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Abstract 

Researcher: Heidi C. Kim 

Title: Determining Contributing Factors for Passenger Airline Pilot Perceived 

Fatigue 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2022 

Fatigue is a recurring concern for pilots and continues to be a common contributing cause 

of aircraft accidents. The purpose of the dissertation was to determine factors that 

influence fatigue in commercial airline pilots. The ability to accurately associate fatigue 

in pilots before a flight begins could have a profound and meaningful impact on aviation 

safety. Seven factors were identified in the literature review as having possible predictive 

capabilities of perceived fatigue in pilots working for passenger carriers, including time 

awake, perceived stress, sleep quality, hours of sleep, age, typically scheduled start time, 

and hours on duty. 

An electronic survey instrument was used to gather quantitative data from U.S. 

passenger-carrying airline pilots. Data collected from 271 responses were randomly 

assigned to two separate groups. First, a regression equation was created utilizing half of 

the data collected from a survey instrument. The regression identified that age, hours on 

duty, and sleep quality (JSS) were significant independent variables (IVs) contributing to 

fatigue. Next, the regression equation was used to create predicted values of perceived 

fatigue. Then the second half of the dataset was used to validate if the equation could be 

utilized to identify contributing factors for passenger airline pilots' perceived fatigue. 
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Data were created with the regression equation and compared to perceived fatigue. The 

model was a moderate fit for the second data set. 

The analysis identified age as a negative predictor, indicating that fatigue (FSS) 

decreases as age increases. Age also had the smallest effect size of the significant IVs. 

These two items, while counterintuitive, are possibly explained by variances in schedules 

between pilot seniority. Sleep Quality (JSS) had the most significant effect on fatigue, 

while hours on duty had a larger effect than age but a smaller effect than sleep quality. 

Four variables studied were not significant predictors of fatigue and were not used in 

model creation: time awake, perceived stress, hours of sleep, and typically scheduled 

start time. 

Safely operating a flight involves weighing the implications of fatigue and other 

possible hazards resulting in many possible predictive factors. Heinrich’s domino theory 

was used to derive the fatigue factors in this dissertation. The significant predictor 

variables, age, hours on duty, and sleep quality form a potential “domino” for a fatigue-

related accident. These fatigue factors may not cause an accident but could be a 

“domino” in a series of factors. 

While some fatigue factors have been studied, the factors studied in this 

dissertation have not previously been studied in the same way by creating a model with 

this population. Additionally, previous fatigue studies have not typically researched U.S.-

based passenger-carrying pilots. Analyzing risks associated with fatigue in passenger-

carrying pilots at commercial airlines is particularly complex because many factors can 

influence fatigue, including scheduling software, union contracts, and norms and 

practices. Airlines and regulators could use the prediction equation to potentially reduce 
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fatigue-related risks. The equation created can predict fatigue in advance of scheduled 

flights and serve as a starting point for future fatigue researchers. 

Keywords: aviation, commercial pilots, airline pilots, domino theory, fatigue, 

flight safety 
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Chapter I: Introduction 

The National Transportation Safety Board (NTSB) produces the Most Wanted 

List of Transportation Safety Improvements each year. Reducing fatigue-related 

accidents is a prominent issue in aviation safety (NTSB, 2019). The NTSB (2019) 

describes the severity of the fatigue problem by classifying fatigue as “a pervasive 

problem in transportation that degrades a person’s ability to stay awake, alert, and 

attentive to the demands of safely controlling a vehicle, vessel, aircraft, or train” (p. 1). 

Fatigue is an important focus area for the NTSB, with over 40 recommendations to 

reduce fatigue-related risks across several transportation modes (NTSB, 2019). Avers and 

Johnson (2011) described fatigue as “a multidimensional construct commonly described 

as sleepiness or a general tired feeling resulting from extended wakefulness, insufficient 

sleep, or circadian disruption” (p. 88). 

Fatigue has been a recurring concern for transportation-related accidents, and it 

remained so throughout 2020 (NTSB, 2019). Much of the foundational fatigue research 

in the aviation industry was conducted between 1990 and the early 2000s. NASA fatigue-

related studies (Gander et al., 1998) were conducted before establishing 14 C.F.R Part 

117 (2012) rest rules. Due to the age of the NASA fatigue studies and minimal other 

consistent, widespread studies (Gander et al., 1998), there is substantial opportunity for 

additional research since 14 C.F.R Part 117 went into effect. Fatigue-related factors are 

absent from the FAA’s 2020 annual list of technical research topics. Increased focus on 

other topics such as unmanned aircraft, commercial space flight, and complex automation 

have instead become more dominant (FAA, 2020). While some aviation fatigue research 
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continues, no predictive methods were identified that could be used among the U.S. 

airline pilot population prior to a flight. 

Estimates from the NTSB suggest that approximately 23% of major aviation-

related accidents are related to fatigue as a primary cause, contributing cause, or finding 

identified in the accident investigation (Marcus & Rosekind, 2017). However, the actual 

number could be much higher due to underreporting fatigue in aviation incidents and 

accidents. Fatigue is not a unique concern to the aviation industry; the maritime industry, 

for example, has also noted fatigue effects. The maritime industry estimates that ship 

groundings are 23% more likely to occur in fatigued naval operators (Akhtar & Utne, 

2015). Although ship groundings do not necessarily cause fatalities in the maritime 

industry, similar contributing factors in aviation could have fatal consequences. 

A consensus group of international fatigue scientists, who primarily study human 

performance, safety, and accidents in transportation, identified “the major causes of 

fatigue are: (a) the time of day of the transport operation (e.g., night/early morning), (b) a 

long duration of wakefulness, (c) inadequate sleep, (d) pathological sleepiness (sleep 

apnea), (e) prolonged work hours (not necessarily operating a vehicle)” (Akerstedt, 2000, 

p. 395). Identified fatigue factors presumably would aid in predicting fatigued pilots, 

further improving aviation safety. While some aspects of Heinrich’s domino theory have 

lost relevance (Dekker, 2019), Heinrich stressed that accidents and incidents could be 

prevented (Heinrich et al., 1980). Utilizing fatigue factors to improve aviation-related 

fatigue predictability could reduce aviation accidents and incidents. The identified fatigue 

factors impact personnel in other modes of transportation, but there are issues unique to 
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aviation (Drongelen et al., 2017; Marcus & Rosekind, 2017). Problems related to 

operational difficulties and rest scheduling can occur in all modes of transportation. 

Although fatigue is a problem across various modes of transportation, the full 

impact of fatigue is sometimes underreported (Caldwell, 2004; Drongelen et al., 2017). 

Underreporting fatigue could be exacerbated by fears of negative consequences on 

medical certification, income, and career advancement. Overt factors in incidents and 

accidents could confound the identification of fatigue as a contributing factor. 

Sleep and Fatigue Physiology 

Longer flights present complex issues concerning fatigue. As identified by 

research, flight crew members have episodes of micro-sleep during long-haul operations 

(Cabon et al., 2003). Micro-sleep is a short burst of sleep that is only a few seconds long 

(Colino, 2018). Due to the frequency of micro-sleep occurrences (Cabon et al., 2003), 

micro-sleep likely occurs on both long-haul and short-haul flights, despite short-haul 

flights likely transiting fewer time zones. Despite some operational differences, crews 

can still be subjected to continuous-duty overnight operations where the same crew 

conducts a late-night flight and an early-morning flight during the same period (Cabon et 

al., 2003; Co et al., 1999; Lamp et al., 2019; Sallinen et al., 2017). 

Quality Sleep is vital to several essential body functions, including cardiovascular 

and metabolic health, regulating emotions, brain development and activity (Drongelen et 

al., 2017; Mukherjee et al., 2015), and general quality of life. Medical disorders such as 

obstructive sleep apnea, insomnia, or other underlying health and medication concerns 

can harm health and wellbeing (Drongelen et al., 2017). A lack of sleep has been 
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attributed to psychiatric illness, depression, and mental disorders (Mukherjee et al., 

2015). 

The detriments of a lack of sleep have most frequently been studied by disrupting 

sleep and examining the consequences. These experiments have identified that sleep is 

critical to vigilance, alertness, and sustained attention. A 2006 (Rosekind et al.) study 

focused on alertness management to combat fatigue in pilots' operational settings. Of the 

213 airline pilots surveyed (23% response rate), 38% indicated that fatigue was a severe 

problem in aviation. An additional 45% reported it was at least moderately a problem. 

100% of respondents named concentration a primary problem affecting them in the 

operational environment. Of these respondents, 90% reported noting vigilance 

degradation, and 86% noticed a reduction in decision-making abilities (Rosekind et al., 

2006). 

Fatigue Rules for Flight Crews 

Pilot fatigue has been an underlying safety concern since aviation's beginning 

(Rudari et al., 2014). Despite complex crew rest rules, 90% of pilots attribute scheduling 

factors to fatigue's most frequent cause. Recommendations for improving crew 

scheduling included reducing duty duration, limiting the conduct of continuous-duty 

overnights, increasing rest, consistency of day versus night duties, report time 

management, and improved reserve practices (Co et al., 1999; Drongelen et al., 2017). 

Flight crew alertness and fatigue levels can be negatively impacted by unpredictable pilot 

scheduling, excessive flight duty periods, short off-hour work periods, and inconvenient 

layovers (Caldwell, 2012). Dinges et al. (1999) explained that factors such as fatigue and 
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circadian physiology could be more beneficial if incorporated into regulatory and 

industry scheduling practices. 

Aircraft design improvements have allowed for increased flight durations. 

Concern about pilot fatigue has motivated the U.S. Congress to push for regulatory 

changes. Substantial changes to regulations were made by creating 14 C.F.R Part 117 on 

January 4, 2014. The regulation changes implemented with 14 C.F.R Part 117 were the 

first aviation requirements designed to consider natural circadian rhythms, fatigue, and 

crossing various time zones (Rudari et al., 2014). Despite the new addition of 14 C.F.R 

117, many gaps in addressing fatigue in commercial aviation persist. Additionally, 14 

C.F.R 117.1 (2012) does not apply to cargo operations and, as a result, states the 

following: 

(a) This part prescribes flight and duty limitations and rest requirements for all 

flight crewmembers and certificate holders conducting passenger operations 

under part 121 of this chapter. (p. 1) 

This rule only applies to passenger carriers, leaving cargo carriers exempt from the 

regulation (Flight and Duty Limitations and Rest Requirements, 2012). Title 14 C.F.R 

117 creates substantial differences in scheduling practices between cargo and passenger 

carriers, subjecting crews to varying fatigue levels based on what the aircraft is carrying. 

The remainder of 14 C.F.R 117 regulates fatigue-related actions by passenger 

carriers and their pilots. Each flight crewmember must report for duty rested and 

prepared. Flight crew members reporting for a flight who self-report as fatigued will not 

be assigned to flight duty (FAA, 2012). 14 C.F.R 117 prescribes the foundation of a 
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fatigue risk management system (FRMS). It also covers flight duty period limits, rest 

periods, reserve, and nighttime operations. 

Statement of the Problem 

Fatigue can have devastating consequences on pilot performance (Caldwell, 2004; 

Drongelen et al., 2017). Despite fatigue recommendations dating back to 1967 by the 

NTSB (Case Analysis and Reporting Online, 2021) to reduce fatigue-related accidents 

and incidents within aviation, fatigue remains a substantial risk to aviation safety. The 

aviation industry has identified fatigue as a reoccurring safety problem, leading to 

increased accidents, incidents, and aviation safety-related occurrences. While fatigue 

contributing factors have been researched across other modes of transportation, such as 

vehicle and ship-based research (Bal et al., 2015; Akhtar & Utne, 2014; May & Baldwin, 

2009), minimal research has been conducted into exploring contributing fatigue factors in 

U.S. based passenger-carrying airline pilots. Connections between fatigue factors and 

airline pilots remain unclear due to limited research. 

Purpose Statement 

The primary purpose of the dissertation was to determine factors that influence 

fatigue in commercial airline pilots. Research has been conducted indicating that pilots 

do have some level of fatigue, particularly on long-haul flights (Cabon et al., 2003; Co et 

al., 1999; Lamp et al., 2019; Sallinen et al., 2017). However, few studies have focused on 

the factors leading to a fatigued flight in U.S.-based passenger-carrying pilots. Therefore, 

this research seeks to determine fatigue factors in commercial pilots.  

Fatigue factors surveyed include stress, sleep, pilot schedules, and age. Any factor 

that can be identified before a flight occurs to predict fatigue could aid the pilot, airlines, 
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and regulators to a safe flight outcome. Based on findings, this research provides data that 

can improve scheduling algorithms and rest regulations. 

Significance of the Study 

The ability to accurately predict fatigue based on sleep and schedule in pilots 

before a flight could have a profound and meaningful impact on aviation safety. Findings 

learned from this study will potentially shape Federal Aviation Regulations (FAR), 

airline operations, and, most importantly, impact crew and passengers' lives. A benefit of 

identifying significant fatigue causal factors is using those factors to determine the 

association with fatigue. 

Today, fatigue identification is primarily made using historic fatigue data 

scheduling-based tools. Previous research has been limited to physiological monitoring 

devices in flight to predict fatigue-like scenarios (Berberich & Leitner, 2017; Wilson et 

al., 2019). Identifying the fatigue factors in U.S.-based passenger-carrying pilots that can 

be used as causal factors of fatigue without physiological monitoring devices has not 

been previously studied using a regression model. The data identified in this dissertation 

could be used to predict fatigue more accurately prior to departure without physiological 

monitoring devices. Regulatory authorities, passenger airlines, and airline pilots could 

benefit from these findings. Unfortunately, the researcher could not identify fatigue 

research designed to determine if FAR Part 117 changes have been effective. 

Heinrich’s domino theory was used as the theoretical basis to derive fatigue 

factors in this dissertation. The significant predictor variables form a potential “domino” 

for a fatigue-related accident. Heinrich’s domino theory suggests that accidents can be 
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mitigated by limiting or removing the dominos, or in the case of this research, causal 

variables. 

With limited information available to regulators on the success of regulatory 

changes, authorities are left without adequate data to drive future changes. Data can aid 

those writing regulations in making data-based decisions. Fatigue Analysis, conducted as 

a part of an FRMS, is the process of collecting and gathering data to allow U.S.-based 

passenger airlines (often with agreement from pilots’ unions) to modify schedule 

programing algorithms to reduce fatigue. Fatigue analysis described under AC 120-103A 

also recommends gathering the latest scientific research and conducting operation-

specific human factors research (FAA, 2013). With data-based changes to regulations and 

airline scheduling policies, pilot fatigue levels will be reduced with information gained 

from this research.  

Research Questions  

This dissertation examined one overarching research question: What factors can 

be identified to predict perceived pilot fatigue in U.S. based passenger-carrying airline 

pilots? Fatigue factors of age, sleep, stress, and schedule are used to answer the following 

specific research questions:  

1. Is time awake a significant predictor of perceived pilot fatigue when controlling 

for perceived stress, sleep quality, hours of sleep, age, typically scheduled start 

time, and hours on duty? 

2. Is perceived stress a significant predictor of perceived pilot fatigue when 

controlling for time awake, sleep quality, hours of sleep, age, typically scheduled 

start time, and hours on duty? 
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3. Is sleep quality a significant predictor of perceived pilot fatigue when 

controlling for time awake, perceived stress, hours of sleep, age, typically 

scheduled start time, and hours on duty? 

4. Are hours of sleep a significant predictor of perceived pilot fatigue when 

controlling for time awake, perceived stress, sleep quality, age, typically 

scheduled start time, and hours on duty? 

5. Is age a significant predictor of perceived pilot fatigue when controlling for 

time awake, perceived stress, sleep quality, hours of sleep, typically scheduled 

start time, and hours on duty? 

6. Are hours on duty a significant predictor of perceived pilot fatigue when 

controlling for time awake, perceived stress, sleep quality, hours of sleep, 

typically scheduled start time, and age? 

7. Is typically scheduled start time a significant predictor of perceived pilot 

fatigue when controlling for time awake, perceived stress, sleep quality, hours of 

sleep, age, and hours on duty? 

Delimitations 

The dissertation focuses on pilot self-reportable fatigue factors that could be used 

as a prediction factor before a flight. For this research, physiological monitoring is not 

used. When used actively, physiological monitoring can only be used after a flight has 

already begun and would be challenging to utilize for fatigue prevention of an individual 

pilot. Devices such as an electrocardiogram (ECG) have been frequently used in studies 

to detect fatigue in pilots (Wilson et al., 2019). Invasive technology, including 

physiological monitoring devices, is cumbersome, expensive, and often requires batteries 
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or external power (Quintana & Heathers, 2014). The utilization of ECG and physiological 

monitoring devices could prove cost-prohibitive and cumbersome. Existing studies have 

not provided a non-invasive, individualized method of determining fatigue before a 

flight. 

The impacts of COVID-19 have been problematic for the airline industry and 

were a potential confounding variable for the study. Some airlines have had reduced 

schedules, furloughs, or extended leaves. While this could skew data, an item on the 

questionnaire was added to limit the effects of various types of pilot leaves. Pilots on 

more than a one-week voluntary leave, extended leave, or furlough were discontinued 

from providing further input into the survey tool. 

Because the dissertation involved active airline pilots with FAA medical 

certificates, pathological sleepiness, including illnesses or sleep disorders not approved 

under an FAA medical certificate, was not included. Untreated sleep disorders are 

potentially medically disqualifying, according to the Guide for Aviation Medical 

Examiners (FAA, 2019a). To have a more homogeneous group of participants, only U.S. 

Part 121 crew members were utilized within this dissertation; Part 135, cargo, and other 

U.S. airline crew members were not included. Finally, task-related fatigue factors were 

not a focus of this research because it is likely that observational research would have to 

be utilized instead of the methodology chosen. Participants were required to all fly for  

U.S.-based 121 passenger airlines so that job-related tasks are similar.  

Limitations and Assumptions 

This dissertation relies on accurate, honest responses to survey questions. Survey 

participants may hesitate to answer honestly because answers could have implications for 
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their company or their medical certification if misused. Participants were advised that 

preserving their anonymity and confidentiality was of the utmost importance. The 

participants were all volunteers who may withdraw from the survey with no 

ramifications. 

Because all data were self-reported, bias is possible. Response bias is a condition 

that occurs during the survey process for surveys that ultimately affects the way the 

participant responds. For example, bias can occur due to the fear of retaliation described 

above. Another cause of bias is if the participant sees him or herself differently or wants 

to report a more satisfactory condition. The challenge with response bias is 

overestimating or underestimating the situation (Lavrakas, 2008). The researcher 

attempted to overcome challenges related to response bias by ensuring that questions 

were short and precise. Subject matter experts vetted the questions for clarity and ease of 

understanding. Additionally, a small pre-test and pilot study validated the survey 

instrument. 

Sampling errors are a potential limitation of this dissertation. Due to the 

timeframe required to collect data, this dissertation relied on convenience sampling. The 

sampling frame was primarily located through virtual social networks frequented by 

airline pilots. While the survey filters out non-pilots or pilots who do not meet 

dissertation qualifications, it cannot be guaranteed who ultimately participated. By 

reviewing data collected for outliers, the effects of a participant who does not meet 

qualifications should be lessened. 

Statistics used in this study determined factors that could contribute to pilot 

fatigue; however, determining causation of fatigue factors is not the purpose of the study. 
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The study focuses on correlation rather than causation. Determining the exact causes of 

fatigue requires additional analysis and multiple independent studies beyond this 

dissertation. Due to the time and complexity involved in determining the cause of factors, 

this determination is not possible within the proposed timeline. Despite being unable to 

determine causation, contributing fatigue factors identified are helpful for future research 

on predictive fatigue in U.S.-based passenger-carrying airline pilots. 

Summary 

Aviation accidents and incidents, pilot-reported occurrences, and operational 

research indicate that fatigue remains a problem (Caldwell, 2004; Drongelen et al., 2017). 

Additionally, the hazards of fatigue have already had devastating consequences on the 

safety of the air travel system. This research examined factors that could be identified in 

pilots to predict fatigue. Once predictive fatigue factors are determined, they can be used 

to create methods for determining specific fatigue risks. 

Chapter II reviews fatigue and fatigue-related issues in transportation. Only U.S.-

based regulations were discussed because of the variance of regulations concerning crew 

rest. Chapter III explains the quantitative methodology used to collect and analyze data. 

Chapter IV reviews the data collected and analyzed from the survey tool. Chapter V 

discusses findings in Chapter IV, identifies theoretical and practical contributions, and 

provides recommendations for the future. 

