNL = multivariate logit. 

 

Short-Haul Flight Clusters Model  

The SF clusters model uses the two-step CA to segment SF passengers based on 

the EFA latent constructs. Passenger demographics, contextual trip attributes, COVID-19 

items, and the GFT variables are used to profile the distinct SF clusters based on their 

similarities as shown in Figure 14. MANOVA is used to test for subgroup differences. 
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Figure 14 

SF Clusters Model 

 
Note. EFA = exploratory factor analysis; GFT = goal framing theory; MANOVA = 

multivariate analysis of variance; SF = commercial short-haul flight. 

 

Autonomous Mobility-on-Demand Clusters Model 

 

Similar to the SF Clusters model, the aMoD clusters model uses two-step CA to 

segment aMoD passengers as shown in Figure 15. 

 

Figure 15 

aMoD Clusters Model 

 
Note. aMoD = autonomous mobility-on-demand; EFA = exploratory factor analysis; GFT 

= goal framing theory; MANOVA = multivariate analysis of variance. 
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Summary 

Since 2000, while the total U.S. air passenger market grew by 25% (IATA, 

2020d), air traffic under 500 mi (800 km) shrank by 30% (Miller, 2017; Silk, 2018). With 

more short-haul travel choices, passengers routinely evaluate the price, convenience, 

comfort, time, and difficulty required for post 9/11 airport security screening between air 

and other transport modes, particularly the car. With America’s robust car culture, aMoD 

is a particularly compelling potential competition to flight. This chapter has presented a 

comprehensive review of the extant literature on SF and aMoD. This literature synthesis 

has revealed the research gaps, established the scope of this study, supported the GFT as 

the theoretical foundation for this research, and justified the selection of the research 

variables. It has also discussed the research framework and the five research models for 

predicting modal choice and segmenting SF and aMoD passengers using EFA, MNL, 

two-step CA, and MANOVA. 

Chapter III describes the research method, population, sample selection (including 

sampling frame, sample size, and sample strategy), data collection process, ethical 

considerations, the measurement instrument, and data analysis approach.  
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Chapter III: Methodology 

This quantitative research aims to gain a deeper understanding of air passengers’ 

modal choice in inter-regional travel in the United States. Specifically, this research seeks 

to develop a future multimodal choice model to identify factors that most influence air 

passengers’ transportation decisions based on the GFT variables, contextual trip 

attributes, demographics, and COVID-19 items. This study evaluates the similarities and 

differences of the distinct short-haul flight (SF) and autonomous mobility-on-demand 

(aMoD) passenger segments. The academic foundation for the grounded theory, research 

method, and selection of variables is supported in the relevant extant literature review. 

This chapter describes the research approach, including the research design, procedure, 

population, sample size, sampling frame, sampling strategy, measurement instrument, 

data collection process, treatment of the data, and data analysis methods. It also explains 

the handling of the ethical considerations and the reliability and validity assessments. 

Research Method Selection 

This study uses quantitative method and survey design to investigate what most 

influences U.S. air travelers’ mode of transportation choice for inter-regional travel of 

500 mi (800 km) or less. Quantitative methods emphasize objective measurements to 

explain a particular phenomenon (Creswell, 2014). Due to their ability to efficiently 

provide researchers with useful data for analysis, surveys are one of the most used 

research designs in social sciences (Vogt et al., 2012). A web-based survey design was 

selected instead of an in-person survey because of the following advantages (Vogt et al., 

2012):  
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• During the COVID-19 pandemic, an online survey platform was one of the 

few practical and physically safe methods for data collection. 

• Screening questions with qualifying logic could be effectively used. 

• An online survey can be administered with total respondent anonymity, 

ensuring respondent privacy and confidentiality, thus more reliable data input.  

• Sensitive demographic questions such as age, income, physical mobility, and 

crash history can be answered privately.  

• Skip logic can be set up to ensure respondents answer only the applicable 

questions.  

• An online survey platform can direct respondents to fill in missing responses 

and eliminate data interpretation and input errors.  

• A survey with a large sample size administered via an online platform can 

save money and time compared to in-person administration. 

Population/Sample 

Population and Sampling Frame 

The population of interest is air passengers who are 18 years or older, who have 

traveled on a commercial flight domestically at least once in the prior 2 years, and who 

live in the United States. The accessible population was screened to fulfill these 

requirements for the following reasons: Respondents needed to (a) be 18 years or older to 

represent air passengers with more defined personal attitudes, intentions, and goals, 

which is consistent with online knowledge workers’ minimum age and requirements 

stipulated by the Institutional Review Board's (IRB’s) minimum age policy; (b) be air 

passengers since this research focuses on the perspectives of air passengers; and (c) live 
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in the U.S. at the time of the research, so that each had an equal opportunity to make the 

inter-regional transport mode decision (commercial short-haul flight, aMoD, inter-

regional train, inter-regional bus, or drive/ride in a car). 

The sampling frame for this research consisted of the population of workers who 

were members of Amazon Mechanical Turk (MTurk), an online crowdsourcing platform 

for human intelligence tasks (HITs) such as surveys and other brief on-demand tasks. 

MTurk provided a time- and cost-effective way to generate ideas, perceptions, and 

opinions (Barends & de Vries, 2019; Buhrmester et al., 2018) and has become a practical 

alternative to traditional in-person surveys (Mortensen & Hughes, 2018). For the results 

to be generalizable, the sample must be representative of the general population. Random 

sampling, the gold standard in social science research, means each qualified member of 

the population has an equal probability of completing the survey (Creswell & Creswell, 

2018). Due to MTurk’s sampling mechanism, using MTurk as a sampling frame is 

considered a convenience sample, not a random sample. A convenience sample may 

undermine the representativeness and generalization of the results by introducing 

sampling bias: Selecting a sample where members do not have an equal probability of 

being selected. Despite MTurk’s convenience sampling, samples are representative of the 

U.S. population in many areas of social sciences research (Hunt & Scheetz, 2019; Rouse, 

2020; Walter et al., 2019). In addition, a considered and carefully-planned sampling 

strategy was deployed to minimize sampling biases to achieve valid and reliable results 

(see the Sampling Strategy section). 
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Sample Size 

Generally, population size, confidence level, margin of error, and effect size 

influence the required sample size. However, the sample size also depends on the 

statistical tests and research methods used (Field, 2013). The sample size estimations for 

MNL and CA are different. The larger of the two minimum sample sizes was used for 

this research since it satisfied the requirements of both analysis methods. 

The MNL uses a maximum likelihood estimation (MLE) method which requires a 

large sample size and does not have assumptions regarding normality, linearity, or 

homoscedasticity (Hair et al., 2017). Similar to CA, there is no formula to estimate 

sample size for MNL. Schwab (2002) provided a sample size guideline of a minimum of 

10 cases per IV. This present research has 37 IVs, equating to a sample size of 370.  

Given that CA is an exploratory technique, the sample size is not about statistical 

inference and cannot be calculated using a formula (Hair et al., 2017). In this case, CA 

has “strong mathematical properties but not statistical foundations” (Hair et al., 2017, p. 

436). Accordingly, it requires a sample size large enough to form functionally 

(managerially) useful, meaningful, and substantial segments. The crucial requirements of 

other statistical methods, such as normality, linearity, and homoscedasticity, are not 

essential for CA. Consequently, valid CA analyses focus on two other critical issues: 

sample representativeness and multicollinearity (Dolnicar et al., 2014). As the CA 

findings are only as good as the sample representativeness, all efforts were made in this 

research to improve sample representativeness. Up until 2014, there were no guidelines 

for CA sample size calculation. Because CA relies on extant literature and reasoned 

judgment, Hair et al. (2017) advise scaling the sample size based on the number of input 
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variables. In addition, multiple input variables may benefit from an unsupervised 

multivariate data reduction method such as principal component analysis (PCA) to reduce 

the risk of overfitting. Since CA is exploratory, any CA algorithm will form clusters of 

individuals, regardless of whether they are meaningful. In 2014, Dolnicar et al. 

demonstrated that a sample size of 70 times the number of input variables is adequate to 

provide reliable and valid results. Since the EFA latent constructs were used as input 

variables for the 2-step CA, an estimation was made for a minimum sample size of 1,400. 

Sampling Strategy 

The primary objective of sampling is to obtain a representative sample so the 

results can be generalized to the population. Due to the popularity of MTurk as a survey 

platform for scholarly research in recent years, there has been an increase in studies 

examining its representativeness. Mortensen and Hughes (2018), Thomas and Clifford 

(2017), and Buhrmester, Kwang, and Gosling (2011) found that MTurk met and 

sometimes exceeded psychometric standards associated with published research. Hunt 

and Scheetz (2019) highlighted two critical steps for MTurk (and other survey methods) 

to achieve valid and reliable results: engage qualified participants and validate collected 

data. The methods to recruit and engage qualified participants are discussed in this 

section, and validating collected data is discussed in the Validity Assessment Method 

section in this chapter. 

Careful planning and proper screening are critical when conducting scholarly 

research on MTurk. This study devised a well-planned sampling strategy to minimize 

sampling bias. Buhrmester et al. (2018) observed that MTurk data could be compromised 

if the workers are inattentive or dishonest. The following are some of the strategies used 
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by MacInnis, Boss, and Bourdage (2020), Hunt and Scheetz (2019), and Loepp and Kelly 

(2020) to minimize bias, improve data quality, reduce MTurk worker misrepresentation, 

and engage qualified participants which this study has employed:  

• Screen for participants with higher approval ratings. 98% or higher was used 

in this research. 

• Use attention checks.  

• Do not advertise the eligibility criteria. 

• Compensate every participant to reduce motivation to misrepresent. 

• Block duplicates from proxies or VPNs that allow repeat participants to 

complete the survey multiple times using different IP addresses and block 

non-U.S. MTurk workers by screening IP addresses.  

• Hire master workers as they are less likely to provide dishonest answers.  

• Exclude workers who have accepted many HITs in the past 3 months.  

Paolacci and Chandler (2014), Woods et al. (2015), Kuang et al. (2015), and Hunt 

and Scheetz (2019) are some of the researchers who have validated that MTurk workers 

are as diverse as traditional random samples and are representative of the U.S. population 

in some aspects. Therefore, with proper screening, a sample from MTurk is considered 

representative of the population (Gandullia et al., 2020; Hunt & Scheetz, 2019).  

Demographics of the research respondents were compared to the published 

research on air passengers. Specifically, the potential similarities and differences between 

MTurk and air passenger samples were considered when interpreting the generalizability 

of the findings. To obtain high-quality data, it is essential to select participants with 

MTurk approval ratings of 98% or higher and a history of completing more than 100 
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prior surveys (Rice et al., 2019). While providing an incentive to MTurk knowledge 

workers can increase response rates, offering compensation that is too high may evoke a 

negative response from the knowledge workers (Buhrmester et al., 2018). For this 

research, $2 was considered an appropriate compensation amount for a survey that 

averaged an 8-min completion time based on the completion times of 25 pretest and 161 

pilot study participants. Pretesting the survey instrument and conducting pilot studies 

helped avoid or minimize sampling bias and improve generalizability. The snowball 

sampling method was not considered to minimize the risk of sampling bias in the pilot 

study and the full-scale survey (Vogt et al., 2012). In summary, this research utilized a 

well-designed sampling strategy to increase the external validity and generalizability of 

the findings. 

Data Collection Process 

Design and Procedures 

This study employed a quantitative research design with a survey instrument to 

investigate associations between variables in cluster analysis and to determine the 

relationship between the IVs and DV in multinomial logit. The population, sampling 

frame, and sample size were determined as part of the research plan. Figure 16 illustrates 

the research design and procedure, and the sections that follow describe each step of the 

procedure with sufficient detail so that other scholars can replicate this research to 

increase validity. 
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Figure 16 

Research Design Procedure 

 
Note. ERAU = Embry-Riddle Aeronautical University; IRB = Institutional Review 

Board. 

 

Apparatus and Materials 

Research variables and questionnaire items were gleaned from extant literature to 

further strengthen the validity of the survey (Vogt et al., 2012). Regardless of origin, it 

was essential that the questionnaire was relevant, short, clear, precise, non-biased, 

properly worded, and ordered (Babbie, 2016). Therefore, some items needed to be 

modified for context. To make it easier for the respondents, items were grouped by 

themes. There were three main sections in the questionnaire based on the literature: (1) 
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Demographics; (2) GFT variables, contextual trip attributes, and COVID factors; and (3) 

Future-oriented items of on-demand driverless cars. 

Survey Pretest  

Pretesting the instrument was done by soliciting feedback from three groups of 

people: (a) Those who were experienced in airport, commercial airline, and transportation 

mode research; (b) Those who had a good knowledge of SF or aMoD; (c) Those who 

qualified for the screening questions as a U.S. air passenger (defined as someone 18 years 

or older and who had flown on a commercial airline within the United States in the prior 

24 months). Survey pretesting was an important step to ensure the questions accurately 

reflected the purpose of the research and that the respondents were able and willing to 

answer the questions. In addition to feedback on content, comments were sought on 

wording, ambiguity, biased or leading questions, double-barreled questions, question 

ordering, skip patterns, measurement scales, and time to complete the questionnaire 

(Babbie, 2016).  

This questionnaire was pretested over a six-week period with 26 subject matter 

experts and air passengers. The pretest helped to refine the questionnaire content, 

wording, and flow, in addition to discovering ways to engage the respondents and 

increase their interest when completing the questionnaire. The average completion time 

for the pretest survey was 15 min. A phone or face-to-face interview was conducted 

following the pretest survey to gauge respondents’ perceptions of the instrument, 

accuracy of understanding, and ease of completion. The average interview time per 

pretest was 90 minutes. Pretest details are presented in Chapter IV. 
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Survey Pilot Study  

After the pretest and appropriate modifications were made to the survey 

instrument on Survey Monkey and MTurk (the online survey platform), the researcher 

applied for ERAU’s IRB approval. Once the IRB approved the research (see Appendices 

A and B), a pilot study was conducted on 161 participants of the target population using 

MTurk. This was a crucial refinement step before launching the survey to identify 

problem areas, reduce measurement errors, and improve instrument validity and 

reliability.  

The pilot study assessed the sampling plan, survey process, response rate, further 

refinement of the questionnaire, and response options. The instrument was user-tested for 

flow, proper skips, and display on different computer devices including smartphones, 

tablets, and laptops. The pilot study provided an average survey completion time of 8 min 

27 sec. In addition to testing the average survey completion time and the survey process, 

the pilot respondents’ survey data were critical in identifying potential issues in the 

planned analyses to ensure problems could be resolved at this stage. 

To test for instrument reliability, Cronbach’s alpha measured the internal 

consistency (reliability) between items on the scale. All GFT and COVID-19 items were 

positively worded and rated using a 5-point Likert scale (1 = strongly disagree to 5 = 

strongly agree). The Cronbach’s alpha for the pilot study was 0.801, which is considered 

good internal consistency. Cronbach alpha for the sub-scales was also calculated and 

provided similar good internal consistency. Details of the pilot study results are presented 

in Chapter IV. 
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Sources of the Data 

Using the MTurk platform, survey data were collected from respondents 18 years 

or older who had flown in the prior 24 months and resided in the U.S. Other data required 

for data analysis were generated from SPSS and Microsoft Excel. Demographics from the 

respondents of this research were compared with those obtained from Airlines for 

America (A4A) to ensure the data were representative of the flying population. 

Ethical Considerations  

Embry-Riddle Aeronautical University (ERAU) is fully committed to 

safeguarding the rights and welfare of human subjects in research conducted by ERAU 

faculty and students (ERAU, n.d.). Therefore, all research involving human subjects must 

comply with both Federal law and ERAU policies to ensure that the guiding principles 

embodied in the Belmont Report are followed and that no participant is subject to 

unreasonable physical or emotional harm (ERAU, n.d.). During the first year of ERAU’s 

Ph.D. program, every student is required by its IRB policy to complete mandatory IRB 

training. For this research, a web-based IRB Human Subject Protocol application was 

submitted to the IRB Committee and to this researcher’s Dissertation Committee Chair 

for review and approval. The application included a written plan with details on how the 

research procedures would protect the rights and welfare of the human subjects, the 

survey instrument, an informed consent document, and other relevant information. (See 

the Permission to Conduct Research Form in Appendix A and the Human Subjects 

Protocol Application in Appendix B.) As principal investigator, this researcher was 

responsible for all aspects of this research, including ensuring the research was conducted 

according to the approved protocol. 
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There were a few important ethical considerations. The first was to protect human 

subjects from any potential harm. Even though the survey method is one of the least 

intrusive research designs (Vogt et al., 2012), respondents were asked some personal 

questions, including demographic data that were not publicly available. They were asked 

questions about their trip attributes, opinions, and attitudes. Thoughtful questionnaire 

design and sensitive and appropriate question wording were important. Strict ethical 

measures such as blocked IP addresses and password coded files were essential. This 

research was designed to avoid causing stress to the respondents. For example, the survey 

design did not demand an answer when the respondent was unable or unwilling to 

provide one. Therefore, the respondents were free to skip any questions. In addition, the 

questionnaire had an average completion time of less than 9 min so that respondents were 

not exhausted by the survey. 

The second ethical consideration relates to the respondents’ informed and 

voluntary consent. A written explanation of the study objectives, the nature of the 

research, and voluntary consent were provided at the questionnaire’s introduction. 

Respondents were reminded that their participation was absolutely voluntary and that 

they could terminate the survey at any time.  

The third ethical consideration concerned the respondents’ privacy and the 

confidentiality of their identity and data. Respondents’ identities were kept anonymous. 

Any identifying information was coded. For example, because identification through IP 

addresses was possible, this information was blocked and not recorded. The data were 

stored anonymously, and the database was password protected. Respondents checked a 
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box to acknowledge they had read the informed consent and agreed to proceed with the 

survey. (See the Data Collection Device in Appendix D.) 

Measurement Instrument 

A research instrument is a measurement tool. For most survey research conducted 

in the social sciences, the measurement instrument for consistent data collection from 

respondents is a questionnaire that provides a standard set of items and response options. 

The questionnaire should accurately measure the research variables with appropriate 

scales or an open-ended question that must be coded before analysis. Based on the extant 

literature, this survey instrument comprises items from the 16 GFT variables, 8 

contextual trip attributes, 5 COVID items, and 13 demographic variables. The survey 

instrument contained 69 items gleaned from the literature review and refined and 

modified through the pretest and pilot study.  

The survey contained an introduction with the purpose, survey procedures, and a 

consent form explaining voluntary participation in this research (see the Participant 

Informed Consent Form in Appendix C). Following the introduction, items were grouped 

by themes to help respondents organize their thoughts. Using the appropriate rating scale 

for each variable was essential for a valid instrument. The scale needed to accurately 

represent the respondent’s range of attitudes and opinions. A 5-point Likert scale was 

used for the GFT variables. A 5-point Likert scale, as opposed to a 7-point or 10-point 

scale, can capture the respondents’ true opinions with enough distinction between values 

(Babbie, 2016) and allows the responses to be compared to the extant literature. There 

was one open-ended question at the end of the questionnaire to offer respondents an 

opportunity to provide additional comments. If the respondent completed the 
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questionnaire too fast, the answers would not be incorporated into the dataset. Based on 

the pilot study results, answers from respondents who completed the survey in less than 6 

min were eliminated. 

Constructs 

A construct is a latent variable, a concept that cannot be directly observed and 

must be measured using observable indicators. The constructs of interest in this study are 

the latent constructs, which are the results of the data reduction method with exploratory 

factor analysis. Using the 16 GFT variables (hedonic goal, gain goal, and normative goal) 

and the 5 COVID-19 items, the EFA analysis formed four constructs (with a clean pattern 

matrix) that represented the three GFT Goals and the COVID-19 items (see Chapter IV 

for details). 

Variables and Scales 

Of the 21 GFT and COVID variables, 16 are the expanded GFT variables that are 

derived from the grounded theory from which this research is based. Five are COVID-

related variables. There are contextual trip variables and demographics gleaned from 

extant transportation literature. The operational definitions of the study variables and 

scales are shown in Table 5. 
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Table 5 

Operational Definitions (Questionnaire Items) for Variables with Scales 

Variable Operational Definition Scale 
 GFT Hedonic Goal (to Feel Good) a  

H1_Eff 24. Generally, my main transport mode for inter-regional is efficient. Likert/Metric 

H2_Comfort 24. I will not sacrifice comfort even if I have to pay slightly more. Likert/Metric 

H3_SelfEff 24. I believe issues that may pop up during my travels can be resolved. Likert/Metric 

H4_Habit 24. I am quite predictable in terms of how I travel.  Likert/Metric 

H5_Satisfaction 24. Most of the time, I am happy with the transportation I use when I travel to other cities. Likert/Metric 

H6_Trust 24. In general, I trust my main inter-regional mode is safe. Likert/Metric 

H7_Hedonic 24. Traveling is fun for me. Likert/Metric 

Variable GFT Gain Goal (to Optimize Resources) a  

G1_Cost 24. Cost is very important to me when I travel for leisure. Likert/Metric 

G2_Convenient 24. Convenience is very important to me when I travel. Likert/Metric 

G3_Travel_Time 24. I usually try to minimize my total travel time. Likert/Metric 

G4_Value_Time 24. When I travel, I value my time doing something nice or useful, such as watching a movie, working,  

or sleeping. 

Likert/Metric 

 GFT Normative / Biospheric Goal (to Act Appropriately) a  

B1_Env 25. Preserving the environment is very important when I decide how I travel. Likert/Metric 

B2_Moral 25. I feel moral obligation to protect the environment. Likert/Metric 

B3_EV 25. I think electric vehicles are good for the environment. Likert/Metric 

B4_SN1 25. People who are important to me tend to care about the environment. Likert/Metric 

B5_SN2 25. It is important for me to be a role model for my family in environmental protection. Likert/Metric 

 Contextual Trip Attributes a  

Airport_Dist 34. Approximately, how long does it take to drive from your home to the nearest airport? 15 minutes,  

15-30 minutes, 31-45 minutes, 46-60 minutes, > 1 hour  

Ordinal 

Dir_Fl_pc 35. Pre-COVID, on average, what percentage of the time does your home airport offer direct flights to 

where you need to go? 0%-20%, 21%-40%, 41%-60%, 61%-80%, 81%-100%? 

Ordinal 

L_Car_#P 36. On average, roughly how many people, including yourself, travel together when you travel for leisure? 

by car (driving) 1, 2, 3, 4 or more 

Ordinal 

L_SF_#P 36. On average, roughly how many people, including yourself, travel together when you travel for leisure? 

by plane (flying) 1, 2, 3, 4 or more  

Ordinal 

SF_if over 20. I usually fly if the driving distance is over: 3, 4, 5, 6, 7, 8 hours Ordinal 

Car_SF_2hrs 21. What is the likelihood of driving a car instead of flying if the trip is a 2-hour drive? Likert/Metric 

Car_SF_5hrs 21. What is the likelihood of driving a car instead of flying if the trip is a 5-hour drive? Likert/Metric 

Car_SF_8hrs 21. What is the likelihood of driving a car instead of flying if the trip is an 8-hour drive? Likert/Metric 
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Variable Operational Definition Scale 

aMoD_Timing 28. I think driverless cars will be transporting people in the United States: within 3, in 3-5, in 6-10,  

in 11-20, over 20 years, Never  

Ordinal 

aMod_50pc 29. I believe 50% of the cars on the road will be driverless cars in the United States: by 2030, by 2040, by 

2050, beyond 2050, Never 

Nominal 

EV_50pc 30. Most people think that 50% of the cars will be electric in the United States: by 2030, by 2040,  

by 2050, beyond 2050, Never 
Nominal 

aMoD_SF2hrs 32. What is the likelihood of you using driverless cars instead of driving if the trip is 2 hours drive? Likert/Metric 

aMoD_SF5hrs 32. What is the likelihood of you using driverless cars instead of driving if the trip is 5 hours drive? Likert/Metric 

aMoD_SF8hrs 32. What is the likelihood of you using driverless cars instead of driving if the trip is 8 hours drive? Likert/Metric 

aMoD_SF 33. I would use a driverless car instead of flying on inter-regional trips. Likert/Metric 

 Current and Future Mode Choice  

MODE_Future 31. In the future, assuming driverless cars are readily available, safety, legal regulation issues are solved, 

what do you think you would use most for inter-regional travel? driverless car, drive a car 

myself/driven by others, fly, take an inter-regional bus, take an inter-regional train 

Nominal 

MODE_Current 22. Pre-COVID, when I traveled to inter-regional cities, I usually: drove, flew on an airplane, took an 

inter-regional bus, took an inter-regional train 
 

 COVID-19 a  

C1_Fear 27. I am concerned with getting COVID-19 when I travel. Likert/Metric 

C2_Variants 27. I think COVID-19 and variants will get worse. Likert/Metric 

C3_Income 27. My disposable income has increased since COVID started. Likert/Metric 

C4_Tprice 27. Even during COVID, I could be tempted to travel by air if the ticket price was low enough. Likert/Metric 

C5_Economic 27. I think the economy is gradually recovering. Likert/Metric 

 Demographics a  

Gender 2.  Identify myself as: Female, Male, Other.   Nominal 

Age 3.  Self-report measure: 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, > 74 years old Nominal 

Education 4.  Highest level of education attained: Attended high school, high school diploma, Bachelor’s degree, 

Master’s degree, Ph.D./Post-doctorate 
Nominal 

HH_Income 5.  Annual household income (total from work, investments, and retirement funds): <$30,000, $30,001-

$50,000, $50,001-$100,000, $100,001-$150,000, $150,001-$200,000, >$200,000 
Ordinal 

Children_# 6.  Number of children under 18 years old living in your household: 0, 1, 2, 3, or more Ordinal 

Cars_# 7.  Total number of cars owned by household: 0 [No license], 1, 2, 3 or more Ordinal 

HH_DL_# 8.  How many people in the household have a driver’s license? 0, 1, 2, 3 or more Ordinal 

Years_DL 9.  How long have you had a driver’s license? I do not have a driver’s license, < 3 years, 3-8 years,  

9-15 years, > 15 years 
Ordinal 

Drive_Freq 10. How often do you drive? I do not drive, <1 time per week, 1-2 times per week, 3-5 times per week, >5 

times per week 

Nominal 

Urban_Rural 12. I live in: city (large urban area), suburb (large residential area near big city), small city, rural America, 

countryside/small town village. 

Nominal 

Mobility_Issue 14. Do you or someone in your family use a wheelchair or walker? yes/no Nominal 
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Variable Operational Definition Scale 

Biz_Travel_Freq 16. Pre-COVID, on average, I traveled for business: once a year, 2-6 times a year, 7 or more times a year, I did 

not travel for business. 