Definitions of Terms 

14 C.F.R 117 A section in Title 14 of the Code of Federal 

Regulations, Chapter 117, primarily focuses on 
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flight and duty limitations and rest requirements for 

flight crew members. 

14 C.F.R 121 A section in Title 14 of the Code of Federal 

Regulations, Part 121 specifies the operational 

requirements for the domestic, flag, and 

supplemental operations. 

Alertness Alertness is “the state of being awake, aware, 

attentive, and prepared to act or react” (American 

Psychological Association, 2020). 

Cargo Carrier 14 C.F.R 121 Air Carrier, whose primary mission is 

exempt from 14 C.F.R 117.1. 

Circadian Fatigue Circadian fatigue is one of the three types of 

fatigue. Circadian Fatigue is “the reduced 

performance during nighttime hours, particularly 

during an individual’s ‘window of circadian low’” 

(WOCL) (FAA, 2012, p. 2). 

Circadian Rhythm Circadian rhythms are “physical, mental and 

behavioral changes that follow a daily cycle. They 

respond primarily to light and darkness in an 

organism’s environment. Sleeping at night and 

being awake during the day is an example of a light-

related circadian rhythm” (National Institute of 

General Medicine Sciences, 2020, para. 1). 
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Cumulative Fatigue Cumulative fatigue is one of the three types of 

fatigue. Cumulative Fatigue is “fatigue brought on 

by repeated mild sleep restriction or extended hours 

awake across a series of days” (FAA, 2012, p. 2). 

Fatigue According to the FAA (2012, p. 2), “fatigue is 

characterized by a general lack of alertness and 

degradation in mental and physical performance.” 

Flight Crew Member 14 C.F.R 1.1 defines a flight crew member as a 

pilot, flight engineer, or flight navigator assigned to 

duty in an aircraft during flight time. 

Flight Duty Period 14 C.F.R 117.3 defines a flight duty period as a 

period that begins when a flight crew member is 

required to report for duty with the intention of 

conducting a flight, a series of flights, or positioning 

or ferrying flights, and ends when the aircraft is 

parked after the last flight, and there is no intention 

for further aircraft movement by the same flight 

crew member. A flight duty period includes the 

duties performed by the flight crew member on 

behalf of the certificate holder that occur before a 

flight segment or between flight segments without a 

required intervening rest period. Examples of tasks 

that are part of the flight duty period include 
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deadhead transportation, training conducted in an 

aircraft or flight simulated, and airport/standby 

reserve if the above tasks occur before a flight 

segment or between flight segments without an 

intervening required rest period. 

Human Factors Human Factors is “the scientific discipline 

concerned with the understanding of interactions 

among humans and other elements of a system, and 

the profession that applies theory, principles, data, 

and methods to design to optimize human well-

being and overall system performance” 

(International Ergonomics Association, 2020, para. 

1). 

Long-haul [Flight(s)] The definition of a long-haul flight can vary 

between various countries and operators. However, 

14 C.F.R 117 Table A indicates the maximum flight 

time limits for nonaugmented operations is any 

flight time exceeding 8 or 9 hours, depending on 

report time. While it is not always the case, these 

flights often cross continents or large oceans, cross 

many time zones when traveling east to west, and 

are on larger wide-body aircraft. An example of a 
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long-haul flight is the United States to Asia or 

Europe. 

Network Driven Sampling For this research, network-driven sampling is a 

method of data collection that uses multiple 

methods of social media to gather data, including 

“Facebook, Twitter, and LinkedIn in order to create 

a more representative sample” (Pettit, 2019). 

Passenger Airline Pilots For this research, passenger airline pilots are pilots 

who primarily fly U.S.-based passenger airlines 

operating under 14 C.F.R 121. 

Reserve Reserve is a period of scheduled on-call activity for 

a pilot designed to “cover trips that are not staffed 

because of a sick call, family emergencies, a 

weather disruption, or some other reason that the 

original pilot can’t complete the assignment” 

(Aircraft Owners and Pilots Association, 2017, 

para. 3). 

Sleep  Sleep is “regulated by a homeostatic and circadian 

process. Together, these two processes determine 

most aspects of sleep and related variables like 

sleepiness and alertness” (Deboer, 2018, p. 68). In 

addition, sleep also substantially affects learning, 

memory, and cerebral changes (Maquet, 2001). 



17 

 

Sleep Debt Sleep debt, applied to the flight crew, is a term used 

when a crew member has less than 8 hours of sleep 

over several days. Sleep debt is not relieved at a rate 

of 1:1. The amount of sleep required to make up for 

the deficit is less than the total amount of sleep 

missed. However, resolving sleep debt may require 

more than an 8-hour sleep opportunity (FAA, 

2012). 

Transient Fatigue Transient fatigue is one of the three types of fatigue. 

Transient Fatigue is “acute fatigue brought on by 

extreme sleep restrictions or extended hours awake 

within 1 or 2 days” (FAA, 2012, p. 2). 

Window of Circadian Low The FAA (2012) defines the window of circadian 

low as typically between 2:00 a.m. and 05:59 a.m. 

List of Acronyms 

ALPA Airline Pilots Association 

ECG Electrocardiogram 

FAA Federal Aviation Administration 

FAR Federal Aviation Regulation – 14 C.F.R 

FDP Flight Duty Period 

FRMS Fatigue Risk Management System 

NASA National Aeronautics and Space Administration 

NDS Network Driven Sampling 
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NPR Notice of Proposed Rulemaking 

NTSB National Transportation Safety Board  
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Chapter II: Review of the Relevant Literature 

“My mind clicks on and off. . . . I try letting one eyelid close at a time when I 

prop the other open with my will. But the effort’s too much. Sleep is winning. My whole 

body argues dully that nothing, nothing life can attain, is quite so desirable as sleep. My 

mind is losing resolution and control” (Lindbergh, 1953, p. 233). Lindbergh described the 

hazards of fatigue on his journeys. His flights occurred before duty limits, rest 

requirements, or flight scheduling software. Fatigued pilots operating airplanes in varying 

states of sleepiness are not a new problem. 

By the 1930s, scientists understood that transitioning to multiple time zones could 

increase fatigue. New scientific knowledge on fatigue led to the first aircrew duty hour 

and flight time limitations in the Civil Aeronautics Act of 1938 (Caldwell, 2005). Few 

regulatory changes to pilot aircrew duty hours and flight time limitations occurred 

between 1938 and the addition of 14 C.F.R Part 117 in 2014.  

Several recent accidents have brought attention to fatigued U.S. passenger airline 

pilots operating flights. For example, in February 2009, a Colgan Air DHC-8-400 

regional jet crashed five miles from Buffalo Niagara International Airport (KBUF) while 

performing an instrument approach. The accident killed four crew members, 45 

passengers, and one person on the ground (National Transportation Safety Board, 2010). 

Peter Garrison (2010), an American journalist, explained this flight received:  

An unusual amount of media scrutiny, in part, because of what the NTSB’s report 

revealed about the captain’s history of failed flight checks and about the 

seemingly bizarre lifestyle of the first officer, who lived in Seattle, commuted 
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across the country for work, slept when and where she could and was paid a bit 

more than $15,000 a year for her pains. (p. 1) 

Although many in the aviation industry are familiar with pilots commuting long 

distances to work, the U.S. Public Broadcasting Service aired a documentary on pilot 

lifestyles that received national media attention immediately following this accident. The 

documentary explained pilot life in crash pads far away from their home and described 

long hours with low pay. A crash pad is a term frequently used in the airline industry, 

representing a rented, sometimes shared space used for rest when living in one location 

and working out of another. Long-distance commutes, living in hotels and crash pads, 

and meager pay concerned the traveling public. In addition, there was a growing public 

outcry about low wages, pilot fatigue, and flight training. This concern over the pilot 

lifestyle and fatigue ultimately translated into congressionally mandated changes to 

fatigue and rest rules for pilots (Caldwell, 2012; Garrison, 2010; Rudari et al., 2014; 

Taylor, 2014). 

As a result of the Colgan crash, the NTSB identified three primary fatigue-related 

concerns to be addressed by Congress and the FAA. The NTSB highlighted the need for 

continued accident and incident investigations on human fatigue's dangers within 14 

C.F.R Part 121 airline operations (NTSB, 2010). Previous work was not extensive 

enough or specific enough to airline operational environments. Second, the NTSB 

addressed the need to incorporate fatigue-related factors into company policies, 

scheduling practices, and crew member reporting responsibilities related to fatigue. 

Finally, the NTSB discussed the need for changes to federal flight and duty regulations to 

mitigate the dangers of fatigue in aviation. The NTSB also highlighted the need to 
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recognize fatigue factors in airline pilots (NTSB, 2010). The findings above indicate the 

continued need to investigate fatigue-related accidents and incidents. 

Although not always typical, governmental changes for fatigue awareness started 

with a congressional mandate. The implementation of the NTSB’s suggestions was the 

responsibility of the FAA. Congressional mandates left the FAA to decide precisely how 

to implement regulatory and policy changes for passenger and cargo carriers (Garrison, 

2010; Taylor, 2014). 

Fatigue is rarely the primary cause of an aircraft accident; however, fatigue is 

often a common contributing factor. For example, pilot fatigue can interact with pilot 

procedural deviations, increased workload, and difficulty maintaining sustained 

vigilance; when fatigue interacts with other factors, the overall likelihood of an incident 

or accident increases (Morris et al., 2018). 

Due to the influence of fatigue in aviation, fatigue is the first topic covered in the 

literature review. Next, fatigue factors are discussed as the basis for the survey explained 

in this dissertation. Fatigue factors, used to predict individual variability, are thought to 

be the optimal method of predicting fatigue (Reifman, 2004). Thirdly, the literature 

review examines fatigue regulations and fatigue planning. Finally, the literature review 

draws attention to literature gaps and the theoretical basis for determining fatigue factors 

in aviation, Henrich’s domino theory, and modern explanations of Heinrich’s theories. 

Fatigue 

Fatigue as an Aviation Concern 

Approximately 20% of all NTSB investigations between 2001 and 2012 involved 

fatigue. In these cases, fatigue was identified as a finding, contributing factor, or probable 
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cause (NTSB, 2016). More than 300 U.S. aviation-related fatalities have been attributed 

to fatigue. These cases were attributed to a lack of sleep, circadian rhythm differences, 

and excessively long duty days (Avers & Johnson, 2011). In addition to the toll on human 

life, aircraft damage due to fatigue can cost millions of dollars, even from just a single 

event. 

The United States Air Force Safety Center (USAFSC) mission includes 

developing, implementing, executing, and evaluating Air Force aviation mishap 

prevention, investigation, and awareness. The USAFSC estimates that 8% of Air Force 

Class A mishaps were a causal result of fatigue; however, estimates that include fatigue 

as a contributing factor are likely higher (Morris et al., 2018). A Class A accident occurs 

when the cost of damages to public or private property is $2,000,000 or more, a 

Department of Defense aircraft is destroyed (excluding UAS), or when an injury to 

persons includes total permanent disability or fatality (Department of Defense, 2011). 

The financial limits for a Class A accident can change from year to year and are subject 

to change based on economic valuation. More concerning for USAF military pilots is that 

25% of night tactical fighter Class A accidents between 1974 and 1992 identified fatigue 

as a contributing factor (Morris et al., 2018). The research suggested a notable increase in 

fatigue risk for night flights. Although this statistic is specific to military applications, it 

likely has applications in civilian flying. Fatigue findings in military pilots have largely 

mirrored fatigue findings in their civilian counterparts (Caldwell, 2005). 

When examining human factors related to commercial airline accidents between 

1978 and 1999, 20% of accidents occurred with pilots with ten or more hours of flight 

duty time (Goode, 2003). This resulted in pilots with 10 to 12 hours of duty time having 
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an accident rate 1.7 times higher [X2(4, n = 8) = 1.65, p = .15] than all pilots on average 

[X2(4, N = 55) = 1.0, p = 1.0]. Pilots with over 13 or more hours of duty time [X2(4, n = 

3) = 5.62, p = .05] had over 5.5 times greater likelihood of having an accident 

(proportionally). With an increase in flight duty time, a higher probability of an accident 

was also identified in human-factors-related accidents (Goode, 2003). 

When Indian Air Force pilots were surveyed, 34% (n = 28) of participants 

indicated they felt sleepy in the cockpit (Taneja, 2006). Furthermore, nearly 40% (n = 

30) of pilots surveyed believed falling into microsleep was common on the flight deck. 

Even more concerning, almost 25% (n = 38) of fighter pilots thought micro-sleep on the 

flight deck was common (Taneja, 2006).  

Fatigue Proofing 

Fatigue proofing is used in various industries and applications to reduce fatigue-

related risks in roles that cannot substantially reduce working hours (Dawson et al., 

2017). In aviation, fatigue proofing is primarily applicable to long-haul flights because 

reducing working hours is not possible on these flights in some cases (Sallinen et al., 

2017). Fatigue proofing is regularly used in the U.S. military and some emergency 

services professions. In the military, soldiers may be provided with caffeine or other 

pharmaceutical alertness aids to help them stay awake on extremely long missions 

(Dawson et al., 2017). 

Using stimulants or alertness-promoting products is a technique used to lower the 

risk of acute fatigue. Sallinen et al. (2017) examined Flight Duty Periods (FDP) on U.S. 

airline short-haul and long-haul flights researching alertness-promoting products, like 

coffee, tea, energy drinks, or the use of snuff and suggested alertness-promoting products 



24 

 

are frequently used among pilots on long-haul and short-haul flights. Alertness-

promoting products were reported 98%-100% (N = 701) of all flights. When examining 

alertness-promoting products on long-haul flights, 55%-71% (n = 383) of pilots used 

alertness-promoting products while flying an outbound flight. Approximately 50%-73% 

of pilots used alertness-promoting products while flying a long-haul inbound flight 

(Sallinen et al., 2017).  

Fatigue-proofing strategies include approaching tasks and problems differently by 

slowing down the speed at which the task is completed, rotating personnel in and out of 

complex tasks, delegating and splitting duties to reduce workload, cross-checking for 

errors using checklists, increasing verbalization and communication, and increased social 

interaction. Despite the apparent usefulness of these fatigue-proofing strategies, cultural 

pressure can still prevent accurate disclosure of perceived fatigue to peers and 

supervisors. Without a willingness to disclose fatigue in a timely method, the application 

of some of these fatigue-proofing strategies may be more challenging to use (Dawson et 

al., 2017). 

In a fatigue survey conducted by Zaslona et al. (2018), a small group of pilots 

reported that “fatigue is never an issue” or that they “just live with it” (Zaslona et al., 

2018, p. 9). It was not clear from Zaslona’s research if these pilots had differing routes or 

fatigue management strategies than their peers (Zaslona et al., 2018). Some of these 

reports could be attributed to pilots not fully appreciating the effects of fatigue on pilot 

performance by failing to identify their fatigue factors. 



25 

 

Fatigue Factors 

Fatigue factors can be used in the process of evaluating fatigue. The European 

Sleep Research Society (ESRS) is a body of international non-profit sleep researchers 

who focus on all aspects of sleep research and sleep medicine. In 2000, the ESRS 

published a consensus statement on fatigue and accidents in transport operations. This 

consensus statement published in the Journal of Sleep Research forms an idea of which 

fatigue factors are most important in preventing fatigue. The researchers contend that 

fatigue compromises public and environmental safety, health, and productivity, 

regardless of the profession (Akerstedt, 2000). The researchers further identify the major 

causes of fatigue as the time of the day, a long duration of wakefulness, inadequate sleep, 

pathological sleepiness, and prolonged work hours. 

Fatigue factors have also been extensively studied in motor vehicle operators. 

Methods of counteracting and predicting fatigue in drivers led to research on fatigue 

factors. Driver fatigue factors have been previously categorized into task-related fatigue 

and sleep-related fatigue. Task-related fatigue factors include low visibility, high traffic, 

and monotonous driving conditions. While task-related fatigue factors also influence 

pilots, task-related fatigue factors in pilots would likely be different. Task-related fatigue 

factors were not a focus of this research due to time limitations for dissertation 

completion. Sleep-related fatigue factors for drivers include the time of day (Circadian 

effects), sleep deprivation, sleep restriction, and untreated sleep disorders. Rumble strips, 

automated lane departure, forward collision technology, and adaptive driving tools were 

designed to address the dangers of fatigue. Sleep deprivation and sleep restriction can be 
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influenced by schedules, sleep quality, and sleep quantity (May & Baldwin, 2009). It is 

expected that these same sleep influencers are also applicable to pilots. 

In a previous fatigue factors study involving Chinese airline pilots, pilots were 

asked about their subjective and overall fatigue factors (Dai et al., 2018). Sleep quality 

and workload were found to correlate with subjectively perceived pilot fatigue. 

Significant differences between the fatigue scores of international pilots (n1 = 40, M = 

3.8, SD = 1.2) and domestic pilots (n2 = 20, M = 3.13, SD = .92), t (.6) = 2.204, p < .05 

were also noted. The effect size for the analysis (d = .6) was found to exceed Cohen’s 

(1988) convention for a large effect size (d = .8). Chinese international pilots reported 

having increased fatigue compared to domestic pilots (Dai et al., 2018). 

The exact breakdown of possible fatigue factors varies based on the research type 

and the environment. In a study of 502 airline pilots, Drongelen et al. (2017) found risk 

factors that could be identified in a person’s work, health, sleep, and lifestyle. While 

several potential fatigue factors were identified, gender was found not to influence 

fatigue level and could not be recognized as a fatigue factor. Younger pilots 21-30 years 

old (OR = Ref.) were at a lower risk for developing fatigue compared to older pilots; 

however, differences were less pronounced among older pilots: 31-40 (OR = 3.36, 95% 

CI = 1.32, 8.53), 41-50 (OR = 4.19, 95% CI = 1.40, 12.47), and 51-60 (OR = 3.57, 95% 

CI = .91, 13.98). Long-haul pilots also noted far more fatigue than short-haul pilots: OR 

= .74 (95% CI = .36, 1.5) and OR = 3.36 (95% CI = 1.32, 8.53), respectively (Drongelen 

et al., 2017). Drongelen et al. (2017) utilized the Jenkins Sleep Scale (JSS) to measure 

sleep in pilots, common in the aviation industry (Drongelen et al., 2014; Drongelen et al., 

2017; Reis et al., 2016). 
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Sleep quality, sleep duration, and work-life balance seemed to be possible fatigue 

factors. In addition, many other lifestyle factors were also included in this study, 

including the amount of physical activity, alcohol consumption, Body Mass Index (BMI), 

chronic disease, health, and sleep medication, all identified as risk factors for fatigue 

(Drongelen et al., 2017). However, because airline pilots must possess a valid first-class 

medical, this research did not investigate lifestyle fatigue factors. Nevertheless, some 

lifestyle fatigue factors still occur in pilots, including those with a current medical 

certificate. 

Circadian Rhythm and Stress. Circadian rhythms are “physical, mental, and 

behavioral changes that follow a daily cycle” (National Institute of General Medical 

Sciences, 2020, para. 1). Circadian rhythm is impacted by light. Light sensitivity impacts 

crews who sleep or fly opposite their typical day or night cycles. Periodic day or night 

cycle disruptions are primarily responsible for acute fatigue (Dai et al., 2018). However, 

chronic fatigue is also possible for pilots who fly across many time zones and do so 

regularly for their job (Dai et al., 2018; Drongelen et al., 2017). Circadian rhythm 

disruptions are more common when crossing multiple time zones. Circadian rhythm 

disruptions are less likely to occur on North/South flights, which may stay in the same 

time zone or differ by a much smaller number of time zones from their starting location.  

On long-haul flights, fatigue is mitigated by having extra crew members to allow 

sleep rotations. This strategy is primarily accepted to reduce flight crew fatigue on long-

haul flights. Despite the widespread acceptance of in-flight sleep, the sleep quality in-

flight is far more imperfect than that received on the ground (Van Den Berg et al., 2020). 

Pilots experience many physical and mental fatigue problems that are not experienced by 
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other types of shift workers. Vibration, pressure changes, low humidity levels, cabin 

noise, random work times, and extended flight durations can cause poor-quality sleep 

(Dai et al., 2018).  

Airline pilots flying long-haul routes noted that the single most prominent 

influencer in their sleep is the timing of their rest breaks (Zaslona et al., 2018). Rest break 

timing impacted both the quality and quantity of crew rest inflight. Pilots who had their 

rest breaks at times would usually be awake and noted more difficulties sleeping (Zaslona 

et al., 2018). Scheduling practices for rest break timing are company and pilot-dependent 

and do not follow a universal pattern. 

Pilots flying long-haul flights can fly a series of flights across many time zones. 

Gander et al. (2016) examined 39 U.S.-based B747-400 pilots flying trips from 9 to 13 

days with multiple flights between the United States and Asia. Total in-flight sleep, 

sleepiness, and task performance were evaluated. Task performance scores identified by 

Gander et al. (2016) on flights later in a trip sequence improved significantly on flights 

from the U.S. to Japan: F (3, 23.3) = 3.30, p < .05. Although route variability impacted 

the study, Gander et al. (2016) attributed the improvements later in a trip sequence to 

circadian rhythm adaptation. Circadian rhythm adaptation to local time led to an increase 

in task performance. Some routes were more disruptive to circadian rhythm than others. 

Even with adjustments in circadian rhythm, this flight pattern still resulted in extreme 

circadian disruption to pilot sleep patterns (Gander et al., 2016). 

Samel, Wegmann, and Vejvoda (1997) studied 50 U.S.-based pilots who flew 

routes between Europe and the United States. Pilots answered a questionnaire on stress 

factors and psychophysiological factors. A questionnaire on the perceived task load 
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during the flights was also provided. Surveys were completed by pilots one hour before 

the flight and at one-hour intervals throughout the flight. Overall ratings indicated that 

outgoing flights to the United States were less stressful than returning flights to Europe. 

Night flights also received a more stressful rating than day flights. Pilot stress can be 

caused by several factors, including social isolation, close confines of the flight deck, 

sleep difficulties, labor disagreements, company disagreements, and having extended 

hours away from family and friends.  

Evaluating stress is important in determining pilot fatigue based on the 

connections noted above between fatigue, circadian rhythm, and stress. Stress has been 

previously measured in aviators utilizing the Perceived Stress Scale (PSS). The PSS is 

one of the most widely used and validated stress measuring methods (Hellhammer et al., 

2010). Kirschner, Young, and Fanjoy (2014) also used the PSS scale on aviators to 

determine stress levels in collegiate flight programs. 

Scheduling and the Impact of Circadian Factors. While flight schedules for 

U.S. commercial flights are typically pre-configured to allow for adequate rest, 

operational issues such as weather, maintenance, and air traffic control/airport delays can 

further complicate schedules. Pilot trips can vary in length, often lasting several days. 

Each day can have a different quantity and duration of hours worked, affecting time on 

duty. Each day can also have different overnight locations with hotels of varying quality. 

A complex combination of factors impacts fatigue for flight crew due to schedule and 

pilot workload (Caldwell, 2005). 

Long-haul flights require additional care in scheduling, given duty time 

restrictions (Dawson et al., 2017). In addition, long shift flights often result in additional 
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crew member configurations to compensate for shift length. Improving flight crew 

schedules to reduce fatigue involves two components. Issues that must be addressed in 

flight scheduling include maintenance, crew bidding, and route planning. The second 

piece of flight scheduling that requires improvement to reduce fatigue is the actual crew 

scheduling. Scheduling software often has built-in logic to create schedules based on pre-

defined limits. Monitoring crew scheduling for significant circadian rhythm disruptions 

and ensuring vital rest is essential to reducing flight crew fatigue (Drongelen et al., 2017; 

Yildiz et al., 2017). 

Circadian rhythm disruptions can profoundly impact individual fatigue, increasing 

the likelihood of errors. In a study examining 24-hour patterns of skill-based errors in 

aviation mechanics, 915 mechanics responded (N = 5,200) (Hobbs et al., 2010). During a 

24-hour period, the peak in total maintenance errors occurred at 2 a.m. After fitting a 24-

hour fundamental and 12-hour harmonic sinusoidal curve to the skill-based and total error 

data, the analysis indicated that skill-based errors occurred primarily between 2:30 a.m. 

and 3:00 a.m. (Hobbs et al., 2010). This study included mechanics who regularly worked 

all shifts, suggesting that even those who typically work night shifts may not be ideally 

adapted to overnight work. Likely, an increase in total errors, especially skill-based 

errors, would also be seen during times opposite regular waking periods for flight crew 

members. 

Three or four pilots are utilized in an additional crew member configuration to 

allow crew rotation and adequate rest during the flight. The exact multi-crew 

configuration is specific to the scheduled start time. Trips scheduled with flight duty 

periods between 13 and 19 hours require between three and four pilots; flights shorter 
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than 13 hours generally only require two pilots (Airline Pilots Association (ALPA), 

2013). Because this duty restriction does not allow for any deviation, companies may 

send extra pilots to account for different operational occurrences. 

In another study examining long-haul sleep on flights between the United States, 

Hawaii, and Japan, relief crews tended to get significantly more rest than the command 

crew responsible for landing the plane (Gander et al., 2016). This highlights one of the 

unique interactions between a pilot's scheduled flight and rest periods compared to their 

actual rest. Due to these flights' nature, some pilots can sleep in line with their circadian 

rhythm, while others do not. 

Safety degradation during the night can also be seen in other forms of 

transportation. Stutts et al. (2003) found an association between sleep-related automobile 

crashes and those working a night shift, working two or more jobs, and working more 

than 60 hours a week. Additionally, drivers averaging less than five hours of sleep at 

night were five times more likely to be involved in a sleep-related crash (n = 467, 95% 

CI = 3.12, 9.88) versus a non-sleep-related crash (n = 529).  

Finally, aging-related deterioration of biological systems influences transportation 

workers' performance, including similar influencers such as eyesight, perception, 

response to stimuli, and muscle strength (Holliday, 1995). For example, age-related 

degradation to the vision and other biological systems at night could influence fatigue 

factors. Existing U.S.-based passenger airline pilots are subject to age limits for 

conducting Part 121 flights. 

Overnight flight duties impact airline pilots flying both short and long-haul 

flights. Subjective alertness was reduced during overnight flight duty periods regardless 
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of the flight length. In addition to scholarly research, airline pilots subjectively described 

possible reasons for alertness reductions as the monotony of flying, lower amounts of 

sleep over a given period and circadian rhythm misalignment (Sallinen et al., 2017). 

Sleep Quality. Flight crews can spend many nights away from the comfort of 

their beds. Hotels can present widespread problems such as uncomfortable or loud 

climate control, noisy hallways and neighbors, and uncomfortable beds. In long-haul 

flights, flight crew sleeping conditions are shared and vary from designated bunk space to 

a business seat surrounded by passengers (Cabon et al., 2003). As a result, both hotels 

and long-haul flights can result in crew members receiving inferior sleep quality.  

To look for links between quality and quantity of sleep to sleepiness and overall 

safety, Lemke et al. (2016) examined sleep quality and quantity in long-haul truck 

drivers. Most of these drivers reported working over 11 hours a day (n = 163, M = 62.7). 

In addition, most of these drivers reported driving while sleepy. 

Driver sleep quality is often tied to drivers reporting sleepiness while driving. 

Nearly 40% of drivers in this study reported never or rarely receiving good quality sleep 

(N = 98, M = 38.2) on their workdays. Additionally, 44% of the drivers said sleepiness 

affected their concentration while working (N = 98, M = 38.2) (Lemke et al., 2016). 

Focus can be essential for pilots while conducting complex flight procedures. 

Sleep Quantity. Most fatigue-related regulations focus primarily on sleep 

quantity instead of sleep quality. This is likely due to individual variability and the more 

limited ability of a company to control the sleep quality received by their employees. 

Alertness is typically one of the first abilities diminished by fatigue (Caldwell, 2005). 

Additionally, most scientists believe pilots should have a minimum of 8 hours of sleep 



33 

 

during their designated rest periods (Goode, 2003). Alternatively, scheduling practices 

can substantially impact the quantity of sleep. Sleep quantity has been previously 

associated with automobile accidents and accident risk (Lemke et al., 2016). 

Kalsi et al. (2018) reviewed fatal sleepiness-related motor vehicle accidents and 

compared them to other fatal motor vehicle accidents in Finland. When considering sleep 

time, disease, blood alcohol content, drug use, body mass index, medications, age, and 

gender, the only significant difference in a logistic regression model between the two 

groups was total sleep time of fewer than 6 hours (OR = 3.81, 95% CI = 1.22, 11.85). 

Reduced sleep was the primary cause of fatal sleepiness-related motor vehicle accidents 

in Finland. U.S. pilots likely would have lower rates of drug-related sleepiness and 

untreated sleep apnea than those operating motor vehicles because they receive regular 

comprehensive medical examinations with FAA oversight. Sleep quantity was the most 

crucial indicator of Finish fatal sleepiness-related motor vehicle accidents (Kalsi et al., 

2018) instead of other factors like disease, alcohol, drug use, BMI, age, or medications. 

Measuring Fatigue. Historically, fatigue measurements have included self-

reported ratings, cognitive-based tests, and physiological measurements. These fatigue 

measurement methods are well used in the U.S. aviation industry (Gander et al., 2015; 

Reis et al., 2013; Rizzo et al., 2019, Wilson et al., 2019). However, each measurement 

method has unique benefits. 

Self-Reporting Fatigue. Pilots have been asked to self-report fatigue in previous 

studies during flight using survey methods. Gander et al. (2015) studied 70 Delta Air 

Lines pilots flying the B777 200-ER, four pilots from an unknown airline who also 

operated the B-777 200-ER, 41 Singapore airlines A340-500 pilots, and 52 South African 
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Airways A340-600 pilots regarding the impacts of fatigue in airline pilots. These pilots 

were asked to complete a Karolinska Sleepiness Scale (KSS). The scale assesses pilot 

sleepiness and alertness levels based on a scale of one to nine. The highest safety risk on 

the KSS is a nine, which indicates an individual is exceptionally sleepy and fighting 

sleep. A rating of a one on the KSS indicates the lowest safety risk because it suggests 

that the person was vigilant (Gander et al., 2015).  

Another fatigue tool used was the Samn-Perelli Crew Status Check. The Samn-

Perelli Crew Status Check uses a scale of one to seven. As with the KSS scale, a rating of 

one represents a vigilant and wide-awake individual. A rating of seven indicates a person 

is completely exhausted and unable to function effectively (Gander et al., 2015). Self-

reported fatigue assessments measured through surveys have effectively estimated pilot 

fatigue. 

The Fatigue Severity Scale (FSS) has been utilized in several fatigue evaluations 

in the transportation sector (Reis et al., 2013; Rizzo et al., 2019) and has been well 

studied outside of aviation. For example, Reis et al. (2013) utilized and validated the use 

of FSS in a study of Portuguese airline pilots. In this study, total fatigue was summed 

utilizing the FSS, and a percentage of fatigue was determined. The validation group had a 

total fatigue score of 86.5% (N = 104), while the main study group's total fatigue score 

was 89.3% (N = 456).  

One issue with relying solely on self-reporting of fatigue is accuracy. A U.S. Air 

Force School of Aerospace Medicine fatigue survey, Crew Status Survey (CSS), noted 

that military pilots rarely assessed their fatigue as high risk (Bennett, 2016). CSS surveys 

seemed to have enough errors in completion that suggest the pilots finishing these 
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surveys may not have fully understood how to utilize this tool reliably. Bennett (2016) 

offers several reasons for these errors, including the perception of an activity required by 

management and a desire to be on time and not waste time on extra activities. Bennett 

(2016) attributed the lack of fatigue reporting using the CSS tool to errors in completing 

the survey, a lack of survey completeness, and different operational understanding 

between researchers and pilots. Educating participants on how to accurately rate their 

fatigue, such as within the survey tool used in this dissertation, can overcome some self-

rating difficulties. 

Physiological Monitoring and Cognitive Fatigue. Pilot fatigue evaluations can 

involve several types of physiological monitoring devices. Most of the physiological 

monitoring devices focus on heart-related measurements. Recent studies have included 

wrist or other wearable heart rate technology. 

One new technique for gathering physiological measurements incorporated a 

photoplethysmogram (PPG) into an aviation headset. PPGs are used to detect blood 

volume changes utilizing pulse oximeters. Wilson et al. (2019) used 14 commercial pilots 

to determine if a PPG would follow a similar pattern in pilots to an electrocardiogram 

(ECG). ECG monitoring can be cumbersome, as it sometimes involves chest strap 

monitors. PPG monitoring proved helpful in measuring pilots' fatigue due to its accuracy 

combined with a less bulky device. When comparing ECG data to PPG data, aPearson’s 

Correlation was utilized (Wilson et al., 2019). This study also noted that PPG monitoring 

could measure workload or stress (Wilson et al., 2019). However, while PPG monitoring 

devices could be more easily incorporated into the aviation environment, they would be 

unable to predict pilot fatigue before a flight occurs. 
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Psycho-vigilance Tests (PVT)s are various cognitive tests with established, valid, 

and sensitive measurements (Rosekind et al., 2006). However, PVTs have not proved to 

be especially useful in measuring fatigue due to the widely variable results (Basner & 

Dinges, 2011; Ganger et al., 2016). In a study conducted by Granger et al. (2016), pilots 

were asked to complete subjective fatigue and sleepiness ratings and conduct a PVT. 

Flight legs analyzed in the study included predefined segments between East Coast USA 

and Japan (n = 44) and Japan and East Coast USA (n = 38). A series of ANOVAs were 

conducted to determine if any significant effects could be identified for the mean PVT 

response. When analyzing mean PVT response at top of descent (TOD), no significant 

effect was identified with time awake at TOD on the East Coast USA-Japan route: F (1, 

32.8) = .62, p = .4377, or the Japan-East Coast USA route: F (1, 29.7) = .79, p = .3815. 

However, when analyzing the Japan-East Coast USA route, significance was identified 

between the mean PVT response speed at TOD and flight number in the trip sequence: F 

(1, 30.8) = 7.47, p < .05. However, this was not seen on the East Coast USA-Japan route: 

F (1, 32.8) = .62, p = .4377. While this study identified some significant effects, its 

variability in results between legs casts doubt on the usefulness of PVT response time in 

academic research. 

Other Tracking Methods. Fatigue evaluations often utilize video-based recording 

as a method of determining fatigue. Video-based recording employs trained raters to 

observe fatigue levels. In a video-based recording pilot study conducted by Berberich and 

Leitner (2017), pilots' fatigue levels were evaluated using the Human-Factors-Consult 

(HFC) fatigue rating scale. This study’s fatigue indicators were communication and 

coordination, instrument scanning, and physical signs. 
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It was difficult for study raters to remember specific behavior indicators of fatigue 

in participants during the study. The instructors, seated behind the student in the 

simulator, also had difficulty seeing study participants' faces to determine if they were 

fatigued. The researchers also noted that fatigue was masked by task-induced attention 

during flight phases, like takeoff and landing (Berberich & Leitner, 2017). Video-based 

monitoring and evaluation of fatigue regularly would be challenging to implement due to 

privacy concerns. 

Airline Fatigue Regulations 

Fatigue Regulations: Expanded 

Fatigue regulations for pilots are codified in 14 C.F.R Part 121 and 14 C.F.R Part 

117. The addition of 14 C.F.R Part 117 in 2014 was the first significant change to fatigue 

and flight time limitations in 60 years (ALPA, 2013). Combined with 14 C.F.R Part 117, 

AC 120-103A, released May 6, 2013, guides air carriers on the FAA’s basic suggested 

concepts of a functioning FRMS for Aviation Safety to satisfy 14 C.F.R Part 117. This 

advisory circular focuses on fatigue education, fitness for duty, and implementing an 

FRMS for air carriers and their pilots.  

Advisory Circular (AC) 120-103A describes fatigue tools, including sound fatigue 

education for pilots, better evaluation of individual fitness for duty before and during 

flight, and a robust FRMS for airlines. Fatigue tools include objective tools that use 

available information to provide the most accurate predictions available, accounting for 

individual and environmental factors that generally occur in an airline flight operation. 

Finally, these fatigue tools capture data with improved self-reporting data and self-

monitoring for fatigue risk during and before a flight (Weiland et al., 2013). 
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Fatigue education and awareness training are required under 14 C.F.R Part 117 

for 14 C.F.R 121 passenger operators. All employees, including flight crew members, 

dispatchers, scheduling, managers with oversight into those areas, and anyone with 

operational control, must receive fatigue education and awareness training, as described 

in AC 120-103A. It is essential to inform airline employees that fatigue is not a problem 

caused by a lack of motivation to work. Fatigue can be difficult to predict and cannot 

always be accurately self-reported (Caldwell, 2005). Therefore, the airline must evaluate 

and update its fatigue education and awareness training every two years. 

Cargo Carve-Out 

In early versions of 14 C.F.R Part 117, the FAA included all applicable domestic, 

flag, and supplemental operations within this regulation. Initially, they included all types 

of passenger and cargo operations in 14 C.F.R Part 117 because of the universal nature of 

fatigue, but upon publication, cargo operations were excluded. For example, the FAA 

found that, on average, people require at least 8 hours of sleep per day (Taylor, 2014), yet 

when 14 C.F.R Part 117 was published, U.S. cargo carriers were excluded. 

FAA fatigue rules have largely left 14 C.F.R Part 135 operators unaffected. Over 

the last 45 years, more than 200 fatigue recommendations have been suggested for 

various transportation modes. Despite the attention on fatigue, many fatigue-related 

issues remain for pilots and transportation operators in various industries. 

While FAA regulations have provided increased fatigue protections for pilots, 

such as 14 C.F.R Part 117, problems remain. Cargo and most business jet companies are 

exempt from these essential fatigue regulations. Passenger airline pilot fatigue is 

overwhelmingly the most frequently studied type of pilot fatigue due to several factors, 
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including increased encouragement by the company and academia for participation and a 

broader base of pilots to draw. 

Since 2014 the NTSB has advocated for 14 C.F.R Part 117 to apply to cargo 

carriers because fatigue was a factor in many cargo-related accidents. Increased fatigue 

regulations for cargo carriers are made more critical with frequent overnight operations 

(The State of Airline Safety, 2019). In addition, the NTSB lobbied the FAA that even 

stronger restrictions were necessary for cargo carriers because those types of operations 

usually operate during the overnight hours (The State of Airline Safety, 2019). 

Cargo carriers contested their inclusion in 14 C.F.R Part 117 was a new approach 

and treated all airlines as a “one size fits all” (Taylor, 2014, p. 415) approach rather than 

an approach customized to their operation. Cargo carriers argued that 14 C.F.R Part 117 

fatigue and rest rules would have significant and costly effects on their companies. Many 

large cargo companies were quick to file comments explaining the adverse effects of 14 

C.F.R Part 117 during the Notice of Proposed Rulemaking. While cargo companies 

mainly supported the cargo exclusion from fatigue regulations, cargo pilot unions 

opposed it, noting a lack of evidence to support the exemption. Pilot unions also noted 

that exemptions to 14 C.F.R Part 117 did not have any academic or scientific basis, as 

validated by the scholarly literature (CAPA, 2019). 

After lobbying from cargo airlines, the FAA ultimately allowed cargo airlines to 

comply with flight duty and rest requirements, voluntarily excluding them from 

mandatory compliance to 14 C.F.R Part 117. Under a revision of 14 C.F.R Part 117, 

cargo carriers have no mandatory requirement to comply with any part of this regulation. 
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While some fatigue-related studies reviewed separated short-haul pilots from 

long-haul pilots, no studies separated the results of long-haul passenger airline pilots 

compared to long-haul cargo pilots. Crossing multiple time zones can be problematic 

because pilots may need to utilize various techniques such as daytime sleeping to 

overcome circadian rhythm disruptions. Airline pilots’ unions contended that by 

exempting cargo carriers from this regulation, they are subject to a lower tier of safety 

instead of the same safety level that passenger airline carriers follow for fatigue and rest 

rules (CAPA, 2019). 

Eight months after 14 C.F.R Part 117 was first published in 2013, the NTSB 

released its final report on an accident involving UPS Flight 1354. In this accident, the 

cargo carrier crash occurred short of a runway while performing a non-precision 

approach to Birmingham-Shuttlesworth International Airport (KBHM). The flight began 

at 0500 local time and impacted the ground approximately 45-minutes later. The NTSB 

identified several factors, including pilot communication errors, darkness/night 

operations, incomplete weather information gathered, and performance deficiencies in 

training for one of the pilots on board. Within the NTSB’s investigation conclusions, the 

NTSB also identified increased fatigue levels in both the Captain and the First Officer as 

contributing factors to the accident (NTSB, 2014). 