Nominal 

Car_Injury 13.  In the past, have you been in a car accident when someone got injured? yes/no Nominal 

COVID_W_Home 15.  During COVID, the estimated percentage of time I work from home: 100%, 75%, 50%, 25%, 0%,  

I do not work 

Nominal 

COVID_Vac 17.  I am vaccinated against COVID-19: yes/no Nominal 

COVID 18.  I have/had COVID-19: yes/no Nominal 

COVID_Air 19. I have traveled by air during COVID: yes/no Nominal 

Fly_Miles 11.  On average, roughly how many miles a year did you fly within the U.S. pre-COVID? <5,000, 5,000-

10,000, 10,001-25,000, >25,000 miles. 
Ordinal 

Ibus_Used 23.  I have used the following transport mode at least once in the United States: inter-regional bus: yes/no Nominal 

Itrain_Used 23.  I have used the following transport mode at least once in the United States: inter-regional train: 

yes/no 

Nominal 

Note. aMoD = autonomous mobility-on-demand; GFT = goal framing theory. a Self-report measures.
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Data Analysis Approach 

Reliable and valid survey research means that the research results consistently 

represent the population of interest. To achieve reliable and valid research, this study 

focused on thoughtful planning and meticulous execution in every step, including the 

research design, the sampling strategy, the data collection method, the survey instrument, 

question wording and order, data cleaning, data treatment, appropriate data analyses, and 

reporting. Because of how vital and omnipresent these issues are, reliability and validity 

trade-offs have been discussed throughout Chapter III. The data analysis methods and 

approach serve to increase the results’ reliability and validity.  

Means and standard deviations were conducted for metric and Likert scale 

variables. Frequency and percentages were calculated for nominal and ordinal variables. 

IBM SPSS Version 28 was used for data preparation and univariate and multivariate 

analyses, including assumptions testing and the identification of normality, missing 

values, and outliers. The data analyses relevant to answering the research questions 

included descriptive statistics, EFA, MNL, two-step cluster analysis, and MANOVA. 

Participant Demographics 

After the first section, which was the introduction and screening, the second 

section of the survey instrument was participant demographics. Table 5 shows a list of 

demographic variables derived from the literature review. Cultural factors were not 

included since the study is delimited to the U.S. Information regarding participant’s state 

and city of residency (Cai et al., 2019; Zmud & Sener, 2017) and ethnicity/generational 

culture (Gkartzonikas & Gkritza, 2019; Trinh et al., 2018) could have provided more 

dimensions for understanding the distinct clusters. However, CA and MNL both would 
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have better performance if the number of variables was restricted. Therefore, these 

demographic variables were not included. Of the 20 relevant demographic variables, four 

are COVID-related. 

Reliability Assessment Method 

Research reliability focuses on the consistency of results, specifically whether the 

data collection techniques and the analytic procedures would produce consistent findings 

if the research were repeated at a different time or by another researcher (Field, 2012). 

While there are many threats to research reliability, participant and researcher errors and 

biases are some of the most common threats. Participant error is defined as anything that 

could alter the way a participant performs. Participant bias is defined as any factor that 

causes a respondent to provide a false response. As described earlier, the questionnaire 

was pretested with 26 industry and research experts and pilot-tested with 161 respondents 

to minimize issues that could potentially cause participant errors and biases. Researcher 

error is defined as anything that alters a researcher’s interpretation. Researcher bias is 

defined as any intentional or unintentional bias a researcher may have towards the 

research process, analyses, or findings. This researcher was mindful of the potential for 

researcher errors and biases. Again, meticulous procedures were put in place to reduce 

researcher errors and biases, such as the pretest, pilot study, and use of an online survey. 

Reliability and validity testing of the survey instrument was also an important step to 

ensure the questions were valid and the measurement scales were reliable. 

Instrument reliability is concerned with the consistency of the measurement tool. 

An instrument is reliable when scores on the items are consistent across constructs and 

stable over time to create reproducible results (Babbie, 2016). Cronbach’s alpha is a 
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popular method for testing the internal consistency of scale items (Hair et al., 2017). A 

Cronbach’s alpha of 0.7 or higher is considered reliable (Hair et al., 2017). To improve 

instrument reliability, survey questions were pilot tested and pretested. The researcher 

tested for construct reliability using the pilot-test results to further improve the 

instrument. The items were worded in a simple, concise, and precise manner, and 

sequenced appropriately to avoid order bias. Since this quantitative research used an 

online platform for data collection, inter-rater reliability (reliability across different 

researchers) was unnecessary. Once the full set of final survey data was available, 

Cronbach’s alpha was conducted again to ensure internal reliability.  

Validity Assessment Method 

Instrument validity is the extent to which an instrument measures what it is 

designed to measure (Babbie, 2016). Figure 17 shows the main types of validity that were 

considered in this study. 

 

Figure 17 

Validity in Quantitative Research  
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Content Validity. This assessment method relates to comprehensiveness and is 

not tested statistically. Each aspect of the study objective should have adequate 

representation in the survey instrument. Content validity uses the combination of logical 

reasoning, a thoughtful review of the extant literature, and expert opinions (Babbie, 

2016). It can be seen as a prerequisite to criterion validity because it serves as an 

indicator of whether the intended factors are measured. For example, if some items were 

irrelevant to the study objectives or they measured something immaterial, this would 

create potential biases.  

The survey instrument was developed based on factors validated in prior research 

on GFT, SF, and aMoD (Bösehans & Walker, 2020; Lindenberg & Steg, 2013; National 

Academies of Sciences, 2019; Vance & Malik, 2015; Westin et al., 2020; Zmud & Sener, 

2017). While realizing the fact that validated factors from different studies would be 

combined, this was still the best approach due to the lack of research on the choice of 

aMoD over SF. The pilot study and pretest addressed content validity by ensuring the 

survey items were representative of the research purpose. Content validity of both the 

survey items and the overall measurement scale was evaluated in the pretest by having 

subject experts rate each item and the scale for its relevance to the study objective. An 

average congruency of 93% at the pretest indicated strong content validity. 

Face Validity. This assessment method is a surface-level evaluation of the survey 

content to ensure each question relates to the research objective. For this research, expert 

opinions such as the researcher’s committee chair, colleagues, and industry experts were 

solicited during the pretest to address face validity.  
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Criterion Validity. This assessment method determines the extent the survey 

accurately predicts specific behavior. The criterion is an external measurement, usually 

by an established test that has been validated. Intention and behavior are difficult to 

measure, particularly toward a service that is yet to happen. Since GFT is relatively new 

in transport research, its predictive power is still unknown, particularly in air 

transportation research. However, the predictive power should improve by thoughtful 

variable selection. For this research, certain items were compared to relevant items in the 

extant literature to determine any correlation between them. A high correlation indicated 

good criterion validity. 

Construct Validity. This assessment method determines the degree to which the 

measured items accurately reflect the theoretical construct they are designed to measure 

(Hair et al., 2017). Because a construct cannot be directly observed, it must be measured 

using observable indicators. For example, the hedonic goal from the GFT is not directly 

observable. However, an individual's hedonic goal can be estimated using previously 

validated factors such as a traveler's perception of the efficiency and ease of access, 

comfort, and other variables. Construct validity improves when the construct has been 

validated by prior research. To achieve construct validity, this researcher ensured that 

there was strong literature support for the variable choice (see the details in Chapter II). 

This research measures a mix of observed variables and constructs. Construct validity can 

be evaluated through two construct-validation processes (Campbell & Fiske, 1951): 

convergent validity and discriminant validity. 

Convergent Validity. This assessment method determines the extent to which 

items of the same construct are correlated. In other words, convergent validity provides 
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empirical evidence that items that make up a specific construct should share a high 

proportion of variance in common. Factor loadings were used to evaluate convergent 

validity. High factor loadings on a construct indicate that the items converge on a 

common point: the latent construct. Factor loadings of .5 or higher are acceptable, and .7 

or higher indicate good convergent validity (Hair et al., 2018). 

Discriminant Validity. This assessment method provides empirical evidence that 

the constructs are uniquely different (Hair et al., 2018). While there are various ways to 

test the discriminant validity of constructs, a validated novel approach is the Heterotrait-

Monotrait Ratio (HTMT). According to Kline (2016), HTMT values close to 1 indicate a 

lack of discriminant validity. HTMT values < .85 demonstrate evidence of discriminant 

validity. Being slightly more conservative, Hair et al. (2018) suggest HTMT < .9 as 

evidence of discriminant validity. Again, before data analyses and model testing are 

conducted, it is essential to ensure that the data are reliable and valid, because unreliable 

and invalid data will result in high variation, poor model fit, and incorrect model 

estimation. As for construct validity, both convergent and discriminant validity must be 

proven before testing the model. 

Internal Validity. This assessment method refers to whether the questions 

accurately explain the research outcome. Internal validity can be improved through 

survey design, procedure, and bias reduction. Tests for correlations were used for internal 

reliability in this study. This step is important to highlight inconsistencies or unexpected 

issues (Vogt et al., 2012). 

External Validity. This assessment method refers to how generalizable the 

findings from a sample are to other persons in the population, settings, and times. 
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Thoughtful and careful sampling strategies improve the external validity of a 

convenience sample. The well-planned sampling strategy for this study is discussed in the 

Sampling Strategy section in this chapter. 

Measurement Errors and Biases. Measurement error occurs when there is a 

difference between the true value and the measured value. Errors can be random or 

systematic. Measurement errors arise with poor question wording and poor question 

sequencing. Measurement error can be minimized by (a) avoiding bias in questions; (b) 

avoiding double-barreled questions; (c) making the response categories clear and logical; 

(d) using complete and straightforward sentences; (e) avoiding questions that are too 

complex and time-consuming; (f) using mutually exclusive categories, and (g) planning 

ahead for analysis. There are four main types of research biases: sampling, response, non-

response, and question order.  

Sampling Bias. This problem occurs when members of a sample do not have an 

equal probability of being selected. This bias was avoided or minimized in this study by 

following the selection process outlined in the Sampling Strategy section and by using 

pretesting and pilot testing.  

Response Bias. This problem includes recall bias and confirmation bias and is a 

serious threat to the validity and reliability of the research results. Recall bias is 

introduced by respondents having to rely on their memory of a past event. Confirmation 

bias occurs when respondents provide answers to present themselves in a better light. 

Potential response biases were minimized in this study by using clear and concise 

wording of survey items, as verified by the pretest and pilot study. 
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Non-response Bias. This type of bias is one of the most overlooked research 

problems that can pose a great threat to the validity of survey results. It happens when the 

required information is not obtained because some potential respondents were 

inaccessible, and some respondents in the sample did not answer many of the questions 

(because they were either unwilling or unable). These survey data issues become non-

response bias when non-responders differ from the responders in a meaningful way, 

making the results unrepresentative of the population. In this case, the error comes from 

an absence of selected respondents or their responses instead of the collection of wrong 

data. To reduce non-response bias, the questionnaire must have a logical flow, a 

personable and professional introduction, interesting content, short length, concise 

wording, clear online presentation, and appropriate incentives.  

There are two main types of non-response biases: item and unit. Item non-

response bias occurs when some questions are not answered (missing data). Unit non-

response bias is typically caused by the researcher’s inability to reach some respondents 

or respondents who refuse to participate. Two methods were used to identify potential 

unit non-response bias. The first involved comparing the data from initial and late 

respondents. The second involved comparing the demographic survey data to known air 

passenger population demographics. A chi-square test was conducted to compare 

available demographics between respondents and non-respondents (those who answered 

less than 50% of the survey questions). Details of the results are presented in Chapter IV.  

The most important method in reducing non-response bias is a properly designed 

survey as described in the Research Design Procedure section. However, once non-

response bias is identified, there are four post-survey methods to adjust the results: case 
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deletion, imputation, weighting, or expand the survey sample. Case deletion is a solution 

if there are not too many missing values. Imputation relies on available respondent data 

on other variables. Missing values can be replaced by the mean values of the variables to 

impute or by values estimated in a regression by other explanatory variables. Weighting 

involves post-stratification in a two-step process of first identifying a set of control 

variables for the population that the sample should match and then calculating weights to 

adjust the sample variables to the control variables to bring the sample distribution in line 

with the population. If the results are very different between respondents and non-

respondents, more data would need to be collected to reduce this bias. 

Question Order Bias. This problem occurs when a respondent answers 

differently to questions based on the order of the survey items. This bias is minimized by 

keeping the survey items short and clear, avoiding loaded questions, avoiding difficult 

concepts, and ensuring the survey is relevant and does not take too long to complete. The 

pretest and pilot study served to minimize question order bias.  

Data Treatment. It is important to ensure missing data, coding errors, and 

aberrant values are examined prior to running analyses. The objective of this stage is to 

identify and fix data errors. Since responses are automatically captured in the database 

without human input, coding errors are minimized by using an online survey. Data 

cleaning is an important step in data treatment. Regardless of how data are collected, 

there are usually many sources of error that need to be identified and corrected. For 

example, 16 questionnaires with incomplete answers or straight-lined answers were 

discarded from this study. 
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Missing Data. Missing values can cause a loss of information or skewness of the 

data. To improve the validity of the results, it is essential to understand why some data 

are missing. If the data are missing at random, then it is safe to remove the data with 

missing values. If the missing data form a non-random pattern, or if more than 10% of the 

data are missing, then the missing data must be treated through listwise deletion, pairwise 

deletion, imputation, or a model-based approach (Hair et al., 2017). However, if the 

values missing are not at random, removing the cases with missing values can insert bias 

into the results. The problem with missing data is common in survey research and can 

impact the research results profoundly.  

Typically, it is better to keep data than to remove them. The researcher must 

exercise critical judgment before removing observations. There are times when the 

variable should not be removed even with more than 50% missing values if that variable 

is significant in the research (Hair et al., 2017). There are four common ways to handle 

missing values. First, delete the observation when there are too many missing values. 

This is indicative of the respondent not paying attention, or the respondent genuinely was 

not able to answer the questions. Second, delete the variable. If many respondents did not 

answer a particular question, for example, over 20%, it is an indication that there are 

issues with the survey item. It could be too private, too intrusive, too vague, or too 

difficult. Third, impute with mean, median, or mode. Fourth, use logic to predict what the 

missing value most likely would be if the item had been answered. Of the 1,425 data sets 

collected in this study, missing values were computed using mean, mode, and logical 

deductions. 
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Outliers. Next, the univariate and multivariate outliers from all the metric 

(Likert) variables were examined. Outliers can be problematic if they are not 

representative of the population, distorting results from statistical tests. A univariate 

outlier is an extreme value. Boxplots, a useful detection tool for univariate outliers, were 

conducted. A multivariate outlier is a combination of extreme scores on two or more 

variables. In multivariate analysis, Mahalanobis D-square was used to identify outliers 

across all variables (Hair et al., 2017). High D-square values (> 100) represent 

observations farther from the general distribution of observations. Since SPSS does not 

directly determine Mahalanobis D-square, this analysis can be performed using 

regression analysis. Both univariate and multivariate outliers affect the outcome of 

statistical analyses. Nevertheless, there are many approaches to handle outliers. Since 

there were few outliers in this study, they were dropped from the dataset. Outliers can 

also be transformed, capped, or assigned a new value (Hair et al., 2017), which was not 

required in this study. The scatterplot of standardized predicted value and residual was 

performed to confirm that there were no remaining outliers after removing the outlier 

cases. 

Assessment of Normality. Neither CA nor MNL has a normality requirement. 

MANOVA, however, has a normality assumption that must be satisfied and is discussed 

in detail in the MANOVA section and in Chapter IV. 

Data Analysis Process  

Four data analysis methods were used to answer two research questions: 

RQ1. Based on goal framing theory variables, contextual trip attributes, COVID-19 

variables, and demographics, what factors most influence air passengers’ modal choice 
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for inter-regional travel distances of under 500 mi (800 km)? 

RQ2. What distinct passenger clusters exist for SF and aMoD? How are these clusters 

similar/different within the SF and aMoD segments? Figure 18 shows a summary of the 

research analyses. 

 

Figure 18 

Summary of Statistical Analyses 
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Note. The top flowchart shows the broad steps for the analyses and the lower one presents 

more details including assumptions testing. aMoD = autonomous mobility-on-demand; 

SF = commercial short-haul flight; RQ = research question. 

Descriptive Statistics. Descriptive statistics were conducted using IBM SPSS 

Version 28. At this stage, one-way analysis of variance (ANOVA) and chi-square tests 

were used to compare some of the responses from MTurk with industry findings.  

Exploratory Factor Analysis  

EFA was performed to minimize the number of constructs for CA and MNL. It 

validated the GFT constructs with the pattern matrix. Details of the results are discussed 

in Chapter IV.  

Extraction and Rotation Methods. The EFA using the principal component 

analysis (PCA) extraction method considers all the available variances (unique and error 

variances). PCA was most appropriate for this study as data reduction was a primary 

objective, focusing on the minimum number of factors needed to account for the 

maximum portion of the total variance. Typically, the unrotated method does not show 

clear factors, as rotation causes factor loadings to be more clearly differentiated. There 

are two methods of factor rotations: oblique and orthogonal. The oblique method 

provides information about the extent to which the factors are correlated with each other. 

The oblique Promax rotation was appropriate for this study because it handles a large 

dataset well and assumes correlations among the variables (which tested true as explained 

earlier).  

Factor Loadings. Small factor loadings (coefficients) with absolute values less 

than .3 were suppressed to avoid showing low factor loadings in the matrix. Factor 
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loadings greater than .5 are acceptable (Hair et al., 2018). If there is a good rationale to 

keep an observed variable, or there are too few observed variables in a factor, then there 

is a case to keep the variables (Hair et al., 2018). 

Scree Plot. The scree plot was used to determine the number of factors by finding 

the “elbow” of the plot based on the cut-off point of an eigenvalue of 1.  

Sample Adequacy and Inter-Correlation Among Variables. The KMO 

generally indicates whether the variables can group into a smaller set of underlying 

factors. A KMO value of 0.6 or higher is an indication to proceed (Hair et al., 2018). The 

results of KMO, Bartlett’s test, the individual MSAs, and extracted communalities all 

provided empirical evidence that the overall inter-correlation requirement was met, and 

the observed variables are adequate and appropriate for use in an EFA. 

Total Variance Explained. Four factors extracted explained 52.6% of the 

variance in the model. Details are in Chapter IV. 

Pattern Matrix. The loadings in the pattern matrix are regression coefficients 

making each row effectively a regression equation for each construct. The final 4-

construct EFA model presented itself neatly in the pattern matrix as shown in Appendix 

L. These four constructs validated the three GFT goals (Hedonic, Gain, and Normative) 

and the COVID-19 items. 

Multinomial Logistic Regression  

Also called multinomial logit, multinominal logistic regression (MNL) is a 

classification method that predicts the probability of an outcome (a dependent variable) 

with three or more discrete categorical values. It is a simple extension of binary logistic 

regression. Like binary logistic regression, MNL uses maximum likelihood estimation 
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(MLE) to evaluate the probability of categorical membership (nominal and ordinal). The 

log odds of the outcomes (modal choices) are modeled as a linear combination of the IVs 

(predictor variables). The IVs are metric in scale. In this research, MNL was used to 

model the nominal outcome variable MODE_Future with five distinct transport choices: 

aMoD, SF, car, inter-regional bus, and inter-regional train. Figure 13 in Chapter II 

summarized the three MNL models using varying combinations of variables and the GFT 

and COVID-19 latent constructs (IVs). The future mode choice with five categories (SF, 

aMoD, car, inter-regional bus, inter-regional train) is the dependent variable (DV). The 

following are critical areas to consider in using MNL. 

Assumption of Independence of Irrelevant Alternatives. Assumption of 

independence of irrelevant alternatives (IIA) means that adding or removing alternative 

outcome categories does not affect the odds among the remaining outcomes. The IIA is a 

core hypothesis in rational choice theory. In some situations, when MNL is used to model 

choices, it may impose too much constraint on the relative preferences between the 

different alternatives. If the IIA is violated, nested logit or the multinomial logit may be 

used instead. 

Assumption of Independence of DV Categories. The MNL assumes 

independence among the DV choices (but not the typical assumptions of normality, 

linearity, or homoscedasticity) and non-perfect separation. In this research, the 

assumption is that the choice of flying is not dependent on the choice of taking a train or 

a bus. This assumption is met because these mode choice categories are all independent 

of each other. The Hausman-McFadden test was run to test the assumption of 

independence (Field, 2014). Details are presented in Chapter IV. 



104 

 

Outliers. Like linear regression, MNL is sensitive to outliers and other unusual 

observations. The Data Treatment section in this chapter describes the treatment for 

outliers in detail. 

Multicollinearity. Typical of generalized linear models, multicollinearity must be 

evaluated when conducting MNL. Multicollinearity happens when there are high 

correlations among the IVs, leading to unreliable or unstable estimates of the DV. 

Pairwise correlation coefficients between the IVs (predictors) and the Variance Inflation 

Factor (VIF) are common methods to detect multicollinearity. A correlation coefficient 

greater than 0.5 is a concern, and over 0.8 indicates multicollinearity. The formula 

VIF = 1/(1- R2), where R2 is the coefficient of determination, indicates how much 

variation of a DV is explained by the IV. While there is no definitive VIF value for 

determining the presence of multicollinearity, a general guideline is that a VIF of 1 

means that there is no multicollinearity for that variable. Any VIF value less than 3 is 

good, and a VIF value greater than 10 indicates multicollinearity (Field, 2014). 

Empty or Small Cells. Cross tabulations between categorical IVs (predictors) and 

the DV would yield the number of cases in each cell. If a cell has few cases, the model 

may be unstable.  

MNL Procedure and Output. For a nominal DV (Future Modal Choice) with five 

categories, the MNL model estimates four (5-1) logit equations. SPSS was used to 

compare all combinations of the five groups using SF as a reference category. Details of 

the MNL procedures and output are in Chapter IV. 
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Cluster Analysis 

As a form of multivariate analysis, CA is commonly used for taxonomy 

classification and description (identifying natural groups within the data set), data 

simplification (analyzing groups of similar observations versus individual observations), 

and relationship identification (revealing relationships not otherwise discovered) (Hair et 

al., 2017, p. 428). In this research, CA was used as an exploratory technique to reveal 

passenger subgroups with similar GFT, travel, demographic, and COVID-19 

characteristics. The CA process reveals the “natural structure among the observations 

based on a multivariate profile” (Hair et al., 2017, p. 415).  

CA has been employed in transportation literature published in the last several 

decades (Dolnicar et al., 2014; Urban et al., 2018). Even though CA and factor analysis 

both concern grouping of some sort, CA groups objects and respondents, whereas factor 

analysis groups variables (Hair et al., 2017). CA classifies objects or respondents on a set 

of researcher-selected characteristics, making it critical that the researcher selects each 

variable objectively based on prior research, extant literature, and reasoned judgment 

(Hair et al., 2017). The objective of CA is not to build a predictive or correlation model. 

Its goal is to assess similarity, thereby gaining a deeper understanding of the homogeneity 

within the cluster and dissimilarities between the clusters. There are four critical areas 

that must be addressed in the research design phase when performing CA. 

The first is to identify univariate and multivariate outliers before partitioning 

begins. The handling of outliers is presented in the Outliers and the Data Treatment 

sections. The second critical area is to define similarity, which involves the researcher 

consciously selecting a similarity measure and specifying the approach to be used for 



106 

 

input to the hierarchical clustering algorithm. When segments are identified in CA, both 

the magnitude and the pattern of the responses are considered. Correlational measures 

consider only the responses’ patterns and not the absolute values; therefore, they were not 

used to define similarity in CA in this study. Typical similarity measures in SPSS include 

Euclidean distance, squared Euclidean distance, and Mahalanobis distance (D2). Given 

the sensitivity of some procedures to the similarity measures, several distance measures 

were used in this study. The results were compared to each other and to other theoretical 

and known patterns.  

The third issue relates to data standardization. Most CA using distance measures 

are sensitive to differing variable scales and magnitudes. Variables with larger 

dispersion/standard deviation generally have more impact on the final similarity results 

(Hair et al., 2017, p. 434). Since all clustering variables in this study used the same scale, 

no standardization was required. The fourth critical design issue relates to the sample size 

and is addressed in the Sample Size section. 

A critical differentiator between CA and other multivariate analyses is that CA is 

the only multivariate technique that does not estimate the variate empirically. This makes 

the researcher’s selection of the variables from extant research and the definition of the 

cluster variate critically important. Therefore, it is imperative that the researcher “employ 

whatever objective support is available and be guided by reasoned judgment in the design 

and interpretation stages” (Hair et al., 2017, p. 425). It is also critical for the researcher to 

avoid the use of highly redundant variables as input to CA (p. 434). Over 20 variables 

were considered but not included in the final set of variables for this study due to this 

critical point, including familiarity, privacy, flexibility, and risk perception. 



107 

 

Consequently, because CA is more art than science, and statistical results are produced 

regardless of the actual existence of any data structure, the researcher must have a strong 

conceptual basis (Hair et al., 2017, p. 419), which is demonstrated in the results presented 

in Chapter IV.  

The importance of strong conceptual support is further demonstrated by the three 

most common criticisms of CA (Hair et al., 2017, p. 419). First, CA has no statistical 

basis for drawing inferences from a sample to a population and that there is no unique 

solution as different solutions can be obtained by varying researcher inputs. Second, the 

identification of clusters does not validate their existence. Third, the cluster variate is 

solely specified by the researcher making the selection, addition, and deletion of relevant 

variables greatly impactful to the results. Due to these potential issues with CA, the 

selected research methodology and design rely on strong conceptual support based on 

primary literature discussed in Chapter II.  

CA Procedure and Output. Before CA was performed, multicollinearity was 

assessed to verify that no clustering variables exhibited correlations above 0.9 as 

recommended by Hair et al. (2017). Multicollinearity exists when there are high 

intercorrelations among the IVs; thus, acting as a type of disturbance in the data, making 

it hard to assess the IVs’ relative importance in explaining the variation caused by the 

DV. Multicollinearity has a unique impact on CA compared to other multivariate 

techniques because there is no DV. In CA, multicollinearity acts as a form of implicit 

weighting. Although it may not be apparent to the researcher, the implicit weighting 

affects the analysis and the results. Highly correlated variables effectively represent the 

same concept, so if redundant variables are included, that construct will get 
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disproportionate weighting compared to other variables; thus, likely skewing the results 

toward that construct. Therefore, it is essential to examine the variables used in CA for 

substantial collinearity. Hair et al. (2017) suggested four potential solutions (p. 437):  

• Select variables to avoid redundancy based on extant literature.  

• Reduce variables to equal numbers in each set of correlated measures. 

• Use a distance measure that compensates for the correlation (i.e., Mahalanobis 

distance, D2). 

• Factor the variables before clustering and either select one cluster variable 

from each factor or use the resulting factor scores as cluster variables. 

Two-step CA can handle both metric and categorical (ordinal and nominal) data 

in the same model. The three GFT goals and the COVID-19 constructs were used in the 

hierarchical CA to identify the number of clusters. Using SPSS Version 28, a stepwise 

clustering procedure was used. Ward’s method with squared Euclidean distance was used 

to generate clusters that were homogeneous and relatively similar in size. It is useful to 

keep the ratio of cluster sizes under 2.5 to ensure that the largest cluster size would not be 

more than 2.5 times the smallest cluster size. Using both the dendrogram and the 

agglomerations schedule helped with the cluster decision. Squared Euclidean distance 

was used to measure the similarities between clusters. The dendrogram helped in visually 

identifying clusters with the squared Euclidean distance on the horizontal axis. Once the 

clusters were defined, they were profiled using the demographic variables, contextual trip 

attributes, and the GFT constructs. The clusters were compared using these profiling 

variables. One-way ANOVA, chi-square, and Welch tests assessed cluster differences. 