14 C.F.R 121 cf 14 C.F.R Part 117 

Fitness for Duty. Several rules changed for air carriers under 14 C.F.R Part 117 

were designed to supplement fatigue and rest regulations. One notable change 

emphasized fitness for duty rules, requiring pilots to acknowledge they are fit for duty 

before beginning their flight duty period. Each pilot must individually accept fitness for 
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duty; the pilot-in-command cannot do it on behalf of other flight crew members. Flight 

crew members who report being too fatigued to fly may not continue to operate 

subsequent flights (ALPA, 2013). 

FRMS. As a part of 14 C.F.R 117, the FAA introduced an FRMS program to 

allow carriers to manage fatigue within their operation centrally. If the certificate holder 

gathers scientific data to show that proposed schedule changes will provide an equivalent 

level of safety, waivers can be approved. In addition, any airline seeking an exception to 

FAA rules must achieve an equivalent level of protection to the original rule and requires 

FAA approval (ALPA, 2013). 

FRMS allows airlines to demonstrate that they can achieve an equivalent level of 

safety with scheduling alternatives to the rules contained in 14 C.F.R Part 117. The 

equivalent level of safety has sometimes been achieved through evidence testing. 

Evidence testing includes any objective research the airline can produce related to pilot 

fatigue. Fatigue monitoring devices, sleep diaries, and psychomotor vigilance tests are 

applied to pilots in controlled sleep conditions and the alternative proposed rest schedule. 

If an airline can demonstrate that an equivalent level of safety to the base condition is 

achieved, it is possible to seek FAA exceptions and differences to requirements defined 

in 14 C.F.R Part 117 (Wu et al., 2018). 

By using an FRMS, airlines can make some modifications to their fatigue-related 

rules under the oversight of the FAA. This is based on an airline's operational needs 

discovered through the FRMS process. FRMS processes feature proactive and reactive 

fatigue reporting. Proactive reporting of fatigue encourages monitoring of fatigue-related 

trends in airline operations. Reactive fatigue reporting includes pilot fatigue reports and 
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accident/incident reports that include fatigue as a factor. Reactive reporting is essential to 

measuring and preventing fatigue in an airline by allowing changes to scheduling and 

operational rules within a company (Weiland et al., 2013).  

The concepts of FRMS have been adopted in other industries, including medicine. 

Hospitals struggle with fatigue challenges among doctors and nurses. Difficulty filling 

medical positions on top of long shifts and a high number of night shifts can cause sleep 

deprivation and fatigue (Farquhar, 2017). Those advocating for FRMS systems in 

hospitals have struggled with adaptability and willingness to change scheduling practices 

based on FRMS alone (Farquhar, 2017). 

Fatigue Modeling. Borbely’s model is the first model developed for fatigue 

identification, which combined time of day and duration of sleep and wakefulness to 

assess fatigue. This model has advanced but remains the basic conceptual model for 

aviation and rail modes of transportation. The modern and most frequently used 

derivatives of Borbely’s model today include the two-process model; sleep/wake fatigue 

predictor model; sleep activity fatigue and task effectiveness (SAFTE) model; fatigue 

audit inter-dyne (FAID) model; system for aircrew fatigue evaluation (SAFE) model; and 

the alert management program (AMP) model (Dai et al., 2018). 

The most evident deficiency of the previously highlighted fatigue models is that 

they are not customized to the individual and assume variables for an average person 

(Weiland et al., 2013). Many models do not include factors specific to the airline's 

operational environment or pilot. Few studies have compared fatigue models against each 

other to determine which model is superior (Weiland et al., 2013). Fatigue models are 

often applied over-simplistically to prevent variability in the data produced due to 
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varying schedules. Weiland et al. (2013) provide for few model comparisons. Fatigue risk 

management indicators such as circadian rhythms, sleep quality, and subjective fatigue 

are these models' most crucial absent characteristics (Dai et al., 2018). Aviation needs to 

manage risks and mitigate their subsequent consequences. 

It is essential to distinguish between the amount of fatigue experienced by a 

person and the fatigue-associated risk of a negative occurrence. As fatigue increases, 

fatigue-associated risk increases (Dai et al., 2018). Fatigue-associated risk includes 

accident likelihood, an accident's financial impact, and social and human cost. The study 

conducted by Dai et al. (2018) also noted that fatigue models are only accurate for the 

most average individual. Due to individual and operational factors, some individuals 

receive far less sleep than predicted by forecasting tools, and thus, the model may 

underestimate fatigue. The model can significantly underestimate the fatigue risk of these 

individuals due to design. 

Darwent et al. (2015) examined the sleep behaviors of 347 commercial train 

conductors. Participants kept a sleep diary and used wrist activity monitors to calculate 

total sleep. This study used FAID to estimate fatigue across all shifts. FAID uses shifts 

and work/rest time history to generate a fatigue level score. The scores ranged from 0 to 

243, but Australian rail regulations do not allow a rating higher than 90. The study (N = 

347) found variability across a given fatigue level by roughly a factor of five when 

individual fatigue factors are considered (Darwent et al., 2015).  

The U.S. Air Force primarily uses the Fatigue Avoidance Scheduling Tool 

(FAST) for mission planning and to minimize the effects on flight crew circadian rhythm 

(Darwent et al., 2015). The tool generates a fatigue risk assessment based on circadian 
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rhythm, homeostatic regulation, sleep/wake schedules, and mission location. Using this 

tool, flight schedules are provided based on fatigue associations. However, because of 

substantial individual differences, fatigue models are best used to proactively arrange 

schedules and improve a person's quantity of sleep but are not necessarily valuable for 

predicting fatigue levels (Darwent et al., 2015). 

For schedules that use fatigue modeling, the only method for overcoming 

individual variability is individually inputting fatigue data, such as differences between 

actual and planned data, for each pilot. This type of fatigue prediction method has been 

suggested, given many military applications for fatigue modeling. With internet 

capabilities, it is now possible to use individual fatigue modeling for a larger group than 

before. Using individual fatigue data was previously thought to be too time-consuming 

for a massive operation like an airline due to the data entry required. A process that 

requires manual entry of fatigue levels that is not networked would slow a large operation 

(Reifman, 2004). 

Flight Duty Period. Many flight-duty day-related changes were also made under 

14 C.F.R Part 117. All overnight operations require at least 3 hours of rest during the 

flight duty period (FDP). FDP limits are based on the start time and the number of 

segments flown. Pilots must receive ten consecutive rest hours before beginning a reserve 

period. There are also cumulative hour maximums for FDP during any week, four weeks, 

or 365-day period. Title 14 C.F.R Part 117 also requires 10 hours of rest, of which 8 

hours is uninterrupted sleep. Interruptions include company disturbances, like a call from 

crew scheduling, hotel disruptions, or a fire alarm in the middle of the night. 
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When comparing the above rules to 14 C.F.R Part 121 flight rules, the positive 

benefits of pilot fatigue reduction under 14 C.F.R 117 can be identified. Title 14 C.F.R 

Part 121 does not require fitness for duty, an FRMS program, or fatigue education. There 

are also calendar-based duty limits, but these duty limits are not as extensive as the duty 

limits identified by 14 C.F.R Part 117. For example, 14 C.F.R Part 121 requires 24 hours 

free from duty in seven days, and some fundamental limitations on-duty times daily and 

yearly. In addition, 14 C.F.R 121 allows rest periods to be reducible from 9 hours of sleep 

to 8 hours of sleep, whereas 14 C.F.R part 117 requires a rest period of at least 10 hours 

with 8 hours of uninterrupted rest (ALPA, 2013). 

Regulatory Gaps 

Scientific information about fatigue, sleep, circadian physiology, and shift work 

has expanded. When considering fatigue applications for 14 C.F.R Part 121 passenger 

airline pilots, gaps between fatigue research and fatigue regulation in the U.S. are 

extensive. Dinges et al. (1996) explained that a wealth of sleep knowledge is most 

beneficial when current regulations are incorporated into regulatory and industry 

scheduling practices. Despite recent attempts to incorporate fatigue research into federal 

aviation regulations, gaps remain in aspects of the commercial aviation industry (Flight 

and Duty Limitations and Rest Requirements, 2012). Traditionally, aviation fatigue 

regulations were designed with specific constraints on flight times. Flight time constraints 

are not sufficient to improve fatigue-related safety within the complex problem set of 

aviation fatigue (Yildiz et al., 2017). With the general population’s increasing use and 

frequency of the air travel modality, the problem of pilot fatigue also increases (Caldwell, 

2004; Lamp et al., 2019; Lee & Kim, 2018). Title 14 C.F.R Part 117 duty time limit 
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changes have made amendments to industry rules and do not apply to all 14 C.F.R Part 

121 air carriers.  

Gaps in the Literature 

Fatigue was on the 2018-2019 Most Wanted List of Transportation Improvements 

in every transportation mode (NTSB, 2019); the NTSB evaluates multiple transportation 

methods, including train, plane, auto, marine, and pipeline. The NTSB’s first fatigue 

aviation-related recommendations occurred in 1972 and suggested flight and duty time 

limitations for 14 C.F.R Part 135 operators. However, the FAA rescinded and classified 

this recommendation as unacceptable (Rosekind, 2013), which did not change. 

National Aeronautics and Space Administration (NASA) has contributed 

substantially to fatigue research in aviation. In 1980, NASA-Ames Research Center at 

Moffett Field, CA, answered a request from Congress by hosting a symposium attended 

by academia, airlines, and others to determine the extent of fatigue-related aviation 

problems. The symposium formed the foundational springboard from which a series of 

studies were later conducted that continued well into the 1990s (Gander et al., 1998). 

Congressionally funded, comprehensive research was the first large-scale fatigue research 

into fatigue factors of the long-haul, regional, and corporate/executive pilots. 

Other research has been conducted into fatigue in aviation, but the NASA 

comprehensive series of studies are dated. Despite less recent federally funded research 

on aviation fatigue, fatigue remains a top concern for the airspace system's safety (NTSB, 

2019). Minimal research has been conducted on the improvements and changes to fatigue 

and rest rules since 14 C.F.R 117 in 2014; no research could be located utilizing multiple 

relevant journal databases examining fatigue and fatigue factors. 
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Existing research has helped guide regulations; however, such mandates apply 

industry-wide and are not specific to an individual's fatigue. Research into individual 

fatigue factors has primarily been conducted through various physiological monitoring 

methods (Wilson et al., 2019). However, studies utilizing physiological monitoring 

primarily focus on the fatigue factors as they occur, rather than the utilization of 

predictive fatigue factors conducted as a part of this research. Before the 2000s, creating 

a system where pilots entered their fatigue data before the flight would have been 

complex for a massive operation and too cumbersome before the widespread use of the 

internet on cell phones. With the advent of the internet and networked technologies and 

their mainstream utilization within general society in the late 1990s and early 2000s, 

individual data entry for fatigue management is a far more practical solution than 

previously (Bennett, 2000). 

Existing research studies primarily use physiological monitoring devices as the 

primary method of gathering research data. However, physiological monitoring devices 

are impractical for a pilot to wear regularly outside of research (Wilson et al., 2019). In 

addition, wires linked to data-gathering devices can be cumbersome, and wearables often 

use batteries that may not maintain power during prolonged data collection. Some 

examples of physiological monitoring used in pilot fatigue studies include aviation 

headsets, video cameras, and heart-related sensors (Wilson et al., 2019). Other data-

gathering techniques for fatigue inflight include games and activities conducted and 

scored throughout a flight (Sieberichs & Kluge, 2018) and video recording (Berberich & 

Leitner, 2017). Additionally, research using the above data collection methods does not 
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provide pilots the accurate guidance to identify fatigue before the flight and is instead 

conducted during flight. 

Theoretical Framework 

In aviation, the decision-making process is not a dichotomous decision. With 

every go/no go safety decision, each pilot must weigh all benefits and possible intended 

consequences. Managing and mitigating fatigue in pilots improves the global airspace 

system; this goal forms the theoretical framework for this study. The quest for the safe 

operation of transportation has its roots in the 18th and 19th centuries. To understand the 

vital role of fatigue factors in accident and incident prevention, it is essential to 

understand the historical context that led to accident and incident prevention dominoes. 

Each fatigue factor examined in the dissertation could act as a domino, the basis of 

Heinrich’s domino theory. Accidents can be mitigated by limiting or removing fatigue 

factors, improving overall aviation safety. It is less likely that anyone's fatigue factor 

causes an accident but more likely with a series of events—or dominos. 

Most safety theories originated in prime factor and machine work around the 

industrial revolution in the 18th century and the advent of modern factories in the 19th 

century. Early safety practices used the accident to explain the types of actions that were 

taken (Dekker, 2019), “An act of divine retribution demanded repentance and prayer; A 

chance event beyond human control created a need for insurance; An engineering failure 

suggested engineered solutions” (p. 2). 

Fatalities in coal mining were the primary lynchpin for changes in safety. Many 

coal-mining jobs were extraordinarily hazardous, and growing public concern prompted 

attention to safety. Andrews (2010) explained: 
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By the twentieth century, tens of thousands of workers were dying every year on 

the railroads, factories, and especially in coal mines, including many boys and 

adolescents. For each laborer killed directly, several were maimed, and several 

more found their lives shortened by coal dust, lead, and other poisons. (p. 213) 

Significant numbers of working-class deaths in factories and coal mines ultimately 

compelled regulatory bodies to regulate better and inspect working conditions to maintain 

safety and order, as with the FAA's role today.  

In the infancy of safety science, many safety practitioners believed in the theory 

of accident proneness. This concept explained accidents by believing that some 

individuals were more prone to accidents due to mental status, inattention or 

preoccupation, or related biological causes. Despite the lack of scientific basis for these 

theories, they did lead to advancements and improvements in future safety theories 

because accident proneness was often difficult to prove (Dekker, 2019). Therefore, safety 

practitioners instead sought to find methods that could be established and had increased 

scientific merit. 

Heinrich’s Domino Theory 

Heinrich’s domino theory, proposed by Herbert W. Heinrich, formed the basis of 

modern safety theory. Heinrich’s domino theory was born out of methodological 

individualism, a concept that lacked scientific validity. However, it became the 

theoretical basis for aviation safety concepts, such as Reason’s Swiss cheese model 

(Reason, 1990). 

Heinrich’s Domino Theory In-Detail. Heinrich’s domino theory formed the 

basis of modern safety theory. While Heinrich did believe in the scientific validity of 
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accident proneness research, he re-established the idea that accidents and injuries are 

preventable (Heinrich et al., 1980). As a result, some of Heinrich’s findings, such as 

accident proneness, are no longer relevant. However, due to the industry-wide application 

of the domino theory's founding concepts in aviation, Heinrich’s domino theory is the 

theoretical basis for this research. Heinrich’s principle is that preventable accidents and 

incidents are the primary reason determining fatigue factors before a flight is essential for 

aviation safety. 

As shown in Figure 1, Heinrich’s domino theory demonstrates that accidents can 

lead to sequential injuries. Accidents are caused when workers commit unsafe acts or 

direct mechanical or physical hazards in the workplace. Heinrich is often considered one 

of the founders of safety as a discipline because he suggested that unsafe acts and 

conditions can be managed. Some management methods proposed by Heinrich’s domino 

theory should include social or organizational support such as training, improving 

dangerous environmental conditions, and preventing human factors-related errors (Chi & 

Han, 2013). Standard safety practices seek to manage and minimize safety risks to those 

involved. 
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Figure 1 

Five Factors in the Accident Sequence 

Note. From “Industrial accident prevention” by H. Heinrich, D. Petersen, and N. Roos, 

1980, McGraw Hill. Copyright 1980 by McGraw Hill. 

 
A Sequence of Factors. The first concept, explained by Heinrich (1980), is:  

The occurrence of an injury invariably results from a completed sequence of 

factors – the last one being the accident itself. The accident, in turn, is invariably 

caused or permitted by the unsafe act of a person and or a mechanical or physical 

hazard. (p. 21) 

The first domino, social environment, and ancestry seem irrelevant at first glance. 

Heinrich, Petersen, and Roos (1980) explained this as “Recklessness, stubbornness, 

avariciousness, and other undesirable traits of character may be passed along through 

inheritance. The environment may develop undesirable traits of character or may interfere 

with education” (p. 22). This concept of the influence of the environment can also be 

explained as the concept of nature vs. nurture (Dekker, 2019). 

Social environment and ancestry cover modern-day concepts such as safety 

culture. Conceptually, a just safety culture encourages and sometimes even rewards 

individuals for providing feedback that improves safety (FAA, 2015). A just safety 
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culture can provide sufficient incentive to change individual behavior resulting in an 

inherited characteristic. 

The second domino, fault of the person, is described as “Inherited or acquired 

faults of person, such as recklessness, violent temper, nervousness, excitability, 

inconsiderateness, ignorance of safe practice, etc., constitute proximate reasons for 

committing unsafe acts or for the existence of mechanical or physical hazards” (Heinrich 

et al., 1980, p. 23). While some of these faults are no longer relevant today, the faults of 

the individual, from a sleep perspective, include sleep medical disorders. Sleep medical 

disorders are not addressed in this dissertation but are still very important when 

evaluating quality sleep amongst the general population (Mukherjee et al., 2015). 

Additionally, fatigue could be attributed to individual attributes such as age in some 

cases. 

The third domino, unsafe act and/or mechanical or physical hazard, is explained 

as (Heinrich et al., 1980): 

Unsafe performance of persons, such as standing under suspended loads, starting 

machinery without warning, horseplay, and removal of safeguards; and 

mechanical or physical hazards, such as unguarded gears, unguarded point of 

operation, absence of rail guards, and insufficient light, result directly in 

accidents. (p. 23) 

Flying fatigued because of scheduling practices fits within this third domino. The 

research examines what factors can lead to persons' unsafe performance by searching for 

fatigue factors. Dekker (2019) also noted that this domino included both unsafe acts and 

unsafe conditions. 
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The fourth and fifth dominos are accident and injury. The domino chain explains 

the sequence of preventable injuries. The domino theory describes the injury resulting 

from an accident and portrays injury as the final domino in a series (Heinrich et al., 

1980). 

In Heinrich’s domino theory, the end of the domino's chain is a failure, either 

human or mechanical. In modern safety research, human error is seen as more of a 

domino or item in a sequence that leads to an accident or incident. Using human error as 

a building block still uses Heinrich’s basic conceptual theory that each domino is 

sequential and plays a unique role in the cause of an accident. Three primary problems 

existed with Heinrich’s domino theory in its original form. First, human error can be 

separated and identified. Second, blaming human error can be primarily political. The 

blame is placed on the individual, not the process or the system, by blaming human error. 

Third, human error is not as simple as just a cause. It can play various roles in an accident 

(Dekker, 2019). 

Heinrich’s domino theory oversimplified the concept of human error. However, 

the domino theory's founding idea does not focus on human error being the final step of 

the process. Instead, Heinrich’s domino theory explains that each sequential domino in an 

accident chain plays a role in leading up to the accident. Stopping one domino could 

prevent the accident. 

Bird’s Updated Sequence. As Heinrich’s domino theory evolved, pieces with a 

weak scientific basis were removed. Frank Bird invented an updated version of the 

domino sequence after reviewing 1.7 million accidents from three hundred companies 

(Dekker, 2019). The updated chain has many conceptual similarities to Reason’s Swiss 



54 

 

cheese model (Reason, 1990). However, Bird’s explanation still used the concept that 

each step in a sequence leading up to the accident plays a role in the accident and 

subsequent injury. Bird’s sequence, instead, involved dominoes that created a sequence 

that led to an accident as a lack of control (management), primary causes (origins), 

immediate causes (symptom), accident (contact), and injury-damage (loss) (Dekker, 

2019). 

Bird’s sequence was primarily designed for the insurance industry but can be 

applied across many industries. It created a method for problem-solving widely used in 

incident and accident investigation. The water line is the line or threshold limit before the 

loss occurs. The damage could have been prevented by stopping the underlying causes, 

immediate causes, or incidents until the loss happened. Underlying causes included 

personal factors and job factors. Direct objectives are poor working conditions or unsafe 

acts or practices. In a historical context, the waterline is often applied to the image of an 

iceberg. Underlying causes, immediate causes, and the incident occurred below the 

waterline. Most preventative factors were beneath the iceberg (George & Douglas, 2007). 

Reason’s Swiss Cheese Model. Reason’s (1990) Swiss cheese model of accident 

causation is frequently used in aviation to demonstrate the many latent and active failures 

leading to an accident. Unintended weaknesses or holes in various types of barriers 

ultimately increase the likelihood of an accident. In the Swiss cheese model, holes can 

open and close, but an accident may occur when all holes are aligned in preparation for 

an accident (Perneger, 2005). The Swiss cheese model explains how a cascading series of 

latent failures, followed by an active failure, leads to a mishap. 
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The Swiss cheese model has four failures: organizational influences, unsafe 

supervision, preconditions for dangerous acts, and unsafe acts. Nearly all accidents can 

be explained by one or more of these failures (Reason, 1990). Despite the frequency and 

widespread acceptance of the Swiss cheese model, there is some room for interpretation 

left by Reason. When safety professionals were surveyed about the exact meaning of the 

model, they disagreed, even amongst themselves, about the precise meaning of Reason’s 

model. Perneger (2005) attributed the many variations in interpretation of Reason’s Swiss 

cheese model to varying backgrounds and applications for its use. 

Reason’s Swiss cheese model was the basis for the Human Factors Analysis and 

Classification System (HFACS), as Wiegmann and Shappell (2003) described. The 

HFACS system provided a framework for aviation safety investigators to manage and 

identify various human performance failures. HFACS categorizes possible safety factors 

into four main branches: Organizational Influence, Unsafe Supervision, Preconditions for 

Unsafe Acts, and Unsafe Acts (Wiegmann & Shappell, 2003). 

HFACS is utilized as a method of categorizing accidents. Fatigue-related 

accidents are further broken down into the Condition of Operators; however, fatigue is 

not explicitly identified. The Condition of Operators is also broken down into an adverse 

physiological state. Adverse physiological state includes medical or physiological 

conditions that can negatively impact performance, including fatigue, hypoxia, and 

medical illness (Wiegmann & Shappell, 2003). However, HFACS does not explicitly 

address fatigue as a causal factor. 

HFACS is primarily used to group and sort aviation accidents. HFACS is widely 

used across the aviation industry by U.S. authorities such as the FAA and the NTSB. 
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HFACS categorization, however, is not without its limits. HFACS focuses on selecting a 

few specific HFACS categories. Asking those categorizing accidents to limit the number 

of factors chosen can potentially lead to the under-reporting of fatigue, mainly if a case 

involves many complex factors. Fatigue is likely the primary cause of only a few 

accidents and incidents but is an essential contributing factor to many accidents and 

incidents (Wiegmann & Shappell, 2003). 

Dominos and Factors. Fatigue is just one domino in an extensive sequence of 

dominos leading to an aviation accident or incident. While fatigue can be looked at as 

individually applying to Heinrich’s second and third dominoes or Bird’s basic causes, the 

domino theory can be better utilized in a broad sense. When an accident occurs in 

aviation, fatigue can be just one piece in a sequence of elements leading up to an 

accident, but each of the fatigue factors in this present research is combined to represent 

fatigue as a causal category.  

By examining predictive factors of fatigue, Heinrich’s domino theory creates the 

basis necessary to prevent a domino in a very long sequence of events from falling. 

Identifying fatigue causal factors can help design better tools that help pilots evaluate 

themselves or other pilots' fatigue more effectively. As a result, increased knowledge of 

fatigue causal factors reduces the likelihood of fatigue acting as a falling domino. One 

possible domino in a sequence can be prevented by reducing fatigue—stopping the 

accident from happening. 

Modern Safety Research. Like Heinrich’s domino theory, modern safety 

research searches for the causes of accidents and incidents by carefully examining what 

occurred before the accident or incident. For example, Chi and Han (2013) reviewed 
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9,358 construction accidents in the United States. The study authors determined that 

correlations between accidents and injuries could be identified. By analyzing frequency, 

Chi and Han (2013) identified significant injury elements, including the type of injury, 

the parts of the injury, and the severity of the accident. The information gained about 

possible causes of accidents and incidents was used to avoid causes in Heinrich’s domino 

theory (Chi & Han, 2013), like determining possible causes of fatigue. 

Research Model 

Heinrich’s domino theory is used to derive the fatigue factors in this dissertation. 

The fatigue factors were chosen from a potential “domino” for a fatigue-related accident. 

The series of errors in an unsafe environment combined with unsafe behaviors have been 

previously identified as likely to precede occupational injury. Fatigue, lack of 

concentration, and annoyance have been previously identified as likely domino items in 

high-noise environments (Yoon et al., 2016). Yoon et al. (2016) further identified age, 

sleep hours, and shift hours as influential dominos in traditional high occupational noise 

settings. Throughout the literature review, the above analysis reviewed fatigue factors in 

search of the most critical ones likely to impact aviation safety. Fatigue factors identified 

as influential in aviation fatigue (see Table 1) include scheduling-related factors, 

including time awake (Drongelen et al., 2017; May & Baldwin, 2009; Yildiz et al., 2017), 

typically scheduled start time (Drongelen et al., 2017; May & Baldwin, 2009; Yildiz et 

al., 2017), hours of sleep and hours on duty (Drongelen et al., 2017; May & Baldwin, 

2009; Yildiz et al., 2017), stress (Kirschner, Young, & Fanjoy, 2014; Samel, Wegmann, 

& Vejvoda, 1997), sleep quality (Dai et al., 2018; May & Baldwin, 2009) and quantity of 
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sleep (Kalsi et al., 2018; Lemke et al., 2016; May & Baldwin, 2009), and age (Holliday, 

1995; Kalsai et al., 2018).  

 

Table 1 

Fatigue Factors Literature Support 

Fatigue Factors Literature Support 

Time Awake Drongelen et al., 2017; May & Baldwin, 2009; Yildiz et al., 2017 

Start Time Drongelen et al., 2017; May & Baldwin, 2009; Yildiz et al., 2017 

Hours of Sleep Drongelen et al., 2017; May & Baldwin, 2009; Yildiz et al., 2017 

Hours on Duty Drongelen et al., 2017; May & Baldwin, 2009; Yildiz et al., 2017 

Stress Kirschner et al., 2014; Samel et al., 1997 

Sleep Quality Dai et al., 2018; May & Baldwin, 2009 

Sleep Quantity Kalsi et al., 2018; Lemke et al., 2016; May & Baldwin, 2009 

Age Holliday, 1995; Kalsai et al., 2018 
 

Summary 

With a rapidly growing demand for air travel, fatigue and fatigue-related 

problems have also rapidly expanded (Caldwell, 2004). Along with the expansion of air 

travel, fatigue regulations have evolved. However, current FAA fatigue regulations only 

apply to passenger carriers and leave cargo airlines primarily unregulated. Despite being 

exempt from FAA fatigue regulations, cargo carriers conduct night flights crossing many 

time zones with more significant circadian rhythm disruptions, resulting in increased 

detrimental fatigue factors for cargo pilots. 

Fatigue management is one component in the conduct of a safe flight. Each 

domino in the sequence may have detrimental safety consequences when combined with 

other dominos. The domino concept forms the theoretical base for this dissertation. 
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Fatigue factors, examined in the dissertation, acting as a domino and, when prevented, 

can improve aviation safety.  
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Chapter III: Methodology 

This research aims to gain a deeper understanding of fatigue factors in airline 

pilots. The previous chapter established the academic and theoretical basis for the 

research methodology. This chapter describes the quantitative methodology, including 

the research design, population and sample, data collection process, and ethical issues. 

The seven potential fatigue factors; time awake, perceived stress, sleep quality, hours of 

sleep, age, typically scheduled start time, and hours on duty were identified based on the 

literature review and previous research (Dai et al., 2018, Drongelen et al., 2017; Holliday, 

1995, Kalsi et al., 2018, Kirschner et al., 2014, Lemke et al., 2016, May & Baldwin, 

2009; Samel et al., 1997, Yildiz et al., 2017). 

Research Method Selection 

An electronic survey instrument was used to gather non-experimental quantitative 

data. A survey method is a superior technique to gather data to encourage open and 

honest reporting of fatigue in airline pilots because it does not associate the pilot with an 

employer. The survey tool allows pilots to provide anonymous, open feedback. Multiple 

regression analysis was used to create a regression equation from survey data in Stage 1, 

and data analysis was conducted in Stage 2 for model validation. 

Access and anonymity in the survey completion process enable collecting data to 

encourage accurate self-reporting. Online survey research has proved beneficial when 

discussing sensitive topics due to its anonymity (Cooper et al., 2001). Internet-based data 

gathering has also previously been shown helpful in challenging to reach groups, 

including those located in rural locations and of various ages (Hash & Spencer, 2009). 

Alessi and Martin (2010) also noted that because of the anonymity level in survey 
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research, research was less likely to be mentally damaging to participants than other 

forms of research. Finally, the research method described population/sampling, data 

collection, dissertation design, ethical considerations, reliability, and validity. 

Population/Sample 

The targeted population for this research was pilots actively flying for passenger 

carriers under 14 C.F.R Part 121 rules. The accessible population was 14 C.F.R Part 121 

passenger airline pilots flying for U.S. carriers. This population was selected because the 

primary recruitment was derived from locations frequented by pilots from the United 

States. Foreign carriers are not included due to the wide variability in fatigue-related laws 

among foreign airlines. Utilizing 14 C.F.R Part 121 pilots employed by a U.S.-based 

carrier limited generalizability to the U.S-based airline pilot population. However, this is 

by design because this study focuses on applying U.S. fatigue regulations. This study 

sampled active U.S. 14 C.F.R Part 121 passenger airline pilots. This study also utilizes 14 

C.F.R Part 121 passenger airline pilots under 14 C.F.R 117 rest rules.  

Participants were recruited via specifically chosen social media. Participants were 

gathered through popular social media outlets for airline pilots, such as Airline Pilot 

Central and Female Aviators Sticking Together (FAST). Given the importance of 

anonymity, no single carrier was utilized in the data collection or identified in the results.  

Population and Sampling Frame 

The population utilized in this dissertation is U.S.-based commercial airline pilots 

flying for 14 C.F.R Part 121 carriers. The population sampled seeks to find current, 

qualified airline pilots free of undiagnosed sleep-related illnesses to determine what 

fatigue factors can be utilized to assess fatigue. In order to gather pilots for the study, 
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social networks were utilized to attract and gain participants who fit the desired sample 

parameters. 

Additional limits exist by utilizing a population of pilots actively flying for air 

carriers. Pilots flying for air carriers must hold an Airline Transport Certificate (ATP), be 

at least 23 years old, and be younger than 65 years old. Pilots maybe 21 years old and 

hold restricted ATP privileges. The FAA’s 2018 U.S. Civil Airmen Statistics (FAA, 

2019b) estimates the population of active airmen with an ATP to be 162,145. According 

to 14 C.F.R 121.383 (d), no certificate holder may use any person's services as a pilot on 

an airplane engaged in operations under Part 121 if that person has reached his or her 65th 

birthday. The population of ATP certificate holders between the ages of 20 and 64 is 

145,147. The number of ATP certificate holders currently engaged in 14 C.F.R 121 

airline activities is expected to be significantly less than 145,147 due to pilots not actively 

flying. These pilots may hold an ATP but do not hold an ATP in airplanes, pilots who 

hold an ATP but do not fly, and pilots employed in other industries such as business 

aviation or military operations. 

The Bureau of Labor Statistics Occupational Outlook Handbook (2019) estimates 

Airline and Commercial Pilots' population in 2018 to be 124,300. This number includes 

employed flight engineers and those in other commercial industries such as charter 

flights, flight instruction, aerial tours, corporate pilots, law enforcement pilots, and 

agricultural pilots. For this reason, the population of airline pilots carrying passengers is 

expected to be smaller than the 124,300 identified by the Bureau of Labor. 
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Sample Size 

An a priori sample size was determined using G*Power 3.1 to determine the 

acceptable sample size. Then, the effect size was used to determine the minimum effect. 

The G*Power 3.1 calculation was used with an effect size of .15. An effect size of .15 

was selected because it created a larger sample size to determine statistical significance 

(Cunningham, 2007). Power (beta) is the chance of accepting a null hypothesis in error 

and is .8. The alpha level was .05, which requires a larger sample size. 

A sample size of 103 pilots was the minimum number of participants needed, but 

two data sets were gathered. The first data set created a model and regression equation, 

and the second data set tested the model. Therefore, 206 participants were required. The 

researcher had a margin of error by gathering a higher sample if some data could not be 

used. 

Sampling Strategy 

Convenience sampling is a sampling strategy where the researcher invites groups 

of people to participate in the study accessible to the researcher (Wenzel, 2017) and is 

used in this research. For example, convenience sampling has been successfully used to 

collect airline pilot fatigue-related data (Drongelen et al., 2017; Lee & Kim, 2017).  

Social networks were utilized to identify qualified U.S. pilots. Social networks 

allow a representative sample to be gathered in a timely manner. Social networks also 

provide a method for pilots to report sensitive information anonymously through the 

survey. U.S. pilots are listed online; however, the database often does not contain 

addresses and includes no faster contact methods like email or phone numbers. Social 

networks allow for the fast and efficient gathering of representative participants. Various 
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social networks were utilized for data gathering, including Facebook, Airline Pilot 

Central, and LinkedIn. Using multiple social network streams also maximizes data 

collection and creates a more representative sample, minimizing bias. Previous 

researchers have utilized Facebook, a tool planned for use in this dissertation, and found 

data gathering effective, low cost, and timely (King et al., 2014; Spence et al., 2016). 

Given the sensitive nature of data related to pilot fatigue, Greive, Witteveen, and Tolan 

(2014) noted that data collected only via online surveys were more representative, 

diverse, and of greater quality with greater disclosure of sensitive information. Further, 

when comparing paper survey data to online survey data, Greive et al. noted that internal 

reliability with construct relationships was similar online to paper. Social media has also 

been successfully utilized on aviation safety-related topics (Petitt, 2019). 

The sample must be drawn from the targeted pilot population of active passenger 

airline pilots. To limit responses outside of the desired population of participants, 

advertising was targeted to those who likely fit within the study criteria. The individuals 

participating in the survey were U.S. airline pilots flying predominately regularly 

scheduled 14 C.F.R Part 121 flights under 14 C.F.R Part 117 rest rules. Survey 

participants only included pilots in Captain and First Officer roles, and Flight Engineers 

were filtered out. 

Data Collection Process 

Network Driven Sampling (NDS) was utilized in the data collection process. NDS 

uses multiple networks, including Facebook, Twitter, LinkedIn, and Airline Pilot Central, 

to maximize the data collected and create a more representative sample (Pettit, 2019). In 

this process, potential participants who appeared to fit representative demographics were 
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encouraged to participate. Participants are not chosen based on their relationships with 

the researcher (Pettit, 2019), avoiding any concerns resulting from bias from hand-chosen 

subjects. Additionally, the NDS method is beneficial because of the diversity of multiple 

data streams from various avenues. Social media networks also provide additional 

benefits for the conduct of research. Social media allows access to the desired population 

of pilots beyond what may be known to the researcher. Participants are also protected in 

that they must ultimately choose to continue the research process and have control over 

any interaction with the researcher. 

Rea and Parker (2014) contend that the ultimate accuracy of a sample depends 

mainly on how well the sampling frame is constructed. In this case, the sampling frame 

specifies the location, regulation followed, and type of air carrier. Additionally, 

participants must be active pilots, hold a first-class medical certificate, and meet the age 

requirements required for 14 C.F.R Part 121 operations. Finally, Jager et al. (2017) 

contend that although all convenience samples have less clear generalizability than 

probability samples, homogeneous convenience samples have clearer generalizability 

relative to conventional convenience samples. Therefore, the clear sampling frame used 

in this dissertation aids in generalizability for the conduct of this research. 

Design and Procedures 

The research followed a correlational design with data gathered through an 

electronic survey instrument. A survey tool collected demographic, fatigue, and fatigue 

factor-related data from an airline pilot population. Social media popularly frequented by 

professional pilots were used, including Airline Pilot Central 

(www.airlinepilotcentral.com), Curt Lewis’ Flight Safety Newsletter (www.fsinfo.com), 

http://www.airlinepilotcentral.com/
http://www.fsinfo.com/
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and Facebook sharing and alumni distribution lists were used to gather a convenience 

sample. Participants were asked to register via a link electronically transmitted. To ensure 

the sample is representative of the target population, participants were screened to 

determine if they work as a pilot for a U.S.-based passenger airline and hold a current 

medical, as required by their airline to operate aircraft. 

This dissertation research asked pilots to self-report their fatigue using the Fatigue 

Severity Scale (FSS). Information about fatigue factors (time awake, perceived stress, 

sleep quality, hours of sleep, age, hours on duty, and start time) was gathered utilizing a 

survey instrument to determine which factors best predict fatigue in airline pilots. In 

addition to questions related to fatigue predictor factors, necessary demographic 

information such as type of operation, ratings, and age were collected. Participants were 

also asked if they would like to receive information about the research results. 

After collecting 206 or more participants, data were randomly assigned to one of 

two datasets. Once the dissertation was completed, and the data were analyzed, a 

regression equation was created with the airline pilots' significant fatigue-related factors. 

The second data set was used to validate the regression equation and demonstrate a 

predictive equation for identifying fatigue factors in airline pilots. 

Apparatus and Materials 

Survey data collected were analyzed using statistical tools. SPSS version 28 

(SPSS) was used to conduct the regression equations. SPSS was also used for data 

preparation and calculation of descriptive statistics. 

The survey instrument utilized was delivered utilizing the online platform 

SurveyMonkey. SurveyMonkey has built-in privacy, data security, and analysis 
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capability. All data collected were maintained on SurveyMonkey using password 

protection. Data downloads to the researcher’s computer were on a password-protected 

hard drive. 

The survey instrument collected data to be used for determining fatigue 

association. A copy of the administered survey instrument is included in Appendix B. 

Response data were then exported from the SurveyMonkey tool into Microsoft Excel for 

processing. The Microsoft Excel data output from the survey questions was then 

averaged for the FSS and the PSS and summed for the JSS as a part of the designed 

survey scoring method for those surveys. Finally, data were randomly assigned to two 

even groups. Data assigned to the first group was utilized to generate the initial 

regression equation, while data assigned to the second was to test the regression equation. 

Sources of the Data 

Web and mobile-based data gathering methods have become increasingly utilized 

in research for social science-related topics. Data collected via specifically chosen social 

media allows researchers to gather large amounts of information and aids in producing 

qualitative techniques (Lazar et al., 2009). Web-based data gathering methods used 

multiple-choice questions. In addition, participants were asked quantitative questions. 

Ethical Consideration 

Participants received and acknowledged an informed consent form discussing the 

purpose of the dissertation, how long survey completion would take, the offer to 

withdraw for any reason at any time, any potential benefits and risks to the participant, 

how their privacy was protected, information on where to contact the researcher, and 

information about the researcher and advisor for the dissertation. Upon agreement, 
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participants were provided with instructions to complete the survey instrument. The 

collection tool's original data file was also retained by the collection tool in its original 

format. Participant names and employers were not collected by the survey tool. Any 

additional comments were anonymous and de-identified by the researcher if identifying 

information was included by the participant. 

Embry-Riddle Aeronautical University (ERAU) maintains an Institutional Review 

Board (IRB) for the Protection of Human Subjects in Research. The IRB follows the 

Department of Health & Human Services' guidance and strives to protect the rights and 

welfare of participants. The researcher completed the university-established IRB 

education course. ERAU’s policy requires all research involving human subjects to be 

reviewed and approved through the IRB before beginning research. Because this 

dissertation does involve the use of human subjects, it was submitted for vetting through 

the IRB. Data collection could only be carried out upon the approval of the IRB. Based 

on the dissertation's nature, the dissertation was classified as exempted. 

Measurement Instrument 

A variety of methods are available to evaluate survey questions. However, 

previous studies comparing methods have been limited, and results were inconsistent 

(Yan et al., 2012) in the methods used to evaluate survey questions. A subject matter 

expert panel was utilized to determine if any changes were required to the survey 

instrument. 

The benefits of a subject matter expert panel review include finding more types 

and amounts of problems with survey instruments (DeMajo & Landreth, 2004; Presser & 

Blair, 1994; Willis et al., 1999) and cost-effectiveness of the survey design and 
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evaluation (Presser & Blair, 1994; Yan et al., 2012). Three experts were used to evaluate 

the demographics and survey questions. The experts included pilots flying primarily for 

14 C.F.R Part 121 passenger carriers. The subject matter experts were asked to assess the 

survey instrument for clarity, directness, understanding, and context. Experts were also 

asked to identify any known relationships between the variables. This iterative process 

continued until all experts agreed on the adequacy of the survey questions. 

The survey instrument was used primarily to gather predictive fatigue factors to 

determine possible leading indicators of fatigue. The predictors of fatigue were used to 

develop quantitative survey questions based on factors influencing the time of day, a long 

duration of wakefulness, inadequate sleep, and prolonged work hours. The time of the 

day was explored by asking subjects about typically scheduled start times. The period of 

wakefulness for pilots was examined by time awake. Inadequate sleep was examined with 

perceived stress, sleep quality, hours of sleep, and age. Prolonged work hours were 

examined with hours on duty. 