When there was statistical significance, one-way ANOVA (Gabriel’s tests), chi-square 
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(standardized residuals), and Welsh tests (Games-Howell) were used to identify cluster 

differences. The agglomeration coefficients were used to guide the optimal number of 

clusters. Since there was no clear indication for cluster cut-off point, cluster centroids 

were saved (three to seven cluster solutions) and imported into a k-means analysis for 

further examination. Subsequently, this researcher selected the number of cluster 

solutions based on the variance ratio criterion, hit ratios from discriminant analyses, and 

an examination of the non-transformed variable means for various cluster solutions. 

Multiple discriminant analysis was used to help confirm the validity of the cluster 

solution. The two-step CA model summary displays the cluster quality. Variable 

importance was also examined to adjust cluster comparison. 

Multivariate Analysis of Variance  

Multivariate Analysis of Variance (MANOVA) is a multivariate technique that 

examines the relationships between several categorical IVs and two or more continuous 

DVs. While ANOVA evaluates the differences between groups using t-tests (for two 

means) and F-tests (between three or more means), MANOVA was used in this research 

to identify differences in attributes between the clusters.  

Assumptions Testing for MANOVA. To ensure key assumptions were met 

before conducting any multivariate analysis helped boost effect sizes and improve the 

validity of the results (Field, 2010; Hair et al., 2017). Any serious violations of the 

assumptions must be detected and corrected, if possible, as MANOVA requires 

independence of observations, homoscedasticity, correlation of DVs, and normality of the 

DVs. The following assumptions testing, a critical step, was conducted before additional 

analyses were conducted. 
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Independence of Observations. More of a research design than a test, this 

requirement is met if there is no relationship between the observations in each group or 

between the groups themselves. For this research design, each respondent can only 

choose one transport mode with no respondent being in more than one mode choice. 

Homoscedasticity/Homogeneity. There are two common methods to test for 

homoscedasticity. First is the multivariate test of homogeneity (i.e., Box’s M test of 

equality of covariance matrices). Box’s M test determines if two or more covariance 

matrices are equal and its results are sensitive to any departures from normality. If the 

samples are from non-normal distributions, then Box’s M test may be testing for non-

normality. The null hypothesis of Box’s M states that the observed covariance matrices 

for the DVs are equal across groups. A large p-value indicates a non-significant test result 

(suggesting the covariance matrices are equal). The second method is the univariate test 

of homogeneity (or Levene’s test of equality of error variances). Levene’s tests were 

applied across all levels of IVs. If the Levene’s test was non-significant, then the 

homoscedasticity assumption was met. However, if the test of homogeneity requirement 

was not met, Hair et al. (2013) argues that if the sample sizes in the IV groups are large 

enough, no remedies would be needed. This was confirmed by observing the boxplots 

with the variances (sizes of the boxes) between the groups in the IVs. 

Correlation of DVs. Bartlett’s test for sphericity is the most widely used test for 

determining correlations among all DVs and assessing whether collectively, 

intercorrelation exists (Hair et al., 2017, p.706). The null hypothesis of a Bartlett’s test 

postulates the variables are not correlated (orthogonal). A significant degree of 

intercorrelation exists when p < .001. 
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Normality of DVs. This is a critical assumption for MANOVA (Byrne, 2010: 

Hair et al., 2017). Considering there is no direct test for multivariate normality, univariate 

normality is usually tested for all DVs as a surrogate. Normality can be checked using 

two methods. The first was the use IBM AMOS to detect both kurtosis and skewness 

values. Kurtosis severely affects tests of covariances and variances (Byrne, 2010). A 

kurtosis value of zero in AMOS indicates perfect normality; however, values of < 5 are 

considered acceptable (Byrne, 2010). If the values are too high, the researcher can 

transform the variables using SPSS or run two models with and without transformation 

then compare the results. The second method to test normality was use of descriptive 

analysis in SPSS. The Q-Q plot was used since the histogram for a Likert scale data 

rarely shows the normal distribution. If normality for DVs is violated, Hair et al. (2013, 

p.686) posit that a larger sample size, as used in this research, will minimize the impact to 

the validity of the results.  

MANOVA Procedure and Output. This step involves running all four 

multivariate tests: Pillai’s Trace, Wilks’ Lambda, Hotelling’s Trace, and Roy’s Largest 

Root. Significance levels of p < .01 indicate the significant impact of the IVs on the DVs; 

therefore, a researcher can assume the covariance matrices are not equal across groups. 

Next, this researcher examined the interaction effect of the IVs and looked for Partial Eta 

Square values. This was followed by Levene’s Test of Equality of Error Variances. The 

researcher looked for non-significant p values. Between-Subjects Effects testing 

examined the significance and level of impact of the IVs on each of the DVs. In 

identifying effect sizes, the model fit was determined by examining mean vector 

equivalents across groups (Hair et al., 2017). If there is a statistically significant 
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difference in the means (when an ANOVA F-test is significant), specific differences 

between the group means would be determined by post-hoc analysis (i.e., Tukey HSD 

[honestly significant difference], Scheffé’s LSD [least significant difference]).  

The model fit for the two-step CA was evaluated using the F-value. If the 

MANOVA test has a p-value < .05, there is a significant difference among the clusters. 

The cluster distances indicated the heterogeneity across the clusters. The larger the 

distance meant the more dissimilar the clusters. 

Summary 

This chapter described the research method, population, and sample selection, 

including sampling frame, sampling strategy, and sample size. It explained the research 

design, data collection process, survey pretest, survey pilot study, and data sources. 

Development of the measurement instrument was outlined, and the variables and scales 

were presented. The critical area of ethical considerations and IRB approval were 

discussed. The Data Analysis Approach sections explained the details of data treatment 

plan and reliability and validity assessments, including how multinomial logit was 

selected to model the nominal outcome variable of future mode; cluster analysis was 

applied to segment each of the two distinct groups of SF and aMoD passengers; and 

MANOVA was used to test cluster differences within the SF clusters and aMoD clusters. 

This chapter concluded with the research procedures for each assessment and their 

respective assumptions testing and outputs.  
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Chapter IV: Results  

The primary objective of this chapter is to answer the two research questions to 

identify factors that most influence air passengers’ modal choice for inter-regional travel 

(distances of under 500 mi or 800 km) and ascertain passenger clusters, similarities, and 

differences existing within the SF and aMoD clusters. The first section in this chapter 

presents the survey pretest and pilot study findings that informed the full-scale study. The 

second section reports the demographics, descriptive statistics, and statistical results 

based on multiple univariate and multivariate analyses. The EFA results established and 

validated four latent constructs with a good model fit, which were used as input for the 

two-step cluster analysis (instead of 22 observed GFT and COVID-19 variables). The 

MANOVA results feature the similarities and differences within the distinctive segments 

of aMoD and SF passengers. The results of MNL highlight the key predictors of future 

transport mode choice once aMoD is available on U.S. roads. Findings from these 

analyses provide insights into air passengers’ inter-regional travel decision-making. 

Survey Pretest and Pilot Test Results 

Survey Pretest 

The questionnaire was pretested over six weeks, from April 8 to May 20, 2021, 

with 26 participants (4 researchers, 10 air passengers, and 12 aviation and other 

transportation practitioners). The instrument was user-tested for proper organizational 

flow, skips, and display on different computer devices, including smartphones, computer 

tablets, and laptops. The average completion time for the pretest survey was 15 min. A 

follow-up phone or face-to-face interview was conducted to gauge the respondents’ 

perceptions of the instrument, accuracy of understanding, and ease of completion. The 
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average interview time was 90 min. The results from the pretest helped refine the 

questionnaire content, wording, and flow and to discover better ways to engage the 

respondents and increase their interest when completing the questionnaire. There were 

three valuable outcomes.  

The first finding concerned testing the definition and presentation of the concept 

of driverless cars. One of the most considered and discussed areas in this research was 

whether respondents would understand the meaning of aMoD. Four different diagrams of 

driverless cars and five levels of automation were presented to the pretest participants to 

discern the most effective and clear communication. This pretest was instrumental in the 

decision to present only the five levels of automation in graphics in the pilot and the full-

scale survey. The pretest participants made it clear that no pictures or diagrams were 

necessary because the concept of on-demand driverless cars was easy to understand by a 

short written definition.  

The second finding dealt with combined leisure and business travel in the GFT 

items. Some pretest participants suggested the survey should separate leisure travel and 

business travel because the two types of travel might involve different attitudes and 

decision criteria. Therefore, at the beginning of the pretest, some GFT items were 

presented in the leisure and business travel sections (cost, convenience, comfort, the 

hedonic idea of fun, etc.). However, as the pretest continued, it was found that some 

respondents would provide straight-line answers to many of these questions the second 

time they were asked. For example, missing values or straight-line answers occurred in 

the business section after the respondents had completed the leisure questions either 

because they were bored after seeing very similar questions or tired from answering a 
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long series of similar questions. Therefore, the decision was made to have only one set of 

GFT items in the questionnaire for the study. This decision shortened the survey to under 

10 min while increasing participants' engagement.  

The third finding concerned the time to complete the questionnaire. Even though 

the pretest participants were interested in the ideas of driverless cars and short-haul 

flights, an average response time of 15 min was too long to hold their full attention. 

Reducing the GFT items served to minimize completion time. 

Survey Pilot Study  

Pretesting the survey instrument and conducting pilot studies helped avoid or 

minimize sampling bias and improve generalizability. The pilot study using MTurk was 

conducted from June 10–25, 2021. After eliminating respondents with over 30% missing 

values (n = 3) and straight-lining responses (n = 4), results from 154 participants were 

used to perform the pilot reliability and validity assessment. The pilot study provided an 

average completion time of 8 min 27 s. 

Instrument Reliability and Validity. One of the main objectives of the pilot 

study was to test the reliability of the survey instrument, so Cronbach’s alpha (α) was 

used to measure the reliability/internal consistency between items on each of the scales 

(see Table 6 and Appendix E). It was important not to mix positively and negatively 

worded items because the variables in the negatively worded items would need to be 

reverse coded to measure the reliability of the items on a scale. All 22 items were rated 

using a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree). The α for the 

pilot study was 0.801 for all 22 items, representing good internal consistency. Cronbach’s 

alpha for the GFT sub-scales of Hedonic (0.749) and Normative Goals (0.759) provided 
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good internal consistency. The scale reliability for the GFT Gain Goal (α = 0.630) needed 

improvement. With an α of 0.430, the COVID-19 scale did not provide evidence of good 

internal consistency. Deleting C1 would increase the Cronbach’s alpha for the COVID-19 

construct to 0.49 (see Table 6 and Appendix E), which was still too low to provide 

evidence for reliability. Therefore, Gain Goal and COVID-19 items were modified for the 

full-scale survey. 

 

Table 6 

Cronbach’s Alphas for Pilot Study Constructs  

Construct Item α 

GFT 

hedonic 

goal  

H1: Generally, my main transport mode for inter-regional travel is 

efficient. 

0.749 

H2: I will not sacrifice comfort even if I have to pay slightly more. 

H3: I know I can resolve issues that may pop up during my travels. 

H4: I believe I can control events that affect me. 

H5: I am quite predictable in terms of how I travel. 

H6: In general, I am happy with the transportation I use when I travel 

to other cities. 

H7: If my family and friends use Uber/Lyft, I trust that it is safe for me 

to use too. 

H9: Traveling is fun for me.  

 G1: Cost is very important to me when I travel for leisure. 

0.630 

GFT 

gain 

goal 

G2: Convenience is very important to me when I travel. 

G3: When I travel, I value my time doing something nice or useful, 

such as watching a movie, working, or sleeping. 

G4: I usually try to minimize my total travel time. 

G5: I think driverless cars will be cheaper to use compared to flying. 

  G6: I think driverless cars are more convenient than flying in general. 

GFT 

normative 

goal  

B1: Preserving the environment is very important when I decide how I 

travel. 

0.759 
B2: When I travel by CAR for inter-regional trips, I am satisfied with 

my environmental impact. 

B3: When I travel by AIR for inter-regional trips, I am satisfied with 

my environmental impact. 

COVID-19 

influence 

 

C1: I am concerned with getting COVID when I travel. 

0.430 
C2: My disposable income has reduced because of COVID. 

C3: Even during COVID, I could be tempted to travel by air if the 

ticket price was low enough. 

Note. GFT = goal framing theory. 
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Due to the small sample size, only the statistical results from EFA were relevant. 

The EFA was used to assess the actual rather than theoretical correlations among the 

items. The two measures used to determine sample adequacy were the 

Kaiser−Meyer−Olkin (KMO) measure of sampling adequacy and Bartlett’s test of 

sphericity. The KMO evaluates the overall inter-correlation among variables and varies 

from 0 to 1. Generally, KMO indicates whether the variables can group into a smaller set 

of underlying constructs. A KMO value of 0.6 or higher is an indication to proceed. If 

KMO < 0.5, the factor analysis results will not be useful (Kaiser & Rise, 1974). The 

KMO = .699 and was considered good. Bartlett’s test was significant (χ2 = 611.360; 136, 

p < .001). These two measures showed that the overall inter-correlation requirement was 

met, and the observed variables were adequate and appropriate for conducting the EFA. 

The pattern matrix of the pilot data showed a 4-factor solution (see Appendix F). The 

principal component extraction method was used because it makes no distributional 

assumptions. Promax rotation algorithm was appropriate because it assumes correlations 

amongst the variables. This 4-factor solution converged in five iterations. The extracted 

communalities of all 22 items had communalities > .5, which is deemed good. Regarding 

the total variance explained, four factors were extracted, explaining 50.3% of the 

variance in the model, which is considered acceptable.  

Final Instrument and Procedures 

The findings from the pilot study informed changes to both the instrument and the 

procedures. The key changes encompassed the following: 

• Minor revisions in the wording. For example, “below high school” may sound 

judgmental, so the wording was replaced with “attended high school.” 
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Another example was the addition of a category in gender called “other” to be 

more inclusive. Three out of 1,441 responses chose the “other” category. 

• Under Annual Household Income, deleted “over $300,000”. 

• To ensure more participants would answer the aMoD section carefully, the 

aMoD items were moved forward to the third part of the instrument. 

• The COVID-19 item on disposable income (C2) was changed from negative 

to positive so that all items were aligned positively for the analyses. 

• The 21 GFT and COVID-19 items were separated into smaller sections to 

minimize respondent fatigue. 

• The following items were deleted:  

o The two Likert scale items on the cost and convenience of driverless 

cars in the GFT Gain Goal (G5 and G6) to avoid biasing respondents 

in their future transport choice.  

o The safety item, “I think flying is safer than driving,” to avoid biasing 

respondents for subsequent questions. 

o The item on the total cost for business travel because it was similar to 

another item on travel cost. 

o The item on the use of TNC to/from the airport during the EFA 

analysis. 

o The item on trust for TNC, “If my family and friends use Uber/Lyft, I 

trust that it is safe for me to use too,” based on results from EFA. 

o The item on control, “I believe I can control events that affect me,” 

because it was similar to the other control/self-efficacy question. The 
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correlation coefficient was > 0.9. 

o The two sets of questions on “the degrees of satisfaction with driving 

and flying (regarding personal space, environmental impact, safety, 

and general feeling).” While the results would be interesting, the 

answers were tangential to the research objectives. 

• Several items were added: 

o Based on the weak Cronbach’s alpha value of the COVID-19 scale, 

added two COVID-19 items to assess how the economic conditions 

and changes in the COVID-19 variants during the pandemic affected 

respondents’ current and future transportation decisions. The additions 

were: “I think the economy is gradually recovering” and “I think 

COVID and its variants will get worse.” 

o Even though Cronbach’s alpha for the GFT Normative Goal was 

considered reliable (α = .759), this construct could be improved with 

more theoretical support. After reviewing the relevant literature, the 

following four items were added:  

(a) “I feel a moral obligation to protect the environment.”  

(b) “I think electric vehicles are good for the environment.”  

(c) “People who are important to me tend to care about the 

environment.”  

(d) “It is important for me to be a role model for my family in 

environmental protection.” 
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More than 20 items in the pilot instrument were deleted or modified, and six items 

were added. Therefore, it is important to note that the variable/item names in the full-

scale study might not be the same as in the pilot. The pilot and pretest results were used 

to refine the questionnaire, making it more concise and precise. In addition to improving 

the reliability and validity of the instrument, these refinements also reduced the 

completion time, potentially minimizing respondent fatigue. 

Full-Scale Survey Results 

Data Preparation 

 

Of the 69 items in the final instrument, all except one were closed-ended. With 

MTurk collecting and recording responses automatically without human input, there were 

no coding errors or aberrant values in the dataset. Nevertheless, data cleaning was an 

essential step in data treatment. 

Missing Values. The problem with missing data is common in survey research 

and can impact the research results profoundly. From 1,441 total observations, 16 were 

removed: six had over 15% of missing values, four had over 20% of straight-line 

answers, and six respondents completed only the demographics section. These 

eliminations left 1,425 completed observations for analysis. From the 69 variables, most 

had two or three missing values. None of the five COVID-19 items had any missing 

values. The GFT Normative Goal items had only one or two values missing. Even the 

two variables with the most missing values, Item 21: “aMoD rollout timing” and Item 22: 

“timing with 50% aMoD on the road,” had less than 1.5% missing values. 

Four ways to handle missing values were considered. The first is to delete the 

observation when there are too many missing values. This step led to the removal of 16 
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observations. Second, delete the variable if too many respondents skipped an item. No 

variables had to be deleted from the study results. Third, impute with mean, median, or 

mode. Missing values of the Likert-scale and categorical questions were imputed with the 

mode. Fourth, use logic to predict the missing value. Logical deduction was applied to 

missing values for the transport mode choice items (MODE_Pre-COVID and 

MODE_Future) based on the participants’ responses to the items on the construct. 

Outliers and Normality. Univariate outliers from all the metric variables were 

found to be minimal and were within the highest and lowest scores. Figure 19 presents 

select examples of boxplots for univariate outliers. The Q-Q plot, boxplot, and histogram 

are graphical techniques to check univariate normality. In a Q-Q plot, for data that are 

normally distributed, the points fall on a straight diagonal line, as shown in Figure 20. 

 

Figure 19 

Example Boxplots Plots Showing Univariate Outliers 
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Figure 20 

Example Q-Q Plots Showing Univariate Normality  

 
 

A multivariate outlier is the combination of extreme scores on two or more 

variables. High Mahalanobis D2 values (> 100) represent observations farther from the 

general distribution of observations. Mahalanobis D2 was performed using regression 

analysis (See Appendix G for the multivariate outlier assessment using Mahalanobis D2; 

where: Prob_Mah_D2 = 1 – Cumulative χ2 [Mah_D2, 69]). Thirty-seven observations 

where p < .001 (indicating multivariate outliers) were removed from the database. 

Therefore, the usable sample for analyses N = 1,388 (1441-16-37), which is 96.3% of the 

collected observations. The scatterplots of standardized predicted values and residuals 

were used to confirm no remaining outliers after removing the outlier cases to ensure all 

values were within +/− 3 on both the x-axis and the y-axis. While normality is not a 

requirement for MNL and 2-step CA, it is a prerequisite for EFA and MANOVA and will 

be discussed in the Assumptions Testing section. 
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Non-Response Bias Testing 

Non-respondents were quantified as participants who (a) answered only the 

demographics section, (b) gave straight-line responses, or (c) did not answer more than 

15% of the items. There were 12 observations in the non-response category. Select 

demographic variables were used to compare respondents to non-respondents to assess 

non-response bias. The examined variables included Age, Education, Total Household 

Income, Number of Children Living at Home, Years with Driver’s License, and Drive 

Frequency. The chi-square (χ2) test of independence measured whether there is a 

relationship between two categorical variables and if the difference is due to chance. The 

χ2 test results indicated no significant differences between respondents and non-

respondents (see Table 7). 

 

Table 7 

Results from the Non-Response Bias Analysis  

Demographics χ2 df p 

Age 7.218 6 0.301 

Education 0.865 4 0.930 

Total Household Income 4.125 5 0.532 

Number of Children Living at Home 2.089 3 0.554 

Years with Driver’s License 1.126 4 0.890 

Drive Frequency 2.669 4 0.615 

 

Passenger Demographics and Contextual Trip Characteristics 

As presented in Figure 21, the study participants’ demographics show there were 

more men (57%) than women (43%). The majority were between 25 and 34 (40%) and 

35 and 44 (28%) years old. More than half (56%) had a bachelor’s degree, and a quarter 

(26%) had a master’s degree. The majority (76%) reported living in a city or a suburb, 
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and only 12% reported living in rural America. Slightly over one-third (37%) of the 

participants had no children living in the household. Most participants (46%) reported a 

household income of $50,001 to $100,000 and 1 in 5 (19%) reported a household income 

over $100,000. Not surprisingly, for a country with a vibrant car culture, almost every 

respondent (99%) had at least one driver’s license in the household. Only 3% of the 

respondents were not licensed to drive. Eighty-seven percent had been licensed for over 

three years. Almost half (48%) of the study participants reported having one car in their 

household, with 38% owning two vehicles. Only 3% did not have a car in the household. 

In terms of driving frequency, 43% percent drove more than 5 times per week.  
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Figure 21 

Demographics 
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The χ2 test results presented in Table 8 show the respondents’ choices of current 

transport modes are significantly different based on prior car accident experiences 

involving an injury (χ2 (3) = 50.363, p < .001) or someone in the household having 

mobility issues (χ2 (3) = 100.5, p < .001). There is a significantly higher percentage of 

respondents who had prior car accidents with injuries chose inter-regional bus (58%) than 

drive (29%) or SF (37%). Similarly, a much lower percentage of the sample chose to 

drive (12%) than take an inter-regional bus (48%) if someone in the household has 

mobility issues. Likewise, the χ2 test results for future transport mode choices are 

significant with the same two variables. In this case, a much lower percentage of the 

sample chose aMoD (20%) and SF (21%) than inter-regional bus (46%) as their future 

mode choice if someone in the household has mobility issues. 

 

Table 8 

Chi-Square Test Results for Current and Future Main Modes  

Main Mode 

Prior Car 

Accident 

with Injuries 

Chi-Square Results 

Mobility 

Issue: 

Self or 

Family 

Chi-Square Results 

% χ2 df p % χ2 df p 

Current Mode 
 

50.363 3 < .001 
 

100.500 3 < .001 

SF 37 
   

30 
   

Drive a Car 29 
   

12 
   

I-Bus 58 
   

48 
   

I-Train 26 
   

25 
   

Future Mode 
 

19.635 4 < .001 
 

41.614 4 < .001 

aMoD 31 
   

20 
   

SF 34 
   

21 
   

Drive a Car 38 
   

26 
   

I-Bus 54 
   

46 
   

I-Train 37       36       

Note. aMoD = autonomous mobility-on-demand; I-Bus = inter-regional bus; I-Train = 

inter-regional train; SF = commercial short-haul flight. 



128 

 

 

Regarding business travel, 79% traveled for business before COVID. Almost half 

of the respondents (49%) traveled for business 2 to 6 times per year, and 17% traveled 7 

or more times per year. Contextual trip variables provided a deeper understanding of the 

study respondents’ trip characteristics. As illustrated in Figure 22, most participants 

(74%) reported residing 15−45 min from their nearest airport. Only 8% resided more than 

1 hr drive from the nearest airport. Thirty-six percent reported 41%−60% of their flights 

were direct flights from their home airport, and 11% reported that over 80% of their 

flights were direct flights. Most of the time, respondents traveled alone (14%) or with one 

other person (37%) when flying commercially to another inter-regional city for leisure. 

However, only 17.6% of the respondents reported driving alone when traveling for 

leisure. Most of the time, they traveled with one (32%) or two or more people (60%). As 

expected, for inter-regional trips for leisure, the likelihood of driving increases when the 

traveling party is larger than two people. 

 

Figure 22 

Contextual Trip Characteristics 

 
Note. SF = commercial short-haul flight. 
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Travel Mode Choice Behavior, Attitudes, and Perceptions 

Figure 23 presents the likelihood of driving instead of flying when the trip is a 2-, 

5-, or 8-hr drive. Almost half (46%) of the respondents said they were very likely to drive 

instead of fly if the trip is a 2-hr drive. This percentage dropped to 24% for a 5-hr drive 

and 15% for an 8-hr drive. For a distance requiring an 8-hr drive, 19% of the respondents 

reported they would be very unlikely to drive instead of fly. For a drive time of 4 or 5 hr, 

20% and 26%, respectively, would choose flying instead of driving. The results showed 

that 75.3% of the respondents had traveled by inter-regional train and 68.4% had used an 

inter-regional bus in the United States. Thirty-four percent of the respondents believed 

aMoD would be commercially available in the United States in 6 to 10 years; 28% 

predicted 3 to 5 years; less than 3% thought it would never happen. Thirty-seven percent 

believed that by 2030, half of the cars traveling on U.S. roads would be EVs, while 27% 

speculated half of the cars would be aMoD. Interestingly, 36% of the respondents 

believed half of the cars on the road would be either aMoD or EV by 2040. The 

likelihood of using aMoD instead of SF when the trip was 2-5 hr drive time was higher 

than a trip with an 8-hr drive time. 
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Figure 23 

Travel and Mode Choice Perceptions 

Note. aMoD = autonomous mobility-on-demand; EV = electric vehicle; SF = commercial 

short haul flight. 

 

The terms current and pre-COVID are used interchangeably in this study because 

when the survey was conducted, COVID-related restrictions were still dynamic, 



131 

 

particularly in travel and transportation. Therefore, the term pre-COVID was used in the 

data collection instrument so the respondents would answer the questions with a 

“normal” frame of mind. Figure 24 compares the current and future main transport 

choices when aMoD is available. Thirty-six percent (n = 498) of the current air 

passengers chose aMoD as their future primary transport mode. Table 9 shows the shifts 

in mode choices from the current to the future. Forty-five percent (n = 629) chose SF as 

their current main mode, but it fell to 21% (n = 291) for future travel. Thirty-seven 

percent (n = 514) chose driving as their current main mode, but when aMoD is available 

in the future, only 26% (n = 365) would still choose driving. Fourteen percent (n =192) 

who had chosen SF shifted to aMoD for travel in the future. There were 17% (n = 236) 

who would drive before showed intention to use aMoD as their main mode in the future. 

Thus, 36% (498 out of 1,388) of the participants who currently rely on short-haul flights 

or driving for inter-regional travel would take aMoD as their main mode of transportation 

when it becomes available to them in the future. It is important to point out that in the 

future, more participants (n = 139) anticipate traveling by inter-regional train as their 

main transportation mode compared to 81 currently. 
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Figure 24 

Pre-COVID and Future Main Transport Mode Choices 

 
Note. aMoD = autonomous mobility-on-demand; I-Bus = inter-regional bus; I-Train = 

inter-regional train; SF = commercial short-haul flight. 