Variables and Scales 

There are seven independent variables (IV). The first variable, typically scheduled 

start time, is a nominal variable with three groups, 1700-0559, 0600-0659 and 1300-

1659, and 0700-1259. These time groups mirror existing scheduled start time blocks used 

in 14 C.F.R Part 117, with 1700-0559 as the most disruptive start times for a sleep 

schedule and 0700-1259 as the least disruptive start time for a sleep schedule (ALPA, 

2013). Time awake is a continuous variable in minutes. 

Perceived stress was measured with the Perceived Stress Scale (PSS). The PSS 

originated in a 14-item format but was shortened to a 10-item form (Cohen et al., 1983). 



70 

 

The 10-item format, the PSS-10, was used for the dissertation. The PSS-10 asks 

participants to rate their perceived stress on a Likert scale. The scoring of the ten items is 

averaged, creating a continuous variable. The PSS-10 has been previously studied and 

determined to be reliable and valid (Kirschner et al., 2014; Roberti et al., 2006). 

Participants were asked to evaluate the sleep quality they receive on a typical trip 

by completing the Jenkins Sleep Scale (JSS). The JSS was used to create a continuous 

variable, with higher scores indicating a lower sleep quality. JSS has been previously 

used in pilot-related fatigue studies (Drongelen et al., 2014; Drongelen et al., 2017; Reis 

et al., 2016) and allows a metric with four questions. Participant answers on the JSS 

questionnaire are totaled for one overall value of sleep quality. 

Hours of sleep a night is a continuous variable in minutes. Age is a continuous 

variable in years. Hours on duty is a continuous variable in minutes. 

The dependent variable (DV) was the level of perceived pilot fatigue. This 

continuous, observed variable was derived from the FSS. The FSS is a self-reporting 

questionnaire used to assess fatigue with high sensitivity, reliability, and consistency 

(Gawron, 2016; Segal et al., 2008). The FSS evaluates the level of perceived fatigue. 

Clinically significant fatigue is indicated at four or higher (Reis et al., 2016). The 

questionnaire had nine items, each with a 7-point Likert scale. Scores gathered from the 

fatigue questionnaire were averaged. 

The FSS is frequently utilized in driving-related studies measuring fatigue levels. 

The FSS is unique because it has been previously used to evaluate fatigue levels for 

various situations where drivers completed a self-assessment on perceived fatigue (Rizzo 
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et al., 2019). In addition, the FSS is frequently used in medical-based studies and has 

been applied to illnesses, age, and other medical-related professions. 

FSS is frequently known in the medical community as a patient-reported outcome 

measure (PROM). PROMs are used because they allow researchers to assess both the 

severity and impact of fatigue, as reported by the participant. Conventional statistical 

analysis of fatigue does not provide enough information regarding changes in fatigue 

levels. However, meaningful impact in fatigue changes can be more easily observed 

using fatigue-related PROMs such as FSS (Rooney et al., 2019). 

Data Analysis Approach 

A pilot study of twenty pilots was conducted to validate the survey instrument. 

Before processing data, data were reviewed for completeness. Any incomplete data were 

removed. Next, participant demographics were gathered. Finally, the process of 

conducting a multiple linear regression was completed. 

Participant Demographics  

The dissertation intended to study pilots of United States-based passenger carriers 

but was not designed to examine any specific operators. Demographic data included pilot 

experience, typical schedule, and age. Demographic questions consisted of dichotomous 

and nominal questions. While this group should have a common core of understanding, 

there is some risk that demographic and survey questions could have different meanings 

to different individuals. The subject matter expert panel review and re-iteration process 

limited this problem.  

The following demographic data were gathered: 

• Age 
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• Relative Seniority (Bottom 1/3, Middle 1/3, Top 1/3) 

• Type of Carrier (Legacy, Major, Ultra Low Cost, Regional) 

• Aircraft Size (Wide Body or Narrow Body) 

• Type of Flying (Long-Haul or Short-Haul or Both) 

• Current Aircraft Type (example: Boeing 737) 

• Schedule Status (Line Holder or Reserve) 

• Legs in a Typical Day 

• History of Sleep Apnea or other Sleep-Related Disease (because of Yes / No) 

• Valid First-Class Medical Certificate (Yes /No) 

Demographic data contributed to this dissertation for two reasons. First, the data collected 

helped filter participants who did not meet inclusion criteria. Second, demographic data 

provided additional information about the background of participants, allowing for better 

data analysis. 

Reliability Assessment Method 

Hair et al. (2010) described reliability as the “Extent to which a variable or set of 

variables is consistent in what it is intended to measure. If multiple measurements are 

taken, the reliability measures will all be consistent in their values” (p. 2). Reliability 

refers to the extent a scale produces consistent results regardless of the number of times 

the dissertation is repeated. Cronbach’s alpha was calculated to evaluate internal 

consistency and aid in determining reliability. 

Validity Assessment Method 

Hair et al. (2010) described validity as: 
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Extent to which a measure or set of measures correctly represents the concept of 

study – the degree to which it is free from any systematic or nonrandom error. 

Validity is concerned with how well the concept is defined by the measure(s). (p. 

3) 

Validity was tested to prevent type I and type II errors during the statistical process. A 

type I error occurs when there is no relationship between two variables, but the researcher 

incorrectly concludes there is. A type II error occurs if the researcher fails to reject the 

null hypothesis (Laerd, 2019) when it is true. 

Laerd et al. (2019) described the measurement error as a measure of how a 

variable is accurate and consistent. If the DV has a significant measurement error, this 

will negatively impact data accuracy on the IVs. The researcher's approach to reducing 

threats to reliability related to measurement error is using summated scales per the 

validated instructions for each scale. In addition, the dissertation has multiple variables, 

reducing the risk of over-reliance on any one variable. 

Hair et al. (2010) described specification errors as the “inclusion of irrelevant 

variables or omission of relevant variables from the set of independent variables” (p. 

168). The inclusion of irrelevant variables negatively impacts the regression variate. 

Excluding extraneous variables can bias results and adversely affect the interpretation of 

the results. Any IVs determined to be unrelated need to be evaluated to determine if and 

why they should be excluded from calculations (Hair et al., 2010). 

Both sample size and generalizability aid in the determination of external validity. 

Determining statistical power and sample size can impact generalizability. Hair et al. 

(2019) explained that, in general, a ratio of 5:1 should be the minimum number of 
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participants for observations. With seven observations, the absolute minimum number of 

participants is 35. The G*Power calculated, however, indicated that the total number of 

participants is much larger. Degrees of freedom indicate generalizability and were also 

calculated to determine the number of participants for the research design. If more 

participants were available, degrees of freedom were recalculated (Hair et al., 2010). 

Regression models were created for the dissertation. In addition, a dual-purposed 

pilot study was utilized to verify the survey instrument's validity and reliability. During 

Stage 2 of this analysis, a t-test, a correlation between actual and predicted fatigue scores, 

and a cross-validated R2 statistical analysis were used to confirm the validity of the 

created model. 

Data Analysis Process/Hypothesis Testing 

Multiple regression was the statistical analysis conducted. This correlational 

design enabled the creation of a model that could be used to reduce the impact of fatigue 

on the airline industry. While a multiple regression can be utilized to explore 

relationships, it was utilized for prediction instead. The goal is to create an equation that 

can predict individuals (Osborne, 2000), in this case, pilots. Multiple linear regressions 

have also been used to examine fatigue factors such as age, gender, perceived physical 

and mental health, sleep duration, and psychological distress (Kim et al., 2019; Tang et 

al., 2016). Laerd Statistics (2019) describes multiple regression as an analytical tool used 

to “predict the value of a variable based on the value of two or more other variables” (p. 

1). The dependent variable, perceived pilot fatigue, was the value predicted by the 

independent variables. Descriptive statistics, including the means, standard deviations, 

and frequencies, were also calculated. 
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Multiple regression was also used to determine the overall fit of a model and the 

contribution of each independent variable to the total variance. The following 

assumptions exist for the conduct of multiple regression: 

1. The DV can be measured on a continuous scale. 

2. Data have two or more IVs, which can be continuous or categorical. 

3. An independence of observations exists. 

4. A linear relationship exists between the DV and each of the IVs. 

5. Data exhibit homoscedasticity. 

6. Data do not exhibit multicollinearity. 

7. No significant outliers, high leverage points, or influential high points. 

8. Residual errors are approximately normally distributed. 

Multiple regression allows the researcher to determine the model's overall fit (variance). 

Multiple regression also enables the researcher to assess the contribution of each variable. 

R-squared and adjusted R-squared were calculated to determine model fit. R-

squared is used to measure how well the data fit a regression line. R-squared is also 

known as the coefficient of determination. The F-ratio was used to test if the regression 

model is a good fit for the data (Hair et al., 2019). Finally, an ANOVA was used to 

determine the overall model's statistical significance. 

The next step in the statistical process is determining the value of the variables. 

For each variable, the regression coefficient, the standard error of the coefficient, the t 

value of the variables, and the collinearity were gathered. The regression and 

standardized coefficients allow the researcher to determine the change in the dependent 

variable for each unit of change in the independent variables (Hair et al., 2019). Finally, a 
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test of the statistical significance of the independent variables was completed. A t value 

and relative importance were calculated (Laerd Statistics, 2019). 

The next set of analyses assesses model fit for Stage 2 data collection. After data 

analysis for the regression was completed, the model fit was tested by conducting a t-test 

on the two data sets identified (predicted and actual fatigue DV scores). Again, if a strong 

model fit can be identified, there was no significant difference between the dependent 

variable's predicted and actual fatigue scores. 

Next, the model fit was tested by conducting a correlation analysis between 

predicted and actual fatigue. If a statistically significant correlation between the two 

fatigue scores can be identified, it can be concluded that the model fit is good. This would 

indicate to the researcher that predicted fatigue scores correlate to actual fatigue scores. 

The final step in data analysis is calculating and assessing the cross-validated r-

squared. Where R2 is from the initial fatigue model, n is the sample size (103 pilots), and 

k is the degrees of freedom, the cross-validated R-squared utilizes Equation 1. 

 

𝑅𝑅𝑐𝑐𝑐𝑐2 = 1 − (𝑁𝑁−1
𝑁𝑁

)(𝑁𝑁+𝑘𝑘+1
𝑁𝑁−𝑘𝑘−1

)(1 − 𝑅𝑅2) (1) 

 

A large difference between the two dependent variables, overfitting, can be 

prevented by performing a cross-validated R-squared. Underfitting a model that does not 

match the underlying population can also be prevented. Given the same study, a well-

fitting model increases the likelihood that the sample can apply to other populations. 
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Summary 

Predictive fatigue factors were evaluated for seven potential factors in 14 C.F.R 

121 passenger airline pilots. The seven potential factors were time awake, perceived 

stress, sleep quality, hours of sleep, age, typically scheduled start time, and hours on 

duty. Each factor had a pre-determined scale based on research or generally accepted 

measurements. Demographic data were also gathered to screen participants and 

supplement survey data. 

The dissertation used quantitative applications to a data-gathering survey 

instrument as the primary research method. A multiple regression analysis was conducted 

with the data. A model and regression equation was created, and the process was repeated 

to confirm the model's accuracy and reliability. Descriptive statistics were also gathered 

to supplement the multiple regression analysis conducted. 
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Chapter IV: Results 

Chapter IV includes the data and statistical analysis on airline pilot fatigue factors 

discovered during the research. First, the pilot study is discussed. Data were collected and 

then randomly divided into two groups for use during each stage of the two-stage 

process. Next, the demographic results are presented. The researcher then created a 

model used to generate a regression equation. The equation was used to determine which 

factors were associated with fatigue in airline pilots. The second group of data was then 

utilized to determine if the equation created during the first stage could be used to predict 

the data in the second stage.  

Pilot Study 

A pilot study of 41 potential survey respondents was conducted from August 

through September 2021. The goal of the pilot study was dual-purposed in that it 

validated the reliability and validity of the survey instrument. Secondarily, because no 

survey data changes were made, data could be included in the primary analysis. The 

survey was administered to a sample of the population for the dissertation study and 

gathered via NDS discussed in Chapter III. 

Expert opinions vary concerning the minimum number of participants statistically 

necessary within a pilot study. The predetermined sample size is 103 participants (n = 

103). While the exact number of the final study sample varies based on the number of 

participants, a recommended pilot study size is approximately 30 to 100 pilot participants 

(Courtenay, 1978 as cited in Ruel, Wagner, & Gillespie, 2016). Hertzog (2008) instead 

suggested that samples ranged from 10 to 40 but generally utilized 10% of the entire 

study as a goal. 
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Ultimately, the pilot study size of 41 responses was selected because it met the 

predetermined study minimum of 20 responses for the pilot study. This indicates that of 

the 41 responses, 48.78% of responses were valid. No major structural changes were 

made to the survey due to feedback received in the pilot study. However, minor 

clarification was added to demographics questions concerning types of leave and type of 

carrier. 

As a result of the COVID-19 pandemic occurring simultaneously with the study’s 

data collection, some pilots were going through substantially longer training due to being 

assigned to an unfamiliar aircraft and were not actively flying. Additionally, a minor 

clarification was added to the previously validated survey questions informing subjects 

that Alaska Airlines was intentionally not categorized as a legacy carrier within this 

survey; the route structure and flying more closely align with a major carrier. 

Collectively, these clarifications were not expected to impact the previous validation of 

the questions. 

Demographics Results 

Because of the chosen regression process, two separate data groups must be 

examined. The first data group created the regression equation of fatigue factors in airline 

pilots. The second data group was used to validate the first group’s regression equation 

created by the first group. The total sample size was N = 273; demographic information is 

presented for both groups in the Group 1 section. 

Group 1 

In the first group, the sample size was n = 136. Of the 136 participants, 16.18% (n 

= 22) were female. The mean age of the sample was 42.07 (D = 11.491). Reported 
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ethnicity was broken down into the following groups: 89.71% White/Caucasian (n = 

122), 4.41% Hispanic (n = 6), 1.47% Asian/Pacific Islander (n = 2), 2.21% Black or 

African American (n = 3), 0% American Indian or Alaskan Native (n = 0), 2.21% 

Multiple Ethnicities (n = 3). The mean total flight time listed by participants was 9930.84 

(SD = 6555.43). Participants' mean 121 total flight time was 7960.68 (SD = 6311.94). 

Reported type of aircraft were: 79.41% Narrow-Body Passenger (n = 108), 

15.44% Wide-Body Passenger (n = 21), and 5.15% Both Wide and Narrow (n = 7). Type 

of trips listed by participants was: 75.74% Short Haul Flights (n = 103), 11.03% Long 

Haul Flights (n = 15), 13.24% Both Long Haul and Short Haul Flights (n = 18). There 

were 86.76% of the pilots who reported flying primarily two crew flights (n = 118). 

Aircraft flown listed by participants was 2.94% DHC-8 (n = 4), 2.21% E135/140/145 (n 

= 3), 12.5% E170/190 (n = 17), 10.29% CRJ 200/550/700/900 (n = 14), 0.74% A220 (n = 

1), 27.94% A319/320/321 (n = 38), 2.21% A350 (n = 3), 1.47% B717 (n = 2), 19.85% 

B737 (n = 27), 11.03% B757/767 (n = 15), 3.68% B777 (n = 5), and 3.68% B787 (n = 5). 
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Figure 2 

Aircraft Flown by Group 1 Participants 

 

The type of flying listed by participants was 27.21% Regional (n = 37), 11.76% 

Ultra-Low Cost (n = 16), 11.76% Major (n = 16), and 49.26% Legacy (n = 67). 

 

Figure 3 

Type of Flying by Group 1 Participants 
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Among the participants, 20.59% were reserve holders (n = 28), 70.59% were line holders 

(n = 96), and 8.82% were both line and reserve holders (n = 12). Participants reported a 

mean of 2.46 legs flown in a typical day (SD = 1.02) and a mean of 6.47 hours in the air 

per day (SD = 2.83). A summary of group 1 descriptive statistics is provided in Table 2. 

Descriptive statistics were conducted on group 1 predictive fatigue factors. The 

mean score on the FSS was 3.76 (SD = 1.14). The mean number of hours on duty 

reported was 10.99 (SD = 3.46). The mean scheduled start time was aligned with 06:00-

06:59 or 13:00-16:59 and accounted for 44.12% (n = 60). The mean hours awake before 

start was 4.17 (SD = 3.57). The mean hours of sleep on a typical night during a trip was 

7.31 (SD = 1.78). The mean JSS score was 6.63 (SD = 3.38). The mean PSS score was 

1.94 (SD = 0.30). 
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Table 2 

Summary of Group 1 Statistics 
Variable n (%) M SD 

Age 136 42.07 11.49 
Total Flight Time 136 9930.84 6555.43 
121 Total Flight Time 136 7960.68 6311.94 
Number of Legs Flown in a Day 136 2.46 1.02 
Number of Hours in the Air Per Day 136 6.47 2.83 
Fatigue Severity Scale 136 3.76 1.14 
Hours on Duty 136 10.99 3.46 
Hours Awake Before Start 136 4.17 3.57 
Hours of Sleep 136 7.31 1.78 
Jenkins Sleep Scale 136 6.63 3.38 
Perceived Stress Scale 136 1.94 0.30 
Gender Male 114 (83.82)   

Female 22 (16.18)   
Ethnicity White 122 (89.71)   

Hispanic 6 (4.41)   
Asian/Pacific Islander 2 (1.47)   
Black/African American 3 (2.21)   
American Indian or Alaskan Native 0 (0)   
Multiple 3 (2.21)   

Type of Aircraft Narrow-Body 108 79.41)   
Wide-Body 21 (15.44)   
Both Wide and Narrow 7 (5.15)   

Type of Trips Short Haul 103 (75.74)   
Long Haul 15 (11.03)   
Both Short Haul and Long Haul 18 (13.24)   

Primarily Crew of 2 Yes 118 (86.76)   
Plane Flown DHC-8 4 (2.94)   

E135/140/145 3 (2.21)   
E170/190 17 (12.5)   
CRJ 200/550/700/900 14 (10.29)   
A220 1 (0.74)   
A319/320/321 38 (27.94)   
A350 3 (2.21)   
B717 2 (1.47)   
B737 27 (19.85)   
B757/767 15 (11.03)   
B777 5 (3.68)   
B787 5 (3.68)   

Type of Flying Regional 37 (27.21)   
Ultra Low-Cost 16 (11.76)   
Major 16 (11.76)   
Legacy 67 (49.26)   

Type of Schedule Reserve Holder 28 (20.59)   
Line Holder 96 (70.59)   
Both Reserve and Line Holder 12 (8.82)   

Typical Scheduled Start Time 0700-1259 46 (33.82)   
0600-0659 or 1300-1659  60 (44.12)   
1700-0559 30 (22.06)   
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Group 2 

In the second group, the sample size was n = 135. Of the 135 participants, 16.30% 

were (n = 22) were female. The mean age of the sample was 41.43 (SD = 10.31). 

Reported ethnicity was broken down into the following groups: 86.67% White/Caucasian 

(n = 117), 2.96% Hispanic (n = 4), 5.93% Asian/Pacific Islander (n = 8), 1.48% Black or 

African American (n = 2), 0.74% American Indian or Alaskan Native (n = 1), 2.22% 

Multiple Ethnicities (n = 3). The mean total flight time listed by participants was 9021.26 

(SD = 6203.90). Participants' mean 121 total flight time was 6733.48 (SD = 5810.77). 

Reported type of aircraft were: 87.41% Narrow-Body Passenger (n = 118), 9.23% 

Wide-Body Passenger (n = 13), and 2.22% Both Wide and Narrow (n = 3). Type of trips 

listed by participants was: 85.19% Short Haul Flights (n = 115), 8.15% Long Haul 

Flights (n = 11), 6.67% Both Long Haul and Short Haul Flights (n = 9). There were 

88.89% of the pilots reported flying primarily two crew flights (n = 120). Aircraft flown 

listed by participants was 2.22% DHC-8 (n = 3), 2.22% E135/140/145 (n = 3), 17.78% 

E170/190 (n = 24), 11.85% CRJ 200/550/700/900 (n = 16), 0.74% A220 (n = 1), 31.85% 

A319/320/321 (n = 43), 0% A350 (n = 0), 2.96% B717 (n = 4), 17.78% B737 (n = 24), 

5.93% B757/767 (n = 8), 5.19% B777 (n = 7), and 5.19% B787 (n = 7). 
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Figure 4 

Aircraft Flown By Group 2 Participants 

 
Note. Type of flying listed by participants was 31.11% Regional (n = 42), 19.26% Ultra-

Low Cost (n = 26), 6.67% Major (n = 9), and 42.96% Legacy (n = 58). 

 

Figure 5 

Aircraft Flown By Group 2 Participants 
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Among the participants, 24.45% were reserve holders (n = 33), 66.67% were line 

holders (n = 90), and 8.89% were both line and reserve holders (n = 12). Participants 

reported a mean of 2.70 legs flown in a typical day (SD = 1.25) and a mean of 6.27 hours 

in the air per day (SD = 2.84). A summary of group 2 descriptive statistics is provided in 

Table 3. 
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Table 3 

Summary of Group 2 Demographic Statistics 
Variable n (%) M SD 

Age 135 41.43 10.31 
Total Flight Time 135 9021.26 6203.90 
121 Total Flight Time 135 6733.48 5810.77 
Number of Legs Flown in a Day 135 2.70 1.25 
Number of Hours in the Air Per Day 135 6.27 2.84 
FSS 135 3.85 1.12 
Hours on Duty 135 10.58 2.15 
Hours Awake Before Start 135 3.70 2.52 
Hours of Sleep 135 7.18 1.42 
JSS 135 6.67 3.259 
PSS 135 1.95 0.30 
Gender Male 113 (83.70)   
 Female 22 (16.30)   
Ethnicity White 117 (86.67)   
 Hispanic 4 (2.96)   
 Asian/Pacific Islander 8 (5.93)   
 Black or African American 2 (1.48)   
 American Indian or Alaskan Native 1 (0.74)   
 Multiple 3 (2.22)   
Type of Aircraft Narrow-Body 118 (87.41)   
 Wide-Body 13 (9.23)   
 Both Wide and Narrow 3 (2.22)   
Type of Trips Short Haul 115 (85.19)   
 Long Haul 11 (8.15)   
 Both Short Haul and Long Haul 9 (6.67)   
Primarily Crew of 2 Yes 120 (88.89)   
Plane Flown DHC-8 3 (2.22)   
 E135/140/145 3 (2.22)   
 E170/190 24 (17.78)   
 CRJ 200/550/700/900 16 (11.85)   
 A220 1 (0.74)   
 A319/320/321 43 (31.85)   
 A350 0 (0)   
 B717 4 (2.96)   
 B737 24 (17.78)   
 B757/767 8 (5.93)   
 B777 7 (5.19)   
 B787 7 (5.19)   
Type of Flying Regional 42 (31.11)   
 Ultra Low-Cost 26 (19.26)   
 Major 9 (6.67)   
 Legacy 58 (42.96)   
Type of Schedule Reserve Holder 33 (24.45)   
 Line Holder 90 (66.67)   
 Both Reserve and Line Holder 12 (8.89)   
Typical Scheduled Start Time 0700-1259 40 (29.62)   
 0600-0659 or 1300-1659 67 (49.62)   
 1700-0559 28 (20.74)   
Note. FSS = Fatigue Severity Scale, JSS = Jenkins Sleep Scale, PSS = Perceived Stress 
Scale 
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Internal Consistency and Reliability 

All scales utilized in the research were previously validated; however, the PSS 

and FSS allowed for a Cronbach’s alpha reliability test. The PSS and FSS scales use 

averaged questions to evaluate stress (PSS) and fatigue (FSS), while the remaining 

questions do not utilize averaged values. The Cronbach’s alpha is commonly used to 

measure internal consistency when multiple Likert scales are averaged for the same value 

(Laerd, 2019). The results of a Cronbach’s alpha should fall between the range of .65 

and .84 (Cortina,1993) and are used to measure the internal consistency of the individual 

questions on a scale. The Cronbach’s alpha was calculated during Stage 1 and Stage 2 for 

JSS and summarized in Table 4. 

 

Table 4 

Summary of Group 1 and Group 2 Cronbach’s Alpha 

Variable Group 1 Cronbach Group 2 Cronbach 
PSS 
FSS 

.311 

.848 
.061 
.846 

Note. PSS = Perceived Stress Scale, FSS = Fatigue Severity Scale 
 

A review of the Cronbach’s alpha if the item was deleted indicated a slight 

improvement with the removal of Item 4 for group 1 (α = .335) and group 2 (α = .282), 

Item 5 for group 1 (α = .426) and group 2 (α = .264), and Item 7 for group 1 (α = .409) 

and group 2 (α = .285). Despite a low Cronbach’s alpha, the researcher opted to continue 

utilizing the PSS scale as designed because the scale was previously validated. The 

Cronbach’s alpha for FSS was within range of desired value. 
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Assumptions 

It is essential to confirm that assumptions are met when conducting a multiple 

regression analysis, as this reflects the accuracy of the analysis conducted. As discussed 

in Chapter III, there are eight assumptions when conducting a multiple regression 

analysis: 

1. The DV should be measured on a continuous scale. 

2. Have two or more IVs, which can be continuous or categorical. 

3. Have independence of observations. 

4. There is a linear relationship between the DV and each of the IVs. 

5. Data has homoscedasticity, which means the data along the line of best fit 

remains similar throughout the line. 

6. Data does not show multicollinearity, which would indicate there is no or 

minimal correlation between two predictor variables. 

7. There are no significant outliers, high leverage points, or influential high 

points. 

8. Residual errors are approximately normally distributed. 

The first two assumptions are met by the design of the study. The third 

assumption, independence of observations, is designed to test if adjacent observations are 

correlated (Laerd Statistics, 2019); therefore, a Durbin-Watson test was conducted. Field 

(2013, p.311) described a resulting value of more than one but less than three as ideal to 

ensure the independence of observations, while a value of approximately 2.0 generally 

indicates no correlation between residuals or complete independence (Laerd, 2019). 
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As shown in Table 5, the Durbin-Watson result was 1.914, indicating that 

assumption 3 was met for group 1 data. Therefore, the best model identified is displayed 

below in Table 5, Model 1. 

 

Table 5 

Model Summary with Durbin-Watson Test 
Model R R2 Adjusted R2 Durbin-Watson 

1ab .419 .176 .157 1.914 
a. Predictors: (Constant) Age, JSS, Hours on Duty 

b. Dependent Variable: FSS 

Note. JSS = Jenkins Sleep Scale, FSS = Fatigue Severity Scale. 
 

The fourth assumption of a multiple regression analysis requires a linear 

relationship between the dependent variable and each independent variable. A scatterplot 

was utilized to establish a linear relationship between the dependent and independent 

variables. 

As shown in Figure 6, the scatterplot forms a horizontal band, indicating that the 

relationship between dependent and independent variables is likely to be linear. As 

shown in Appendix D, partial regression plots were utilized to establish if a linear 

relationship exists between the dependent variable and each independent variable. A 

visual review of the partial regression plots indicates that the data passes the assumption 

of linearity, satisfying assumption 4. Therefore, a visual inspection is a method 

recommended by Laerd (2019) for this analysis. 
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Figure 6 

Plot of Studentized Residual by Unstandardized Predicted Value 

 

The fifth assumption of a multiple regression analysis requires homoscedasticity 

of residuals. This assumption is met when residuals are equal for all values of the 

predicted variables. There was homoscedasticity, as assessed by visual inspection of a 

plot of studentized residuals versus unstandardized predicted values. Homoscedasticity of 

residuals indicates that the standard deviation of the errors is similar. As shown in Figure 

6, the plotted values do not appear to become wider at higher or lower values. Therefore, 

assumption 5 is assessed to be met. 

The sixth assumption of a multiple regression analysis requires that data must not 

show multicollinearity. Multicollinearity occurs when two or more independent variables 

are highly correlated (Laerd Statistics, 2019). Identifying multicollinearity is a two-stage 

process, an inspection of correlation coefficients and Tolerance/VIF values. As shown in 
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Table 6, none of the independent variables had correlation coefficients greater than .7, 

indicating that data lacked multicollinearity. 

 

Table 6 

Summary of Correlations Between Variables 
 FSS Age Hours 

on 
Duty 

Hours 
Awake 
Before 
Start 

Hours 
of 

Sleep 

JSS PSS 0600- 
0659 
hr & 
1300- 
1659 

hr 

1700- 
0559 

hr 

FSS 1.000 -.148 .205 -.010 -.206 .341 .199 -.004 .008 
Age -.148 1.000 .085 .196 .163 -.060 -.164 -.217 .088 
Hours 
on Duty .205 .085 1.000 .089 .115 .024 .145 -.105 .185 

Hours 
Awake 
Before 
Start 

-.010 .196 .089 1.000 .353 -.030 .048 -.284 .552 

Hours of 
Sleep -.206 .163 .115 .353 1.000 -.325 -.109 -.232 .233 

JSS .341 -.060 .024 -.030 -.325 1.000 .212 .004 .052 
PSS .199 -.164 .145 .048 -.109 .212 1.000 -.022 .049 
0600-
0659 hr 
& 1300- 
1659 hr 

-.004 -.217 -.105 -.284 -.232 .004 -.022 1.000 -.541 

1700- 
0559 hr .008 .088 .185 .552 .233 .052 .049 -.541 1.000 

Note. FSS = Fatigue Severity Scale, JSS = Jenkins Sleep Scale, PSS = Perceived Stress 

Scale. 

 
Next, VIF/Tolerance scores were analyzed. A collinearity problem could exist if 

the Tolerance value is less than 0.1 – which is a VIF of greater than 10. In this data set, 

the lowest value was .989. VIF scores ranged between 1.005 and 1.011, below the point 
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of concern at ten. As shown in Table 7, the data analysis indicated that collinearity was 

not an issue with this data set. Next, Homoscedasticity was examined using the residuals 

vs. the predicted values. The residuals and predicted values are shown in Figure 6. 

Homoscedasticity exists when no significant increase or decrease in the spread is seen on 

the scatter plot. Data did not appear to have significant outlying values from a visual 

inspection. Therefore, the larger than required sample size and a lack of multicollinearity 

are assessed as satisfactorily meeting assumption 6. 

 

Table 7 

Summary of Collinearity Statistics 
Model Tolerance VIF 

Age .989 1.011 

Hours on Duty .992 1.008 

JSS .995 1.005 
Note. JSS = Jenkins Sleep Scale 
 

For the seventh assumption of the multiple regression analysis, there should be no 

significant outliers, high leverage points, or highly influential data points. A large number 

of participants were recruited for the research. The survey item design did not allow 

responses to be significantly outside norms. In addition, fatigue is very individual, so 

variations in fatigue are normal and expected. Based on these two issues, it is not 

expected that significant outliers are possible. An additional inspection of Cook’s 

Distance (Cook’s D = .009), a metric used to estimate the influence of outliers, did not 

reveal compelling cases. Based on these tests, assumption 7 is assessed to be satisfied.  
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The eighth and final assumption of a multiple regression analysis requires residual errors 

are approximately normally distributed, as described by Laerd (2019). Distribution was 

tested with a histogram superimposing a normal curve and a normal probability plot (p-p 

plot). Figure 7 shows the frequency distribution histogram of residuals. This curve was 

not perfectly normally distributed; however, the residuals were sufficiently normally 

distributed. Laerd (2019) described that an approximate visual inspection is adequate for 

assessing normal distribution. The normal p-p plot of regression standardized residuals is 

shown in Figure 8 also indicates that although the residuals were not perfectly aligned, 

they were close to the normal diagonal line. Therefore, data were normally distributed, 

satisfying assumption 8. 

 

Figure 7 

Frequency Distribution Histogram of Residuals for FSS 

 
Note. FSS = Fatigue Severity Scale 
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Figure 8 

Normal Probability Plot of Standardized Residual of FSS  

 

Note. FSS = Fatigue Severity Scale 
 

Each of the eight assumptions for a multiple regression was satisfied. The 

assumptions are necessary to ensure a valid study and confirm that the correct statistical 

process is completed. While some assumptions were not perfectly satisfied, deviations 

were only minor and are not expected to influence the study's statistical analysis or 

conclusions. The following section outlines the results of the multiple regression analysis. 

Multiple Regression Analysis 

Multiple regression analysis was conducted utilizing three main steps. First, 

model fit was used to determine if the model fits the data. Second, the regression model 

coefficients were verified and confirmed using a correlation. Finally, SPSS was utilized 

to make predictions of the dependent variable based on the values of the independent 

variable. 
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Stage 1 

The goal of Stage 1 was to collect a sample and create a regression equation of 

predictive fatigue factors. Linear regression was conducted with the group 1data set for 

this stage. Additionally, a backward stepwise regression was utilized to eliminate 

statistically insignificant fatigue factors and account for the categorical variable, 

Scheduled Start Time. The best model identified three statistically significant fatigue 

factors: Age, Hours on Duty, and JSS (Sleep Quality). Equation 2 shows the regression 

formula informed by the analysis. 

 

Y = 2.88+-.014X1+.069X2+.110X3  (2) 

 

To create the regression model, coefficients from group 1 data (Table 8 – Model 1) 

identified statistically significant predictor values. 

 

Table 8 

Coefficients 

Model 
 Unstandardized 

B 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

Sig. 

1a 

Constant 2.881 .469  .000 
Age -.014 .008 -.146 .069 
Hours on Duty .069 .026 .210 .009 
JSS .110 .027 .327 .000 

Note. JSS = Jenkins Sleep Scale. a Predictors: (Constant), Age, Hours on Duty, JSS. 
 

In the regression equation, Y is the predicted fatigue score, and X1, X2, and X3 are Age, 

Hours on Duty, and JSS, respectively. The data analysis revealed an R2 for the overall 

model was .176 (17.6%) with an adjusted R2 of .157 (15.7%) and an R2 Change of -.012, 



97 

 

indicating the model fit with a medium-size effect according to Cohen (1988), as shown 

in Table 5. Cohen (1988) considers an r-square value of .12 or below to indicate a low 

effect size, a value between .13 to .25 as a medium effect size, and a value of .26 or 

above as a high effect size. In addition, Age, Hours on Duty, and JSS were all found to 

predict Y better than the mean, F (3,135) = 9.388, p < .00001, as displayed in Table 9. 

Based on the results shown in Table 9, all predictors other than Age, Hours on Duty, and 

JSS are constant. 

 

Table 9 

ANOVA Model  

Model  Sum of 
Squares 

df Mean 
Square 

F Sig. 

1a 
Regression 30.863 3 10.288 9.388 .000011 
Residual 144.641 132 1.096   

Total 175.503 135    
Note. JSS = Jenkins Sleep Scale. a Predictors: (Constant), Age, Hours on Duty, JSS. 

 

Stage 2 

The goal in the second stage was to test the regression equation created in Stage 1. 

To validate the findings from Stage 1, a predictive model for fatigue factors in airline 

pilots was developed and tested. A separate independent sample of the data collected was 

used to develop predicted data and test the regression equation created in Stage 1. Group 

2 data included 135 participants for Stage 2 model testing. The regression equation from 

Stage 1 was used with the second data set to obtain a predictive fatigue factor score. After 

the predictive fatigue factors score was created, a t-test, a correlation between actual and 

predicted fatigue scores, and a cross-validated R2 statistical analysis were conducted. 
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The first test performed to compare the predicted and actual fatigue scores is a t-

test. Actual vs. Predicted fatigue scores were also graphed as identified in Figure 9. 

As shown in Table 10, the result of the t-test was not statistically significant, indicating 

that the actual FSS does not differ from the predicted FSS. 

 

Table 10 

T-Test of Actual and Predicted Scores of Fatigue 
  Levene’s Test 

for Equality 
of Variances 

Sig. t df Sig. T-test for Equality of 
Means 

95% CI 
      

  F     Mean 
Difference 

Std. Error 
Difference Lower Upper 

FSS Equal 
Variances 
Assumed 

91.67 .00 .802 268 .42 -.08 .10 -.12 .28 

Note. CI = confidence interval; FSS = Fatigue Severity Scale. 
 

Figure 9 

Scatter Plot of Actual FSS by Predicted Value FSS  

 
 
Note. FSS = Fatigue Severity Scale. 
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Next, a correlation was conducted between actual and predicted fatigue scores to 

determine if the two data sets (actual and predicted fatigue) were significantly correlated. 

The results of the correlation analysis are displayed in Table 11. 

 

Table 11 

Correlational Analysis Between Actual and Predicted Fatigue Scores 
  Actual Predicted 

Actual Pearson 1 .36 
 Sig.  .00 
 N 135 135 

Predicted Pearson .36 1 
 Sig. .00  
 N 135 135 

 

The results of the correlation analysis indicated a strong positive correlation between 

actual and predicted fatigue scores r (135) = .36, p < .001. Combined with the t-test 

result, this significant correlation suggests that the actual and predicted scores are 

significantly related. In addition, the correlation further validates the regression equation 

created in Stage 1. Finally, a cross-validated R2 was used to test for model validation. 

Equation 2 calculates the estimated squared cross-validity coefficient: 

𝑅𝑅𝑐𝑐𝑐𝑐2 = 1 − (𝑁𝑁−1
𝑁𝑁

)(𝑁𝑁+𝑘𝑘+1
𝑁𝑁−𝑘𝑘−1

)(1 − 𝑅𝑅2) (2) 

where N = sample size, k = number of predictors, and R2 = observed squared multiple 

correlations (Field, 2013, p.312). 

For Stage 2, Equation 3 is the formula used to calculate the cross-validity 

coefficient. 

 

. 131 = 1 − (134−1
134

)(134+3+1
134−3−1

)(1 − .176) (3) 
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where N = 134, k = 3, and R2 = .176. 

 

The cross-validity coefficient is 𝑅𝑅𝑐𝑐𝑐𝑐2  = .131, indicating a medium fit of the model 

(Field, 2013; Cohen, 1988), as the cross-validity coefficient is similar to the original R2 

obtained for the model in Stage 1. Equation 4 shows the final regression formula created 

because of the analysis. 

 

Predicted FSS = 2.88 + -.014(Age) + .069(Hours on Duty) + .110(JSS) (4) 

 

Summary 

A model was created and then validated in the above analysis to predict fatigue 

(FSS) in commercial passenger-carrying airline pilots. The research was comprised of 

two separate stages. Stage 1 was used to create a regression equation, and Stage 2 

performed a series of analyses to build a model. Stage 1 indicated three significant 

predictor variables and explained 17.6% (15.7% adjusted) of the variance in the model 

created. The three predictor variables were age, hours on duty, and JSS. Stage 2 

demonstrated by utilizing a t-test, correlation, and cross-validated R2 that the model has 

good predictive qualities. Chapter V provides additional discussion on the statistical 

analysis conducted in this chapter. It also discusses the theoretical and practical 

contributions of this research and offers additional recommendations for the target 

population and future research.
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Chapter V: Discussion, Conclusions, and Recommendations 

This research intended to gain a deeper understanding of fatigue factors in airline 

pilots. The previous chapter conveyed the results of the statistical analysis. This chapter 

discusses the statistical analysis process and the predictor variables, discusses theoretical 

and practical contributions, finding limitations, and recommendations for the target 

population and future research. The research explored the possible predictors of 

perceived pilot fatigue in passenger-carrying airline pilots, including perceived stress, 

sleep quality, hours of sleep, age, typically scheduled start time, and hours on duty. 

Discussion 

The previous chapter established the quantitative data analysis, including the 

descriptive statistics, population, sample, and statistical calculations. In addition, actual 

demographic data were gathered and are published in Table 2 and Table 3. Values in the 

demographics table, such as mean, standard deviation, and percentages, appeared to be 

generally consistent with the aviation community and anticipated airline pilot target 

participant population (FAA, 2019b). Therefore, it is possible that the social media 

networking utilized to gather participants may have resulted in a younger population of 

participants. However, the average age of airline pilots across the industry is unknown 

(FAA, 2019b), making it difficult to determine if a younger group participated compared 

to what is reflective of the industry. 

There were 271 fully completed and qualified responses to the research; therefore, 

206 participants were required to complete the study. Each set of data was used to create 

the equation model. Then, data from the equation model was compared to actual data. 

The first stage of the study identified factors that could predict fatigue and created a 
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model; a model was created to predict values when applied to a second data set. Age, 

Hours on Duty, and Sleep Quality (JSS) proved sufficient to create a model equation. 

The second stage of the research study attempted to compare the model created in 

the first stage to its data set. Using this type of calculation, the data in the second set was 

used to compare predicted values created with the equation during the first stage to the 

data in the second stage. T-tests, correlation, and cross-validation were conducted in the 

second stage. The model tested the difference between the actual fatigue factors scores 

and the predictive fatigue factors score. The model was a good fit for the second data set 

tested and was statistically significant. 