 

Table 9 

Current and Future Transport Choices for Inter-Regional Travel 

Current 

Mode 

Future Mode 

aMoD SF Drive I-Bus I-Train Total 

n n n n n n 

SF 192 213 124 49 51 629 

Drive 236 50 188 13 27 514 

I-Bus 46 20 36 31 31 164 

I-Train 24 8 17 2 30 81 

Total 498 291 365 95 139 1,388 

Note. aMoD = autonomous mobility-on-demand; I-Bus = inter-regional bus; I-Train = 

inter-regional train; SF = commercial short-haul flight. 
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Figure 25 shows that 87% of respondents flew less than 10,000 mi per year. Only 

2% flew more than 25,000 mi annually. Table 10 provides more information regarding 

current and future main transport mode choices by annual miles flown. As expected, of 

the most-traveled flyers (i.e., 13% who fly more than 10,000 mi per year), 48% 

[(72+11)/(147+27)] chose SF as their primary current mode. However, in the future, 

when aMoD is available, that percentage drops to 22% [(33+5)/(147+27)], less than half 

of the current passengers. In contrast, aMoD would gain 34% [(50+9)/(147+27)] in the 

most-traveled segment of air passengers. More than half of the current most-traveled air 

passengers would choose to use aMoD as their main transport choice in the future, thus 

taking business away from the airlines. 

 

Figure 25 

Annual Domestic Miles Flown 
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Table 10 

Main Transport Mode Choices Based on Annual Miles Flown  

 
 Current Main Transportation Mode  
 SF Drive I-Bus  I-Train Total 

Annual Air Miles  n n n n n 

< 5,000 mi  207 333 42 35 617 

5,000–10,000 mi  339 143 89 26 597 

10,001–25,000 mi  72 33 28 14 147 

> 25,000 mi  11 5 5 6 27 

Total  629 514 164 81 1,388  
 Future Main Transportation Mode  

aMoD SF Drive I-Bus  I-Train Total 

Annual Air Miles n n n n n n 

< 5,000 mi 241 104 193 27 52 617 

5,000–10,000 mi 198 149 132 59 59 597 

10,001–25,000 mi 50 33 32 8 24 147 

> 25,000 mi 9 5 8 1 4 27 

Total 498 291 365 95 139 1,388 

Note. aMoD = autonomous mobility-on-demand; I-Bus = inter-regional bus; I-Train = 

inter-regional train; SF = commercial short-haul flight. 

 

COVID-19 Characteristics 

 

The following three yes/no items focused on COVID-19 related experiences.  

1. I am vaccinated against COVID-19.  

2. I have/had COVID-19.  

3. I have traveled by air during COVID.  

Responses to these three questions and information from their cross-tabulations 

provided a better understanding of travel behavior during COVID-19. Throughout the 

data collection period (October 2021), 61% of the U.S. population had been fully 

vaccinated, and 73% had received at least one dose (Mayo Clinic, n.d.). The sample 

population had a higher vaccination percentage of 85%, and 27.8% stated they had/have 

contracted COVID (see Figure 26). Slightly over half (52%) of the respondents had 
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traveled by air during the pandemic. Cross tabulations of these COVID-related results 

(with significant chi-square tests) yielded a deeper understanding of air travelers’ 

perceptions and behaviors (see Table 11). As expected, a higher percentage of the air 

travelers who fly over 5,000 mi (8,047 km) annually flew during the pandemic. Air 

passengers who selected SF or inter-regional bus as their current and future mode choices 

had a higher chance of flying during COVID. 

 

Figure 26 

COVID-19 Status 

 

 

Regarding COVID-19 immunization, air passengers who fly less than 5,000 mi 

per year had a lower percentage of vaccination (79%) than air passengers who fly over 

25,000 mi per year (96%). The air passengers who fly over 25,000 mi per year had the 

highest percentage of COVID-19 cases (52%), but those who chose inter-regional buses 

were nearly as high (51%). Travelers who selected “drive” as their main current mode 

had the lowest percentage of COVID-19 cases (18%). Air passengers who chose aMoD 

or SF also had a low percentage of COVID cases (23% and 24%, respectively).  
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Table 11 

COVID-19 cf Annual Air Miles and Main Transport Mode Choices  

 
Flew During the 

COVID Pandemic 

n = 724 

Vaccinated Against 

COVID-19 

n = 1,186 

Experienced 

COVID-19 

n = 386 

 n % n % n % 

Annual Air Miles       

< 5,000 234 38 485 79 112 18 

5,000–10,000 379 64 546 92 216 36 

10,001–25,000 95 65 129 88 44 30 

> 25,000 16 59 26 96 14 52 

Current Mode       

SF 364 58 555 88 183 29 

Drive 231 45 414 81 91 18 

I-Bus 96 59 143 87 83 51 

I-Train 33 41 74 91 29 36 

Future Mode       

aMoD 253 51 427 86 115 23 

SF 171 59 242 83 71 24 

Drive 162 44 307 84 109 30 

I-Bus 61 64 82 86 42 44 

I-Train 77 55 128 92 49 35 

Note. aMoD = autonomous mobility-on-demand; I-Bus = inter-regional bus; I-Train = 

inter-regional train; SF = commercial short-haul flight. N = 1,388. Chi-square test results 

show significant differences at the p < .001 level. 

 

Sample Representativeness. The sample demographics were compared with 

those obtained from Airlines for America (A4A) to ensure the data were representative of 

the flying population (the sample population of this study). A4A conducts an annual 

survey to track their understanding of air travelers in America. The most recent survey 

was conducted in January 2021. A sample of 10,000 air travelers (defined as someone 

over 18 years of age who has flown commercially within the past 2 years) was randomly 

drawn from Ipsos’s online panel. The gender and age characteristics of the sample were 
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compared to that of the flying population, as shown in Table 12. While the number of 

males and females between the sample and population was virtually identical, the 

participants in the sample were younger than the U.S. air passenger profile. 

 

Table 12 

Demographic Characteristics of the Participants and the Flying Population 

Characteristic Study Participants Flying Population 

 % % 

Gender   
Female 43 42 

Male 57 58 

Age (years)   

18–24 4 5 

25–34 40 16 

35–44 28 19 

45–54 19 24 

55–64 7 22 

≥ 65 2 14 

 

Descriptive Statistics 

 

Descriptive statistics were conducted using SPSS for the 21 GFT and COVID-19 

Likert scale variables in two ways: as a full sample (N = 1,388) and by the 

MODE_Future choices of aMoD (n = 498) and SF (n = 291) (see Table 13). Respondents 

who chose aMoD as a future mode choice for inter-regional travel had higher mean 

scores than SF respondents for the following variables: H1, H3, B1, B2, B3, B4, B5, C1, 

and C5. All five GFT normative goals were higher for the aMoD respondents. Air 

passengers who had chosen aMoD as their intended future mode were more 

environmentally conscious. They felt that preserving the environment was a moral 

obligation and electric vehicles were good for the environment. People who were 

important to these respondents also cared about the environment (normative), and they 
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saw themselves as environmental role models for their friends and family. These aMoD 

respondents were more worried about COVID-19 when they traveled. They had higher 

self-efficacy scores and reported their current main inter-regional transport was efficient. 

Air passengers who chose SF as their future inter-regional transport mode tended 

to have higher scores on the GFT gain goals: G2, G3, and G4. Convenience is important 

to them. They try to minimize their travel time. When traveling, they value their time 

doing something nice or useful, such as watching a movie, working, or sleeping. As loyal 

air passengers, they would not sacrifice comfort and found traveling fun. 
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Table 13 

GFT and COVID-19 Variables by aMoD and SF  

  Total aMoD SF 
 

n = 1,388 n = 498 n = 291 

Items M SD M SD M SD 

H1: Main transport is efficient 3.77 0.729 3.84 0.660 3.77 0.803 
H2: I will not sacrifice comfort 3.34 1.039 3.23 1.034 3.36 1.059 
H3: I can resolve travel issues 3.87 0.716 3.97 0.700 3.84 0.751 
H4: Predictable how I travel 3.79 0.841 3.79 0.789 3.76 0.900 
H5: Happy with main transportation 3.92 0.744 3.92 0.717 3.95 0.799 
H6: Main transport mode is safe 3.94 0.767 3.98 0.745 3.96 0.825 
H7: Traveling is fun for me 3.84 0.956 3.85 0.965 3.92 0.963 
G1: Cost is very important 3.90 0.869 3.95 0.881 3.92 0.845 
G2: Convenience is important  3.95 0.796 3.97 0.788 4.04 0.800 
G3: Minimize total travel time 3.74 0.880 3.74 0.890 3.87 0.861 
G4: When traveling, I value my time 3.81 0.845 3.81 0.817 3.97 0.798 
B1: Preserving environment 3.39 0.978 3.47 0.971 3.35 1.020 
B2: Environmental moral obligation 3.65 0.976 3.77 0.927 3.54 1.034 
B3: EV is good for environment 3.89 0.910 4.08 0.821 3.77 1.017 
B4: Care about environment 3.72 0.911 3.80 0.889 3.68 0.935 
B5: Environmental role model 3.60 1.014 3.67 0.955 3.59 1.001 
C1: COVID travel concern  3.40 1.050 3.45 1.045 3.35 1.117 
C2: Worry COVID variants get worse 3.31 1.052 3.20 1.041 3.26 1.074 
C3: Income increased since COVID 3.02 1.200 2.96 1.192 3.03 1.190 
C4: Travel by air if price is low 3.38 1.139 3.35 1.093 3.42 1.193 
C5: The economy is recovering 3.42 0.958 3.48 0.926 3.36 0.984 

Note. aMoD = autonomous mobility-on-demand; EV = electric vehicles; GFT = goal 

framing theory; SF = commercial short-haul flight.  

 

Analysis Process 

After completing the data preparation including treating missing values and 

assessing univariate and multivariate outliers, the data were ready for assumptions 

testing.  

Assumptions Testing 

Assumptions for the four principal analyses are presented in Table 14, followed 

by the tests of basic assumptions for these analyses. 
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Table 14 

Summary Table of Assumptions Testing  

  EFA MNL 2CA MANOVA  

No outliers ✓ ✓ ✓ ✓  

No missing values ✓ ✓ ✓ ✓  

Adequate sample size ✓ (>200) ✓  ✓ ✓  

Normality ✓   Multivariate  

Linearity of variables ✓     

Interval/metric data a ✓   ✓  

Inter-correlation among variables b ✓     

Homoscedasticity/Homogeneity    ✓  

No multicollinearity (< .9) ✓ ✓ ✓   

Groups of similar size   ✓   

IIA  ✓    

Independence of DV categories  ✓    

Note. 2CA = 2-step CA; DV = dependent variable; IIA = Independence of irrelevant 

alternatives. Blank cells indicate the test was not applicable. a Likert scale data are treated 

as interval data (metric) for analyses. b Used KMO and Bartlett’s test of sphericity. 

 

Sample Adequacy and Inter-Correlation Among Variables. As performed in 

the pilot EFA, the two measures used to determine sample adequacy were the KMO and 

Bartlett’s test. The KMO and Bartlett’s test results provided empirical evidence that the 

overall inter-correlation requirement was met. The observed variables were adequate and 

appropriate for use in an EFA (see the results from the KMO and Bartlett’s test in the 

EFA section). 

Univariate and Multivariate Normality. The Q-Q plots established a good 

degree of univariate normality for the GFT and COVID variables (see Figure 20). For the 

MANOVA analysis, multivariate normality (i.e., normality of multiple dependent 

variables together) must be fulfilled. Appendix H presents two different methods for 

multivariate assessment. The first was Mahalanobis distance: The Mahalanobis maximum 
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distance of 15.946 < χ2 distribution critical value of 26.296 (p = .05, df = 16) indicates 

multivariate normality exists. The second method employed IBM AMOS to calculate 

kurtosis. A kurtosis of 0 means perfect normality and K < 5 is acceptable (Byrne, 2010). 

As seen in Appendix H, all Kurtosis values were < 1. Both methods provided evidence 

that multivariate normality exists, and no variable transformation was necessary to ensure 

the model fit.  

Linearity. As an important test assumption for many multivariate analyses, 

linearity assumes that the correlation between variables is linear. To test this assumption, 

the bivariate correlation for each pair of variables was examined to detect any non-linear 

correlation. The SPSS output in Appendix I shows the Pearson correlation coefficients 

between all pairs of variables along with significance levels. As reported in its table note, 

one asterisk indicates the correlation is significant at the .05 significance level, two 

asterisks denote the correlation is significant at the .01 level, and 91% of all bivariate 

correlations were significant, indicating linearity.  

There were only four negative correlations, and all were non-significant between: 

• C3 (negative COVID Income), as expected, and H1 (Efficiency), H5 

(Satisfaction), and H6 (Trust). 

• C4 (COVID Ticket Price) and C1 (COVID fear). 

The other non-significant bivariate correlations were between:  

• C1 (COVID Fear) and H3 (Self-efficacy) and H6 (Trust). 

• G2 (Convenience) and C2 (COVID Variants), C3 (negative COVID Income), 

and C4 (COVID Ticket Price). 



142 

 

Homoscedasticity / Homogeneity of Variance. The assumption of 

homoscedasticity implies that the variance of the residuals is equal across the whole 

continuum of the independent variable. In other words, the assumption of 

homoscedasticity indicates that the prediction equation is equally good for the entire 

spectrum of the data. There are two ways to test for the assumption of homoscedasticity. 

The first is based on an examination of a scatterplot. From the visual inspection, the 

condition of homoscedasticity is not satisfied. The second method is to use correlation. 

The SPSS output in Appendix J shows that the Pearson correlation of −.254 and the 

Spearman correlation of −.206 are statistically significant at the .01 level. Therefore, the 

assumption of homoscedasticity was not satisfied. 

Multicollinearity. The presence of multicollinearity in regression analysis 

implies that redundant information exists in the model, which can lead to unstable 

regression coefficient estimates (Hair et al., 2017). Multicollinearity occurs when two or 

more of the IVs (predictor variables) are highly correlated (> .9). While there are many 

tests for multicollinearity, three common methods are correlation analysis, tolerance, and 

the variance inflation factor (VIF). The SPSS outputs in Appendix I and Appendix K 

show that these tests were within the guidelines indicating no multicollinearity. 

Independence of DV Categories. As a part of the MNL assumptions, the 

independence of DV categories was fulfilled. The DV is MODE_Future (Future main 

inter-regional transport mode) which has five discreet and independent categories: aMoD, 

Drive, SF, Inter-regional Bus, and Inter-regional Train. Respondents were allowed to 

choose only one of the five as their main transport mode for inter-regional travel in the 

future once aMoD is available. 
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Exploratory Factor Analysis Results 

Assumptions for EFA were tested and the observed variables were found 

adequate and appropriate for use in an EFA. The next steps were:  

1. Determine the extraction and rotation methods.  

2. Assess the number of factors to be retained.  

3. Describe the factors and the items loaded on the factor.  

4. examine the reliability and validity.  

Interpretation of the results is presented in Chapter V. 

Extraction and Rotation Methods. The EFA used the principal component 

analysis (PCA) extraction method as data reduction was a primary objective. PCA 

focused on the minimum number of factors needed to account for the maximum portion 

of the total variance. Typically, rotation causes factor loadings to be more clearly 

differentiated. The oblique Promax rotation was appropriate for this study because it 

handles a large dataset well and assumes correlations among the variables. 

Factor Loadings. Small factor loadings (coefficients) with absolute values less 

than .3 were suppressed to avoid showing low factor loadings in the matrix. Factor 

loadings greater than .5 were acceptable. There were cross-factor loadings where an item 

could be attributed to more than one factor in the initial models. However, the final EFA 

model presents factor loadings greater than .5 with no cross-factor loadings. 

Scree Plot. Figure 27 shows the four-construct model based on the cut-off point 

of eigenvalue of 1. This was confirmed by the pattern matrix shown in Table 15. 
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Figure 27 

Scree Plot Showing a Four-Construct Structure 

 

 

Sample Adequacy and Inter-Correlation Among Variables. The KMO 

generally indicates whether the variables can group into a smaller set of underlying 

factors. A KMO value of > .6 is an indication to proceed. The KMO measure of sampling 

adequacy (MSA) = .813. Bartlett’s test of sphericity was significant: χ2 (120) = 4750.484, 

p < .001. The anti-image matrix shows the individual MSA test for each item > .5. The 

extracted communalities were good, with values > .25. All 16 items > .40, and 10 items 

had communalities extraction > .5. The results of KMO, Bartlett’s test, the individual 

MSAs, and extracted communalities all provided empirical evidence that the overall 

inter-correlation requirement was met; thus, the observed variables were adequate and 

appropriate for use in an EFA. 

Total Variance Explained. In total, the four constructs extracted explained 

52.6% of the variance in the model. The first factor (F1) for the GFT Normative Goal 

was the most important and explained almost half of the variance (24.4%). The second 

factor (F2) for GFT Hedonic Goal explained 12.6% of the variance. The third factor (F3) 
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for the COVID-19 Influence explained 8.6% of the variance. The fourth factor (F4) for 

the GFT Gain Goal explained 7% of the variance. 

Pattern Matrix. The final 4-factor EFA model presented itself neatly in the 

pattern matrix, as shown in Table 15. F1 had five items that formed the GFT Normative 

Goal. Even though two of the items (C1 and C2) would be expected to group with the 

COVID-19 related items rather than the normative items, it is understandable that C1 and 

C2 are in F1 because the media and personal subjective norms potentially influence 

COVID concerns. F2 also had five items that formed the GFT Hedonic Goal naturally. 

The F3 had three items grouped together to form COVID-19 Financial Influence, and F4 

had three items that formed the GFT Gain Goal. Four items were removed during the 

EFA process: GFT Hedonic H2: I will not sacrifice comfort even if I have to pay slightly 

more, GFT Hedonic H4: I am quite predictable in terms of how I travel, GFT Gain G1: 

Cost is very important to me when I travel for leisure, and GFT Normative B1: 

Preserving the environment is very important when I decide how I travel. 
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Table 15 

Pattern Matrix of the Final EFA Model  

  Items in Pattern Matrix a Constructs 

  1 2 3 4 

B2 I feel a moral obligation to protect the environment. 0.802 
   

B4 People who are important to me tend to care about the 

environment. 

0.728 
   

B5 It is important for me to be a role model for my family in 

environmental protection. 

0.766 
   

C1 I am concerned with getting COVID when I travel. 0.686 
   

C2 I think COVID and its variants will get worse. 0.581 
   

H1 Generally, my main transport mode for inter-regional 

travel is efficient. 

 
0.645 

  

H3 I believe issues that may pop up during my travels can 

be resolved. 

 
0.618 

  

H5 Most of the time, I am happy with the transportation I 

use when I travel to other cities. 

 
0.662 

  

H6 In general, I trust my main inter-regional transport mode 

is safe. 

 
0.643 

  

H7 Traveling is fun for me. 
 

0.625 
  

C3 My disposable income has increased since COVID 

started. 

  
0.727 

 

C4 Even during COVID, I could be tempted to travel by air 

if the ticket price was low enough. 

  
0.792 

 

C5 I think the economy is gradually recovering. 
  

0.490 
 

G2 Convenience is very important to me when I travel. 
   

0.589 

G3 I usually try to minimize my total travel time. 
   

0.783 

G4 When I travel, I value my time doing something nice or 

useful, such as watching a movie, working, or sleeping. 

      0.540 

Note. PCA extraction method. Promax with Kaiser Normalization rotation method. 

a Rotation converged in five iterations. 

 

Validity and Reliability Assessment 

This section describes procedures that provided evidence of the validity and 

reliability of the instrument.  

Discriminant validity. The Heterotrait-Monotrait Ratio (HTMT) values in Table 

16 show that all values are below .85. According to Kline (2016), this demonstrates 

evidence of discriminant validity. Appendix I shows that the item correlation coefficients 
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that were not between factors (i.e., non-shaded areas) were mostly < .2, providing further 

evidence of discriminant validity. 

 

Table 16 

HTMT Values Showing Discriminant Validity  

  F1 F2 F3 F4 

F1      
F2 0.36     
F3 0.48 0.28    
F4 0.41 0.67 0.38   

Note. HTMT = Heterotrait-Monotrait Ratio. 

 

Convergent Validity. All factor loadings for the items within each construct were 

statistically significant and mostly ranged between .3 and .7 (i.e., colored areas in 

Appendix I), indicating good convergent validity. 

Reliability Assessment. Table 17 presents the final constructs with the items and 

α. F1 (GFT Normative Goal) and F2 (GFT Hedonic Goal) have good α. F3 (COVID-19 

Financial) and F4 (GFT Gain Goal) have marginally acceptable α (Kline, 2016). These 

results show that internal consistency for these constructs is reasonable.  
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Table 17 

Final Constructs, Items, and Internal Consistency 

Construct  Item α 

F1: GFT 

normative 

goal 

B2 I feel a moral obligation to protect the environment. 

0.761 

B4 People who are important to me tend to care about the environment.  

B5 
It is important for me to be a role model for my family in 

environmental protection. 

C1 I am concerned with getting COVID when I travel. 

C2 I think COVID and its variants will get worse. 

F2: GFT 

hedonic 

goal 

H1 Generally, my main transport mode for inter-regional travel is efficient. 

0.691 

H3 I believe issues that may pop up during my travels can be resolved. 

H5 
Most of the time, I am happy with the transportation I use when I travel 

to other cities. 

H6 
In general, I trust my main inter-regional transport  

mode is safe. 

H7 Traveling is fun for me. 

F3: 

COVID-19 

financial 

C3 My disposable income has increased since COVID started. 

0.534 C4 
Even during COVID, I could be tempted to travel by air if the ticket 

price was low enough. 

C5 I think the economy is gradually recovering. 

F4: GFT 

gain goal 

G2 Convenience is very important to me when I travel. 

0.584 
G3 I usually try to minimize my total travel time. 

G4 
When I travel, I value my time doing something nice or useful, such as 

watching a movie, working, or sleeping. 

Note. GFT = goal framing theory. 

 

Five COVID-19 items were added to this research to test any pandemic effects in 

the MNL and CA models. As mentioned earlier, C1 and C2 were expected to group under 

COVID-19, but instead, they grouped under the Normative construct. As a data-driven 

method, EFA was useful to validate the observed variables and the latent constructs. It is 

logical for C1 and C2 to be in F1 (the Normative goal) because the media and an 

individual’s subjective norms potentially influence COVID concerns. Further discussion 

of the EFA model with and without the COVID items is provided in Chapter V. 

Multinomial Logistic Regression Analysis Results 

 

The previous sections focused on data preparation, assumptions testing, reliability 

and validity assessments, data reduction, and construct confirmation. With the validated 
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EFA model, the four latent constructs were used in the MNL models. To answer RQ1, 

respondents were asked to select their future transportation mode, which was used as the 

dependent variable in the MNL models: “In the future, assuming safety, legal, and 

regulation issues are solved, and driverless cars are readily available in everyday life, 

what do you think you would use most for inter-regional travel?” Five categories were 

offered to the respondents to simulate real-life options once aMoD is available. Sample 

sizes by future mode choice were: aMoD (n = 498; 35.9%), SF (n = 291; 21%), Drive (n 

= 365; 26.3%), Inter-regional bus (n = 95; 6.8%), and Inter-regional train (n = 139; 10%). 

While the DV for the three MNL models stayed the same, each of the three MNL models 

had a different mix of independent variables to determine the best MNL model. Table 18 

shows three MNL models with a summary of the key results. 

Model Fit 

The model fit information was used to evaluate the overall fit of the MNL models. 

Table 18 shows the test results for all three MNL models. 

The likelihood ratio chi-square (χ2) test (stepwise method) indicated statistical 

significance, meaning there was a significant improvement in the fit of each of the 

models relative to the baseline null model with no predictors. It also provided evidence of 

a significant relationship between the DV and IVs in all three MNL models. All three 

MNL models showed non-significant Pearson and deviance chi-square results, indicating 

that these models all had a good model fit. 
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Table 18 

Three MNL Models with Key Results 

 Model 1 Model 2 Model 3 

IVs 

(Predictors) 

F1: GFT Normative Goal F1 5 GFT Hedonic 

F2: GFT Hedonic Goal F2 3 GFT Gain 

F3: COVID Economic F3 3 GFT Normative 

F4: GFT Gain Goal F4 5 COVID-19 

MODE_Current 
MODE_Current 

13 demographics 

MODE_Current 

13 demographics 
 7 contextual trip 7 contextual trip 

# IVs n = 5 n = 25 n = 37 

Model Fit Results 

Likelihood-

Ratio χ2 

χ2(28) = 337.945 

p < .001 

χ2(100) = 379.734 

p < .001 

χ2(348) = 799.415 

p < .001 

Pearson χ2 
χ2(5400) = 5113.376 

p > .05 

χ2(5432) = 5124.377 

p > .05 

χ2(5184) = 4993.616 

p > .05 

Deviance χ2 
χ2(5400) = 3646.232 

p > .05 

χ2(5432) = 3667.496 

p > .05 

χ2(5184) = 3247.816 

p > .05 

Pseudo R2 Results 

Cox & Snell  0.216 0.239 0.438 

Nagelkerke 0.228 0.253 0.463 

McFadden 0.083 0.094 0.197 

Significant Predictors 

 

F1 F1 
C1 (Travel COVID fear) 

C2 (COVID variants fear) 

F2 F2 H1 (Travel efficiency) 

F3 F4 
H3 (Self-efficacy) 

H5 (Transport satisfaction) 
  G3 (Min. total travel time) 
  G4 (Value of time) 

  B4 (Environment 

subjective norm) b 

MODE_Current MODE_Current MODE_Current 

 Household income Household income 
 Years with driver's license Years with driver's license 

 Air travel during COVID Annual miles flown b 

 F3 b Age 

 Business travel freq. b 

No. of cars owned by HH 

Neighborhood type 

Family/self-mobility issues 

Note. Stepwise method. aMoD = autonomous mobility-on-demand; Freq. = frequency; 

GFT = goal framing theory; HH = household; SF = commercial short-haul flight; MNL = 

multinomial logistic regression; Min. = minimum; No. = number.  

a Inter-regional travel ≤ 500 mi (800 km). b p  .05. 
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The pseudo R2 values improved from M1 to M2 to M3. There is no strong 

guidance in the literature on how these should be interpreted, but Smith and McKenna 

(2013) suggest the rule of thumb for an indicator of a good fit should be in the range of .2 

to .4 (p. 18). Using this guideline, the Pseudo R2 measures for M3 exhibited the best 

model fit—Cox and Snell (.438), Nagelkerke (.463), and McFadden (.197)—indicating 

M3 accounted for 19.7% to 46.3% of the variance that was observed in the outcome, 

which can be explained by the IVs in M3. These Pseudo R2 values were synonymous with 

the effect size; therefore, M3 represented good-sized effects (Smith & McKenna, 2013). 

Effects of the IVs 

The Likelihood Ratio tests provided evaluations of the overall contribution of 

each IV to the models (using the conventional =.05 threshold). Significant predictors 

(p < .05) of all three MNL models are presented in Table 18. For M1, four of the five IVs 

were significant predictors of the future transport mode choice: F1: χ2(4) = 32.449, 

p < .001; F2: χ2(4) = 26.325, p < .001; F4: χ2(4) = 4.908, p < .001; and MODE_Pre-

COVID: χ2(12) = 206.711, p < .001. M2 and M3 had 9 and 16 significant predictors, 

respectively. Mode_Current was a common predictor for all three models, whereas 

Household Income and Years with a Driver’s License were common predictors for M2 

and M3. Since M3 used all observed variables (instead of the four latent constructs), the 

GFT and COVID variables revealed added “characters” within the latent constructs: 

• GFT Hedonic Goal: H1 (Efficiency), H3 (Self-efficacy), and H5 (Satisfaction) 

• GFT Gain Goal: G3 (Min total travel time) and G4 (Value of time) 

• GFT Normative Goal: B4 (Environment subjective norm) 

• COVID Influence: C1 (Travel COVID fear) and C2 (COVID variants fear) 
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Parameter Estimates: Odds Ratio 

All three MNL models exhibited good model fit. However, M3 had the highest 

overall pseudo R2 (Nagelkerke R2 = .463) and predictive percentages (48.4%) and was 

selected to be the best MNL model for the odds ratio analysis. The result from the 

statistically significant parameter estimates of M3 is presented in Table 19.  

 

Table 19 

Statistically Significant Parameter Estimates for MNL Model 3 

Future Main Mode B 
Std. 

Error 
Wald df p a Exp(B) 

aMoD 

B2: Environmental moral obligation 0.320 0.11 9.03 1 0.003 1.377 

H3: Travel issues can be resolved 0.351 0.12 8.19 1 0.004 1.420 

H5: Happy with main transportation 0.626 0.30 4.29 1 0.038 1.871 

G4: When I travel, I value my time -0.242 0.11 4.98 1 0.026 0.785 

C5: Economy is recovering 0.211 0.10 4.97 1 0.026 1.235 

[MODE_Current = SF] -0.384 0.11 13.25 1 < .001 0.681 

Drive 

Have/Had COVID -0.503 0.22 5.31 1 0.021 0.605 

Family or Self with Mobility Issue -0.487 0.24 4.08 1 0.043 0.614 

Traveled by Air during COVID 0.703 0.19 14.01 1 < .001 2.019 

Vaccinated against COVID -0.623 0.28 4.94 1 0.026 0.537 

G4: When I travel, I value my time -0.381 0.12 10.93 1 < .001 0.683 

No. of Cars owned by Household -0.330 0.16 4.55 1 0.033 0.719 

[MODE_Current = SF] -1.538 0.49 9.96 1 0.002 0.215 

I -Bus 
C4: SF if the price was low enough 0.365 0.15 5.72 1 0.017 1.440 

G3: Minimize total travel time -0.559 0.17 10.31 1 0.001 0.572 

I -

Train 

Highest Level of Education 0.452 0.19 5.70 1 0.017 1.571 

No. of Cars owned by Household -0.402 0.19 4.30 1 0.038 0.669 

Total Household Income 0.364 0.13 8.01 1 0.005 1.439 

[MODE_Current = Drive] -2.172 0.56 15.02 1 < .001 0.114 

[MODE_Current = SF] -3.496 0.51 47.67 1 < .001 0.030 

Note. MNL = multinomial logistic regression; No. = number. SF = commercial short-haul 

flight. The reference category is SF. a Significance is at the 5% level of confidence. 

 

For respondents who had chosen aMoD as their future transport mode, six 

predictor variables were statistically significant (B2, H3, H5, G4, C5, and 

MODE_Current = SF). The parameter estimates B coefficients and odds ratio Exp(B) 
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provided information comparing each transport mode choice against SF, the reference 

category. The B coefficients demonstrated the signs of the effects. For example, among 

the respondents who chose aMoD instead of SF as their future mode, the more they 

valued their time (G4), the less likely they chose aMoD over SF. In other words, 

respondents who valued their time were more likely to select SF as their future transport 

mode. Respondents who were more loyal to SF (MODE_Current = SF) would be less 

likely to choose aMoD. Naturally, loyal SF respondents were more likely to choose SF as 

their future transport mode. Respondents who scored higher on self-efficacy (H3) were 

more likely to choose aMoD than SF. Similarly, respondents who scored higher on 

environmental moral obligation (B2) and felt that the economy was recovering (C5) were 

more likely to choose aMoD than SF. 

The odds ratio Exp(B) reflected the change in the odds concerning group 

membership for every one-unit increase on the predictor variable (see Appendix L). The 

odds ratio value > 1 indicated that the odds of the outcome falling in the aMoD (the 

comparison group) relative to the odds of the outcome falling in SF (the reference group) 

increases as the variable increases. Thus, aMoD (the comparison outcome) is more likely. 

Using the aMoD respondents as an example again, respondents who scored one point 

higher on environmental moral obligation were 1.377 times more likely to use aMoD 

than SF. For respondents who chose aMoD as their future transport mode, those who 

rated self-efficacy one point higher (from 4 to 5 on the Likert scale) were 1.42 times 

more likely to use aMoD than SF. Regarding the value of time, the B coefficient was 

negative (− 0.242) and the Exp(B) = 0.785. This means that aMoD respondents who 

scored one point higher on the value of time were more likely to choose SF than aMoD 



154 

 

by a factor of 0.785, meaning the odds were decreasing with the increasing score on the 

value of time. As the score for the value of time increases by one point (from 4 to 5 on 

the Likert scale), the odds ratio for a respondent choosing aMoD compared to SF 

decreases by 21.5% (1 – 0.785). 

Similarly, MODE_Current = SF had a significant negative impact on the future 

MODE choice of the respondents (B = − 0.384, Wald = 13.25, p < .001). As Current 

MAIN MODE=SF increased by 1 unit, the odds ratio for a respondent choosing aMoD 

compared to SF decreased by 31.9% (1 − 0.681), assuming the other predictors were 

constant. Age, gender, education, household income, number of children, neighborhood, 

prior car accidents, mobility issues, drive frequency, annual fly miles, COVID 

vaccination, the distance between home and the nearest airport, as well as the percentage 

of direct flights to destinations were not statistically significant in influencing future 

mode choice for aMoD compared to SF.  

There were seven predictors for the future transport choice “to drive or ride” 

instead of SF. Three of the seven were COVID related: whether the respondent had 

contracted COVID, traveled by air during COVID, and were vaccinated against COVID. 

If the respondent had contracted COVID-19, the odds of choosing SF instead of driving 

were reduced by 39.5%. Yet, if the respondent had traveled by air during the pandemic, 

they were 2.02 times more likely to choose to drive instead of flying. This shows that 

COVID-19 had a significant impact on the respondents’ choice of future transport mode 

if they had chosen the “drive” option as their future mode choice. 

There were only two predictors of inter-regional bus transportation choice: C4 

(SF if the price was low enough) and G3 (minimize total travel time). When C4 increased 
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by one point, the odds of the respondents choosing inter-regional bus travel over SF 

increased by 1.44 times. This seems logical. Someone who responded to C4 with a 5 

(strongly agree) on the Likert scale would be 1.44 times more likely to choose inter-

regional bus than SF compared to a respondent who responded to the item with a 4 

(agree), as fare cost might be one of the motivators for choosing inter-regional bus as a 

transport mode. G3 (minimize total travel time) has a significant negative impact on the 

choice of inter-regional bus compared to SF. As the score of minimizing total travel time 

increased by one point, the odds ratio for a respondent choosing aMoD compared to SF 

decreased by 42.8% (1 – 0.572). Inter-regional train had five predictors: education, 

number of cars owned by the household, total household income, and the current mode 

choices for Drive and SF. 

In summary, three multinomial logistic regression models were tested to 

determine if any of the combinations of the four latent constructs, the GFT variables, the 

COVID-19 variables, the 13 demographics, and the seven contextual trip variables best 

predicted the likelihood of the future transport mode choice for inter-regional trips when 

aMoD is available. The results of MNL Model 3 were statistically significant: 

χ2(348) = 799.415, p < .001, and with a good effect size, Nagelkerke R2  = .463. Twelve 

IVs were statistically significant in predicting the future mode choice 48.4% of the time. 

Model 3 correctly predicted aMoD as a future mode choice 65.5% of the time. SF was 

correctly predicted 45% of the time.  

2-Step Cluster Analysis Results for aMoD and SF 

The 2-step CA results were used to answer RQ2 to determine distinct passenger 

clusters for SF and aMoD and identify the similarities and differences within the SF and 
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aMoD segments. CA works effectively with a concise model with fewer variables: only 

the four latent constructs—GFT Hendonic Goal, GFT Gain Goal, GFT Normative Goal, 

and COVID Financial—were used to cluster the distinct aMoD and SF groups. 

aMoD Clusters 

Ward’s method was chosen to create more evenly sized clusters. The squared 

Euclidean distance was selected as the interval measure. The visual evaluation based on 

the dendrogram generated from the aMoD hierarchical clustering (as shown in Figure 28) 

shows that the 2-, 3-, and 5-cluster solutions seemed to offer a good solution. Using the 

K-means clustering algorithm, the 2-cluster aMoD solution stabilized after the 7th 

iteration, the fastest to stabilize compared to the 3-cluster solution (18th iteration) and 5-

cluster solution (8th iteration). All clustering criteria were statistically significant; the 

high F values indicated that they were all critical in determining the clustering of 

passengers.  

 

Figure 28 

Dendrograms of aMoD Clusters Showing 2-, 3-, and 5-Cluster Solutions 

 
Note. Dendrograms are using Ward linkage with rescaled distance. The pink ovals 

identify cluster solutions.  
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Figure 29 shows the final cluster centers of the four latent constructs and the 

cluster quality of the 2- and 5-cluster solutions based on the silhouette measure of 

cohesion and separation, which simultaneously measured how the data points were within 

each cluster and how the clusters were different from one another. CA would only be 

appropriate for the data if the cluster quality was good. The aMoD 2-cluster solution 

showed a better cluster quality than the 5-cluster solution. 

 

Figure 29 

Final Cluster Centers of the 2-Cluster and 5-Cluster aMoD Models 

 
Note. Left image: Final aMoD cluster centers for the four latent constructs and cluster 

quality for the 2-cluster solution. Right image: Final aMoD cluster centers for the four 

latent constructs and cluster quality for the 5-cluster solution. 

 

Validating the Optimal aMoD Cluster Solution. Four methods were used to 

validate the 2-cluster solution as a stable and meaningful aMoD cluster model: 
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1. Iteration History Using the K-Means Algorithm. The aMoD 2-cluster 

solution stabilized after the 7th iteration, the fastest to stabilize compared to 

other solutions. 

2. Final Cluster Centers. All cluster solutions had different initial and final 

cluster centers. The 2-cluster aMoD solution demonstrated highly 

discriminatory final cluster centers, as shown in Figure 29. 

3. Agglomeration Coefficients. Table 20 shows that the largest percentage 

increase in the agglomeration coefficient (24.05%) occurred when 

transitioning from a 2-cluster solution to a single cluster solution, indicating 

that the 2-cluster aMoD solution would be the most stable. 

4. Significantly Different Means with High F Values. While all cluster 

solutions yielded significant F tests, the 2-cluster ANOVA identified that the 

means of F1, F2, F3, and F4 were statistically significant with high F values, 

providing further evidence that the clusters were valid:  

F1: F(496) = 172.400, p < .001, F2: F(496)  = 148.434, p < .001,  

F3: F(496) = 98.281, p < .001, and F4: F(496) = 234.694, p < .001.  

Evaluation of the dendrogram, iteration history, final cluster centers, cluster 

quality, agglomeration schedule, and high F-values provided evidence that a 2-cluster 

solution had more discriminant clusters for the aMoD model. Therefore, the 2-cluster 

aMoD solution was adopted.  
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Table 20 

Agglomeration Schedule for aMoD Clusters  

Stage Cluster Combined Coefficients % Increase 

in 

Coefficient 

Number of 

Clusters Cluster 

1 

Cluster 

2 

1 418 419 0 0 498 

2 417 418 0 0 497 

… 
     

492 1 2 914.637 8.06 6 

493 6 7 986.799 7.89 5 

494 16 181 1129.032 14.41 4 

495 6 29 1286.465 13.94 3 

496 1 6 1497.620 16.41 2 

497 1 16 1857.780 24.05 1 

Note. aMoD = mobility-on-demand. 

 

Figure 30 shows the cluster comparison with the box and whiskers which 

provided another good visual presentation of the differences between the two aMoD 

clusters. The whiskers were the horizontal line with a square cluster median. The box 

represents one standard deviation on each side, with the middle line being the mean of 

that latent construct. 

 

Figure 30 

Cluster Comparisons of the aMoD Model: Four Constructs 

 
Note. Cluster 1: Blue boxes and whiskers. Cluster 2: Red boxes and whiskers. 
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The cluster model fit was evaluated using the F-value. Results of the MANOVA 

indicated that there was a statistically significant difference between the two aMoD 

clusters (Clusters 1 and 2) on the combined DVs: Wilks lambda = .303, F(31, 466) = 

34.620, p < .001, partial Eta2 = .697, observed power > .99. (Four multivariate tests: 

Pillai’s trace, Wilks’ lambda, Hotelling’s trace, and Roy’s largest root were conducted, 

and all yielded similar results). The effect size (practical significance) was large, 

accounting for 69.7% of the variance of the DV. The observed power of .99 indicated a 

99% chance that the results could have been significant. Therefore, follow-up ANOVA 

tests were conducted.  

Profiling the Two aMoD Clusters. Examining the demographic and contextual 

trip variables not included in the cluster variates provided a richer description of the two 

aMoD clusters. Of the 29 variables, 18 showed statistically significant differences 

between the clusters and were used to identify the differences across the two aMoD 

clusters (See Table 21). Because they are nominal variables, cross-classification with chi-

square tests was used to identify the group similarities (statistically non-significant chi-

square values) and differences (statistically significant chi-square values). Post-hoc tests 

were unnecessary because the IV (aMoD_2C) had only two categories (Cluster 1 and 

Cluster 2).  

Appendix M presents the cluster details of the remaining 11 demographic and 

contextual trip variables with non-significant chi-square values. These 11 variables are 

similar between the two aMoD clusters: age, number of driver’s licenses in the 

household, number of cars owned by the household, years with driver’s license, weekly 

drive frequency, car accident when the respondent or someone was injured, whether the 
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respondent indicated “yes” to have/had COVID, whether the respondent had traveled by 

air during COVID, the distance between home and the nearest airport, and perception of 

aMoD timing in the United States. It is important to note that the segment characteristics 

are probabilistic (and not deterministic), meaning the cluster descriptions may not 

necessarily apply to all members of a cluster. 

 

Table 21 

Profiles of the Two aMoD Clusters  
 

Cluster 1a Cluster 2b       

Demographic and Trip 

Characteristics 

Suburban 

Rural Drivers 

Urban Educated 

Flyers 

Chi-Square Results 

% χ2 df p 

Education   29.401 4 < .001 

Attended high school 0% 0%    
High school diploma 26% 10%    
Bachelor’s degree 55% 58%    
Master’s degree 18% 32%    
Ph.D./Postdoc 2% 0%    

Household Income   11.909 5 .036 

 < $30,000 13% 14%    
$30,001 to $50,000 27% 21%    
$50,001 to $100,000 41% 47%    
$100,001 to $150,000 13% 11%    
$150,001 to $200,000 3% 7%    
> $200,000 3% 1%    

No. of Children in Household   14.941 3 .002 

0 46% 31%    
1 30% 32%    
2 20% 31%    
3 or more 4% 6%    

Mobility Issue   6.356 1 .012 

Yes 15% 24%    
No 85% 76%    

Neighborhood    19.173 3 < .001 

City 35% 54%    
Suburb 41% 29%    
Small city 13% 10%    
Rural/Village 12% 7%    

Business Travel    35.609 3 < .001 

Once a year 13% 13%    
2-6 times a year 42% 51%    
7 or more times a year 11% 22%    
Did not travel for business 34% 13%    

% Direct Flights from Home 

Airport    19.096 4 < .001 
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Cluster 1a Cluster 2b       

Demographic and Trip 

Characteristics 

Suburban 

Rural Drivers 

Urban Educated 

Flyers 

Chi-Square Results 

% χ2 df p 

0-20 14% 5%    
21-40 26% 33%    
41-60 28% 38%    
61-80 18% 14%    
Over 80 15% 10%    

MODE_Current   29.946 3 < .001 

Drive 59% 35%    
SF 32% 46%    
Inter-regional Bus 7% 12%    
Inter-regional Train 2% 7%    

Inter-Regional Bus Used   12.655 1 < .001 

Yes 60% 75%    
No 40% 25%    

Inter-Regional Train Used   28.53 1 < .001 

Yes 64% 85%    
No 36% 15%    

Annual Miles Flown   8.436 3 0.038 

< 5,000 mi 53% 44%    
5,000–10,000 mi 39% 41%    
10,001–25,000 mi 7% 14%    
> 25,000 mi 2% 2%    

No. of People Traveling for 

Leisure by Car   19.535 3 < .001 

1 10% 5%    
2 40% 27%    
3 33% 44%    
4 or more 17% 24%    

No. of People Traveling for 

Leisure by Air   24.921 3 < .001 

1 20% 11%    
2 42% 36%    
3 26% 25%    
4 or more 12% 28%    

Fly If Over a Certain Drive Time   13.305 5 .021 

3 hr 10% 19%    
4 hr 20% 21%    
5 hr 19% 24%    
6 hr 19% 14%    
7 hr 8% 7%    
8 hr 24% 17%    

Timing When 50% Cars are aMoD   21.073 4 < .001 

By 2030 22% 36%    
By 2040 40% 42%    
By 2050 30% 18%    
Beyond 2050 8% 4%    
Never 0% 1%    

Timing When 50% Cars are EV   19.154 4 < .001 

By 2030 34% 52%    
By 2040 42% 28%    
By 2050 18% 17%    
Beyond 2050 5% 3%    
Never 1% 1%    
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Cluster 1a Cluster 2b       

Demographic and Trip 

Characteristics 

Suburban 

Rural Drivers 

Urban Educated 

Flyers 

Chi-Square Results 

% χ2 df p 

% Work from Home During 

COVID   25.528 5 < .001 

100% 34% 35%    
75% 24% 31%    
50% 13% 19%    
25% 7% 8%    
0% 17% 6%    
I do not work 6% 1%    

Vaccinated Against COVID   3.842 1 .047 

Yes 83% 89%    
No 17% 11%       

Note. aMoD = Autonomous mobility-on-demand; EV = electric vehicles; SF = 

commercial short-haul flight. a Cluster 1: n = 255 (51.2%). b Cluster 2: n = 243 (48.8%). 

 

To explore deeper, Hair et al. (2018, p. 227) suggest that the original variables 

may provide additional information to the clusters if the cluster analysis is performed 

using EFA scores. A one-way multivariate analysis of variance (MANOVA) was 

conducted to investigate if the 16 GFT observed items and the five COVID-19 variables 

differed significantly between the two aMoD clusters. Earlier in this chapter, Shapiro-

Wilks indicated that the assumption of normality was fulfilled (p < .05). Mahalanobis 

distance was used to assess multivariate outliers; the critical value was not exceeded, 

making this assumption tenable. The association between the DVs was significant. The 

correlation coefficient was less than .9; thus, multicollinearity was not a concern. 

However, the assumption of the homogeneity of variance-covariance was violated based 

on the results of the Box’s test: M = 793.848, F(496, 740319.266) = 1.498, p  < .001.  

The tests of between-subjects effects showed the significance and the level of 

impact of the aMoD cluster membership on each of the DVs. Table 22 shows significant 

differences in the variable means between the two clusters. Results from the MANOVA 
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tests demonstrated sufficient evidence to support the statistically significant differences 

between aMoD Clusters 1 and 2 for each of the 4 EFA constructs, the 16 GFT variables, 

and the 5 COVID-19 variables. Figures 30 and 31 graphically illustrate the differences 

between the aMoD clusters at the latent factor level and the observed variable level, 

respectively. To explain the significant relationships at the variable level, G3, G4, and H4 

were used as examples. G3, G4, and H4 had large effect sizes indicating there was a large 

practical significance: G3 (minimize travel time): F(1, 496) = 145.417, p < .001, partial 

Eta2 = .227, observed power > .99; G4 (value of time): F(1, 496) = 197.373, p < .001, 

partial Eta2 = .285, observed power > .99; H3 (self-efficacy): F(1, 496) = 74.249, p < 

.001, partial Eta2 = .130, observed power > .99. The strength of the relationship between 

G3 and the cluster membership was strong, accounting for 22.7% of the variance of the 

DV, and G4 accounted for 28.5% of the variance of the DV. The observed power of over 

.99 indicated an over 99% chance that the results could have become significant. As 

shown in Table 22, Cluster 1 had all negative mean scores on the 4-factor clustering 

criteria, whereas Cluster 2 had all positive scores. The passengers in aMoD Cluster 2 had 

significantly higher mean scores than Cluster 1 for all latent factors and the GFT and 

COVID-19 attributes. 
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Table 22 

Comparisons Between aMoD Clusters 

  Cluster 

1a 

Cluster 

2b 

  MANOVA 

Results 

  

EFA Factors M M F-ratio Sig. Partial 

Eta2 

F1: GFT_Norm -0.39 0.55 172.400 < .001 0.258 

F2: GFT_Hedonic -0.35 0.58 148.434 < .001 0.230 

F3: COVID_Financial -0.41 0.37 98.281 < .001 0.165 

F4: GFT_Gain -0.57 0.58 234.694 < .001 0.321 

GFT and COVID-19 Variables           

B1: Preserving environment 3.12 3.84 79.785 < .001 0.139 

B2: Environmental moral obligation 3.44 4.11 73.087 < .001 0.128 

B3: EV good for environment 3.85 4.32 44.365 < .001 0.082 

B4: Care about environment 3.52 4.10 58.535 < .001 0.106 

B5: Environmental role model 4.25 4.12 132.509 < .001 0.211 

C1: COVID travel concerns  3.14 3.77 50.728 < .001 0.093 

C2: COVID variants will get worse 2.89 3.52 51.179 < .001 0.094 

C3: Income increased with COVID 2.61 3.33 49.448 < .001 0.091 

C4: Travel by air if the price is low 3.05 3.67 43.440 < .001 0.081 

C5: The economy is recovering 3.16 3.82 73.803 < .001 0.130 

G1: Cost is very important 3.86 4.04 5.145 .024 0.010 

G2: Convenience is important  3.66 4.30 100.207 < .001 0.168 

G3: Minimize total travel time 3.33 4.17 145.417 < .001 0.227 

G4: When travel, value my time 3.39 4.26 197.373 < .001 0.285 

H1: Main transport is efficient 3.58 4.10 92.303 < .001 0.157 

H2: I will not sacrifice comfort 2.96 3.52 39.579 < .001 0.074 

H3: Travel issues can be resolved 3.72 4.23 74.249 <.001 0.130 

H4: Predictable how I travel 3.62 3.97 25.316 <.001 0.049 

H5: Happy with transportation 3.70 4.15 54.265 < .001 0.099 

H6: Main transport mode is safe 3.72 4.26 76.964 < .001 0.134 

H7: Traveling is fun for me 3.56 4.14 49.896 < .001 0.091 

Note. aMoD = Autonomous mobility-on-demand; EV = electric vehicles; GFT = goal 

framing theory; SF = commercial short-haul flight.  

a Cluster 1: n = 255 (51.2%). b Cluster 2: n = 243 (48.8%). 
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Figure 31 

Comparisons of the Significant aMoD Cluster Means: by Variable 

 
Note. aMoD = autonomous mobility-on-demand. 
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SF Clusters 

 

Figure 32 shows the dendrogram generated from the SF hierarchical clustering, 

indicating the 2-, 3-, and 5-cluster solutions. 

 

Figure 32 

 

Dendrograms of SF Clusters Identifying the 2-, 3-, and 5-Cluster Solutions 

 
Note. Dendrogram using Ward linkage with rescaled distance. Blue ovals identify the SF 

cluster solutions. 

 

In comparing the three SF cluster solutions, all clustering criteria were statistically 

significant for the 2- and 5-clusters, as shown in Table 23. The high F values of F1, F2, 

and F4 indicated they were important in determining the clustering of respondents who 

chose SF as their future main mode. F3 in the 3-cluster solution was not significant 

F(288) = 1.472, p = .231, indicating F3 (COVID_Financial) was relatively unimportant. 

Considering the statistically insignificant F3 value in the 3-cluster, further analysis was 

conducted on the 2- and 5-cluster solutions. 
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Table 23 

Comparison of SF Cluster Solutions 

  2-Cluster 3-Cluster 5-Cluster  
df = 289 df = 288 df = 286 

Latent Constructs F Sig. F Sig. F Sig. 

F1: GFT normative 91.314 < .001 232.865 < .001 128.027 < .001 

F2: GFT hedonic 189.632 < .001 98.498 < .001 76.250 < .001 

F3: COVID financial 4.920 < .027 1.472 .231 100.978 < .001 

F4: GFT gain 149.232 < .001 92.003 < .001 51.224 < .001 

Note. GFT = goal framing theory; SF = commercial short-haul flight. 

 

Validating the Optimal SF Cluster Solution. Four methods were used to 

validate the 2-cluster solution as a stable and meaningful SF cluster model: 

1. Iteration History Using the K-Means Algorithm. The SF 2-cluster solution 

stabilized after the 5th iteration, the fastest to stabilize. 

2. Final Cluster Centers. The 2-cluster SF solution demonstrated highly 

discriminatory final cluster centers, as shown in Figure 33.  

3. Agglomeration Coefficients. Table 24 shows that the largest percentage 

increase in the agglomeration coefficient (24.32%) occurred when 

transitioning from a 2-cluster solution to a single cluster solution, indicating 

that the 2-cluster SF solution would be the most stable. 

4. Significantly Different Means with High F Values. While both the 2- and 5-

cluster solutions yielded significant F-tests, the 2-cluster solution had the 

highest F values: F1: F(289) = 91.314, p < .001), F2: F(289) = 189.632, 

p  < .001), F3: F(289) = 4.900, p  < .001), and F4: F(289) = 149.232, 

p  < .001). 
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Evaluation of the iteration history, final cluster centers, agglomeration schedule, 

and high F-values provided evidence that a 2-cluster solution had more discriminant 

clusters for the SF model. Therefore, the 2-cluster solution was adopted.  

 

Figure 33 

 

Final Cluster Centers of the 2-Cluster SF Model 

 
 

Table 24 

 

Agglomeration Schedule for SF Clusters  

Stage Cluster Combined Coefficients % Increase in 

Coefficient 

Number of 

Clusters Cluster 1 Cluster 2 

1 1139 1140 0 0 291 

2 956 957 0 0 290 

… 
     

286 868 972 631.496 10.79 5 

287 864 865 727.888 15.26 4 

288 868 924 844.236 15.98 3 

289 864 887 996.923 18.09 2 

290 864 868 1239.392 24.32 1 

 



170 

 

Figure 34 shows how the two SF clusters differed by construct. Cluster 1 SF 

passengers consist of travelers who did not highly rank GFT gain, hedonic, or normative 

goals. Each of these mean values was below the sample mean. Conversely, Cluster 2 SF 

passengers valued their GFT gain goals and GFT normative goals so highly that the 

Cluster 2 means of these goals were at 1 SD above the sample means. 