Significant Predictor Variables 

The analysis identified that age, hours on duty, and sleep quality were statistically 

significant predictors of fatigue within the identified population. Utilizing the 

unstandardized B coefficients, two noteworthy items can be derived about age. First, Age 

is a negative predictor (Standardized B = -.146). This result indicates that as age 

increases, fatigue (FSS) decreases. Age had the smallest effect on fatigue relative to the 

other factors. 

Age had the smallest effect size on fatigue relative to the other factors. This 

relationship between age and FSS seems counterintuitive; however, a possible 

explanation is that older pilots tend to be more senior. Senior pilots have been at an 

airline longer; therefore, a more senior pilot may fly, hold regular schedules, and receive 

more rest. 

Next, hours on duty were a significant predictor (Standardized B = .210)  for 

perceived fatigue. It has been previously identified that accident rates increase with 



103 

 

increases in duty time (Goode, 2003). Caldwell (2012) attributed increased fatigue and 

decreased alertness levels to excessive duty periods. Continuous duty overnights, where a 

pilot remains on duty overnight, are likely to be especially detrimental to fatigue 

(Sallinen et al., 2017; Cabon et al., 2003; Co et al., 1999) due to the extended duty period 

over a time in which is typically a window of circadian low. 

Finally, sleep quality (JSS) had the most significant influence (Standardized B = 

.327) on the equation and fatigue (FSS) as a result. A higher score on the JSS indicated a 

lower sleep quality.  Research comparing fatigue levels and reported sleep quality in 

pilots flying internationally noted a correlation between perceived fatigue and sleep 

quality (Dai et al., 2018). Cabon et al. (2003) identified the unique challenges in sleep 

quality for long-haul crews utilizing poorly designed crew rest facilities and noted the 

connection between sleep quality and fatigue. 

Challenges in getting adequate sleep and rest facilities also extend to the hotels 

utilized by flight crews which have additional challenges such as noise and comfort. In a 

study examining sleep quality in truck drivers, researchers indicated that sleep quality 

appeared to negatively impact the concentration of drivers (Lemke et al., 2016). Sleep 

quality had the most significant impact on perceived fatigue in the airline pilots studied. 

While sleep quantity is addressed by 14 C.F.R 117, sleep quality on pilot overnight stops 

is not addressed. Sleep quality is likely not addressed in 14 C.F.R 117 due to the 

complexity of determining a quality overnight hotel location. The research identified 

predictor variables of age, hours on duty, and sleep quality (JSS). It created a valid 

regression equation that can be used to determine factors associated with fatigue in airline 

pilots who primarily carry passengers.  
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Non-Significant Predictor Variables 

The analysis conducted sought to determine which factors may be able to predict 

fatigue accurately. Four predictor variables studied were not significant predictors of 

fatigue in passenger-carrying airline pilots: time awake, perceived stress, hours of sleep, 

and typically scheduled start time. Because the above predictor variables were not 

significant, they were not utilized in model creation. 

Time awake was identified in the literature review as contributing to fatigue in 

airline pilots (Drongelen et al., 2017). However, in a research study examining PVT tests 

and cognitive fatigue in flight, time awake was not identified as having a significant 

effect on fatigue (Granger et al., 2016). In addition, 14 C.F.R 117 provides some 

limitations on report times and duty requirements that may have positively impacted time 

awake. Therefore, although it seems likely that time awake influences fatigue, the study 

did not identify it as a significant predictor variable. 

Perceived stress was also identified as a non-significant predictor variable. Higher 

stress levels were identified on flights associated with more fatigue (Samel et al., 1997). 

However, stress-related health problems such as high blood pressure and mental health 

are screened during the FAA medical certification process. Although no current studies 

could be located, the medical certificate process may lead to a population of pilots well 

prepared to deal with the stresses of everyday life and limit its influence on their 

perceived fatigue. 

Despite possible connections between hours of sleep and perceived fatigue, the 

research did not find hours of sleep to be a significant predictor of perceived fatigue. One 

possible reason for this is that the long-haul flights included in this research often include 
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the use of intermittent sleep on board. Another possibility is that micro-sleep could be 

occurring regularly on the flight deck but was not accounted for in the research (Colino, 

2018). Hours of sleep, like time awake, also has scheduling limitations which could have 

made these predictors less problematic. 

Finally, typically scheduled start time was not a significant predictor of fatigue in 

airline pilots. Typically scheduled start time was aligned with the categories used by 14 

C.F.R 117. In the study, 79% of pilots (N = 271) identified a daytime scheduled start time 

as typical for the previous month. Daytime scheduled start times are less disruptive to the 

window of circadian low and can result in less fatigue. If there were more participants 

with very late start times, like those typical of cargo pilots, the results for this predictor 

variable might have been different. 

Conclusions  

Theoretical Contributions 

Safety decision-making in the airline industry is not a dichotomous decision. 

Safely operating a flight involves weighing the implications of fatigue and other possible 

hazards such as maintenance issues, weather, and other external issues. Heinrich’s 

domino theory was used to derive the fatigue factors in this dissertation. The significant 

predictor variables, age, hours on duty, and sleep quality form a potential “domino” for a 

fatigue-related accident. 

Heinrich’s domino theory suggests that accidents can be mitigated by limiting or 

removing the dominos. Heinrich’s theory stresses that it is less likely that anyone factor 

causes an accident; instead, a combination of several factors or “dominos” increases the 

likelihood of an accident. Some concepts associated with Heinrich’s domino theory are 
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not accurate today, such as the concept of accident proneness (Dekker, 2019). The 

traditional model identifies a series of pre-determined dominos. The third domino, unsafe 

acts and/or mechanical or physical hazards, is where fatigue-related risks are addressed in 

the original model. However, modern interpretations such as Bird’s updated sequence 

and Reason’s Swiss cheese model use the concept that a sequence of events or “dominos” 

leading up to an accident plays a role in the accident (Reason, 1990) rather than specific 

pre-determined dominos. 

Applying this concept of a sequence of events to the regression equation, any one 

of the predictive fatigue factors included in the equation is not likely to cause an accident 

by itself. However, safety could be improved by analyzing airline pilots prior to flight for 

age, hours on duty, and sleep quality as a group. Significantly, these factors form the 

theoretical basis for continued study on U.S.-based airline pilots flying primarily 

passengers. While some of these factors have been studied, these factors have not 

previously been studied in the same way by creating a model with this population. 

Additionally, previous studies have not typically occurred on U.S.-based passenger-

carrying pilots. 

The principal concept of Heinrich’s domino theory that accidents and incidents 

are preventable by reducing and managing unsafe acts and conditions remains true. A 

regression model is a tool for reducing and managing identified fatigue conditions. 

Increased knowledge of predictive fatigue factors gained from the research may reduce 

the likelihood of fatigue acting as a falling domino. 
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Practical Contributions 

Aviation safety, particularly the risks associated with increased fatigue levels, 

remains an essential topic amongst regulatory authorities (FAA, NTSB), airlines and 

aviation providers, pilots and others in the aviation industry, and researchers. Since 2016, 

the NTSB has updated its “Most Wanted List.” While fatigue stops short of being 

specifically addressed, it has direct ties to many of the cross-disciplinary desired 

improvements (NTSB, 2021). 

Risks associated with fatigued, passenger-carrying pilots within commercial 

airlines are more complex than some aviation concerns because a multi-faceted approach 

to its resolution is necessary. Minimizing fatigue is not a straightforward regulatory 

change. Instead, it requires improvements and changes to a complex scheduling software, 

union contracts, and norms and practices of the industry as a whole. Addressing fatigue 

also includes changes to the behavior of individuals, cultural change, and addressing any 

stigmas or financial penalties involved in a pilot notifying the airline of their fatigue. 

Despite an exhaustive literature review, no other aviation-related fatigue research 

was discovered utilizing this study’s methods to predict fatigue and infer conclusions. 

This research created a model that other researchers can utilize. Other researchers have 

successfully addressed factors in aviation through different methods (Gregory et al., 

2020; Wilson et al., 2020). Additional research should examine ties between the 

identified fatigue factors and airline pilots. This present research is a starting point for 

future researchers and those interested in improving fatigue. The complexities of fatigue 

have resulted in a 17.6% variance in the model. This finding will need to be studied 

further to understand the model's reliability. This challenge highlights the importance of 
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further research, study, and emphasis on fatigue, specifically fatigue factors. Many 

factors that influence fatigue are under-reported, under-discussed, and under-researched. 

Additionally, publishing this research adds to existing discussions about fatigue in airline 

pilots. 

The research was generalizable to represent airline pilots who fly under 14 C.F.R 

117 rules. Despite different air carrier fatigue policies and limitations, the study is 

generalizable to other airline pilots who carry passengers primarily. Limiting the 

population sought to remove confounding variables that could negatively impact the data. 

Because of the role of airlines in the United States, it is expected that data on this group 

of pilots could aid in improving safety. 

This method, if generalized, may be helpful to the aviation industry because it can 

be used in advance of a scheduled flight and does not require a wearable biometric 

device. This research could be a starting point for future aviation fatigue research studies 

conducted similarly. In addition, the fatigue factors identified within this study can also 

be used as a starting point for subsequent aviation fatigue research seeking to understand 

other types of airline pilots, such as cargo pilots. 

Many aviation accidents involve pilot fatigue (NTSB, 2016). This problem is 

especially true on flights with more extensive, longer duty times (Goode, 2003). 

Therefore, reducing fatigue remains essential for improving safety (NTSB, 2019; 2021). 

Lastly, 14 C.F.R Part 117 is already eight years old. It was a starting point but still 

left many gaps, including fatigue regulations for 14 C.F.R Part 135, 14 C.F.R Part 91K, 

and 14 C.F.R Part 121 Cargo carriers. Nevertheless, this research provides an essential 

base for regulators looking to fund future research projects tied to regulatory changes. 



109 

 

Limitations of the Findings 

This study asked pilots to look back on their previous month of flying when 

thinking about their answers to fatigue-related questions. It is possible that this window 

was too wide for participants to respond accurately due to memory lapses. If a more 

extensive, easier to access pilot population was available, this window could be 

narrowed. 

The research did not address variables outside of the identified predictive fatigue 

factors. Unreported or underreported health issues may have existed in the target 

population studied. Homelife and what a pilot chooses to do during their off time or time 

on overnights can have a profound but challenging to measure the effect on fatigue. 

Many aspects of company operation could not be directly accounted for, such as 

maintenance, scheduling, and weather-related delays, because they were beyond the 

scope of the study and vary at each airline. It is also possible that other factors related to 

fatigue have a more significant influence than the predictive fatigue factors identified. 

Perceived fatigue, stress, and sleep quality are subject to perception, which is not 

necessarily reality. In this study, pilot participants were relied upon to report conditions 

accurately and honestly. However, participants had no repercussion if they did not report 

accurately, and researchers have minimal cues to identify data that is not reported 

accurately or honestly. Despite all the protections in place for research participants, it is 

possible that some participants still feared negative consequences for accurately reporting 

sub-optimal conditions. Participants' fears could have resulted in participants reporting 

inaccurately or not starting the survey. 
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This research could not avoid several limitations due to financial and time 

constraints. A researcher could improve outreach with additional funding by visiting 

conferences and airshows and increasing participants. It is possible that increasing the 

time the study was open to further distance from COVID-19 may have increased study 

participants. Many pilots were training to regain currency after extended or were off on 

extended leave when the research was conducted. Despite the challenges of COVID-19, 

the study gathered more participants than was required. Because significant results were 

still obtained, more participants may not have substantially affected the study's outcome. 

This research study also utilized a convenience sample. Unfortunately, 

convenience samples can over-represent some groups while under-representing others 

and are subject to researcher bias. Nonetheless, this research attempted to overcome these 

issues by surveying as many qualified applicants as possible and utilizing a wide variety 

of social networks instead of those just regularly utilized by the researcher. 

Recommendations 

The first recommendations are directed towards professional pilots, the target 

population. The second set of recommendations explicitly informs future research 

methodology related to similar studies. Next, areas to expand fatigue research are 

identified. Finally, future study participants and groups are also identified, making the 

research generalizable to a larger population beyond U.S. airline pilots who primarily fly 

passengers. 

Recommendations for Professional Pilots 

The aviation community is interested in fatigue research. Increased research data 

may improve safety regulation. In particular, many who contacted the researcher wanted 
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to understand why the scope was limited to 14 C.F.R Part 121 Pilots. Pilots outside the 

airlines complained of being forgotten by regulations primarily focused on passenger 

carriers. One pilot complained of complex circadian rhythm problems which interfere 

with their health and relationships. 

While cargo and business jet operators were not a part of the target population, 

they are often grouped in statistics with their airline pilot counterparts (FAA, 2019b). 

Additionally, both groups of pilots have similarities due to job requirements, including 

the minimum age to earn an ATP Certificate and the need to remain medically fit enough 

to maintain an FAA medical certificate. Fatigued but overlooked professional aviators 

can advocate through their unions, where applicable, or through their management. 

Another possible avenue for regulatory fatigue improvement is contacting elected 

representatives who could potentially influence regulations and manage FAA funding. 

Airline pilots flying primarily passengers covered under this study still have 

fatigue and benefit from continued research and regulatory improvements. Advisory 

Circular (AC) 120-103A outlines the content of an FRMS; however, this advisory 

circular is not legally binding. Passenger airlines are not mandated to have an FRMS, and 

if they do, they do not necessarily have to include the topics covered in AC 120-103A. 

Pay protection for fatigue-related occurrences is contractually negotiated and sometimes 

not always granted because it is often at the discretion of pilot management. There are 

competing priorities with any contractually negotiated benefit. However, the most 

challenging hurdle these pilots must overcome is long-held corporate culture and stigma 

from peers and management concerning fatigue and fatigue-related sick calls. 
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While some airlines likely have not adapted 120-103A or have only partially 

implemented it, some have made significant improvements and successfully negotiated 

fatigue leave pay protection. For these pilots, change can be made by participating in 

union, company, and legislative aviation-related opportunities to advocate for improved 

fatigue programs, much like other professional aviators. 

Recommendations for Future Research Methodology 

Utilizing an equation model to predict fatigue allows aviation research to predict 

fatigue before entering the air. While several other studies have examined fatigue in 

aviation, it has nearly always been through various physiological monitoring devices 

(Berberich & Leitner, 2017; Wilson et al., 2019). Wearable devices create additional 

challenges due to being cumbersome and unable to determine fatigue until after a pilot is 

already in the air. With that in mind, this type of fatigue survey tool could regulatory 

mandates on fatigue, improve aviation safety, and reduce airline fatigue-related 

inefficiencies. 

Gathering participants for this research proved to be more challenging than 

expected due to many pilots on long-term leave or training due to extended leaves caused 

by the COVID-19 pandemic. Increasing the number of participants could improve the 

statistical significance of the study and may have potentially altered the variance 

represented in the model. A shorter survey with fewer fatigue factors examined may have 

resulted in more participants and more care and dedication spent on responses. Some of 

the fatigue factors in this study could have been measured differently, impacting the 

study results. 

Recommendations for Future Research 
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With a larger body of participants, survey refinements, and further research into 

what factors may be predictive, this type of survey could prove valuable as a fatigue tool. 

However, additional research should be conducted across other groups of professional 

pilots. A need for further research amongst other pilot groups is especially true of 14 

C.F.R Part 121 Cargo pilots who fly demanding schedules that are disruptive to the 

natural circadian rhythm. These disruptions may result in heightened impacts of 

debilitating fatigue (Gander et al., 2016; Gander et al., 2015) and accompanying negative 

health impacts (Mukherjee et al., 2015). 

The fatigue factors identified in this study could be studied via an alternative 

methodology. For example, structural equation modeling could be utilized with minor 

changes now that fatigue factors could be selected without being exploratory. Another 

alternative is Partial Least Square (PLS) modeling. However, PLS modeling does not 

address model fit and the regression equation or structural equation modeling conducted 

in this research. 

Concern for fatigue in aviation is not unique to the United States. This study 

could have been expanded to cover foreign airline pilots with additional time and more 

resources. Expanding the study to foreign pilots would have also increased the number of 

eligible airline pilot participants, as there are many more pilots globally than in the 

United States alone. In addition, because aviation is global, improving air space safety 

abroad would also impact U.S-based air carriers. However, due to limitations on finishing 

this study in a reasonable amount of time and the number of possible confounding 

variables associated with researching foreign pilots with various backgrounds, the 

addition of foreign pilots was not feasible for this study. 
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Finally, several regulatory changes were made in 2014 due to 14 C.F.R 117. 

However, no research was identified during the literature review process evaluating the 

overall effectiveness of these changes. While 14 C.F.R 117 had a general goal of 

reducing the risks associated with fatigue, the specific changes were not always rooted in 

research. Extensive government fatigue research studies were conducted between 20 to 

30 years ago and are now dated (Avers et al., 2011). 

Summary 

Conclusions from the statistical analysis presented in Chapter IV were discussed. 

First, the significant predictor variables, age, hours on duty, and sleep quality, were 

explained and discussed. Non-significant predictor variables were also further examined 

because they did not return significant results. Next, the theoretical contributions linked 

to Heinrich’s domino theory and practical contributions to the aviation industry were 

explored. Study limitations were discussed. Finally, future recommendations for 

professional pilots and researchers were provided.  
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Appendix C 

Subject Matter Experts 

Robin Kim, Alaskan Airlines 
 
Education 
Embry-Riddle Aeronautical University – Daytona Beach 
Bachelor of Science in Aeronautical Science 
Minor in Business Administration and Air Traffic Management 
 
Career 
2017 - Present, Alaska Airlines, First Officer 
2011 - 2017, ExpressJet Airlines, First Officer and Line Oriented Safety Audit (LOSA) 
Observer 
2016 - 2017, Airline Pilots Association (ALPA), Airport Safety Liaison (ASL) Newark 
Liberty International Airport 
 
Flight Information 
Certificates and Ratings: 
Airline Transport Pilot – Airplane Multiengine Land 
Commercial Privileges – Airplane Single-Engine Land 
Certified Flight Instructor – Airplane Single-Engine and Multiengine, Instrument 
Airplane 
Ground Instructor – Advanced and Instrument 
Aircraft Dispatcher 
 
Type Ratings: 
B-737 
A-320 
EMB-145 
 
Total Flight Hours: 
4,678 
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Rachel Lindvig, American Airlines 
 
Education 
Embry-Riddle Aeronautical University – Worldwide 
Master of Science in Aeronautics 
Major: Aviation Education and Safety Science 
 
University of North Dakota – Grand Forks 
Bachelor of Science in Aeronautics 
Major: Aviation Education and Safety Science 
 
Career 
2018 - Present, American Airlines, First Officer 
2010 - 2018, Envoy/American Eagle, Captain and Line Check Airman 
2008 - 2009, Mesaba Airlines, First Officer 
2007 – 2008, UND Aerospace, Flight Instructor 
2006 – 2006, American Airlines, Flight Operations Intern 
 
Flight Information 
Certificates and Ratings: 
Airline Transport Pilot – Airplane Multiengine Land 
Commercial Privileges – Airplane Single-Engine Land and Sea 
Certified Flight Instructor – Airplane Single-Engine and Multiengine, Instrument 
Airplane 
 
Type Ratings: 
CL-65 
A-320 
EMB-145 
DC-3 (SIC Only) 
SF-340 (SIC Only) 
 
Total Flight Hours: 
7,500 
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Jason Fox, United Airlines 
 
Education 
Embry-Riddle Aeronautical University – Daytona Beach 
Bachelor of Science in Aeronautical Science 
Minor in Air Traffic Management 
 
Career 
2020 - Present, United Airlines, First Officer 
2013 – 2020, ExpressJet Airlines, First Officer, EPIC Ambassador, ALPA National 
Education Committee Volunteer, District Advocacy Volunteer, Pilot to Pilot Program 
Volunteer, Chairman of the Family Awareness Committee, Secretary/Treasurer for 
ExpressJet LEC-177 Newark 
2011 – 2013, Embry Riddle Aeronautical University, Flight Instructor 
 
Flight Information 
Certificates and Ratings: 
Airline Transport Pilot – Airplane Multiengine Land 
Commercial Privileges – Airplane Single-Engine Land 
Certified Flight Instructor – Airplane Single-Engine, Instrument Airplane 
 
Type Ratings: 
EMB-145 
 
Total Flight Hours: 
4500 
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