 

Figure 34 

 

Cluster Comparisons of the SF Model: Four Constructs 

 
Note. SF = commercial short-haul flight. Cluster 1: Red boxes and whiskers. Cluster 2: 

Blue boxes and whiskers. 

 

Profiling the Two SF Clusters. Examining the demographic and contextual trip 

variables not included in the cluster variates provided a richer description of the two SF 

clusters. Of the 29 variables, 4 showed statistically significant differences between the 

clusters and were used to profile air passengers across the two SF clusters to identify the 
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differences (See Table 25). Appendix N presents the cluster details of the remaining 25 

demographic and contextual trip variables with non-significant chi-square values. In 

other words, SF clusters show more similarities than differences. 

 

Table 25 

Profiles of the Two SF Clusters  

  Cluster 

1a 

Cluster 

2b 

      

Significant Demographic and Trip Characteristics Apathetic 

Travelers 

Loyal 

Habitual 

Flyers 

Chi-Square Results 

% χ2 df p 

Gender 
  

11.274 2 0.004 

Female  33% 52% 
   

Male 66% 48% 
   

Timing when 50% Cars are EV 
  

13.479 4 0.009 

By 2030 26% 41% 
   

By 2040 41% 32% 
   

By 2050 19% 17% 
   

Beyond 2050 9% 11% 
   

Never 5% 0% 
   

Number of People Traveling for Leisure by Car 
 

17.505 3 <.001 

1 5% 11% 
   

2 38% 23% 
   

3 44% 38% 
   

4 or more 14% 28% 
   

Number of People Traveling for Leisure by Air 
  

34.764 3 <.001 

1 8% 18% 
   

2 51% 32% 
   

3 30% 17% 
   

4 or more 11% 34%       

Note. EV = electric vehicles; SF = commercial short-haul flight.  

a Cluster 1: n = 133 (45.7%). b Cluster 2: n = 158 (54.3%). 

 

To explore deeper, MANOVA was conducted to investigate if the 16 GFT 

observed items and the five COVID-19 variables differed significantly between the two 

SF clusters. Earlier in this chapter, Shapiro-Wilks indicated that the assumption of 

normality was fulfilled (p < .05). The multivariate outliers’ assumption was tenable as the 
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critical value of the Mahalanobis distance was not exceeded. The association between the 

DVs was significant. The correlation coefficient was less than .9; thus, multicollinearity 

was not a concern. Nevertheless, the assumption of the homogeneity of variance-

covariance was violated based on the results of the Box test: M = 785.045, F(496, 

238065.530) = 1.405, p < .001. 

The MANOVA indicated a statistically significant difference between the two SF 

clusters on the combined DVs. Wilks Lambda = .309, F(31, 259) = 18.650, p < .001, 

partial Eta2 = .691, observed power > .99. Four multivariate tests: Pillai’s trace, Wilks’ 

lambda, Hotelling’s trace, and Roy’s largest root were conducted, and all yielded similar 

results. The effect size was large, accounting for 69.1% of the variance of the DV, 

showing practical significance. The observed power of over .99 indicated an over 99% 

chance that the results could have come out significant. Thus, follow-up ANOVA tests 

were conducted. 

The tests of between-subjects effects showed the significance and the level of 

impact of the SF cluster membership on each of the DVs. Table 26 shows significant 

differences in the variable means between the two clusters. Post-hoc tests were 

unnecessary because the IV (SF_2C) had only two categories (Cluster 1 and Cluster 2). 

Results from the MANOVA tests demonstrated sufficient evidence to support that SF 

Clusters 1 and 2 were statistically significantly different from each other for each of the 4 

EFA constructs, the 16 GFT variables, and 3 of the 5 COVID-19 variables. The 

differences between the cluster means of C3 (income increased during COVID) and C4 

(would travel by air if the ticket price was low enough) were not statistically significant, 

indicating that these variables were not important in differentiating the clusters.  
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Table 26 

Comparisons Between SF Clusters 

  Cluster 

1a 

Cluster 

2b 

EFA Factors M M F-ratio Sig. Partial 

Eta2 

F1: GFT_Norm -0.63 0.39 91.314 < .001 0.240 

F2: GFT_Hedonic -0.74 0.69 189.632 < .001 0.396 

F3: COVID_Financial -0.12 0.13 4.920    .027 0.017 

F4: GFT_Gain -0.47 0.70 149.232 < .001 0.341 

GFT and COVID-19 Variables           

B1: Preserving environment 2.95 3.68 43.036 < .001 0.130 

B2: Environment moral obligation 3.12 3.89 46.554 < .001 0.139 

B3: EV good for environment 3.36 4.11 44.779 < .001 0.134 

B4: Care about environment 3.29 4.01 50.141 < .001 0.148 

B5: Environmental role model 3.12 3.98 65.230 < .001 0.184 

C1: COVID travel concerns  2.94 3.69 36.536 < .001 0.112 

C2: COVID variants will get worse 2.98 3.51 18.566 < .001 0.060 

C5: The economy is recovering 3.00 3.66 36.234 < .001 0.111 

G1: Cost is very important 3.72 4.09 14.220 < .001 0.047 

G2: Convenience is important  3.62 4.39 86.233 < .001 0.230 

G3: Minimize total travel time 3.44 4.23 78.636 < .001 0.214 

G4: When travel, value my time 3.52 4.35 106.273 < .001 0.269 

H1: Main transport is efficient 3.32 4.15 104.242 < .001 0.265 

H2: I will not sacrifice comfort 3.08 3.60 18.341 < .001 0.060 

H3: Travel issues can be resolved 3.48 4.14 68.388 < .001 0.191 

H4: Predictable how I travel 3.41 4.06 44.317 < .001 0.133 

H5: Happy with transportation 3.50 4.32 105.000 < .001 0.266 

H6: Main transport mode is safe 3.53 4.32 87.273 < .001 0.232 

H7: Traveling is fun for me 3.51 4.27 52.098 < .001 0.153 

Note. EV = electric vehicles; GFT = goal framing theory; SF = short-haul flight.  

a Cluster 1: n = 133 (45.7%). b Cluster 2: n = 158 (54.3%). 

 

Figures 33 and 34 graphically illustrate the differences between the SF clusters at 

the latent construct level. All four clustering latent constructs were statistically significant 

indicating each was important in clustering respondents who chose SF as their future 

main mode for inter-regional transportation. To add more details, Figure 35 shows the 

significant SF cluster differences by variable. SF Cluster 1 scored lower on every item 
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compared to Cluster 2. Of the 13 demographic variables, only gender was significant. 

Three contextual trip variables were significant in profiling the SF clusters.  

 

Figure 35 

Comparisons of the Significant SF Cluster Means: by Variable 

 
Note. SF = Commercial short-haul flight. 
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Summary 

This chapter presented multiple univariate and multivariate statistical analyses to 

answer the two research questions. Findings from the univariate analyses provided 

insights into each measured characteristic of the sample population. Assumptions testing 

was conducted to ensure the results were reliable and valid. Multinomial logistic 

regression was used to identify factors that most influence air passengers’ modal choice 

for inter-regional travel distances of under 500 mi (800 km). A 2-step CA was performed 

to identify distinct passenger clusters for SF and aMoD. Multivariate analysis of variance 

was used to validate statistically significant similarities and differences existing within 

the distinctive segments of SF and aMoD clusters. These results demonstrated that 

passenger segmentation based on multiple GFT variables, demographics, and trip 

characteristics could provide deeper insights into aMoD and SF passengers.  

Chapter V presents a detailed discussion of the findings of the MNL, 2-step CA, 

and MANOVA. The discussion includes the use of GFT hedonic, gain, and normative 

goals in the context of air transportation research literature. It also provides the 

conclusions of this study and recommendations for future research. 
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Chapter V: Discussion, Conclusions, and Recommendations 

The Discussion section of this chapter summarizes the chief research findings 

concerning the study’s objectives, two research questions, and theoretical framework. It 

synthesizes the findings into the extant literature and evaluates the appropriateness of the 

GFT in the context of the study findings and air transportation research in general. The 

Conclusions section presents the deductions drawn from the findings, including 

theoretical and practical contributions of this study and the generalizability and 

limitations of its findings. The Recommendations section offers several opportunities to 

extend this original research in the future. 

Discussion 

Relevant univariate and multivariate analyses were conducted on the sample of 

1,388 usable data observations. This discussion section describes and interprets the 

findings from the descriptive statistics, EFA, MNL, 2-step CA, and MANOVA to answer 

the two research questions. It describes the multimodal transportation model for future 

passenger mode choice and the distinct SF and aMoD clusters. Finally, the discussion 

section situates the chief findings in the relevant extant research.  

Passenger Characteristics 

Respondent characteristics (demographics, contextual trip variables, and COVID-

related items) are comparable to those of the air passenger population. The survey 

population is considered representative of U.S. air passengers based on the following 

reasons. Firstly, even though some of the sample’s demographic characteristics were 

slightly different from the U.S. air passengers (a younger and slightly more educated 

sample), other sample’s characteristics were very similar to those of the air passengers 
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(i.e., gender and neighborhood). Secondly, a rigorous sampling strategy minimized 

sampling errors, thereby enabling greater generalization of the findings. Third, a non-

response bias test indicated no significant differences between non-participants and the 

respondents. Lastly, prior air transportation research supports many of the findings 

regarding demographic characteristics.  

Becker and Axhausen (2017) and the NAS (2018) suggested that previous car 

crashes where someone was injured influenced a passenger’s transportation mode choice. 

Similarly, Zhang et al. (2019) and the NAS (2018) found that the physical mobility of 

people traveling together also affects their mode choice. Results from this research 

support these literature findings. Even though 36% of the respondents had experienced a 

car accident in which someone was injured, only 29% of those who chose “drive a car” as 

their current main transport mode had experienced a car accident with injuries. This 

means “current drivers” had less prior experience of an accident with injuries than those 

using other main transport modes. In contrast, inter-regional bus travelers had a much 

higher percentage who had experienced car accidents with injuries before (current users = 

58%; future users = 54%). Regarding mobility issues, 25% of the respondents or a family 

member has issues. Like the results for prior car accidents, a much lower percentage 

(12%) who have experienced mobility issues chose “driving a car” as their current mode 

choice. The inter-regional bus was the category with the highest percentage of 

respondents with someone in the household having mobility issues (current users = 48%; 

future users = 46%).  

Contextual trip variables offered a deeper understanding of the study respondents’ 

contextual trip characteristics and added further dimensions to the multimodal 
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transportation choice model and the SF and aMoD cluster models. The distance between 

the respondents’ homes and the nearest airport affected their current mode choice but not 

their future mode choice. Most respondents (74%) live between 15 to 45 min from the 

nearest airport. Only 8% live more than 1 hr drive from the nearest airport. Those who 

live between 15 to 45 min from the airport are more likely to rely on commercial short-

haul flights or use an inter-regional bus than respondents who lived farther away. Like 

the results for home distance from the nearest airport, the percentage of short-haul flights 

from the home airport influenced the respondents’ decisions with their current but not 

future mode choices. As expected, participants who drive as their primary mode for inter-

regional leisure travel tend to drive with more people than participants who prefer SF. 

Business travel and its frequency influences current and future travel mode decisions. 

Before the pandemic, four of five respondents traveled for business, with 49% traveling 

for business 2 to 6 times per year and 17% traveling 7 or more times per year. Non-

business travelers were more likely to select “driving a car” as their main mode (42%) 

versus flying (10%), inter-regional bus (3%), and inter-regional train (12%). 

Current and Future Mode Choice  

When the questionnaire was administered in October 2021, COVID-19 was still 

ongoing with significant impacts on the travel and transportation industries. As stated in 

Chapter IV, the terms current and pre-COVID mode choices are used interchangeably in 

this study and the term pre-COVID was used in the instrument so that the respondents 

would answer the questions with a “normal” frame of mind.  

This study investigated passengers’ travel behavior, perceptions, and attitudes 

toward inter-regional travel as part of passenger characteristics. The drive-time decision 
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between SF air travel, driving, and aMoD transportation has not been studied before; 

therefore, this study adds to the knowledge of inter-regional ground and air 

transportation. The results show a 4 to 5 hr drive is the deciding factor beyond which 

most respondents would choose to fly instead of drive. Almost half (46%) of the 

respondents are very likely to drive instead of fly if the trip is a 2-hr drive. This 

percentage falls to 24% for a 5-hr drive and 15% for an 8-hr drive. The likelihood of 

using aMoD instead of SF if the trip is a 2 to 5 hr drive is higher than an 8 hr drive. 

Regarding respondents’ perception of aMoD and EV’s rollout timing and usage, 1 

in 3 passengers believe that aMoD will be commercially available in the U.S. in 6 to 10 

years and 3 in 10 believe 3 to 5 years to be the aMoD rollout timeframe. Less than 3% 

believe aMoD will never become available. By 2030, 1 in 3 predict that half of the cars 

on the U.S. roads will be EVs, while 1 in 4 believe that half of the cars will be aMoD. 

Interestingly, by 2040, an equal percentage of the respondents (36%) predict that half of 

the cars on the roads will be both aMoD and EV. When comparing the current and future 

main transport choices (when aMoD is available), 36% (498) of the current air passengers 

will choose aMoD as their future primary transport mode. Figure 36 shows where the 

future aMoD passengers will come from: 39% (192/498) of future aMoD passengers will 

shift from the short-haul aviation transportation segment and almost half (236/498, 47%) 

will come from the traditional car (ground transportation) market. 46 out of 498 (9%) will 

be from the inter-regional bus and 5% will come from the inter-regional train. 
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Figure 36 

Transportation Sources of Future aMoD Passengers  

 
Note. aMoD = autonomous mobility-on-demand; SF = commercial short-haul flight; I-

Bus = inter-regional bus; I-Train = inter-regional train. 

 

Figure 37 shows the potential passenger shifts in mode choice from the current SF 

to future modes once aMoD is available. Of the 45% (n = 629) of the sample population 

who use SF as their current primary transportation mode for inter-regional travel, only 

34% (n = 213) would continue relying on SF as their future transport mode. This means 

that 66% (n = 416) of the current SF passengers plan to shift to other transport modes in 

the future. Based on these research findings, the most significant SF market share loss 

(31%) may be to aMoD, and its second-largest loss (20%) may be to the conventional 

car. Furthermore, an additional 8% may be lost to the inter-regional bus segment and 

another 8% to the inter-regional train segment. In a 2016 study, LaMondia et al. 

estimated over 25% of the SF market will shift to the aMoD market. It can be assumed 

that air passengers’ familiarity with aMoD has improved in the time since their study was 



181 

 

published; therefore, these findings compare favorably with the 34% who plan to choose 

aMoD for the future.  

 

Figure 37 

Predicted Shift of SF Air Passengers to Other Transportation Modes 

 

Note. aMoD = autonomous mobility-on-demand; SF = commercial short-haul flight; I-

Bus = inter-regional bus; I-Train = inter-regional train. 

 

Even the dominant car industry may lose market share to aMoD; 37% (514/1388) 

of the sample population who currently rely on driving for inter-regional travel may be 

reduced to 26% (n = 365) once aMoD becomes available. Of this driving population, 

236/514 (46%) showed intention to use aMoD as their main inter-regional transportation 

mode in the future. It is interesting to note that while every transport mode loses 

passengers to the aMoD segment, the inter-regional train segment is expected to increase 
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market share from 6% (n = 81) to 10% (n = 139 passengers). Such remarkable growth of 

72% in the inter-regional train market could be explained by the increased popularity of 

high-speed trains where the trains are becoming a fierce competition to the airlines in 

some geographical areas, as discussed in Chapter III. 

As expected, of the most traveled flyers (the 13% who fly more than 10,000 mi 

[16,094 km] per year), 48% of them currently choose SF as their primary transportation 

mode. However, in the future when aMoD is available, that number is expected to fall to 

22%, a drop of 54% from the current number of air passengers. In contrast, aMoD will 

gain 34% in the most traveled segment of air passengers. Thus, more than half of the 

current most-traveled air passengers may be lost to aMoD in the future. The most-

traveled passengers may be the most-profitable passengers. This dramatic shift from SF 

to aMoD may have a negative financial impact on airlines and airports. This finding is in 

line with Perrine et al.’s (2020) research. Perrine et al.’s model results showed that aMoD 

use may cause a decline in airline revenues by almost half (47%) and a 6.7% reduction in 

U.S. air passenger miles. Such shifts in transport mode choice would significantly affect 

many aviation- and transportation-related organizations, such as airlines, airports, 

infrastructure, land use planning, airway and highway congestion, ground vehicle and 

airplane design and manufacturing, and the travel and hospitality industries.  

Pandemic Influences  

 

Considering this air passenger study was conducted during the COVID-19 

pandemic, the potential effects of the pandemic had to be evaluated. External shocks such 

as COVID-19 in 2020 reduced U.S. air demand by an unprecedented 66% (CAPA, 2021). 

Yet, by October 2021, 19 months after the initial pandemic “lock-down,” half of the 
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respondents (52%) had traveled by commercial air carrier during the pandemic. As 

expected, a high percentage were frequent air travelers who fly at least 5,000 mi (8,047 

km) domestically per year. Respondents who selected SF or inter-regional bus for their 

current or future mode choices demonstrated a greater likelihood of flying during the 

pandemic. Regarding vaccination against COVID-19, frequent air travelers who fly over 

25,000 mi (40,236 km) per year have the highest percentage of COVID-19 vaccination 

(96%), and surprisingly, the highest percentage of them have had COVID-19 (52%). This 

finding may be due to the contagious nature of the pandemic, particularly during the 

initial few months when there were no clear health safety guidelines. 

Thomas and Darling (2021) found a university degree increases the likelihood to 

be vaccinated by 43%. Their finding is consistent with this study’s findings that the 

percentage of vaccination increases with increases in the level of education. Respondents 

with a Bachelor’s (88%), Master’s (91%), or Ph.D. or post-doc degree (94%) have 

substantially higher vaccination rates than those who graduated from high school (68%) 

or attended high school (25%). 

COVID-related influences are modeled along with the GFT variables, contextual 

trip attributes, and participant demographics to evaluate the impacts on air passengers’ 

future transport mode decisions. Respondents who selected “drive a car” as their primary 

transport choice had the lowest vaccination percentage (81%) and, surprisingly, the 

lowest percentage of having had COVID-19 (18%). It is possible that this group is more 

mindful of self-isolation which explains their much lower percentage of COVID-19 

infection. In comparison, those who chose the inter-regional train had the highest 

vaccination percentage (91%), and those who chose the inter-regional bus had the highest 
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percentage of COVID-19 infection (51%). Regarding future mode choice, passengers 

who selected aMoD and SF had the lowest percentages of COVID-19 infection (23% and 

24%, respectively). These results indicate the future mode choices of aMoD and SF 

might not be related to the pandemic fear which needs to be further explored. 

Descriptive Statistics and Open-Ended Responses  

Compared to those who selected SF, air passengers choosing aMoD as their future 

transport mode tend to be more environmentally conscious. Future aMoD travelers feel 

that those important to them care about the environment (normative), and they see 

themselves as an environmental role model for their friends and family. They believe that 

preserving the environment is a moral obligation and that electric vehicles are good for 

the environment. These findings on environmental and normative sentiments are 

consistent with those found in the research of Bösehans and Walker (2020), the NAS 

(2019), Vance and Malik (2015), and Westin et al. (2020). Future aMoD passengers have 

a higher sense of self-efficacy. Importantly, although these future aMoD passengers 

consider their current main inter-regional transport to be efficient, they plan to switch to 

aMoD when it becomes available to them. 

While responses to the open-ended question added more dimensions and texture 

to the collected scale data, the respondents’ comments only reinforced the current 

knowledge obtained in this research. Convenience is essential to air passengers who 

choose SF as their future inter-regional transport mode. Future SF passengers want to 

minimize their travel time. When traveling, they value their time doing something nice or 

useful. Many of these loyal air passengers do not want to sacrifice comfort, and they 

consider traveling to be fun. One air passenger stated, “plane travel will remain supreme 
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when time and convenience are involved.” Convenience is seen as one of the benefits of 

aMoD, particularly for the young, elderly, and travelers with pets. One respondent says, 

“I'd travel more if driverless cars were available because I wouldn't feel stressed about 

getting lost or feeling tired from driving long hours ... especially traveling with children.” 

As a counterpoint to convenience, some respondents mention the increased airport 

hassles after 9/11 as something to avoid at all costs. “I live an hour from the airport and 

navigating the airport itself is time-consuming, a 2-hour flight can cost me 5 to 6 hours. I 

find it very annoying to spend that much time not accomplishing anything.” 

As discussed in the literature review, safety and trust are intertwined and are 

necessary conditions for aMoD to be adopted. Control and self-efficacy are essential to 

some passengers, as is the value of their time. One passenger felt strongly about his/her 

fear of safety by saying, “Autonomous cars will never be safe because corporations will 

always cut corners in their development and manufacture to increase profits. If driverless 

cars become widespread during my lifetime, I will fly more to avoid them.” 

The dichotomy of the love and hate of the car shows up powerfully in the 

comments. Some respondents love driving for fun and value their freedom, “traveling is 

my hobby, and I enjoy long drives,” while others are utterly “anti-cars.” This latter group 

wants “walkable cities with clean air,” preferring public transport and a “carless” society. 

Respondents harbor extreme feelings regarding driverless cars, ranging from “I can't wait 

to use it” to “Just because we have the technology doesn't mean we should use it.” 

One of the surprises in this research concerns the shift to inter-regional train 

travel. Of the four current transport mode choices, every mode is projected to lose 

passengers to aMoD except the train, which is expected to increase from 6% to 10% of 
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the total future transport market. Unsolicited, more than ten respondents cite the train as 

their current and future mode choice. Two respondents even mention the Hyperloop in 

the future as economical time-saving transportation. 

Responses to RQ1: Future Transport Model  

RQ1. Based on goal framing theory variables, demographics, contextual trip 

attributes, and COVID-19 items, what factors most influence air passengers’ modal 

choice for inter-regional travel distances of under 500 mi (800 km)? 

This section answers RQ1. It discusses the 16 future mode choice predictors 

identified and explains the odds ratio of predictors on each future transport option. To 

address the current inter-regional transportation environment in the United States, four 

modes are considered main transportation: SF, driving a car, inter-regional bus, and inter-

regional train. To address the future of this transportation environment, there will be five 

primary modes once aMoD is available for everyday travel: aMoD and the current four 

inter-regional options. 

Three MNL models were tested to determine the optimal combination of the four 

latent constructs, GFT variables, COVID-19 variables, 13 demographics, and seven 

contextual trip variables in predicting the future transport mode choice. Figure 38 shows 

the 16 significant predictors for the best MNL model. The current transport mode is the 

most stable and consistent predictor, as it is the only variable that is a predictor in all 

three MNL models. Note, latent constructs F1 (GFT_Norms) and F2 (GFT_Hedonic) are 

common in two of the three models. 

GFT Variables. The GFT is a theory with hedonic, gain, and normative goals as 

latent constructs. This theory has been applied to and validated by various social sciences 
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studies including ground transportation. Almost half of the observed variables from the 

three GFT constructs were significant predictors in the final MNL model. Based on 

extant literature, self-efficacy, value of time, habit, and trust were added to the GFT 

framework for this study as shown in Figure 38. While self-efficacy and value of time 

were found useful in predicting future mode choice, habit and trust were not. (See the 

detailed discussion of GFT variables in Chapter II.) 

  

Figure 38 

Predictors for Future Transport Modes 

 
 

Note. aMoD = autonomous mobility-on-demand; GFT = goal framing theory; min. = 

minimum; SF = commercial short-haul flight. 

 

Habit. A traveler’s habit denotes a typical behavior pattern triggered 

automatically by specific cues. Habit was not a predictor for future mode choice in this 

study. This finding is contrary to the land-based transport research results found by 
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Bösehans and Walker (2016), Thomas and Walker (2015), and Bösehans (2018). It is 

possible that Bösehans, Thomas, and Walker were studying everyday commutes (bus, 

walk, bike, etc.) whereas this research explores future transport modes which may not be 

as habit dependent. 

Trust. Trust was not a predictor for future transport choices in this study. Trust is 

typically a critical factor in transportation research (Rahman et al., 2017; Zhang et al., 

2019; Zmud & Sener, 2017), especially if it involves a new and innovative technology 

that passengers are less familiar with (Ashkrof et al., 2019; Vance & Malik, 2015). 

Ashkrof et al. (2019) and Molnar et al. (2018) found that trust in aMoD is the most 

critical factor in explaining future aMoD acceptance. Trust-related concerns include 

aMoD’s capability to adhere to traffic laws (Schellekens, 2015), reliability under all 

weather conditions (Zhang et al., 2019), data privacy and protection from software 

hacking (Kyriakidis et al., 2015), and assurance in avoiding irrational and unpredictable 

pedestrian and driver behavior (Noy et al., 2018). Consequently, for governments and 

companies to overcome trust issues, they need to deal with passengers perceived social 

barriers and technological challenges. For this research, the four current transport mode 

choices were all familiar to the respondents. The future choice, aMoD, might be a 

transportation option that only becomes viable far into the future; therefore, it could have 

seemed more of a concept than a “real” transport mode to some respondents, which could 

explain why trust was not a predictor for future mode choice.  

Another possibility is the fact that trust has many facets. As discussed in Chapter 

II, this study does not directly and deeply explore the different dimensions of trust. 

Empirical research by Yang and Xu (2019) concluded that trust has direct and indirect 
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effects on acceptance. The direct effect is more important in explaining behavioral 

intention and willingness to use, while the indirect effect is essential in influencing 

general acceptance. Subjective norms may also play a role in trust and perceived safety. 

Based on extant literature, perceived safety, risks, benefits, and distrust are variables 

closely related to trust. 

Self-Efficacy. Self-efficacy was added to the expanded GFT model because it affects 

personal choices regarding self-confidence in doing something successfully, especially in 

travel decisions (Bösehans & Walker, 2016). Bösehans’ (2018) finding that self-efficacy 

is a key cluster variable in transport mode choice is consistent with findings from this 

present study. 

Value of Time. This study found value of time to be a predictor of future mode 

choice; air passengers who value their time were 21.5% more likely to choose SF than 

aMoD. These findings lend support to Wadud’s results (see Table 30) which state that 

higher-income households had a higher perceived value of time and that these higher-

income households might equate higher automation as a means of increasing productivity 

(p.170). The value of time is associated with research on SF and aMoD (De Looff et al., 

2018; Homem et al., 2019; van den Berg & Verhoef, 2016; Zmud & Sener, 2017). The 

NAS (2019) found that travelers would equate differences in the value of time via 

different mode choices. For example, travelers mentally equate 30 min of flying to 1 hr of 

driving.  

Environmental Subjective Norm. Consistent with extant research, this study’s 

subjective norm with environmental values was a predictor of future mode choice 

(Bösehans & Walker, 2020; Westin et al., 2020). As shown in Table 5, extant research 
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supports age, household income, number of cars owned by the household, years with a 

driver’s license, and mobility issues as predictors for future mode choice. The finding 

that neighborhood (city, suburban, and rural) is a predictor lends support to the National 

Academies of Science’s (2019) findings that urban passengers most likely live near a 

major airport and rural passengers may need to drive a longer distance to a bigger airport 

with more direct flights. This present research finds more air passengers who live in rural 

America (39%) will choose driving as their future mode choice compared to passengers 

living in cities (22%). In contrast, for aMoD travel, more air passengers who live in cities 

(39%) will choose aMoD as their future transport mode compared to passengers living in 

rural communities (29%). 

COVID-19. This study measured air passengers’ perceptions and phenomena 

during the pandemic and found the fear of contracting COVID-19 when traveling is a 

predictor of future mode choice. This finding is consistent with Sun et al. (2020) and 

Linden (2020). The pandemic is currently a dynamic and global health concern; however, 

COVID-19 may cease to be a predictor for future travel decisions once the pandemic 

becomes endemic or a similar contagion as the flu. 

Statistically Significant Parameters 

This section discusses the meaning of the statistically significant parameter 

estimates (odds ratios) for each future transport mode choice. (See Chapter IV for the 

technical interpretation of the odds ratio.) Because odds ratios can be difficult to both 

convey and understand, Table 27 summarizes what it means for each predictor variable. 

It is important to note that SF is not presented as a separate mode choice in the table 

because it is the reference category to which every mode is compared. 
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Table 27 

 

Future Main Transport Mode Predictions   

Mode Predictor Variable * Odds Ratios per Unit Increase 

aMoD  B2: Environment moral obligation 1.38 times more likely to choose aMoD than SF 

H3: Travel issues can be resolved 1.42 times more likely to choose aMoD than SF 

H5: Happy with transportation 1.87 times more likely to choose aMoD than SF 

G4: When I travel, I value my time 21% more likely to choose SF than aMoD 

C5: The economy is recovering 1.24 times more likely to choose aMoD than SF 

The current main mode is SF 32% more likely to choose SF than aMoD 

Drive 

  

Have/had COVID 39% more likely to choose SF than driving  

Family/self with a mobility issue 39% more likely to choose SF than driving  

Traveled by air during COVID 2.02 times more likely to choose driving than SF 

Vaccinated against COVID 46% more likely to choose SF than driving  

G4: When I travel, I value my time 32% more likely to choose SF than driving  

No. of cars owned by household 28% more likely to choose SF than driving  

The current main mode is SF 78% more likely to choose SF than driving  

I-Bus 

  

C4: SF if the price was low enough 1.44 times more likely to choose inter-regional bus than SF 

G3: Minimize total travel time 43% more likely to choose SF than inter-regional bus 

I-

Train 

  

Highest education level 1.57 times more likely to choose inter-regional train than SF 

No. of cars owned by household 33% more likely to choose SF than inter-regional train 

Total household Income 1.44 times more likely to choose inter-regional train than SF 

The current main mode is driving  89% more likely to choose SF than inter-regional train  

The current main mode is SF  97% more likely to choose SF than inter-regional train  

Note. aMoD = autonomous mobility-on-demand; No. = number; SF = commercial short-

haul flight. The reference category is SF. * p  .05. 

 

Predictors for aMoD in Relation to SF. Earlier findings reveal environmental 

protection is one of the predictors of future mode choice. The odds ratio analysis reveals 

that air passengers who feel strongly about environmental protection are more likely to 

choose aMoD as their future main transport mode than SF by 38%. Passengers who 

“strongly agree” with environmental protection are 38% more likely to choose aMoD 

than SF as their future primary mode compared to those who only “agree” with this 

construct. The analysis also indicates self-assured air passengers are 42% more likely to 

select aMoD as opposed to SF. Those who are happy with their current main transport 
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choice are 87% more likely to choose aMoD over SF. Those optimistic about the 

economy recovering are 23.5% more likely to use aMoD in the future than SF. 

Two predictors favor SF over aMoD. Household income is a predictor of future 

mode choice and air passengers who value their time are 21.5% more likely to choose SF 

rather than aMoD. These findings lend support to findings by De Looff et al. (2018). 

Also, loyal passengers who chose SF as their current primary transport mode for inter-

regional travel are 31.9% more likely to select SF as their future mode instead of aMoD. 

Non-Predictors for aMoD. Based on the odds ratio analysis, numerous variables do 

not appear to influence the future choice of aMoD over SF. Age, gender, education, 

household income, number of children, neighborhood, prior car accidents, mobility 

issues, drive frequency, annual fly miles, COVID vaccination, the distance between home 

and the nearest airport, and the percentage of direct flights to inter-regional destinations 

do not have a significant influence on future mode choice for aMoD. 

Predictors for Driving Compared to SF. Of the seven predictors for driving as a 

future transport mode, only one favors driving over SF. Air passengers who had traveled 

by air during the pandemic are twice as likely to choose driving versus SF as their future 

mode. This is understandable because flying during the pandemic meant dealing with 

extra annoyances such as maintaining 6 ft distance from other air travelers waiting in 

queues, reductions in airport and airline services, and rigid mask mandates. Any 

additional hassles may worsen an already tense flying experience for some passengers. 

Furthermore, the FAA (2022) reports 2021 was the worst year on record for unruly air 

passenger behavior in the United States, and 72% of the 6,000 cases were mask related. 

The agency also reports the level of violence and aggression worsened with a spike in 
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serious incidents. From 1995 to 2020, the FAA’s average annual investigations rose from 

182 to 1,081 cases, a 5-factor increase over the 25-year average (FAA, 2022). Naturally, 

such incidents can lead to long flight delays when an aircraft must divert or turnaround in 

response to unruly passengers.  

Three of the seven predictors for driving are COVID related. They are whether 

the respondent (a) contracted COVID-19, (b) received a COVID-19 vaccination, and (c) 

traveled by air during the pandemic. Surprisingly, for air passengers who had COVID, 

the odds of choosing SF instead of driving is 39.5% higher. Yet, if the respondent had 

traveled by air during COVID, he or she is 2.02 times more likely to choose driving 

instead of flying. Passengers who are vaccinated against COVID-19 are 46.3% more 

likely to select SF in lieu of driving.  

Although the pandemic had a significant impact on the respondents’ choice of 

driving as their future transport mode, two predictors are more unexpected. The first is 

mobility issues for family or self. Air passengers who have mobility issues (self or family 

member) are 39% more likely to choose SF as their future mode choice than driving. 

Based on the literature, mobility issues would be a logical predictor of aMoD use because 

one of the benefits of driverless cars is greater accessibility for people with mobility 

limitations. The second surprising finding pertains to the number of cars owned by the 

household. Air passengers who own more cars are 28% more likely to choose SF as their 

future mode choice than driving.  

Predictors for Inter-Regional Bus Compared to SF. There are two predictors 

for choosing the inter-regional bus in relation to SF. First, air passengers who would fly 

during the pandemic if the airfare was low enough are 1.44 times more likely to choose 
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inter-regional bus as their future mode choice than SF. This could be because bus 

travelers are more money-conscious than SF passengers. Second, air passengers who aim 

to minimize their total travel time are 43% more likely to choose SF as their future mode 

choice than inter-regional bus.  

Predictors for Inter-Regional Train Compared to SF. This category has five 

predictors. First, air travelers whose current mode choice is driving are 88.6% more likely 

to pick SF than inter-regional train travel. Second, this percentage increases to 97% if 

their current mode choice is SF, meaning loyal SF passengers will almost certainly select 

SF as their future mode instead of an inter-regional train. Third, air passengers with 

higher household incomes are 43.9% more likely to use the inter-regional train in the 

future instead of SF. The fourth predictor is the level of education. Similar to household 

income, the likelihood of choosing inter-regional train over SF increases 1.57 times with 

each education degree obtained. The fifth predictor is car ownership. Surprisingly, 

passengers with more cars owned by the household are 33% more likely to select SF than 

the inter-regional train as a future transport mode choice.  

While it is essential to recognize the future transport mode choice predictors, it is 

as critical to identify the latent factors and variables that are non-predictors in the final 

MNL model. The four latent factors validated by the EFA were not in the final model. In 

contrast, six of the original 16 GFT variables were better predictors in the final model, as 

presented in Figure 4. The GFT variables that fail to predict future mode choice include 

effort/access, comfort, hedonic values, convenience, and cost. It is possible that these 

variables are specific to each individual mode choice, and therefore, are critical only 

when they are in direct comparison with specific measures by mode choice. In this case, 
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evaluation of these variables by travel scenarios may yield results different from this 

study. 

When asked about the future, the respondents may focus on higher-level concepts 

versus detailed-level variables. Cost and time are archetypal tradeoffs in transportation, 

with a common perception that flying saves time and driving saves money (Chen et al., 

2019). As such, the value of time is also a factor in the cost equation (NAS, 2019; 

Wadud, 2017). While the value of time is a predictor, cost is not. The reason may be 

because of not defining or comparing the cost of aMoD to other transport modes for this 

study and not knowing the specific timing for the future aMoD rollout. Other non-

predictors are: 

• H7: Traveling is fun for me. 

• G2: Convenience is very important to me when I travel. 

• B5: It is important for me to be a role model for my family in environmental 

protection. 

• C3: My disposable income has increased since COVID started. 

• The number of children living at home. 

• The number of driver’s licenses in the household. 

• Driving frequency. 

• A car accident in which someone was injured. 

• Business travel pre-COVID. 

• Distance between home and the nearest airport. 

• Percentage of direct flights from the home airport. 
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In summary, this section focused on RQ1. Sixteen future mode choice predictors 

were identified and discussed, and the meaning of the odds ratios of the predictors for 

each future transport option were reviewed. 

Responses to RQ2: Distinct SF and aMoD Clusters 

RQ2. What distinct passenger clusters exist for SF and aMoD? How are these 

clusters similar/different within the SF and aMoD segments? 

This section answers RQ2. The focus is on understanding the air passengers who 

make up the distinct SF and aMoD segments. 

Distinct SF Passenger Clusters. Four EFA latent constructs are used to cluster 

the future SF passengers to understand their distinct characteristics. Examination of the 

demographic and contextual trip attributes not included in the cluster variates provide the 

similarities and differences between the two SF clusters (see Table 28). There are slightly 

more members in SF Cluster 2 than in Cluster 1. SF Cluster 1 consists of apathetic 

travelers who are neutral about most issues, from various aspects of hedonic and gain 

goals to their environmental attitudes. There are twice as many males as females in this 

segment. The apathetic air passengers have no particular care about most travel attributes, 

even the pandemic. They have no travel habits and no opinions about the value of time, 

convenience, or comfort. They are not concerned about the environment and do not feel 

obliged to be an environmental role model for their friends and family. When traveling 

for leisure, they tend to travel in a smaller group than Cluster 2.  

SF Cluster 2 is comprised of loyal habitual flyers. These happy SF flyers feel that 

flying is safe and very efficient. They have strong self-efficacy with travel issues and are 

more reluctant to sacrifice comfort compared to apathetic travelers. The loyal habitual 
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flyers think traveling is fun and are happy with inter-regional transportation in general. 

They are keen to minimize travel time and have a strong value of time. In terms of 

environmental norms, loyal habitual flyers show moderate concerns about the 

environment and being environmental role models to their friends and family. They think 

EV is good for the environment and expect 50% of the cars in the United States to be EV 

in 2030, a decade faster than apathetic travelers. They perceive the economy to be 

recovering and show medium concern toward getting COVID or its variants while 

traveling. Indeed, they would travel by air if the ticket price were low enough during 

COVID. While traveling for leisure, loyal habitual flyers tend to fly with more people 

together than by car. Surprisingly, they consider cost more critical in their decision than 

apathetic travelers. 
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Table 28 

 

Differences Between SF Clusters 

 SF Cluster 1: 

Apathetic Travelers 

n = 133 (45.7%) 

SF Cluster 2: 

Loyal Habitual Flyers  

n = 158 (54.3%) 

GFT 

Hedonic 

Goal a 

Main transport is reasonably efficient Main transport was very efficient 

Less happy with current main transport Happy with current main transport 

Will sacrifice comfort  Reluctant to sacrifice comfort  

Weaker self-efficacy with travel issues Strong self-efficacy with travel issues 

No travel habit Stronger travel habit 

Neutral about inter-regional 

transportation 

Happy with inter-regional transportation 

No particular opinions about SF safety Feels safe about SF 

Traveling is neither fun nor not fun Traveling is fun  

GFT 

Gain 

Goal a 

Cost is less important than C2 Cost is more important than C1 

Total travel time not as important Keen to minimize travel time 

Average value of time Strong value of time 

Convenience is not as important Convenience is very important 

GFT 

Environmental 

Norms a 

No concern about the environment Moderate concern about the environment 

No environmental moral obligation Moderate environmental moral obligation 

Not an environmental role model Moderate environmental role model 

Neutral about EV Positive about EV; good for the environment 

COVID Fear 

& Financial 

Concerns a 

No concern about COVID-19/variants  Medium concern about COVID-19/variants  

Perceive economy not recovering Perceive economy was recovering 

Will not travel by air even if price is 

low during pandemic 

Will travel by air if price is low enough during 

pandemic 

Demographics Twice the number of men Almost equal number of men and women 

Contextual 

Trip 

Attributes 

 

Fewer people travel together for  

leisure by car (2 or 3) 

More people travel together for  

leisure by car (3 or 4 or more) 

Slightly fewer people travel together for 

leisure by air (2 or 3) 

Slightly more people travel together for leisure 

by air (2 or 4 or more) 

Expects 50% EV in the U.S. by 2040 Expects EV in the U.S. by 2030 

Note. EV = electric vehicle; GFT = goal framing theory; SF = commercial short-haul 

flight. a Latent constructs. 

 

While there are differences between the apathetic travelers and the loyal habitual 

flyers, there are more similarities between these two SF groups than differences. Table 29 

lists the similarities. 
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Table 29 

Similarities Between SF Clusters 

Similarities Between Apathetic Travelers and Loyal Habitual Travelers 

1. Current main transport mode (majority are SF) 

2. Age (most between 25−54 years) 

3. Education (most have a bachelor’s or master’s degree) 

4. Household income (most earn between $50,001−$100,000) 

5. Number of children living in the household (very few have 3 or more) 

6. Number of driver’s licenses in the household (most have 2) 

7. Years with a driver’s license (most > 15 years) 

8. Number of cars owned by the household (most have 1 or 2) 

9. Weekly drive frequency (most > 5 times per week) 

10. Neighborhood (most in cities and suburbs) 

11. Mobility issues (majority do not have any) 

12. Distance from home to the nearest airport (most 15−30 min) 

13. Direct flights (most home airports offer 41%−60%) 

14. Annual miles flown (most are 5,001−10,000 mi) 

15. Fly if over a certain drive-hours (average 5 hr, lower than aMoD clusters) 

16. Frequency of business travel (most 2−6 times a year) 

17. Vaccinated against COVID-19 (majority are vaccinated) 

18. Have/had COVID-19 (majority have not had COVID) 

19. Traveled by air during COVID (most have flown during COVID) 

20. % work from home during COVID (75%−100%, higher than aMoD clusters) 

21. Inter-regional bus and train (most have used them) 

22. aMoD timing in the U.S. (most state 6−10 years) 

23. Timing when 50% of cars in the U.S. are aMoD (by 2040) 

Note. SF = commercial short-haul flight.  

 

Taken together, these findings suggest that while there are distinct differences 

between the two SF clusters, SF passengers as a group reveal more similarities than 

differences. 
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Discussion of the Distinct aMoD Passenger Clusters. Four EFA latent 

constructs are used to cluster future aMoD passengers to understand their distinct 

characteristics. Examination of the demographic and contextual trip attributes not 

included in the cluster variates provides a rich description of the two aMoD clusters as 

shown in Table 30. These two almost equal-sized clusters differ in multiple dimensions. 

Considering aMoD is a future transport mode choice, all 498 passengers have shifted to 

aMoD from other transportation options. As shown in Figure 38, 47% shift from “drive a 

car” and 39% shift from SF to aMoD. The results in Table 30 clearly illustrate the genesis 

of the new aMoD passenger segments.  

The aMoD Cluster 1 consists of the suburban rural drivers. Many live in the 

suburbs or rural America, and naturally, their current transport mode is predominantly 

driving a conventional car. While their current primary mode is moderately efficient, 

compared to Cluster 2, suburban rural drivers are less happy with their current main 

transport. When aMoD is available, suburban rural drivers will switch to aMoD as their 

primary transport mode choice. Suburban rural drivers tend to express negative 

sentiments towards the GFT goals (hedonic goals, gain goals, and environmental 

subjective norms). Specifically, the suburban rural drivers have weaker self-efficacy with 

travel issues and are more willing to sacrifice comfort for other travel attributes. Total 

travel time is not as important, and their value of time is not as strong as it is to Cluster 2 

passengers. They are neutral about EVs and the environment. Incomes of suburban rural 

drivers fell during the COVID-19 pandemic, and they perceive a worsening economy. 

This group of travelers is not concerned about COVID-19 and its variants, and a lower 

percentage of them are vaccinated against COVID-19 compared to Cluster 2. 



201 

 

 

Table 30 

 

Differences Between the aMoD Clusters 

Differences aMoD Cluster 1: 

Suburban Rural Drivers 

 n = 255 (51.2%) 

aMoD Cluster 2: 

Urban Educated Flyers 

 n = 243 (48.8%) 

GFT 

Hedonic Goal a 

Main transport is fairly efficient Main transport is very efficient 

Less happy with current main transport Happy with current main transport 

Will sacrifice comfort  Reluctant to sacrifice comfort  

Weaker self-efficacy with travel issues Strong self-efficacy with travel issues 

GFT 

Gain Goal a 

Total travel time not important Keen to minimize travel time 

Average value of time Strong value of time 

Convenience is not as important Convenience is very important 

GFT  

Normative 

Goal a 

Neutral about the environment Pro-environment subjective norm  

Neutral about EV Positive about EV 

Income decreased during pandemic Income increased during pandemic 

Perceives economy is not recovering Perceives the economy is recovering 

Will not travel by air even if price is 

low during pandemic 

Will travel by air if price is low enough during 

pandemic 

Demographics Lower education Higher education 

Lower household income Higher household income 

Fewer children living in the household More children living in the household 

Fewer with mobility issues More with mobility issues 

Reside in suburbs and rural America Reside in cities 

Fewer work at home during pandemic More work at home during pandemic 

Fewer vaccinated against COVID-19 More vaccinated against COVID-19 

Contextual 

Trip 

Attributes 

  

Majority drive as current transport mode Majority choose SF as current transport mode 

Less frequent business travel Frequent business travel 

Fewer direct flights from home airport More direct flights from home airport 

Fewer annual miles flown More annual miles flown 

Lower percentage use I-bus and I-train Higher percentage use I-bus and I-train 

Fewer will travel for leisure by car More will travel for leisure by car 

Fewer will travel for leisure by air More will travel for leisure by air 

Fly if over 5.7 hr of driving Fly if over 5.3 hr of driving 

Expects aMoD and EV rollout later Expects aMoD and EV rollout sooner 

Note. aMoD = autonomous mobility-on-demand; EV = electric vehicles; I-bus = inter-

regional bus; I-train = inter-regional train; SF = commercial short-haul flight.  

a Latent constructs. 

 

Suburban rural drivers would not travel by air during COVID even if the price 

were low. Demographically, they tend to be less educated, have lower household 

incomes, and have fewer children living in the household. Compared to Cluster 2, a lower 
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percentage of suburban rural drivers have mobility issues and fewer work remotely from 

home. They do not travel for business as much as the urban educated flyers. They have 

accrued fewer annual air miles and their home airports offer fewer direct flights than 

Cluster 2. Suburban rural drivers are less optimistic about EV and aMoD’s rollout timing. 

On average, they would fly only when the drive time is over 5.7 hr. 

The aMoD Cluster 2 consists of urban educated flyers. Many live in the cities and 

their current transport mode is predominantly SF. Miller (2017) found 90% of air 

passengers flying short-haul routes choose direct flights, with only 10% willing to 

connect, demonstrating SF markets are dependent on the availability of direct flights. 

This study supports Miller’s findings that the availability of direct flights is a significant 

segmentation attribute. Urban educated flyers want direct flights because they aim to 

satisfy their GFT goals of minimizing total travel time and maximizing the value of time. 

They view their current main mode as very efficient and are happy with their current 

main transport. Nevertheless, when aMoD is available, they will choose aMoD as their 

main transport mode. The urban educated flyers tend to feel optimistic about the GFT 

goals (hedonic goals, gain goals, and environmental subjective norms). Specifically, they 

have strong self-efficacy with travel issues and are less willing to sacrifice comfort for 

other travel conveniences. Indeed, convenience is critical to them. Incomes of the urban 

educated flyers rose during the pandemic, and they perceive the economy as recovering 

well. They are pro-environment and are hopeful about EV and aMoD’s rollout in a timely 

manner. They are frequent business travelers and have accrued more annual air miles 

compared to suburban rural drivers. This group of travelers is more concerned about 

COVID-19 and its variants and a higher percentage of them are vaccinated against 
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COVID-19 compared to suburban rural drivers. However, they would travel by air during 

the pandemic if the ticket price were low enough. Demographically, urban educated 

flyers tend to have higher levels of education and higher household incomes and have 

more children living in the household. Compared to suburban rural drivers, a higher 

percentage of them have mobility issues (themselves or a family member). A higher 

percentage of the urban educated flyers work remotely from home. Their home airports 

offer more direct flights. On average, urban educated flyers fly instead of driving when 

the drive time is over 5.3 hr. 

While there are many differences between suburban rural drivers and urban 

educated flyers, these two aMoD groups are similar in: 

• gender (more men than women), 

• age (mostly between 25−44 years), 

• number of driver’s licenses in the household (most have 2), 

• years with a driver’s license (most are > 15 years) 

• number of cars owned by the household (most have 1 or 2), 

• weekly drive frequency (most > 5 times per week), 

• distance from home to the nearest airport (most are 15−30 minutes), 

• have/had COVID-19 (the majority had not contracted COVID), 

• aMoD timing in the United States (most are 6−10 years) 

In summary, these findings indicate there are distinct differences and similarities 

between the two aMoD clusters. 
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Conclusions 

This study aimed to develop a model to identify factors that most influence U.S. 

air passengers’ inter-regional modal choice in the future when aMoD is available. 

Furthermore, it sought to identify passenger clusters for SF and aMoD and evaluate the 

similarities and differences of these clusters. The findings support the GFT as a 

theoretical framework for the future mode choice model and as a foundation for 

clustering and profiling the SF and aMoD segments. Of the 16 significant predictors for 

the MNL Model, the current main transport mode was found to be the most critical 

predictor. All three GFT constructs were significant predictors in the final MNL model. 

Self-efficacy, value of time, habit, and trust were new variables added to the GFT 

framework based on extant literature. The first two were found useful in predicting future 

mode choice; habit and trust were not.  

Using the four latent constructs—GFT hedonic goal, GFT gain goal, GFT 

normative goal, and COVID influence—this research clustered air passengers who 

selected SF and aMoD separately, resulting in distinct SF and aMoD clusters. There are 

two SF clusters: apathetic travelers and loyal habitual flyers. It is alarming that 66% of 

the current SF passengers intend to shift to other transport modes once aMoD is 

available; 31% of the current SF market share could be lost to aMoD and 20% to 

conventional driving. Furthermore, over half of the current most-traveled air passengers 

intend to use aMoD as their main transport choice in the future. The loyal habitual flyers 

are important passengers to the aviation industry as they form the core of SF flyers. 

Future aMoD passengers come mainly from the current SF (47%) and car/drive (39%) 

modes. This study found two clusters within the aMoD category: suburban rural drivers 
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and urban educated flyers. As frequent business travelers, urban educated flyers have 

accrued more annual air miles than suburban rural drivers. Airlines and airports cannot 

afford to lose these SF customers to aMoD. 

During this study, the pandemic was (and continues to be) a global health 

concern, so it is addressed. While this research considered the potential influence of the 

COVID pandemic, the primary focus is on travel choices in general. The results indicate 

that the fear of COVID-19 and its variants is a predictor of future mode choice, consistent 

with Sun et al. (2020) and Linden (2020). There are a few findings that are worth 

mentioning. Unlike the extant literature (Becker & Axhausen, 2017; NAS, 2019; Zhang 

et al., 2019), prior car accidents and mobility issues do not seem to influence SF 

passengers’ current and future mode choices. Non-business travelers are more likely to 

select driving as their future main mode. The distance between one’s home and the 

nearest airport affects the current but not future transportation choices. Those living 

within 45 min of an airport are more likely to fly SF than those who live farther away. 

The decision point where most would choose to fly instead of drive is between 4 and 5 hr. 

Nearly half of the air passengers are very likely to drive instead of fly if the trip is a 2-hr 

drive. The likelihood of using aMoD instead of SF increases if the trip is a 2 to 5 hr drive. 

Considering these findings, airports and airlines must improve their understanding of 

their current and future customers to protect and increase their market share. 

Theoretical Contributions 

This study makes six theoretical contributions to the body of aviation and inter-

regional transportation literature. Each one is a first in its category.  
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1. GFT is a theory with hedonic, gain, and normative goals as latent constructs. 

This theory has been applied to and validated by various social sciences 

studies, including ground transportation. However, this study is the first 

application of GFT to air transportation research. The GFT constructs were 

used as core input on the multimodal model for inter-regional travel and SF 

and aMoD cluster models. Based on the extant literature reviewed in Chapter 

II, two new GFT variables, self-efficacy and the value of time were found 

useful in predicting future mode choice and in the SF and aMoD cluster 

models. 

2. While there have been increasing studies on aMoD in the past few years, there 

is no identifiable aMoD research on SF and inter-regional travel. This 

multimodal study presents the first exploratory model examining SF and 

aMoD clusters in the context of inter-regional transportation in the United 

States. 

3. This research presents the first multimodal model using SF, aMoD, and the 

full array of current transport modes to gain a more realistic set of 

transportation options for inter-regional travel. This is accomplished by using 

multivariate logistic regression with 4 current and 5 future modes instead of 

the typical binary logistic regression with 2 mode choices. 

4. With the increasing popularity of aMoD, prolific research has focused on 

different geographical locations, levels of automation, customer attitudes and 

perceptions, legal and regulatory challenges, and technical improvements. 

Studies have addressed different perspectives, including local and national 
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governments, AV passengers, commercial drivers (who may lose their jobs), 

insurance companies, manufacturers, disabled, young, and elderly. This study 

is the first to examine the perspectives of air passengers in aMoD research, 

thus gaining more insight into the potential competing modes in the inter-

regional transportation market. 

5. Examination of the five COVID-19 items added to this research to test for any 

pandemic effects in the MNL and CA models is a new theoretical 

contribution. These items are significant in the future transport choice models 

and in the SF and aMoD cluster models. 

6. The drive-time decision between SF, driving, and aMoD has not been studied 

previously. Therefore, findings from this study add to the scholarly knowledge 

of both inter-regional ground and air transportation. 

Practical Contributions 

 

Transportation planning, infrastructure design, and policy-making take time. Four 

practical contributions of this research provide actionable insights for aviation and other 

transport planners, operators, and designers: 

1. A better understanding of factors influencing future transport mode choices 

and characteristics of the different SF and aMoD passenger segments can help 

aviation operators and planners develop and improve service and 

communications strategies to keep and grow their customer base. For 

example, the data suggest that loyalty matters: Loyal SF passengers are more 

likely to choose SF and less likely to choose aMoD as their future mode 

choice. Knowing the extent of potential competitive threats from aMoD and 
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the characteristics of the aMoD and SF clusters provides operators and 

planners the “what” and “to whom” to focus their efforts. 

2. Emerging ground transportation technologies such as aMoD may substantially 

impact competitiveness and revenues in the U.S. airline industry. Significant 

shifts in ground and air mode shares revealed in this study may have crucial 

impacts on airlines, airports, infrastructure, future land use planning, airway 

and highway congestion, and the travel and hospitality industries. Until this 

study, little was known about the degree to which aMoD might impact SF, the 

characteristics of air passengers most inclined to select aMoD over SF, and 

the loyal air passengers who would stay with SF when aMoD is available. 

U.S. airlines and airports will need to consider changes in ground transport 

modes in their planning, including potential impacts on operations and 

business models, to remain viable and relevant. 

3. Since planes travel faster than aMoD, city-pairs that are more than an 8-hr 

drive (500 mi or 800 km) should be largely immune to these ground 

alternatives. Nevertheless, inter-regional travel between city-pairs such as Los 

Angeles–San Francisco and Houston–Dallas may become dominated by 

aMoD. This research provides timely information to assist airlines and cities 

of all types and sizes in planning for the potential mid-to-long-term impact of 

aMoD. 

4. Understanding the similarities and differences of early adopters of aMoD 

provides aviation operators with details needed to create critical business and 

communication strategies for passenger retention. 
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Limitations of the Findings 

Although there are limitations in the scope and research design in this study, the 

importance of its findings is retained due to the thoughtful sampling strategy and 

execution. Inter-regional transport modes of the future may include advanced forms of 

urban air mobility where aerial vehicles may have the capacity to travel up to 500 mi 

(800 km). However, this study was limited to inter-regional transportation focusing on 

aMoD and did not investigate other potential forms of future ground and air vehicles. 

Time and budget constraints contributed to limitations in the research design. 

Probability random sampling offers representativeness and is the gold standard of 

research. While this study did not use random sampling, every effort was employed in the 

research design and execution to minimize threats to external validity to enable the 

generalizability of the findings to air passengers and relevant future contexts. For 

example, steps included a thoughtful sampling strategy supported by a non-response bias 

test to strengthen external validity. In addition, the data were collected at a single point in 

time using an online data collection method. This study can be repeated at different 

geographical locations over time to demonstrate and enhance the reliability of the results. 

Legal and regulatory implications, safety and security, and the economic impact 

of aMoD were not a part of this study. Given the rapid advancements in technology, 

safety and security environments, regulations, and economic conditions, it was not 

feasible to include these factors in the first exploratory study of SF and aMoD.  

Survey research is an excellent methodology because it is designed to capture the 

attitudes, opinions, and perceptions of a large number of people at a point in time. 

However, close-ended items limit the freedom of expression respondents have on areas of 
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interest. While there was one open-ended question in the instrument used in this study, 

the richness of the data collected on each scale item is limited. 

Recommendations 

The results of this study prompt several recommendations for the aviation 

industry, future research methodology, and future research. 

Recommendations for the Aviation Industry 

The U.S. commercial aviation industry is a low-margin business coupled with a 

declining long-term profit trend and intermittent volatility (Bachwich & Wittman, 2017; 

Saxon & Weber, 2017). However, SF is a large market critical to airlines, airports, 

travelers, and regional and local economies. With the approaching introduction of aMoD 

as a viable future mode choice in inter-regional travel, there will be substantial shifts in 

transport modes that could significantly disrupt the aviation industry. Shaheen and Cohen 

(2019) cited transportation network companies (TNC) as catalysts for aMoD. Indeed, the 

rapid adoption of TNC by travelers has created a new paradigm in transportation, leaving 

traditional taxi companies struggling to remain competitive (Clewlow et al., 2017). Prior 

to TNC, passenger behavior regarding ground transportation to and from airports had 

remained relatively stable in the United States. As such, airport access and facility 

planning directly and almost proportionately correlated to originating air passenger 

forecast. While TNC affected airport curbside traffic, it did not compete with airlines. 

This dynamic is expected to change with aMoD which will directly compete with SF. 

Consequently, aMoD will impact the revenues and operations of airports and airlines. 

This study found that 45% of air passengers (629/1,388) currently use SF as their 

primary mode for inter-regional travel; however, only 34% of these SF passengers 
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(213/1,388) anticipate continuing with SF once aMoD is operational, which supports 

Rice and Winter’s 2018 findings. This is a 66% reduction to SF’s market share, with 

most of the loss (192/1,388) going to aMoD. Therefore, it behooves stakeholders, 

managers, and planners of airports, airlines, and cities to understand the characteristics of 

the SF and aMoD passenger segments and predictors for SF and aMoD as inter-regional 

mode choices.  

Loyal SF passengers are likely to choose SF in the future, but airlines need to do 

everything possible to please these loyal customers to keep them from shifting to aMoD. 

Loyal passengers value their time while traveling and aim to minimize their total travel 

time. They do not want to sacrifice comfort even though they are confident they can fix 

any travel issues. To expand this vital group of customers, airlines may need to improve 

their end-to-end service to convert neutral customers to loyal customers and nurture loyal 

customers to become ambassadors. This customer retention strategy involves 

approaching client service from the passengers’ perspectives and not from the airlines’ 

traditional operational viewpoint. Diller (2022) reported that United and American 

airlines have initiated a limited version of transport-as-a-service (TaaS) in a few markets 

where customers buy a ticket that includes plane and bus fares and seamless luggage 

transfer. Customers also earn miles and loyalty points while they are being transported on 

inter-regional buses with leather seats and free Wi-Fi. While the motivation for this 

air/bus partnership may be due to pilot shortage and cost control, forcing airlines to focus 

on larger airports and more profitable routes (Diller, 2022), this air-to-bus connection is 

an excellent first step toward TaaS. 
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Environmental concerns add another dimension to the SF challenge. This research 

found that air passengers who are more pro-environment tend to choose aMoD or the 

train as their future primary transport mode; therefore, the aviation industry must improve 

customers’ perception of commercial aviation’s environmental impact. More than half of 

the current most-traveled air passengers intend to use aMoD as their primary future 

transport choice. These frequent flyers are the airlines’ most valued customers, and they 

cannot afford to lose them. Again, knowing who they are from the cluster models 

developed in this study could help airlines improve their communications and service 

strategies.  

Another beneficiary of the SF market shift is the train. As mentioned earlier, 

while every other current transport mode loses passengers to aMoD, the inter-regional 

train segment might increase its total future market share from 6% to 10%. Convenience 

and the pro-environmental movement may have contributed to this shift. There is 

increasing pressure for regulators and governments to ban, tax, or otherwise 

disincentivize SF in favor of greener modes such as rail and HSR. Traveling by HSR is 

eco-friendly, using only one-eighth of the electricity per passenger mile compared to 

commercial aviation and 14 times less carbon-intensive than car travel (B1M, 2019). In 

parts of Europe, SF is banned where there is a rail substitute that can serve the destination 

within a reasonable time.  

In a few densely populated urban areas of the United States, the train is already 

fierce competition for the airlines. Having the most congested airspace nationally, the 

Northeast experienced half of all airspace delays in 2017 (Federal Aviation 

Administration [FAA], 2020). As a result, whether due to air traffic density or weather 
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conditions, airports in this region rank near the bottom of a list of 284 airports in North 

America for on-time performance (Rowland, 2020). Collectively, American, Delta, 

JetBlue, and United sold 11.8 million seats in 2019, while Amtrak had 12.1 million 

passenger trips in the same period, slightly more than all airline seats combined (BTS, 

2020). Notably, Amtrak carried three times more passengers than all U.S. airlines 

combined for the 207 mi (333.3 km) Washington–New York city pair (BTS, 2020). As 

environmental pressure increases and HSR’s availability improves, this shift may pose an 

additional economic threat to SF.  

Last and most importantly, if airlines are to thrive and remain relevant, they must 

expand the view of themselves as full-service providers in the mobility business and not 

purely as commercial flyers. Over a century ago, the train was the dominant choice of 

transportation for passengers in the United States. Nevertheless, owners and operators 

narrowly defined it as “the train business” versus “the transportation business.” While the 

train industry focused on train services, train passengers migrated to driving cars, and the 

car’s dominance has lasted for over a century. Fast forward to 2022, if airlines continue 

to see their industry as solely in the business of flying people and goods as opposed to 

being in the mobility business providing TaaS/MaaS, they may lose the market to new 

forms of mobility such as aMoD, urban air mobility (UAM), and Hyperloop. Adaptation 

requires a fundamental shift by taking “a first principle” approach to serving travelers. 

Doing so can transform the aviation industry and its ecosystem, and time is of the 

essence. 
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Recommendations for Future Research Methodology 

There are two recommendations for future research methodology. The first 

recommendation relates to the data collection instrument. Although meticulous care was 

taken to develop the pretest and pilot study, because the GFT is new to air transportation 

research, more items can be added to the GFT constructs to be validated using CFA and 

SEM to strengthen the instrument. This may improve the Cronbach’s alphas for the GFT 

gain goal. 

The second recommendation is to use probability random sampling. If the top 10 

airlines in the U.S. provide their passenger list for the past 2 years for research, 

probability random sampling can ensure greater generalizability to the air passenger 

population. This effort would be cost- and time-intensive and would require the airlines 

to cooperate, which may be an unsolvable challenge. 

Recommendations for Future Research 

There are seven recommendations for future research: 

1. While this study has revealed an initial perspective on the multimodal 

transportation choice model and the SF and aMoD cluster models, the 

increasing availability of data as aMoD emerges is likely to require 

refinements to these inter-regional transportation models. Until aMoD is fully 

operational on U.S. roads, public perceptions of aMoD will continue to 

fluctuate with its media attention. Consequently, periodic research with 

greater nuances can make valuable contributions to the knowledge in this area 

of air transportation research. For example, remote work (telework) is likely 

to remain higher than pre-pandemic levels or even increase over time, 
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negatively impacting business travel frequency. Potential threats from remote 

work to inter-regional travel could be examined in future research. Similarly, 

as the U.S. population ages, the demographics of inter-regional travelers will 

change, impacting the aMoD and SF clusters and model results obtained in 

this study. Therefore, the implications of such changes should also be 

investigated in the future. 

2. The future multimodal transportation choice model and the cluster models can 

be modified to include other emerging transportation modes. Potential 

candidates include urban air mobility and Hyperloop. Together, aMoD, UAM, 

and hyperloop could form a seamless air-ground door-to-door MaaS. 

3. SEM can use a structural measurement to determine a theoretical causal 

model. Bearing in mind the GFT framework is new in aviation research, SEM 

may provide important insights into the use of GFT in air transportation study. 

4. It could be beneficial to repeat this study at different geographical locations 

over time to enhance the reliability of the results. Transportation research is 

different based on history, culture, and geographical locations. Changes in 

times, locations, and cultures can provide richer insights in the transportation 

similarities and differences between countries and cultures. 

5. Since aMoD has not been commercially implemented yet, it is an opportune 

time to begin longitudinal research to study changes in attitudes and 

perceptions on SF, aMoD, and other travel modes over time. An observational 

study of this magnitude could provide needed information to the air 

transportation industry.  
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6. The results from this study showed that 36% of the current air passengers are 

likely to choose aMoD as their future primary transport mode. Furthermore, 

39% of future aMoD passengers are likely to come from the short-haul 

aviation transportation segment and almost half are likely to come from the 

traditional ground transportation market. To gain a deeper understanding of 

airport leakage from small- and medium-sized airports to the bigger hubs, 

extend the research by Ryerson and Kim (2018) to examine the impact of 

aMoD transport mode on the magnitude of airport leakage based on airfare 

and availability of direct flights.  

7. A proven safety record and consumer perceptions of safety and trust are not 

necessarily the same, yet all are important enablers and inhibitors of 

transportation use. This study examined safety and trust as variables, not as 

constructs, and assumed perception of trust and safety would not inhibit 

aMoD adoption once aMoD becomes available in everyday life. Yet, these 

constructs are intertwined and necessary conditions for aMoD to be widely 

adopted. Therefore, future research could extend this research by focusing on 

safety and trust constructs to identify their similarities and differences 

between and within aMoD and SF clusters.  
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Summary 

This chapter discussed the implications of critical findings in answering the RQs. 

The future introduction of aMoD as a viable mode choice, combined with the knowledge 

that 39% of the future aMoD passengers may come from the SF market, makes it prudent 

for today’s aviation and transportation planners, managers, and operators to understand 

key predictors in the future transport modes and the characteristics of the SF and aMoD 

passenger segments. Practically, the findings in this study provide actionable insights for 

these decision-makers to incorporate into their strategy, planning, and communications. 

Theoretically, this study focused on short-haul U.S. air routes for travel distances of 500 

mi (800 km) or less and explored future mode choice predictors and SF and aMoD 

passenger clusters, thereby addressing significant knowledge gaps in aviation and 

transportation literature. Researchers can build on this study to help develop the body of 

research on inter-regional travel, the goal framing theory, the future transport mode 

choice model, and the SF and aMoD cluster models. 
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Appendix C 

Participant Informed Consent Form 
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Appendix D 

Data Collection Device 

 

U.S. Inter-regional Travel Survey 
 

I. Demographics 

 

2. Gender (I identify myself as…) 
 

   Female    Male    Other 

3. Age 
 

   18-24    25-34    35-44    45-54    55-64    65-74    > 74 

4. Highest level of education attained 
 

    Attended high school 

     High school diploma 

   Bachelor ’s degree  

   Master ’s degree 

    Ph.D./Post-doctorate 

 

5. Annual household income (total from work, investments, and retirement funds) 
 

   < $30,000 

   $30,001 to $50,000  

   $50,001 to $100,000  

   $100,001 to $150,000 

   $150,001 to $200,000  

    > $200,000 

 

6. The number of children under 18 years old living in your household 
 

   0  

   1  

   2 

   3 or more 

 

7. Total number of cars owned by the household 
 

   0  

   1  

   2 

   3 or more 

 

8. How many people in the household have a driver ’s license? 
 

   0 [No license]  

   1 

   2 
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   3 or more 

 

9. How long have you had a driver ’s license? 
 

   I do not have a driver's license 

   < 3 years  

   3-8 years  

   9-15 years  

   > 15 years 

U.S. Inter-regional Travel Survey 

10. How often do you drive? 
 

   I do not drive 

   < 1 time per week  

   1-2 times per week  

  3-5 times per week  

  > 5 times per week 

 

11. On average, roughly how many miles a year did you fly within the U.S. pre-COVID? For example: One- way flight 

distance between… 

* San Francisco - Los Angeles = 350 miles 

* Denver – New York = 1600 miles 

* Chicago – Seattle = 1700 miles 
 

   < 5,000 miles 

   5,000–10,000 miles  

   10,001–25,000 miles  

   > 25,000 miles 

 

12. I live in 
 

   A city (large urban area) 

   A suburb (a large residential area near to a big city)  

   A small city 

   Rural America/countryside/small town/village 

 

13. In the past, have you or your family been in a car accident when someone got injured? 
 

   Yes      No 

 

14. Do you or someone in your family use a wheelchair or a walker? 

 

   Yes   No 

 
15. During COVID, the estimated percentage of time I work from home 

 

100%                       

75%   

50%                           

25%   

0%                             

I do not work  
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16. Pre-COVID, on average, I traveled for business 
 

   Once a year 

   2-6 times a year 

   7 or more times a year 

   I did not travel for business 

 

17. I am vaccinated against COVID-19 
 

   Yes 

   No 

 

18. I have/had COVID-19 
 

   Yes 

   No 

 

19. I have traveled by air during COVID 
 

   Yes 

   No 

 

II. Questions on Inter-regional Travel 
 

In this survey, the term “travel” refers to inter-regional travel of 100 to 500 miles within the U.S. Typically,  

it is within one hour of flying or 3-8 hours of driving. For example, traveling between the following cities: 

* San Francisco - Los Angeles/San Diego 

* Denver - Santa Fe/Albuquerque 

* Boston - New York/Washington D.C. 

* Houston - Dallas/San Antonio/Austin 

* Miami -Tampa/Orlando 
 
20. Usually, I would fly if the driving distance is over 
 

   3 hours  

   4 hours  

   5 hours  

   6 hours  

   7 hours  

   8 hours 

 

21. What is the likelihood of you driving a car instead of flying, if the trip is a... 

 

                                   Very Unlikely                  Unlikely               Somewhat Likely                    Likely                      Very Likely 

2 hours' drive                                                                                                                                      

5 hours' drive                                                                                                                                      

8 hours' drive                                                                                                                                      

 

22. Pre-COVID, when I traveled to inter-regional cities, I usually 
 

   Drove 

   Flew on an airplane 

   Took an inter-regional bus 

   Took an inter-regional train 
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23. I have used the following transport mode at least once in the United States. 

                                                                              Yes No 

Inter-regional Train             

Inter-regional Bus             
 

Please indicate how strongly you agree or disagree with each statement below. 
 

24. This section focuses on your general feelings, beliefs, and perceptions 

Generally, my main transport mode for inter- regional travel is efficient. 

Strongly Disagree     Disagree       Somewhat Agree       Agree                   Strongly Agree 

                                                   

I will not sacrifice comfort even if I have to pay slightly more 

                                                                                                                                                                
 

I believe issues that may pop up during my travels can be resolved. 

                                                                                                                                                       
 

I am quite predictable in terms of how I travel. 

                                                                                                                                                      
 

Most of the time, I am happy with the transportation I use when I travel to other cities. 

                                                                                                                                                             
 
In general, I trust my main inter-regional transport mode is safe.  

                                                                                                                                                         
 

Traveling is fun for me.  

                                                                                                                                                      
 

Cost is very important to me when I travel for leisure. 

                                                                                                                                                            
 

Convenience is very important to me when I travel. 

                                                                                                                                                     
 

I usually try to minimize my total travel time. 

                                                                                                                                                     
 
When I travel, I value my time doing something nice or useful, such as watching a movie, working, or sleeping. 

                                                                                                                                                    
 

25. On the Environment 

 

                                             Strongly Disagree     Disagree       Somewhat Agree       Agree                   Strongly Agree 
 

Preserving the environment is very important when I decide how I travel. 

                                                                                                                                                              
 

I feel moral obligation to protect the environment. 

                                                                                                                                                              
 

I think electric vehicles are good for the environment. 

                                                                                                                                                              
 

People who are important to me tend to care about the environment. 

                                                                                                                                                              
 
It is important for me to be a role model for my family in environmental protection. 
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26. On Technology 

 
                                            Strongly Disagree     Disagree       Somewhat Agree       Agree              Strongly Agree 

 

Technology is my friend. 

                                                                                                                                                             
 

I am dependent on technology. 

                                                                                                                                                             
 

I use the Internet for information regularly. 

                                                                                                                                                             
 

I think it is important to keep up with the latest trends in technology. 

                                                                                                                                                             
 
I was one of the first people to use Uber or Lyft to/from the airport. 

                                                                                                                                                            
 

I am familiar with the concept of driverless cars. 

                                                                                                                                                            
27. On COVID-19 

 
                                            Strongly Disagree     Disagree       Somewhat Agree       Agree              Strongly Agree 

 

I am concerned with getting COVID when I travel. 

                                                                                                                                                          
 

I think COVID and its variants will get worse. 

                                                                                                                                                          
 

My disposable income has increased since COVID started. 

                                                                                                                                                          
 

Even during COVID, I could be tempted to travel by air if the ticket price was low enough. 

 
 

I think the economy is gradually recovering. 

                                                                                                                                                          

 

III. Future-Oriented Questions 
 

We are still focusing on inter-regional travels. This section is interested in your opinions of how you may travel if 

driverless cars are available. 

 

The figure below shows the levels of driving automation. In the future, cars may be Level-5 (fully autonomous). A 

driverless car, sometimes called a self-driving car, is a car that can go from place to place without a driver . The 

main features are self-driving, electric, and on-demand. 
 

In 2021, most cars are Levels 1-3. Tesla cars are currently between Levels 3-4. 
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28. The questions below focus on Level-5 (fully autonomous), where the cars perform all driving tasks and no driver is required. 

Functionally, the cars will not have steering wheels, brakes, and other driving controls. This will free the cars to be versatile in size 

and functions to fulfill the passengers’ trip requirements such as working, eating, watching a movie, or sleeping.  

I think driverless cars will be transporting people in the United States… 

 

   Within 3 years    In 3-5 years    In 6-10 years    In 11-20 years    Over 20 years    Never 

 

29. I believe 50% of the cars on the road will be driverless cars in the United States… 

 

   By 2030 

   By 2040 

   By 2050 

   Beyond 2050 

   Never 

 

30. Most people think that 50% of the cars will be electric in the United States … 

 

   By 2030 

   By 2040 

   By 2050 

   Beyond 2050 

   Never 

 

31. In the future, assuming safety, legal, and regulation issues are solved, and driverless cars are readily available in 

everyday life, what do you think you would use the most for inter-regional travel? 

 

   Use a driverless car 

   Drive a car myself/driven by others 

   Fly 

   Take an inter-regional bus 

       Take an inter-regional train 

 

32. What is the likelihood of you using a driverless car instead of flying, if the trip is a… 

 
                                            Very Unlikely            Unlikely       Somewhat Likely       Likely      Very Likely 

2 hours' drive 

                                                                                                                                                         
5 hours' drive 

                                                                                                                                                         
8 hours' drive 

                                                                                                                                                         
 
33. Please indicate how strongly you agree or disagree with each statement below if driverless cars are readily available on-

demand in the U.S. 

 

                                            Strongly Disagree     Disagree       Somewhat Agree       Agree              Strongly Agree 

 
I would use a driverless car instead of flying on inter-regional trips. 

                                                                                                                                                         
I trust that driverless cars will be safe if they are  allowed on the road. 

                                                                                                                                                         
Generally, I think driverless cars will be cheaper to use than flying. 

                                                                                                                                                         
I think driverless cars are more convenient than flying in general. 
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I would use a driverless car instead of driving on inter-regional trips. 

                                                                                                                                                         
 
If I were to ride in a driverless car, I may be relaxed enough to fall asleep. 

                                                                                                                                                         
 

34. Approximately, how long does it take to drive from your home to the nearest airport? 

 

   < 15 minutes 

   15 – 30 minutes 

   31 – 45 minutes  

   46 – 60 minutes 

   > 1 hour 

 

35. Pre-COVID, on average, what percentage of the time your home airport offers direct flights to where you need to 

go? 

   0% - 20%           21% - 40%           41% - 60%           61% - 80%           Over 80% 

 

36. On average, roughly how many people, including yourself, travel together when you travel for leisure? 

                                             1                  2                                                                                                       3                                                     4 or more 

By Car (driving)                                    

By Plane (flying)                                   

 

37. If there is anything that is not included in this survey that you think is important to your decision for inter- 

regional travel in the future, please share here. 

 

 

 

 

 

 

38. You are almost done. Please: 

Select the FIRST CODE below and ENTER it in the "Survey Code" box in MTurk 

Select "CLICK TO SAVE RESPONSES" below to complete this survey. 

 

AV101 

 

EV201 

 

AV301 

 

EV401 

 

AV501 

 

EV601 

 

AV701 

 

EV801 

 

AV901 
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Appendix E 

Pilot Study: Cronbach’s Alpha for the COVID-19 Items 

The Cronbach’s alpha for the COVID-19 scale (α=.430) did not provide evidence 

of good internal consistency. As seen in the column “Cronbach’s Alpha if Item Deleted,” 

removing C1 would increase the Cronbach’s alpha value to .49 which was still too low to 

provide evidence for reliability. In addition, C1 was critical for the COVID-19 construct. 

A practical solution was to add two items to this construct representing respondents’ 

perception of their economic conditions and the degree they worry about the variants of 

the COVID-19 pandemic. 
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Appendix F 

Pilot Study: EFA Pattern Matrix  

The pattern matrix of the pilot data stabilized as a 4-factor solution. The principal 

component extraction method was used as it makes no distributional assumptions. 

Promax rotation algorithm is appropriate because it assumes correlations amongst the 

variables. 
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Appendix G 

Multivariate Outliers Assessment using Mahalanobis D-Square 

Results before removing the 36 observations with multivariate outliers. 
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Results after removing the 36 observations with multivariate outliers: 

Observations farthest from the centroid (Mahalanobis distance)  
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Appendix H 

Multivariate Normality Assessments 

Method 1. The Mahalanobis distance (maximum) of 15.946 < the chi-square 

distribution critical value of 26.296 (p = .05, df = 16). These results provided evidence 

that multivariate normality exists. 
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Method 2. The kurtosis values using AMOS, tend to have more effect on the 

model. All Kurtosis values < 1 (which is < 3 for acceptance for multivariate normality).  
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Appendix I 

Linearity Assumption and Discriminant Validity Tests 

 
Note. Linearity indicated by 91% of all bivariate correlations being significant.  
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Appendix J 

Homoscedasticity / Homogeneity of Variance  

 

The Pearson Correlation of −.254 and Spearman Correlation of −.206 are both 

statistically significant at the .01 level. The assumption of homoscedasticity has not been 

satisfied. 
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Appendix K 

Multicollinearity Assessment  

General guidelines: 

• Variance Inflation Factor (VIF) < 10 

• Condition index > 15 = collinearity is suspected  

• > 30 = serious multicollinearity 
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Appendix L 

MNL Models: Likelihood Ratio Tests  

Table L1 

 

MNL Model 1 
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Table L2 

Table MNL Model 2 

 
Note. The chi-square statistic is the difference in -2 log-likelihoods between the final 

model and a reduced model. 
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Table L 3 

 

MNL Model 3 

 
Note. The chi-square statistic is the difference in -2 log-likelihoods between the final 

model and a reduced model. The reduced model is formed by omitting an effect from the 

final model. The null hypothesis is that all parameters of that effect are 0. 

a This reduced model is equivalent to the final model because omitting the effect does not 

increase the degrees of freedom.  

b The unexpected singularities in the Hessian matrix are encountered. This indicates that 

either some predictor variables should be excluded, or some categories should be merged.  
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Appendix M 

aMoD Clusters: Similarities 

A non-significant variable indicates that the clusters are similar for that attribute. 
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Appendix N 

SF Clusters: Similarities 

 

A non-significant variable indicates that the clusters are similar for that attribute. 
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	The SF clusters model uses the two-step CA to segment SF passengers based on the EFA latent constructs. Passenger demographics, contextual trip attributes, COVID-19 items, and the GFT variables are used to profile the distinct SF clusters based on the...
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